当前位置: 仪器信息网 > 行业主题 > >

环境扫面电化显微镜

仪器信息网环境扫面电化显微镜专题为您提供2024年最新环境扫面电化显微镜价格报价、厂家品牌的相关信息, 包括环境扫面电化显微镜参数、型号等,不管是国产,还是进口品牌的环境扫面电化显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境扫面电化显微镜相关的耗材配件、试剂标物,还有环境扫面电化显微镜相关的最新资讯、资料,以及环境扫面电化显微镜相关的解决方案。

环境扫面电化显微镜相关的论坛

  • 新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM)

    新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM) 材料2106 李昊哲新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM)是一种具有创新性的技术,它在电化学领域的研究和应用中起到了重要的作用。EC-SPM采用了先进的技术和方法,可以对电化学反应进行精确的测量和分析,为科学家们提供了更为准确和可靠的数据。EC-SPM的创新之处在于其结合了扫描探针显微镜(SPM)和电化学技术,实现了对电化学反应的原位观察和测量。传统的电化学测量仪器往往只能提供宏观的电化学数据,而EC-SPM通过在电极表面放置微小的探针,可以实现对电化学反应的纳米级别的测量。这种纳米级别的测量能够更加准确地了解电化学反应的动态变化,提供了更为详细和全面的信息。EC-SPM在前处理合计数方面也进行了改进和优化。传统的电化学测量仪器在前处理过程中往往需要复杂的操作和多个步骤,容易出现误差和不确定性。而EC-SPM通过引入自动化和智能化的前处理系统,可以实现对样品的快速处理和准确计数。这不仅提高了测量的效率,还减少了人为因素对结果的影响,提高了测量的精确度和可靠性。我有幸在实验室使用了电化学扫描探针显微镜(EC-SPM),并且对其性能和使用体验有了一些真实的心得体会。我认为EC-SPM的性能非常出色。它采用了先进的扫描探针显微镜技术,可以实现纳米级的高分辨率测量。在我的实验中,我使用EC-SPM对一种新型材料进行了表面形貌和电化学性质的同时测量,结果非常令人满意。EC-SPM能够清晰地显示出样品的表面形貌,并且能够通过电流-电压曲线来研究材料的电化学行为。这对于我研究材料的结构与性能之间的关系非常有帮助,其次,EC-SPM的操作非常简便。它采用了直观的用户界面,使得操作人员能够快速上手。在我使用的过程中,我只需要按照仪器的操作指南进行操作,就能够轻松地完成测量。而且,EC-SPM还具有自动化的功能,能够实现自动扫描和测量,省去了繁琐的手动调整步骤,提高了实验效率。最后,EC-SPM的数据处理和分析功能也非常强大。它可以对测量得到的数据进行实时处理和分析,并且能够生成高质量的图像和曲线。在我的实验中,我使用EC-SPM获得了一系列的电流-电压曲线,并且通过对这些曲线进行分析,我能够得到材料的电化学性质,比如电荷转移速率和电化学反应动力学参数。这对于我研究材料的电化学性能非常有帮助。EC-SPM在电化学领域的研究和应用中取得了重要的成果。例如,在电池研究中,EC-SPM可以帮助科学家们更好地了解电池中的界面反应和电化学性能,从而提高电池的效率和稳定性。在催化剂研究中,EC-SPM可以实时观察催化剂表面的电化学反应,揭示催化剂的活性和稳定性等关键性质。此外,EC-SPM还可以应用于材料科学、生物医学等领域,实现对材料表面性质和生物分子相互作用的研究。EC-SPM作为一种新型电化学测量仪器,具有创新性的技术和方法。它通过纳米级别的测量,实现了对电化学反应的精确观察和分析。在前处理合计数方面的改进,使得测量结果更加准确和可靠。研究成果在电化学领域的应用广泛,为科学家们的研究和实践提供了重要的支持。它的高分辨率测量能力、简便的操作和强大的数据处理功能使得我能够更好地研究材料的电化学性质。我相信,随着电化学扫描探针显微镜技术的不断发展,EC-SPM将会在材料科学、电化学等领域发挥更加重要的作用。

  • 【求助】请问金相显微镜能扫描电极表面形貌吗?

    没有用过金相显微镜,所以恳请高人指点。金相显微镜能做电极表面形貌的扫描吗?我在电极表面镀膜,但不知道好坏,想看看形貌。但做扫描电镜太贵,且也到不了nm级别,所以想放大放大看看,不知道行不行?另外,一般的金相显微镜放大倍数最大多少?仪器的价位怎样?

  • 【讨论】扫描电子显微镜观察石棉纤维

    我今天做了个样品涂片想用扫描电子显微镜观察其中是否有石棉纤维,但是样品成分很复杂我判断不了是否是石棉,请问有谁用扫描电子显微镜观察过石棉纤维?

