当前位置: 仪器信息网 > 行业主题 > >

数字化裂隙灯显微镜

仪器信息网数字化裂隙灯显微镜专题为您提供2024年最新数字化裂隙灯显微镜价格报价、厂家品牌的相关信息, 包括数字化裂隙灯显微镜参数、型号等,不管是国产,还是进口品牌的数字化裂隙灯显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字化裂隙灯显微镜相关的耗材配件、试剂标物,还有数字化裂隙灯显微镜相关的最新资讯、资料,以及数字化裂隙灯显微镜相关的解决方案。

数字化裂隙灯显微镜相关的论坛

  • 【原创】裂隙灯显微镜的技术参数

    【原创】裂隙灯显微镜的技术参数

    [em09511]裂隙灯显微镜是眼科最常用的主要仪器。用于对眼部组织进行全面细致的检查。技术参数:显微镜类型:双目交角式立体显微镜显微镜总放大率:        1×物镜   1.6×物镜10×目镜   10×      16×16×目镜   16×      25.6×裂隙宽度:0~9mm,连续可调裂隙高度:1~9mm,连续可调光斑直径:¢9、¢8、¢5、¢3、¢2、¢0.2(mm)滤色片:隔热片、减光片、无赤片、钴兰片裂隙旋转角度:0~180°裂隙前倾角度:5°、10°、15°、20°四档照明灯泡:12V50W卤钨灯泡输入电压:交流110V/60Hz 220V/50Hz输入功率:80VA固视灯:红色发光二极管联系电话:010-63008128 13269828857 南小姐 QQ:632200478 MSN:yankenx@hotmail.com Email:yankenx@126.com http://www.optical8.cn裂隙灯 检眼镜 检影镜 电动升降台 眼科设备[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910261452_178028_1811473_3.jpg[/img]

  • 显微镜数字化改造求助

    我处有一台奥地利REICHERT的金相显微镜,型号应该是Nr。 261640。30多年的机器,想做数字化改造。高手指点一下,是否有改造价值。谁可以干这个活。

  • 【原创大赛】BL-5000型手持式裂隙灯

    【原创大赛】BL-5000型手持式裂隙灯

    [align=center][b]BL-5000型手持式裂隙灯[/b][/align][align=center]西安国联质检安全评价中心 柯海阔[/align]在动物局部刺激试验中,眼刺激试验占有重要的地位,该试验不仅可以研究供试品对眼部的刺激反应情况,更可以方便快捷的评判一种供试品的眼毒性。[align=center]然而在试验前与试验后的症状观察方面,传统的肉眼或者耳鼻喉检查笔无法准确的观察到结膜与虹膜上的细微结构,故会对症状的评分造成偏差。本中心特购置便携式手持裂隙灯一台很好的解决了这个问题,使中心实验人员与兽医可以方便、快捷、准确地对眼刺激试验地反应进行评分。[img=,690,466]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081745_01_2904018_3.png[/img][/align]本中心所购置的为BL-5000型手持式裂隙灯。其在实际操作中因检查对象为动物,故不能按照说明书中的指导进行操作。本中心通过长期的实践经验,对该仪器的操作得出一套新的规则,具体细则如下:[b] 4.1安装[/b]1) 从手提箱中取出手持式裂隙灯及屈光度调节杆、前额固定支架、电池等附件。然后,将电池稳固地插入底座的电池盒内。2) 安装目镜:根据检查具体的项目与精度选择10倍或者16倍的目镜,并进行安装。随后检查是否有松动,是否有污垢。如有松动旋紧即可,如有污垢,用脱脂棉沾取60%酒精和40%乙醚混合液轻轻拭去。[b]4.2 调节 [/b]1) 检查照明光源:将对焦杆安装在显微镜镜身的对应位置上,按逆时针的方向转动裂隙调节开关,然后将裂隙开到最大。打开照明开关,可见一圆形的照明光斑。若无光斑,检查裂隙调节环是否打开,如打开仍无,表示电池无电,应及时充电。将对焦杆取下,装上前额固定支架来调节被观察者的工作距离。检查旋转滤色片:无赤片、钴蓝片、隔热片。2) 屈光度调节:卸下前额固定支架的固定螺钉,然后装上屈光度调节杆。打开照明,检查者根据自己的屈光度进行的屈光度的调整。(工作距离为80mm)[b]4.3检查[/b]保定好动物,使其眼部位置稳定。随后安装前额固定支架,圆形部分顶住动物头部,打开裂隙灯电源,调整裂隙灯回转槽位置,使光源对准动物眼部。按压前额固定支架,从目镜观察直到出现清晰的像,固定前额固定支架螺钉旋钮。根据检查具体项目与类型,选择裂隙宽度(裂隙旋转环),选择滤色(滤色转换旋钮),选择照明角度(裂隙灯回转槽)。[b]4.4维护[/b]1) 目镜和物镜防尘玻璃盖与反光镜:如上面有手指印或者油脂,请用带有乙醚的擦镜纸或者软布清洁目镜和物镜防尘玻璃盖与反光镜的表面。2) 当检查完毕时,将照明调节旋钮调至最小,关闭照明开关,将裂隙灯回转槽调至正中,卸下目镜装进保护袋中,卸下对焦杆与前额固定支架,最后将所有配件整体放入裂隙灯箱中。

  • 金相显微镜在教学的适用性

    金相显微镜电子目镜是一种针对普通光学显微镜通用目镜筒而开发的一种能替代人眼观察视野,将镜下图像真实反映在电子图像显示及输出设备上的光电设备,从而实现了图像时时共享,资料数字化、电子存档化。金相显微镜电子目镜是一种针对金相显微镜成像专门研制而成的光学电子仪器。该系列金相显微镜电子目镜作为一款新型光电装置,传输接口为USB2.0高速接口,金相显微镜电子目镜采用1/2″CMOS大面阵图像传感器及大口径光学镜头,使获取的图像具有极高的清晰度;单幅照相影像更佳。分辨率可达130-300万像素,并可以方便地应用于任何标准生物显微镜、体视显微镜及望远镜中。从而给观察、教学、科研、临床、家庭带来了极大的快捷和便利。金相显微镜电子目镜采用高分辨率图像传感器、光学部分由国家光学重点实验室设计,性能优异、体积小巧,更适合教师教学和装备数字化实验室。

  • 金相显微镜电子目镜介绍

    金相显微镜电子目镜是一种针对金相显微镜成像专门研制而成的光学电子仪器。该系列金相显微镜电子目镜作为一款新型光电装置,传输接口为USB2.0高速接口,金相显微镜电子目镜采用1/2″CMOS大面阵图像传感器及大口径光学镜头,使获取的图像具有极高的清晰度;单幅照相影像更佳。分辨率可达130-300万像素,并可以方便地应用于任何标准生物显微镜、体视显微镜及望远镜中。从而给观察、教学、科研、临床、家庭带来了极大的快捷和便利。 金相显微镜电子目镜是一种针对普通光学显微镜通用目镜筒而开发的一种能替代人眼观察视野,将镜下图像真实反映在电子图像显示及输出设备上的光电设备,从而实现了图像时时共享,资料数字化、电子存档化。 金相显微镜电子目镜采用高分辨率图像传感器、光学部分由国家光学重点实验室设计,性能优异、体积小巧,更适合教师教学和装备数字化实验室。 主要功能特点 1、安装简单,即插即用,计算机端采用USB2.0接口插拔方便。 2、操作简单。操作软件兼容性强,界面简洁。可自由调整曝光帧速率、对比度、亮度、锐度及影像尺寸等。拍摄软件有着优异的人机界面,使用者可轻易在计算机上进行摄像、摄影操作。 3、共享性强,可随时对图像进行编辑、处理、保存、传输数据等。金相显微镜电子目镜可配合投影机组成一个电子多媒体教学、演示系统,提高设备利用率、共享性,促进相互交流。

