当前位置: 仪器信息网 > 行业主题 > >

紫外大气环境监测仪

仪器信息网紫外大气环境监测仪专题为您提供2024年最新紫外大气环境监测仪价格报价、厂家品牌的相关信息, 包括紫外大气环境监测仪参数、型号等,不管是国产,还是进口品牌的紫外大气环境监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外大气环境监测仪相关的耗材配件、试剂标物,还有紫外大气环境监测仪相关的最新资讯、资料,以及紫外大气环境监测仪相关的解决方案。

紫外大气环境监测仪相关的资讯

  • 紫外高光谱大气成分探测仪等随大气环境监测卫星进入预定轨道
    4月16日2时16分,大气环境监测卫星在太原卫星发射中心成功发射。卫星上装载了中科院合肥研究院安光所自主研发的三台载荷——紫外高光谱大气成分探测仪EMI、多角度偏振成像仪DPC、高精度偏振扫描仪POSP。图片来源:新华社(郑斌摄)大气环境监测卫星是国家民用空间基础设施首批启动的综合探测卫星,由国家生态环境部牵头、中国航天科技集团有限公司八院抓总研制,是国家民用空间基础设施中长期发展规划中的科研卫星,也是世界首颗具备二氧化碳激光探测能力的卫星。它装载了包括EMI、DPC、POSP在内的五台遥感仪器,国际上首次采用了主被动结合、多手段综合的探测体制,能够大幅提升全球碳监测和大气污染监测能力。卫星在轨应用后将显著提升生态环境、气象和农业等多领域定量遥感服务能力,助力我国实现碳中和与碳达峰、生态文明建设等国家战略,推动航天强国建设。EMI仪器具有2600千米观测幅宽,最小可探测光谱波长间隔0.6纳米,通过对多种气体吸收光谱“指纹”信息的准确识别,可实现单日覆盖全球,对二氧化氮、二氧化硫、臭氧和甲醛等污染气体开展监测。DPC仪器获取的全球大气气溶胶和云的时空分布信息和POSP仪器通过穿轨扫描获取的高精度大气气溶胶参数,在国际上首次实现了DPC和POSP 的“偏振交火”探测方案,可实现对PM2.5、灰霾等颗粒物污染的定量观测,以满足全球气候变化研究、大气环境监测、遥感数据高精度大气校正等应用需求。此次合肥研究院承担的大气环境监测卫星载荷于2021年3月完成正样交付,2022年2月大气环境监测卫星试验队进入发射场以来,不辱使命,奋力攻关,圆满完成了发射前各阶段测试任务。大气环境监测卫星的成功发射和在轨应用标志着我国在大气遥感领域达到国际领先水平。载荷开机运行后,将与2021年9月发射的“高光谱观测卫星”组网运行,增加我国大气环境卫星观测频次,提高重访能力和全球覆盖能力,为我国实现减污降碳协同增效、建设美丽中国的目标提供有力支撑。
  • 环境监测总站紫外吸收水质在线监测仪合格目录更新
    从中国环境监测总站获悉,中国环境监测总站公布紫外(UV)吸收水质在线监测仪认证检测合格厂家名录(截止2015年6月23日),此次目录包括2012年至2015年认证合格的12个厂家的12台仪器,其中国产厂商仪器7台。具体名录如下:紫外(UV)吸收水质在线监测仪适用性检测合格名录(截止2015年6月23日)序号单位名称仪器名称报告编号1北京中自控环保科技有限公司CAC-A型紫外扫描式水质在线自动监测仪质(认)字No.2012-0572杭州微兰科技有限公司VLUV-201型紫外(uv)吸收水质在线监测仪质(认)字No.2012-0583广州市怡文环境科技股份有限公司EST-2006型紫外(UV)吸收水质自动在线监测仪质(认)字No.2013-0044宇星科技发展(深圳)有限公司YX-UV型紫外吸收水质在线自动监测仪质(认)字No.2013-0255上海泽安实业有限公司K301 A型全光谱紫外(UV)吸收水质分析仪质(认)字No.2013-0686维赛仪器(北京)有限公司IQ Sensor Net型紫外(UV)吸收水质在线监测仪质(认)字No.2013-0697堀场(中国)贸易有限公司OPSA-150型紫外(UV)吸收水质自动在线监测仪质(认)字No.2013-0888德菲电气(北京)有限公司SA-9型紫外-可见光连续光谱水质分析仪质(认)字No.2014-0049江西夏氏春秋环境投资有限公司CQ-UV型紫外扫描式水质自动在线监测仪质(认)字No.2014-04010北京利达科信环境安全技术有限公司KS2201型紫外(UV)吸收水质自动在线监测仪质(认)字No.2014-04111岛津企业管理(中国)有限公司UVM-4020型紫外吸收水质在线分析仪质(认)字No.2014-06612上海恩德斯豪斯自动化设备有限公司CAS51D型紫外(UV)吸收在线水质分析仪质(认)字No.2014-122相关阅读:环境监测总站公布最新环境空气自动监测系统合格目录时隔一年半 环境监测总站再次更新数采仪合格目录环境监测总站CEMS合格名录更新环境监测总站水质自动采样器合格名录更新
  • 南沙大气环境监测站建成
    p 南沙大气环境综合监测站日前已全面建成。中国环境监测总站郑皓皓研究员就综合监测站建设目的、主要功能、未来发展方向等问题,回答了记者的提问。/pp  问:为什么要建设南沙大气环境综合监测站? /pp  答:经过多年的努力和探索,我国大气环境监测能力不断提高、监测网络不断完善,目前已形成了目标明确、功能齐全的大气环境质量监测网。我国大气环境质量监测网主要包括城市环境空气质量监测网、区域环境空气质量监测网、大气环境背景监测网、沙尘天气监测网、酸雨监测网络以及其他专项监测网等。/pp  根据我国大气环流特点,综合考虑空间分布、地域特征和生态功能等因素,生态环境部先后投资建设16个大气环境(背景)综合监测站,分别为内蒙古呼伦贝尔、吉林长白山、福建武夷山、山东长岛、山西庞泉沟、湖北神农架、湖南衡山、广东南岭、海南五指山、四川海螺沟、云南丽江、西藏纳木措、青海门源、新疆喀纳斯、西沙、南沙大气环境综合监测站。其中,南沙大气环境综合监测站是我国大气环境背景监测网的重要组成部分。/pp  在南沙建设大气环境综合监测站,既能及时掌握南海地区环境空气质量状况,又能为南海地区国家与民众提供可靠的环境空气质量信息,同时,也是研究区域大气传输和气候变化的重要站点。