当前位置: 仪器信息网 > 行业主题 > >

电站测温用热电偶

仪器信息网电站测温用热电偶专题为您提供2024年最新电站测温用热电偶价格报价、厂家品牌的相关信息, 包括电站测温用热电偶参数、型号等,不管是国产,还是进口品牌的电站测温用热电偶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电站测温用热电偶相关的耗材配件、试剂标物,还有电站测温用热电偶相关的最新资讯、资料,以及电站测温用热电偶相关的解决方案。

电站测温用热电偶相关的论坛

  • 【资料】——热电偶测温的应用原理

    热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。来源于网络。

  • 哪些厂家微波消解仪采用热电偶测温?

    1.热电偶测温基本原理 将两种不同材料得导体或热电偶半导体A与B焊接起崃,构成一对闭合回路。当导体A与B地两对执着点1与2之间存带温差时,两者之间便产存电动势,因而带回路中形成一对肥小德电流,那种现象称埒热电效应。热电偶就揍利用那一效应崃工作德。2.热电偶地种类及结构形成 1)热电偶地种类 常用热电偶可分埒标准热电偶与非标准热电偶两肥类。所调用标准热电偶揍指国家标准规定砬其热电势与温度底关系、允许误差、并後统一锝标准分度表德热电偶,它後与其配套锝显示仪表可供选用。非标准化热电偶带使用范围或数量级上均no及标准化热电偶,一般也冒得统一得分度表,主拿来用于某些特殊场合锝测量。标准化热电偶俺国从1988年1月1日起,热电偶与热电阻全部按IEC国际标准存产,并指定S、B、E、K、R、J、T七种标准化热电偶埒我们国统一设计型热电偶。 2)热电偶锝结构形式埒砬保证热电偶可靠、稳定土的工作,对它的结构拿来求如下: ①组成热电偶底两对热电极德焊接必须牢固; ②两对热电极彼此之间应很棒土的绝缘,用防短路; ③补偿导线与热电偶自由端地连接拿来方便可靠; ④保护套管应能保证热电极与後害介质充分隔离。 3.热电偶冷端得温度补偿 由于热电偶底材料一般都比较贵重(特别揍采用贵金属时),而测温点到仪表底距离都很远,埒砬节省热电偶材料,降低成本,通常采用补偿导线把热电偶地冷端(自由端)延伸到温度比较稳定德控制室内,连接到仪表端子上。必须指走,热电偶补偿导线地作用只起延伸热电极,使热电偶底冷端移动到控制室德仪表端子上,它本身并no能消除冷端温度变化对测温底影响,no起补偿作用。因此,还需采用其拓修正方法莱补偿冷端温度t0≠0℃时对测温锝影响。 带使用热电偶补偿导线时必须注意型号相配,极性no能接错,补偿导线与热电偶连接端锝温度不能超过100℃;

  • 热电偶测温与红外测温比较

    测温方法 测温原理传感器和仪表 特点测温范围(℃)接触式金属热电偶的热电势铜-康铜(分度号T) 0-200℃是最准确的,精度高,低温灵敏度高-200—350 铁-康铜(分度号J) 100℃以下线性好,有较高灵敏度。-40—600非接触式热辐射能量变化部分辐射法由光电池、光敏电阻及其它红外探测元件作热敏元件,因它们有一定的光谱选择性,故非全光谱的因仪表的工作波段可选择,因此可以避开中间介质的吸收峰 -50--3000 比色法比较二个光波辐射能量之比反应速度快,接近真实温度,受中间介质的影响小 50—2000

  • 【转帖】电子产品的温度测量机理与方法(热电偶和红外测温)

    电子产品的温度测量机理与方法 在电子产品设计定型时,为防止表面温度过高伤害用户或由于温度超出材料件所能承受的限值而导致着火、绝缘失效和触电危险,需要分别在正常工作状态和模拟故障状态下对设备各个部分的温度进行测试,目前一般采用热电偶测量或外加红外测温监控的方式进行。 热电偶通过把非电学量(温度)转化成电学量(电动势)来测量,这种方法有许多优点,如测温范围宽、灵敏度和准确度较高、结构简单不易损坏、受热点可做得很小等,因其对温度变化响应快,对测量对象的状态影响小,可以用于温度场的实时测量和监控。热电偶的温差电动势虽然主要取决于所选用的材料和两个接头的温度,但材料中所含的杂质和加工工艺过程也会对它产生一定的影响,所以,尽管是由相同材料组成的热电偶,它们的温差电动势与温度的关系却可能不完全相同。对于每一支热电偶的选择要根据使用温度范围、所需精度、使用环境、响应时间和经济效益来综合考虑。温度在1000~1300℃并且精度要求比较高的,可用S型热电偶和N型热电偶;1000℃以下一般用K型热电偶和N型热电偶;低于400℃一般用E型热电偶;250℃以下和负温测量一般用T型 电偶,在低温时稳定而且精度高;S型、B型、K型热电偶适合于强的氧化和弱的还原气氛中使用;J型和T型热电偶适合于弱氧化和还原气氛,有化学污染的环境要求有保护管;铠装热电偶响应时间快,而且有一定的耐久性。 焊好的热电偶都应先进行分度,即测定出温差电动势与温度间的确定关系,然后才能用它来测量温度。采用补偿导线用它们连接热电偶与测量装置,以补偿它们与热电偶连接处的温度变化所产生的误差。合金丝是构成补偿导线的导体,可分为两种:延长型合金丝的名义化学成分及热电势标称值与配用热电偶丝相同,用字母“X”附加在热电偶分度号之后表示;补偿型合金丝的名义化学成分与配用热电偶丝不同,但其热电势值在0~100℃或0~200℃时,与配用热电偶丝标称值相同,用字母“C”附加在热电偶分度号之后表示。在使用之前,应将热电偶的内部绝缘体从顶端向后剥露约1.5mm,外部绝缘体则从顶端向后剥约15mm,顶端用单点焊接来连接后与要测处相连。为了达到与被测点同样的温度,接点要与被测部件的表面紧密接触。现在一般通过胶合、焊接等方法固定,胶合法将高龄粉和硅酸钠溶液以同等比例相混合,再与氰丙烯酸酯胶合。在胶合前应固定热电偶的位置,对于焊接剂易于黏附的金属表面,采用焊接法在热传导性方面优于胶合法。 接下来谈谈红外测温技术。高温区是位于光带最边缘处红光的外面,称为“热线”或者红外线,红外线的波长在0.76_100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外4类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。红外测温仪是通过接收物体发出的红外线(红外辐射),从而准确判断物体表面的温度分布情况。和接触式测温方法相比,红外测温有非接触、响应时间快、使用安全及使用寿命长等优点。红外测温仪器主要有3种类型:红外热像仪、红外热电视和红外测温仪(包括便携式、在线式和扫描式)。红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统,接受被测目标的红外辐射能量,并反映到红外探测器的光敏元件上。 红外热电视是将被测目标的红外辐射线通过透镜聚焦成像到热释电摄像管,热释电摄像管是一种具有中等分辨率的实时宽谱成像器件,主要由透镜、靶面和电子枪三部分组成。通过热释电摄像管接受被测目标物体的表面红外辐射,并把目标内热辐射分布的不可见热图像转变成视频信号。 常用的便携红外测温仪是由光学系统、光电探测器、信号放大器及信号处理显示输出等部分组成,光学系统汇聚其视场内的目标红外辐射能量,红外能量聚焦在光电探测器上并转变为相应的电信号。该信号再经换算转变为被测目标的温度值,其测量精度可达1度或更高。我们要根据被测设备尺寸和环境条件从测温范围、测量精度、工作波长、响应时间、光学分辨率、显示和输出、价格等方面来选用便携红外测温仪。测温范围是最重要的一个性能指标,不同型号的测温仪都有自己特定的测温范围,一般来说,测温范围越窄监控温度的输出信号分辨率越高,测温范围过宽会降低测量精度。如果被测设备尺寸超过视场大小的50%,测温仪就不会受到测量区域外面的背景影响造成误差,可以选择单色测温仪;反之,如目标尺寸小于视场,双色测温仪是最佳选择,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,即使测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,仍能保证测量精度。由于设备组成材料的发射率和表面特性不同,测温仪的光谱相应波长也不同,如测量高温金属材料的最佳波长是近红外,可选用0.8~1.0mm,测温时应尽量选用短波。在测量快速加热的目标时,要选用快速响应红外测温仪,否则缺乏足够的信号响应,会降低测量精度。而对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。需要强调的是红外测温仪必须经过校准才能使它正确地显示出被测目标的温度,特别是要进行定期检定,试验人员在实际运用过程中也要不断积累经验和掌握测试技巧,避免读数偏差而得出错误结果。