  • 【讨论】光学显微镜升级为数码显微镜的方法

    【讨论】光学显微镜升级为数码显微镜的方法

    数码目镜数码目镜也称为显微相机,可以使现有的普通光学显微镜立刻升级为数码显微镜显微相机,是专门为普通光学显微镜图像数字化而开发设计的。她具有安装简便,通用性强、使用成本低廉、功能齐全、简单易用等特点。安装只需要2个步骤:1、取下原有的显微镜目镜,2、插入电子目镜替换原有目镜。即可通过USB线缆将显微镜下的图像传输至电脑进行实时显示,并可以随时抓怕冻结图像、录像、测量长度、角度、弧度、矩形面积及周长、不规则图形面积及周长、细胞计数、色彩分割、伪彩色还原、虚拟3D、图像边缘识别、傅立叶变换、光点测量及部分PS图像处理功能。可满足大多数专业应用。非常适合教师教学和装备数字化实验室、医学研究、工业生产(PCB线路版检查,IC质量控制)、医疗(病理切片观察)、食品(微生物菌落观察、计数)、科研、教育(教学、演示、学术交流)、公安(印章验证、弹头检测)等领域...... DCM系列显微相机从普教级到科学级有十几个型号,可以按照不同的要求,选择合适的配置。显微相机的光学接口为国际标准目镜尺寸,适用于任何目镜筒内径为23.2mm、30.0mm或者30.5mm的各类生物显微镜、体视显微镜、金相显微镜、荧光显微镜、偏光显微镜、熔点仪、硬度计等光学设备。另有C-Mount接口的专用型号,可配在标准的C接口上使用。显微相机的光学部分全部采用高透光率优质光学玻璃制成,比树脂镜头产品性能有极大的提高。组装车间装备有千级无尘,超高压静电除尘设备,并采用新型防尘结构,确保每件产品的优质效果。jacobxu7001@163.com[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911201009_185541_1734324_3.jpg[/img]

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 【原创大赛】【微观看世界】显微镜下的石头

    【原创大赛】【微观看世界】显微镜下的石头

    石头在肉眼看来很一般吧,那么我们来看看显微镜下石头是怎么样的?1、蚀变二长花岗斑岩http://ng1.17img.cn/bbsfiles/images/2013/10/201310231029_472335_2352694_3.jpg描述:该岩石属于酸性浅成岩类,受动力作用影响,岩石及其中的少部分矿物有裂隙产生,部分矿物沿裂隙集中;受蚀变作用影响,钾长石及斜长石都有较强的粘土化现象;岩石的总体分布不均,组构不均一。2、强蚀变细粒斜长花岗岩http://ng1.17img.cn/bbsfiles/images/2013/10/201310231031_472338_2352694_3.jpg描述:该岩石属于酸深成岩类,受动力作用影响,岩石中有裂隙产生,部分矿物沿裂隙集中;受蚀变作用影响,斜长石有非常强烈的绢云母化及硅化现象,现多已完全蚀变为绢云母+硅质的集合体,仅有少量的斜长石柱粒残余;岩石的总体分布不均,组构不均一。3、蚀变细粒花岗斑岩http://ng1.17img.cn/bbsfiles/images/2013/10/201310231032_472339_2352694_3.jpg描述:该岩石属于酸性浅成岩类,受动力作用影响,岩石及其中的少部分矿物有裂隙产生,部分矿物沿裂隙集中;受蚀变作用影响,基体钾长石有较强的绢云母化现象,斑晶钾长石有较强的粘土化及较弱的绢云母化现象;岩石的总体分布不均,组构不均一。4、条带状长石石英大理岩http://ng1.17img.cn/bbsfiles/images/2013/10/201310231033_472340_2352694_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/10/201310231033_472341_2352694_3.jpg描述:该岩石属于变质岩类,受动力作用影响较弱,岩石中矿物的构造变形较小;蚀变较彻底,矿物都为新生;岩石的条带状现象是由于方解石、石英等矿物的条带状集中而形成;岩石的总体分布不均,组构不均一。5、条带状白云母钙质长石石英粒岩http://ng1.17img.cn/bbsfiles/images/2013/10/201310231035_472342_2352694_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/10/201310231035_472343_2352694_3.jpg描述:该岩石属于变质岩类,受动力作用影响,岩石中矿物有一定的揉着现象;蚀变较彻底,矿物都为新生;岩石的条带状现象是由于方解石、石英等矿物的条带状集中而形成;岩石的总体分布不均,组构不均一。5、含铜矿钛铁矿钙质透闪石片岩http://ng1.17img.cn/bbsfiles/images/2013/10/201310231037_472345_2352694_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/10/201310231037_472346_2352694_3.jpg描述:该岩石属于变质岩类,受动力作用影响,岩石中有裂隙纹产生;蚀变较彻底,矿物都为新生,透闪石有很强的绿泥石化,且少部分保留着柱状特征;岩石的总体分布不均,组构不均一。6、方解石英绢云母片岩http://ng1.17img.cn/bbsfiles/images/2013/10/201310231038_472348_2352694_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/10/201310231038_472350_2352694_3.jpg描述:该岩石属于脉岩类,受动力作用影响较弱,岩石中矿物的构造变形较小;受蚀变作用影响较弱,矿物的蚀变较弱;岩石的总体分布不均,组构不均一。7、大理岩http://ng1.17img.cn/bbsfiles/images/2013/10/201310231040_472353_2352694_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/10/201310231040_472354_2352694_3.jpg描述:该岩石属于变质岩类,受动力作用影响,岩石中有裂隙纹出现;受蚀变作用影响强烈,方解石的重结晶程度高,绢云母+钠长石集合体为蚀变产物,推测为斜长石蚀变而来;岩石的总体分布不均,组构不均一。8、水镁石白云石大理岩 http://ng1.17img.cn/bbsfiles/images/2013/10/201310231041_472355_2352694_3.jpg描述:该岩石属于变质岩类,受动力作用影响,岩石中有裂隙出现,部分矿物沿裂隙产出;受蚀变作用影响强烈,方解石的重结晶程度高;岩石的总体分布不均,组构不均一。

  • 数字化检测的价值

    给数据驱动的质量管理提供了可靠、及时、完整可追溯的质量数据数字化检测对于企业最直接的价值,就是给数据驱动的质量管理提供了可靠、及时、完整可追溯的质量数据,使后续的质量决策有了依据和基础。不论是用来做分析,还是应对客户要求提供检测报告,数字化检测提供了质量管理用数据说话的原材料。对于质量管理而言,都在强调数据驱动的质量管理,不论是精益六西格玛、卓越运营或是其他的质量改善方法,都强调用数据说话。如果没有数字化检测,很难做到真正意义上数据驱动的质量管理。对于质量管理系统而言,如果检测和数据采集的过程基于纸质表格的方式来做,就会存在数据的可靠性不能保证的问题。数字化检测系统能够确保质量策划(取样计划、检验计划、质量控制计划等)和具体质量方针得到严格执行,对检测过程进行引导和限制,进而保证了质量检验数据的可靠性。只有有了可靠、及时、完整可追溯的质量数据,我们后续才能去做更有价值和意义的质量分析与改进、报表呈现等工作,2、数字化检测是质量合规的好抓手数字化检测不仅可以提供可靠、及时的质量数据,还可以确保质量信息的可追溯。质量管理特别强调可追溯性,尤其是当企业发生质量问题的时候,需要从质量问题发生的点,追溯到生产过程、检验过程,以及生产设备的参数,原材料的批次,原材料的检验情况,乃至供应商生产原材料时的质量管理是怎么做的,以及供应商的质量检验和企业来料检验结果之间是否有差异,差异的原因等。这些可追溯的不同维度的质量数据,为企业质量管理改进、质量管理合规性提供了可以价值落地的切实有效的方法。

