当前位置: 仪器信息网 > 行业主题 > >

电子背散射衍射系统

仪器信息网电子背散射衍射系统专题为您提供2024年最新电子背散射衍射系统价格报价、厂家品牌的相关信息, 包括电子背散射衍射系统参数、型号等,不管是国产,还是进口品牌的电子背散射衍射系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子背散射衍射系统相关的耗材配件、试剂标物,还有电子背散射衍射系统相关的最新资讯、资料,以及电子背散射衍射系统相关的解决方案。

电子背散射衍射系统相关的资讯

  • iCEM 2017特邀报告:电子背散射衍射技术的应用
    p style="text-align: center "strong第三届电镜网络会议(iCEM 2017)特邀报告/strong/pp style="text-align: center "strong电子背散射衍射技术的应用/strong/pp style="text-align: center "strongimg width="300" height="300" title="杨平.jpg" style="width: 300px height: 300px " src="http://img1.17img.cn/17img/images/201705/insimg/1280f2af-69cd-4994-bc32-48f4cb8c0ee6.jpg" border="0" vspace="0" hspace="0"//strong/pp style="text-align: center " /pp style="text-align: center "strong杨平 教授/strong/pp style="text-align: center "strong北京科技大学材料学院/strong/pp strong 报告摘要:/strong/pp  电子背散射衍射(EBSD)技术是快速揭示晶体材料结构、取向及取向差分布、相间取向关系等信息的定量化分析技术,已有超过25年的应用历史。但相对于图像形貌信息与微区成分信息,EBSD技术的初学者对晶体学信息的理解还存在较大障碍。/pp  基于目前商家在EBSD相关硬件、软件及制样技术上能对用户进行及时的介绍与帮助,本讲座主要从使用者的角度对该技术的初学者可能在材料分析中遇到的晶体学及材料学基础方面的困难进行介绍,给出一些案例;同时对进一步深入应用该技术提出方向性建议。/pp  本报告涉及的内容有:1)EBSD系统简介及EBSD技术现状;2)与EBSD技术相关的晶体学基本知识;3)与EBSD技术相关的材料学知识;4)EBSD技术在金属材料中的应用案例;5)EBSD技术相关文献;本报告主要针对EBSD技术的初级使用者。/pp  strong报告人简介:/strong/pp  杨平,博士,教授/博士生导师,北京科技大学材料学院“材料学基础与材料各向异性”梯队负责人(首席教授)。1982年、1986年分别获得北京科技大学材料专业学士、硕士学位; 1997年获德国亚琛工业大学金属学与金属物理所获材料学博士学位。/pp  主要研究方向为金属材料形变、再结晶、相变过程的晶体学行为及织构控制技术;擅长使用电子背散射衍射(EBSD)技术。研究材料集中在各类钢、铝合金、镁合金、钛合金;目前集中在各类电工钢及高锰TRIP/TWIP钢的研究。负责国家自然科学基金5项,参加国家863计划3项,国家973计划项目1项,厂协项目10余项等。 国内外发表论文共346篇(SCI文章113篇);获发明专利4项,获省部级一等奖、三等奖各1项。编著《电子背散射衍射技术及其应用》、《材料织构分析原理与检测技术》、《电工钢的材料学原理》。/pp  获得北京市教学名师、北京市师德先进个人、宝钢优秀教师奖、北京市教学成果一等奖、二等奖(均为第一获奖者)、2017年入选北京科技大学鼎新学者。编著《材料科学名人典故与经典文献》、《工程材料结构原理》;参编教材《材料科学基础》(北京市精品教材、十二五国家规划教材),《材料科学与工程基础》、《金相实验基础》等;讲授本科生《材料科学基础》(国家精品课程、国家精品资源共享课、研究型教学示范课堂)、全英文《材料形变与再结晶》课程(研究型教学示范课堂)、研究生《材料结构》课程。发表教学研究文章34篇。/pp  strong报告时间:2017年6月22日上午/strong/pp strong 立即免费报名:a title="" href="http://www.instrument.com.cn/webinar/meetings/iCEM2017/" target="_blank"http://www.instrument.com.cn/webinar/meetings/iCEM2017//a/strongbr//pp style="text-align: center " a title="" href="http://www.instrument.com.cn/webinar/meetings/iCEM2017/" target="_self"img title="点击免费报名参会.jpg" src="http://img1.17img.cn/17img/images/201705/insimg/c9793b9d-a3ec-4cb2-a453-330b3d0cbf03.jpg"//a/p
  • 2015 年电子背散射衍射(EBSD)应用分析及样品制备技术研讨会邀请函
    尊敬的客户: 您好! 欧波同有限公司长期专注于微观纳米技术应用解决方案的研发与推广。经过 数年发展,欧波同有限公司作为蔡司、牛津、GATAN 公司战略合作伙伴,目前 已经成为中国最大的微纳米显微方案供应商。为了推动 EBSD 技术及电子显微学 的进步和发展,提高广大显微学工作者的学术及技术水平,促进显微学在物理学、 材料学、生命科学、化学化工、环境、地学等领域的应用,欧波同有限公司、牛 津仪器有限公司、GATAN 公司三方联合于 2015 年 7 月 24 日举办 2015 年电子 背散射衍射(EBSD)应用分析及样品制备技术研讨会。 本次会议将邀请电子显微学应用专家、EBSD 应用专家、EBSD 样品制备专 家、SEM 样品制备专家等进行相关领域的应用实例分析报告,同时将以欧波同 有限公司专业化的 DEMO 实验中心为平台,为用户提供现场体验微纳米分析技 术设备——蔡司电子显微镜,晶体学分析设备——牛津 EBSD 及 EBSD(SEM)样 品制备技术设备——GATAN ILION 697 氩离子束抛光系统的一站式操作。欢迎 您的到来! 会议主要议程安排 7 月 23 日下午报到入住 7 月 24 日9:00~12:00 专家报告12:00~13:00 午休13:00~17:00 DEMO 机考察及演示 会议主要内容: 国内知名 EBSD 应用专家进行专题讲座,主要内容为 EBSD 在相关领域的应 用实例;欧波同公司扫描电镜最新技术以及仪器操作技巧介绍;牛津公司介绍仪器的最新技术以及仪器设备维修与维护技巧;GATAN 公司 EBSD 样品制备技术及结合 EBSD 的拓展应用介绍;难处理扫描电镜样品制备的方法,包括镀层样品、电子半导体样品、高分子 复合材料等截面样品制备,岩石矿物等孔隙样品制备等。DEMO 机考察及演示(欧波同 DEMO 实验中心);会议地点欧波同有限公司 DEMO 实验中心(北京市朝阳区高碑店乡西店村 1106 号源创空 间大厦 F16 室) 会议费用 欧波同提供会务费并赠送精美小礼品,差旅费自理!报名咨询联系人:刘丹、黄杨 联系电话: 15140813412 18804252487Email邮箱:shchb02@163.com optonpo02@163.com 会议地图会议附近宾馆选择建议 盛然快捷酒店(距离源创空间大厦约为 560 米,8 分钟)地址:北京朝阳区国粹苑西店 1061 号 协议价格:标准间 268(协议公司:北京欧波同光学技术有限公司) 电话:010-87706262 七天连锁酒店(北京四惠地铁站店)(距离源创空间大厦约为 1.0 公里,14 分钟)地址:北京通惠河畔南岸盛世龙源 11 号协议价格:标准间 257 元(协议号码:95107839) 电话:010-87706977 如家快捷酒店(北京四惠店) (距离源创空间大厦约为 1.4 公里,19 分钟)地址:北京朝阳区百子湾石门村路 2 号(金都杭城南侧) 协议价格:标准间 223 元(协议公司:北京欧波同光学技术有限公司) 电话:010-67712211 诚辉国际商务会所(建国路店) (距离源创空间大厦约为 1.6 公里,22 分钟)地址:北京朝阳区建国路 72 号(四惠交通枢纽西侧 300 米) 协议价格:标准间 259 元(协议公司:北京欧波同光学技术有限公司) 电话:010-65561188
  • 细谈二次电子和背散射电子(二)
    上一章(电镜学堂 |细谈二次电子和背散射电子(一))中我们详细的介绍了不同类型的二次电子的特点以及它们与衬度的关系,今天让我们来认识一下扫描电镜中另一个极其重要的信号----背散射电子(BSE)。背散射电子 背散射电子是入射电子在试样中受到原子核的卢瑟福散射而形成的大角度散射后,重新逸出试样表面的高能电子。由于背散射电子的能量相对较高,其在试样中的作用深度也远深于二次电子,通常而言是在0.1-1μm左右。在很多情况下,大家把BSE像简单的认为是试样的成分衬度,但是这种说法并不完全正确。背散射电子(BSE)和衬度之间有些什么关系?A. BSE的成分衬度 背散射电子的产额和成分之间的确存在非常紧密的关系,在整个原子序数范围内,BSE的产额都是随原子序数的增大而提高,而且差异性高于SE(见图1)。所以,这也是大家都用BSE图像来进行成分观察的最主要原因。图1 铜包铝导线截面的SE、BSE像和铝、铜电子产额 不过,这并不意味着BSE的产额仅仅就取决于原子序数,它和试样的表面形貌、晶体取向等都有很大的关系,甚至在部分情况下,BSE在形貌立体感的表现上还要更优于二次电子。B. BSE的形貌衬度 试样表面形貌的起伏同样会影响BSE的产额,只不过BSE产生的深度相对SE更深,所以对表面的细节表现程度不如二次电子。不过,如果对表面形貌不是特别关注的情况下,可以尝试使用BSE图像来进行形貌表征。特别是在存在荷电现象的时候,由于BSE不易受到荷电的干扰,较SE像会有更好的效果(见图2)。在前一章的SE章节中,我们已经介绍过这部分内容,这里不再赘述。图2(左图)5kV, SE图像 (右图)15kV,BSE图像C. BSE的阴影衬度 在进行形貌观察的时候,有时候需要的是图像的立体感。立体感主要来源于在一个凹坑或者凸起处,对其阴阳面的进行判断。在这方面,大角度的SE和BSE因为对称性的关系,在阴阳面的产额及实际探测到的信号量完全一样,所以体现立体感的能力相对较弱。低角SE2信号反而可以较好的体现图像的立体感,处于样品室侧方的ETD探测器在采集低角SE信号时,朝向探测器的阳面信号不受阻碍,背向探测器的阴面的上部分的SE可以绕行后被探测器接收,而下部分则由于无法绕行从而产额降低,此时阴阳面原本产额相同的低角SE信号,在实际采集的过程中发生了接收数量的不一致,从而在图像上表现出阴阳面的亮度不同,我们把这种现象称之为阴影效应。图3 ETD的阴影效应当凸起区域比较高时,阴影效应会显得比较明显,而随着凸起区域高度的逐步降低,当处于阴面的低角SE能够完全绕行时,此时阴影效应就会变得非常微弱。而基于BSE不能绕行的特点,在这种情况下则可以增强阴影效应。BSE产生后基本沿着出射方向传播,不易受到其它探测器的影响。阴阳面的实际BSE产额是相同的,但是如果探测器不采集所有方向的BSE,而是只采集一侧的BSE,阴阳面收集到信号的差异就会变得非常大,而且由于BSE不能像SE那样会产生绕行,所以这种差异要远高于SE。换句话说,利用非对称的BSE得到的阴影效应要强于ETD的低角SE。图4 不同方向接收到的BSE强度及叠加算法除了形貌衬度之外,我们已经在上一章节已经介绍过。对于电位衬度,SE要强于BSE;对于通道衬度,BSE则要优于SE。我们现在再回到SE和BSE的关系上,简单总结一下,BSE以成分为主,兼有一定的形貌衬度,电位衬度较弱,不过通道衬度较强,抗荷电以及阴影衬度也都强于SE,详见表1。表1BSESE能量高低空间分辨率低高表面灵敏度低高形貌衬度兼有为主成分衬度强弱阴影衬度非对称很强低角有电位衬度弱强抗荷电强弱图5 断口材料的SE和BSE图像及衬度对比背散射电子如何分类?在明确了BSE和衬度之间的关系以及与SE的对比之后,接下来介绍一下BSE的分类。不同类型的背散射电子在衬度、作用深度上的表现完全不同,为了能在以后电镜观察中获得最适合的条件,我们也要对BSE细致的分类,并对其各自的特点进行详细的了解。 BSE有弹性散射和非弹性散射之分,弹性散射的BSE能量接近入射电子的能量,非弹性散射的BSE能量要稍低一些,从200eV到接近入射电子能量均有分布。从发射角度来说,从很低的角度到很高的角度也都有分布。无论是能量分布上,还是空间分布上,BSE都表现出不同的特点,在此进行逐一说明。A. 高角BSE: 高角BSE是以接近90° 出射的背散射电子。此类BSE属于卢瑟福散射中直接被反射的情况,经过样品原子散射碰撞的次数也少,且和原子序数衬度也存在最密切的关系。高角BSE相对所包含的原子序数衬度最高,相对作用深度也较小,且和形貌关系较小。因此,高角BSE可以体现最纯的成分衬度。另外,当试样表面有不同取向时,不同取向的原子密度不同,也会影响直接弹性散射的概率。所以,高角BSE也能够很好的体现通道衬度。 因而,在多相的情况下,高角BSE可以表现出最强烈的没有其它衬度干扰的成分衬度;在试样抛光平整的情况下,高角BSE也可表现出对表面很敏感的通道衬度。 不过由于高角BSE的出射角的角度要求很高,因此其立体角很小,所以在所有BSE中相对来说占比也较少,信号相对偏弱。B. 中角BSE: 中角BSE是指那些能进入到镜筒内但达不到高角角度的BSE,角度一般不低于60°。中角BSE由于出射角度降低,因此在其中混有的非弹性散射BSE相对高角BSE而言有所提高,在试样表面的作用深度有所增加,其产额随形貌不同开始受到较大的影响。 中角BSE已经开始兼具成分和形貌衬度,不过由于出射角度依然比较大,作用深度也并不深,分辨率也没有受到太大的影响,依然可以维持在较高水平。而且,由于BSE的抗荷电能力要明显强于高角SE和轴向SE,因此,中角BSE可以作为它们的一个很好的补充。不过中角BSE和高角SE、轴向SE存在一个共同的问题,就是立体感同样不如低角信号。C. 低角BSE 低角BSE是以较低角度出射的背散射电子,通常在20°~60°之间。低角BSE的出射角度进一步降低,因此非弹性散射的电子所占比例也进一步提高,作用深度有了较为明显的加深。相应的,低角BSE的成分衬度较之前二者有了一定的弱化,而对形貌衬度的体现则会进一步的加强。 因此,低角BSE是属于兼具成分和形貌衬度,但是相对能够体现的表面细节不多,且图像分辨率有所降低。不过其抗荷电能力却有了进一步的提高,因此在荷电效应很强时,也可以作为形貌像的重要补充。 以上是按照BSE的出射角度来进行分类,我们把这三种BSE先简单的总结一下,如表2。表2低角中角高角形貌衬度降低成分衬度提高表面灵敏度提高立体感降低抗荷电降低分辨率提高信号强度降低图6 不同角度BSE的衬度对比 前面我们都是按出射角度来进行区分BSE,接下来,我们再看两种比较特别的类型。D. Topo-BSE Topo-BSE是指非对称的低角BSE,具有较为强烈的阴影衬度。由于低角BSE在所有角度BSE中对形貌最为敏感,再根据前面提到的BSE的阴影衬度,将两者结合起来,便可产生强烈的阴影衬度。 例如,对于试样上的一个凸起来说,各个方向产生的BSE信号是对称的,但是低角BSE产额和其形貌有关。如果只采集特定方向的低角BSE,那么朝向这个特定方向的信号量接收就要偏多,而背向这个方向的信号就明显偏少,反映在图像上就会出现明显的阴阳面,从而提高了图像的立体感。 Topo-BSE因为不会像SE那样产生绕行,所以其立体感要优于低角SE。而且,因为Topo-BSE比SE更不容易受到荷电影响,所以对于导电性差的试样,往往会有非常好的效果,如图7。图7 黄铁矿样品(左图)没有荷电,立体感强;(右图)立体感稍弱,且有一定的荷电 试样本身并不会产生这种不对称性,这种不对称性主要是人为故意造成,常用的方法有双晶体或五分割等不对称的BSE探测器的算法、对称BSE探测器的Topo模式采集、试样台的倾斜、以及其它的一些特殊技术。这部分内容将在以后的章节中再为大家详细介绍。E. Low-Loss BSE出射角度不同外,BSE的能量分布也大相径庭,从比较低的能量到接近原始电子束的能量范围内均有分布,如图8。图8 BSE的能量分布其中相对比较特殊的就是非常接近原始电子束能量的弹性散射电子。这些能量非常接近原始电子束的背散射电子,因为几乎都是弹性散射,没有受到能量损失,所以它们最大的特点就是作用深度很浅。因为只有作用深度浅,它们才有较大的概率不受到试样原子的非弹性散射。 所以,我们将这类背散射电子称之为Low-LossBSE,能够反映非常表面的成分的变化,而且出射角度相对较高,因而不容易受到形貌的影响。图9 3kV、2kV和1kV电子束在硅基底内的穿透深度BSE的作用深度要比SE深的多,所以BSE信号对试样表面的灵敏度远不及SE。若要提高BSE的灵敏度,通常需要降低加速电压。以Si基底样品为例,使用的加速电压从3kV降到2kV、1kV,其作用深度分别为80nm、35nm和15nm,如图9。虽然表面灵敏度得到了提高,但是依然无法和SE相提并论,而且加速电压的下降导致了BSE信号的急剧下降。此时,让我们来看Low-Loss电子的作用深度,当加速电压为3kV的电子打到Si基底试样上,如果不进行能量过滤,作用深度在80nm;而能量在2.9keV-3keV的BSE电子,即能量损失在100eV以内的Low-Loss BSE电子,作用深度仅为5nm;如果能量在2.95keV-3keV,即能量损失在50eV以内的Low-Loss BSE电子,作用深度仅为2-3nm,见图10。这样的表面敏感度已经堪比二次电子。图10 3kV入射到硅基底上,不同能量的BSE的作用深度所以Low-Loss BSE是对表面极为敏感的背散射电子,有着和SE相当的表面敏感度。对于那些非常关注表面灵敏度的应用需求上,Low-Loss BSE可以起到极其重要的作用。让我们来看一个实例,二维材料中的石墨烯的观察。众所周知石墨烯的厚度非常薄,如果作用深度比较大的话衬度就会变得很弱,所以我们通常都是用低电压的SE来进行成像。如图11中的低角SE和高角SE图,一般很少有人会选择BSE来对二维材料进行成像,因为常规BSE作用深度较深,衬度非常弱。图11 二维材料,(左图)低角SE图,(中图)高角SE图,(右图)常规BSE图然而,试一下用Low-Loss BSE成像,却得到了出乎意料的效果。使用Low-Loss BSE成像,相当于用极浅的信号将非常薄的石墨烯和基底区分开,此时体现出了极佳的衬度。Low-Loss BSE表面灵敏度远优于常规BSE和低角SE,几乎和高角SE的成像效果不相上下。 图12 二维材料,Low-Loss BSE不同类型背散射电子有些什么特点?我们将通常大家并不注意区分的BSE信号,也根据出射角度的不同,将其分成高角BSE、中角BSE和低角BSE,根据低角BSE接收时的对称性分出Topo-BSE,再根据BSE的能量分布分出对表面极为敏感的Low-Loss BSE。这五类BSE信号会有不同的办法加以区分和接收,这将在以后的章节中为大家说明。我们把这五种BSE的特点,归纳如表3。表3高角BSE中角BSE低角BSETopoBSELow-LossBSE形貌衬度弱中强很强弱成分衬度强中中弱强通道衬度中中强弱弱表面敏感度高中低低很高立体感很低中中高很低阴影衬度无无部分条件有强无抗荷电中中很强很强强分辨率很高高低低中信号强度弱中强强弱好了,今天的介绍就到此为止,同样留下几个小问题,答案将留待下一章揭晓!问题:以下是不同类型背散射电子图片,你能说出分别是由哪种BSE成像吗? 010203上一期答案问题:您能分得清以下图片分别是哪一类型的SE信号,并且在什么衬度特点上产生的差异吗?01低角SE 分辨率的不同 高角SE02低角SE 立体感的不同 高角SE03高角SE 荷电的不同 低角SE04高角SE 对表面灵敏度或深度信息的不同 低角SE05低角SE 受到电位影响电位衬度的不同 高角SE
  • 细谈二次电子和背散射电子(一)
    二次电子(SE)和背散射电子(BSE)是扫描电镜(SEM)中最基本、最常用的两种信号,对于很多扫描电镜使用者而言,二次电子可以用来表征形貌,背散射电子可以进行原子序数表征已经是基本的常识。然而,二次电子、背散射电子与衬度的关系并非如此简单。今天,我们就来深入的了解一下SE、BSE的细分类型,各自的特点,以及它们和衬度之间的关系。二次电子 二次电子是入射电子与试样中弱束缚价电子产生非弹性散射而发射的电子,一般能量小于50eV,产生深度在试样表面10nm以内。二次电子的产额在很大程度上取决于试样的表面形貌,因此这也是为什么在很多情况下大家把SE图像等同于形貌像。然而,这种说法并不严谨。二次电子(SE)和其它衬度的关系 二次电子的产额其实和成分也有很大的关系,尤其是在低原子序数(Z20)时,二次电子也能够清晰的反映出成分之间的差异。图1中显示的就是SE产额随原子序数Z的关系。 图1 SE产额随原子序数Z的关系 这类实际例子非常多,如图2中的碳银混合材料,SE像不但可以区分出碳和银的成分差异,而且相对BSE图像来说具有更多的形貌细节。图2 碳银混合材料的SE、BSE图像以及碳、银电子产额 所以,如果对于低原子序数试样,或者原子序数差异非常大时,若要反映成分衬度,并不一定非要用BSE像,SE像有时也可获得上佳的效果。 除了成分衬度外,SE还具有较好的电位衬度,在正电位区域SE因为收到吸引而使得产额降低,图像偏暗,反之负电位区域SE像就会偏亮。而BSE因为本身能量高,所以产额受电位影响小,因此BSE像的电位衬度要比SE小的多。图3 另外,如果遇上试样的导电性不好,出现荷电效应或者是局部荷电,这也可以看成是一种电位衬度。这也是当出现荷电现象的情况下,相对SE图像受到的影响大,BSE图像受影响则比较小。这也是为什么在发生荷电现象的情况下,有时可以用BSE像代替SE像来进行观察。 至于通道衬度,一般来说因为需要将样品进行抛光,表面非常平整,这类样品基本上没有太多的形貌衬度。SE虽然也能看出不同的取向,但是相比BSE来说则要弱很多,所以一般我们都是用BSE图像来进行通道衬度的观察。图4 SE和衬度的关系,总结来说就是SE的产额以形貌为主,成分为辅,容易受到电位的影响,取向带来的差异远不及BSE。在考虑具体使用哪种信号观察样品的时候,可以参考表1,SE和BSE特点刚好互补,并没有孰优孰劣之分,需要根据实际关注点来选择正确的信号进行成像。 表1SEBSE能量低高空间分辨率高低表面灵敏度高低形貌衬度为主兼有成分衬度稍有为主阴影衬度弱强电位衬度强弱抗荷电弱强 二次电子的分类 刚才简单介绍了SE和衬度的一些基本关系,接下来我们细谈一下SE的分类。因为不同类型的二次电子在衬度、作用深度上的表现完全不同,使得不同SE探测器采集的SE像会有非常大的差异。因此,为了能在电镜拍摄中获得最佳的效果,我们有必要对SE的类别进行详细的了解。 如果按照国家标准来进行分类的话,SE主要分为四类,分别是:SE1:由入射电子在试样中激发的二次电子;SE2:由试样中背散射电子激发的二次电子;SE3:由试样的背散射电子在远离电子束入射点产生的二次电子;SE4:由入射束的电子在电子光学镜筒内激发的二次电子。 国标这样定义完全正确,然而这样的分类对于在实际电镜操作中并没有太多指导意义。为什么呢?因为不管是什么类别的SE都是属于低能电子,探测器在采集的时候往往也不能对其加以区分。那么,我们现在可以换个思路来理解一下这几种二次电子。由于SE4对成像不起作用,我们在此不进行讨论。A. SE1: 由原始电子束激发,因此其作用深度最浅,对表面最为敏感,我们知道SE本身也有成分衬度,所以SE1也非常能体现出极表层的成分差异。 其次,正因为SE1信号来自于样品的极表面,作用体积小,所以其出射角度应该相对比较高。因此,SE1的分辨率应该是所有类型中最好的。 再者,正是因为SE1的出射高度都是高角,所以其产额不易受到试样表面凹凸不平的影响,因而其分辨率虽好,但是立体感则相对比较弱。B. SE2和SE3: 由BSE激发产生的SE。因为BSE本身作用区域较大,所以在回到试样表面再次产生的SE的作用范围要比SE1大的多,正因如此, SE2和SE3的分辨率也弱于SE1。 其次,SE2和SE3是被位于试样深处的BSE激发,它们的产额在很大程度上取决于试样深处的BSE,而且它们作用区域较深,也更能体现出试样深处的成分信息。 再者,SE2和SE3由不同方向的BSE产生,因此其出射角度相对也较为广泛,从高角到低角均有分布。C. 另外,我们需要再考虑到荷电因素,荷电本身的负电位会将产生的SE尽量推向高出射角方向出射,所以受到荷电影响的电子也一般分布于较高的出射角。 SE1分布在高角、SE2和SE3分布在各个角度,荷电SE分布在高角。这样一来,我们把SE1、SE2、SE3原来按产生的类型分类转化为更加实用的按照出射角度进行分类。即:高角电子以“SE1+荷电SE”为主,低角电子以“SE2+SE3”为主。不同出射角度的SE有着截然不同的特点,我们分别来看一下。A. 轴向SE: 轴向SE是以接近90° 出射的二次电子,其中以SE1所占比例最高。由于作用体积最小,分辨率相应也是最高,且具有最高的表面敏感度,因此可以分辨极表面的成分差异,但是同时对一些并不希望看见的表面沉积污染或者氧化等,也会一览无遗。同时,因为轴向SE中所含的荷电SE也相应最多,所以,一方面对电位衬度最为敏感,另一方面受到荷电的影响也最为严重。B. 高角SE 高角SE是以较高角度出射的二次电子,也是以SE1为主,不过相对轴向SE中所含SE1而言数量稍低。高角SE的分辨率、表面灵敏度、电位衬度相对轴向SE而言也有所降低,不过由于荷电SE占比减少,所以和轴向SE相比,高角SE受到的荷电现象影响较小。高角SE和轴向SE都是向上出射,所以图像的立体感都比较差。C. 低角SE 低角SE是以较低角度出射的二次电子,其中SE2、SE3占有较高比例。所以低角SE反映的是试样较为深层的信息,表面灵敏度低,作用体积大,分辨率也不及高角SE和轴向SE。不过低角SE的图像立体感很好,抗荷电能力也比前两者强。 不同类型二次电子的特点 这样,我们就将原来只能从定义的角度进行区分的SE1、SE2、SE3,转变成出射角度不同的轴向SE、高角SE和低角SE。而按照角度进行分类之后,在实际探测信号时是完全可以对其进行区分的,我们会在之后的篇幅中对其进行详细的介绍。这样,我们现在可以总结一下几种类型SE的特点,如表2。表2轴向高角低角出射角度接近90°大角度小角度凹坑处的观察有信号有信号信号弱分辨率最好很好一般表面灵敏度最好很好较弱立体感差差很好成分衬度极表面成分表面成分较为深处电位衬度强强弱抗荷电能力弱较弱强 很多人都用过场发射扫描电镜,对样品室内SE探测器得到的低角SE2信号,与镜筒内SE探测器得到的高位SE1信号的图像对比会深有感触,很明显两者的立体感相差很大,见图5。图5 低角SE图像(左)和高角SE图像(右) 但是对镜筒内的SE信号再次拆解为高角SE和轴向SE可能会觉得很陌生,虽然前面我们已经对二者进行了介绍,但是毕竟不够直观。我们不妨看看图6,两张图都是使用镜筒内探测器获得,分辨率和立体感都很类似,总体效果非常接近,但是轴向SE(左图)受到小窗口聚焦碳沉积的影响,而同时获得的高角SE(右图)的碳沉积影响则轻微很多。 图6 轴向SE图像(左)和高角SE图像(右) 图7的样品为硅片上的二维材料,左图为高角SE图像,右图为轴向SE图像,轴向SE的灵敏度明显高于高角SE。图7 硅片上的二维材料,高角SE图像(左)和轴向SE图像(右)图8的样品为绝缘基底上的二维材料,左图为高角SE图像,右图为轴向SE图像,可以看到轴向SE受到荷电的影响也要高于高角SE。图8 绝缘基底上的二维材料,高角SE图像(左)和轴向SE图像(右) 总结一下,我们将二次电子拆解成轴向、高角和低角三个不同的类型,它们没有优劣之分,均有自己的特点,有优点也有缺点。我们只有在实际操作时发挥出每种信号的优势,才能获得最适合的图像。 好了,关于SE的分类相对比较简单,相信您已经完全理解,我们将在下一篇中详细说一下BSE。 为了更好的理解这篇的内容,让我们通过几张SE图像来实际感受一下不同类型SE之间的差异吧! 您能分得清以下图片分别是哪一类型的SE信号,并且在什么衬度特点上产生的差异吗?我们将会在下一期文章中公布答案哦!0102030405