  • 新上讲座:扫描电化学显微镜在多个尖端技术应用领域的科研实例

    新上讲座:扫描电化学显微镜在多个尖端技术应用领域的科研实例

    http://simg.instrument.com.cn/bbs/images/default/em09504.gif2017年05月18日 14:00开讲!!!http://ng1.17img.cn/bbsfiles/images/2017/04/201704131643_01_1785258_3.jpg报名链接:file:///C:\Users\zhangyan\AppData\Roaming\Tencent\QQEIM\Temp\8LDO48C$8@http://www.instrument.com.cn/webinar/Meeting/meetingInsidePage/2568主讲人:王竞鹏(Frank Wang) 博士现任Harvard Bioscience Inc. 旗下德国HEKA Elektronik品牌的高级应用技术科学家,职责覆盖北美,欧洲和亚洲区HEKA电化学仪器技术的应用研发和推广支持。王博士本科毕业于天津南开大学分析化学专业,在加拿大完成的博士和博士后研究期间, 师从于多位国际著名的电化学家,致力于广泛的活性纳米材料在多个电化学应用领域内的研究。王博士拥有10年以上的使用HEKA电化学仪器技术及扫描探针显微镜(SPM)技术的科研经验。本次报告会将详细介绍HEKA ElProScan(扫描电化学显微镜)系列产品平台在多个尖端技术应用领域的科研实例。ElProScan凭借德国电化学工业界的开放扫描平台设计以及HEKA全球领先的小电流放大检测技术, 具有一机多用的鲜明独家特点 - 利用HEKA自主研发40多年的一套可高度定制的硬件/软件平台全面支持SECM/SICM/SECCM/SMCM,以及同步荧光微观成像,同步剪切力感应微观形貌成像 和 同步光电化学微观成像等亚微米/纳米尺寸的扫描成像技术。这次报告将深入浅出的介绍ElProScan平台使用微电极(microelectrode)和玻璃微毛细管(micropipette)作为电化学扫描探针,在多种跨学科的前沿科学领域的科研实例,涵盖了生物细胞功能及形貌成像,导电高分子材料/光电半导体材料/锂离子电池材料的微观电化学及形貌表征,防腐蚀材料的微区表征研究等等热门课题。http://simg.instrument.com.cn/bbs/images/default/em09504.gif

  • 【网络讲座】峰值力轻敲(PeakForce) 扫描电化学显微镜(2016-11-09 10:00)

    【网络讲座】峰值力轻敲(PeakForce) 扫描电化学显微镜(2016-11-09 10:00)

    1700次,H指数 为18.【会议简介】电化学应用与日常生活和前沿研发的很多领域都有着紧密联系,比如在新能源开发,生物电分析,材料合成,表面保护等。 宏观的电化学反应是电极表面的混杂异构的平均结果, 包含了来自不同反应位点,晶面多向属性以及不同的表面缺陷的平均响应。 这些微观尺度的多样性源取决于材料在纳米尺度下结构,力学,电学以及电化学特性的不均一性。现代电极材料的结构工程正是希望能够在纳米尺度对这些特性进行可控剪裁和加工。在这种情况下,原位和微区电分析技术研究纳米尺度的表面反应是不可或缺的。 为了适应今天这些高度跨学科的研究需要, 能够在原位电化学过程中同时获取相关微观多维信息的技术是科学工作者和工程师们一直的追求。本次报告介绍了布鲁克(Bruker)最新开发,批量制备,高质,稳定且使用便捷的扫描电化学(SECM)纳米电极探针。这些纳米电极探针的特征尺度大约为50 nm。这些探针被用于结合了峰值力轻敲成像模式的原子力显微镜(AFM)平台,也就是布鲁克最近推出的峰值力轻敲扫描电化学显微镜技术。这项技术能够实时的提供空间分辨率高于100 nm的电化学形貌图,以及其他同时获取的高分辨的AFM信息,比如表面形貌图,电学图以及力学图。 另外,这些探针也可以跟布鲁克高带宽的电学模块结合,使得液下纳米电分析成像成为可能。在这次报告,我们也将通过具体例子介绍这项技术在多个领域的应用。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016-11-09 8:003、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1979http://ng1.17img.cn/bbsfiles/images/2016/09/201609271113_612273_2507958_3.jpg扫描二维码,报名参会4、报名及参会咨询:QQ群—290101720,扫码入群“大讲堂”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669143_2507958_3.gif