  • 【转帖】数字化精密量仪的发展趋势

    数字化测量技术是数字化制造技术中的关键技术之一。开发亚微米、纳米级高精度测量仪器,提高环境适应能力,增强鲁棒性,使精密测量装备从计量室进入生产现场,集成、融入加工机床和制造系统,形成先进的数字化闭环制造系统,是当今精密测量技术的发展趋势。 (1)数字化精密测量仪器的新动向——进入生产现场,非接触扫描测量倍受重视   三坐标测量机作为精密测量仪器的基本型主导产品,继续在机械制造业中得到重视和发展。以三坐标测量机为代表的精密测量仪器进入车间、服务于生产现场是发展的一个重要趋势。例如,LEITZ公司的精密三坐标测量机在车间用于测量大型齿轮就是一例。将数字化测量系统集成到数控加工机床上是另一个发展趋势。例如,秦川机床厂的CNC成型齿轮磨床集成了在机齿轮测量系统。与光学/激光非接触式扫描测量技术相结合,实现多功能、多种传感器的集成和融合,使坐标测量技术的应用更加丰富,更适用于生产现场。   ①汽车大型覆盖件的非接触扫描测量精确而快速   配备有光学/激光式非接触扫描传感器的水平臂三坐标测量机实现了对汽车大型覆盖件的快速精密检测。德国ZEISS公司和瑞典HEXAGON集团等世界著名三坐标测量机制造厂在该领域进行了开发。瑞典HEXAGON集团所属DEA公司的PRIMA   C1系列水平臂测量机在CW43L型连续伺服关节测座上,可配备触发式测头、连续扫描测头、光学或激光扫描测头等多种测头,以适应不同测量环境和任务的要求。德国ZEISS公司的PROR Premium坐标测量机配备有EagleEye导航系统和可控测座,能够在汽车车身大型覆盖件尤其是车身分总成的质量过程控制中,对工件的几何参数、表面和边缘的特征点、间隙和贴合性等实施高速精密测量。   ②带激光扫描测量系统的便携式柔性关节臂测量机功能增强   美国CIMCORE公司推出了配备有先进激光扫描测量系统的关节臂测量机。该仪器采用碳纤维材料制造,重量轻而刚性好,其中INFINITE系列的还具有无线通讯功能。仪器采用PC-DMIS软件,测量功能强。配上管件测量系统附件,还可实现对管件的长度、弯曲度、回弹等多种数据的测量和比较。测量范围为1.2m的仪器点测重复精度达0.010mm,空间精度达0.015mm。用于反求工程时,不仅测量速度快,而且可实现测量过程的实时显示和补漏测量数据的无缝拼接。该仪器可用于三坐标测量、三维造型、产品测绘、反求工程、现场测量以及模具设计制造等涉及到设计、制造、过程检测、在线检测以及产品最终检测等测量工作。美国FARO技术公司的FaroARM系列便携式三坐标测量臂具备类似的技术指标和性能。我国西安爱德华测量机公司2005年也公开展示了自主开发的柔性关节臂测量机的样机。   ③轴类零件光电非接触测量仪器发展迅速   汽车制造业的需求大大推进了轴类精密零件非接触测量技术的发展。瑞士TESA公司的TESA   Scan系列轴类零件快速扫描测量仪采用2个线阵CCD组件,通过工件的回转和轴向移动对工件进行投影扫描,可实现对轴类零件位置误差和形状误差的精确检测、对截面形状和轮廓度的评估比较以及统计质量分析,还能对零件的局部(如过渡曲线、微小沟槽等)进行放大测量。由于工件立柱可以倾斜,因而能对螺纹、蜗杆、丝杆等进行全参数精度的精确测量,这是该仪器PLUS系列的一大特色。仪器在直径方向上的分辨力为0.0003mm,精度2+(0.01D) µ m,重复性0.001mm。德国SCHNEIDER的WMM系列轴类及工具测量仪操作简单、测量速度高,特别适用于车间检查站。仪器采用高分辨力的 Matrix摄像头,可以快速获取测量数据。仪器数显分辨力为0.0001mm,长度测量不确定度为E2=(2.0+L/200)µ m(L单位为mm)。   ④中小尺寸平面类精密零件的二维、三维非接触测量仪器应用广泛   带CCD数字摄像头、激光测头、触发测头的多传感测头光学坐标测量仪器得到了快速发展。除德国MAHR公司的MARVISION系列三维光学坐标测量机、瑞士TESA公司的三坐标成像测量系统TESA SIO、德国SCHNEIDER公司的SKM系列3D多测头坐标测量机等典型产品外,美国OGP公司等著名厂商也有相应产品展示。日本三丰公司CNC视像测量系统系列产品中的SV350-pro型测量机采用了自制的超高精度、高分辨力、低膨胀玻璃光栅基准尺,仪器分辨力0.01µ m,X、Y轴测量精度为(0.3+L/1000)µ m,Z轴测量精度为(1+2L/1000)µ m。三丰公司的Hyper   MF型测量显微镜的X、Y轴测量精度超过日本标准规定的0级,达±(0.9+3L/1000)µ m,仪器分辨力0.01µ m,是用于精密模具、精密切削刀具以及超小半导体电子元件(如芯片和集成电路等)精密检测的理想选择。国内西安爱德华、东莞万濠、苏州怡信、深圳鑫磊以及北京天地宇等公司也开发了类似产品。贵阳新天光电公司近年注重新品开发,2004年成功推出了JX13C图像处理万能工具显微镜,采用金属光栅和高分辨力的CCD摄像头,仪器测量精度达到(1.0+L/100)µ m,采用半导体激光导向快速确定测量位置。JX15A/B型视频测量显微镜同样采用了CCD数字成像技术,将采集到的被测工件图像送入计算机进行处理,进行相应几何精度的检测,产品技术指标和水平上了一个档次。深圳智泰公司VMT系列的3D影像量测仪,在CCD视觉测量系统上配备上高精度触发式测头,实现了多功能测量。 (2)数控机床精度检测用激光测量技术的新进展   为确保数控切削加工的质量,除了在加工过程中和加工完成后对数控切削加工系统(包括工件在内)进行可行的监控检测外,在加工前对数控机床的精度和性能进行检测,以便确切了解掌握机床质量现状,进而进行必要的调整补偿,使其达到最佳运行性能,是一项非常重要的质量控制措施。   众所周知,国外著名厂商Renishaw、API及HP等公司生产的激光干涉仪测量系统和球杆仪等在数控机床的几何精度和运动精度的检测和监控中,无论在机床制造厂还是机床使用厂,都得到了广泛的应用。Renishaw公司的金牌M10激光干涉测量系统,配备了高精度、高灵敏度的温度、气压、湿度传感器及EC10环境补偿装置,在工作环境下测量精度得到进一步提高;API公司的Rmtea六维激光测量系统可同时测量6个数控机床精度项目的误差,缩短了检测时间,为生产现场数控机床的检测和诊断提供了更为快速高效的精密测量手段。成都工具研究所的MJS系列双频激光干涉仪,分辨力0.01µ m,测量软件覆盖了我国和世界主要工业国的数控机床精度标准评定方法和指标,动态采样功能可用于自动补偿。   美国光动(Optodyne)公司近年推出的基于体对角线的激光矢量测量技术是快速测量和补偿数控机床、加工中心三维空间位置误差的一个新途径。该技术由美国光动公司发明并获得专利,它遵循了ASME B5.54   (1)和ISO0230-6(2)机床测量标准中对体对角线误差测量的要求。对于构成(X,Y,Z)直角坐标系的三轴机床的21项几何误差,采用传统激光干涉仪等来进行检测相当费时。基于分步体对角线矢量测量原理,光动公司采用专利的激光多普勒位移测量仪,借助大平面反射镜完成四条对角线空间位置误差的测量,获得12组数据。通过计算确定机床12项基本误差(3项位移误差,6项直线度误差和3项垂直度误差),最终得到数控机床三维空间位置(定位)误差。该公司曾介绍了在加工中心上进行实际测量和补偿的应用实例,借此表明该测量新技术在数控加工机床的精度检测和精度补偿上的可行性。对该项测量技术的认识、推广应用的实际效果和前景值得行业关注。 结束语   数字化制造技术是先进制造技术的基础。在数字化制造技术的基础上,通过计算机技术、通讯技术将数控机床、数控刀具、数控测量仪器和加工对象(工件)以及相应的信息集成融合在一起,构成了的一个数字化闭环切削加工系统。可以认为这是CIMS理念中的一种具体实施形式。CIMS应该具有多样性,即具有不同水平和不同层次。从近年数控刀具闭环制造系统和圆柱齿轮、锥齿轮制造闭环系统的发展,可以得到启示:应结合实际,大处着眼,小处着手。专项(产品)数字化闭环制造系统也许是当前CIMS领域的一条切实可行的发展途径。   要提高我国机床工具行业的技术水平,增强竞争力,根本途径就是提高自主创新能力,发展具有自主知识产权的产品和技术。从近几届我国举办的国际机床展览会来看,我国精密工具行业的创新意识不断加强,创新能力不断提高,创新技术成果和产品不断出现。但是,我国精密工具制造行业的发展相比于我国机床制造行业数控机床的发展,无论在规模上还是技术先进程度上都差距较大,远远不能满足和适应先进制造行业如轿车制造业、航空航天制造业、微电子制造业等的需求。工具行业需要紧跟机床制造行业,加强合作,加快发展。