  • 细谈二次电子和背散射电子(三)
    前两个章节我们详细分析了二次电子SE和背散射电子BSE,并对这两者进行了更细致的分类,对它们产生的原因和衬度及其它特点也做了详细的说明。相信读者对这些不同的信号已经有了全新的认识。这一章节我们就要把这些不同类别的电子信号再进行一个回顾和总结。我们将常规定义的SE信号分成了低角SE、高角SE和轴向SE三个类别;又将BSE信号划分为低角BSE、中角BSE、高角BSE、Topo-BSE和Low-Loss BSE等五个类别。在这里我们再介绍一种信号,就是样品台减速模式下的电子信号。前两个章节请参看:细谈二次电子和背散射电子(一)细谈二次电子和背散射电子(二)减速模式下的信号现在很多扫描电镜都追求低电压下的分辨率,而样品台减速技术则是一个行之有效的手段。电子束依然保持高电压,在试样台上加载一个负电位,电子在出极靴后受到负电位的作用而不断减速,最终以低能状态着落在样品表面。这样既保持了高电压的分辨率,又因为低着落电压而有很高的表面灵敏度。图1 样品台的负电位对原始电子束起减速作用样品台减速技术各个厂家叫法不一样,有的叫电子束减速技术,有的称为柔光技术。这里我们统一称为BDM (Beam Decelerate Mode)技术。在BDM技术下,产生的电子信号和正常模式会变得有所不同。图2 样品台的负电位对产生的 SE 和 BSE 起加速作用样品台的负电位对于原始电子来说起减速作用,但是对于产生的 SE 和 BSE 来说,却是起到加速作用。SE 和 BSE 受到电场加速后,都会变成高能量电子,而且出射角度都有增大的趋势。二次电子因为能量小,所以受到电场的作用较大,各个方向的 SE 都会被电场推到相对较高的角度;而背散射电子虽然也会被电场往上方推,不过因为能量相对较高,所以出射角增大的衬度不如 SE 明显,低角 BSE 变成中角 BSE、中角 BSE 变成高角 BSE。 受到样品台减速电场作用的结果就是 SE 趋向于集中在高角附近,而 BSE 的分布范围相对 SE 要广泛一些,不过相对不使用减速模式时角度要有所偏高。图3 减速模式下 SE 和 BSE 的出射角度示意图减速模式下的衬度此时,虽然 SE 和 BSE 虽然产生的原因以及携带的衬度不同,但因为样品台的负电位的作用,能量、出射角度都比较接近,因此从探测的角度来说难以完全区分。因此在 BDM模式下,接收到的电子信号基本都是 SE 和 BSE 的混合信号,兼有形貌和成分衬度。如图4,在减速模式下,无论是硫酸盐上的细胞,还是贝壳内壁,一个探测器获得的图像都可以表现出明显的形貌和成分衬度。 图4 硫酸盐上的细胞(左图) 贝壳(右图)不过虽然都是SE和BSE的混合信号,不同角度探测器的实际效果也有一定的差异。越处于高角的探测器接收到的信号中相对SE所占比例较多,有着更多SE信号的特点,如形貌衬度比重更高;反之越是低位探测器接收到的BSE信号相对较多,表现在衬度上有着更多BSE信号的特点,如图5。 图5 减速模式下较高位探测器(左)和较低位探测器(右)的衬度对比 以往为了同时对比形貌和成分衬度,往往需要 SE 和 BSE 同时进行拍摄,通过SE 和 BSE 图像进行对比,以判断试样中的形貌和成分的对应信息;或者利用探测器信号混合,将 SE 和 BSE 的形貌衬度和成分衬度叠加在一张图像上,如图6。图6. 常规模式下的SE(左)、BSE(中)图像,以及将两者混合的图像SE+BSE(右) 而减速模式下获得的图像衬度比常规模式更加复杂,也正因为如此,减速模式的图像往往蕴含了更为丰富的信息。所以,减速模式除了可以提升低电压下的分辨率外,衬度的多样性也是一个重要特点。如图5和图6的对比,在相同的着落电压下,减速模式下仅需要一个探测器就可获得常规模式SE+BSE混合的效果。 另外,对于减速模式来说,并不一定非要在低着落电压下才能使用。有时候为了同时获得SE和BSE的混合信号,同时在一张图像上获取形貌和成分衬度,在其它电压下也均可使用减速模式。如下图金相试样,在10kV的BSE下只有成分衬度;而在13kV- 3kV的减速模式下,则增加了很多形貌信息。图7 金相试样在10kV下的BSE图像(左),和13-3kV减速模式下的混合衬度(右) 不过有一点要特别注意,那就是减速模式下虽然也有成分衬度,但是并不意味着图像越亮的地方平均原子序数越高,这一点和常规模式下的BSE图像不同。越亮的地方只能说是SE+BSE混合后的产额越多,受到多种衬度的影响,而不仅仅是成分的作用。如图8,从左边BSE图像上看,金字塔状的晶体材料是原子序数低于基底的,而在最右边的减速模式下,金字塔状晶体和基底虽然也表现出成分差异,但是晶体却显得更亮。图8 晶体材料在常规模式下的BSE像(左)、SE像(中),以及减速模式下的图像(右)减速模式的总结根据我们前两章介绍的SE和BSE的衬度和特点,我们也很容易总结出在BDM模式下不同位置探测器接收到的信号以及衬度特点,如下表。高位低位SE占比较多较少高角BSE占比较多较少低角BSE占比较少较多分辨率高低表面敏感度高低立体感低高抗荷电弱强成分衬度弱强形貌衬度强更强电位衬度强弱 在减速模式下各个探测器获得的都是 SE 和 BSE 混合的信号,所以都表现出综合衬度的特点。不过相对来说较高位探测器的高角BSE和SE占比较高,因此对表面的敏感度更高、分辨率也更好,不过相对立体感较差,也更容易受到荷电的影响;而较低位探测器的SE占比较少,中低角BSE占比较多,表面敏感度和分辨率都有所下降,不过立体感和抗荷电能力则更好。 因此减速模式下究竟使用哪个探测器,需要根据样品的实际情况以及关心的问题来进行选择,而不要始终用仪器默认的探测器。减速模式对操作者有较高的要求,除了要学会掌握操作技巧外,也需要对图像的综合衬度进行解读和分离。按照惯例,今天还有一个小问题,答案将在下一期公布噢!文末小问题:这是电池隔膜试样的图片,你知道不同角度(左为低角、右为高角)表现出的衬度差异是如何造成的吗?上一期答案问题:以下是不同类型背散射电子图片,你能说出分别是由哪种BSE成像吗? 01 答案: 中角、低角、高角02 答案:低角、高角、中角03 答案:低角、高角、中角
  • 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)
    p style="text-align: justify text-indent: 2em "【作者按】上一篇详细介绍了物质的组成以及高能电子束轰击样品产生二次电子和背散射电子的过程。并对与扫描电镜成像有关的各种衬度信息做了较为详细的阐述。【span style="color: rgb(0, 176, 240) text-decoration: underline "strong延伸阅读:/strong/spana href="https://www.instrument.com.cn/news/20200114/520618.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "strong二次电子和背散射电子的疑问(上)/strongstrong/strong/span/a】/pp style="text-indent: 2em " 二次电子和背散射电子都呈现出怎样的样品信息?如何利用这些信息对样品进行分析?在表面形貌像的形成过程中起怎样的作用?对表面形貌像的细节分辨有何影响?是否存在假象?这些问题都将在本文加以详细的探讨。/pp style="text-align: center text-indent: 0em "strong二次电子与背散射电子成像/strong/pp style="text-align: justify text-indent: 2em "传统观点认为:二次电子带有样品的表面形貌信息,形成样品的表面形貌像;背散射电子给出样品的成分信息,是形成样品成分像的主要信号源。这种观点是否片面?会不会产生假象?/pp style="text-align: justify text-indent: 2em "下面将围绕这些问题展开讨论。/pp style="text-align: center text-indent: 2em "strong一、二次电子/strong/pp style="text-align: justify text-indent: 2em "二次电子源自高能电子束对样品原子核外的介电子激发。能量低( 50ev)、溢出深度浅( 10nm)、溢出样品表面的分布不均。与样品表面夹角较大的二次电子(高角度二次电子),在样品中行走的自由程较短,溢出几率高,溢出量也较多。与样品表面夹角较小的二次电子(低角度二次电子),由于在样品中的自由程较长,因此损耗大、溢出几率较低、溢出量也较少。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/408e3c43-65b2-463f-9615-0a91b6981fd2.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "一直以来对于二次电子的认识存在很多问题,下面将选取以下几个问题来进行详细的探讨:二次电子主要来自核外的那一层电子激发?是形成表面形貌像的最佳选择吗?为啥易受荷电影响?会产生假象吗?有无Z衬度信息?SE1\SE2\SE3\SE4指的是啥?电位衬度和二次电子有什么关联?/pp style="text-align: justify text-indent: 2em "strong1.1二次电子主要来自原子核外那一层?/strong/pp style="text-align: justify text-indent: 2em "传统观念认为介电子(最外层)最容易被激发,所以二次电子主要来自最外层。那么一个疑问是:如果最外层电子是二次电子的主要来源,那么大量的特征X射线来自那里? /pp style="text-align: justify text-indent: 2em "我们先看一个加速电压的变化对能谱谱线强度影响的实例。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/599eb752-6862-4d29-b3ad-0000bf07d804.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em "能谱谱线的峰位对应着电子结合能,结合能对应电子层。那一层电子激发多,对应峰位的谱峰就高。从上面两张谱图可以看到,加速电压的增加,铜和锌的K线占比也增大。这说明加速电压增加,结合能高的K层电子,激发量的占比也增加。 因此从能谱看,似乎二次电子主要源于核外那一层电子并不固定,而是与加速电压和轨道电子激发能(结合能)的比值(过压比)有关。/pp style="text-align: justify text-indent: 2em "但是有充分的事例表明,特征X射线与二次电子在激发量上存在巨大的差距,这意味着内层电子的激发量极少。因此推测内层电子的激发与最外层电子的溢出可能并不是一个体系,即与特征X射线激发有关的内层电子,是以光电子形式溢出样品。/pp style="text-align: justify text-indent: 2em "故二次电子可能只能来自最外层轨道也就是介电子层。/pp style="text-align: justify text-indent: 2em "所谓光电子就是指由光电效应产生的电子。即轨道电子全面接收入射电子的能量,克服轨道结合能的影响而溢出。/pp style="text-align: justify text-indent: 2em "光电子的最大初动能与光的频率(能量)有关。/pp style="text-align: justify text-indent: 2em "strongEk=hv-A h是普朗克常数,v是频率,A是逸出功/strong/pp style="text-align: justify text-indent: 2em "主流观念认为内层电子的激发在过压比为3-4时达最佳。个人观点:不同元素这个值也不同,10左右都存在最佳激发的可能。充分认识到这一点,将有利于能谱测试时,对加速电压的选择。/pp style="text-align: justify text-indent: 2em "strong1.2二次电子是否是形成样品表面形貌像的最佳信息源?/strong/pp style="text-align: justify text-indent: 2em "传统理念认为二次电子是形成样品表面形貌像信息源的最佳选择。这个观点基于以下两点:/pp style="text-align: justify text-indent: 2em "1. 二次电子能量弱,在样品中自由程短,浅表层溢出,横向扩散极小,因此对表面细节的影响小,含有表面信息多。/pp style="text-align: justify text-indent: 2em "2. 二次电子的溢出量随平面斜率变化较大,边缘处溢出最多,由此形成二次电子衬度及边缘效应。样品的表面形貌可看成不同斜率的平面组合,因此二次电子衬度就带有大量形貌信息。/pp style="text-align: justify text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/9bc7d100-8ccc-4ea6-bceb-992f0df9311d.jpg" title="3.png" alt="3.png"/br//pp style="text-indent: 2em text-align: justify "二次电子衬度是否是形成样品表面形貌像的主导因素?二次电子形成的表面形貌像细节是否就一定最丰富?/pp style="text-align: justify text-indent: 2em "strong1.2.1 样品表面形貌像是否取决于二次电子衬度?/strong/pp style="text-align: justify text-indent: 2em "先看一个实例:用日立regulus8230的样品仓探头(L)和镜筒内探头(U)分别对硅片上刻蚀的倒金字塔图形进行观察。由于EXB系统的分离,使探头(U)接收的信息为较纯的二次电子。样品仓探头(L)因位置原因含有大量背散射电子。结果如下:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/171072a0-5b72-45d7-9e7b-562a06ac0a5a.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "由上例可见,图像中二次电子衬度充足但表面形貌像并不好, 形貌衬度(参见上篇)充足形成表面形貌像才十分的优异。因此形貌衬度才是形成形貌像的基础。形貌衬度的主要形成因素,依所观察样品的特性及所需获取的样品信息不同,分为两个层面:/pp style="text-align: justify text-indent: 2em "层面一:样品做低倍观察或样品表面起伏较大。探头、样品、电子束三者夹角将是影响形貌衬度的主导因素。大工作距离下使用侧向的样品仓探头获得表面形貌像,细节更丰富。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/dadb4366-061a-4b04-939b-6071ade9322b.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "层面二:高倍观察样品的几纳米细节。这些细节起伏小,采用不同角度的电子信息形成的形貌衬度即满足要求。/pp style="text-align: justify text-indent: 2em "小工作距离下选择镜筒探头从顶部获取较多的二次电子信息,减少信息扩散对细节的影响,是形成形貌像的关键。此时测试条件的选择,应当以尽可能多的获取低角度信息为目标。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/024fc5d0-42ae-4342-9376-1f2c0d6614cc.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em "镜筒探头(U),利用不同角度的信息形成形貌衬度,只能面向起伏较小的样品细节,对较大细节的观察效果差。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/4b96227b-8219-4354-9919-c6063716e8dc.jpg" title="3.png" alt="3.png"//pp style="text-indent: 2em "strong/strong/pp style="text-align: justify text-indent: 2em "探头(U)位于顶部,造成形貌衬度不足,无法分辨亮、暗衬度的空间形态。探头接收的二次电子占主导地位,二次电子衬度的影响使得斜面与平面有明显的亮、暗差异。亮部易被误认为是另一种物质所形成的Z衬度。采用探头(L)进行观察,情况刚好相反,故真实的孔洞信息表现充分。/pp style="text-align: center text-indent: 0em "strongB)二次电子的边缘效应也会对某些样品的细节分辨提供帮助/strong/pp style="text-align: center text-indent: 0em "两张不同材料的多层膜照片,各膜层的材料相近,Z衬度较差。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/30cfea12-6d69-4487-b960-7ebe49305d3a.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em "以上几个实例表明:形成样品表面形貌像的基础是形貌衬度,而非二次电子衬度。二次电子衬度会带来形貌假象,但也会帮助我们观察并区分一些特殊的样品信息。不同的样品信息适合用不同的衬度信息来表现,故辩证的关系无处不在。/pp style="text-align: justify text-indent: 2em "strong1.2.2二次电子对图像细节分辨能力的影响/strong/pp style="text-align: justify text-indent: 2em "形貌衬度是形成扫描电镜表面形貌像的基础,其他的各种衬度信息叠加在形貌衬度上,才能形成完整的表面形貌像。/pp style="text-align: justify text-indent: 2em "无论表面形貌像是如何构成的,信息源都是二次电子和背散射电子。其在样品表面的溢出区大小,必然会对表面形貌像的细节分辨产生影响。电子信息的能量越大、影响也越大。/pp style="text-align: justify text-indent: 2em "二次电子能量弱,对样品表面细节影响小,是对松散样品(如介孔、气凝胶)的几纳米细节观察的首选信息。它的含量越大这类信息表现得就越充分。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/31aa0262-e51d-443f-a364-08789d18ec66.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "低倍下,观察细节受信号扩散的影响减弱,充足的形貌衬度将成为主体。此时选择样品仓探头从侧面观察,结果更佳。/pp style="text-align:center"span style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/a3eed5c6-6b8c-406f-841c-5d6e833fe40b.jpg" title="6.png" alt="6.png"//span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align: justify text-indent: 2em "以上多个实例表明,形成样品表面形貌像的基础在于形貌衬度。其余的各种衬度信息叠加在形貌衬度之上共同形成完整的表面形貌像。不同的信息需求必须采用不同的应对方案,才能获取最佳的测试结果,这是一个辨证的关系。/pp style="text-align: justify text-indent: 2em "strong1.3 荷电现象与二次电子/strong/pp style="text-align: justify text-indent: 2em "样品表面因电荷累积形成静电场,影响电场及周边电子信息的正常溢出,产生所谓的荷电现象(这一现象今后将有专文探讨)。二次电子由于能量弱因此更容易被该静电场所影响。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/spanbr//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/f0392819-a938-40e5-8c23-1632be9b39e1.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "荷电场对高角度二次电子的溢出影响更为明显,因此样品信息中高角度二次电子含量越多,图像的荷电现象会更严重。/pp style="text-align: justify text-indent: 2em "下面以介孔硅KIT-6图像为例来说明。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/e8c31c1e-1dfe-47c7-9c45-6cbc63323c92.jpg" title="7.png" alt="7.png"//pp style="text-indent: 2em "采用样品仓探头接收样品信息,工作距离也会影响荷电现象。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/3ee8d1e3-a752-4eb9-ab69-a1abc9e4de99.jpg" title="8.png" alt="8.png"//pp style="text-align: justify text-indent: 2em "strong1.4二次电子是否拥有Z衬度信息?/strong/pp style="text-align: justify text-indent: 2em "同一个加速电压下,样品的不同密度及原子序数,二次电子的激发量还是存在衬度差异,但该衬度差异不如背散射电子强烈。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/ade275e0-9420-49b5-8370-039102e48b70.jpg" title="9.png" alt="9.png"//pp style="text-align: justify text-indent: 2em "strong1.5 SE1\SE2\SE3\SE4指的是啥?对测试结果有啥影响?/strong/pp style="text-align: justify text-indent: 2em "依据目前各电镜厂家的描述:SE1指的是电子束直接激发并溢出样品表面的二次电子,SE2是样品内部各种散射电子激发并溢出样品表面的二次电子,SE3\SE4是散射电子、入射电子所激发的样品仓内的各种二次电子信息。/pp style="text-align: justify text-indent: 2em " SE1是形成高分辨表面形貌像的关键信息。其扩散范围小,基本在电子束直径的周边,对样品表面形貌细节影响也最小。同等条件下该信息含量越充足,图像清晰度及细节分辨力越优异。/pp style="text-align: justify text-indent: 2em " SE2离散度较高,加速电压越高其产额和离散度也会越大。当SE2成为样品表面形貌像的主导信息时,表面形貌像的图像分辨力会大大降低。这是过高加速电压图像分辨能力差的主要缘由。/pp style="text-align: justify text-indent: 2em " SE3\SE4是杂散信息,产额越多对结果影响越大。电镜厂家在镜筒设计过程中都会将这一因素的影响压倒最低。/pp style="text-align: justify text-indent: 2em "选择加速电压时要充分考虑其对SE1\SE2产额的影响。在满足测试所需的电子束发射亮度的情况下,加速电压越低越好。要获得这样的结果,扫描电镜的本证亮度就要大。