  • 扫描电子显微镜,这个资料我给100分

    [b][color=#000000]扫描电子显微镜价格[/color][/b][color=#000000]扫描电子显微镜的价格?这个是很多科研人关心的问题之一,我们想知道电子显微镜多少钱(大概一个范围);其实,我们知道显微镜的价格是不便宜的,基本的一个范围就是30-100万,特别是高端的扫描电子显微镜价格200-300万也是什么不可能的事。下面小冉就给大家说说扫描显微镜的工作原理和价格以及其用途,给大家做一个了解和参考![/color][color=#000000][/color][color=#000000][/color][align=center][color=#000000][img=扫描电子显微镜原理及功能用途,400,412]http://www.gdkjfw.com/images/image/99161528266162.jpg[/img][/color][/align][color=#000000][/color][color=#000000][color=#000000]  [/color][b][color=#000000]扫描电子显微镜多少钱?[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][color=#000000]  FEI Inspect S50扫描电子显微镜参考成交价格:200万元[/color][color=#000000]  FEI Inspect F50场发射扫描电子显微镜参考成交价格:300万元[/color][color=#000000]  FEI Quanta 650 FEG环境扫描电镜参考成交价格:43万元[/color][color=#000000]  FEI Quanta 250环境扫描电子显微镜参考成交价格:200万元[/color][color=#000000]  FEI Magellan 400L XHR场发射扫描电子显微镜参考成交价格:200万元[/color][color=#000000]  注:价格来源于网络,仅供参考[/color][color=#000000][/color][color=#000000][color=#000000]  [/color][b][color=#000000]扫描电子显微镜结构图[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][align=center][color=#000000][b][color=#000000][img=扫描电子显微镜原理及功能用途,350,456]http://www.gdkjfw.com/images/image/28441528266163.jpg[/img][/color][/b][/color][/align][align=center][color=#000000]扫描电子显微镜结构图[/color][/align][color=#000000][/color][color=#000000][color=#000000]  [/color][b][color=#000000]扫描电子显微镜工作原理[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][color=#000000]  扫描电子显微镜可粗略分为镜体和电源电路系统两部分。镜体部分由电子光学系统(包括电子枪、扫描线圈等)、试样室、检测器以及真空抽气系统组成[/color][color=#000000][/color][align=center][color=#000000][img=扫描电子显微镜原理及功能用途,454,389]http://www.gdkjfw.com/images/image/24361528266163.jpg[/img][/color][/align][align=center][color=#000000]扫描电子显微镜原理图[/color][/align][color=#000000]  从图可以看出,由三极电子枪所发射出来的电子束(一般为50μm),[/color][color=#000000]  在加速电压的作用下(2~30kV),经过三个电磁透镜(或两个电磁透镜),汇聚成一个细小到5nm的电子探针,在末级透镜上部扫描线圈的作用下,使电子探针在试样表面做光栅状扫描(光栅线条数目取决于行扫描和帧扫描速度)。由于高能电子与物质的相互作用,结果在试样上产生各种信息如二次电子、背反射电子、俄歇电子、X射线、阴极发光、吸收电子和透射电子等。因为从试样中所得到各种信息的强度和分布各自同试样表面形貌、成分、晶体取向、以及表面状态的一些物理性质(如电性质、磁性质等)等因素有关,因此,通过接收和处理这些信息,就可以获得表征试样形貌的扫描电子像,或进行晶体学分析或成分分析。[/color][color=#000000]  为了获得扫描电子像,通常是用探测器把来自试样表面的信息接收,再经过[/color][color=#000000]  信号处理系统和放大系统变成信号电压,最后输送到显像管的栅极,用来调制显像管的亮度。因为在显像管中的电子束和镜筒中的电子束是同步扫描的,其亮度是由试样所发回的信息的强度来调制,因而可以得到一个反映试样表面状况的扫描电子像,其放大系数定义为显像管中电子束在荧光屏上扫描振幅和镜筒电子束在试样上扫描振幅的比值,即[/color][color=#000000]  M=L/l=L/2Dγ[/color][color=#000000]  式中M-放大系数;[/color][color=#000000]  L-显像管的荧光屏尺寸;[/color][color=#000000]  l-电子束在试样上扫描距离,它等于2Dγ,其中D是扫描电子显微镜的工[/color][color=#000000]  作距离;[/color][color=#000000]  2γ-镜筒中电子束的扫描角。[/color][color=#000000][/color][align=center][color=#000000][img=扫描电子显微镜原理及功能用途,400,363]http://www.gdkjfw.com/images/image/56411528266163.jpg[/img][/color][/align][color=#000000][/color][color=#000000][color=#000000]  [/color][b][color=#000000]扫描电子显微镜用途[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][color=#000000]  最基本的功能是对各种固体样品表面进行高分辨形貌观察。大景深图像是扫描电子显微镜观察的特色,例如:生物学,植物学,地质学,冶金学等等。观察可以是一个样品的表面,也可以是一个切开的面,或是一个断面。冶金学家已兴奋地直接看到原始的或磨损的表面。可以很方便地研究氧化物表面,晶体的生长或腐蚀的缺陷。它一方面可更直接地检查纸,纺织品,自然的或制备过的木头的细微结构,生物学家可用它研究小的易碎样品的结构。例如:花粉颗粒,硅藻和昆虫。另一方面,它可以拍出与样品表面相应的立体感强的照片。[/color][color=#000000]  在扫描电子显微镜应用中,很多集中在半导体器件和集成电路方面,它可以很详细地检查器件工作时局部表面电压变化的实际情况,这是因为这种变化会带来象的反差的变化。焊接开裂和腐蚀表面的细节或相互关系可以很容易地观察到。利用束感生电流,可以观测半导体P—N结内部缺陷。[/color][color=#000000]  电子束与样品作用区内,还发射与样品物质其他性质有关信号。例如:与样品化学成分分布相关的,背散射电子,特征X射线,俄歇电子,阴极荧光,样品吸收电流等;与样品晶体结构相关的,背散射电子衍射现象的探测;与半导体材料电学性能相关的,二次电子信号、电子束感生电流信号;在观察薄样品时产生的透射电子信号等。目前分别有商品化的探测器和装置可安装在扫描电子显微镜样品分析室,用于探测和定性定量分析样品物质的相关信息。[/color][color=#000000]  扫描电子显微镜对于固体材料的研究应用非常广泛,没有任何一种仪器能够和其相提并论。对于固体材料的全面特征的描述,扫描电子显微镜是至关重要的。[/color][color=#000000][/color][align=center][color=#000000][img=扫描电子显微镜原理及功能用途,446,310]http://www.gdkjfw.com/images/image/52861528266163.jpg[/img][/color][/align][color=#000000][/color][color=#000000][color=#000000] [/color][b][color=#000000] 扫描电子显微镜功能[/color][color=#000000][/color][/b][/color][color=#000000][b][color=#000000][/color][color=#000000][/color][/b][/color][color=#000000]  1、扫描电子显微镜追求固体物质高分辨的形貌,形态图像(二次电子探测器SEI)-形貌分析(表面几何形态,形状,尺寸)[/color][color=#000000]  2、显示化学成分的空间变化,基于化学成分的相鉴定---化学成分像分布,微区化学成分分析[/color][color=#000000]  1)用x射线能谱仪或波谱(EDSorWDS)采集特征x射线信号,生成与样品形貌相对应的,元素面分布图或者进行定点化学成分定性定量分析,相鉴定。[/color][color=#000000]  2)利用背散射电子BSE)基于平均原子序数(一般和相对密度相关)反差,生成化学成分相的分布图像;[/color][color=#000000]  3)利用阴极荧光,基于某些痕量元素(如过渡金属元素,稀土元素等)受电子束激发的光强反差,生成的痕量元素分布图像。[/color][color=#000000]  4)利用样品电流,基于平均原子序数反差,生成的化学成分相的分布图像,该图像与背散射电子图像亮暗相反。[/color][color=#000000]  5)利用俄歇电子,对样品物质表面1nm表层进行化学元素分布的定性定理分析,[/color][color=#000000]  3、在半导体器件(IC)研究中的特殊应用:[/color][color=#000000]  1)利用电子束感生电流EBIC进行成像,可以用来进行集成电路中pn结的定位和损伤研究[/color][color=#000000]  2)利用样品电流成像,结果可显示电路中金属层的开、短路,因此电阻衬度像经常用来检查金属布线层、多晶连线层、金属到硅的测试图形和薄膜电阻的导电形式。[/color][color=#000000]  3)利用二次电子电位反差像,反映了样品表面的电位,从它上面可以看出样品表面各处电位的高低及分布情况,特别是对于器件的隐开路或隐短路部位的确定尤为方便。[/color][color=#000000]  4、利用背散射电子衍射信号对样品物质进行晶体结构(原子在晶体中的排列方式),晶体取向分布分析,基于晶体结构的相鉴定。[/color][color=#000000]  扫描电子显微镜对科学研究与企业生产都有巨大的作用,在新型陶瓷材料显微分析中也有广泛的应用。上文就是小编整理的扫描电子显微镜的工作原理和应用介绍,在这方面有兴趣的朋友可以做进一步的深入研究。[/color]