/pp  问:目前南沙大气环境综合监测站配备了哪些监测仪器设备?/pp  答:南沙大气环境综合监测站配置了PM2.5、PM10、SO2、NO2、CO和O3等6项常规指标,CO2和CH4等2项温室气体指标,以及黑炭、气象五参数和能见度等7项指标的监测仪器和质控设备,同时,还预留有酸雨、挥发性有机物、太阳紫外辐射等指标的监测场地,初步形成了南海地区空气质量监测与气候变化观测相结合的综合监测能力。/pp  问:南沙大气环境综合监测站的主要功能是什么? /pp  答:南沙大气环境综合监测站将服务于南海地区国家和民众,为其提供及时、可靠的环境空气质量信息。它的建成填补了南海地区大气环境监测的空白, 标志着南海地区大气环境综合监测迈出坚实的一步。/pp  同时,南沙大气环境综合监测站位于西太平洋-东南亚大气传输和大气环流的重要通道,是研究西太平洋-东南亚大气传输过程的重要支点。通过长期的实地观测,为研究南海地区大气背景、温室气体、颗粒物组分和污染传输提供第一手的监测数据,从而提升区域大气传输、温室气体与气候变化研究的精度和水平,为应对全球气候变化和南海地区生态环境质量改善提供重要支撑。/pp  问:南沙大气环境综合监测站未来的发展方向是什么? /pp  答:在现有监测项目的基础上,进一步加强大气综合监测能力,不断拓展监测领域,推动国际交流与合作。一是逐步开展气溶胶光学特性、臭氧前驱体、气溶胶组分、气溶胶粒径分布、垂直探测等科学研究。二是逐步拓展海洋水质、沉积物、海洋生物、海洋生态等监测,为南海地区海洋生态环境保护提供坚强支撑。三是逐步开展南海地区海洋垃圾、微塑料分布等生态环境状况研究,评估对南海地区生态系统影响,为全球生态环境保护作出积极贡献。/ppbr//p
  • 世界首次!“合肥造”遥感仪器助力提升我国大气环境监测能力
    4月16日,长征四号火箭将大气环境监测卫星送入预定轨道,这颗卫星就装载了中科院合肥物质科学研究院安光所自主研发的三台遥感仪器,将进一步提升我国大气环境监测能力。大气环境监测卫星装载的五台遥感仪器中,有三台是“合肥造”。其中,多角度偏振成像仪和高精度偏振扫描仪,在国际上首次实现了“偏振交火”探测方案,两台遥感仪器可以互相配合,对同一个目标进行观测。其实,大气环境监测卫星还有一个兄弟卫星——去年九月升空的高光谱观测卫星。这两颗兄弟卫星之间的遥感仪器技术一脉相承,技术指标也大幅提升,像紫外高光谱大气成分探测仪,就可以对二氧化氮、二氧化硫、臭氧等污染物,看得更准。中科院合肥物质科学研究院院长、大气环境监测卫星副总设计师刘建国告诉记者,大气环境监测卫星和高光谱观测卫星这两兄弟,还将进行组网运行,以增加我国大气环境卫星观测频次,提高全球覆盖能力。大气环境监测卫星,是我国民用空间基础设施首批启动的综合探测卫星,也是国家民用空间基础设施中长期发展规划中的科研卫星。目前,中科院合肥物质科学研究院还承担了多颗卫星载荷的研制任务,对我国大气环境的综合治理和实现碳达峰、碳中和目标,将做出重要的技术支撑和保障。
  • 大气环境监测卫星成功发射 减污降碳协同增效再添利器
    4月16日2时16分,我国在太原卫星发射中心成功将大气环境监测卫星发射升空。大气环境监测卫星是《国家民用空间基础设施中长期发展规划(2015-2025年)》中的一颗科研卫星,生态环境部为该卫星牵头用户,卫星和运载火箭系统均由中国航天科技集团有限公司第八研究院抓总研制。   该卫星将在国际上实现CO2的主动激光探测和大气细颗粒物的主被动结合探测,能够对气态污染物、云和气溶胶以及水生态、自然生态等环境要素进行大范围、全天时综合监测,同时可支撑开展气象、农业农村等行业的遥感监测应用工作。   大气环境监测卫星运行于705km的太阳同步轨道,星上搭载了大气探测激光雷达、高精度偏振扫描仪、多角度偏振成像仪、紫外高光谱大气成分探测仪及宽幅成像光谱仪等5台有效载荷,整星重量约2.8吨,设计寿命8年。其中,大气探测激光雷达在国际上采用双体制激光技术探测气溶胶和CO2,通过主动方式对大气CO2柱总量进行精细化探测,获取大范围、高精度的CO2浓度变化信息和气溶胶散射系数廓线、消光系数廓线、光学厚度、边界层高度等垂直分布信息,弥补以往被动观测的不足。高精度偏振扫描仪与多角度偏振成像仪联合观测可获取云和气溶胶多个角度的偏振信息,用于反演全球大气气溶胶和云的时空分布信息,观测幅宽大于1800km,此外,还可通过与大气探测激光雷达载荷的协同观测与应用,实现近地表细颗粒物的定量探测。紫外高光谱大气成分探测仪可获取O3、NO2和SO2等气态污染物浓度信息,幅宽大于2300km,具备每天一次的全球覆盖能力。宽幅成像光谱仪可获取光谱范围从可见光至长波红外(0.415-12μm)的陆表和大气多光谱信息,观测幅宽大于2300km,空间分辨率最高可达75m。   大气环境监测卫星的成功发射,将进一步提升我国的CO2和大气污染物遥感监测能力。在应对全球气候变化方面,实现全球范围CO2的主动激光高精度、全天时探测,探测精度达到优异水平,可为CO2分布和应对气候变化提供精准的遥感数据支撑;在大气环境遥感监测方面,具备对全球细颗粒物(PM2.5)、气态污染物、云和气溶胶的定量化遥感监测以及对工业排放、生物质燃烧等大气污染源的大范围、高动态遥感监测能力,可为我国大气污染防治和空气质量预报提供数据和技术支撑;在水环境遥感监测方面,可实现内陆大型水体水华、水质、水生植被以及近海海域赤潮、溢油、水质等的定量化遥感监测;在自然生态遥感监测方面,可实现生态系统关键参数的定量化遥感反演,为全国和区域生态环境状况调查与评估等业务提供重要数据支撑。   大气环境监测卫星的成功发射,将为落实“精准治污、科学治污、依法治污”、支撑深入打好污染防治攻坚战、实现减污降碳协同增效提供重要数据支撑。“十四五”期间,生态环境部还将牵头组织研制发射高精度温室气体综合探测卫星,与大气环境监测卫星组网观测,进一步提升全球主要温室气体和大气污染物遥感监测能力,为支撑国家“双碳”战略、应对全球气候变化提供遥感监测数据支撑。
  • 我国大气环境监测卫星成功发射 上面搭载了哪些科学仪器?