  • 我们应该从哪些维度去规划数字化检测?

    1、检测计划的设置是规划要考虑的重要维度。为了更好的做质量管理,我们要做好相应的质量策划,如检验计划、取样计划、质量控制计划等。检验计划还包括量具、仪器、检验参数之间的配合。我们还需要从质量策划的维度设计取样计划。现场执行会涉及到检验过程的管理,取样,送样,接样,对任务的分派,任务优先级的调配安排,以及对检验过程的执行,数据的采集,数据完成后数据的确认的过程,以及和实验室本身的管理结合起来。这些都涉及到检验执行的层面。2、企业内部信息互联互通和系统集成企业不希望他们的每个系统变成信息孤岛,所以数字化检测涉及到企业内部信息的互联互通和其他第三方系统集成的问题。如何同MES,ERP,WMS等系统之间集成,如何互相配合,互相协同,发挥更大价值,也是我们数字化检测在规划时需要考虑的问题。3、什么样的场景适合做数字化检测总体而言,产品精度越高,检测的要求越高,设备越多,数据量越大,检测时间越长,数字化检测方案就能发挥越大的价值,比如精密零部件,电子电器、3C产品、航空航天、汽车及其零部件等诸多领域。转载

  • 数字化助古籍走出“深闺高阁”

    ??根据西部文博会(简称“[url=https://www.xbwbh.com/]文博会[/url]”)了解到,为查阅古籍文献,要出差到各地,探访各家图书馆——这是许多古籍研究者的共同记忆。在数字时代,这种情况正发生改变。国家图书馆(国家古籍保护中心)等6家单位近日在线新增发布古籍数字资源6786部(件)。至此,全国已累计在线发布古籍数字资源13万部(件)。依托数字化手段,卷帙浩繁的古籍走出“深闺高阁”,让文明触手可及。??兼顾“藏”与“用”??古籍,作为文物必须保护,作为文献必须为读者所用。兼顾“藏”与“用”,一直是古籍保护工作的重点,而数字化是最好的方法。中国古籍数字化起步于20世纪90年代。随着数字技术不断成熟,科技赋能古籍工作取得可喜进展。? 据文博会了解“2016年国家图书馆搭建起‘中华古籍资源库’平台,发布了普通古籍、甲骨、敦煌文献等数字资源,并全部实现免登录在线阅览。”国家图书馆副研究员南江涛介绍,国家图书馆还联合海内外收藏机构发布“法藏敦煌遗书”“天津图书馆古籍”“云南省图书馆古籍”等,基本搭建“国家古籍数字平台”架构。??随着“中华古籍保护计划”深入开展,各地图书馆陆续投入人力物力,大力推进古籍数字化。国家图书馆先后联合39家单位发布数字古籍,1月4日是第7次联合发布,其中不仅包含明清版刻,还有碑帖拓本等特色资源。相关数据显示,在现有的13万部(件)数字古籍中,超过10.2万部(件)归属于“中华古籍资源库”。??“这13万部(件)古籍数字资源,对于我们研究者来说格外珍贵。”北京大学中文系教授杨海峥感叹,在线查阅免去了往返奔波图书馆的时间,平衡了古籍的文物性与文献性。??AI助力古籍整理??把纸质古籍转化成数字文本,只是古籍保护的第一步。“现有的数字古籍大多由缩微胶片转换而成,分辨率低,使用也不方便。”杨海峥举例解释,这类古籍通常不具备检索功能,想查阅某个内容,需逐篇逐页阅读原文,很难快速找到想要的知识。??据文博会了解,人工智能的快速发展,为数字古籍的整理分类带来革命性变化。2022年10月,由字节跳动与北京大学数字人文研究中心合作研发的数字古籍平台“识典古籍”便是一个生动案例。??进入“识典古籍”的网站,记者看到《周易》《左传》《礼记》等陈列于首页上。随机点开一本,左侧为章节目录,右侧为正文,排版形式既顺应现代人的阅读习惯,又还原了古籍纸张的阅读美感。??“与一些数字化平台不同,‘识典古籍’是完全免费的,而且增加了简繁体转换、底本影像对照、全文检索等一系列便捷功能。”抖音集团企业社会责任部产品总经理唐垲鑫介绍,该平台主要应用了文字识别、自动标点和命名实体识别这3种技术,不仅能将影印本上的文字提取整理,还能通过序列标注识别文本中的人名、地名等信息,准确率达到96%至97%。??“平台已整理上线了685部经典古籍,共计7900多万字,主要来自《四部丛刊》。”唐垲鑫说,“识典古籍”已上线手机移动版,未来平台中的书目将持续更新。??业内人士预测,随着AI技术的运用,古籍文献中所蕴藏的古代历史文化知识将不断被抽取,构造成各种各样的知识库,并将以知识图谱的形式支持互联网前端应用。??跨界合作成趋势??事实上,在“识典古籍”上线之前,文保机构、科研院校与互联网公司的跨界合作已越来越普遍。比如,腾讯联合敦煌研究院开发了AI病害识别技术,帮助“问诊”敦煌千年壁画。??由于在产品研发、设计方面存在优势,互联网公司等社会力量的加入会进一步保障古籍数字化平台的服务质量。“我们有优秀的产品经理、设计师、软件工程师,能够不断优化数字古籍平台的产品功能。”唐垲鑫说。??“识典古籍”的诞生离不开专家学者支持。北京大学数字人文研究中心主任王军表示,北大在这次合作中负责人工审核与校对,弥补人工智能有识别错误率的短板,并利用自有学术平台,连接更多专业研究者和学生群体。??据文博会了解,专家认为,在古籍整理中,人文社科学者要积极介入,并加强与技术人员的合作,那样才能更好地利用机器而不是被机器牵着鼻子走,从而保证结果的准确性。??“高校古典文献学等相关专业如何培养兼具技术与学术能力的复合型人才、如何形成多学科交叉的课程体系等,都是需要综合考虑的问题。”王军说。