(可参看经验谈1)/pp style="text-align: justify text-indent: 2em "strong1.6二次电子与电位衬度/strong/pp style="text-align: justify text-indent: 2em "样品表面的少量静电场会引发该处信号异常溢出,当静电场弱小到不对图像的形态产生影响时,就形成了所谓的电位衬度。/pp style="text-align: justify text-indent: 2em "电位衬度主要影响的是能量较弱的二次电子,对背散射电子的溢出量影响较小。电位衬度可以在材料缺陷的分析上提供帮助。/pp style="text-align: justify text-indent: 2em "下面是我在为某单位进行样品测试时遇到的两个实例。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/4ac1d2e5-0460-4c65-8665-53c12c818eeb.jpg" title="10.png" alt="10.png"//pp style="text-align: justify text-indent: 2em "从左至右,探头选择依次是U\UL\L,背散射电子含量依次增多。但图像Z衬度却反常的依次减弱,直至消失。因此考虑这是否是少量有机物形成轻微荷电场所产生的电位衬度,并不是我们日常所见到的Z衬度信息。/pp style="text-align: justify text-indent: 2em "放大后看到有亮点经电子束轰击后消失,图像缩小可看到明显碳污染的存在,故可判断该现象是有机物污染所形成。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/1b672cd4-42ee-463f-83bd-eba4761cab2f.jpg" title="11.png" alt="11.png"//pp style="text-align: justify text-indent: 2em "上述现象如同上例所存在的探头切换时Z衬度的异常变化,只是高倍轰击并没有出现碳沉积现象。说明此处异常亮并非有机物附着形成,可能已经被有机物氧化,能谱分析此处氧含量偏多。/pp style="text-align: justify text-indent: 2em "用户对设备清洗后这些现象都消失。/pp style="text-align: center text-indent: 0em "strong二、背散射电子/strong/pp style="text-align: justify text-indent: 2em "与入射电子束方向相反的散射电子,称为背散射电子。其能量与入射电子相当,在样品中扩散范围较大,加速电压越大扩散体也越大,对图像细节影响也越大。背散射电子在样品表面溢出范围也不均衡。由于高角度背散射电子形成几率小,因此溢出量少,低角度背散射电子产生的几率较高,因此溢出量较多。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/dd47d4a8-592f-477d-8a4c-2dec993cd022.jpg" title="12.png" alt="12.png"//pp style="text-align: justify text-indent: 2em "背散射电子图像拥有如下特点:Z衬度与晶粒取向衬度好、受荷电影响小、信号扩散区大、极表层信息缺乏、电位衬度较差。/pp style="text-align: justify text-indent: 2em "strong2.1背散射电子和二次电子的图像对比:/strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/c95317fd-f9ce-4958-8c78-563d172684fa.jpg" title="13.png" alt="13.png"//pp style="text-align: justify text-indent: 2em "strong2.2背散射电子进行的晶粒结构及取向分析/strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/7aeb4551-2ef4-47d5-91fb-99fc1df796e7.jpg" title="14.png" alt="14.png"//pp style="text-align: justify text-indent: 2em "背散射电子的溢出量不仅受到样品原子序数及密度的影响,晶体材料的晶体结构及取向也会对背散射电子的溢出量及溢出方向产生影响,形成的晶粒取向衬度(电子通道衬度)更明析。但是要形成足够的衬度差异,需要晶粒存在较大的取向差、足够的体积、密度及整体平整度。要获取该种类的样品信息,样品平整度处理十分重要。切割、抛光处理是常备的制样方式。/pp style="text-align: justify text-indent: 2em "利用背散射电子衍射(EBSD)所形成的菊池花样对晶粒取向及构造进行分析,所获得的取向精度得到极大的提升,达到0.1° ,分析内容也更为充分。是目前利用扫描电镜进行晶粒结构和取向分析最权威、最充分且是最常用的技术手段。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/5e34d2af-f814-40d7-9c7a-b8be561439d8.jpg" title="15.png" alt="15.png"//pp style="text-align: justify text-indent: 2em "无论是直接利用背散射电子获取晶粒取向衬度还是通过EBSD来对晶粒进行观察和分析,信息源都是背散射电子。离开背散射电子,扫描电镜将无法充分的进行晶体材料结构及取向分析。/pp style="text-align: justify text-indent: 2em "strong2.3背散射电子图像的分辨力/strong/pp style="text-align: justify text-indent: 2em "加速电压、样品特性、信息需求、探头的性能和位置都影响着背散射电子图像的分辨力。在谈论图像分辨力时不能脱离条件的限制。比如观察样品的Z衬度信息,背散射电子形成的图像比二次电子形成的图像拥有更好的细节分辨;要观察样品内部的信息,加速电压低了是无法观察到的; YAG材质的探头比半导体材质的探头更适合低加速电压观察,样品表面信息分辨好。/pp style="text-align: justify text-indent: 2em "但总体来说背散射电子在样品中的扩散比二次电子来的大。对样品表面形貌像的细节干扰较强、较为明显。背散射电子含量越大,高倍率图像的清晰度也越差。/pp style="text-align: center text-indent: 0em "strong三、结束语/strong/pp style="text-align: justify text-indent: 2em "二次电子和背散射电子是扫描电镜形成样品表面形貌像的两个重要信息源。但形成表面形貌像的基础却是探头所获取的样品表面各种信息的衬度,而不是选用了那个信息源。/pp style="text-align: justify text-indent: 2em "如同用不同颜色的光去观察一个物体。无伦选用哪种颜色的光,形成物体图像形态的关键都是对物体的观察角度。不同的观察角度,图像的形态不同。而不同颜色的光只是给这个物体染上了颜色。不同亮度的光可以在一定程度上影响物体图像细节的辨晰度,却无法影响物体图像的形态。/pp style="text-align: justify text-indent: 2em " 图像上的明、暗差异被称为图像衬度,是形成图像的基础。噪点及亮度、对比度的调整也会对其产生影响,但与成像有关的是各种信息衬度。图像的衬度主要由各种信息的衬度所形成。/pp style="text-align: justify text-indent: 2em " 形貌衬度、Z衬度、晶粒取向衬度(电子通道衬度)、二次电子衬度、边缘效应、电位衬度是形成扫描电镜图像的几个主要衬度信息。其中形貌衬度是基础,其余的衬度信息叠加在该衬度之上,共同形成扫描电镜的各种图像。不同的样品表面信息需要用不同的衬度信息来表现,才能获得最佳的效果。/pp style="text-align: justify text-indent: 2em " 样品表面形貌的高低位置差异形成扫描电镜图像的形貌衬度。形貌衬度主要受探头接收样品信息的角度影响。对形貌衬度产生主要影响的因素分为两个层次:/pp style="text-align: justify text-indent: 2em "1.倍率越低,形貌的高低位置差异越大,要求的形貌衬度较大,探头、样品和电子束三者间形成一定的夹角才能满足形貌衬度的形成需求。此时这个夹角就是关键因素,对样品仓探头的充分运用才能保证我们获取更为丰富的表面形貌像。/pp style="text-align: justify text-indent: 2em "2.高倍下形貌高低位置差异减少。对形貌衬度的要求较小,样品信息的溢出角度所形成的形貌衬度即满足形貌像的需求,此时信息扩散对细节的影响成为主导因素。采用小工作距离、镜筒探头这一组合观察时,接收的二次电子较多,对形貌细节的影响较少,此时形成形貌衬度的主导因素是样品的低角度电子信息。/pp style="text-align: justify text-indent: 2em " 二次电子和背散射电子做为形成样品表面形貌像的信息源,必然会对表面形貌像形成影响,其影响主要表现在信号扩散对细节的掩盖,相对来说二次电子对样品表面细节的影响较小。/pp style="text-align: justify text-indent: 2em "二次电子和背散射电子形成的各种衬度信息(Z衬度、晶粒取向衬度、边缘效应、二次电子衬度电位衬度等)是我们进行样品表面形貌观察及分析的重要依托。/pp style="text-align: justify text-indent: 2em "二次电子有利于减少信号扩散的影响,其电位衬度、边缘效应、二次电子衬度极为充分,利于展示样品的某些特殊信息,但这些衬度也会带来一些假象。必须辩证的认识,合理的使用。/pp style="text-align: justify text-indent: 2em "二次电子的溢出量容易受到样品表面荷电场的影响,形成样品表面的荷电现象。高角度二次电子更加容易受到荷电场的影响,它的含量越大,样品表面的荷电现象越严重。/pp style="text-align: justify text-indent: 2em "背散射电子有利于表现Z衬度、晶粒取向衬度等信息。因其本身能量较大,溢出量不易受样品表面荷电场的影响,被视为应对样品荷电现象的有效方法之一。但也正是因为能量较大,在样品中扩散范围也相对较大,使得高倍时图像清晰度较差,不利于低于20纳米的样品细节的展现。/pp style="text-align: justify text-indent: 2em "我们在运用二次电子和背散射电子作为信号源来形成样品表面形貌像时,应当依据样品特性以及所需获取的信息特性,对症下药用辩证的思维方式来指导我们选择合适的测试条件。/pp style="text-align: justify text-indent: 2em "strong参考书籍:/strong/pp style="text-align: justify text-indent: 2em "《扫描电镜与能谱仪分析技术》张大同2009年2月1日/pp style="text-align: justify text-indent: 2em "华南理工出版社/pp style="text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等 2009年1月/pp style="text-align: justify text-indent: 2em "中科大出版社/pp style="text-align: justify text-indent: 2em " 《自然辩证法》 恩格斯 于光远等译 1984年10月/pp style="text-align: justify text-indent: 2em "人民出版社 /pp style="text-align: justify text-indent: 2em "《显微传》 章效峰 2015年10月/pp style="text-align: justify text-indent: 2em " 清华大学出版社/pp style="text-align: justify text-indent: 2em "日立S-4800冷场发射扫描电镜操作基础和应用介绍/pp style="text-align: justify text-indent: 2em " 北京天美高新科学仪器有限公司 高敞 2013年6月/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong 作者简介:/strong/span/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 100px height: 154px " src="https://img1.17img.cn/17img/images/202002/uepic/057cf6d3-2db1-4141-b27e-367cdc453e09.jpg" title="林中清.jpg" alt="林中清.jpg" width="100" height="154" border="0" vspace="0"/林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。/ppbr//p
  • 细谈二次电子和背散射电子(四)---总结篇
    前三章我们详细介绍和分析了在各种模式下,二次电子和背散射电子以及各种衬度之间的特点,本章节内我们会对这些内容行回顾和总结。前三个章节请参看:细谈二次电子和背散射电子(一)细谈二次电子和背散射电子(二)细谈二次电子和背散射电子(三) 信 号 类 型 二次电子(SE)按照其产生的原理可以分成 SE1、SE2、SE3 和 SE4,但是在实际使用的时候会发现难以对 SE1~SE4 进行严格的区分,因此我们把 SE 分成更加实用、更容易从操作上掌握的低角 SE、高角 SE 和轴向 SE 这三种 SE 信号。 背散射电子(BSE)根据角度不同将其区分为低角 BSE、中角 BSE、高角 BSE;又从对称性的角度分离出非对称的 Topo-BSE;以及从能量的角度分离出Low-Loss BSE 信号,分为了五种 BSE 信号。 以上3种 SE 信号和5种 BSE 信号,加上本章介绍的减速模式下的信号SE+BSE (BDM) ,一共有九种信号。这九种信号往往需要不同的电镜条件,也有不同的衬度特点,各自信号有着独特优势的同时也存在相应的缺点,具体请参见表1。表1信号衬度工作距离分辨率表面敏感度抗荷电能力景深立体感二次电子(SE)低角SE形貌为主均可一般好好好高角SE形貌、电位为主短好好差差轴向SE形貌、电位为主短好很好差差背散射电子(BSE)低角BSE成分、形貌、通道、阴影分析距离差差很好好中角BSE成分、形貌、通道短好一般好一般高角BSE成分、通道短好好好差TopoBSE形貌、阴影较短一般差很好很好Low- LossBSE成分短好很好好差减速模式下Signal(BDM)形貌、成分很短很好很好好差 衬 度 类 型 前面我们详细了解各个信号在衬度上的特点,那接下来我们反过来思考一下:为了获得各种类型的衬度,或者针对不同的试样和不同的目的,应该如何选择合适的信号进行采集以获得最佳的效果呢?1. 对于不追求超高分辨率的形貌衬度图像,立体感有时显得格外重要。此时,可以优先选择 Topo-BSE 信号来获得极具立体感的衬度;其次可以选择低角 SE 以及低角 BSE 信号。2. 如需获得高分辨的形貌衬度图像,应该优先选择轴向 SE 和高角 SE 信号,其次可以选择中角 BSE 信号。3. 如需获得非常纯的成分衬度图像,而不希望有其它衬度的干扰,可以优先选择高角 BSE 和 Low-Loss BSE 信号。4. 如需获得兼有形貌和成分衬度的图像,可以选择低角 BSE、中角 BSE 信号,有时候减速模式下的信号也可以兼有形貌和成分衬度。5. 如需获得非常表面的成分衬度,如表面污染,二维材料等,可以优先选择轴向 SE、高角 SE 信号,其次可以选择 Low-Loss BSE 以及减速模式下的电子信号。6. 如果不想获得非常敏感的形貌,比如抛光质量不够理想的金相试样,想要进一步减弱划痕影响,可以选择高角 BSE 和 Low-Loss BSE 信号,其次选择中角 BSE 信号。7. 如需获得较深处的成分信号,除了提高加速电压之外,也应该优先选择低角 BSE 和低角 SE 信号。8. 如需获得不同晶粒取向的通道衬度,优先选择立体角最大的低角 BSE 信号。9. 对于很多半导体试样,如果要想获得电位衬度,优先选择轴向 SE 和高角 SE 信号。10. 如需降低荷电效应影响,优先选择 Topo-BSE 和低角 BSE 信号,其次选择低角 SE 和中角 BSE,而避免高角和轴向 SE 信号。归纳一下,参见下表2。表2场景推荐1推荐2分辨率不高的形貌衬度Topo-BSE低角SE低角BSE分辨率较高的形貌衬度轴向SE、高角SESignal (BDT)中角BSE无形貌干扰的成分衬度Low-Loss BSE高角BSE兼有形貌和成分衬度低角BSE中角BSESignal (BDT)极高的表面敏感度轴向SE高角SELow-Loss BSE减弱形貌的干扰高角BSELow-Loss BSE中角BSE深层信息低角BSE低角SE通道衬度低角BSE电位衬度轴向SE高角SE降低荷电Topo-BSE低角BSE低角SE中角BSE̷̷ 这里只列举了一些常见的情况,对于不同的试样或者观察目的,我们要根据这些信号的特点进行灵活运用。甚至当只采集一个信号达不到目的时候,要利用探测器信号混合功能来进一步获得更理想的效果。 信号和探测器的选择 电镜观察中存在这么多的信号,那究竟用什么类型的探测器来区分这些信号呢?对于现在大部分场发射电镜来说,四探测器已经成为一个标准化的配置,即样品室一个ETD探测器,一个极靴下方的BSE探测器,镜筒内有两个探测器。样品室的两个探测器基本上差别不大,镜筒内的探测器会根据物镜的类型以及各厂家的一些特殊技术而有所差别。不过论共性而言,镜筒内的两个探测器,普遍一个位置相对较高,一个位置相对较低。 一台电镜根据自身的设计情况以及工作条件,能够分离出九种电子信号中的部分信号。粗略的进行归纳,可以总结为下表3。(不过需要注意的是,虽然有的探测器在表格中显示可以采集多种信号,但是这只是对大部分电镜做的一个归纳。对于一台具体的电镜而言,并不一定能够实现所有功能)。表3信号推荐探测器1推荐探测器2低角SEETD高角SE镜筒内低位探测器镜筒内高位探测器轴向SE镜筒内高位探测器低角BSE样品室BSE探测器中角BSE镜筒内低位探测器高角BSE镜筒内高位探测器Low-Loss BSE镜筒内能量过滤探测器Topo-BSE特殊优化的ETD非对称样品室BSE探测器 总 结 最后用一首七律对所有章节的内容进行一个总结,希望大家能够对 SE、BSE 信号以及各种衬度之间的关系能够有更深刻的理解,在电镜观察中获得更好的结果。《七律》粉末块体千百状用心制备导电亮半明半暗亮线条积分或能荷电抗二次背散各有用巧用二者图成双高低角度大不同多种模式减速场磁场浸没龙卷降吸汲电子扶摇上电磁静电复合式汇聚角度随能量非是高能分辨强低压窥得俏模样各类衬度分清楚图文相谶好文章元素结构何取向结晶参杂非所长光谱质谱原位解所见所得 All In One上一期答案问题:这是电池隔膜试样的图片,你知道不同角度(左为低角、右为高角)表现出的衬度差异是如何造成的吗?两张图都是在减速模式下拍摄:左图为低角电子,背散射相对占主要部分,表现出形貌衬度,因为材质均匀,所以没有明显的成分衬度;右图为高角电子,二次电子占主要部分,表现为比较明显的电位衬度和形貌衬度。
  • 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)
    p style="text-align: justify text-indent: 2em "strong【作者按】/strong高能电子束轰击样品,产生样品的各种信息。其中溢出样品表面的二次电子、背散射电子是扫描电镜获取样品表面形貌像、成分像的主要信息源。/pp style="text-align: justify text-indent: 2em "它们如何产生?传统观念认为:二次电子是高能电子束与样品原子核外电子发生非弹性碰撞,形成能量交换,核外电子获得能量被激发,产生“二次电子”;背散射电子是入射电子与原子核或核外电子碰撞,发生弹性或非弹性散射,形成散射电子,那些与入射电子方向相反的散射电子就是“背散射电子”。/pp style="text-align: justify text-indent: 2em "二次电子主要来自原子核外那一层?许多教科书认为源于最外层,也有教科书认为来源于最内层。/pp style="text-align: justify text-indent: 2em "为什么二次电子会含有样品表面形貌信息?背散射电子会带有样品成分信息?最流行的观念认为,不同斜率的平面二次电子产额不同,表面形貌可以看成由不同斜率的平面所组成,因此二次电子带有大量的样品形貌信息。样品的原子序数(Z)不同对高能电子束的散射也不同,故背散射电子含有大量成分信息。/pp style="text-align: justify text-indent: 2em "以上观点是否存在问题?表述是否全面?要回答这些问题,就要从物质的组成谈起。/pp style="text-align: justify text-indent: 2em "strong一、 物质的组成/strong/pp style="text-align: justify text-indent: 2em "分子、原子、离子是构成物质的三种基本粒子。它们都是如何定义?组成物质的特性又是如何?/pp style="text-align: justify text-indent: 2em "1.1分子/pp style="text-align: justify text-indent: 2em "分子是指单独存在、相对稳定、能保持物质物理及化学特性的最小单元。任何一个分子都是由多个原子按照一定键合顺序以及空间排列结合在一起的整体。该粒子对外相对稳定,靠范德华力来维系粒子间的联系。/pp style="text-align: justify text-indent: 2em "范德华力(分子作用力)产生于分子或原子之间的相互静电作用。该力较弱,因此组成的物质熔点、沸点、密度都比较低。/pp style="text-align: justify text-indent: 2em "有些原子对外也表现出如分子般的特性(比如氦、氩等惰性元素),称为单原子分子。意为是原子又是分子。/pp style="text-align: justify text-indent: 2em "液态、气态物质很多都是分子或单原子分子物质。/pp style="text-align: justify text-indent: 2em "1.2原子/pp style="text-align: justify text-indent: 2em "原子的定义:化学反应的基本微粒,在化学反应中不可被分割。原子的组成:内部带正电的原子核(质子和中子)和核外绕核运动带负电的电子。原子的大部分质量集中于原子核,而电子在核外按照一定的轨道做绕核运动。如同太阳系,原子核就是太阳,电子如同行星。原子直径大约是0.1nm,是原子核直径的1万倍到100万倍,电子的直径比原子核还要小,所以原子可以看成是一个非常大的空腔体。/pp style="text-align: justify text-indent: 2em "原子的三个基本关系:1.数量关系:质子数=核电荷数=核外电子数。2.电性关系:原子失去核外电子为阳离子,获得核外电子成阴离子。3.质量关系:质量数(A)=质子数(Z)+中子数(N)/pp style="text-align: justify text-indent: 2em "原子核外电子运行轨道是量子化排布。不同轨道的电子都含有一定能量,这个能量包含电子运动产生的动能以及电子被原子核吸引产生的势能,它们共同组成了电子的内能。内能取决于核外电子与核的距离,电子离核越远能量越大。/pp style="text-align: justify text-indent: 2em "电子可以在轨道间来回跃迁,电子跃迁会伴随能量的吸收和释放。电子由高能层向低能层跃迁时因势能降低而释放的能量,就是原子结合能。电子从低能的基态跃迁到高能的激发态所吸收的外界能量E,就是原子的激发能。不同原子、不同能层电子结合能不同,相应激发能也不同。当高能电子束轰击样品时就会引发电子在轨道间跃迁,从而产生样品的各种特征信息。/pp style="text-align: justify text-indent: 2em " 激发能和结合能是电子在两个能层间的跃迁过程中发生的能量变化。两者在电子跃迁方向、能量变化上是互逆的,但变化的量值相当,为两个能级之间的差值。/pp style="text-align: justify text-indent: 2em "原子核外电子排布必须满足四大要求:1.泡利不相容原理,2.能量最低原理,3.洪特规则,4不相容原理。/pp style="text-align: justify text-indent: 2em "排布规律依照:能量最低原理,每个能层最多容纳2n2个电子(n为电子层数),最外层不超过8个电子、次外层不超过18个电子、倒数第三层不超过32个。按照该规律排布能保证原子的稳定。单原子分子物质(惰性元素)的稳定性正是来源于其最外层电子排布的是2个(氦)和8个电子(剩余的元素),即所谓的“八偶体”结构。别的元素的原子稳定性皆不如它们。/pp style="text-align: justify text-indent: 2em "原子核外电子能层是按照电子内能的差异区分为K\L\M\N\O\P\Q这七层。最内层K层电子内能最低,Q层最强。能层层数与原子序数、电子排列规律有关。每个原子的能层都有其特定电子能量。/pp style="text-align: justify text-indent: 2em "每个能层上含有若干个亚层用s\p\d\f表示,这些亚层也叫能级。