    4月16日2时16分,我国在太原卫星发射中心采用长征四号丙遥二十八运载火箭发射大气环境监测卫星。该星将推动我国生态环境、气象、农业农村等领域遥感应用,对提高卫星资源综合应用效能、促进环境保护事业意义重大。     大气环境监测卫星是《国家民用空间基础设施中长期发展规划(2015-2025年)》中的科研卫星,运行于太阳同步轨道,主要配置大气探测激光雷达、高精度偏振扫描仪、多角度偏振成像仪、紫外高光谱大气成分探测仪、宽幅成像光谱仪等有效载荷。卫星利用主动激光、高光谱、多光谱、高精度偏振等多种手段综合观测,可实现对对大气细颗粒物、污染气体、温室气体、云和气溶胶以及陆表、水体等环境要素大范围、连续、动态、全天时的综合监测。卫星入轨后,将进一步提升我国大气环境综合监测、全球气候变化和农作物估产及农业灾害等应用能力,推进卫星遥感数据在生态环境、气象、农业农村等方面应用,有效解决各行业部门对外国遥感数据的依赖。  国家航天局负责该卫星工程组织管理、重大事项组织协调和发射许可审批,生态环境部(牵头)、中国气象局、农业农村部等用户部门按分工负责应用系统建设和运行,中国资源卫星应用中心、中国科学院空天信息创新研究院负责地面系统建设和运行,航天科技集团上海航天技术研究院负责卫星系统和运载系统抓总研制,中国卫星发射测控系统部负责发射场及测控系统组织实施。  此次任务是长征系列运载火箭第416次发射。
  • 北京赛克玛携七款国际领先大气环境监测仪器亮相第三届中国国际环境监测仪器展览会
    北京赛克玛携七款国际领先大气环境监测仪器亮相第三届中国国际环境监测仪器展览会。 北京赛克玛展位号: B229/B230 参展样机 1. Belfort Model 6000能见度监测仪(支持杆,校准板 );2. Nephelometer浊度仪 3. Aethalometer黑碳仪(七波段)(现场开机);4. 安光所MPL偏振微脉冲激光雷达 (与两位安光所技术工程师合照)5.AMA 挥发性有机物(VOCs)在线色谱监测系统6. TE-6070 MFC/VFC 大流量颗粒物采样器 TSP/PM10/PM2.5 (1m3/min) (左一)7. 安德森八级撞击采样器 (DC1 deltaCal 和TC5 triCal 大气流量/温度/压力校准器) (上图中一) CIEEMI 2010 欢迎您 第三届中国国际环境监测仪器展览会 The 3rd China International Exhibition on Environmental Monitoring Instrumentation 参展商手册主办单位:中国环境保护产业协会 中国环境监测总站 协办单位:北京瑞利达展览展示有限公司 时 间:2010年11月24日-26日 地 点:北京· 中国国际展览中心1A、1B 第三届中国国际环境监测仪器展览会组委会 地址:北京市朝阳区安外大羊坊 8 号(乙)中国环境监测总站 105 室 100012 电话:(010)84943143 / 3144 传真:(010)84943069 邮箱:zhanlan @cnemc.cn
  • 四厂家瓜分广州市大气环境监测1.11亿项目
    近日,广州市大气环境预警防控网络建设项目中标结果全部公布,四个厂家总中标金额11125.73万元。《生态环境监测规划纲要 (2020-2035年)》指出,目前我国生态环境监测对污染防治攻坚战精细化支撑不足。现有监测网络的覆盖范围、指标项目等尚不能完全满足生态环境质量评估、考核、预警的需求,大数据平台建设和污染溯源解析等监测数据深度应用水平有待提升。未来,需要“完善全国大气颗粒物化学组分监测网和大气光化学评估监测网,为不同尺度大气污染成因分析、重污染过程诊断、污染防治及政策措施成效评估提供科学支持。其中,颗粒物组分监测覆盖全部PM2.5超标城市,重点区域辅助增加地基雷达监测和移动监测。光化学评估监测覆盖全部地级及以上城市,统一开展非甲烷总烃监测,重点区域、臭氧超标城市及重点园区按要求开展VOCs组分监测。”此次广州市大气环境预警防控网络建设项目,采购的仪器是为了建设广州市空气组分监测网,加强完善臭氧前体物和 PM2.5成分在线监测能力及污染物溯源能力。可以说是,上述政策的具体实施案例。因此,此次项目采购对未来我国其他城市的大气颗粒物化学组分监测网和大气光化学评估监测网的建设具有很高的借鉴意义。仪器信息网专门整理了此次采购的仪器全清单。序号所属监测网类型仪器名称仪器数量1臭氧及其前体物监测网HCHO(甲醛)在线监测仪12太阳总辐射在线监测仪23能见度在线监测仪14臭氧激光雷达25风廓线雷达36温湿廓线雷达37VOCs 在线监测仪(含配套辅件) 108全二维气相色谱-飞行时间质谱联用仪29PANs 在线监测仪1210光解速率在线监测仪311PM2.5组分监测网NH3在线监测仪312HONO在线监测仪313边界层大气成分二维高光谱扫描与分析仪514在线离子色谱315黑炭在线仪116大气重金属在线监测仪317高性能单颗粒气溶胶质谱仪418OCEC在线仪219监测车环境空气六参数在线监测仪120在线预浓缩气相-质谱联用仪121气象参数在线仪1其中红色字体仪器是被列为此次采购“核心产品”的仪器。从上表可以看出,臭氧及其前体物监测、PM2.5组分监测所需的仪器种类还是很多的。经过近一个月的招标采购,此项目最终招标结果如下:此项目共分为三个子项目七个包组,其中最大赢家是广州禾信仪器股份有限公司,总中标三个包组,合计金额5942.05万元;其次为河北先河环保科技股份有限公司,中标两个包组,合计金额2638.68万元。具体情况如下:包组采购仪器中标厂商中标金额项目一包组一HCHO(甲醛)在线监测仪等设备一批广州伊创科技股份有限公司947万项目一包组二臭氧激光雷达等设备一批广州鋆达科技有限公司1598万项目一包组三VOCs在线监测仪等设备一批广州禾信仪器股份有限公司1415.3万项目二包组一臭氧及其前体物监测网、PM2.5组分监测网等广州禾信仪器股份有限公司2470.45万项目二包组二监测车与常规仪器河北先河环保科技股份有限公司879.5万项目三包组一VOCs在线监测仪(含配套辅件)、PANs在线监测仪、光解速率在线监测仪、在线离子色谱、OCEC在线仪、大气重金属在线监测仪、高性能单颗粒气溶胶质谱仪广州禾信仪器股份有限公司2056.3万项目三包组二VOCs在线监测仪(含配套辅件)、PANs在线监测仪、光解速率在线监测仪、在线离子色谱、OCEC在线仪、大气重金属在线监测仪、高性能单颗粒气溶胶质谱仪河北先河环保科技股份有限公司1759.18万