  • 【分享】数字化在线分析仪器

    1. 引言  作为一国工业现代化发达程度标志之一的精密仪器仪表产业,目前正经历着第二次跳跃(跨越)发展。第一次是从模拟式测量到数字化智能型高精度、高稳定性的数字化测量、运算分析、诊断、以及控制等功能的跨越发展。早在几年前工业网络及数字化在线分析器在过程自动控制中的应用,就已经率先在以石油和煤炭为主的能源工业,以钢铁、化工为主的原材料及化肥工业的流程上开展起来,并取得了令人鼓舞的成果。最近全国化肥行业会议已经形成决议,推荐建立我国自己的行业现场总线和网络通讯标准。这标志着我国工业过程生产自动化已经开始第二次跳跃,向以通讯为基础的网络化、信息化方向发展:具有检测、监控、信息传输特征的数字化仪器已经成为集监、管、控综合功能为一体的监管控网络系统最前端的网络神经元。这种网络化分布式智能计算系统以其高效率、大信息量、高度实时性之优势发展十分迅速,通过网络利用数字在线监测设备所提供的信息,实时掌控现场实时情况(数据/信息),已成为ERP体系中的重要资源并因此而迈进信息化阶段。  2. 数字化在线分析器在现代工业过程自动控制领域的作用及国内外现状  2.1 作用  为了了解这个作用有必要简略介绍工业过程自动控制的思想及其体系结构。工业流程自动化这一过程经近半个世纪的发展使现代生产在降低生产成本、控制产品质量、提高生产效率、减少能源消耗、充分利用企业资源以满足产品品种变化,质量不断提高等方面取得很大成绩,而作为在线气体分析仪器被纳入这个系统,除了上述这些因素以外,还有生产过程的安全监测,生产过程所造成或产生的污染情况的监测,这些对现代工业生产来说都需要实时性的检查与控制。工业流程自动控制系统的发展到目前大体形成如下图所表示的企业一级的体系结构。   图1: 一个现代工业自动化过程控制体系结构   现代流程制造企业的监督、管理与控制从技术实现方面考察,从下往上有三个主要层次:  1)FCS/DCS层,即现场总线网络层  2)MES层,即制造执行管理系统或生产执行系统层  3)ERP层,即企业资源规划层即高层管控层  FCS层是自动化最底层的现场控制器、现场数字化智能仪器设备互连的实时监测控制通讯网络,是全数字式的连接,它遵循ISO的OSI开放系统的互连参考模型的全部或部分通讯(握手)协议。这一层所完成的主要工作是:将总线上传输的信号按照“信息公路交通规则”进行编码、解码,转换、甄别、纠错、分配等等;由于其历史的原因,DCS接纳的在线仪器可以是数字式的也可以是模拟量输出的。当前一个发展趋势是FCS被部分或大部分纳入到DCS中,替换其信号获取的方式,现场进行大量的底层运算从而对风险较低的分布式计算模式的发展有极大促进。  MES可以为用户提供一个快速反应、有弹性、精细化的制造业环境,帮助企业减低成本、按期交货、提高产品和服务质量。不仅适用于众多的基础产业,还有如家电、汽车、半导体、通讯、IT、医药等行业,能够对单一的大批量生产和既有多品种小批量生产又有大批量生产的混合型制造企业提供良好的企业信息管理。目前不论是国外还是国内,都在大力发展MES以提高企业竞争力。  ERP层在于对一个生产段内部,或由数个生产段构成的一个完整的生产流程段,乃至整个企业进行资源的最优化管理,使其得到更加高效率的合理的使用。  作为要连入FCS的在线分析器的主要工作是:将物理信号转变成数字信号并对其进行转换、处理、运算、分析、编码存储、编码传输等,并对这个分析计算设备本身进行自适应调节,自整定,自标定以及检查报警、识别故障,记录状态并报告等等,要满足这些,在线分析仪器必须是数字化的,因为信息量的增大以及FCS结构的要求就是信息的全数字化流通。  这种系统结构有效地解决了DCS的结构性问题:在很大程度湖广泛的范围内化解了分布式控制集中式运算对系统的所承受的集中性风险,使中枢神经尽可能地避开这种风险。  图2展示了一个具有现场总线接口能力的数字化在线气体分析器接入工业自动监控网络体系。 图2 具有现场总线接口能力的数字化在线气体分析器接入工业自动监控网络  2.2 目前国内外数字化在线分析器的现状  诸如流量、压力、位移等数字化在线智能测控仪表等目前国际上已进入比较成熟的阶段,国内发展则十分迅速,但是数字化气体在线分析仪器在这方面的发展在我国却相对滞后。  1、国外一般情况  上个世纪80年代末90年代初开始,几个主要的国外在线分析器生产厂家如SIEMENS、ABB、ROSEMOUNT、YOKOGAWA、SICK│MAIHAK等将数字化的在线分析仪器打入中国市场。这些产品都是数字化产品,大部分具有数据通讯和网络通讯能力。其一般特点如下:   A) 对采集信号进行数字运算和分析;  B) 测量信号的输出表达均呈线性特性;   C) 测量信号屏幕直读,均有传统的模拟信号输出;  D) 具有数字补偿功能,有些是自动的,有些需要人工进行;  E) 有较强的自诊断能力;  F) 功能很强的通讯能力,通常的RS232/485等,也有网络或总线输出;  2、国内情况  目前国内有不少生产在线气体分析器的厂家,投入市场的数字式的在线分析器也有不少品种。模拟量输出如20mA的电流环路输出是必备的,相当一部分产品具有RS232或485串行口输出能力,但掌握的资料而言,目前只有北分瑞利集团北分麦哈克公司一家的产品具有现场总线接口能力。  导致目前这种状况的主要原因据了解有这样几个:  1、国内许多过程工业现场的条件不具备,很多仪器都是模拟量的,同时工业网络的建立需要一定的投资,建立、完善,这需要时间和资金的持续支持,这对国内众多中小型企业来说,呈现出较大的困难。工厂的设备更新改造不但需要资金、技术等的支持,对它也有一个认识过程,为这种设备更新的未来预期收益所投入的成本与所能得到的收益对企业来讲总是比较模糊而且这种收益并非能100%保证,如果不是对生产或安全有重大影响的情况时企业下这个决心有很大难度;  2、仅有这种功能的仪器但没有其运行的平台即较为成熟的工业网络也发挥不了作用,从而延缓甚至在一定程度上阻滞了仪器设备生产厂商的开发动力。虽然随着国外先进的成套设备的引进,仪器与平台安装并运行而且显现出很好的运行效果,但由于其价格偏高,使得众多用户想装备但也望而却步;  3、另一方面,国内DCS近一二十年的发展已经相对成熟,能够较顺利地将模拟仪器的输出纳入到工业网络系统中去,一部分用户并不急于更新提高,这更使供货商在这方面的投入意念不强,动力不足。  但是,发展是持续的而且是快速的。工业现代化产生成果的同时所带来的负面效应日益明显,更大地降低能源和原材料消耗,更严格地控制污染(排放),更加安全地生产等,使得国际现场总线技术及流程现场装备的发展势头十分迅猛,国内一些基础产业如能源、材料等工业领域早几年也已经开始运用,并且产生了良好效果,越来越多的工业部门认识到这些是现代工业过程自动化生产的重要目标和要求之一,是一个必然的发展趋势,而作为体现并实现这一思想的现场总线及其满足这一要求的在线分析器设备是促进并推动过程工业自动化向更高程度发展的必须具备的物质条件,为适应这种发展北京北分瑞利集团北分麦哈克公司推出了具有这种功能的产品。其更进一步的内容稍后还有介绍。

  • 【求助】金相显微镜灯泡

    各位大虾,我是一个新手,在用金相显微镜的时候把灯泡给烧了,金相显微镜是借别人的,开始以为是变压器烧了不敢对别人说。找个人来修是个灯泡烧了,他开价600块啊,就没让他修,从他那买了2个灯泡,他给的是12V 20W的装上去后发现灯光很暗,现在想请教一下各位大虾,金相显微镜的灯泡有多少种型号,我应该用那种型号的灯泡,金相显微镜的型号不知道,外形大概象下面这个,