  • 扫描电镜与金相显微镜的区别

    光源不同:光学显微镜采用可见光作为光源,电子显微镜采用电子束作为光源成像原理不同:光学显微镜利用几何光学成像原理进行成像,电子显微镜利用高能量电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的信号探测器接受物理信号转换成图像信息。分辨率:光学显微镜因为光的干涉与衍射作用,分辨率只能局限于0.2-0.5um之间。电子显微镜因为采用电子束作为光源,其分辨率可达到1-3nm之间,因此光学显微镜的组织观察属于微米级分析,电子显微镜的组织观测属于纳米级分析。景深:一般光学显微镜的景深在2-3um之间,因此对样品的表面光滑程度具有极高的要求,所以制样过程相对比较复杂。扫描电镜的景深则可高达几个毫米,因此对样品表面的光滑程度几何没有任何要求,样品制备比较简单,有些样品几何无需制样。体式显微镜虽然也具有比较大的景深,但其分辨率却非常的低。应用领域:光学显微镜主要用于光滑表面的微米级组织观察与测量,因为采用可见光作为光源因此不仅能观察样品表层组织而且在表层以下的一定范围内的组织同样也可被观察到,并且光学显微镜对于色彩的识别非常敏感和准确。电子显微镜主要用于纳米级的样品表面形貌观测,因为扫描电镜是依靠物理信号的强度来区分组织信息的,因此扫描电镜的图像都是黑白的,对于彩色图像的识别扫描电镜显得无能为力。扫描电镜不仅可以观察样品表面的组织形貌,通过使用EDS、WDS、EBSD等不同的附件设备,扫描电镜还可进一步扩展使用功能。通过使用EDS、WDS辅助设备,扫描电镜可以对微区化学成分进行分析,这一点在失效分析研究领域尤为重要。使用EBSD,扫描电镜可以对材料的晶格取向进行研究。

  • 说说:金相显微镜与扫描电镜的区别

    上周分享的文章:[color=#ff0000][b][color=#333333]专业角度看,光学显微镜与扫描电镜的区别在哪里[/color][color=#333333][/color][/b][/color][b][color=#333333]?[/color][/b]描述这两者的不同之处、机制和实际运用,希望能给更多的朋友们快速的了解,接下来小冉还是会继续分享关于电镜和其他显微镜的区别,好了,一起来简单看看[color=#ff0000]金相显微镜与扫描电镜的区别[/color]吧! 金相显微镜是用于观察具有入射照明的金属样品(金相组织)表面的显微镜。它结合了光学显微技术、光电转换技术、计算机图像处理技术。高科技产品可以在计算机上轻松观察金相图像,从而可以对金相图进行分析,分级等,输出图像为。金相显微镜是一种光学显微镜。相对于电子显微镜,分辨率较小,微米分辨率较小,放大倍数较小,但操作简便。大视场、价格相对较低。[align=center][img=,500,376]http://www.gdkjfw.com/images/image/15051531705166.jpg[/img][/align] 金相显微镜一种用于扫描电子显微镜的新型电光仪器。它具有简单的样品制备、放大倍率可调范围宽度、图像分辨率高、景深等。扫描电子显微镜已被广泛应用于生物学领域、医学、冶金学几十年,并促进了各相关学科的发展。扫描电子显微镜的特点:电子显微镜,高图像分辨率,纳米级分辨率,可调放大倍数和大,另一个重要特征是大景深和丰富的三维图像。 金相显微镜与扫描电镜之间存在很大差异,主要表现在以下几个方面: 一、光源不同:金相显微镜使用可见光作为光源,扫描电子显微镜使用电子束作为光源进行成像。 二、原理不同:金相显微镜采用几何光学成像原理进行扫描,扫描电子显微镜使用高能电子束轰击样品表面,激发表面上的各种物理信号。采样,然后使用不同的信号检测器接收物理信号并将其转换为图像。信息。 三、分辨率:由于光的干涉和衍射,金相显微镜只能限制在0.2-0.5um。扫描电子显微镜使用电子束作为光源,其分辨率可达到1-3nm。因此,金相显微镜的微观结构观察属于微米分析,扫描电子显微镜的观察属于纳米尺度分析。 四、景深:一般金相显微镜的景深在2-3um之间,因此样品的表面光滑度要求极高,因此制备过程相对复杂。 SEM的景深可以高达几个。