  • 紫外临边成像光谱仪:探测大气层的“天眼”
    紫外临边成像光谱仪的“环形天眼”紫外临边成像光谱仪的“前向天眼”  人眼看到的大气是透明的,我们看不到大气的变化,更看不到有多少有害气体如妖魔鬼怪般潜伏在大气层中伺机而动。  天宫二号有一对“天眼”,不仅能看到人眼所能看到的可见光,更将视野扩展到人眼所不能及的紫外光。在“天眼”的注视下,大气中的一切都无所遁形。  “臭氧层在地球上空形成一把保护伞,它将太阳光中99%的紫外线直接过滤掉,有效避免地球生物被紫外线伤害,但也正是这层臭氧阻碍了紫外仪器在地面上对臭氧层以上的大气层进行探测,因此我们需要在地球上边安置洞悉大气的‘天眼’——紫外临边成像光谱仪,在太空对地球大气进行‘层析’式探测研究。”紫外临边成像光谱仪主任设计师、中科院长春光机所研究员王淑荣向《中国科学报》记者介绍说。  王淑荣说,通过“天眼”,我们可以看到整个大气层的密度、臭氧、气溶胶、有害气体等的垂直分布及其变化,同时还能监测中层大气的状态与扰动,我们可以了解太阳活动、大气与地球天气及气候的关系,同时还能观测全球环境变化,这一切对于科学和人类生活都非常重要。  天宫二号上的“天眼”有两个,一个叫“前向”,一个叫“环形”,同时对地球大气层进行天底和临边探测。  王淑荣打了个比方:假如将大气层比作一处美景,天底观测便如在它头顶盘旋的小鸟,能看到的是轮廓和总量,而临边观测则相当于仪器与地球边缘大气并肩而立,可以细致欣赏品味它的层次美。  “前向天眼”具备紫外-可见-近红外大气临边成像光谱探测功能,可以对地球临边大气进行切片式探测,反应大气痕量气体的垂直分布信息,并可以获得很高的垂直分辨率。“环形天眼”具备同时对天底大气和临边大气多方位探测的功能,通过反演计算可以获取大气痕量气体多方位的时空分布,进而为大气环境监测和大气科学研究等提供服务。  当前国际上已有的紫外临边探测仪器大多是单个方向(前向),个别有前向和侧向。然而这些探测的明显局限是只能得到一个很窄径迹上的数据,相邻轨道之间有巨大空隙,全球覆盖的时空代表性差,不能获得较密的时空覆盖,不能揭示中小尺度变动特征。就如管中窥豹,可见一斑而难知整体。  天宫二号紫外临边成像光谱仪将“前向”和“环形”组合探测,实现了垂直对地的天底探测和对地球切线方向的临边多方位探测组合及反演比对,实现了对地球大气的多方位、高光谱、多时空分辨率观测,达到比一般临边探测更高水平的层析反演,在国际上是首创。  “该项技术验证及科学实验为下一步空间大气临边成像光谱探测的业务化运行奠定了基础,将在大气痕量气体监测、天气预报、空间天气和物理等领域具有广泛的应用。”王淑荣说。
  • 大气环境监测下一个可能的热点市场之现状及发展趋势
    p  即便是晴空万里,蓝天白云,你看到的也可能是“假蓝天”,就是因为臭氧污染的存在。近年来,我国臭氧污染形势日益严峻,尤其是夏日高温时节,大有赶超PM2.5并取而代之的势头。臭氧是光化学烟雾形成的重要污染物之一,大气污染治理在重视雾霾的情况下,也逐渐开始重视臭氧污染,如启动光化学监测网的建设。/pp  一种污染物被重视,很重要的一个标志就是会出现各种监测技术,从而实现多时间、多空间尺度的监测,在大气臭氧监测领域,目前有四种主要的方法,一种是逐渐被淘汰但仍有所应用的长光程吸收光谱仪,一种是常规空气站安装的紫外吸收原理的臭氧分析仪,一种是成为市场新宠的微型空气站中安装的臭氧传感器,一种是近两年新发展起来的高大上仪器臭氧激光雷达。/pp  为了解各种臭氧分析仪的技术发展情况、使用情况,仪器信息网特组织了“中国大气臭氧分析仪市场调研”活动,并撰写了《中国大气臭氧分析仪市场调研报告(2018版)》。/pp  本次调研得到了广大用户、企业以及业内专家的大力支持,近250余位来自环境监测站、环保局、大专院校、科研院所以及园区管委会的臭氧分析仪研发、销售、运维以及使用者参与了此次调研。同时,报告还统计分析了网上公开的453条招中标信息。/pp  《中国大气臭氧分析仪市场调研报告(2018版)》包含了大气臭氧分析仪的仪器种类和技术现状、相关政策标准、不同种类臭氧分析仪的市场情况,包括主流厂商分析仪、各品牌市场占有率、用户单位分布、地区分布、采购关注点分布以及运维方式分布等。/pp  在此,谨对报告所有参与者表示最衷心的感谢!/pp  报告链接:《a href="https://www.instrument.com.cn/survey/Report_Census.aspx?id=162" target="_blank"中国大气臭氧分析仪市场调研报告(2018版)/a》/pp  span style="color: rgb(0, 112, 192) "报告节选/span/pp  第一章 大气臭氧分析仪市场调研目的及方法/pp  第二章 大气臭氧分析仪概述br//pp  第三章 大气臭氧分析仪相关政策/标准/pp  2018年7月,国务院印发《打赢蓝天保卫战三年行动计划》,其中要求“重点区域建设国家大气颗粒物组分监测网、大气光化学监测网以及大气环境天地空大型立体综合观测网”。