  • 颜色测量的数字化探寻

    颜色测量的数字化探寻 颜色测量的数字化也就是用计算机识别颜色,现实中我们对颜色的表述是:“目视感受+思维判断+语言描述”这样受到很多外部环境和人本身等因素的影响很大,使我们用颜色做定量分析时误差很大,有时更本就没有可比性,需要一种方法和理论来规范我们对颜色的认识和理解,用一种仪器来统一数据便于现代化的管理与交易。此方法和仪器应属物性测量的一种基础检测。历史背景:人类对颜色的认识是循序渐进的过程,是随着科学技术的发展不断认识提高,映入眼帘的颜色大部分是人造的颜色,因有了对颜色的管理技术我们的生活才出现了五彩缤纷的视觉感观,对颜色的检测技术也在不断地提高。1666年牛顿在剑桥大学的实验室,把太阳光从小狭缝引进暗室,通过三棱镜后,在屏幕上显示出一条美丽的彩带,红、橙、黄、绿、青、蓝、紫色光,这种现象称做光的分解。随之在英国有很多科技人员进行了大量的科学实验和研究。1870年成立的英国百灵达公司(发明水中余氯的检测方法和仪器,水的浊度检测仪);1885年成立的罗维朋公司对液体颜色检测有大量的贡献。1915年成立总部位于美国密歇根州大激流市的爱色丽公司等等都对颜色的检测做出了标准的贡献。上世纪七十年代胶片相机大量普及,色彩管理分为两大类,第一为美国柯达的色彩管理系统,我国大部分行业以柯达标准为基础(暖色调),第二为日本富士和索尼公司的色彩管理(冷色调),发展中的以色列产品是以富士和索尼公司的色彩管理为基础。2000年前后电子计算机的色彩管理系统快速发展,1997年以美国微软、惠普、日本爱普生公司等电子行业的巨头制定了计算机的颜色标准SRGB色彩空间(Standard Red Green Blue)。这一标准应用非常广泛,其他许许多多的硬件及软件开发商也都采用了SRGB色彩空间做为其产品的色彩空间标准,逐步成为许多扫描仪、打印机、照相机、显示器、摄像头和软件的色彩空间标准。1998年美国Adobe公司推出Ps色彩空间标准,它拥有宽广的色彩空间和良好的色彩层次表现,它包含了SRGB色彩空间所没有完全覆盖的CMYK色彩空间,可以理解为大RGB色彩空间Windows系统色彩空间系统在win7以后有了很大提高和苹果的MAC OSX色彩空间不相上下。颜色模式:现行中颜色的管理模式分类1. R G B模式;2. H S B模式;3. Web模式;4. CMYK模式;5. L a b模式;6. 灰度模式;CCD扫描成像数字化分析:我们根据现有的技术和方法,进行了大量的筛选和改进,最终选择了扫描成像+软件分析这种方法来进行仪器的深层次的开发,结果输出为R G B模式的红绿蓝平均反射光密度值来表示物品的颜色数值。软件部分:美国 Image Pro Plus软件 Image-Pro Plus功能强大的2D和3D图像采集、处理、增强和分析软件,具有异常丰富的测量和定制功能。Image-Pro Plus 是顶级的图像分析软件包, 它适合于荧光成像、质量控制、材料成像及其它的多项科研、医学与工业应用。 Image-Pro Plus 是Image-Pro 软件系列中功能最强大的成员之一,它包含了异常丰富的增强和测量工具,并允许用户自行编写针对特定应用的宏和插件。 主要优势: 1,采用业经证明的解决方案——历经20余年的开发、改进以及用户反馈,Image-Pro Plus提供了全套的实用程序, 如采集、交流、处理、测量、分析、存档、汇报以及打印等。 2,把时间花在实处—— Image-Pro Plus用户友好的使用环境使得您不会将过多的时间浪费在学习使用软件上,而将更多的时间放在对图像的分析和了解上。 3,自动化研究—— 可使用Image-Pro Plus 的Auto-Pro 编程语言,将冗长的操作浓缩至一个单一按键或一次鼠标点击上。 4,添加多维成像—— 可用下述集成式插件模块来进一步扩展Image-Pro Plus 的功能:Scope-Pro 的自动显微镜控制、AFA 的高级荧光采集、SharpStack的 图像反卷积以及3DConstructor的三维重建和测量。 IPP软件功能及相关参数: 1、采集图象:支持多种专业CCD和模拟摄相头,支持twain接口。 2、图象增强、处理;自动、手动图象拼接;扩展视野景深;自动、手动图象位置校对,多维图象管理;彩色通道管理:多通道荧光的色彩叠加,适合于多重荧光标记观察、FISH荧光观察等;自动化报告生成器。 3、测量功能:随意对图象切割、测量、计数、分类;HE等染色方法的阳性灰度、阳性比例计算;简单电泳条带分析;荧光强度分析等。可以选择面积、周长、角度等50多种测量方式。 4、分析功能:荧光共位性分析;空间和灰度校对;数据分析:将测量结果以统计值、单个测量值、三维浓度图和线形等方式输出,并可以将测量结果输出到EXCEL中处理。 5、自动、手动动态追踪:动态跟踪单个或多个物体运动轨迹。测量该物体的运动距离、速度、加速度、角度及显示所有状态下的测量结果。适合精子活力、各种粒子、浮游生物运动状态及细胞生长等动态指标测量。 6、可与其他插件连接,进行功能的拓展,如三、四维重建功能;电动显微镜控制;多时间、多标荧光、Z系列及多位置图象的自动采集和处理;二、三维反卷积运算。 图像输入 支持的图象文件格式有:TIFF、GIF、PCX、BMP/DIB、EPS、WMF、TGA、WPG和部分非标准格式。 支持下列流行图象板:BITFLOW、CORECO、DIPEX、DOME、EPIX、FLASHPOINT等,与扫描仪兼容。 图象显示模式:8、10、12、16、24、32BIT和真彩色下的:RGB、HIS、HSL。 面积百分比、颗粒计数、各种形态参数测量、位置参数测量、灰度光密度测量、数学形态学分析、图象的校准与校正、彩色图象的分割与分析、图象编辑等功能。 MediaCybernetics 提供的350多个图象处理、分析测量、文件操作和外部设备控制函数,为用户编制自己的应用软件提供了方便。 图像处理与增强功能 软件控制调节图象的对比度、图象噪声抑制、各种滤波算法和数学形态学算法对图象进行非常有效的处理,并提供快速FFT处理、图象的旋转、图象的放大、图象标注和打印。 特征范围的选取 对图象特征的选取有矩形框、圆形框和自画任意框等工具,由鼠标方便地控制。边缘检测 系统提供三种自动边缘和特征检测工具,用户可方便地检测出面积特征和点特征。 图像定标和校正及图像合成 可定标图象到任何测量单位,提供图象阴影的校正功能。 图像缝合和拼接使用图像缝合和拼接功能,可将多张分次获取的相邻图像完美 无缺的拼成一幅大图像。 景深扩展从部分聚焦的系列图像合成全聚焦的单幅图像 。 结果输出和打印 测量结果数据可转换成ASCII文件,并可直接进入MS EXCEL和MS WORD进行统计分析、打印。 美国 ImageJ软件ImageJ是一个基于java的公共的图像处理软件,它是由National Institutes of Health开发的。可运行于Microsoft Windows,Mac OS,Mac OS X,Linux,和Sharp Zaurus PDA等多种平台。其基于java的特点,使得它编写的程序能以applet等方式分发。ImageJ能够显示,编辑,分析,处理,保存,打印8位,16位,32位的图片,支持TIFF, PNG, GIF, JPEG, BMP, DICOM, FITS等多种格式。ImageJ支持图像栈功能,即在一个窗口里以多线程的形式层叠多个图像, [colo

  • 关于老扫描电镜数字化图像改造,信息求助

    因新电镜频出故障影响公司正常研发周期,现拟对老扫描进行数字化图像改造,希望各位同行提供相关信息,如那些公司具备这样的业务能力,较为成功的改造实例。致以真挚的感谢!