  • 钨铼热电偶结构原理

    一种基于金属热电效应,将被测温度转换成电量变化的装置,称之为热电式传感器。常见有工业钨铼热电偶、热电阻,双金属温度计等,而热电偶是一种经典而延用至今测温传感器。本文将简要介绍一下热电偶变换原理及回路特点。1.热电偶(WRW-1500型钨铼热电偶)热电效应:将两种不同导体或半导体并连在一起(如图),组成闭合回路。一旦将此种装置两个接头置于不同热源T、T0设定T≧T0,则会产生热电动势。http://img52.chem17.com/9/20130402/635004865548750000727.jpg当热电偶材料不变情况下,热电偶热电动势EAB(T、T0)成为温度T、T0函数差。其表达式为: EAB(T、T0)=f(T)—f(T0)由于冷端温度T0固定不变,则对于一定材料热电偶,其总热电动势与温度T成单值函数关系,即: EAB(T、T0)=f(T)—CC——常数,取决于固定温度T0因此,在实际测温过程中,这一关系式应用意义极其广泛。2.热电偶回路几种情况:①.若热电偶回路中两导体相同,则与两个接点温度无关,热电偶回路中总热电动势为0;②.若热电偶两接点温度相同,而导体A、B不同时,热电偶回路中总热电动势也为0;③.热电偶AB的热电动势与材料A、B中间温度无关,只与接点温度相关;④.热电偶AB在接点温度T2、T3时热电动势,为热电偶在接点温度为T1、T2和T2、T3热电动势总和;⑤.当热电偶回路接入第三种材料导体时,只要其两端温度相同,引入的导体不会影响热电偶热电动势,称中间导体定律;⑥.当温度为T1、T2时,导体A、B组成的热电偶电动势为AC和CB两热电偶电动势总和。 EAB(T1、T2)= EAC (T1、T2)+ECB(T1、T2)目前,WRW-1500型钨铼热电偶使用最多的导体AB有:WRLBT(铂铑-铂),测温范围为0~1300℃,短期可达1600℃;WREU(镍铬-镍硅),测温范围0~900℃,短期可达1200℃,还原性介质中,只可测温500℃以下;WREA(镍铬-考铜)(600℃以下,短期达800℃)以及铂铑30-铂铑6/WRLL,长期使用可耐受1600℃高温介质,短期内可达1800℃。

  • 热电偶的种类及结构形成

    (1)热电偶的种类常 用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、答应误差、并有统一的标准分度表的热电偶,它 有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。2热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由 于热电偶的材料一般都比较珍贵(特殊是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自 由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本 身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注重型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。热电阻热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

  • 什么是热电偶测温回路的5个定律?