能级间电子能量也不一样,按照s-f排列是依次增强。各亚层含有的电子轨道数不一样,轨道数按照s-f依次为1\3\5\7个,含有的电子数最多是2\6\10\14个。span style="text-indent: 2em text-align: center " /span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202001/uepic/da0d2058-2a70-497b-a0dd-918e3069380d.jpg" title="二次电子和背散射电子的疑问[上]1.jpg" alt="二次电子和背散射电子的疑问[上]1.jpg" style="text-indent: 2em text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center text-indent: 0em "strong电子排列的轨道能层、能级图/strong/pp style="text-align: justify text-indent: 2em "核外电子的在轨运行与行星在轨运行是有区别的,区别是电子运行轨迹很难被确定。只能用统计学方法对核外电子空间分布做形象描绘。电子运行的模拟形态类似一层疏密不等的“云”,称为 “电子云”。电子云的形态和能级有关,s\p\d\f对应不同的电子云形态。原子核以及核外电子云的周边会形成电场,即“库仑场”,电场形成的势垒就是“库仑势”。/pp style="text-align: justify text-indent: 2em "以原子为基本微粒单位构成的物质都具有单一性,因此可称为单原子物质。这类物质除了前面提到的单原子分子(惰性气体),还包括单质非金属物质如碳、硅以及单质金属物质金、铁、钴、铜等等。这类物质微粒间的相互作用力是非常强烈的化学键,因此密度较大,熔点、沸点较高,微粒间的活泼型也较低。/pp style="text-align: justify text-indent: 2em "化学键是相邻的多个原子或离子间相互作用力的统称,是原子间及离子间相结合的作用力。如果原子的核外电子排布不如惰性元素那样形成最稳定的 “八隅体”结构,那么其外层电子(一般是最外层)之间通过电子云杂化相互组成各种类型的化学键来满足那种最外层电子“八隅体”的稳定结构。这类化学键就是共价键和金属键,是组成单原子物质化学键的基本类型。/pp style="text-align: justify text-indent: 2em "1.3离子/pp style="text-align: justify text-indent: 2em " 离子是指原子由于自身或外界作用而失去或得到一个或几个电子使其达到最外层电子数为8个或2个的稳定结构。/pp style="text-align: justify text-indent: 2em "得到电子带负电称为负离子,失去电子带正电叫正离子。正负离子之间通过静电作用形成化学键,该化学键就是离子键。/pp style="text-align: justify text-indent: 2em "离子微粒组成的物质包含有正、负离子间的吸引力,同时也包含电子和电子、原子核与原子核之间的静电排斥力,当静电吸引与静电排斥作用达到平衡时,便形成离子键。/pp style="text-align: justify text-indent: 2em " 以离子组成的物质有: 大多数盐、碱和活泼金属氧化物。/pp style="text-align: justify text-indent: 2em " 无论是以分子、原子还是离子为微粒组成的物质其根本都是原子。原子中,原子核和轨道电子形成的电子云周边都存在一个势垒“库仑势”。物质(不含惰性元素)的原子间都存在化学键,化学键会使得原子最外层电子的能量发生改变,但内层电子的能量保持不变。也就是说物质的原子之间无论发生怎样的化学反应,其内层电子的结合能和激发能不发生变化,因此能谱对化合物原子的定性、定量检测才有意义。/pp style="text-align: justify text-indent: 2em "strong二、 高能电子束对样品信息的激发/strong/pp style="text-align: justify text-indent: 2em "2.1 高能电子对样品信息的激发/pp style="text-align: justify text-indent: 2em "形成高能电子束的微粒“高能电子”相对于组成样品的最小微粒原子来说,其体积和质量都非常的微小。高能电子射入样品就如同高速小微粒穿行在无数巨大空心球所组成的空间中。/pp style="text-align: justify text-indent: 2em "每个空心球除了拥有巨大的空间,还有位于中心包含空心球全部质量的核,核周围有电场形成的势垒。与高能电子大小相仿的微粒(电子),在离核一段距离的轨道上做高速无规则运动并形成云态,俗称“电子云”。电子云及其形成的电场势垒如同为球体形成一个虚壳,有的球体拥有多层壳。球体中运动的电子可以在这些壳层间来回跳跃,并从外界获得或向外界释放能量。电子获得能量越出球体形成自由运动的电子,即 “二次电子”。/pp style="text-align: justify text-indent: 2em "高能电子穿透一个个球体,整个过程如同骑车或步行在有许多汽车隔离桩的自行车道和人行道上,如下图:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/8578118e-aff1-4e8f-aed6-ba5804012f6e.jpg" title="二次电子和背散射电子的疑问[上]2.jpg" alt="二次电子和背散射电子的疑问[上]2.jpg"//pp style="text-align: justify text-indent: 2em "原子核及核外各种电子云层如同这些隔离桩,层层叠叠交错排布在入射电子的运行轨迹上,疏、密有间。样品非常薄,隔离桩纵、横交错少,横向间隔空间也较大,大量的入射电子有足够空间自由穿越样品形成透射电镜的样品信息 “透射电子”。密的部位穿越少,疏的部位穿越多,形成透射电镜的投影像。/pp style="text-align: justify text-indent: 2em "绝大部分的分子或原子体积庞大无法穿越这些隔离桩。几十纳米厚的薄膜会阻隔气体、液体的分子或原子,而电子却能畅通无阻。这就是透射电镜气液杆隔膜的作用原理。/pp style="text-align: justify text-indent: 2em "样品足够厚,入射电子的运行轨迹上,隔离桩的互相交错由于深度增加使得纵、横排布密集度增加,电子无法自由穿透样品。而与原子核及核外电子云层的频繁亲密接触,形成如下火花。/pp style="text-align: justify text-indent: 2em "入射电子接近原子核,由于电子质量远小于核的质量,在受到核及其所形成的库伦场强势影响时,将只发生方向改变而能量保持不变(或变化极少),这就是所谓的“弹性散射”。弹性散射所引起入射电子方向的改变较大,有些甚至于与入射方向完全相反,被称为“背散射电子”。这些背散射电子是形成原子序数(Z)衬度更大的“高角度背散射电子”的主要来源。形成高角度背散射电子的几率较少,信号强度不大,因此应用面也不广。/pp style="text-align: justify text-indent: 2em "入射电子接近壳层电子时,壳层的库仑场会对其发生影响(也不排除与壳层电子直接碰撞)。由于电子间质量相当,入射电子在改变方向时将和壳层电子发生能量转移。壳层电子获得能量被激发,那些溢出原子的电子形成扫描电镜主要信息之一的 “二次电子”。入射电子在发生方向改变同时失去部分能量,形成“非弹性散射”。这一现象将会发生在原子的所有壳层。/pp style="text-align: justify text-indent: 2em "入射电子进入样品后,弹性散射和非弹性散射会在样品中多次发生。如同连锁反应一般,激发出更多的二次电子同时失去更多能量且不停的改变方向。/pp style="text-align: justify text-indent: 2em "扫描电镜的样品无穷厚,透射电子和散射电子无法从样品的另一端穿出,只在样品中经过多次散射消耗殆尽或从样品表面溢出。这些溢出样品表面的散射电子形成扫描电镜的另一个主要信息“背散射电子”。这类背散射电子与样品表面夹角较小,因此称为“低角度背散射电子”。“低角度背散射电子”同样含有大量的样品衬度信息(Z衬度以及表面形貌衬度),同时其在样品中做更大范围的扩散,入射电子能量越大扩散范围也就越大。/pp style="text-align: justify text-indent: 2em "样品的原子内层电子被激发,在该壳层就会留下一个空位,外层电子在原子核引力的作用下从高能层跃迁到该层,同时以特征X射线形式对外释放能量,释放的能量称为结合能。特征X射线是扫描电镜进行能谱分析的信号源。/pp style="text-align: justify text-indent: 2em "二次电子和背散射电子是以能量大小来区分。能量低于50ev为二次电子,背散射电子的能量和入射电子相当。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/33c41f2e-0aec-4587-8206-d0d16f673be2.jpg" title="二次电子和背散射电子的疑问[上]3.png" alt="二次电子和背散射电子的疑问[上]3.png"//pp style="text-align: justify text-indent: 2em "2.2扫描电镜的各种衬度信息/pp style="text-align: justify text-indent: 2em "图像衬度:图像上所存在的明、暗差异。正是存在这些差异才能使我们看到图像。影响图像衬度的因素有:信息衬度、对比度的调整,关键在于信息衬度。/pp style="text-align: justify text-indent: 2em "形貌衬度:样品表面形貌高低差异所形成的图像衬度。图像空间/pp style="text-align: justify text-indent: 2em "信息、立体感主要来自该衬度。探头、样品、电子束三者之间夹角对该衬度影响较大,探头所接收到的样品信息角度也会产生一定影响。想方设法把低角度信息引入探头,会增强图像的形貌衬度。/pp style="text-align: justify text-indent: 2em "Z衬度 :样品微区的平均原子序数或密度的差异所形成的图像衬度。该衬度主要与背散射电子的关联较大,二次电子对该衬度的形成也有一定的影响。/pp style="text-align: justify text-indent: 2em "晶粒取向衬度:晶体材料的晶粒取向差异所形成的图像衬度。也/pp style="text-align: justify text-indent: 2em "被广泛称为“电子通道衬度”。在扫描电镜中该衬度主要来自于背散射电子。/pp style="text-align: justify text-indent: 2em "二次电子衬度:溢出样品表面二次电子数量差异所形成的图像衬度。该衬度主要与样品表面斜率关联较大也与样品微区的平均原子数序(Z)或密度有一定关系。/pp style="text-align: justify text-indent: 2em "二次电子边缘效应:二次电子在样品形貌边缘处溢出最多。/pp style="text-align: justify text-indent: 2em "电位衬度 :样品表面局部有少量充电,使得该位置出现信号异/pp style="text-align: justify text-indent: 2em "常增多或减少而形成的衬度。二次电子图像出现这种现象居多。特点是:图像有信息异常却未发生形变。/pp style="text-align: justify text-indent: 2em "2.3图示各种衬度信息与表面形貌像的关系。/pp style="text-align: justify text-indent: 2em "1. 形貌衬度/pp style="text-align: justify text-indent: 2em "肉凝胶,肉类深加工产品/pp style="text-align: center text-indent: 0em " img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/dc400e25-743b-4695-a6c5-4de81bbc9545.jpg" title="二次电子和背散射电子的疑问[上]4.png" alt="二次电子和背散射电子的疑问[上]4.png"//pp style="text-align: justify text-indent: 2em "2. Z衬度及晶粒取向衬度/pp style="text-align: justify text-indent: 2em "Ag2WO4和Co-Ni氢氧化物复合物/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/d3652b5d-054f-42da-a071-0e7b2057d47b.jpg" title="二次电子和背散射电子的疑问[上]5.png" alt="二次电子和背散射电子的疑问[上]5.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/277952e7-d776-42c5-9c1a-39d2d249957e.jpg" title="二次电子和背散射电子的疑问[上]6.png" alt="二次电子和背散射电子的疑问[上]6.png"//pp style="text-align: justify text-indent: 2em "3. 二次电子衬度和边缘效应/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/324f71dd-c540-4dac-94d9-f756445fbe43.jpg" title="二次电子和背散射电子的疑问[上]7.png" alt="二次电子和背散射电子的疑问[上]7.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/3771072e-b981-4132-ac90-70ff30b55c0b.jpg" title="二次电子和背散射电子的疑问[上]8.png" alt="二次电子和背散射电子的疑问[上]8.png"//pp style="text-align: justify text-indent: 2em "倍率越低形貌衬度对结果影响越大,形貌衬度和二次电子衬度图像差别也越大。下图可见二次电子衬度并不能形成有效形貌像。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/de2f588b-1a83-45a0-bf4f-69c8c161a528.jpg" title="二次电子和背散射电子的疑问[上]9.png" alt="二次电子和背散射电子的疑问[上]9.png"//pp style="text-align: justify text-indent: 2em "4. 电位衬度/pp style="text-align: justify text-indent: 2em "镀膜玻璃表面飞溅的有机物斑点。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/46d5452b-0341-4c62-81a5-4d7ae0b861d9.jpg" title="二次电子和背散射电子的疑问[上]10.png" alt="二次电子和背散射电子的疑问[上]10.png"//pp style="text-align: justify text-indent: 2em "形貌衬度、Z衬度、晶粒取向衬度、二次电子衬度、二次电子的边缘效应以及电位衬度都对形成扫描电镜的各类表面形貌像有着极为重要的影响。至于哪一个是最为关键的影响因素,这与样品的特性以及所需获取的样品表面信息有关。不同特性的样品以及不同的信息需求,起关键作用的影响因素也不同。/pp style="text-align: justify text-indent: 2em "形貌衬度、Z衬度对形貌像的形成常常起到最关键的作用。/pp style="text-align: justify text-indent: 2em "无论那种衬度信息,都必须依附于二次电子和背散射电子来呈现,因此有必要对这两种样品信息加以探讨。/pp style="text-align: justify text-indent: 2em "二次电子、背散射电子到底能给出怎样的样品信息?都有什么认识误区?且听下回分解。/pp style="text-align: justify text-indent: 2em " /pp style="text-align: justify text-indent: 2em "strong参考书籍:/strong/pp style="text-align: justify text-indent: 2em "span style="text-indent: 0em "《扫描电镜与能谱仪分析技术》张大同2009年2月1日/span/pp style="text-align: justify text-indent: 2em "华南理工出版社/pp style="text-align: justify text-indent: 2em "《微分析物理及其应用》 丁泽军等 2009年1月/pp style="text-align: justify text-indent: 2em "中科大出版社/pp style="text-align: justify text-indent: 2em "《自然辩证法》 恩格斯 于光远等译 1984年10月/pp style="text-align: justify text-indent: 2em "人民出版社 /pp style="text-align: justify text-indent: 2em "《显微传》 章效峰 2015年10月/pp style="text-align: justify text-indent: 2em "清华大学出版社/pp style="text-align: justify text-indent: 2em "日立S-4800冷场发射扫描电镜操作基础和应用介绍/pp style="text-align: justify text-indent: 2em "北京天美高新科学仪器有限公司 高敞 2013年6月/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "作者简介:/span/strong/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 90px height: 140px " src="https://img1.17img.cn/17img/images/202001/uepic/fa3796bc-5dc9-4eed-b931-a01b211bb0e7.jpg" title="二次电子和背散射电子的疑问[上]111.jpg" alt="二次电子和背散射电子的疑问[上]111.jpg" width="90" height="140" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strong/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191029/515692.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191126/517778.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191224/519513.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)/span/a/p
  • 630万!中国科学院过程工程研究所聚焦离子束场发射扫描电子显微镜、X射线能谱成分背散射电子结构三维分析仪采购项目
    项目编号:OITC-G220571963项目名称:中国科学院过程工程研究所聚焦离子束场发射扫描电子显微镜、X射线能谱成分背散射电子结构三维分析仪采购项目预算金额:630.0000000 万元(人民币)最高限价(如有):630.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号品目货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)11-1聚焦离子束场发射扫描电子显微镜1是3951-2X射线能谱成分背散射电子结构三维分析仪1是235 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 629万!赛默飞中标中科院过程所聚焦离子束场发射扫描电子显微镜、X射线能谱成分背散射电子结构三维分析仪采购项目
    一、项目编号:OITC-G220571963(招标文件编号:OITC-G220571963)二、项目名称:中国科学院过程工程研究所聚焦离子束场发射扫描电子显微镜、X射线能谱成分背散射电子结构三维分析仪采购项目三、中标(成交)信息供应商名称:国药(上海)医疗器械实业有限公司供应商地址:中国(上海)自由贸易试验区正定路530号A5库区三层2号仓库中标(成交)金额:629.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 国药(上海)医疗器械实业有限公司 聚焦离子束场发射扫描电子显微镜;X射线能谱成分背散射电子结构三维分析仪 Thermo Fisher Scientific Helios 5 UC Compact730M 1套 ¥6,299,000.00
  • OPTON微观世界|第33期 扫描电镜新技术——同轴透射菊池衍射(TKD)技术的应用
    引 言扫描电镜中的被散射电子衍射技术(EBSD)在确定材料结构、晶粒尺寸、物相组成以及晶体取向甚至是应力状态标定都有一定的涉及。通过电子衍射技术的进一步发展,Keller与Geiss基于EBSD技术相同的硬件与软件,通过改变样品台的倾角,使得荧光闪烁体信号接收器在样品下方接收透射电子衍射信号,从而代替原先的背散射信号。这种新技术称为Transmission Kikuchi diffraction(TKD),由于它的信号接收方式特点也被称为t-EBSD。由于接收信号的方式由被散射电子信号转为透射电子信号,其分辨率得到了明显的提升,由原来的EBSD技术的几十纳米(20-30nm平行于电子束的方向,80-90nm垂直于电子束的方向)提高到了TKD技术的10纳米。由于电子束与材料交互作用体积的减少,分辨率提高,使得分析超细晶材料以及其中的纳米颗粒的到了实现。为了改善电子衍射信号接收能力,一种新型的电子束-样品-接收器(on-axis TKD)共轴TKD式的几何设计在法国洛林大学(Université de Lorraine)与布鲁克公司联合组装使用,这个新装置不仅可以接收菊池花样还可以接收衍射点的信息。虽然此时TKD的说法已经不能十分贴切的描述实际情况,应该改为扫描电镜中的透射衍射(Transmission Diffraction )更为合理。由于传统上TKD缩写已经被普遍接受,所以我们在本文中以共轴透射菊池衍射(on-axis TKD)来表述此种新方法。这种新型的接受方法比传统的非共轴TKD(off-axis TKD)方法得到更高的信号强度。同时,共轴TKD方法由于其接收信号的对称性,可以使得原先非共轴TKD方法得到的扭曲的信号得以矫正。本文的主要目的是揭示透射衍射花样随着不同试验条件、样品参数(电子束入射强度、样品与探测器的距离、样品的厚度、样品的原子序数)的变化规律。帮助试验人员选择衍射花样中的合适的衍射数据(点、线、带),以及相应的设置电镜与样品的参数。最后在实际的纳米材料中采用TKD技术对样品进行纳米尺度的分析研究。试验方法所有的试验都是基于ZEISS Supra 40型号与ZEISS Gemini SEM进行的,配备的设备是Bruker e-Flash1000摄像机,对应的探测器型号是Bruker OPTIMUS。如图1所示,传统的TKD系统与on-asix TKD系统的探头接收方向并不相同。图2表示了FIB制样方法获得的楔形单晶Si薄片式样,样品厚度在25nm到1μm之间,用于后续的试验检测。图1 (a)同轴式透射菊池衍射(on-axis TKD);(b)传统非同轴透射菊池衍射(off-axis TKD);(c)电子背散射衍射(EBSD)图2 实验用的FIB砌削的楔形Si单晶样品的SEM图像电子束入射能量、样品厚度以及原子序数对TKD衬度的影响1衍射衬度的种类在同轴TKD技术中,收集到的衍射花样衬度不仅仅受到显微镜参数的影响,对于不同的观察样品其衍射花样衬度也会有所不同。目前,样品的厚度与入射电子的加速电压是日常应用过程中最基本的影响因素,样品的密度与原子序数也是重要的影响参数,但是目前无法对其进行系统的分析。同时,信号接受探测器的摆放角度、与样品的测试距离也是在实际操作中影响信号接受质量的因素之一。我们可以把衍射花样分为两类:衍射斑点与菊池花样。菊池花样有三种不同的衬度:线衬度、亮带衬度、暗带衬度。2菊池线与菊池带菊池线的形成原因在于,如果样品足够厚,那么将会产生大量以各种不同方向运动的散射电子;也就是说,电子与样品发生非相干散射。这些电子与晶体平面作用发生布拉格衍射。菊池线的形成有两个阶段,一是由于声子散射形成的点状的非连续的发射源,如图3(A)所示。第二是由于这些散射后的电子将相对于面hkl以θB运动(如图3B所示),从而与这些特定晶面发生布拉格衍射。因为散射电子沿各个方向运动,衍射书将位于两个圆锥中的一个内(如图3C)。换言之,因为入射k矢量有一定的范围,而不是单一确定的k矢量,所以观察到的衍射电子的圆锥而不是确定的衍射束。考虑与hkl晶面成θB角度方向的所有矢量所构成的圆锥,称之为Kossel圆锥,并且圆锥角(90-θB)非常小。由于荧光屏/探测器是平面并且几乎垂直于入射束,Kossel圆锥将以抛物线形式出现。