而大气光化学监测网中的必测项目包括臭氧/pp............/pp  目前,我国大气臭氧分析仪主要采用的是紫外分光法,但国家正在制定新方法的标准,新标准出台之后/pp............/pp  第四章 臭氧分析仪(空气站)2017年市场分析/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/74639113-695e-4925-a04c-01e6f6542e92.jpg" title="市场占有率_副本.jpg" alt="市场占有率_副本.jpg"//pp style="text-align: center "2017年臭氧分析仪(空气站)主要品牌市场占有率/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/a4fb9201-4a0a-4bd3-9192-1cf5673c055f.jpg" title="采购台数_副本.jpg" alt="采购台数_副本.jpg"//pp style="text-align: center "环保局/环境监测站2017年采购单位分布(按采购台数)/pp............/pp  第七章 臭氧分析仪(微型站)2017年市场分析/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/fc3a9b85-edc3-4a82-a91b-a2923763b70e.jpg" title="地区_副本.jpg" alt="地区_副本.jpg"//pp style="text-align: center "臭氧分析仪(微型站)2017年招中标单位地区分布/pp  span style="color: rgb(0, 112, 192) "报告目录:/span/pp  第一章 大气臭氧分析仪市场调研目的及方法... 1/pp  第二章 大气臭氧分析仪概述... 2/pp  2.1 大气臭氧分析仪简介及分类... 2/pp  2.2 大气臭氧分析仪关键部件... 4/pp  2.3 大气臭氧分析仪市场概述... 5/pp  第三章 大气臭氧分析仪相关政策/标准... 8/pp  3.1 大气臭氧分析仪相关政策... 8/pp  3.2 大气臭氧分析仪相关标准... 9/pp  第四章 臭氧分析仪(空气站)2017年市场分析... 12/pp  4.1 臭氧分析仪(空气站)主流厂商基本情况分析... 12/pp  4.2臭氧分析仪(空气站)2017年销售情况分析... 16/pp  4.3臭氧分析仪(空气站)用户特点分析... 21/pp  4.4臭氧分析仪(空气站)2017年招中标信息统计... 24/pp  第五章 长光程差分吸收光谱仪(可测臭氧)2017年市场分析... 29/pp  5.1 长光程差分吸收光谱仪(可测臭氧)主流厂商分析... 29/pp  5.2长光程差分吸收光谱仪(可测臭氧)2017年销售情况分析... 30/pp  5.3长光程差分吸收光谱仪(可测臭氧)用户特点分析... 30/pp  5.4长光程差分吸收光谱仪(可测臭氧)2017年招中标信息统计... 31/pp  第六章 臭氧激光雷达2017年市场分析... 33/pp  6.1 臭氧激光雷达主流厂商分析... 33/pp  6.2臭氧激光雷达2017年销售情况分析... 34/pp  6.3臭氧激光雷达2017年招中标信息统计... 35/pp  第七章 臭氧分析仪(微型站)2017年市场分析... 36/pp  7.1臭氧分析仪(微型站)主流厂商分析... 36/pp  7.2臭氧分析仪(微型站)2017年销售情况分析... 38/pp  7.3臭氧分析仪(微型站)用户特点分析... 40/pp  7.4臭氧分析仪(微型站)2017年招中标信息统计... 40/pp  第八章 总结... 44/pp  strong欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部/strong/p
  • 专家解读南沙大气环境综合监测站有关情况
    p  南沙大气环境综合监测站日前已全面建成。中国环境监测总站郑皓皓研究员就综合监测站建设目的、主要功能、未来发展方向等问题,回答了记者的提问。/pp  strong问:为什么要建设南沙大气环境综合监测站?/strong/pp  答:经过多年的努力和探索,我国大气环境监测能力不断提高、监测网络不断完善,目前已形成了目标明确、功能齐全的大气环境质量监测网。我国大气环境质量监测网主要包括城市环境空气质量监测网、区域环境空气质量监测网、大气环境背景监测网、沙尘天气监测网、酸雨监测网络以及其他专项监测网等。/pp  根据我国大气环流特点,综合考虑空间分布、地域特征和生态功能等因素,生态环境部先后投资建设16个大气环境(背景)综合监测站,分别为内蒙古呼伦贝尔、吉林长白山、福建武夷山、山东长岛、山西庞泉沟、湖北神农架、湖南衡山、广东南岭、海南五指山、四川海螺沟、云南丽江、西藏纳木错、青海门源、新疆喀纳斯、西沙、南沙大气环境综合监测站。其中,南沙大气环境综合监测站是我国大气环境背景监测网的重要组成部分。/pp  在南沙建设大气环境综合监测站,既能及时掌握南海地区环境空气质量状况,又能为南海地区国家与民众提供可靠的环境空气质量信息,同时,也是研究区域大气传输和气候变化的重要站点。/pp  strong问:目前南沙大气环境综合监测站配备了哪些监测仪器设备?