  • 【转帖】扫描电子显微镜的应用

    新设备简介扫描电子显微镜的应用扫描电子显微镜是一种多功能的仪器、具有很多优越的性能、是用途最为广泛的一种仪器.它可以进行如下基本分析:(1)三维形貌的观察和分析;(2)在观察形貌的同时,进行微区的成分分析。①观察纳米材料,所谓纳米材料就是指组成材料的颗粒或微晶尺寸在0.1-100nm范围内,在保持表面洁净的条件下加压成型而得到的固体材料。纳米材料具有许多与晶体、非晶态不同的、独特的物理化学性质。纳米材料有着广阔的发展前景,将成为未来材料研究的重点方向。扫描电子显微镜的一个重要特点就是具有很高的分辨率。现已广泛用于观察纳米材料。②进口材料断口的分析:扫描电子显微镜的另一个重要特点是景深大,图象富立体感。扫描电子显微镜的焦深比透射电子显微镜大10倍,比光学显微镜大几百倍。由于图象景深大,故所得扫描电子象富有立体感,具有三维形态,能够提供比其他显微镜多得多的信息,这个特点对使用者很有价值。扫描电子显微镜所显示饿断口形貌从深层次,高景深的角度呈现材料断裂的本质,在教学、科研和生产中,有不可替代的作用,在材料断裂原因的分析、事故原因的分析已经工艺合理性的判定等方面是一个强有力的手段。③直接观察大试样的原始表面,它能够直接观察直径100mm,高50mm,或更大尺寸的试样,对试样的形状没有任何限制,粗糙表面也能观察,这便免除了制备样品的麻烦,而且能真实观察试样本身物质成分不同的衬度(背反射电子象)。④观察厚试样,其在观察厚试样时,能得到高的分辨率和最真实的形貌。扫描电子显微的分辨率介于光学显微镜和透射电子显微镜之间,但在对厚块试样的观察进行比较时,因为在透射电子显微镜中还要采用复膜方法,而复膜的分辨率通常只能达到10nm,且观察的不是试样本身。因此,用扫描电子显微镜观察厚块试样更有利,更能得到真实的试样表面资料。⑤观察试样的各个区域的细节。试样在样品室中可动的范围非常大,其他方式显微镜的工作距离通常只有2-3cm,故实际上只许可试样在两度空间内运动,但在扫描电子显微镜中则不同。由于工作距离大(可大于20mm)。焦深大(比透射电子显微镜大10倍)。样品室的空间也大。因此,可以让试样在三度空间内有6个自由度运动(即三度空间平移、三度空间旋转)。且可动范围大,这对观察不规则形状试样的各个区域带来极大的方便。⑥在大视场、低放大倍数下观察样品,用扫描电子显微镜观察试样的视场大。在扫描电子显微镜中,能同时观察试样的视场范围F由下式来确定:F=L/M式中 F——视场范围;M——观察时的放大倍数;L——显象管的荧光屏尺寸。 若扫描电镜采用30cm(12英寸)的显象管,放大倍数15倍时,其视场范围可达20mm,大视场、低倍数观察样品的形貌对有些领域是很必要的,如刑事侦察和考古。⑦进行从高倍到低倍的连续观察,放大倍数的可变范围很宽,且不用经常对焦。扫描电子显微镜的放大倍数范围很宽(从5到20万倍连续可调),且一次聚焦好后即可从高倍到低倍、从低倍到高倍连续观察,不用重新聚焦,这对进行事故分析特别方便。⑧观察生物试样。因电子照射而发生试样的损伤和污染程度很小。同其他方式的电子显微镜比较,因为观察时所用的电子探针电流小(一般约为10-10 -10-12A)电子探针的束斑尺寸小(通常是5nm到几十纳米),电子探针的能量也比较小(加速电压可以小到2kV)。而且不是固定一点照射试样,而是以光栅状扫描方式照射试样。因此,由于电子照射面发生试样的损伤和污染程度很小,这一点对观察一些生物试样特别重要。⑨进行动态观察。在扫描电子显微镜中,成象的信息主要是电子信息,根据近代的电子工业技术水平,即使高速变化的电子信息,也能毫不困难的及时接收、处理和储存,故可进行一些动态过程的观察,如果在样品室内装有加热、冷却、弯曲、拉伸和离子刻蚀等附件,则可以通过电视装置,观察相变、断烈等动态的变化过程。⑩从试样表面形貌获得多方面资料,在扫描电子显微镜中,不仅可以利用入射电子和试样相互作用产生各种信息来成象,而且可以通过信号处理方法,获得多种图象的特殊显示方法,还可以从试样的表面形貌获得多方面资料。因为扫描电子象不是同时记录的,它是分解为近百万个逐次依此记录构成的。因而使得扫描电子显微镜除了观察表面形貌外还能进行成分和元素的分析,以及通过电子通道花样进行结晶学分析,选区尺寸可以从10μm到3μm。由于扫描电子显微镜具有上述特点和功能,所以越来越受到科研人员的重视,用途日益广泛。现在扫描电子显微镜已广泛用于材料科学(金属材料、非金属材料、钠米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=79549]扫描电子显微镜的应用[/url]

  • 扫描电子显微镜及偏光显微镜在碳纤维中应用

    请教下!!!问题1:扫描电子显微镜在碳纤维中应用,就是具体用扫描电镜分析碳纤维啥呢?问题2:偏光显微镜在碳纤维中应用?这2种设备那个更适合呢 ,我是一家生产碳纤维的厂家。想上这方面的设备?那位可以解答下,谢啦。

  • 【原创大赛】扫描电子显微镜原理与应用

    【原创大赛】扫描电子显微镜原理与应用

    植物中某些组织在发育早期非常的小,肉眼无法辨别它的表面结构,一般的光学显微镜也无法满足观察需求,这个时候就需要高分辨率的扫描电子显微镜来帮助植物科研工作者来揭开这些微小组织器官的面纱,把真实表面结构展现给大家。扫描电子显微镜是怎样的工作原理,和其他显微镜的差别在哪里,它为何能有如此高的“分辨率”呢?这些都得从他的工作原理说起。扫描电子扫描电子显微镜(Scanning Electron Microscope),简写为SEM,它是由电子光学技术、真空技术、精细机械结构以及现代计算机控制技术等共同组成。在加速高压作用下,由电子枪发射的电子经电子光学系统(由聚光镜和物镜组成)聚集成束照射到样品表面,对样品进行逐行扫描,从样品表面反射出多种电子,包括二次电子、饿歇电子、反射电子、X射线等,其中二次电子为SEM主要采集信号,通过检出器采集,再经视频放大形成图象信号,经显示器显示成直观的图象信息。相对于光学显微镜而言,SEM具有放大倍数高、分辨率高、成像清晰、立体感强、样品制备简单等诸多优点。1938年第一部扫描电子显微镜就研发成功了,不过直到1965年第一部商用SEM才出现。现在,扫描电子显微镜在植物方面可以对分阶段连续取得的样品进行细胞发生和发育学方面的微观动态研究。除了在植物方面应用,SEM还被广泛应用与动物、医学、化学、物理、地质、机械等多个行业。不少研究者和厂家从二次电子图像分辨率,放大倍数,适用性等方面努力提高SEM的性能,满足人们对SEM的需求。http://ng1.17img.cn/bbsfiles/images/2015/07/201507121833_555080_3023439_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507121834_555081_3023439_3.jpg