如果考虑近光轴区域,这些抛物线看上去就像两条平行线。有时把这两条菊池线和他们之间的区域称为“菊池带”。图3(A)样品在某一点处所有电子散射的示意图(B)部分散射电子以布拉格角θB 入射特定hkl晶面而发生衍射(C)这些圆锥与Ewald球相交,由于θB很小,在衍射花样上产生了近似直线的抛物线。3布拉格衍射斑点与TEM中的衍射斑点形成原理相似,TKD中衍射斑点是由于低角弹性散射形成的,低角弹性散射是连续的,然而在高角范围内,随着与原子核的相互作用,散射分布并非连续,这也就解释了为何衍射斑点只能在低散射角度的区域才能够观察到。图4显示了单晶Si样品中,随着厚度变化引起的衍射信息变化,在样品较薄的区域我们可以看出衍射斑点的信息,随着样品厚度的增加,衍射斑点信息消失。菊池花样在样品时很薄的区域,衬度模糊,而在样品厚度很大时,衬度表现的较弱,其它阶段花样都比较清晰。图5中可以看出,随着入射电子能量的降低,衍射斑点也逐渐消失。由此,可以认为衍射斑点的强度在样品厚度一定的前提下,可以认为是入射电子能量的函数。图4 单晶Si在不同厚度下共轴透射菊池衍射(on-axis TKD)产生的透射衍射花样 (a)43nm (b)45nm (c)48nm (d)52nm (e)65nm (f)100nm (g)200nm (h)300nm (i)1000nm 加速电压E=15keV,探测器样品距离DD=29.5mm,光阑尺寸60μm,束流强度2nA,图像捕获时间(a-h)200ms×30images (i)990ms×30images随着加速入射电子的加速电压的变化,透射菊池衍射花样的变化,可以看出,与图4中的变化规律相似。可以看出入射电子能量与样品厚度在对花样的衬度影响方面扮演着同样的角色。但是其原理并不完全一样,随着入射电子加速电压的降低,菊池带的宽度逐渐变窄。图6所示,基于等离子体与声子的自由程的模型计算了出现衍射斑点的情况下,样品厚度与电子入射能量的关系,可以看出入射电子的能量是产生电子衍射斑点的样品厚度的函数。图5 单晶Si在不同加速电压下共轴透射菊池衍射(on-axis TKD)产生的透射衍射花样 加速电压(a)30keV (b) 25keV (c)20keV (d)15keV (e)10keV (f)7keV;样品厚度d=150nm,探测器样品距离DD=29.5mm,光阑尺寸60μm,束流强度2nA,图像捕获时间(a-h)200ms×30images (i)990ms×30images图6 Si、Ti两种材料随着电子入射能量以及样品厚度变化为变量的布拉格衍射斑点显示示意图实际样品测试纳米材料由于其优异的力学、光学以及催化性能,在材料研究领域中已经成为新的研究热点。其中纳米金属材料由于其优异的力学性能已经得到了广泛的研究,特别是纳米孪晶铜材料,是最早研究的纳米金属材料之一,但是由于其晶粒尺寸小于100nm,其孪晶片层只有十几个甚至几纳米(图7),使得以往的结构研究手段多采用透射电镜(TEM)的方法。但是由于TEM难以对大量晶粒的取向进行统计分析,这就需要用到扫描电镜的EBSD技术,介于传统的EBSD技术的分辨率的局限,一直少有纳米级别的分析。那么有了TKD的新型技术,就可以对纳米级别的材料进行细致的分析。图7 纳米孪晶铜的TEM观察由于纳米孪晶的制备方法多采用电沉积的方法,得到薄膜形式的材料。所以在生长厚度方向上由于厚度较薄(约20nm),本次实验是用金(Au)薄膜样品进行观察,采用的是场发射扫描电镜Zeiss Merlin Compact 以及Bruker OPTIMUS 同轴TKD探测器进行观察。结果如图8所示,可以看出片层结构的分布,经过进一步的分析,可以看出片层结构之间的界面角度为60度,可以确定为[111]112纳米孪晶,并且通过测量可以确定片层宽度仅有2nm。基于共轴TKD技术,让以往在SEM中难以完成的纳米结构的织构组织分析成为可能。并且对纳米尺度材料的性能提升提供了进一步的实验支持。图8 a)纳米金颗粒的孪晶结构PQ图与IPFZ叠加显示;(b)(a)图中线段处角度分布图小 结1.共轴式透射菊池衍射技术可以在衍射花样中获得更加广泛的衍射信息:布拉格衍射斑点、菊池线以及菊池带。2.随着样品厚度的增加,衍射斑点、菊池线、菊池带依次产生。在样品较薄的状态下,菊池带呈现明亮的带状,随着样品后的增加,深色衬度在在带中出现并缓缓变暗,直至带状衬度明锐显现。3.样品厚度与入射电子能量可以作为相关联的变量,影响着衍射信息的衬度;减小样品厚度相当于增加入射电子能量。也就是说要得到特定的衍射衬度,可以调整样品的厚度与调整入射电子束的能量这两种方法是等价的。4.基于等离子体与声子的自由程的模型计算了出现衍射斑点的情况下,样品厚度与电子入射能量的关系。可以看出这二者呈线性关系,且根据元素的不同样品厚度与入射电子能量的比值的常数也有所差别。5.采用共轴TKD技术测试了金纳米颗粒的纳米片层结构,并且分辨出了2nm尺度的孪晶片层结构。
  • 国际衍射数据中心(ICDD)正式发布PDF-5+标准衍射数据库
    2023年9月,国际衍射数据中心(ICDD)正式发布PDF-5+标准衍射数据库。PDF-5+标准衍射数据库为世界上最大的标准衍射数据库,整合了之前的PDF-4+数据库和PDF-4 Organic数据库中的全部数据,收录物相的标准衍射数据超过106万条,其中超过44万张卡片为无机物,超过62万张卡片为有机物,满足所有XRD数据物相鉴定和定量分析的需求。PDF-5+数据库中收录的所有数据都进行了审核,并给给出质量标记,超过95万张卡片中收录了参比强度RIR(I/Ic)值,可用于K值法定量分析。PDF-5+数据库结合JADE Pro或JADE Standard软件可实现结晶材料、半结晶材料的物相鉴定和定量分析,也可与主流的XRD设备配套的软件兼容。同时,不仅仅含有物相标准衍射数据,还收录了单晶的结构数据,结合JADE Pro/JADE Standard软件、或第三方软件,可实现三种定量分析方法:RIR法,Rietveld精修法和全图拟合法(Whole Pattern Fitting)。PDF数据库全球唯一ISO 认证晶体学数据库粉末衍射和单晶结构的综合数据库XRD数据分析唯一标准数据库PDF-5+数据库专门为正确鉴定粉末XRD数据的物相和定量分析而设计,收录的数据,除了ICDD收录的标准衍射数据和单晶结构数据之外,还加入了世界上知名的单晶结构数据库的数据,收录涵盖的数据库有:ICDD Powders (00) – International Centre for DiffractionData (国际衍射数据中心)ICSD (01) – Fachinformationszentrum Karlsruhe (FIZ) (国际晶体结构数据库)NIST (03) – National Institute of Standards and Technology(美国国家标准技术研究所数据库)MPDS (04) – MaterialPhases Data System, Linus Pauling File (LPF,莱纳斯鲍林文件)ICDD Single Crystal Data (05) – InternationalCentre for Diffraction Data (国际衍射数据中心-单晶)PDF-5+数据库可以满足几乎所有的材料领域的分析需求,无机材料如水泥、金属和合金、电池、矿物和固态设备,有机材料包括药物、染料、颜料和聚合物,以及其他材料,PDF-5+数据库中均有收录。PDF-5+数据库中对于单个PDF卡片而言,不仅仅收录了X射线的标准衍射数据,同时还有同步辐射标准衍射数据、电子标准衍射数据和中子标准衍射数据等,满足几乎所有粉末XRD数据的分析需求!PDF-5+数据库可兼容的XRD分析软件有 JADE Pro、JADE Standard、以及主流衍射仪自带的分析软件。如果您没有XRD设备,也不必担心分析数据的问题。PDF-5+免费赠送物相分析模块SIeve+SIeve+支持分析一维、二维XRD数据,进行物相检索分析,同时支持K值法定量分析,值得一提的是,SIeve+可以分析中子衍射数据。PDF-5+2024收录概况无机-有机综合数据库1061,800+套特色衍射数据条目;586,700+PDF卡片内含有原子坐标;442,600+ 套无机物数据623,000+ 套有机物数据956,600+ 套数据含有参比强度I/Ic值,快速进行RIR定量分析;内含数据检索软件;世界上最大、最多样化综合性晶体学数据库;免费赠送物相检索程序 SIeve+,可导入一维、二维粉末XRD数据进行物相检索和定量分析。应用领域PDF-5+2024版数据库,所收录物相的标准衍射卡片涵盖约50多种科学研究领域,如电池材料、热电材料、超导材料、金属材料、陶瓷材料、矿物材料、金属合金、药物、聚合物等。PDF数据库是材料学、物理学、化学、地质学、药物学、生物学、检验检疫、司法鉴定等科学研究及工业生产等领域必备数据库。 检索方式PDF-5+ 2024数据库支持80多种物相搜索方式,如研究领域、数据来源、数据质量、元素周期表、空间群、晶体学参数、化合物名字、衍射数据、材料的物理性质以及参考文献等进行物相搜索,为用户快速准确搜索、鉴定物相提供便利。1. 研究领域、数据来源、数据质量、元素周期表2. 化学式相关检索3. 按类别、官能团检索4. 晶体学参数、空间群检索5. 衍射数据检索6. 参考文献检索7. PDF卡片号检索PDF-5+标准衍射卡片常规物相信息PDF-5+标准衍射卡片,每张卡片可提供超过130种信息,用户可快速方便把握材料整体概况。1. PDF卡片号每张PDF卡片都有属于自己唯一的编号,每张PDF卡片号对应一个物相。PDF卡片号由三组数据、9位数组成,XX-XXX-XXXX,如铁基超导体 KFe2Se2 的PDF卡片号为 00-063-0202,其中00代表数据来源,该卡片来自于ICDD的粉末衍射数据库,063代表收录的第63卷,0202代表该PDF卡片对应的编号。2. 衍射波长PDF-5+中,用户可选择的X射线衍射靶材有Cu、Fe、Mo、Co、Cr、Mn、Ag和用户自定义波长,同时含有中子衍射(固定波长和TOF中子数据)和电子衍射数据等。3. 衍射数据,衍射峰的相对强度、d-I-(hkl)列表PDF卡片中最强峰强度归一化为1000,其他所有衍射强度均为相对衍射强度;三强线对应的晶面间距d值为加粗字体。1) PDF-4卡片中,衍射的强度分为固定狭缝强度(Fixed SlitIntensity),可变狭缝强度(Variable Slit Intensity),积分衍射强度(Integrated);2) 如果相对强度I值后缀有m的话,表示存在其他晶面衍射峰的相对衍射强度与该晶面衍射峰的相对衍射强度相等。以PDF卡片号为00-063-0202 的KFe2Se2化合物为例,PDF卡片信息如下:4. PDF卡片中的物相基本信息PDF 卡片中物相的基本信息,主要包含以下几点:1) PDF卡片的状态(Status),分为 Primary,Alternate和Deleted三种;Primary –通常是表明PDF卡片收录的数据质量最好,且为室温下的衍射数据;Alternate – 某一材料诸多PDF卡片中的一张PDF卡片,并不一定表明该PDF卡片收录的质量差;Deleted – 该PDF 卡片有目前尚未解决的错误,已经被目前的PDF数据库删除的数据。但该卡片仍然可以检索,方便用户参考该数据。一般情况下,标识为“Deleted”的PDF卡片,会有质量更好的PDF卡片代替“Deleted”的PDF卡片。2) PDF卡片的质量标记(Quality Mark),ICDD出版的PDF卡片是世界上唯一对所有收录的数据,进行质量标记的,每张PDF卡片均经过不同级别的编辑进行审查、编辑、标准化。如果同一物相对应有多张PDF卡片时,一般建议选择质量标记等级较高的卡片使用。Quality Mark 中各个质量标记具体的定义可关注该公众号其他专业文章。3) 收集该张卡片时的温度和压强。值得注意的是,在物相鉴定的过程中,一定要选择和实验相符的温度和压强。否则,物相鉴定的结构可能是错误的。4) 该物相的化学式、结构式、原子比、原子重量比、通用的英文名称、矿物名称、IMA编号、CAS编号、收录时间等。5. 收集PDF卡片时所用的实验条件 (Experimental)主要包括X射线波长、滤光片、相机半径、内标、d值、强度等信息。6. 物相的晶体学数据(Physical、Crystal)主要包括晶系、空间群、晶胞参数、晶胞体积、化学式单位数Z,密度、F因子、参比强度RIR值I/Ic、R因子等信息。1) 一般情况下,F因子大于15,则认为该物相的XRD图比较可信。2) 参比强度I/Ic 为待测化合物与标样刚玉重量1:1时,待测化合物与标样刚玉最强峰的积分强度比值。X射线波长影响I/Ic值,大多数收集PDF卡片时,采用的X射线源是Cu Kα1(1.5406 A)。如实验中使用的是其他波长的X射线源,在分析物相的相对含量时,需要特别注意收集该PDF卡片时所用的波长,此时可能该PDF卡片中的I/Ic值不再具有参考价值。如果该PDF卡片对应有结构数据,可以使用JADE standard 或者JADE Pro软件,理论计算不同波长下,该物相的I/Ic的具体值。7. 单晶结构数据 (Structure)主要包括晶体学参数、空间群对称操作、原子坐标、占位信息、温度因子等信息。8. 物相对应的类别 (Classifications)主要包括所属的子领域、矿石分类、晶体结构原型等信息。9. 交叉引用的相似PDF卡片 (Cross-Reference)显示一系列与当前PDF卡片可交叉引用的PDF卡片的基本信息,并标明交叉引用的PDF卡片的状态(Primary, Alternate, or Deleted)或者是交叉引用的PDF卡片的衍射图与当前PDF卡片具有“相关相”,“相关相”是指二者具有相同的空间群和分子式,其化学计量比可能略有变化。10. 参考文献(Reference)主要显示当前PDF卡片所参考的文献信息,不同的PDF卡片参考的文献数量不同。11. 编辑评论(Comments)主要显示当前PDF卡片的评论,该评论来自卡片的贡献者或者ICDD编辑,一般包含样品合成方法、衍射收录条件等基本信息,如果当前PDF卡片的质量较差时,编辑也会注明其原因。很多人在使用PDF卡片中,往往忽略了该项信息。很多情况下,PDF卡片中编辑评论部分,含有该物相的关键信息,这些关键信息往往可以有效帮助用户在物相检索中进行二次判断。PDF-5+/4系列标准衍射卡特色物相信息PDF-5+/4系列卡片中,除了含有传统中PDF-2卡片的所有内容之外,还附加了系列的附加特色功能,包含材料纯相的实验衍射谱、电子/中子衍射谱、二维粉末衍射谱(2D-XRD)、高低温衍射谱、原位高压衍射谱、结构信息、键长键角、选区电子衍射(SAED)、电子背散射衍射谱(EBSD)等信息。1. 温度系列(Temperature Series)PDF-5+/4系列数据库中收录了部分物相的原位的高低温衍射数据,通过不同温度的衍射数据,可以方便的查找材料的热膨胀性能、相变等。以PDF卡片号为00-046-1045 SiO2为例,PDF-4+数据库中收录的温度变化范围从10 K到1813K不等。2. 工具箱(Toolbox)Toolbox功能区域中,用户可根据需求自定义波长,计算该物相的峰位、密勒指数、晶面间距、晶面夹角等信息。3. 物理化学性质文件(Property Sheet)PDF-5+/4系列数据库中,部分PDF卡片(如电池材料、离子导体材料、储氢材料、半导体材料等)包含物理性质文件(Property Sheet),以文档的形式显示该物相的附加信息,如电池材料和离子导体材料包含导电数据等。用户可点击Property Sheet图标,将自动生成一个文档,文档中显示物相的基本物理性质,主要有文字和图表格式,并附有相关的参考文献。以PDF卡片号为00-004-0545 单晶Ge为例,其Property Sheet中附加的物相的基本物理性质的文档如下图所示:4. 2D或3D结构示意图对于有机物而言,通常PDF卡片中显示的为二维(2D)结构示意图;对于无机物而言,通常PDF卡片中显示的为三维(3D)结构示意图且为动态示意图;对于一部分物相,PDF卡片中同时收录了2D和3D的结构示意图。通常在2D结构示意图中,C原子和H原子以省略的形式表示,但当C原子和H原子存在歧义时,PDF卡片将在2D结构中将其特别标注出来。用户可点击2D/3D图标,将显示物相的2D或3D的结构示意图。以PDF卡片号为02-094-1952的C17H12N2O4为例,点击2D/3D图标,其2D/3D结构示意图如下所示,其中3D结构为动态示意图,本实例仅仅显示了其中一个静态示意图的截面:5. 键长键角信息(Bonds)PDF-5+/4系列数据库中,提供物相详细的键长、键角、原子坐标、对称性、晶面间距、原子间距、原子分布等信息,可应用于电子对分布函数数据(PDF)的分析。6. 选区电子衍射(SAED)以PDF卡片号为00-065-0110 Ag3S(NO3)的选区电子衍射图(SAED)为例7. 电子背散射衍射(EBSD)8. 二维德拜环PDF-4系列数据库中提供物相的二维(2D)衍射环(Ring)谱图,该谱图为模拟图,假定探测器位于入射光束透射几何的居中位置,待测物相为随机取向的微晶颗粒。9. 模拟XRD图及纯相的XRD实验图PDF-4系列数据库中提供物相的模拟衍射图(Simulated Profile)及纯相实验衍射谱(Raw DiffractionData)。以PDF卡片号为 00-063-0202铁基超导体 KFe2Se2 为例:PDF-5+ 2024数据库亦可直接导入其他常用的搜索软件中,如JADE、EVA、 Highscore等,实现真正无缝衔接,为科研提供不可缺少的帮助。
  • 常州大学170.00万元采购EBSD系统
    基本信息 关键内容: EBSD系统 开标时间: null 采购金额: 170.00万元 采购单位: 常州大学 采购联系人: 彭老师 采购联系方式: 立即查看 招标代理机构: 永明项目管理有限公司 代理联系人: 王工 代理联系方式: 立即查看 详细信息 电子背散射衍射与原位拉伸综合测试平台采购公告 江苏省-常州市-钟楼区 状态:公告 更新时间: 2021-07-20 招标文件: 附件1 电子背散射衍射与原位拉伸综合测试平台采购公告 发布日期:2021-07-20 竞争性磋商公告 项目概况 电子背散射衍射与原位拉伸综合测试平台采购项目的潜在供应商应在江苏省常州市钟楼区关河西路83号中凯大厦8楼获取采购文件,并于2021年7月30日14点00分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:永招采竞磋(2021)012号 项目名称:电子背散射衍射与原位拉伸综合测试平台采购项目 采购方式:□竞争性谈判?竞争性磋商 □询价 预算金额:170万元 最高限价:170万元,供应商的报价不得高于最高限价,否则作为无效投标处理。 采购需求:实验设备采购,包括相应产品供货前的准备(包括现场踏勘、技术核对等)、产品设计、制造、采购、运输、装卸、安装、调试、外贸代理费、技术指导培训、检验、质保期及维保服务等全部内容。 合同履行期限:合同签订后120天。 本项目不接受联合体。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求: (1)未被“信用中国”网站(www.creditchina.gov.cn)或“中国政府采购网”网站(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重失信行为记录名单; (2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商(包含法定代表人为同一个人的两个及两个以上法人,母公司、全资子公司及其控股公司),不得参加同一合同项下的政府采购活动。 (3)采购人的其他特定资格要求: 本项目接受进口产品投标,供应商所投设备为进口产品的,应提供以下之一的证明材料: A.供应商为所投进口设备的授权经销(代理)商,必须提供制造(生产)商授权投标人的授权书或上级经销(代理)商授权投标人的授权书,并提供逐级经销(代理)商的证书复印件。 B.供应商为本项目授权供应商,必须提供制造(生产)商授权投标人的授权书或授权经销(代理)商授权投标人的授权书,并提供逐级经销(代理)商的证书复印件。 三、获取采购文件 时间: 2021年7月20日至2021年7月26日,每天上午 09:00至 11:30,下午 13:30至 17:00(北京时间,法定节假日除外 ) 地点:江苏省常州市钟楼区关河西路83号中凯大厦8楼 方式:(1) 线上领购:投标人在规定的时间内将报名材料扫描件发至本公司邮箱“yongmingcz@163.com”并按要求交纳招标文件费用后,招标文件以邮件形式发送至投标人邮箱。 (2)现场报名:江苏省常州市钟楼区关河西路83号中凯大厦8楼812室。 报名材料: 1)《报名申请书》一份,详见网页底端附件; 2)营业执照复印件加盖公章; 注:投标人报名时需提供以上报名资料两套(复印件加盖公章),资料不全不予领取招标文件。 售价:500元/份 招标文件售后一概不退。投标人递交的投标文件概不退还。一经报名,投标人不得更改单位名称。 四、响应文件提交 截止时间:2021年7月30日14点00分(北京时间) 地点:江苏省常州市钟楼区关河西路83号中凯大厦8楼 五、开启 时间:2021年7月30日14点00分(北京时间) 地点:江苏省常州市钟楼区关河西路83号中凯大厦8楼 六、公告期限 自本公告发布之日起5工作日。 七、其他补充事宜 1.标前答疑 投标人对公开招标文件如有疑问,请将疑问于2021年7月27日中午11点00分(北京时间)前以书面形式提交或传真至永明项目管理有限公司。邮箱:yongmingcz@163.com。 2.投标保证金 投标保证金数额:本项目免收投标保证金 3.疫情防控措施 (1)在采购活动前,根据参与人员规模研究制定活动预案,科学安排座位间距,缩短工作时间,设置场内外提示牌,对参加人员进行体温检测、扫码核验、信息登记等工作。会议室每隔两小时通一次风,使用完毕后及时消毒。 (2)对于参与开评标活动的投标人、采购人授权代表,应如实填报《疫情期间参与政府采购活动开评标人员健康信息登记表》并加盖单位公章。在进入公司时,请凭《疫情期间参与政府采购活动开评标人员健康信息登记表》和本人身份证原件方能到指定开评标场所。 (3)对于参与评标活动的评审专家,在进入公司时,请主动出示【江苏政府采购】当日参与项目评审项目手机短信进入指定场所。进入评标场所前,须如实填写《疫情期间参与政府采购活动开评标人员健康信息登记表》及《承诺书》。对有疫情接触史及身体发烧等症状的评标专家不得应答专家随机抽取短信而参加评标活动。 (4)适当限制参与开评标活动人数。疫情期间,为减少人员聚集,除采购人授权代表和投标人授权代表外,其他人员原则上不安排进入开评标场所。特殊情况应事先与公司人员联系。 (5)参与采购活动的当事人应严格按照疫情期间管理要求,服从佩戴口罩、测量体温、健康信息登记等各项疫情防控规定。进场后请保持安全距离,分散等候,不得扎堆聚集,事完即走。自觉服从引导人员的指挥和管理。 (6)其余事项严格按照苏财购【2020】13号文执行。 (7)因防控工作需要,给采购当事人带来诸多不便,还望多多理解和予以配合。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称: 常州大学 地 址: 常州市武进区湖塘镇??湖中路21号 联系方式: 彭老师 电话:15295015631 2.采购代理机构信息 名 称: 永明项目管理有限公司 地 址:江苏省常州市钟楼区关河西路83号中凯大厦8楼 联系方式:88089283 3.项目联系方式 项目联系人:王工 电 话:13912342926 附件: × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:EBSD系统 开标时间:null 预算金额:170.00万元 采购单位:常州大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:永明项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 电子背散射衍射与原位拉伸综合测试平台采购公告 江苏省-常州市-钟楼区 状态:公告 更新时间: 2021-07-20 招标文件: 附件1 电子背散射衍射与原位拉伸综合测试平台采购公告 发布日期:2021-07-20 竞争性磋商公告 项目概况 电子背散射衍射与原位拉伸综合测试平台采购项目的潜在供应商应在江苏省常州市钟楼区关河西路83号中凯大厦8楼获取采购文件,并于2021年7月30日14点00分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:永招采竞磋(2021)012号 项目名称:电子背散射衍射与原位拉伸综合测试平台采购项目 采购方式:□竞争性谈判?竞争性磋商 □询价 预算金额:170万元 最高限价:170万元,供应商的报价不得高于最高限价,否则作为无效投标处理。 采购需求:实验设备采购,包括相应产品供货前的准备(包括现场踏勘、技术核对等)、产品设计、制造、采购、运输、装卸、安装、调试、外贸代理费、技术指导培训、检验、质保期及维保服务等全部内容。 合同履行期限:合同签订后120天。 本项目不接受联合体。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求: (1)未被“信用中国”网站(www.creditchina.gov.cn)或“中国政府采购网”网站(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重失信行为记录名单; (2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商(包含法定代表人为同一个人的两个及两个以上法人,母公司、全资子公司及其控股公司),不得参加同一合同项下的政府采购活动。 (3)采购人的其他特定资格要求: 本项目接受进口产品投标,供应商所投设备为进口产品的,应提供以下之一的证明材料: A.供应商为所投进口设备的授权经销(代理)商,必须提供制造(生产)商授权投标人的授权书或上级经销(代理)商授权投标人的授权书,并提供逐级经销(代理)商的证书复印件。 B.供应商为本项目授权供应商,必须提供制造(生产)商授权投标人的授权书或授权经销(代理)商授权投标人的授权书,并提供逐级经销(代理)商的证书复印件。 三、获取采购文件 时间: 2021年7月20日至2021年7月26日,每天上午 09:00至 11:30,下午 13:30至 17:00(北京时间,法定节假日除外 ) 地点:江苏省常州市钟楼区关河西路83号中凯大厦8楼 方式:(1) 线上领购:投标人在规定的时间内将报名材料扫描件发至本公司邮箱“yongmingcz@163.com”并按要求交纳招标文件费用后,招标文件以邮件形式发送至投标人邮箱。 (2)现场报名:江苏省常州市钟楼区关河西路83号中凯大厦8楼812室。 报名材料: 1)《报名申请书》一份,详见网页底端附件; 2)营业执照复印件加盖公章; 注:投标人报名时需提供以上报名资料两套(复印件加盖公章),资料不全不予领取招标文件。 售价:500元/份 招标文件售后一概不退。投标人递交的投标文件概不退还。一经报名,投标人不得更改单位名称。 四、响应文件提交 截止时间:2021年7月30日14点00分(北京时间) 地点:江苏省常州市钟楼区关河西路83号中凯大厦8楼 五、开启 时间:2021年7月30日14点00分(北京时间) 地点:江苏省常州市钟楼区关河西路83号中凯大厦8楼 六、公告期限 自本公告发布之日起5工作日。 七、其他补充事宜 1.标前答疑 投标人对公开招标文件如有疑问,请将疑问于2021年7月27日中午11点00分(北京时间)前以书面形式提交或传真至永明项目管理有限公司。邮箱:yongmingcz@163.com。 2.投标保证金 投标保证金数额:本项目免收投标保证金 3.疫情防控措施 (1)在采购活动前,根据参与人员规模研究制定活动预案,科学安排座位间距,缩短工作时间,设置场内外提示牌,对参加人员进行体温检测、扫码核验、信息登记等工作。会议室每隔两小时通一次风,使用完毕后及时消毒。 (2)对于参与开评标活动的投标人、采购人授权代表,应如实填报《疫情期间参与政府采购活动开评标人员健康信息登记表》并加盖单位公章。在进入公司时,请凭《疫情期间参与政府采购活动开评标人员健康信息登记表》和本人身份证原件方能到指定开评标场所。 (3)对于参与评标活动的评审专家,在进入公司时,请主动出示【江苏政府采购】当日参与项目评审项目手机短信进入指定场所。进入评标场所前,须如实填写《疫情期间参与政府采购活动开评标人员健康信息登记表》及《承诺书》。对有疫情接触史及身体发烧等症状的评标专家不得应答专家随机抽取短信而参加评标活动。 (4)适当限制参与开评标活动人数。疫情期间,为减少人员聚集,除采购人授权代表和投标人授权代表外,其他人员原则上不安排进入开评标场所。特殊情况应事先与公司人员联系。 (5)参与采购活动的当事人应严格按照疫情期间管理要求,服从佩戴口罩、测量体温、健康信息登记等各项疫情防控规定。进场后请保持安全距离,分散等候,不得扎堆聚集,事完即走。自觉服从引导人员的指挥和管理。 (6)其余事项严格按照苏财购【2020】13号文执行。 (7)因防控工作需要,给采购当事人带来诸多不便,还望多多理解和予以配合。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称: 常州大学 地 址: 常州市武进区湖塘镇??湖中路21号 联系方式: 彭老师 电话:15295015631 2.采购代理机构信息 名 称: 永明项目管理有限公司 地 址:江苏省常州市钟楼区关河西路83号中凯大厦8楼 联系方式:88089283 3.项目联系方式 项目联系人:王工 电 话:13912342926 附件:
  • 直播预告 | 基于SEM/EBSD的前沿应用分享(本期特邀大咖点睛)
    预告Preview11月30日、12月1日两天上午,第三期显微分析应用报告又又又来啦!本期主题围绕EBSD的前沿应用及扫描电镜如何助力EBSD分析。EBSD是原始电子束作用于晶体样品,产生的背散射电子和试样满足布拉格衍射条件,从而形成菊池花样,然后利用菊池花样对试样的取向、结构等基本微观性能进行分析的技术。EBSD技术已经被广泛的应用于金属材料、无机材料、地质矿物、半导体、锂电新能源等各个热门研究领域,已经成为扫描电镜中非常普遍且重要的测试手段。在今年的TESCAN中国用户论文集(三十周年特刊)里,从客户的反馈中来看,我们不但发现了大量的常规EBSD表征,同时也发现了很多更前沿的EBSD研究领域和特殊方法。为了能让更多的的客户了解和用好EBSD技术,我们特意邀请了部分用户和专家来分享各种前沿应用并做技术交流。当然,好的EBSD成果也得益于扫描电镜这个载体,TESCAN的扫描电镜针对EBSD的分析也有很多特殊的设计。我们的应用人员也会为大家分享TESCAN电镜在EBSD领域的优势和一些使用技巧。精彩看点《电子背散射衍射技术及其应用》一书作者:杨平教授,受邀前来做EBSD技术应用交流。EBSD的前沿应用分享,比如:更高空间分辨的TKD方法配合各种功能台(如加热拉伸)的原位EBSD表征摒弃传统商业EBSD标定方法,转而自己开发新型的HR-EBSD算法等。超大塑性变形金属的取向表征技术与应用直播时间11月30日9:00-12:3012月1日9:00-12:30讲师介绍杨平 教授北京科技大学材料科学与工程学院北京科技大学终身教授,鼎新学者,北京市教学名师。研究方向为金属材料形变、再结晶、相变过程的晶体学行为及织构控制技术,擅长使用电子背散射衍射(EBSD)技术。发表论文420余篇,获发明专利4项,获省部级科研成果一等奖、三等奖各1项,编著《电子背散射衍射技术及其应用》、《材料织构分析原理与检测技术》、《电工钢的材料学原理》等。获北京市教学成果一等奖1项和二等奖2项。另,在每一期预告里,还会介绍一位神秘嘉宾,先睹为快 →11月30日,9点与您不见不散互动福利1. 转发此图文至微信群或朋友圈2. 加客服微信:(备注:互动福利)3. 截图给客服4. 审核通过,可加入抽奖群5. 抽奖时间:2021年11月29号17点
  • JASIS 2018新品发布之牛津仪器:EBSD
    p style="text-align: left "  strong仪器信息网讯/strong 2018年9月5日,日本最大规模的分析仪器展JASIS 2018在东京幕张国际展览中心盛大开幕,吸引来自全球各地的万余名观众参观出席。br//pp  作为世界知名的科学仪器跨国集团公司,牛津仪器在展会期间带来其电子背散射衍射仪新品——Symmetry EBSD。/pp style="text-align: center "img title="牛津仪器电子背散射衍射仪.jpg" style="width: 400px height: 267px " alt="牛津仪器电子背散射衍射仪.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/9b02ff90-7ab9-4c96-aa63-6ef6eba760c5.jpg" height="267" border="0" vspace="0" width="400"//pp style="text-align: center "strong/strongstrongUltim Max能谱仪(近端)与Symmetry EBSD电子背散射衍射仪(远端)/strong/pp style="text-align: left " 牛津仪器于去年推出了结合了AZtecLive软件与Ultim Max能谱仪的实时元素成像系统和Symmetry EBSD电子背散射衍射仪。/pp  Ultim能谱仪包括Ultim Max(100及170)和Ultim Extreme。该产品主要特点是探测器面积更大,灵敏度更高。同时处理器的工作效率大大提升,输出计数率极高,且后台算法的升级,使得在极高输出计数率下,可获得精准定性/定量结果。/pp  Symmetry是一种多功能的新一代EBSD探测器,速度达到3000点/秒,是前一代EBSD探测器的2倍,其高灵敏度在低束流(100pA)、低电压( 5kV)条件下仍能快速分析,最高分辨率能实现1244*1024的EBSD花样。/pp style="text-align: left "  Symmetry的优势包括:百万像素荧光屏分辨率 低电压操作 无缝集成EDS 灵活性 自动校准 高速时的高分辨花样等。/ppbr//p
  • 布鲁克推出动态EBSD图像模拟软件包
    2014年8月4日,在2014显微镜及显微分析年会(M&M 2014)上,布鲁克推出了ESPRIT DynamicS软件包,一个高度复杂和强大的软件工具,用于获取更真实的高分辨率电子背散射衍射(EBSD)模拟图像。  EBSD依赖于利用扫描电镜进行样品显微分析得到的菊池电子衍射花样。ESPRIT DynamicS是第一款利用电子衍射的动力学理论计算菊池图像的商用软件。电子衍射的动力学理论将图案生成的所有物理效应和参数考虑在内,例如晶格参数、电子束的能量,晶体结构的对称性和化学成分等。基于这款革命性的软件,充分利用计算能力,可在令人难以置信的短时间内提供具有丰富细节的高分辨率模拟图像。  ESPRIT DynamicS适用于所有品牌的EBSD。轻松模拟菊池图案是它最基本的功能,它还可以进行精确的晶体取向分析和准确的物相鉴定,同时也是优化系统校准的非常有用的工具,以及获取其他方法无法得到的模拟细节,如高阶劳厄区(HOLZ)环或非中心对称晶体图案。  ESPRIT DynamicS支持以各种格式定义的晶相的输入,如ESPRIT XML相列表,晶体学信息文件(CIF),或者PowderCell文件(CEL)。任意的电子背散射衍射图案可以通用图形格式导入。模拟结果以主文件的形式进行存储,包括特定晶相的完整衍射数据,使得后续的针对模拟数据进行投射、旋转操作变得简便。(编译:秦丽娟)
  • 嵊州市浙江工业大学创新研究院165.00万元采购EBSD系统
    详细信息 嵊州市浙江工业大学创新研究院能谱仪和电子背散射衍射仪采购项目招标公告(非政府采购项目) 浙江省-绍兴市-嵊州市 状态:公告 更新时间: 2023-07-10 招标文件: 附件1 一、 招标项目编号:SZLB-202365WLM二、采购组织类型:分散采购-分散委托中介三、公告期限:5个工作日四、招标项目概况 标项 标项名称 数量 单位 预算金额(元) 简要规格描述 备注 1 嵊州市浙江工业大学创新研究院能谱仪和电子背散射衍射仪采购项目 1 项 1650000.00 详见采购需求 允许进口 五、投标供应商资格要求:1.符合《中华人民共和国政府采购法》第二十二条供应商应当具备的条件或浙财采监【2013】24号《关于规范政府采购供应商资格设定及资格审查的通知》第六条规定;2.未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单;3.特定资格要求:无;4.不允许联合体投标;六、招标文件的获取时间、地址、售价:1.获取时间:2023年7月10日至2023年7月17日止(工作时间上午09:00-11:30,下午14:00-16:30,节假日除外)2.获取地址:嵊州市三江街道迪贝路101号2楼3. 获取采购文件方式:现场获取(资料费500元/套)4. 获取招标文件时必须提供以下材料:(1)提供符合要求的营业执照(复印件加盖单位公章、原件备查);(2)办理报名人的有效身份证件及法定代表人授权书;(3)供应商报名登记表(格式见附件)。七、投标截止时间:2023年8月1日09:30:00八、投标地址:嵊州市三江街道迪贝路101号2楼九、开标时间:2023年8月1日09:30:00十、开标地址:嵊州市三江街道迪贝路101号2楼十一、投标保证金:本项目不收取投标保证金十二、其他事项:1.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购文件公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,以书面形式向采购人和采购代理机构提出质疑。2.针对同一采购程序环节的质疑,供应商应在法定期限内一次性提出(即针对同一采购程序环节的质疑采购人或采购代理机构仅受理一次),逾期提出或针对同一采购程序环节多次提出的质疑将不予受理、答复。3.书面质疑受理地点:嵊州市力标招标代理有限公司(嵊州市三江街道迪贝路101号2楼)徐先生;13606578487。十三、联系方式1.采购代理机构名称:嵊州市力标招标代理有限公司联系人:王黎明联系电话:13777339331座机电话:0575-81389228地址:嵊州市三江街道迪贝路101号2楼2.采购人名称:嵊州市浙江工业大学创新研究院联系人:宋老师联系电话:0575-83139787地址:嵊州市经济开发区科创中心4楼附件信息: 202365报名登记表.doc0.1 KB × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:EBSD系统 开标时间:2023-08-01 09:30 预算金额:165.00万元 采购单位:嵊州市浙江工业大学创新研究院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:嵊州市力标招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 嵊州市浙江工业大学创新研究院能谱仪和电子背散射衍射仪采购项目招标公告(非政府采购项目) 浙江省-绍兴市-嵊州市 状态:公告 更新时间: 2023-07-10 招标文件: 附件1 一、 招标项目编号:SZLB-202365WLM二、采购组织类型:分散采购-分散委托中介三、公告期限:5个工作日四、招标项目概况 标项 标项名称 数量 单位 预算金额(元) 简要规格描述 备注 1 嵊州市浙江工业大学创新研究院能谱仪和电子背散射衍射仪采购项目 1 项 1650000.00 详见采购需求 允许进口 五、投标供应商资格要求:1.符合《中华人民共和国政府采购法》第二十二条供应商应当具备的条件或浙财采监【2013】24号《关于规范政府采购供应商资格设定及资格审查的通知》第六条规定;2.未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单;3.特定资格要求:无;4.不允许联合体投标;六、招标文件的获取时间、地址、售价:1.获取时间:2023年7月10日至2023年7月17日止(工作时间上午09:00-11:30,下午14:00-16:30,节假日除外)2.获取地址:嵊州市三江街道迪贝路101号2楼3. 获取采购文件方式:现场获取(资料费500元/套)4. 获取招标文件时必须提供以下材料:(1)提供符合要求的营业执照(复印件加盖单位公章、原件备查);(2)办理报名人的有效身份证件及法定代表人授权书;(3)供应商报名登记表(格式见附件)。七、投标截止时间:2023年8月1日09:30:00八、投标地址:嵊州市三江街道迪贝路101号2楼九、开标时间:2023年8月1日09:30:00十、开标地址:嵊州市三江街道迪贝路101号2楼十一、投标保证金:本项目不收取投标保证金十二、其他事项:1.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购文件公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,以书面形式向采购人和采购代理机构提出质疑。2.针对同一采购程序环节的质疑,供应商应在法定期限内一次性提出(即针对同一采购程序环节的质疑采购人或采购代理机构仅受理一次),逾期提出或针对同一采购程序环节多次提出的质疑将不予受理、答复。3.书面质疑受理地点:嵊州市力标招标代理有限公司(嵊州市三江街道迪贝路101号2楼)徐先生;13606578487。十三、联系方式1.采购代理机构名称:嵊州市力标招标代理有限公司联系人:王黎明联系电话:13777339331座机电话:0575-81389228地址:嵊州市三江街道迪贝路101号2楼2.采购人名称:嵊州市浙江工业大学创新研究院联系人:宋老师联系电话:0575-83139787地址:嵊州市经济开发区科创中心4楼附件信息: 202365报名登记表.doc0.1 KB
  • 华北理工大学200.00万元采购X射线散射仪,X射线衍射仪
    详细信息 华北理工大学碳排放物测试分析平台项目(贴息贷款)-进口设备 河北省-唐山市-曹妃甸区 状态:公告 更新时间: 2022-12-13 华北理工大学碳排放物测试分析平台项目(贴息贷款)-进口设备 发布时间: 2022-12-13 一、项目基本情况 项目编号: ZYZB-2022-062 项目名称: 华北理工大学碳排放物测试分析平台项目(贴息贷款) 采购方式: 竞争性磋商 预算金额: 2000000.00 最高限价: 2000000 采购需求: 采购小角X射线衍射仪。#detail# 合同履行期限: 自合同签订后5个月内。 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 所提供产品为进口产品时,须提供所投产品制造商或制造商在国内的总代理同意其在本次采购活动中提供采购货物的专项授权(国内总代理授权的,还应出具制造商对国内总代理授权书) 三、获取招标文件 时间: 2022年12月14日至 2022年12月20日, 9:00-12:00-12:01-17:00(北京时间,法定节假日除外) 地点: 请登录河北省公共资源交易服务平台下载磋商文件,并及时查看有无澄清和修改。报名不成功或未获取到完整资料的,后果自负。竞争性磋商文件等资料发布后,即视为已送达所有潜在供应商。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年12月24日11点00分(北京时间) 地点: 网上磋商,供应商应及时登录河北省公共资源交易服务平台在线参与磋商,逾期送达的或者未送达指定地点的响应文件,采购人不予受理。 四、响应文件提交 截止时间: 2022年12月24日11点00分 五、开启 时间: 2022年12月24日11点00分 地点: 网上磋商,供应商应及时登录河北省公共资源交易服务平台在线参与磋商,逾期送达的或者未送达指定地点的响应文件,采购人不予受理。 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1.凡有意参加本项目的供应商须按 “河北省公共资源交易中心关于采购代理机构及供应商(含政府采购供应商)进行登记注册的通知”及时在河北省公共资源交易中心进行注册并验证。因供应商自身的原因未能及时完成注册并验证通过的,将会导致报名不成功,其后果自行承担。 2.响应文件递交办法:1)本次磋商为电子招投标,响应文件采用数据电子文件,供应商可通过河北省公共资源交易服务平台在线参与磋商。2)供应商应在响应截止时间前通过“河北省公共资源全流程电子交易系统”上传加密的电子响应文件。3)在线递交电子响应文件前,供应商应当使用投标客户端及CA为响应文件加密(编制响应文件需使用河北CA,未办理CA的供应商/供应商,需进行企业CA注册,具体事宜可联系0311-66635531)。 3.本公告发布媒体:中国河北政府采购网、河北省公共资源交易服务平台、华北理工大学官网 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 华北理工大学 地址: 唐山市曹妃甸区渤海大道 联系方式: 王进华 0315-8805196 2.采购代理机构信息 名 称: 河北卓越工程项目管理有限公司 地 址: 石家庄高新区天山大街266号004号楼401、402、403、407 联系方式: 彭俊倩 0311-85096538 3.项目联系方式 项目联系人: 彭俊倩 电 话: 0311-85096538 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:X射线散射仪,X射线衍射仪 开标时间:2022-12-24 11:00 预算金额:200.00万元 采购单位:华北理工大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河北卓越工程项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华北理工大学碳排放物测试分析平台项目(贴息贷款)-进口设备 河北省-唐山市-曹妃甸区 状态:公告 更新时间: 2022-12-13 华北理工大学碳排放物测试分析平台项目(贴息贷款)-进口设备 发布时间: 2022-12-13 一、项目基本情况 项目编号: ZYZB-2022-062 项目名称: 华北理工大学碳排放物测试分析平台项目(贴息贷款) 采购方式: 竞争性磋商 预算金额: 2000000.00 最高限价: 2000000 采购需求: 采购小角X射线衍射仪。#detail# 合同履行期限: 自合同签订后5个月内。 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 所提供产品为进口产品时,须提供所投产品制造商或制造商在国内的总代理同意其在本次采购活动中提供采购货物的专项授权(国内总代理授权的,还应出具制造商对国内总代理授权书) 三、获取招标文件 时间: 2022年12月14日至 2022年12月20日, 9:00-12:00-12:01-17:00(北京时间,法定节假日除外) 地点: 请登录河北省公共资源交易服务平台下载磋商文件,并及时查看有无澄清和修改。报名不成功或未获取到完整资料的,后果自负。竞争性磋商文件等资料发布后,即视为已送达所有潜在供应商。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年12月24日11点00分(北京时间) 地点: 网上磋商,供应商应及时登录河北省公共资源交易服务平台在线参与磋商,逾期送达的或者未送达指定地点的响应文件,采购人不予受理。 四、响应文件提交 截止时间: 2022年12月24日11点00分 五、开启 时间: 2022年12月24日11点00分 地点: 网上磋商,供应商应及时登录河北省公共资源交易服务平台在线参与磋商,逾期送达的或者未送达指定地点的响应文件,采购人不予受理。 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1.凡有意参加本项目的供应商须按 “河北省公共资源交易中心关于采购代理机构及供应商(含政府采购供应商)进行登记注册的通知”及时在河北省公共资源交易中心进行注册并验证。因供应商自身的原因未能及时完成注册并验证通过的,将会导致报名不成功,其后果自行承担。 2.响应文件递交办法:1)本次磋商为电子招投标,响应文件采用数据电子文件,供应商可通过河北省公共资源交易服务平台在线参与磋商。2)供应商应在响应截止时间前通过“河北省公共资源全流程电子交易系统”上传加密的电子响应文件。3)在线递交电子响应文件前,供应商应当使用投标客户端及CA为响应文件加密(编制响应文件需使用河北CA,未办理CA的供应商/供应商,需进行企业CA注册,具体事宜可联系0311-66635531)。 3.本公告发布媒体:中国河北政府采购网、河北省公共资源交易服务平台、华北理工大学官网 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 华北理工大学 地址: 唐山市曹妃甸区渤海大道 联系方式: 王进华 0315-8805196 2.采购代理机构信息 名 称: 河北卓越工程项目管理有限公司 地 址: 石家庄高新区天山大街266号004号楼401、402、403、407 联系方式: 彭俊倩 0311-85096538 3.项目联系方式 项目联系人: 彭俊倩 电 话: 0311-85096538
  • 650万!南京大学场发射扫描电子显微镜系统采购项目
    项目编号:ZH2022020072、JG066022982409项目名称:南京大学场发射扫描电子显微镜系统预算金额:650.0000000 万元(人民币)最高限价(如有):650.0000000 万元(人民币)采购需求:序号名称数量1场发射扫描电子显微镜主机1 套2镜筒内二次电子探测器1 套3样品舱内二次电子探测器1 套4样品室内多象限环形背散射探测器1 套5彩色CCD 相机1 套6电流监视器1 套7镜筒内正光轴上的能量选择背散射探测器或同样功能的探测器1 套8能量过滤系统,调节范围优于 0~1500V1 套9多功能扫描透射探测器1 套10可变压力(VP)成像系统1 套11超高分辨可变压力装置1 套12可变压力下样品室内环形多象限环形背散射探测器1 套13可变压力二次电子和 CL探测器1 套14等离子清洗系统1 套15样品交换仓1 套16冷却循环水1 套17原装空气压缩机1 套18高分辨能谱1 套19矿物分析系统1 套20EBSD1 套21光学显微镜1 套22光电关联软硬件1 套23大面积图像自动拼接功能1 套具体需求详见招标文件。合同履行期限:合同签订生效或免税办好并收到外贸公司通知后,7个月内全部货物、材料全部运抵买方目的地(如CIP报价为南京禄口机场),并安装、调试结束,验收合格,交付采购人使用。本项目( 不接受 )联合体投标。
  • 912万!中国海洋大学电感耦合等离子体质谱仪、原位X射线衍射仪器等设备采购项目
    一、项目基本情况1.项目编号:SDSHZB2023-200项目名称:中国海洋大学电子背散射衍射仪、电感耦合等离子体质谱仪、原位X射线衍射仪器等设备采购项目预算金额:600.0000000 万元(人民币)采购需求:本项目分为3个包,预算总金额为600万元,其中:A1包:原位X射线衍射仪器等设备(接受进口产品),预算金额:330万元;A2包:电子背散射衍射仪(接受进口产品),预算金额:120万元;A3包:电感耦合等离子体质谱仪(接受进口产品),预算金额:150万元。具体参数详见附件。合同履行期限:详见附件。本项目( 不接受 )联合体投标。2.项目编号:HYHAQD2023-0269项目名称:中国海洋大学机金相显微镜、激光切割机、模型制作平台等设备采购项目预算金额:312.5000000 万元(人民币)最高限价(如有):312.5000000 万元(人民币)采购需求:预算金额及最高限价:312.50万元,其中:第一包:137.80万元,第二包:72.10万元,第三包:81.80万元,第四包:20.80万元。简要技术需求详见招标公告附件。合同履行期限:合同签订后开始履行,至项目完成(质保期满)为止。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年06月07日 至 2023年06月13日,每天上午8:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:青岛市市北区敦化路138号甲西王大厦24楼23A01房间或邮件报名方式:以下方式二选一:(1)现场报名:须携带加盖单位公章的营业执照副本复印件及现金,按照上述时间、地点获取招标文件。(2)邮件报名:有意参加本次采购活动的投标人填写项目名称、项目编号、包号、公司名称、联系人、联系电话、邮箱、营业执照扫描件及标书费汇款底单发送至shzbqdb@163.com,邮件名称命名为:中国海洋大学电子背散射衍射仪、电感耦合等离子体质谱仪、原位X射线衍射仪器等设备采购项目-报名-“投标单位名称”。开户银行:兴业银行青岛市北支行,开户名:山东盛和招标代理有限公司,银行账号:522130100100053768,提交标书费须从投标人基本账户或一般账户转出,电汇时须注明2023-200-包号、资金用途注明标书费。未按规定报名的投标人其报名无效,本项目实行资格后审,获取招标文件成功不代表资格后审通过,招标文件售后不退。售价:¥300.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国海洋大学     地址:青岛市崂山区松岭路238号        联系方式:崔老师0532-66781979      2.采购代理机构信息名 称:山东盛和招标代理有限公司            地 址:青岛市市北区敦化路138号甲西王大厦24楼23A01房间            联系方式:孙萌、肖颖梦0532-67737979            3.项目联系方式项目联系人:孙萌、肖颖梦电 话:  0532-67737979