  • 【求助】荧光显微镜上的卤钨灯

    大家好,想咨询一下,我原先用的是济南国营仪器厂的荧光显微镜,可现在出问题的,里面的卤钨灯6V15W的坏了,但此厂家已无法联系,想问一下,哪里卖此灯的,大约在多少价位,需要向大侠求助,在此先谢谢了!!!

  • 【转帖】显微镜锦之堂显微镜常识--光学显微镜的组成结构和分类

    本文来自显微镜之家转贴显微镜之家融合了各种进口国产显微镜的集中展示,集显微镜知识/咨询/动态等于一体的显微镜之家 http://goldroom.zhan.cn.yahoo.com/登陆指导!光学显微镜一般由载物台、聚光照相系统物镜、目镜和调焦机构组成。载物台用于承放被观察的物体,利用调焦旋扭可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成像,它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。物镜位于被观察物体附近,是实现第一级放大的镜头,在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。物镜是显微镜对成像质量优劣起决定性作用的光学元件,常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍,按照所说的所能看到的视场大小,目镜可分为视场较小的普通目镜和视场较大的大视场目镜(或称广角目镜)两类。载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像.用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距,分辨率和放大倍率是两个不同的但又有联系的概念。当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廊虽大但细节不清的图像。聚光照明系统对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明,聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中没有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微调结构。

  • 数字化进程将走进实验室

    今后,实验室里的学生不用再手忙脚乱地计算一大堆数据,取而代之的是与实验同步的数字化数据分析。记者今天了解到,首个用数字化设备装备的“科学探究实验室”在济南回民中学启用。由此,我们不难看出,中学实验室将步入数字化时代。   以往,中学实验楼虽然一再翻新,除了实验台、通风柜等实验室家具更新外,实验室的实验基本依靠手工进行和演算。往往一堂45分钟的实验课,有一半时间是在计算实验数据,证明实验结论。受此局限,学生即使想进行多角度实验也力不从心。为充分支持学生进行多方面探究学习,我市决定在济南回民中学和济南九中试点建设数字化实验室。   今天,记者在济南回民中学看到了我市首个数字化“科学探究实验室”。该实验室采用现代先进测量技术,基于计算机平台使用,并融合传感技术、光机电一体化技术及软件技术。该实验室可满足物理、化学、生物等学科的实验需要,可供6个小组共36人同时上实验课。在“科学探究实验室”的首堂公开课上,高二(四)班的学生做实验验证了牛顿第二定律。记者看到,当实验滑轮车运动的时候,实验数据会即时传输到电脑中,并用坐标轴进行演示。学生刘宏超说:“以前有大量的时间用在计算数据上,现在可以将精力集中到设计实验上。”据了解,随着实验室家具不断科技化,数字化科学实验室试点的深入,我国中学实验室将步入数字化时代。

  • 【原创】蔡康显微镜极品

    【原创】蔡康显微镜极品

    体视显微镜的结构原理、特点和应用范围 体视显微镜又可称为:实体显微镜或称操作和解剖显微镜。是一种具有正像立体感的目视仪器。其光学结构原理是由一个共用的初级物镜,对物体成像后的两个光束被两组中间物镜亦称变焦镜分开,并组成一定的角度称为体视角一般为12度--15度,再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得,利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。其特点为:视场直径大、焦深大这样便于观察被检测物体的全部层面;虽然放大率不如常规显微镜,但其工作距离很长;像是直立的,便于实际操作,这是由于在目镜下方的棱镜把象倒转过来的缘故。根据实际的使用要求,目前的体视显微镜可选配丰富的附件,比如若想得到更大的放大倍数可选配放大倍率更高的目镜和辅助物镜,可通过各种数码接口和数码相机、摄像头、电子目镜和图像分析软件组成数码成像系统接入计算机进行分析处理,照明系统也有反射光、透射光照明,光源有卤素灯、环形灯、荧光灯、冷光源等等。根据体视显微镜这些光学原理和特点决定了它在工业生产和科学研究中的广泛应用。比如在生物、医学领域用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

  • 求HIROX数码显微镜目镜的数字孔径大小~~~~~~~~~~

    求HIROX数码显微镜目镜的数字孔径大小~~~~~~~~~~

    实验室有台浩视的KH-7700数码显微镜,用的OL-700Ⅱ物镜,http://www.hirox.com.cn/products/mount_lens/mx_lens/mx-10c.htmlhttp://ng1.17img.cn/bbsfiles/images/2015/03/201503191832_538894_1626032_3.jpg现在做的实验需要知道目镜的数值孔径大小,但是查了网上都没得,问了国内的厂家也说不知道有哪位高手能帮忙查到该物镜的数值孔径大小吗,或者其他的方式算出数字孔径,谢谢

  • 【原创】利用金相显微镜看裂纹。

    我在文献上看到陶瓷在受到维氏压痕后,利用金相显微镜500倍就可以看到裂纹;但我利用同样的力也做了裂纹,为什么我放大到1000倍还看不到裂纹?(我在电镜下能看到裂纹,裂纹宽度大约1微米)不知道会是什么原因?