  • [分享]扫描电子显微镜入门1

    1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约 1500倍,扫描式显微镜可放大到10000倍以上。 2. 根据de Broglie波动理论,电子的波长仅与加速电压有关: λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (?) 在 10 KV 的加速电压之下,电子的波长仅为0.12?,远低于可见光的4000 - 7000?, 所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100?之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹 性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。 3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微 镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。 4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 发射电子 束,经过一组磁透镜聚焦 (聚焦后,用遮蔽孔径 选择电子束的尺寸后,通过一组控制电子束的扫描线圈,再透过物镜 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子或背向散射电子成像。 5. 电子枪的必要特性是亮度要高、电子能量散布 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。 6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。 7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。 8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。 9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同 时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。 10. 场发射电子枪可细分成三种:冷场发射式,热场发射式,及萧基发射式 11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电 子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开 阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密 度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。 12. 场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴 极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压,以控制针尖场发射的电流强度,而第二 (下)阳极主要是决定加速电压,以将电子加速至所需要的能量。 13. 要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子 或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发 射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格 极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。 14. 冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能 量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除 所吸附的气体原子。它的另一缺点是发射的总电流最小。 15. 热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较 差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷 式大3~5倍,影像分辨率较差,通常较不常使用。 16. 萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函 数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr 。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。 17. 场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。 18. 由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ion pump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。 19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空( step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。 20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。

  • 欢迎ative担任显微镜-扫描探针显微镜SPM版主

    欢迎ative担任显微镜-扫描探针显微镜SPM版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • 欢迎x357485724担任显微镜-扫描探针显微镜SPM版主

    欢迎x357485724担任显微镜-扫描探针显微镜SPM版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • 求购进口扫描电镜和金相显微镜

    因建设高性能铝合金材料试验检测中心,需购买扫描电镜和金相显微镜,望专家能给予指导意见,仪器厂家可直接和我联系。邮箱:nscjg@163.com, 电话05358609816

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 扫描电子显微镜的售后

    我公司想买台钨灯丝扫描电子显微镜和场发射扫描电子显微镜,由于是买2台,所以特别看重的是公司的售后。但是售后往往是消息最少的方面。因此不清楚情况,故现在还犹豫不决。不知论坛里的大大们是否给点建议,告知哪家售后好

  • 欢迎unht担任显微镜-扫描探针显微镜SPM/AFM版主

    欢迎unht担任显微镜-扫描探针显微镜SPM/AFM版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • 【原创】原子力显微镜及其在木材细胞壁研究方面的应用

    【原创】原子力显微镜及其在木材细胞壁研究方面的应用

    原子力显微镜(AFM)是我们学校新进的大型仪器设备之一。与光学显微镜及电子显微镜不同,AFM可利用微小探针“摸索”样品表面来获得信息。其成像原理决定了它具备其他显微技术所不具有的优点:受工作环境限制较少,可以在真空、气相、液相和电化学的环境下操作;可以对导体、半导体、绝缘体等多种样品成像,样品制备简单,且对样品的破坏性较小;具有原子级高分辨率,可得到观测表面的三维立体图像,并能获得探针与样品相互作用的信息。AFM可以观察许多不同材料的原子级别的高分辨表面形貌与结构,是一种新型的表面结构分析仪器。它的出现使人类在认识和改造自然方面进入一个新的层次,已被广泛应用于高分子材料、生物学以及生命科学等领域。近年来,研究人员也开始将这种新型的表面分析技术应用于木材微观结构的研究。这为人们进一步认识和了解木材微观世界,提供了一种有效的分析手段。目前在木材科学与技术领域内的研究内容主要包括两个方面:一方面是材料表面形貌、相结构的表征,在微米、纳米的范围内获取图像。另一方面是木质材料细胞壁的力学性能,如硬度、弹性模量和屈服强度的测量。我是实验室参加工程师培训的人员之一,由于课题的需要,我尝试利用AFM技术对杨木木纤维形态尺寸特性进行了测量,具体测量与分析方法如下:1材料与方法1. 1 试样制备试材为速生杨木,切削成横截面尺寸为5 mm×1 mm×5-8mm的木片,再用Spurr树脂进行包埋,然后用超薄切片机(LKB-2188,瑞典)进行表面抛光。1.2 测试方法测量时,将用双面胶固定在钢制样品垫上,再放置在原子力显微镜(AFM XE-100型,PSIA公司)的样品台上(磁铁固定)进行扫描。AFM主要参数设定如下:接触模式,扫描速度和扫描力分别为0.5Hz和1.08nN。2 图像处理图像扫描后还需要通过原子力显微镜配套软件(XEI 1.5)进行数据处理与分析。得到原始的形貌像之后,图像处理主要步骤如下:第一步是斜度校正(Slope Correction ),为的是消除样品倾斜或弯曲(极小程度)造成的图像失真。通过软件的拉平(Flatten )功能可以方便地消除x, y方向的图像倾斜。第二步是消除噪声,保证图像的真实性。第三步根据需要还可以对图像进行滤波、放大、灰度转换、改变像素以及切面、输出3D图像等操作图。处理图像结束后得到了相对真实的表面形貌图,再直接进行分析。图1是一组木材横切表面斜度校正处理前后的表面形貌图。3 杨木细胞壁特征参数测量杨木细胞壁特征参数测量是通过原子力显微镜配套软件(XEI 1.5)来实现的。测量原理与方法见图所示。其中图2和图3分别为AFM扫描的杨木表面形貌图及细胞壁厚度、长度尺寸测试图。通过测量可知,所测杨木细胞横截面的壁厚尺寸为1.026-4.082μm;壁长为2.195-21.004μm。这与前人的研究结论相一致。这说明原子力显微镜完全可以在微/纳米尺度下对木材的细胞形态特征进行测量。http://ng1.17img.cn/bbsfiles/images/2009/01/200901081623_128216_1615676_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/01/200901081625_128217_1615676_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/01/200901081627_128220_1615676_3.jpg