  • 中国地质科学院矿产资源研究所450.00万元采购EBSD系统,空气压缩机,扫描电镜
    详细信息 中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目公开招标公告 北京市-西城区 状态:公告 更新时间: 2022-05-16 中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目公开招标公告 2022年05月16日 15:55 公告信息: 采购项目名称 中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目 品目 货物/通用设备/仪器仪表/其他仪器仪表 采购单位 中国地质科学院矿产资源研究所 行政区域 北京市 公告时间 2022年05月16日 15:55 获取招标文件时间 2022年05月16日至2022年05月23日每日上午:9:00 至 11:00 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 中国通用招标网http://www.china-tender.com.cn 开标时间 2022年06月07日 14:00 开标地点 北京市丰台区西三环南路14号院首科大厦A座4层405号 预算金额 ¥450.000000万元(人民币) 联系人及联系方式: 项目联系人 朱强 项目联系电话 010-63348624(项目咨询),400-680-8126(网站客服) 采购单位 中国地质科学院矿产资源研究所 采购单位地址 北京阜外百万庄大街26号 采购单位联系方式 肖晔010-68999523 代理机构名称 中技国际招标有限公司 代理机构地址 北京市丰台区西三环中路90号通用技术大厦 代理机构联系方式 朱强010-63348624 项目概况 中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目 招标项目的潜在投标人应在中国通用招标网http://www.china-tender.com.cn获取招标文件,并于2022年06月07日 14点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0701-224101190083 项目名称:中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目 预算金额:450.0000000 万元(人民币) 最高限价(如有):450.0000000 万元(人民币) 采购需求: 标的名称:参数自动定量分析仪 数量:1台 简要技术需求:本仪器设备包括场发射扫描电镜主机、空气压缩机、冷却水循环系统、二次电子探测器、背散射电子探测器、红外CCD样品室观察系统、电制冷能谱仪EDS、电子背散射衍射EBSD、阴极荧光等模块,附属设备包括镀膜仪、光电联用显微镜系统等。 合同履行期限:合同签订后6个月内交货 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目为非专门面向中小企业采购的项目; 3.本项目的特定资格要求:1)投标人不得为“信用中国”网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不得为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(处罚决定规定的时间和地域范围内);2)投标人若为进口产品经销商,须提供投标产品的制造商授权,也可提供该产品总代理或独家代理出具的授权,但应同时提供原厂商对该总代理或独家代理出具的授权文件;3)投标人应购买本项目招标文件。 三、获取招标文件 时间:2022年05月16日 至 2022年05月23日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外) 地点:中国通用招标网http://www.china-tender.com.cn 方式:网上获取 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年06月07日 14点00分(北京时间) 开标时间:2022年06月07日 14点00分(北京时间) 地点:北京市丰台区西三环南路14号院首科大厦A座4层405号 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 本项目适用的政府采购政策: 《节能产品政府采购实施意见》(财库〔2004〕185号); 《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号); 《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号); 《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号); 《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国地质科学院矿产资源研究所 地址:北京阜外百万庄大街26号 联系方式:肖晔010-68999523 2.采购代理机构信息 名 称:中技国际招标有限公司 地 址:北京市丰台区西三环中路90号通用技术大厦 联系方式:朱强010-63348624 3.项目联系方式 项目联系人:朱强 电 话: 010-63348624(项目咨询),400-680-8126(网站客服) × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:EBSD系统,空气压缩机,扫描电镜 开标时间:2022-06-07 14:00 预算金额:450.00万元 采购单位:中国地质科学院矿产资源研究所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中技国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目公开招标公告 北京市-西城区 状态:公告 更新时间: 2022-05-16 中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目公开招标公告 2022年05月16日 15:55 公告信息: 采购项目名称 中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目 品目 货物/通用设备/仪器仪表/其他仪器仪表 采购单位 中国地质科学院矿产资源研究所 行政区域 北京市 公告时间 2022年05月16日 15:55 获取招标文件时间 2022年05月16日至2022年05月23日每日上午:9:00 至 11:00 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 中国通用招标网http://www.china-tender.com.cn 开标时间 2022年06月07日 14:00 开标地点 北京市丰台区西三环南路14号院首科大厦A座4层405号 预算金额 ¥450.000000万元(人民币) 联系人及联系方式: 项目联系人 朱强 项目联系电话 010-63348624(项目咨询),400-680-8126(网站客服) 采购单位 中国地质科学院矿产资源研究所 采购单位地址 北京阜外百万庄大街26号 采购单位联系方式 肖晔010-68999523 代理机构名称 中技国际招标有限公司 代理机构地址 北京市丰台区西三环中路90号通用技术大厦 代理机构联系方式 朱强010-63348624 项目概况 中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目 招标项目的潜在投标人应在中国通用招标网http://www.china-tender.com.cn获取招标文件,并于2022年06月07日 14点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0701-224101190083 项目名称:中国地质科学院矿产资源研究所矿物参数自动定量分析仪购置项目 预算金额:450.0000000 万元(人民币) 最高限价(如有):450.0000000 万元(人民币) 采购需求: 标的名称:参数自动定量分析仪 数量:1台 简要技术需求:本仪器设备包括场发射扫描电镜主机、空气压缩机、冷却水循环系统、二次电子探测器、背散射电子探测器、红外CCD样品室观察系统、电制冷能谱仪EDS、电子背散射衍射EBSD、阴极荧光等模块,附属设备包括镀膜仪、光电联用显微镜系统等。 合同履行期限:合同签订后6个月内交货 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目为非专门面向中小企业采购的项目; 3.本项目的特定资格要求:1)投标人不得为“信用中国”网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的供应商,不得为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(处罚决定规定的时间和地域范围内);2)投标人若为进口产品经销商,须提供投标产品的制造商授权,也可提供该产品总代理或独家代理出具的授权,但应同时提供原厂商对该总代理或独家代理出具的授权文件;3)投标人应购买本项目招标文件。 三、获取招标文件 时间:2022年05月16日 至 2022年05月23日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外) 地点:中国通用招标网http://www.china-tender.com.cn 方式:网上获取 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年06月07日 14点00分(北京时间) 开标时间:2022年06月07日 14点00分(北京时间) 地点:北京市丰台区西三环南路14号院首科大厦A座4层405号 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 本项目适用的政府采购政策: 《节能产品政府采购实施意见》(财库〔2004〕185号); 《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号); 《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号); 《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号); 《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国地质科学院矿产资源研究所 地址:北京阜外百万庄大街26号 联系方式:肖晔010-68999523 2.采购代理机构信息 名 称:中技国际招标有限公司 地 址:北京市丰台区西三环中路90号通用技术大厦 联系方式:朱强010-63348624 3.项目联系方式 项目联系人:朱强 电 话: 010-63348624(项目咨询),400-680-8126(网站客服)
  • 880万!布鲁克中标上海交通大学单晶X射线衍射仪和小角X射线散射仪采购项目
    一、项目编号:0705-2240JDFCTXDK/15(招标文件编号:0705-2240JDFCTXDK/15)二、项目名称:上海交通大学单晶X射线衍射仪和小角X射线散射仪三、中标(成交)信息供应商名称:布鲁克科学仪器香港有限公司供应商地址:香港九龙湾常悦道九号企业广场1期1座6楼608室中标(成交)金额:880.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 布鲁克科学仪器香港有限公司 单晶X射线衍射仪;小角X射线散射仪 德国布鲁克AXS有限公司 D8 VENTURE;Nanostar 1;1 CNY 5,200,000.00;CNY 3,600,000.00
  • 日本电子发布场发射电镜JSM-IT800半透镜版本(i)/(is):适用观测半导体器件
    仪器信息网讯 2021年8月31日,日本电子株式会社(JEOL Ltd.)总裁兼首席运营官Izumi Oi宣布已经开发出肖特基场发射电子显微镜 JSM-IT800(2020年5月推出)用于观测半导体器件的最佳半透镜版本(i)/(is)——JSM-IT800(i)/(is),并已于 2021 年 8 月开始销售。产品开发背景扫描电子显微镜(SEM)被广泛应用于纳米技术、金属、半导体、陶瓷、医学和生物学等领域。随着SEM的应用范围不断扩大,不仅包括研究和开发,还包括生产现场的质量控制和产品检验,SEM用户需要快速高质量的数据采集,以及简单的成分信息确认和无缝的分析操作。为了满足这些需求,JSM-IT800 集成了用于高分辨率成像的透镜内肖特基 Plus 场发射电子枪、创新的电子光学控制系统“Neo Engine”, 以及追求易用性的GUI“ SEM中心”可以完全整合JEOL 的x射线能谱仪。此外,JSM-IT800 允许以模块形式更换物镜,提供不同版本物镜以满足不同用户的需求。JSM-IT800 有五种不同物镜版本:混合镜头版本 (HL),这是一种通用 FE-SEM;超级混合镜头版本(SHL/SHL,功能不同的两个版本),可实现更高分辨率的观察和分析;以及新开发的半透镜版本(i/is,两个不同功能的版本),适用于半导体器件的观察。JSM-IT800 还可以配备全新的闪烁体背散射电子探测器 (SBED)。 SBED 能够以高响应性轻松观察实时图像,即使在低加速电压下也能产生清晰的材料对比度。主要特点透镜内肖特基 Plus 场发射电子枪电子枪和低像差聚光透镜的增强集成提供了更高的亮度。在低加速电压(5 kV 时为 100 nA)下可获得充足的探针电流。独特的透镜内肖特基 Plus 系统适用于各种应用,从高分辨率成像到快速元素分析,以及电子背散射衍射 (EBSD) 分析。Neo Engine(新电子光学引擎)Neo Engine 是一种尖端电子光学系统,它积累了 JEOL 多年的核心技术。即使改变不同的观察或分析条件,用户也可以进行稳定的观察。自动功能的高可操作性大大增强。SEM 中心 / EDS 集成GUI“SEM 中心”、 SEM 成像和 EDS 分析完全集成,以提供无缝和直观的操作。 JSM-IT800 可以通过结合可选的软件插件来增强,例如 SMILENAVI 为新手用户提供学习路径, LIVE-AI 过滤器(Live Image Visual Enhancer– AI)以获得更高质量的实时图像.半透镜版本(i/is)半透镜通过在物镜下方形成的强磁场透镜会聚电子束来实现超高分辨率。此外,该系统有效地收集从样品发射的低能量二次电子,并使用上部透镜内检测器 (UID) 检测电子。因此,它可以对倾斜样品和横截面样品进行高分辨率观察和分析,这正是半导体器件故障分析所需的。此外,它对于电压对比度观察也非常有用。上电子探测器(UED)上电子探测器可以安装在物镜上方。该系统的优点是能够采集背向散射电子图像,并结合试样偏压采集二次电子图像。从样品发射的电子由物镜内的 UID 过滤器选择。 UED 和 UIT 允许在一次扫描中获取多个信息。新型背散射电子探测器闪烁体背散射电子检测器(SBED,可选)具有高响应性,适用于在低加速电压下获取材料对比图像。主要参数JSM-IT800i versionJSM-IT800is versionResolution (1 kV)0.7 nm1.0 nmResolution (15 kV)0.5 nm0.6 nmAccelerating voltage0.01 - 30 kVStandard detectorSecondary Electron Detector (SED)Upper In-lens Detector (UID)Upper Electron Detector (UED)Secondary Electron Detector (SED)Upper In-lens Detector (UID)Electron gunIn-lens Schottky Plus field emission electron gunProbe currentA few pA to 500 nA (30 kV)A few pA to 300 nA (30 kV)A few pA to 100 nA (5 kV)Objective lensSemi-in-lensSpecimen stageFull eucentric goniometer stageStage movementType1(standard) X 70 mm Y 50 mm Z 1 to 41 mmType2 (optional) X 100 mm Y 100 mm Z 1 to 50 mmType3 (optional) X 140 mm Y 80 mm Z 1 to 41 mmTilt -5 to 70° Rotation 360°EDS detectorEnergy resolution: 133 eV or betterDetectable elements Be to UDetection area: 60 mm2新型肖特基场发射扫描电子显微镜JSM-IT800【产品链接】
  • Science:透射电镜新突破!电子叠层衍射成像实现晶格振动原子分辨率极限
    透射电子显微镜(TEM)在物理、化学、结构生物学和材料科学等领域的微纳结构研究中发挥着重要作用。电子显微镜像差校正光学的进展极大地提高了成像系统的质量,将空间分辨率提高到了低于50pm的水平。然而,在实际样品中,只有在极端条件下才能达到这个分辨率极限,其中一个主要的障碍是,在比单层更厚的样品中,多电子散射是不可避免的(由于电子束与原子静电势之间的强库仑相互作用)。多次散射改变了样品内部的光束形状,并导致探测器平面上复杂的光强分布。当对厚度超过几十个原子的样品进行成像时,样品的对比度与厚度之间存在非线性甚至非单调的依赖关系,这阻碍了通过相位对比成像方式直接确定样品的结构。定量结构图像解释通常依赖于密集的图像模拟和建模。直接修正样品势需要解决多重散射的非线性反函数问题。尽管已经通过不同的方法对晶体样品的不同布拉格光束进行相位调整(其中大部分是基于布洛赫波理论),但对于具有大晶胞或非周期结构的一般样品来说,这些方法变得极其困难,因为需要确定大量未知的结构因子。Ptychography(叠层衍射成像)是另一种相位修正方法,可以追溯到20世纪60年代Hoppe的工作。现代成熟的装置使用多重强度测量——通常是通过小探针扫描广大的样品收集的一系列衍射图案。这种方法已广泛应用于可见光成像和X射线成像领域。直到最近,电子叠层衍射成像技术还受到样品厚度和电子显微镜中探测器性能的限制。二维(2D)材料和直接电子探测器的发展引起了更广泛的新兴趣。用于薄样品(如2D材料)的电子叠层衍射成像已达到透镜衍射极限的2.5倍的成像分辨率,降至39μm阿贝分辨率。然而,这种超分辨率方法只能可靠地应用于小于几纳米的样品,而较厚样品的分辨率与传统方法的分辨率没有实质性差异。对于许多大块材料来说,这样的薄样品实际上很难实现,这使得目前的应用局限于类2D系统(例如扭曲的双层)。对于比探针聚焦深度更厚的样品,多层叠层衍射成像方法提出了使用多个切片来表示样品的多层成像。所有切片的结构可以分别恢复。目前,利用可见光成像或X射线成像都成功地演示了多层叠层衍射成像。然而,由于实验上的挑战,只有少数的多层电子叠层衍射成像证据的报道,并且这些报道在分辨率或稳定性方面受到限制。透射电子显微镜使用波长为几皮米的电子,有可能以原子的固有尺寸最终确定的固体中的单个原子成像。然而,由于透镜像差和电子在样品中的多次散射,图像分辨率降低了3到10倍。康奈尔大学研究人员通过逆向解决多次散射问题,并利用电子叠层衍射成像技术克服电子探针像差,证明了厚样品中不到20皮米的仪器(图像)模糊以及线性相位响应;原子柱的测量宽度受到原子热涨落的限制,新的研究方法也能够在所有三维亚纳米尺度的精度从单一的投影测量定位嵌入原子的掺杂原子。相关研究工作以“Electron ptychography achieves atomic-resolution limits set by lattice vibrations”为题发表在《Science》上。图1 多层电子叠层衍射成像原理图2 PrScO3的多层电子叠层衍射重建图3 多层电子叠层衍射成像的空间分辨率和测量精度图4 多层电子叠层衍射的深度切片
  • 力学所孙成奇团队在微结构和损伤演化的准原位EBSD观测研究中取得新进展
    疲劳研究的一个核心问题是疲劳裂纹萌生和损伤演化的微观过程。因此,量化和表征不同取向晶粒/晶界的变形/损伤与循环周次之间的关系,对于揭示疲劳机理、建立准确的疲劳寿命模型具有极其重要意义。然而,现有的原位扫描电子显微镜(Scanning Electron Microscope, SEM)或原位电子背散射衍射(Electron Backscattered Diffraction, EBSD)方法,难以实现大载荷、高频率、不同应力比等条件下微结构和损伤演化研究。 力学所非线性力学国家重点实验室微结构计算力学课题组孙成奇研究员等将常规试验机(如MTS试验机)与EBSD观测技术相结合,发展了一种可以实现大载荷、高频率、不同应力比下微结构和损伤演化的准原位EBSD观测方法,并研究了深海载人潜水器耐压舱用钛合金和增材制造钛合金在(保载)疲劳载荷下的变形和损伤行为。 研究发现,α晶粒中是否能形成孪晶取决于晶粒的晶体学取向和加载条件,一定程度的保载应力促进可以发生孪生的α晶粒中孪晶的形成(图1a);观测到随着循环周次增加α晶粒中取向差增大和亚晶粒的形成(图1b),以及α晶粒中由于孪生而形成亚晶粒的过程(图1c),为循环载荷下位错滑移和孪晶的形成都可以诱导晶粒的细化提供了直接证据。 研究也表明,一定程度的最大应力保载有利于脆性微裂纹的形成,但如果保载应力高或保载时间长,保载引起的塑性变形会抑制脆性微裂纹的增长,并诱导延性破坏模式。该研究从微观尺度解释了保载应力和保载时间不同而导致的不同失效机制。     图1 a: 发生孪晶的α晶粒c轴与施加轴向应力之间夹角和柱面滑移施密特因子(Schmid Factor, SF)关系; b:α晶粒内取向差变化和亚晶粒形成;c: 孪晶增长和亚晶粒形成相关研究得到国家自然科学基金基础科学中心“非线性力学的多尺度力学研究”项目(11988102)等支持。部分研究结果与北交大合作完成,主要研究成果发表在Int. J. Fatigue 2023, 176: 107897;Int. J. Fatigue 2023, 175: 107821
  • 赛默飞世尔科技发布全新电子显微分析产品
    高效、易用 ------ 赛默飞世尔科技一体化EBSD 、WDS、 EDS微区分析系统2010年6月28日,美国威斯康星州麦迪逊 —— 全球科学服务领域的领导者赛默飞世尔科技今天发布了全新电子显微分析产品QuasOr EBSD(电子背散射衍射),其与NORAN System 7微区分析系统提供了完整的一体化微区分析解决方案。这个系统是业界第一个集成电子背散射衍射(EBSD)和能谱仪(EDS)及波谱仪(WDS)在同一个软件界面的微区分析系统。Thermo Scientific QuasOr 是完全集成到NORAN System 7微区分析平台中,以确保新用户便捷地在同一软件界面下同时完成EBSD、EDS、WDS的数据采集。 EBSD是用于在扫描电子显微镜(SEM)下测定样品的微区晶体结构。当分析例如合金、陶瓷及地质样品时,可以对复合材料和矿物进行晶体学的面分析以表征样品特性。在采集EBSD数据期间,EDS和WDS可以同时测定分析样品的化学成分。Thermo Scientific QuasOr作为NORAN System 7微区分析系统的卓越部分可以使得整个系统提供在高速采集EBSD面分析的同时采集能谱和波谱的全谱图像数据。一体化综合的分析系统避免了对应用程序间的繁琐切换,在同一界面即完成数据采集、分析及完备的报告,从而提升了微区分析采集速率、效率!赛默飞世尔科技分子光谱和微区分析副总裁兼总经理Mike Jost 先生这样说道:“Thermo Scientific QuasOr EBSD产品的发布,标志着业界首次将EBSD、WDS、EDS分析平台综合集成在一个系统中使用!目的是为客户能同时快速获得成分和结构以更好的揭示样品特性。这个全新的一体化系统将以易用、卓越、完备、高效面向全球实验室。” 更多关于Thermo Scientific QuasOr EBSD的信息,请打电话:800-810-5118, 400-650-5118,发邮件至:sales.china@thermofisher.com, 或访问网站:www.thermoscientific.com\ebsd。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额超过 100 亿美元,拥有员工约35,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的从复杂的研究项目到常规检测和工业现场应用的各种挑战。 欲了解更多信息,请浏览公司网站:www.thermofisher.com 或中文网站www.thermo.com.cn;www.fishersci.com.cn。