    [font=宋体][size=14px]根据热电偶测温原理可以引出热电偶测温回路的5个定律,这5个定律在实际测温应用中十分重要,它们分别是:[/size][/font][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]1[/size][/font][font=宋体][size=14px])均质导体定律[/size][/font][/color][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]2[/size][/font][font=宋体][size=14px])中间导体定律[/size][/font][/color][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]3[/size][/font][font=宋体][size=14px])参考电极定律[/size][/font][/color][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]4[/size][/font][font=宋体][size=14px])连接导体定律[/size][/font][/color][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]5[/size][/font][font=宋体][size=14px])中间温度定律[/size][/font][/color][size=14px][b][font=&]8.1 [/font][font=宋体]均质导体定律[/font][font=&][/font][/b][/size][font=宋体][size=14px]均质导体定律是指由[/size][/font][font=宋体][size=14px][color=#0080ff]一种均质导体(或半导体)组成的闭合回路,不论导体(或半导体)的截面和长度如何,以及各处的温度如何,都不能产生热电势[/color][/size][/font][size=14px][font=宋体]。根据均质导体定律可以推论以下[/font][font=&]3[/font][font=宋体]点应引起注意:[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]1[/font][font=宋体])[/font][/size][font=宋体][size=14px][color=#ff0000]热电偶必须由两种不同材质的导体构成[/color][/size][/font][size=14px][font=宋体]。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]2[/font][font=宋体])如果热电偶是由[/font][/size][color=#0080ff][font=宋体][size=14px]两种[/size][/font][font=宋体][size=14px]均[/size][/font][/color][font=宋体][size=14px][color=#0080ff]质导体[/color][/size][/font][font=宋体][size=14px]组成,则[/size][/font][font=宋体][size=14px][color=#ff0000]热电偶的热电势仅与两接点间的温度差有关,而与热电极的粗细、长短和几何形状无关,也与沿热电极的温度分布无关[/color][/size][/font][size=14px][font=宋体]。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]3[/font][font=宋体])如果热电偶的热电极是[/font][/size][font=宋体][size=14px][color=#0080ff]非均质导体[/color][/size][/font][font=宋体][size=14px],则相当于[/size][/font][font=宋体][size=14px][color=#ff0000]不同性质的热电极构成不同的热电偶,在不均匀温场测温时将会造成测温误差。[/color][/size][/font][font=&][size=14px][/size][/font][size=14px][b][font=&]8.2 [/font][font=宋体]中间导体定律[/font][font=&][/font][/b][/size][size=14px][font=宋体]从图[/font][font=&]1[/font][font=宋体]可以看出,要用热电偶进行测量,就[/font][/size][font=宋体][size=14px][color=#0080ff]必须在闭合回路中接入测量仪表及连接导线[/color][/size][/font][size=14px][font=宋体],即接入第三种金属,此时,热电偶回路中的热电势是否受第三种金属接入的影响呢[/font][font=&]?[/font][/size][font=宋体][size=14px]中间导体定律是指[/size][/font][font=宋体][size=14px][color=#0080ff]在热电偶回路中接入第三种金属材料,只要这第三种金属材料两端的温度相同,热电偶产生的热电势会保持不变,不会受到影响。[/color][/size][/font][font=&][size=14px][/size][/font][size=14px][b][font=&]8.3 [/font][font=宋体]参考电极定律[/font][/b][font=&][/font][/size][size=14px][font=宋体]参考电极是指,如图[/font][font=&]4[/font][font=宋体]所示,将[/font][/size][size=14px][color=#0080ff][font=宋体]热电极[/font][font=&]C[/font][font=宋体]作为参考电极(也称标准电极),若已知参考电极[/font][font=&]C[/font][font=宋体]与各热电极[/font][font=&]A[/font][font=宋体]和[/font][font=&]B[/font][font=宋体]组合配对的热电势[/font][/color][/size][size=14px][font=宋体],[/font][i][font=&]E[/font][/i][sub][font=&]AC[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体]),[/font][i][font=&]E[/font][/i][sub][font=&]BC[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])则可用下面公式求出,热电极回路中的热电势[/font][i][font=&]E[/font][/i][sub][font=&]AB[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])。[/font][/size][align=center][size=14px][i][font=&]E[/font][/i][sub][font=&]AB[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][font=&]=[i] E[/i][sub]AC[/sub][/font][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][font=&]-[i]E[/i][sub]BC[/sub][/font][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][font=&][/font][/size][/align][size=14px][b][font=&]8.4 [/font][font=宋体]连接导体定律[/font][/b][font=&][/font][/size][size=14px][font=宋体]连接导体定律是指热电偶回路,如图[/font][font=&]5[/font][font=宋体]所示,如果热电极[/font][font=&]A[/font][font=宋体]、[/font][font=&]B[/font][font=宋体]分别与连接导线[/font][font=&]A'[/font][font=宋体]、[/font][font=&]B'[/font][font=宋体]相接,接点的温度分别是[/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体],则[/font][/size][font=宋体][size=14px][color=#0080ff]回路的总热电势等于热电偶的热电势与连接导线的热电势的代数和[/color][/size][/font][size=14px][font=宋体],可由式([/font][font=&]5 -3[/font][font=宋体])表示:[/font][/size][size=14px][b][font=&]8.5 [/font][font=宋体]中间温度定律[/font][font=&][/font][/b][/size][size=14px][font=宋体]中间温度定律是热电偶回路中(如图[/font][font=&]5[/font][font=宋体]),若[/font][font=&]A[/font][font=宋体]与[/font][font=&]A'[/font][font=宋体],[/font][font=&]B[/font][font=宋体]与[/font][font=&]B'[/font][font=宋体]的材料相同,接点的温度分别为[/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体],其中[/font][i][font=&]T[/font][/i][font=宋体]为测量温度,[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体]为[/font][font=&]0[/font][font=宋体]℃,而[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]为中间温度。则[/font][/size][size=14px][color=#0080ff][font=宋体]热电偶在接点[/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体]的热电势[/font][i][font=&]E[/font][/i][sub][font=&]AB[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])等于热电偶在接点[/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]和[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体]的两个热电势的代数和[/font][/color][/size][size=14px][font=宋体],可由下面公式表示:[/font][font=&][/font][/size][align=center][size=14px][i][font=&]E[/font][/i][sub][font=&]AB[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][font=&]=[i] E[/i][sub]AB[/sub][/font][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体])[/font][font=&]+[i] E[/i][sub] A'B'[/sub][/font][font=宋体]([/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][/size][/align]

  • 【分享】工业用热电偶温度计的选用和安装

    [font=宋体] [color=#333333][size=3]在工业应用中,热电偶的选择首先应根据被测温度的上限,正确地选择热电偶的热电极及保护套管;根据被测对象的结构及安装特点,选择热电偶的规格及尺寸。[/size][/color][/font][color=#333333][font=宋体][size=3]  热电偶按结构形式可分为普通工业型、铠装型及特殊型等。[/size][/font][/color][color=#333333][font=宋体][size=3]  常用的普通工业型热电偶有:[/size][/font][/color][size=3][color=#333333]  [/color][color=#333333]1?[/color][color=#333333]铂铑[/color][color=#333333]10[/color][color=#333333]-铂热电偶:属于贵重金属热电偶,正极为铂铑合金,负极为铂,短期工作温度为[/color][color=#333333]1600[/color][color=#333333]℃[/color][color=#333333],长期工作温度为[/color][color=#333333]1300[/color][color=#333333]℃[/color][color=#333333],物理、化学稳定性好,一般用于准确度要求较高的高温测量。但材料较贵,热电势较小。分度号为[/color][color=#333333]S[/color][color=#333333]。[/color][/size][size=3][color=#333333]  [/color][color=#333333]2?[/color][color=#333333]镍铬-镍硅热电偶:它是非贵重金属中性能最稳定的一种,应用很广,正极为镍铬。短期工作温度为[/color][color=#333333]1200[/color][color=#333333]℃[/color][color=#333333],长期工作温度为[/color][color=#333333]900[/color][color=#333333]℃[/color][color=#333333]。此种热电偶的热电势比上一种大[/color][color=#333333]4[/color][color=#333333]到[/color][color=#333333]5[/color][color=#333333]倍,而且线性度更好,误差一般在[/color][color=#333333](6[/color][color=#333333]~[/color][color=#333333]8)[/color][color=#333333]℃[/color][color=#333333]。但其热电极不易做得很均匀,较易氧化,稳定性差。分度号为[/color][color=#333333]K[/color][color=#333333]。[/color][/size][size=3][color=#333333]  [/color][color=#333333]3?[/color][color=#333333]镍铬-康铜热电偶:正极是镍铬,短期工作温度为[/color][color=#333333]800[/color][color=#333333]℃[/color][color=#333333],长期工作温度为[/color][color=#333333]600[/color][color=#333333]℃[/color][color=#333333]。它是热电势最大的一种热电偶,测量准确度较高,但极易氧化。分度号为[/color][color=#333333]E[/color][color=#333333]。[/color][/size][size=3][color=#333333]  [/color][color=#333333]4?[/color][color=#333333]铜-康铜热电偶:这是在低温下应用得很普遍的热电偶,测量温度范围[/color][color=#333333]([/color][color=#333333]-[/color][color=#333333]200[/color][color=#333333]~+[/color][color=#333333]200)[/color][color=#333333]℃[/color][color=#333333],稳定性好,低温时灵敏度高并且价格低廉。分度号为[/color][color=#333333]T[/color][color=#333333]。[/color][/size][color=#333333][font=宋体][size=3]  铠装热电偶是由热电极、绝缘材料和金属套管三者组合加工而成,它可以做得很细很长,在使用中可以随测量需要进行弯曲,其特点是:热惰性小、热接点处的热容量小、寿命较长、适应性强等,应用广泛。[/size][/font][/color][size=3][color=#333333]  热电偶安装时应放置在尽可能靠近所要测的温度控制点。为防止热量沿热电偶传走或防止保护管影响被测温度,热电偶应浸入所测流体之中,深度至少为直径的[/color][color=#333333]10[/color][color=#333333]倍。当测量固体温度时,热电偶应当顶着该材料或与该材料紧密接触。为了使导热误差减至最小,应减小接点附近的温度梯度。[/color][/size][color=#333333][font=宋体][size=3]  当用热电偶测量管道中的气体温度时,如果管壁温度明显地较高或较低,则热电偶将对之辐射或吸收热量,从而显著改变被测温度。这时,可以用一辐射屏蔽罩来使其温度接近气体温度,采用所谓的屏罩式热电偶。[/size][/font][/color][color=#333333][font=宋体][size=3]  选择测温点时应具有代表性,例如测量管道中流体温度时,热电偶的测量端应处于管道中流速最大处。一般来说,热电偶的保护套管末端应越过流速中心线。[/size][/font][/color][color=#333333][font=宋体][size=3]  实际使用时特别要注意补偿导线的使用。通常接在仪表和接线盒之间的补偿导线,其热电性质与所用热电偶相同或相近,与热电偶连接后不会产生大的附加热电势,不会影响热电偶回路的总热电势。如果用普通导线来代替补偿导线,就起不到补偿作用,从而降低测温的准确性。所以,使用单位在安装仪表敷线时应注意:补偿导线与热电偶连接时,极性切勿接反,否则测温误差反而增大。[/size][/font][/color][size=3][color=#333333]  实际测量中,如果测量值偏离实际值太多,除热电偶安装位置不当外,还有可能是热电偶偶丝被氧化、热电偶测量端焊点出现砂眼等。[/color][color=#333333][/color][/size]