  • 【原创大赛】颜色测量的数字化探寻

    颜色测量的数字化探寻 颜色测量的数字化也就是用计算机识别颜色,现实中我们对颜色的表述是:“目视感受+思维判断+语言描述”这样受到很多外部环境和人本身等因素的影响很大,使我们用颜色做定量分析时误差很大,有时更本就没有可比性,需要一种方法和理论来规范我们对颜色的认识和理解,用一种仪器来统一数据便于现代化的管理与交易。此方法和仪器应属物性测量的一种基础检测。历史背景:人类对颜色的认识是循序渐进的过程,是随着科学技术的发展不断认识提高,映入眼帘的颜色大部分是人造的颜色,因有了对颜色的管理技术我们的生活才出现了五彩缤纷的视觉感观,对颜色的检测技术也在不断地提高。1666年牛顿在剑桥大学的实验室,把太阳光从小狭缝引进暗室,通过三棱镜后,在屏幕上显示出一条美丽的彩带,红、橙、黄、绿、青、蓝、紫色光,这种现象称做光的分解。随之在英国有很多科技人员进行了大量的科学实验和研究。1870年成立的英国百灵达公司(发明水中余氯的检测方法和仪器,水的浊度检测仪);1885年成立的罗维朋公司对液体颜色检测有大量的贡献。1915年成立总部位于美国密歇根州大激流市的爱色丽公司等等都对颜色的检测做出了标准的贡献。上世纪七十年代胶片相机大量普及,色彩管理分为两大类,第一为美国柯达的色彩管理系统,我国大部分行业以柯达标准为基础(暖色调),第二为日本富士和索尼公司的色彩管理(冷色调),发展中的以色列产品是以富士和索尼公司的色彩管理为基础。2000年前后电子计算机的色彩管理系统快速发展,1997年以美国微软、惠普、日本爱普生公司等电子行业的巨头制定了计算机的颜色标准SRGB色彩空间(Standard Red Green Blue)。这一标准应用非常广泛,其他许许多多的硬件及软件开发商也都采用了SRGB色彩空间做为其产品的色彩空间标准,逐步成为许多扫描仪、打印机、照相机、显示器、摄像头和软件的色彩空间标准。1998年美国Adobe公司推出Ps色彩空间标准,它拥有宽广的色彩空间和良好的色彩层次表现,它包含了SRGB色彩空间所没有完全覆盖的CMYK色彩空间,可以理解为大RGB色彩空间Windows系统色彩空间系统在win7以后有了很大提高和苹果的MAC OSX色彩空间不相上下。颜色模式:现行中颜色的管理模式分类1. R G B模式;2. H S B模式;3. Web模式;4. CMYK模式;5. L a b模式;6. 灰度模式;CCD扫描成像数字化分析:我们根据现有的技术和方法,进行了大量的筛选和改进,最终选择了扫描成像+软件分析这种方法来进行仪器的深层次的开发,结果输出为R G B模式的红绿蓝平均反射光密度值来表示物品的颜色数值。软件部分:美国 Image Pro Plus软件 Image-Pro Plus功能强大的2D和3D图像采集、处理、增强和分析软件,具有异常丰富的测量和定制功能。Image-Pro Plus 是顶级的图像分析软件包, 它适合于荧光成像、质量控制、材料成像及其它的多项科研、医学与工业应用。 Image-Pro Plus 是Image-Pro 软件系列中功能最强大的成员之一,它包含了异常丰富的增强和测量工具,并允许用户自行编写针对特定应用的宏和插件。 主要优势: 1,采用业经证明的解决方案——历经20余年的开发、改进以及用户反馈,Image-Pro Plus提供了全套的实用程序, 如采集、交流、处理、测量、分析、存档、汇报以及打印等。 2,把时间花在实处—— Image-Pro Plus用户友好的使用环境使得您不会将过多的时间浪费在学习使用软件上,而将更多的时间放在对图像的分析和了解上。 3,自动化研究—— 可使用Image-Pro Plus 的Auto-Pro 编程语言,将冗长的操作浓缩至一个单一按键或一次鼠标点击上。 4,添加多维成像—— 可用下述集成式插件模块来进一步扩展Image-Pro Plus 的功能:Scope-Pro 的自动显微镜控制、AFA 的高级荧光采集、SharpStack的 图像反卷积以及3DConstructor的三维重建和测量。 IPP软件功能及相关参数: 1、采集图象:支持多种专业CCD和模拟摄相头,支持twain接口。 2、图象增强、处理;自动、手动图象拼接;扩展视野景深;自动、手动图象位置校对,多维图象管理;彩色通道管理:多通道荧光的色彩叠加,适合于多重荧光标记观察、FISH荧光观察等;自动化报告生成器。 3、测量功能:随意对图象切割、测量、计数、分类;HE等染色方法的阳性灰度、阳性比例计算;简单电泳条带分析;荧光强度分析等。可以选择面积、周长、角度等50多种测量方式。 4、分析功能:荧光共位性分析;空间和灰度校对;数据分析:将测量结果以统计值、单个测量值、三维浓度图和线形等方式输出,并可以将测量结果输出到EXCEL中处理。 5、自动、手动动态追踪:动态跟踪单个或多个物体运动轨迹。测量该物体的运动距离、速度、加速度、角度及显示所有状态下的测量结果。适合精子活力、各种粒子、浮游生物运动状态及细胞生长等动态指标测量。 6、可与其他插件连接,进行功能的拓展,如三、四维重建功能;电动显微镜控制;多时间、多标荧光、Z系列及多位置图象的自动采集和处理;二、三维反卷积运算。 图像输入 支持的图象文件格式有:TIFF、GIF、PCX、BMP/DIB、EPS、WMF、TGA、WPG和部分非标准格式。 支持下列流行图象板:BITFLOW、CORECO、DIPEX、DOME、EPIX、FLASHPOINT等,与扫描仪兼容。 图象显示模式:8、10、12、16、24、32BIT和真彩色下的:RGB、HIS、HSL。 面积百分比、颗粒计数、各种形态参数测量、位置参数测量、灰度光密度测量、数学形态学分析、图象的校准与校正、彩色图象的分割与分析、图象编辑等功能。 MediaCybernetics 提供的350多个图象处理、分析测量、文件操作和外部设备控制函数,为用户编制自己的应用软件提供了方便。 图像处理与增强功能 软件控制调节图象的对比度、图象噪声抑制、各种滤波算法和数学形态学算法对图象进行非常有效的处理,并提供快速FFT处理、图象的旋转、图象的放大、图象标注和打印。 特征范围的选取 对图象特征的选取有矩形框、圆形框和自画任意框等工具,由鼠标方便地控制。边缘检测 系统提供三种自动边缘和特征检测工具,用户可方便地检测出面积特征和点特征。 图像定标和校正及图像合成 可定标图象到任何测量单位,提供图象阴影的校正功能。 图像缝合和拼接使用图像缝合和拼接功能,可将多张分次获取的相邻图像完美 无缺的拼成一幅大图像。 景深扩展从部分聚焦的系列图像合成全聚焦的单幅图像 。 结果输出和打印 测量结果数据可转换成ASCII文件,并可直接进入MS EXCEL和MS WORD进行统计分析、打印。 美国 ImageJ软件ImageJ是一个基于java的公共的图像处理软件,它是由National Institutes of Health开发的。可运行于Microsoft Windows,Mac OS,Mac OS X,Linux,和Sharp Zaurus PDA等多种平台。其基于java的特点,使得它编写的程序能以applet等方式分发。ImageJ能够显示,编辑,分析,处理,保存,打印8位,16位,32位的图片,支持TIFF, PNG, GIF, JPEG, BMP, DICOM, FITS等多种格式。ImageJ支持图像栈功能,即在一个窗口里以多线程的形式层叠多个图像, [colo

  • 【转帖】显微镜简史

    【转帖】显微镜简史

    无式镜在从未被文字记录下来的那段历史中的某一天,一个腰上挂着树叶串、头上长发飘飘的人一脚飞起一块石子。他用类似于尖叫的语言说:“咦,这是什么东西亮闪闪在地下?”他捡起这块大致像颗棋子的透明石头瞅瞅,“石子对面的世界放大啦~”他的同类还试着用透明圆石头在炎炎烈日下长时间凝视地上一些烂草棍,结果草棍呼的一下烧着了!对大自然打磨的奇妙石头的记忆一直延续到公元1世纪初,在罗马哲学家的笔记中,它们被称为“放大器”(magnifier)或“点火石”(burning glasses);直到13世纪,这些石头终于从脚下一路登鼻子上脸,被赐名透镜(lense),因为它们长得好像一颗小扁豆(lentil)。 随后,“小扁豆”又被人们粘进一根细长筒里。人们就像看万花筒一样,举着这个小筒偷看跳蚤打架,所以这只筒名叫“跳蚤镜”(flea glasses)。它就像眼镜的衍生物,然而已从人脸向前迈出一大步,是未来单式显微镜的雏形。谓之“单式”,因为它不同于你生物课上用过的显微镜,没有目镜、物镜之分,放大多少只由一颗“小扁豆”决定。单式镜现代实验室显微镜即使配以“雕梁画栋”,也未必可以卖得更贵,因为雕梁画栋违背了现代人讲究目的和实用的原则。因此我们常常难以理解为什么历史上许多划时代的发明刚刚出现的时候,人们想不到用这些发明改变世界,却只把它们当成丰富视觉享受、甚至象征贵族生活的道具。当我看到十七世纪初那做工精美的“单式镜”,真想搞一个来摆在家里——纯装饰。当时,人们却可以用它来观察桔子表皮,具体做法是:取一只桔子,噗地一声扎在针尖一样的“载物台”上,从直立的单片镜片背后即可观看一只疼痛的桔子。前后移动桔子可以改变放大倍率,只是她挺沉的,晃晃悠悠地不太稳当。(图一)[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912311537_193327_1601358_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003311212_209200_1601358_3.jpg[/img]单式显微镜达到登峰造极的水平是在列文虎克。如果我没有记错,中学的生物是从列文虎克发明显微镜开始的。其实,不论“单式”还是今天普遍应用的“复式”(即多个镜片前后排列,如目镜+物镜),发明者都不是他。只是这一点损失对于列文虎克作出的贡献无伤大雅。前边提到,单式显微镜的放大本领只能依靠一颗“小扁豆”来实现,要想让镜片放大率增大,镜片焦距必须很短,扁豆必须很小,这就需要很高的打磨工艺——如果你是用打磨的方法。一般人能磨出放大率几十倍的镜片已经很了不起,于是列文虎克来了。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制