/strong/pp  答:南沙大气环境综合监测站配置了PM2.5、PM10、SO2、NO2、CO和O3等6项常规指标,CO2和CH4等2项温室气体指标,以及黑炭、气象五参数和能见度等7项指标的监测仪器和质控设备,同时,还预留有酸雨、挥发性有机物、太阳紫外辐射等指标的监测场地,初步形成了南海地区空气质量监测与气候变化观测相结合的综合监测能力。/pp  strong问:南沙大气环境综合监测站的主要功能是什么?/strong/pp  答:南沙大气环境综合监测站将服务于南海地区国家和民众,为其提供及时、可靠的环境空气质量信息。它的建成填补了南海地区大气环境监测的空白, 标志着南海地区大气环境综合监测迈出坚实的一步。/pp  同时,南沙大气环境综合监测站位于西太平洋-东南亚大气传输和大气环流的重要通道,是研究西太平洋-东南亚大气传输过程的重要支点。通过长期的实地观测,为研究南海地区大气背景、温室气体、颗粒物组分和污染传输提供第一手的监测数据,从而提升区域大气传输、温室气体与气候变化研究的精度和水平,为应对全球气候变化和南海地区生态环境质量改善提供重要支撑。/pp  strong问:南沙大气环境综合监测站未来的发展方向是什么?/strong/pp  答:在现有监测项目的基础上,进一步加强大气综合监测能力,不断拓展监测领域,推动国际交流与合作。一是逐步开展气溶胶光学特性、臭氧前驱体、气溶胶组分、气溶胶粒径分布、垂直探测等科学研究。二是逐步拓展海洋水质、沉积物、海洋生物、海洋生态等监测,为南海地区海洋生态环境保护提供坚强支撑。三是逐步开展南海地区海洋垃圾、微塑料分布等生态环境状况研究,评估对南海地区生态系统影响,为全球生态环境保护作出积极贡献。/p
  • 六合天融“大气环境监测与治理技术”研讨会召开
    为进一步加强大气环境监测与治理领域的技术交流,2010年12月15日上午,北京环境科学学会与中节能六合天融环保科技有限公司在中国节能大厦1908会议室共同举办“大气环境监测与治理技术研讨会”。   会议由北京环境科学学会理事长潘曙达主持,中科天融(北京)科技有限公司副总经理赵文峰致辞。中国工程院院士、清华大学教授郝吉明、北京市环境监察总队队长仲崇磊、北京市环境监测站副站长华蕾、中节能六合天融环保科技有限公司总经理朱彤、中节能六合天融环保科技有限公司常务副总经理王昕弘、中节蓝天咨询公司副总经理许泓、北京环境科学学会秘书长陈炳炎及有关单位科技人员40余人出席研讨会。  中国工程院院士、清华大学教授郝吉明作主题发言,他指出,在较长时期内煤仍是我国能源结构中的主角,因此控制燃煤污染和煤的高效利用是环境保护治理的主要任务。“十二五”期间,国家将在脱硫、脱硝、除尘、除汞方面提出新的要求。随着治理工作的深入,对环境监测工作的要求越来越高,监测范围既有宏观关乎地球变暖的(如温室气体),也有微观关乎人体健康的(如室内空气质量),因此监测仪器开发中的自主创新十分重要。希望政府管理部门和科研院所、企业携起手来,抓住机遇,与国家战略结合,才能大有作为。  4位专家作了技术交流,北京市环科院黄玉虎交流的主题是《扬尘污染控制和监测技术新发展》,他介绍了北京市扬尘研究现状、施工扬尘排放清单、施工扬尘控制技术、施工扬尘监测技术、施工扬尘排放标准等方面内容。中国环保产业协会在线监测专业委员会副秘书长郭炜交流的主题是《环境监测技术的现状及发展趋势》,他介绍了监测技术目前状况、监测技术发展趋势、监测技术未来设想。中节能六合天融环保科技有限公司书记王俩交流的主题是《烟气脱硫技术现状及发展趋势》,他介绍了烟气脱硫技术现状和脱硫技术发展趋势。副总工程师宋宝华交流的主题是《重金属污染现状及监测治理技术》,他介绍了重金属主要污染物类型及危害、污染现状、污染案例、污染治理技术等。  大家一致认为,本次研讨会为政府管理部门、科研院所和企业搭建了学术交流的平台,学习了知识、拓宽了视野、增进了感情。
  • 先河环保中标容城县大气环境监测项目
    p  近日,中国政府采购网发布容城县大气环境监测项目中标公告,该项目采购21个网格化监测点位的仪器设备以及相关服务,包括安装六参数微型站19套、TVOC微型站2套、大气污染防治决策支持平台1个,服务要求包含设备运行维护以及环境管理咨询服务,服务期3年。最终河北先河环保科技股份有限公司以877万元中标该项目。/pp  以下为详细内容:/pp  项目名称:容城县大气环境监测项目/pp  项目编码:HB2019014670020047/pp  项目联系人:崔梦玉/pp  项目联系电话:0312-8742258/pp  采购人:容城县环境保护局/pp  代理机构:安徽合普项目管理咨询集团有限公司/pp  代理机构联系方式:19801798186/pp  本项目招标公告日期:2019-01-28/pp  定标日期:2019-02-18/pp  总中标金额:877万元/pp  合同履行日期:3年/pp  供货商信息:/pp  中标供应商名称:河北先河环保科技股份有限公司/pp  中标供应商地址:石家庄高新区湘江道251号/pp  中标供货商金额:877万元/p
  • 北京将花1.1亿元用于升级大气环境监测网络
    北京市大气环境质量监测网络升级项目的预算经费为11526.87万元。  北京市地面环境空气质量自动监测网目前由35个子站组成,包括城市环境评价点、城市清洁对照点、区域北京传输点和交通污染监控点等四大类型,监测大气中的六项主要污染物,包括二氧化硫、二氧化氮、臭氧、一氧化碳、PM10和PM2.5。  今年,北京市将新增30余个环境监测站点,总数将达60至70个。这意味着,北京市将在现有环境空气监测网络基础上,建设由四个子网络、一个移动系统组成的 “4+1”多功能大气环境质量监测网络体系。监测站点不仅在类型和数量上有所增加,在空间分布上,也将选择在山区、农村等地增加监测点,以完善监测网络。同时拟将在条件适宜的中学建设监测站点。目前部分站房已开始建设,监测设备已进入到验收阶段。