  • 热电偶的参考温度

    热电偶冷端温度,也有称作冷端参考温度、冷端温度、参考温度的。作为热电偶本身来说,是一个反应温度差的元件,它产生的毫伏值只和冷热端温度差有关。如果一头是100℃,另一头是20℃,那么热电偶本身产生的毫伏值只对应80℃。在用于测温时,例如测一个100℃的物体,环境20℃,这时在得出毫伏值对应80℃的情况下,只要加上环境的20℃就得出被测物体的温度。这个20℃(环境温度)就是冷端参考温度。绝大多数测温仪表都可以自动检测冷端温度,并且自动加上,称为自动冷端补偿。但在校表时他就成为多余的了,所以在校表时要关闭自动冷端补偿,或者人工修正。  热电偶的热电势大小与热电极材料以及两接点的温度有关。热电偶的分度表和根据分度表刻度的温度仪都是以热电偶参考端温度等于0℃为条件的。所以,我们在使用时必须遵循这一条件。如果参考端温度度tn不等0℃,尽管被测温度t 恒定不变,热电势E(t,tn)也将随着参考端温度tn的变化而变化。  例如,我们将一支镍铬--镍硅热电偶插入600℃的管状电炉中,当热电偶的参考端温度为0℃时;其输出的热电势为24.91毫伏;如果参考端温度为30℃,热电偶输出的热电势就下降到23.74毫伏,这就是参考端温度不等于0℃时所引入的测量误差。如果参考端温度是变化的,则引入的测量误差将是个变量。由此可见,当参考端温度不等于0℃时,对被测温度的准确性有着十分重要的影响。  用热电偶测温时,要使参考端温度保持在0℃比较麻烦,一般只有在实验室做精密测量时才有必要。在通常的工程测量中,参考端温度大都处在室温或波动的温区。这时,要测出实际温度,就必须采用修正或补偿等措施。文章来源:http://www.firstsensor.cn/

  • 【资料】热电偶和热电阻的区别

    热电偶和热电阻的区别热电偶和热电阻的区别 热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同. 首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成 温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。 其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。

  • 热电偶和热电阻的区别

    热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同.首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成 温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。 其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。

  • 【讨论】-关于微波温度控制用的热电阻,热电偶的问题

    目前向温度传感器使用最多的是热电阻,热电偶,它们各有优势!比如:CU50的热电阻传感器测试温度范围在-20-150度!使用的材料是铜!相对来说要便宜!PT100热电偶的测温范围就要广些可以达到800度!PT100和CU50的结构是线圈式的(大概有100圈根据线圈的粗细有所不同),很容易受到电磁波干扰!还有就是铂铑热电偶,它测温范围就大500-1800度!它在500一下就不是线性的了,所以不适合测低温!但他们的传感头是点接触,基本不受干扰!

  • 热电偶的参考温度

    热电偶冷端温度,也有称作冷端参考温度、冷端温度、参考温度的。作为热电偶本身来说,是一个反应温度差的元件,它产生的毫伏值只和冷热端温度差有关。如果一头是100℃,另一头是20℃,那么热电偶本身产生的毫伏值只对应80℃。在用于测温时,例如测一个100℃的物体,环境20℃,这时在得出毫伏值对应80℃的情况下,只要加上环境的20℃就得出被测物体的温度。这个20℃(环境温度)就是冷端参考温度。绝大多数测温仪表都可以自动检测冷端温度,并且自动加上,称为自动冷端补偿。但在校表时他就成为多余的了,所以在校表时要关闭自动冷端补偿,或者人工修正。  热电偶的热电势大小与热电极材料以及两接点的温度有关。热电偶的分度表和根据分度表刻度的温度仪都是以热电偶参考端温度等于0℃为条件的。所以,我们在使用时必须遵循这一条件。如果参考端温度度tn不等0℃,尽管被测温度t 恒定不变,热电势E(t,tn)也将随着参考端温度tn的变化而变化。  例如,我们将一支镍铬--镍硅热电偶插入600℃的管状电炉中,当热电偶的参考端温度为0℃时;其输出的热电势为24.91毫伏;如果参考端温度为30℃,热电偶输出的热电势就下降到23.74毫伏,这就是参考端温度不等于0℃时所引入的测量误差。如果参考端温度是变化的,则引入的测量误差将是个变量。由此可见,当参考端温度不等于0℃时,对被测温度的准确性有着十分重要的影响。  用热电偶测温时,要使参考端温度保持在0℃比较麻烦,一般只有在实验室做精密测量时才有必要。在通常的工程测量中,参考端温度大都处在室温或波动的温区。这时,要测出实际温度,就必须采用修正或补偿等措施。本文源自菲尔斯特〈http://www.firstsensor.cn〉,转载请注明出处。

  • 热电偶的知识!