  • 【原创】显微镜的发展史

    一、显微镜的发展史 人的眼睛不能直接观察到比0.1mm更小的物体或物质的结构细节。人要想看得到更小的物 质结构,就必须利用工具,这种工具就是显微镜。 第一代显微镜:光学显微镜,极限分辨率是200纳米。由于光的衍射效应,分辨率受制于半波长,可见光的最短波长为0.4微米。 第二代显微镜:电子显微镜。1924年,德布罗意提出了微观粒子具有波粒二象性的假设,后来这种假设得到了实验证实。此后物理学家们利用电子在磁场中的运动与光线在介质中的传播相似的性质,研制成功了电子透镜,在此基础上于1933年发明了电子显微镜。TEM的点分辨率为0.2~0.5nm,晶格分辨率为0.1~0.2nm,扫描电镜的分辨率为6~10nm。它们的工作环境都要求高真空,并且使用成本很高,在一定程度上限制了电子显微镜的发展。 第三代显微镜:扫描探针显微镜。80年代初期,IBM公司苏黎世实验室的G.Binning 和H.Rohrer发明了扫描隧道显微镜,它的分辨率达到0.01纳米。STM的诞生,使人类第一次在实 间观测到了原子,并能够在超高真空超低温的状态下操纵原子。因为这两项重大的意义,这两位 科学家荣获了1986年的诺贝尔物理奖。在STM的基础上,又发明了原子力显微镜、磁力显微镜、近场光学显微镜等等,这些显微镜都统称扫描探针显微镜。因为它们都是靠一根原子线度的极细针尖在被研究物质的表面上方扫描,检测采集针尖和样品间的不同物理量,以此得到样品表面的形貌图像和一些有关的电化学特性。如:扫描隧道显微镜检测的是隧道电流,原子力显微镜镜测试的是原子间相互作用力等等。光学显微镜和电子显微镜都称之为远场显微镜,因为相对来说样品离成像系统有比较远的距离。成像的图像好坏基本取决于仪器的质量。而扫描探针显微镜的工作原理是基于微观或介观范围的各种物理特性,探针和样品之间只有2-3埃的距离,会产生相互的作用,是一种相互影响的耦合体系。我们称它为近场显微镜。它的成像质量不单单取决于显微镜本身,很大程度上受样品本身和针尖状态的影响。所以,我们在使用这一类的仪器时,要想得到好的图像,关键是要学会分析判断各种图像及现象的产生原因,然后通过调整参数,得到相对好的图像。 二、扫描探针显微镜(SPM)原理及设计思路 1、STM的产生 STM的工作原理是基于量子力学中的隧道效应。对于经典物理学来说,当一个粒子的动能低于前方势垒的高度 时,他不可能越过此势垒,即透射系数等于零,粒子将完全被弹回。而按照量子力学的计算,在一般情况下,其透射系数不等于零,也就是 说,粒子可以穿过比它能量更高的势垒,这个现象称为隧道效应。隧道效应是由于粒子的波动性而引起的,只有在一定的条件下,隧道效应才会显著。 扫描隧道显微镜是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近 (通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。由于隧道电流(纳安级)随距离而剧烈变化,让针尖在同一高度扫描材料表面,表面那些“凸凹不平”的原子所造成的电流变化,通过计算机处理,便能在显示屏上看到材料表面三维的原子结构图。STM具有空前的高分辨率(横向可达0.1nm,纵向可达0.01nm),它能直接观察到物质表面的原子结构图,从而把人们带到了纳观世界。 STM中针尖对样品作两维扫描 隧道电流与针尖样品表面距离呈负指数关系 2、STM恒高模式的产生和局限性 2.1 恒高模式 针尖以一个恒定的高度在样品表面快速地扫描,检测的是隧道电流的变化。当针尖扫描样品表面时,记录每点的隧道电流值,经过处理后得到图像。[/f