  • 宁波北仑有机污染物纳入大气环境监测范围
    图为工作人员正在操作监测仪器。  二氧化硫、氮氧化合物含量是大气环境监测的主要指标,记者从宁波北仑区环保局了解到,北仑区的大气环境监测范围在此基础上扩大到了对有机污染物的监测。  “对像气体、液体等环境样品中的挥发性有机物,如喷漆溶剂中含有的苯、甲苯、二甲苯,以及恶臭的有机硫化合物等都可以进行监测。”北仑区环保监测站高级工程师肖学喜说。  记者了解到,这种监测能力的提升得益于刚刚投用的“气质联用仪”实验室设备。肖学喜拿出了一份几天前做的监测报告,报告内容包含了44项污染因子的监测结果。“实际上能够监测到的因子远远不止这44项,还可以根据需要具体设定。”肖学喜说。  今后,北仑区环保局还将结合区域的产业结构与污染排放实际,开展除常规因子之外的有机污染物监测,分析区域环境空气复合型污染的形成,让监测和分析的结果更接近于人体感觉。
  • 127万!福建省泉州环境监测中心站全自动紫外分光油分析仪等设备采购
    项目编号:[350500]ZSZBGS[GK]2022001 项目名称:2022年实验室监测能力建设采购项目 采购方式:公开招标 预算金额:1274000元 包1: 采购包预算金额:1274000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100415-环境监测仪器及综合分析装置全自动紫外分光油分析仪1(台)否详见招标要求3000001-2A02100415-环境监测仪器及综合分析装置购置恒温恒湿自动称量系统(配置百万份之一天平)1(套)否详见招标要求7500001-3A02100415-环境监测仪器及综合分析装置全自动烟气采样器2(台)否详见招标要求240001-4A02100415-环境监测仪器及综合分析装置紫外烟气分析仪1(台)否详见招标要求200000 合同履行期限: 详见招标文件 本采购包:不接受联合体投标
  • 各级各类生态环境监测机构:石油类紫外法完成扩项了吗?
    p  2019年1月10日,国家市场监管总局认可与检验监督管理司批准了25家省级环境监测机构石油类紫外法检测能力。这是环保评审组的创新思路,首次开展的文审扩项评审显著提高了工作效率,解决了各省级环境监测机构亟需集中认证新项目的难题。/pp  2018年10月10日,生态环境部发布《水质 石油类的测定 紫外分光光度法(试行)》(HJ970-2018),此标准从2019年1月1日起正式实施。石油类是《地表水环境质量标准》(GB3838-2002)中24项必测基本项目中的一项,是所有开展地表水质量监测工作监测机构必须通过资质认定的项目。由于新标准的发布和实施间隔时间短,全国范围内大规模开展扩项现场评审的难度很大。为解决各省级环境监测机构对此方法的扩项需求,环保评审组经与国家市场监管总局认可与检验监督管理司反复沟通,打通了文审扩项通道。/pp  2018年12月28日,环保评审组组织专家对29家监测机构提交的文审材料进行集中审核,包括仪器检定、标准物质、关键试剂、人员培训、方法验证以及实际样品测试6个方面。经严格审核,25家机构通过审核,监测资质能力获批。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/04a551ee-cd6d-4bc1-965c-21cac284f7e2.jpg" title="评审现场.jpg" alt="评审现场.jpg"//pp style="text-align: center "  评审组文审现场/pp  目前,已有多个省份借鉴此方式向当地质监部门申请开展该方法的文审扩项。环境监测方法标准更新较快,各级各类生态环境监测机构应注意尽快与当地监督管理部门沟通,及时完成新项目、新方法的扩项/变更事宜。/p
  • 河北省发布《大气环境监测专项实施方案》
    p  日前,河北省发布大气环境监测专项实施方案,要求全省2017年完成142个县(市、区)环境空气质量监测事权的上收。到2020年,建成省级空气质量综合分析大数据平台,构建全省机动车尾气遥感监测网络。除此之外,方案还部署了三大重点任务。/pp  环境监测是环境保护工作的基础,全面、真实、有效的环境监测数据是环境决策管理的支撑和保障。为全面掌握全省大气环境质量现状及变化趋势,进一步摸清大气固定污染源及机动车排放情况,为推进大气污染治理提供依据和支持,特制定本方案。/pp  工作目标/pp  2017年:完成全省142个县(市、区)环境空气质量监测事权的上收,在168个县(市、区)加密增设194个监测点位,发布全省168个县(市、区)空气质量排名,在传输通道所有县(市、区)和国家级工业园区推行网格化监测 完成1639家企业在线监测设施安装 在省界、城市环路和主干道安装机动车尾气遥感监测设备。/pp  2020年,建设2个环境空气质量背景站 完善质控手段,建设省级大气环境质控实验室及移动监测系统,建成省级空气质量综合分析大数据平台 所有工业企业实行24小时在线监控,235家省级工业园区建成空气站 构建全省机动车尾气遥感监测网络。/pp  重点任务/pp  优化自动监测网络/pp  1.完善全省空气质量监测网络。2017年3月底前,完成142个县(市、区)空气质量监测事权上收 10月底前,增设194个自动监测站点,实现每个县(市、区)至少2个点位 在位于全国排名后10位且未开展网格化监测的邯郸、邢台2市开展网格化监测 位于传输通道8城市的1464个乡镇均布设小型空气站,监测细颗粒物和二氧化硫两项主要指标,实现监测点位全覆盖。