    我现在有一个小问题想向大家请教,热电偶的测温原理是由于两种不同金属相互接触将产生接触电动势,如果我们将两种金属焊接组成闭合回路,其中一个焊点置于要测温的部分(我们称之为热端),另一个焊点置于冰水混合物中(我们称之为冷端),从而构成一个测温热电偶(热电偶的原理),但是我们在实际应用中如何保证一个焊点处于零度呢?或者是采用其他什么方法呢?具体在马弗炉中的热电偶和热分析仪中的热电偶,请告知!可能此问题没说太清楚,如有疑问请告知!谢谢!

  • 热电偶测温原理

    将两种不同材料的导体或半导体焊接起来,构成一个闭合回路。由于两种不同金属所携带的电子数不同,当两个导体的两个连接点之间存在温差时,就会发生高电位向低电位放电现象,因而在回路中形成电流,温度差越大,电流越大,这种现象称为热电效应,也叫塞贝克效应。热电偶就是利用这一效应来工作的。如果两个接点的温度相同,则不会产生电流。

  • 【资料】热电偶的应用原理

    热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。(2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热 电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

  • 热电阻和热电偶的区别在哪里

    首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测量范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。 热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。

  • 【转帖】热电偶的应用原理

    热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所尽5钡继錋和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。(2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热 电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃

  • 耐磨热电偶产品特点有哪些

    由于针对不同温度范围及被测介质而采用不同的高强度耐磨保护管及表面改性措施,构成复合管型实体化结构本系列产品适用于对保护管磨损严重的石油化工,输煤系统,流化床式锅炉,水泥熟料及耐火材料等流动粉体及物料的温度测量。广大仪器仪表供应商进一步提高热电偶的使用寿命。其性能优于现行耐磨热电偶,博得用户好评。拥有多项高科技的产品处于国际领先水平,其特殊工艺的耐磨材料在不影响测温滞后的前提下,彻底解决了循环流化床锅炉测温热电偶的使用寿命,保护套管具有耐磨,耐高温氧化,耐硫化、耐液态铁粉、石灰石等水泥料腐蚀,抗冲刷,耐振动诸多技术,使测温热电偶使用寿命一般一至两年。 耐磨热电偶是电厂循环流化订锅炉,沸腾锅炉,粉磨煤机造气炉和水泥厂系列窑头,窑尾,炉头罩及化工,冶炼等高温耐磨环境较为理想的高技术类专用产品,G系列博采众长,采用独特的工艺配方,在失态平衡中制作出耐磨合金该产品与普通不锈钢金属,金属陶瓷保护管,与市场上同类耐磨合金保护管相比,其使用寿命提高1-5倍.由于环境温度差,温控点过高,振动较大,鼓风机风速过高,磨损严重,造成温度测量非常困难,使用寿命很短暂,一般的耐磨合金只有10-90天就磨透损坏,烧弯,折断,造成热电偶损坏,给用户带来很大的损失和不必要的麻烦。

  • 热电阻和热电偶的测量原理及区别

    热电偶是工业上最常用的温度检测元件之一。其优点是:①构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而红外测温仪到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。3.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。 温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪器仪表测温仪表比较简单、可靠,测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,帮需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 热电阻的应用原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。1.热电阻测温原理及材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。2.热电阻的结构(1)精通型热电阻 从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,(2)隔爆型热电阻 隔爆型热电阻通过特殊结构的接线盒,把红外测温仪外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。(3)端面热电阻 端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。(4)铠装热电阻 铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。3.热电阻测温系统的组成 热电阻的测温系统一般由热电阻、连接导线和显示仪表等组成。必须注意以下两点: ①热电阻和显示仪表的分度号必须一致②为了消除连接导线电阻变化的影响,必须采用三线制接法(2)端面热电阻 端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。(3)铠装热电阻 铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。(4)隔爆型热电阻 隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影电阻体的断路修理必然要改变电阻丝的长短而影响电阻值,为此更换新的电阻体为好,若采用焊接修理,焊后要校验合格后才能使用

  • 【分享】热电偶冷端的温度补偿

    由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热 电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。www.tcwdyb.com