  • 【转帖】常规扫描电子显微镜的特点和发展

    常规扫描电子显微镜1 仪器组成与工作原理 60年代中期扫描电子显微镜(SEM)的出现,使人类观察微小物质的能力有了质的飞跃。相对于光学显微镜,SEM在分辨率、景深及微分析等方面具有巨大优越性,因而发展迅速,应用广泛。随着科学技术的发展,使SEM的性能不断提高,使用的范围也逐渐扩大。 常规SEM由以下基本部分组成(见图1):产生电子束的柱形镜简,电子束与样品发生相互作用的样品室,检测样品室所产生信号的探头,以及将信号变因像的数据处理与显示系统。 镜筒顶端电子枪发射出的电子由静电场引导,沿镜简向下加速。在镜筒中,通过一系列电磁透镜将电子束聚焦并射向样品。靠近镜简底部,在样品表面上方,扫描线圈使电子束以光栅扫描方式偏转。最后一级电磁透镜把电子束聚焦成一个尽可能小的斑点射入样品,从而激发出各种成像信号,其强弱随样品表面的形貌和组成元素不同而变化。仪器(具有数字成像能力)将探头送来的信号加以处理并送至显示屏,即可显示出样品表面各点图像。 为了保证初始电子束在打到样品表面前其所台电子不被气体分子散射,电子束行进的整个路径需处于高真空状态,即不但要求电子枪、镜简内各处是高真空,而且样品室也必须维持高真空状态,通常达10-3Pa[1]。2 SEM的缺陷 由于工作原理及结构上的一些限制,使常规SEM的使用性能和适用范围受到很大影响。归纳起来,这些影响主要有:(1)样品必须干净、干燥。肮脏、潮湿的样品会使仪器真空度下降,并可能在镜简内各狭缝、样品室壁上留下沉积物,从而降低成像性能并给探头或电子枪造成损害。此限制使得对各种各样的含水样品不能在自然状态下观察。同样对挥发性样品也不能观察。 (2)样品必须有导电性。这是因为电子束在与样品相互作用时,会在样品表面沉积相当可观的电荷。若样品不导电,电荷累积所形成的电场会使作为SEM成像信号的二次电子发射状况发生变化,极端情况下甚至会使电子束改变方向而使图像失真。因此观察绝缘样品时、必须采取各种措施来消除所沉积的电荷,如在样品表面做导电性涂层或进行低压电荷平衡。然而这些措施的采用,对仪器本身提出更高要求,并使样品预处理变得繁琐、复杂。而导电涂层又带来了新问题:涂层是否会显著地改变样品外貌?涂层后的样品图像是涂层图像而非样品图像,这两者是否完全相同? (3)常规则信号探头使用光电倍增管放大原始成像信号,它对光、热非常敏感,因此不能观察发光或高温样品。成像过程中观察窗、照明器不能打开,给观察过程带来极大不便[2]。3 SEM的发展 针对SEM的缺陷,人们提出了各种解决办法,其中以近年开发的环境扫描电子显微镜(ESEM)技术最引人注目。 ESEM最大的优点在于允许改变显微镜样品室的压力、温度及气体成分。它不但保留了常规SEM的全部优点,而且消除了对样品室环境必须是高真空的限制。潮湿、油腻、肮脏、无导电性的样品在自然状态下都可检测,无需任何预处理。在气体压力高达5000Pa,温度高达1500℃,含有任何气体种类的多气环境中,ESEM都可提供高分辨率的二次电子成像,从而使常规SEM的使用性能及适用范围大幅度改善。 开发ESEM的关键在于取消对样品室高真空的限制。要做到这点.必须解决以下几个主要问题:(1)将镜简与样品室的真空环境分开。ESEM设计中的重大改进是将两个相距很近的限压光栏孔放入镜简的最后一组透镜中使其合为一体(见图2)。在多重限压光栏孔之下、之间、之上分别抽气以提供一个压强逐渐变化的真空:样品室可低至5000Pa,而镜筒中可达10-3Pa或更高。由于光栏孔放置很近,减少了电子束通过高气压段的距离(此结构已申请了多个专利)。 (2)对样品室真空度要求的降低,必然导致镜筒底部至样品表面这段距离内初始电子束电子被气体分子散射。这样一来,束电子是否还能保持足够的成像信号强度?要回答这一问题,有必要对电子束与气体分子间相互作用的过程进行分析。 散射是一个离散的过程。单个电子与气体分子碰撞发生散射的概率可按理想气体规律处理。因此,在到达样品表面之前,每个电子的碰撞次数是有限的且为整数。按照Poisson分布,结合理想气体定律可推导出一个电子完全不散射概率方程为:P(0)=e-kpd/TV.式中P(0)——一个电子完全不散射的概率 k——一个与气体种类有关的常数 V——束电子能量 P、T、d——分别代表样品室的气体压强、温度及电子束在气体中通过的距离(束气路径长度)。 显然,P(0)也可理解为未散射束电子形成的有效成像电流与电子束总电流的比值。由此式可知,若从结构上使d减小,样品室压强较高时,仍然能获得较高的成像电流。这一推论为ESEM的开发奠定了理论基础〔3J。 (3)需要一个在样品室处于高压强环境下仍然能起作用的二次电子探头。ESEM的二次电子探头是特别设计的,位于样品正上方。探头上施以致百伏的正电压以吸引由样品发射出的用于成像的二次电子。二次电于在探头电场中加速,并与样品室中的气体分子碰撞、电离,产生额外的电子和正离子。这种加速、电离过程多次重复,使初始二次电子信号呈连续比例级数放大而无须再使用光电倍增管。探头采集这些信号并将其直接传送到电子放大器放大成像。由于不使用光电倍增管,故ESEM对光、热不敏感。同时,当样品表面出现电荷积累时,信号放大过程中所产生的正离子会被吸引到样品表面,从而抑制了区域性电场,有效地消除了由于样品表面电荷积累而引起的信号失真,使得不导电的样品在自然、未涂层状态下亦可成像。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=79550]常规扫描电子显微镜的特点和发展[/url]

  • 差分偏光激光扫描显微镜简介

    [url=http://www.f-lab.cn/microscopes-system/dplsm.html][b]差分偏光激光扫描显微镜[/b][/url]differential polarization laser-scanning microscope (DPLSM)具有[b]扫描光学显微镜[/b]和[b]分光偏振计[/b]的双重优点,可提供逐像素地实施的生物样本的各向异性数据,在记录生物组织图像强度的同时,能够实时地提供高精度的生物样品的各向异性组织的逐个像素的数据。差分偏光激光扫描显微镜采用模块化设计,可以直接安装到用户现有的激光扫描显微镜上,不用担心改变原来的光路和电子。我公司提供方便安装的差分偏光激光扫描显微镜DPLSM模块,可直接安装到激光扫描显微镜上,不需要改变电路和光路就可使用差分偏光激光扫描显微镜DPLSM功能。差分偏光激光扫描显微镜:[url]http://www.f-lab.cn/microscopes-system/dplsm.html[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制