  • 新品发布|设备更新政策好,惠然科技高性能场发射扫描电子显微镜F4000助力科技攻关
    新品发布|设备更新政策好,惠然科技高性能场发射扫描电子显微镜F4000助力科技攻关近日,为加快构建新发展格局、推动高质量发展,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》(以下简称《行动方案》)的通知,提出实施设备更新、消费品以旧换新、回收循环利用、标准提升四大行动,大力促进先进设备生产应用,推动先进产能比重持续提升等举措。《行动方案》指出,推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备。强化创新支撑,聚焦长期困扰传统产业转型升级的产业基础、重大技术装备“卡脖子”难题,积极开展重大技术装备科技攻关。完善“揭榜挂帅”、“赛马”和创新产品迭代等机制,强化制造业中试能力支撑,加快创新成果产业化应用。惠然科技长期专注于攻克国家第35项“卡脖子”工程“扫描电镜”的关键技术壁垒,坚持全正向自主研发,关注供应链国产化率,期望为中国科学仪器行业带来真正的国产高性能电子束检测设备,助力科学研究及工业领域科技攻关,成为领先的“纳米世界之眼”关键设备供应商。新品问世惠然科技FE-SEM整机“风”系列再添新品——高性能场发射扫描电子显微镜F4000。2023年,惠然科技FE-SEM整机“风”系列F6000顺利出机并取得较好客户反馈,其业界独创的WR-HybriCol磁电混合式电子束扫描偏转系统、WR-AdapCol 双物镜镜筒设计以及优化设计的“能量选择型”WR-ExBCol 双镜筒内探测器设计,得到技术专家认可的同时,其低电压成像,大视野无畸变成像,快速定位ROI以及多种探测器匹配的产品特点受到市场好评。为满足客户不同应用场景下的要求,以及客户对于高性能场发射扫描电镜的多样化需求,惠然科技即日发布FE-SEM整机“风”系列F4000,可实现较高分辨率的同时,实现磁性样品的直接观测以及强大的可拓展附件功能,同时在价格上更具市场优势。FE-SEM整机“风”系列 高性能场发射扫描电子显微镜F40005大技术优势自主研发电子光学系统分辨率 0.9nm@30kV; 1.4nm@15kV无漏磁镜筒设计,可直接观测磁性样品双物镜无漏磁设计,可直接观测磁性样品高速扫描成像技术单像素有效驻留时间20ns,将SEM跨越至视频级纳米摄像机时代三步成像,操作易上手WD(工作距离、放大倍数)、ABC(自动亮度、对比度调整)、AF/AS(自动对焦)附件拓展功能强可拓展功能:样品预抽交换仓;真空转移样品杆;拉曼-电镜联用系统;EDS能谱仪;EBSD背散射衍射仪;CL阴极荧光分析成像等。5大产品竞争力自主研发国产电镜,核心技术自主正向研发,分辨率性能达到通用型科研电镜领先水平软件可控软件系统自主开发,可支持Windows、Linux、麒麟系统,满足客户信息安全保密需求操作方便界面中文为主,支持英文,可选专家级页面模式和极简模式,适应不同类型用户应用习惯客户定制强大的研发团队,可根据用户需求和应用场景,定制化开发和升级软硬件系统售后服务先进的售后理念和完善的运维体系,最快的速度响应用户的需求,支持用户的应用惠然FE-SEM整机“风”系列产品 当前,惠然科技紧跟国家政策,以市场需求为导向,以客户为中心,为客户带来更多可选择、高性能的国产电子束检测产品。
  • 布鲁克推出用于初级扫描电镜的e-Flash XS EBSD探测器
    p style="text-align: justify text-indent: 2em "布鲁克推出新型电子背散射衍射(EBSD)探测器e-Flash XS,首次实现在台式和其他小型的初级扫描电子显微镜(SEM)中进行晶体材料微观结构的表征。e-Flash XS是目前可用的最小、最轻的EBSD探测器,且性能优异,其创新的设计正在申请专利。e-Flash XS探测器非常适用于不需要使用高端场发射SEM(FE-SEM)的常规EBSD分析。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 286px " src="https://img1.17img.cn/17img/images/202006/pic/9b9b4c43-23db-4a06-b888-7a6c64a28c5a.jpg" width="450" height="286" border="0" vspace="0" title="" alt=""//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/835cbfa8-3cf2-4b0d-87dd-37088e745c5e.jpg" title="捕获.PNG" alt="捕获.PNG"//pp style="text-align: justify text-indent: 2em "e-Flash XS旨在提供高的可靠性、易用性和EBSD图案质量,配备具有720x540像素分辨率的新型CMOS相机,能够在2x2到6x6的合并模式下使用。结合可实现高透光率和高性能的创新型光学系统和用户可更换的荧光屏,即使在中等电子探针电流下,相机也能以高达525帧/秒的速度获取图案。其用于供电和数据传输的USB3.0接口使e-Flash XS成为真正的即插即用工具。当不使用时,用户可以轻松地将EBSD检测器的in-SEM部分取出以进行外部存储,从而消除SEM样品台与探测器碰撞的风险。/pp style="text-align: justify text-indent: 2em "新的e-Flash XS EBSD探测器与专门设计的XFlash® EDS探测器结合提供,二者完全集成在布鲁克的ESPRIT 2软件套件中,从而创建了新的QUANTAX ED-XS,这是一种功能强大且价格适中的EDS和EBSD组合包,适用于入门级SEM中的材料表征。QUANTAX ED-XS提供了用于定性和定量EDS和EBSD分析的全部功能,而布鲁克的标准EDS和EBSD附件则适用于高端SEM。直观且功能强大的ESPRIT 2用户界面可实现非常高效的工作流程,以结合EDS和EBSD进行数据采集、处理和评估,并提供多种数据表示选项。一键访问高级工具和集成自动化功能,使专家和经验不足的用户都能从中受益。ESPRIT 2凭借卓越的索引速度(每秒高达60,000个方向),还可以在几秒钟内离线重新评估EBSD数据集。/pp style="text-align: justify text-indent: 2em "“我们很高兴能够开发出市场上高可靠性、价格优惠且不牺牲性能的EBSD探测器。” 布鲁克Nano Analytics部门EBSD高级产品经理Daniel Goran博士说到,“随着新型e-Flash XS的推出,我们相信布鲁克可以通过为研究和工业领域的台式和初级SEM用户提供广泛的社区支持,为加快科学技术进步做出重大贡献。为了从EBSD分析的功能中受益,该技术过去只保留给更昂贵的高端SEM。”/ppbr//p
  • 1850万!中国科学院金属研究所场发射透射电子显微镜、广角X射线散射仪等采购项目
    一、项目基本情况1.项目编号:OITC-G230311156项目名称:中国科学院金属研究所场发射透射电子显微镜采购项目预算金额:850.0000000 万元(人民币)最高限价(如有):850.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期预算交货地点是否允许采购进口产品1场发射透射电子显微镜1套本系统主要用于各种材料高分辨快速成像和化学分析,系统由电子光学系统、高压系统、真空系统等部分组成。合同生效后18个月850万元中国科学院金属研究所是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。合同履行期限:合同生效后18个月内交货。本项目( 不接受 )联合体投标。2.项目编号:23CNIC-031692-009项目名称:中国科学院金属研究所广角X射线散射仪采购项目预算金额:700.0000000 万元(人民币)最高限价(如有):700.0000000 万元(人民币)采购需求:名称:广角X射线散射仪数量:1套简要技术要求:本设备用于在温度(普冷区)、应力、磁场等复杂环境下精准测量金属、塑晶、磁性等材料的X射线衍射谱;可在温度(深冷区)、压力等环境下测试材料X射线原子对分布函数。用以研究材料多尺度应力分配、压力诱导分子有序度变化等材料科学共性问题。★微焦斑转靶最大额定输出功率:不低于800 W★ 微焦斑转靶额定管电压:不低于50 kV★微焦斑转靶额定管电流:不低于16 mA(50 kV下)★无液氦分体式超低振动设计,不消耗液氦★ 温度范围:10 K-350 K★ 温度稳定性:≤100 mK合同履行期限:合同生效后8个月本项目( 不接受 )联合体投标。3.项目编号:23CNIC-031692-008项目名称:中国科学院金属研究所高温微动磨损试验机采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:名称:高温微动磨损试验机数量:1套简要技术要求:本设备用于各种材料、涂层和薄膜在高温环境下的摩擦磨损性能测试,可为各种材料和各种涂层以及薄膜的研究提供有效手段,符合国家及相关国际标准,接触形式包括点、线、面三种。★高载荷模块:3—2500N, 加载控制精度:±1%,分辨率:0.1N★行程:0.01—5mm ,位移控制精度:优于10um,重现性:0.3%位移传感器:分辨率:2 μm,响应时间: 10 s★频率:1—500Hz 合同履行期限:合同生效后6个月本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月04日 至 2023年07月11日,每天上午9:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:北京市西城区北三环中路25号英斯泰克大厦5层方式:电话联系购买售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。(一)1.采购人信息名 称:中国科学院金属研究所     地址:辽宁省沈阳市沈河区文化路72号        联系方式:佟老师 024-23971066      2.采购代理机构信息名 称:中国仪器进出口集团有限公司            地 址:北京市西城区北三环中路25号英斯泰克大厦            联系方式:唐经理 010-60961220/18612037725 陶经理010-60961520/18618131338            3.项目联系方式项目联系人:陶经理电 话:  010-60961520(二)1.采购人信息名 称:中国科学院金属研究所     地址:沈阳市沈河区文化路72号        联系方式:佟老师;024-23971066      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯;010-68290508、010-68290599            3.项目联系方式项目联系人:佟老师电 话:  024-23971066
  • 2021年度中国市场电镜新品盘点(18款): 场发射、扫描透射成主流
    经历2020年疫情笼罩,2021年全球电镜市场规模回暖,规模再次以个位数速率增长,作为最大需求单一市场国家,中国则实现20%以上增长。电镜新品发布也迎来活跃一年,发布新品不仅低、中、高端产品基本覆盖,大部分主流品牌皆有输出,国产方面也多点开花。以下对2021年在电镜新品进行盘点,数据主要统计自本网报道或公开信息,如有遗漏、错误欢迎在留言区补充或邮件(yanglz@instrument.com.cn )。2021年电镜发布新品速览(按发布时间顺序)类型品牌产品名称型号描述SEM蔡司新一代Gemini场发射扫描电镜系列GeminiSEM 360GeminiSEM 460GeminiSEM 560高分辨,不挑样日本电子肖特基场发射电镜JSM-IT800(i)/(is)适用观测半导体器件聚束科技高通量(场发射)扫描电镜Navigator-100B PLUS国产高通量场发射升级款祺跃科技原位高温扫描电镜-国产原位高温日本电子新型扫描电子显微镜JSM-IT510钨灯丝电镜升级飞纳台式场发射扫描电镜Phenom Pharos G2分辨率提至1.8nm日立两款场发射扫描电子显微镜SU8600SU8700聚焦自动获取大量数据功能国仪量子场发射扫描电镜SEM5000国产场发射扫描电镜TEM日本电子新一代冷冻电镜CRYO ARMTM 300II (JEM-3300)速度、操作、通量全面升级赛默飞球差校正透射电镜Spectra Ultra适合电子束敏感材料的球差电镜赛默飞扫描透射电镜Talos F200E为半导体行业设计纳镜鼎新高通量生物扫透电镜智眸365(Smart View 365)国产高通量生物扫描透射电镜聚焦离子束显微镜赛默飞聚焦离子束扫描电子显微镜 (FIB-SEM)Helios 5 PXL Wafer DualBeam聚焦半导体领域其他日本电子超微电子衍射平台Synergy-ED电镜-x射线衍射平台赛默飞定制球差校正电镜Spectra φ定制球差电镜扫描电镜:11款齐发,9款场发射!扫描电镜方面,场发射产品成为新品主流,蔡司和日立分别发布3款、2款场发射电镜,日本电子发布场发射和钨灯丝升级产品,飞纳台式场发射电镜分辨率提升至1.8nm。国产方面,国仪量子也加入场发射产品行列,聚束科技发布高通量场发射升级产品,祺跃科技则基于其原位力学技术,发布原位高温扫描电镜。蔡司|新一代Gemini场发射扫描电镜系列【3款】Gemini系列新品,左至右:GeminiSEM 360,GeminiSEM 460,GeminiSEM 560【发布会专题】 发布时间:3月24日参考价格:300-600万元蔡司此次发布的GeminiSEM 360,GeminiSEM 460,GeminiSEM 560是Gemini电子光学系统针对不同的应用场景衍生出的三款新型号。GeminiSEM 360搭载1型Gemini镜筒,是一款高通用性成像工具。其物镜为静电透镜+磁透镜复合透镜,在提高其电子光学性能的同时将它们对样品的影响降至更低。即使对极具挑战的样品也能进行高品质成像。Beam booster技术具有镜筒内的电子加减速功能,可确保获得小束斑和高信噪比;Gemini镜筒内带有平行设计的镜筒内二次电子和背散射电子探测器,可实现信号的高效采集,同步获取形貌衬度和成分衬度像。GeminiSEM 460搭载2型Gemini镜筒,专为应对复杂的分析工作而设计。它除了复合透镜和镜筒内加减速设计以外,利用双聚光镜设计实现更加灵活的束流调节。用户可以在小束流的高分辨成像模式与大束流的分析模式之间进行无缝切换,对称设计的EDS接口可让您获得无阴影的成分分布图,而物镜无漏磁设计可以让您获得无畸变的大面积EBSD花样。您还可以通过加装各种原位实验附件将Gemini 460升级为一个自动化原位实验平台。GeminiSEM 560搭载3型Gemini镜筒,带给用户极致的高分辨成像体验。该款镜筒拥有两个可协同工作的电子光学系统:Nano-twin透镜和新型电子光学引擎Smart Autopilot,可通过聚光镜优化所有工作条件下的电子束会聚角,进一步提升分辨力;还可实现1倍到200万倍的无缝过渡,大视野导航和亚纳米成像一镜到底。日本电子|场发射电镜JSM-IT800半透镜版本(i)/(is)新型肖特基场发射扫描电子显微镜JSM-IT800【产品链接 】 发布时间:8月31日参考价格:200-400万元JSM-IT800 集成了用于高分辨率成像的透镜内肖特基 Plus 场发射电子枪、创新的电子光学控制系统“Neo Engine”, 以及追求易用性的GUI“ SEM中心”可以完全整合JEOL 的x射线能谱仪。JSM-IT800 有五种不同物镜版本:混合镜头版本 (HL),这是一种通用 FE-SEM;超级混合镜头版本(SHLs/SHL,功能不同的两个版本),可实现更高分辨率的观察和分析;以及新开发的半透镜版本(i/is,两个不同功能的版本),适用于半导体器件的观察。半透镜通过在物镜下方形成的强磁场透镜会聚电子束来实现超高分辨率。此外,该系统有效地收集从样品发射的低能量二次电子,并使用上部透镜内检测器 (UID) 检测电子。因此,它可以对倾斜样品和横截面样品进行高分辨率观察和分析,这正是半导体器件故障分析所需的。此外,它对于电压对比度观察也非常有用。聚束科技|高通量(场发射)扫描电子显微镜 Navigator-100B PLUS高通量(场发射)扫描电子显微镜 Navigator-100B PLUS【 产品链接 】 发布时间:8月参考价格:500-700万元成像速度在同等条件下是同类机型的10倍以上,可在72小时内以4nm 像素完成对10x10 mm2 区域的无遗漏采集。 新机型在硬件部分模组提升较大,配备新型电子枪,电子束落点能量范围可达30keV,涵盖绝大多数扫描电镜落点能量需求范围。分辨率可达1.0nm (15keV下), 且在1-3kV低加速电压下即可获得1.5nm高分辨率的同时,仍能保持1‰以下的低图像畸变。具备高度智能化,包括简单快捷全景光学导航、一键全自动换样、全景光学导航、实时聚焦追踪,可以实现全自动超大区域(100mm×100mm)全息地图集式拍摄,并绘制成全景地图式信息浏览。祺跃科技|原位高温扫描电镜祺跃科技原位高温扫描电镜新品【发布详情】 发布时间:10月14日新开发的扫描电镜设计理念包括样品室空间从紧凑到合理,样品台承载能力较大、成像探测器承温能力提升、保证高真空足够的抽气能力等,达到追求时序信息的目标。本次新品实现整机国产化的核心部件包括高温二次电子探测器、三维移动平台与大载荷拉伸平台、1400度原位加热器、超大结构样品腔室和超高真空系统等。保障电镜极端环境长时间稳定运行的相关模块包括冷阱、等离子清洗、极靴屏蔽、红外测温等。同时兼容EDX和EBSD等,还预留设置了多种通讯接口,为今后拓展更多原位技术留有余地。 日本电子|钨灯丝扫描电镜升级产品JSM-IT510钨灯丝扫描电子显微镜JSM-IT510【产品链接】 发布时间:11月8日参考价格:130-200万元为了满足基础研究、工业现场对更快获取结果数据等, JSM-IT510系列进一步提升了InTouchScope™ 的可操作性。借助新增的Simple SEM功能,现在可以将日常工作 “交给”仪器。主要特点包括:新型“Simple SEM”功能、最新型低真空二次电子探头 (LHSED)、 扫描电镜图像和能谱的一体化、实时立体三维图像、实时分析功能、新的导航放大功能、0 倍放大、显示X射线产生区域、SMILE VIEW™ Lab管理软件等。飞纳|第二代肖特基场发射台式扫描电镜Phenom Pharos G2飞纳台式场发射扫描电镜 Phenom Pharos G2【 产品链接 】 发布时间:11月24日参考价格:200-300万元Phenom Pharos G2, 集背散射电子成像、二次电子成像和能谱分析功能于一体。高亮度肖特基场发射电子源,使用户可以轻松获得高分辨率图像,且低电压性能优异。Pharos G2分辨率提升至1.8nm,采用热场发射电子源,信噪比高,使用寿命长,保证长期稳定的性能。飞纳台式场发射扫描电镜能谱一体机标配背散射电子成像、二次电子电子成像和能谱分析功能,可对各种样品进行高分辨成像及元素分析。日立|全新场发射扫描电镜SU8600和SU8700全新冷场发射扫描电镜SU8600(左)和热场发射扫描电镜SU8700(右)【发布会专题】 发布时间:12月9日全新一代冷场发射扫描电镜SU8600不光保留了日立传统冷场电镜的优点,还采用了新型冷场电子枪,可选择更多种类的探测器,而且具有全新的自动数据获取功能,这些技术的加入使得SU8600的成像、分析能力以及自动化性能都有了质的飞跃。具体特点包括:强大自动化功能、成熟的电子光学系统、强大的图像显示和存储、简便的操作等。全新一代热场发射扫描电镜SU8700是一款集高分辨观察、高效率分析、自动化操作等特点于一身的扫描电镜。全新的自动数据获取功能,电子光学系统,多探头检测系统等技术的加入使得SU8700的成像和分析能力有了质的飞跃。具体特点包括:强大的自动化功能、全新的电子光学系统、高效的分析能力、丰富的样品适用性、简便的操作等。国仪量子|场发射扫描电子显微镜SEM5000场发射扫描电镜SEM5000【 发布信息 】 参考价格:200-300万元新品场发射扫描电子显微镜SEM5000,是一款高分辨的多功能扫描电镜,分辨率优于1 nm,放大倍数超过一百万倍。SEM5000的新型镜筒,优化了电子光路设计,采用高压隧道技术,在高电压和低电压下均能实现高质量成像;系统配置了无漏磁物镜,实现了无漏磁高分辨成像,适用于磁性样品分析;可选配多种探测器及其它分析仪器,能够满足用户的各种需求。将广泛应用于锂电池材料、新型纳米材料、半导体材料、矿物冶金、地质勘探、生物等领域。透射电镜:冷冻电镜、球差电镜,国产扫描透射透射电镜方面,面向高端市场的扫描透射电镜成为新品主流。日本电子新一代冷冻电镜JEM-3300年初上市。赛默飞球差电镜新品Spectra Ultra、扫描透射电镜新品Talos F200E更加关注半导体领域。国产方面,基于生物到实验室和生物物理所合作,针对病理组织样本高通量成像需求的专用扫描透射电子显微镜SmartView发布。日本电子|新型冷冻电镜JEM-3300新型冷场发射低温电子显微镜(cryo-EM)——CRYO ARM™ 300 II (JEM-3300)【 产品链接 】 发布时间:1月22日参考价格:3000-5000万元JEM-3300新型冷冻电镜基于“快速、易于操作、获得高对比度和高分辨率图像”的理念而开发。与之前的CRYO ARM™ 300相比,JEM-3300可进行高质量数据的快速采集、操作简便,并在通量方面有大幅提升。主要特点:通过最佳电子束控制实现高速成像,独特的“Koehler mode”照射模式允许均匀电子束照射到样品的特定位置,JEM-3300吞吐量相比上一代提升两倍或更高;提高了高质量图像采集的硬件稳定性,配备了一种新型冷场发射枪(cold FEG)、新的柱内 Omega 能量过滤器;系统升级后可操作性更高等。赛默飞| 球差校正透射电镜Spectra Ultra 新一代扫描透射电镜Spectra Ultra S/TEM【产品详情】 发布时间:3月3日参考价格:2500-5000万元全新Spectra Ultra在数分钟内即可灵活优化高级成像和分析条件。出于加快材料研究进程以及高通量需求,用户现在可以以非常快的速度稳定地调节加速电压。这极大扩展了研究的样品范围,最大程度地减少了电子束损伤,并显著降低了工具的优化耗时。“配置了Ultra-X的Spectra Ultra改变了材料科学研究人员和半导体从业者的游戏规则。它可以通过迅速施加不同的加速电压来显著减少电子束损伤,并且用户将能够检测极低浓度的轻元素。”赛默飞世尔材料科学副总裁Rosy Lee表示,“此外,与其他商业化解决方案相比,用户可以以更高的分辨率快速成像快速分析,以研究新材料和改进现有材料。”赛默飞| Talos F200E扫描透射电镜Talos F200E扫描透射电镜发布时间:3月17日参考价格:600-1500万元Talos F200E (S)TEM提供原子级分辨率成像、快速EDS)分析和增强的数据可靠性,专为满足半导体行业日益增长的需求而设计。且具有成本效益,易用性高,帮助半导体实验室实现快速的样品表征,加快可以量产的速度,提高制程良率。“随着创新的步伐不断加快,半导体企业要求其分析实验室加快周转时间,并在各种设备和工艺技术上提供更可靠和可复现的(S)TEM数据,以支持他们的业务,”赛默飞半导体事业部副总裁Glyn Davies表示,“Talos F200E通过提供高质量的图像数据、快速的化学分析和行业领先的缺陷表征等特质,可以为客户提供高性价比、易用的解决方案。”纳镜鼎新|高通量生物扫描透射电子显微镜SmartView高通量生物扫透电子显微镜智眸365(Smart View 365)【产品详情】 发布时间:7月28日智眸365(Smart View 365)以其高通量、全自动、超高清图像的优越特性在降低人员工作强度的同时为专家分析和诊断病理提供更多的信息,有效提高诊断的效率与正确率。满足专业用户对超微病理诊断的需求。主要特点包括:高通量高效率,插入病理切片样品仓,选定工作模式,一次性自动连续完成多至500个样品成像等;高分辨,分辨率高达0.9nm STEM图像;高稳定运行,长寿命、超稳定的场发射电子源;使用简单等。聚焦离子束显微镜赛默飞|Helios 5 EXL晶圆聚焦离子束扫描电子显微镜Helios 5 EXL晶圆聚焦离子束扫描电子显微镜【产品详情】 发布时间:4月21日参考价格:700-1500万元Helios 5 EXL旨在满足半导体厂商随着规模化经营而不断增加的样品量以及相应的分析需求。这款产品拥有的机器学习和先进的自动化能力,可提供精确的样品制备,以支持5纳米以下节点技术和全环绕栅极半导体制程以及良率提高。赛默飞半导体事业部副总裁Glyn Davies 表示:“半导体实验室正面临着巨大的压力,在不增加成本的情况下,他们需要更快地提供TEM分析数据,以支持制程监控并提升学习曲线,Helios 5 EXL可以通过可扩展的、可复现的和高精度的TEM样品制备来应对这一挑战。”其他新品:扩展技术与定制产品日本电子|超微电子衍射平台Synergy-ED超微电子衍射平台Synergy-ED发布时间:5月31日日本电子与Rigaku公司联合开发出Synergy-ED,一个超微电子衍射平台(ED),通过将日本理学的结构分析技术和设备(如其高灵敏度检测器)与日本电子的透射电子显微镜相结合,将两者的核心技术结合起来,希望新品的技术能够应用于材料研究、化学和药物开发等领域,并为利用电子衍射进行单晶结构分析提供新的解决方案。在以前困难的亚微米范围内,结构分析成为可能。赛默飞|定制球差校正电镜Spectra φ定制的高分辨率扫描透射电子显微镜Spectra φ发布时间:5月20日定制的高分辨率扫描透射电镜Spectra φ,用以支持莫纳什大学在先进材料方面的研究。该仪器安装在澳大利亚莫纳什电子显微镜中心(MCEM)。Spectra φ提供增强的电子束灵活性,以优化复杂材料系统的高速多维成像。Spectra φ 的设计和制造符合由MCEM 和澳大利亚科学院院士Joanne Etheridge教授领导的团队的规格。通过将 Spectra φ 纳入其仪器阵容,莫纳什大学将继续推动对重要能源相关的开创性研究,包括高效光伏设备、电池、材料轻量化、低功耗电子产品和清洁发电等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制