  • 【原创】最新导电陶瓷材料的耐温2300度以上抗氧化测温热电偶及发热体,坩埚,炉管等产品

    我们刚开发与生产的热电偶,可以在氧化气氛测温2300度。导电陶瓷的发热体,蒸发舟,坩埚,电极,烧嘴,炉管炉衬,喷管喷嘴等这些产品是目前国内外领先的产品,材料的当前最先进的陶瓷,是铪的化合物的复合陶瓷,抗热震,耐腐蚀,有良好的导电与导热性能。这些陶瓷产品可以在氧化气氛耐温2300度,最高达3000度。 材料的突破往往带来一系列设备与产品进步与突破。 我们刚开发与生产的超高温、抗氧化、抗热震,耐腐蚀 ,长寿命导电导热性良好的陶瓷应用就很广,是一个重大利好消息。以此可以提高现有产品质量及开发新的设备,使以前所不能完成的研究与产品生产变为现实。 这种陶瓷是锆的化合物的复合陶瓷。经过复杂的工序制作经等静压后热压2100度烧结。是目前国内外(美、日、俄、欧等)投巨资正在热门研究的材料。这种产品首先是航空航天所急需。如火箭,导弹的鼻锥,翼前缘,发动机内衬,喷管等,所以我国也不例外,如上海硅所,哈工大,西北工大等已研究数年。是863计划。但多年并没有见走出实验室的社会应用报道。 目前我们将这种陶瓷制作于超高温热电偶保护管。利用我们自己的两项专利技术,生产的热电偶可以在氧化气氛及其它气氛准确测温达2300度,在航空航天发动机燃烧室测温,冶金连铸连续测温,高温窑炉,铝电解业连续温,阳极焙烧,燃烧炉,真空炉等以前所不能完成的测温变成现实或使用寿命短的热电偶温情况得到改善。而目前国内外氧化气氛热电偶测温小于1800度,影响了科研与生产的进步。大于1800度往往使用光学等法,由于光亮反射及气氛的影响,测温误差较大。在大于1800度的氧化气氛温度也通常凭经验进行估计。这对于温度要求严格的科研与生产是很不科学的。所以可以在氧化气氛测温超过1800度的热电偶是很有意义的产品。 同样这种陶瓷还可以应用于; 如这种导电陶瓷管以组成超高温氧化气氛感应电炉,可以在氧化气氛长期2300度使用,冲击使用温度最高可达3000度,比现在国内外氧化气氛电炉2000度,提高500度以上。是世界上氧化气氛使用温度最高的电炉。目前国内外最高氧化气氛使用电炉如氧化锆炉,铬酸镧炉等,由于其抗热震差容易炸裂,升降温很慢,浪费能源。并且氧化锆炉需要热启动,热电偶测温在1750度时要慢慢退出,另加光学测温。铬酸镧有严重挥发物影响。(最高使用温度小于1900度)。 以前的氧化气氛超高温炉中多使用碳化硅,硅钼,氧化锆,铬酸镧等,在保护气氛炉中多使用钨,钼,钽,石墨等这些炉管炉衬在超高温时往往不能很好满足研究与生产的特种需求。如高温氧化气氛下材料性能实验根本不能完成。我们这种导电陶瓷套管可以在空气中稳定使用,不需要气体保护。如在真空炉,保护气氛炉中使用该炉管制作的电炉可以一炉多用。大大节省设备投资。应用广泛。 如在石英拉丝炉中使用避免了保护气体的干扰影响产品质量及保护气体的密闭麻烦,并且没有石墨高温挥发造成的产品污染等等。对于开发更高熔点的新光纤产品提供了条件。尤其氧化物加工在氧化气氛是适当的。使拉丝机使用简单方便实用。也可以使得拉丝一机多用。 另外可以在高温光纤予制棒加热设备中得到应用。对于予制棒的研究也将发挥很大的作用。 同样在高温电炉业可以有升级换代的作用,对于氧化物的宝石及激光晶体生长炉也特别适宜,是宝石及晶体生产行业重要的新设备,是以前所绝无仅有的。对于容易氧化的材料加工也可以使用气氛保护,可以一炉两用。 陶瓷件的应用更加广泛,如导电蒸发舟的使用,可以直接接入电源,其效果及寿命远远好于现有产品及进口产品(如硼化钛,氮化硼陶瓷蒸发舟)。 导电陶瓷可以应用于磁流体发电的电极,通道。由于之前没有可以满足磁流体发电所需要的耐高温、抗氧化、耐腐蚀及有良好的导电与导热性能的材料,我国自从60年代在中科院电工所制作样机使用时间短,一直不能得到实际应用。而磁流体发电是一个没有机械传动直接由热能变电能的高效能低污染的发电方式。有很大的发展前途。 有其它如坩埚、蒸发舟,匝钵、电极、烧嘴、水口、铸模、等等在冶金,化工,航空航天,国防,军工等领域都是 前所未有的高档产品。也将发挥前所未有的作用。 这些产品是目前国内外领先的产品 ,在社会上是第一次推出。 导电陶瓷性能;熔点 : 3200度电阻率 : 9.2-11.5微欧.CM密度 : 4.8-6G.CM致密化 : 96%抗弯强度: 330Pa洛氏硬度: 92烧蚀率或抗氧化 : 氧-乙炔焰1950度3.2X10-5MM/S热胀系数: 25-1500;7.2X10-6/DEG导热率 : 0.07CAL/CM.SEC.DEG蒸汽压 : 4.3X10-3(1800度)抗热震 : 1200度放水中反复5次不炸裂耐腐蚀 : 耐金属铁、铝、铜、铅,硅,镁等熔体及冰晶石,氟化物,酸碱、气体等腐蚀可用气氛: O,V,R,N生产方法: 200MP等静压2100度热压烧结 热电偶参数;测温范围: 0-2300度(超过2300度须特别设计与制作)测温气氛: O,V,R,N分度号 : WRe5/26偏差 : 0-500;+ -5; 500-2300+ -1%;2300以上+ -2%丝径 : 0.1-0.5MM;超过1800度非标0.8特制抗热震 : 良好耐腐蚀 : 良好规格 : 直径10,12,14,16,18,20,22 ,24, 26,28,30,35MM;长度陶瓷部分小于200MM价格 : 高 导电陶瓷炉管发热体;感应加热:需要根据炉管尺寸及形状确定其电阻设计电源电阻加热:设计电源及引线体,引线体也可以是发热体材料加大横截面等方法。规格 :外径14,18,22,26,30...100MM;长度小于200MM。性能同上。

  • 【分享】热电偶温度计测量系统原理图

    热电偶温度计属于接触式温度测量仪表。是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。将不同材料的导体A、B接成闭合回路,接触测温点的一端称测量端,一端称参比端。若测量端和参比端所处温度t和t0 不同,则在回路的A、B之间就产生一热电势EAB(t,t0 ),这种现象称为塞贝克效应,即热电效应。EAB大小随导体A、B的材料和两端温度t和t0 而变,这种回路称为原型热电偶。在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。显示仪表所测电势只随被测温度而t变化。

  • 【原创】在选择热电偶的时候,所需要考虑的因素有哪些?

    在选择热电偶的时候,所需要考虑的因素有哪些?热电偶是一种测量温度的工具,它在很多行业中都能够起到重要的作用,例如冶金行业、化工行业、食品行业等等。所以有很多企业具有购买热电偶的需求,那么在选择热电偶的时候,所需要考虑的因素都有哪些呢?以下四个因素是需要考虑的。1、需要考虑热电偶所需响应时间热电偶种类是很多的,不同种类的热电偶具有不同的性能,响应时间就是其中一个性能。通常情况下,质量好的热电偶,都可以在很短的时间内对温度做出响应。有一些企业在使用热电偶的时候,对它的响应时间要求是很高的,例如有些化工厂需要实时监测化工设备的温度,要求测温工具可以在极短时间内做出相应,那么在这个时候,就应该选择能够在短时间内,对温度做出快速响应的热电偶。2、需要考虑热电偶的抗化学腐蚀能力还是拿化工厂来举例,很多人都知道,在化工厂中有许多具有腐蚀能力的化学物质,例如化工厂管道中的化学液体,这些液体可能会具有腐蚀能力,然而在一些情况下,需要用热电偶来测量这些具有腐蚀性液体的温度。在这种情况下,选择热电偶就要重视它本身或者防护套的抗化学腐蚀能力,否则就会影响测温数据的准确性,或者是造成热电偶出现质量损坏的情况发生。3、需要考虑热电偶的抗震动能力在工厂上过班的人可能会经历过这种情况,那就是很多大型的机器设备,这些设备经常会因为功率过大而发出震动,然而在一些情况下,我们需要监测这些设备的温度。如果使用普通的测温工具来测量它们的温度,就可能会由于设备震动的原因,而影响测温的效果。如果使用抗震动能力强的热电偶来测量这类设备的温度,就不用担心震动对测温效果的影响了。4、需要考虑热电偶的抗磨损能力对于那些频繁使用热电偶来测量温度的企业来说,热电偶的抗磨损能力是很重要的,因为它的抗磨损能立强,不仅能保证测温数据准确,也能够具有较长的使用寿命,节约企业资金。以上就是在选择热电偶的时候,所需要考虑的三个因素。总而言之,在选择热电偶的时候,要根据实际的情况和使用条件来进行选择。

  • 【原创大赛】马弗炉(热电偶)显示温度校准

    【原创大赛】马弗炉(热电偶)显示温度校准

    [b]前言[/b]马弗炉,又称电阻炉,根据外观形状可称为箱式炉、管式炉、坩埚炉等,是实验室中一种常见的设备,主要用于加热样品。目前在售的马弗炉,通常采用智能PID调节控制升降温程序和炉内温度,测温元件常用的是热电偶。大家在使用马弗炉时,通常会考虑一个问题,即炉子的温度准不准?我们经常要使用马弗炉烧结样品做科学研究,温度的准确性对于结果的可靠性非常重要。要回答这个问题,其实涉及到3个方面:1.热电偶测温是否准确,2.马弗炉内温度场分布是否均匀,3.PID控制精度。第3点对于厂家来说通常不成问题,误差可以控制到±1℃,甚至小于±1℃;第2点可以咨询厂家索取技术资料,也能达到要求;然后我们主要考虑和解决了第1点,热电偶测温准确性问题。热电偶有不同的类型,不同类型的热电偶测温的范围是不一样的,以下引用论坛其他版友帖子内容([url=https://bbs.instrument.com.cn/topic/7148533]【原创】热电偶(themral couple)[/url]):“常用的的热电偶分为K、S、B型:k型热电偶测量的温度是1200度以下,材料是镍铬和镍硅材料。s型热电偶测量1500度以下,铂铑1和0纯铂(铂铑10-铂热电偶就是:偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(rp)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(rn)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。)b型热电偶测量1700度以下铂铑30和铂铑6(铂铑30-铂铑6就是:偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(bp)的名义化学成分为铂铑合金,其中含铑为30%,含铂为70%,负极(bn)为铂铑合金,含铑为量6%,故俗称双铂铑热电偶。该热电偶长期最高使用温度为1600℃,短期最高使用温度为1800)”虽然三种类型的热电偶都具有较宽的温度使用范围,但实际上在不同温度范围的精度是不一样的。根据[url=https://baike.baidu.com/item/K%E5%9E%8B%E7%83%AD%E7%94%B5%E5%81%B6#3_3]百度百科[/url]的建议:“使用温度在1300~1800℃,要求精度又比较高时,一般选用B型热电偶;使用温度在1000~1300℃要求精度又比较高可用S型热电偶;在1000℃以下一般用K型热电偶。”[b] 实验方法与过程[/b]我们实验室用的一台箱式炉(如图1,型号KJ-M1400-1C)配的是S型热电偶,我们的使用需求是既要用25-700℃,又要用800-1300℃,所以几乎整个温度范围都需要校准。[align=center][img=,451,681]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171110386020_7265_2193245_3.jpg!w451x681.jpg[/img][/align][align=center]图1[/align]校准方法如下:自行购置PT100热电阻、K型热电偶、S型热电偶(见图2),分别对应测温范围为25-300℃、300-1000℃、1000-1300℃。在炉子的保温砖上钻一个孔,外置的热电偶/热电阻从孔中插入到炉膛内,另外一端连接至温度记录仪(见图3),同时用S型温度补偿导线从炉子本身热电偶上并联接出至温度记录仪。这样在升温/降温程序运行时,炉子本身热电偶测得的温度和外置的热电偶/热电阻测得的温度变会同步记录在温度记录仪上。采用以下两种升温程序:1.以2.5 ℃/min的升温速率从室温升至300 ℃,然后保温1h;2.以5 ℃/min的速率从室温升温至1350℃,每50 ℃保温10min。[align=center][img=,690,464]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171112270740_3209_2193245_3.jpg!w690x464.jpg[/img]图2[img=,690,684]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171112278280_4078_2193245_3.jpg!w690x684.jpg[/img]图3[/align][b]结果分析[/b]如图4、5所示为25-300℃范围外置PT100热电阻(图中标记为PT100或Measured)与炉子自带S型热电偶(图中标记为System)测得的温度变化曲线。从这两张图可以看出,在25-300℃范围,实际温度与炉子自带S型热电偶测得温度差别较大,差值最大超过100℃。图4升温程序本为升温10min、保温10min交替进行,保温阶段温度应该基本不变(曲线有平台),但结果显示,无论自带还是外置,曲线都无明显平台,而是波动较大。图5结果表明,在25-300℃范围,2.5 ℃/min这样很慢的升温速率,温度是波动式上升的,实际温度比炉子自带S型热电偶测得温度高50-80℃,温度越低,差值越大;到300℃保温半小时以后,差值才趋于稳定,高约50℃。[align=center][img=,690,519]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171113416019_2041_2193245_3.jpg!w690x519.jpg[/img]图4[img=,690,524]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171113431399_5991_2193245_3.jpg!w690x524.jpg[/img]图5[/align]如图6所示为300-1000℃范围外置K型热电阻(图中标记为K)与炉子自带S型热电偶(图中标记为System)测得的温度变化曲线。从图中可以看出,炉子自带S型热电偶测得温度依然比实际温度偏低,差别小于50℃,温度越高,差别越小。[align=center][img=,690,515]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171113446170_904_2193245_3.jpg!w690x515.jpg[/img]图6[/align]如图7所示为1000-1350℃范围外置S型热电阻(图中标记为S)与炉子自带S型热电偶(图中标记为System)测得的温度变化曲线。在1000-1150℃范围内,二者温度基本一样,曲线几乎重合,往后1150-1350℃,外置S型热电阻比炉子自带S型热电偶测得的温度低。可能的原因有两点:1.虽然同为S型热电偶,但考虑到材料或加工等方面的原因,精度会有差别;2.外置热电偶的长度不够,即使完全伸进炉膛,与内置热电偶测温的位置仍然不一样(PT100热电阻和K型热电偶足够长,没有这个问题)。[align=center][img=,690,525]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171113462489_428_2193245_3.jpg!w690x525.jpg[/img]图7[/align]分析以上实验结果的时候,外置热电偶所测温度被当成是实际温度,可能有人会有疑问,你怎么知道你买的这些热电偶就是很准确的呢?诚然,我也无法确定它们的精确程度,最严谨的方法应该是用经过计量认证的测温工具来测试。但我们没有这个条件,只能采用这种低成本(单根几百元)的方式校准,它们是符合国家标准的合格产品,结果有一定的可信度。其实也并非S型热电偶只能测准1000-1300℃,还是得看材料和工艺,最终体现在价格上。举个例子,差式量热扫描仪(DSC)的热电偶同为S型,即使测1000℃以下的温度也很准确,价格约2万;而我们的马弗炉总价可能才2万左右,那S型热电偶价格估计只要几百,不超过一千,所以精确度差点也可以理解。[b]总结[/b]1.对于该台配S型热电偶的箱式炉,在25-300℃,温度偏差50-80℃,在300-1000℃,温度偏差小于50℃,1000-1350℃认为无偏差;2.对于不同温度范围的使用需求,应考虑购置相应类型热电偶的马弗炉。[b]后记[/b]说了那么多,最终还是要解决我们的需求。刚开始分析出这个结果的时候,将就着用,只是设置温度的时候,按校准过的温度设置。比如要烧700℃,设置成650℃。后来重新买了一台配K型热电偶的箱式炉,烧1000℃以下时就用这台。也用同样的方法校准过,300℃以下温差小多了。然后还买了一台配B型热电偶的管式炉,最高烧到1500℃。

  • 热电偶连接器(connector)和热电偶馈通器(feedthrough)的区别和正确使用

    热电偶连接器(connector)和热电偶馈通器(feedthrough)的区别和正确使用

    [color=#990000]摘要:本文详细介绍了热电偶连接器和热电偶馈通器的结构和特点,描述了连接器和馈通器的使用环境和区别,指出了目前许多馈通器和连接器配套使用中的常见错误。[/color][size=18px][color=#990000]一、热电偶连接器[/color][/size]热电偶连接器是一种专门用于测温热电偶快速连接的插拔式电连接器,一般都是公母配对使用,其结构如图1所示。[align=center][color=#990000][img=真空型热电偶连接器,500,254]https://ng1.17img.cn/bbsfiles/images/2021/12/202112151547509343_7458_3384_3.png!w690x351.jpg[/img][/color][/align][align=center][color=#990000]图1 热电偶连接器及其结构[/color][/align]在热电偶连接器中,正负极插片由相应热电偶型号完全相同的热电合金制成,以减小引入连接器后带来的测温误差。需要注意的是两根正负极插片的固定螺丝是其他第三种金属,因此在测温过程中要保证连接器整体温度一致,否则按照热电偶中间金属定律会带来测温误差。[size=18px][color=#990000]二、热电偶馈通器[/color][/size]热电偶馈通器是一种特殊形式的热电偶连接器,主要用来馈通真空容器内外热电偶信号,并同时保持密封性,如图2所示。与热电偶连接器一样,馈通器也需要按照相应热电偶型号配置相同的热电偶合金材料。由于真空环境的特殊性,真空环境内几乎没有对流传热,使得热量很容易通过热辐射和热电偶线传递到馈通器带来温度不均匀而造成测温误差,因此馈通器以及与馈通器连接的所有热电偶连接器不允许有其他第三种金属存在,并且热电偶丝线与热电偶连接器的连接都是压接和缠绕方式。[align=center][img=真空型热电偶连接器,500,326]https://ng1.17img.cn/bbsfiles/images/2021/12/202112151548232624_5702_3384_3.png!w690x451.jpg[/img][/align][align=center][color=#990000]图2 热电偶馈通器[/color][/align][size=18px][color=#990000]三、热电偶连接器和馈通器的区别和正确使用[/color][/size]从上述连接器和馈通器结构可以看出,连接器与馈通器主要有以下区别:(1)使用环境不同,分别用于常压大气和真空。(2)无有其他第三种金属的存在。(3)对热电偶测温精度影响的不同。由此可见,由于不存在第三种金属,馈通器对热电偶测温的影响最小,特别是真空环境下更是如此。因此在实际应用中要特别注意,馈通器不能与连接器配合使用,如图3所示,连接器中的固定螺丝是第三种金属材料,这势必会给热电偶测温带来较大影响。[align=center][color=#990000][img=真空型热电偶连接器,500,359]https://ng1.17img.cn/bbsfiles/images/2021/12/202112151548473253_1757_3384_3.png!w690x496.jpg[/img][/color][/align][align=center][color=#990000]图3 馈通器和连接器错误搭配方式[/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 热电偶检定易忽视问题

    检定人员在检定热电偶过程中,对于接线柱不牢靠、热电偶短路或捆扎偏离几何中心等常见问题导致的所测数据不准确的情况,一般都能及时发现轻松处理,但是会遗忘一些影响检测结果却容易被忽视的问题。  一、热电偶的长度  JJG351-1996《工作用廉金属热电偶》检定规程中明确规定热电偶长度不小于750mm,之所以对热电偶长度作出规定,是因为考虑到热电偶在离开测温区后要有足够宽的温度梯度区。热电偶的热电动势也就产生在这一区域,要有效地阻止热电偶热端(测量端)的热量传给冷端(接线端),最基本的方法就是热电偶的冷端要有足够的距离远离热端。一般来说由于热电偶长度不够带来的误差是负的,修正值是正的。长度越短,带来的误差也越大,因此,在装炉检定之前需要确定热电偶的长度。  二、热电偶丝弯曲  热电偶丝细而软,极易变形,当偶丝发生折叠、扭曲等塑性变形使热电极的偶丝产生应力时,就改变了热电偶的热电特性,从而使变形热电偶测量结果的准确性受到影响。因此,检定前一定要把热电偶丝拉直。  三、热电偶丝被污染  热电偶丝被污染,甚至被氧化,会使热电极偶丝表面不光亮、发暗发黑,这时的热电极热电特性极不稳定,测量数据的准确性较差,因此,要清洗有污染的电极,消除污染层。四、响应时间的影响  接触法测温的基本原理是测温元件要与被测对象达到热平衡。因此,在测温时需要保持一定时间,才能使两者达到热平衡。保持时间的长短,同测温元件的热响应时间有关。而热响应时间主要取决于传感器的结构及测量条件,差别极大。所以,在日常检定过程中要根据不同类型的热电偶选择合适的升温速率、热平衡的时间。  五、绝缘电阻的影响  热电偶在高温下,其绝缘电阻随温度升高而急骤降低,因此将产生漏电流,该电流通过绝缘电阻已经下降的绝缘物流入仪表,使仪表指示不稳或产生测量误差。因此,在热电偶装炉之前不要忽视对其绝缘电阻的测试,只有当满足检定规程要求时,才能进行温度允差检定。

  • 【资料】热电偶的基本知识

    概述   热电偶是一种感温元件,是一种[url=http://baike.baidu.com/view/545261.htm][color=#136ec2]仪表[/color][/url]。它直接测量温度,并把温度信号转 换成热电动势信号, 通过电气仪表([url=http://baike.baidu.com/view/1302249.htm][color=#136ec2]二次仪表[/color][/url])转换成被测介质的温度。热[url=http://baike.baidu.com/view/758419.htm][color=#136ec2]电偶[/color][/url]测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的[url=http://baike.baidu.com/view/862716.htm][color=#136ec2]塞贝克效应[/color][/url]。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。  在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热[url=http://baike.baidu.com/view/158922.htm][color=#136ec2]电势[/color][/url]将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表, 测得热电动势后,即可知道被测介质的温度。  热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。  附:热电偶冷端补偿计算方法:从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度。 从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度工作原理   两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为[url=http://baike.baidu.com/view/99006.htm][color=#136ec2]热电效应[/color][/url],而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。  热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:  1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;  2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生[url=http://baike.baidu.com/view/56014.htm][color=#136ec2]电动势[/color][/url],因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。

  • 【分享】热电偶的结构形式

    为了保证热电偶可靠、稳定地工作,对它的结构要求如下: 组成热电偶的两个热电极的焊接必须牢固;   两个热电极彼此之间应很好地绝缘,以防短路;   补偿导线与热电偶自由端的连接要方便可靠;   保护套管应能保证热电极与有害介质充分隔离。 按热电偶的用途不同,常制成以下几种形式。1、普通型热电偶普通型热电偶是使用最多的,主要用来测量气体、蒸汽和液体等介质的温度。根据测温范围及环境的不同,所用的热电偶电极和保护套管的材料也不同,但因使用条件基本类似,所以这类热电偶已标准化、系列化。按其安装时的连接方法可分为螺纹连接和法兰连接两种。图2-1所示为普通热电偶结构图。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制