(牵头责任部门:省环境保护厅)/pp  2.扩大污染源自动监控范围。全面掌握全省工业企业固定污染源在线设备安装情况,按照“应装尽装,稳步推进”的原则,在目前已经在线联网779家企业的基础上,扩大在线监测范围,原则上依据排污总量大小依次完成。2017年完成1639家企业在线监测系统安装 2020年,所有的工业企业全部安装污染源在线监测设备,实行24小时在线监测,并实现与环保部门联网。(牵头责任部门:省环境保护厅)/pp  3.加强工业园区在线监控。在工业园区建设小型空气自动监测站,实现对园区企业无组织排放状况实时监控。2017年完成11家国家级工业园区设备安装 2018年完成235家省级工业园区设备安装 2020年,所有规模以上工业园区全部安装空气自动监测站。(牵头责任部门:省环境保护厅)/pp  4.建设机动车尾气监测网络。每个县(市、区)至少设置一个机动车污染检测机构。在全省高速、国道、城市快速路及主干道布设机动车尾气遥感监测点,2017年,在全省省界主要路口安装50套柴油车遥感监测设备,建成机动车排放云计算中心 2018年,在全省城市环路和主干道设置150个机动车遥感监测点 2020年,建成完善的机动车尾气遥感监测网。(牵头责任部门:省环境保护厅 主要承办部门:省公安厅、省交通运输厅)/pp  5.建设空气质量大数据平台。2018年底前,建成省级空气质量综合分析大数据平台,将环境空气质量、固定污染源和机动车尾气在线监测数据,以及地理信息、气象数据等统一接入,对数据进行深入分析,打通环境监测到监管的通道,对区域管控目标提出规划路径和实施建议。(牵头责任部门:省环境保护厅)/pp  6.建设全省空气质量背景站。2020年底前,建成2个省级空气质量背景站。在现有监测因子基础上,增加负氧离子等生态指标,对华北地区大气本底值变化情况进行研究。(牵头责任部门:省环境保护厅)/pp  加强内部质量控制及外部监督/pp  7.推行第三方运维机制。环境空气质量、工业园区以及机动车尾气在线监测设施的运行与维护,全面推行第三方运维机制,第三方运维机构及其负责人对数据的真实性和准确性负责。新增固定污染源在线监测设施采取政府监管、企业负责、自行运维或采取第三方运维模式,企业和第三方运维机构及其负责人对数据的真实性和准确性负责。(牵头责任部门:省环境保护厅)/pp  8.环境空气监测质量保障。构建省级环保部门及驻市监测机构为责任主体的质量控制体系,实施卫星监控等新技术手段,建设和完善省级质控实验室,开展量值溯源和传递,加强内部质量控制。/pp  强化对第三方运维机构的监督管理,明确考核标准。采取驻市检查、交叉检查等多种形式,加大抽查力度,实现外部监督常态化 引入社会监督,2017年6月底前,向社会公开全部环境空气自动子站监控视频。(牵头责任部门:省环境保护厅)/pp  9.污染源监测质量保障。企业和第三方运维机构及其负责人对自动监测数据质量负责,市级环保部门负责日常监督,开展在线设施的巡检、比对 省级环保部门加强抽检力度。(牵头责任部门:省环境保护厅)/pp  10.机动车尾气监测质量保障。强化对机动车环保检验机构日常监管。结合遥测倒查和巡查暗访等方式做到监管全覆盖。每年完成50%以上机动车环保检验机构的抽查和3个批次以上新车一致性检查,确保机动车检测规范有序。(牵头责任部门:省环境保护厅、省质监局、省公安厅、省交通运输厅)/pp  深入实施信息公开/pp  11.实时公开环境质量信息。按照“能公开、尽公开”的原则,自2017年4月起,向社会公开全省168个县(市、区)环境质量实时监测数据 11月底,实现微信平台数据发布。(牵头责任部门:省环境保护厅)/pp  12.公布环境质量排名。引入奖惩机制,自2017年4月起,每月、每季度向社会公布全省168个县(市、区)环境空气质量以及改善率排名。(牵头责任部门:省环境保护厅)/pp  13.公开企业排污信息。按照《河北省环境保护公众参与条例》的要求,重点企业向社会实时公开污染物排放信息,并在厂区外围显著位置设置电子显示屏,接受群众监督。(牵头责任部门:省环境保护厅)/pp  14.公开机动车排污信息。各市县政府要将机动车尾气检测不合格车辆信息予以网上公开 省级有关部门要在主要路口设置显示屏,显示遥测超标车辆信息。(牵头责任部门:省环境保护厅 主要承办部门:省交通运输厅、省公安厅)/pp  政策措施/pp  15.制定《河北省环境空气生态补偿监测管理办法》。按照“将环境空气质量逐年改善作为区域发展的约束性要求”和“谁保护、谁受益 谁污染、谁付费”的原则,以各市县细颗粒物、可吸入颗粒物、二氧化硫、二氧化氮季度平均浓度同比变化情况为考核指标,建立考核奖惩和生态补偿机制。(牵头责任部门:省环境保护厅、省财政厅)/pp  16.完善对第三方运维管理的政策法规。出台《河北省环境自动监测第三方运维机构管理办法》,明确委托方、监督方和第三方运维机构的职责,因监督和维护不到位及弄虚作假需承担的经济、法律责任。(牵头责任部门:省法制办 主要承办部门:省环境保护厅、公安厅)/pp  17.建立协调联动机制。建立环保、公安联动执法机制,加强部门协调配合,打击监测数据弄虚作假行为,确保监测数据真实性。(牵头责任部门:省环境保护厅、公安厅)/pp  组织保障/pp  18.加强组织领导,落实目标责任。各级各有关部门要对工作任务目标分解,严格落实目标责任,每年至少召开一次工作部署、调度会,在政策、资金、人员等方面给予充分保障,确保各项工作任务的落实。/pp  19.完善规章制度,强化日常监督。完善监测质量控制制度,采取交叉检查、联合执法,定期督导,加大日常监督检查力度,确保监测数据真实有效。(牵头责任部门:省环境保护厅)/pp  20.严格考核问责,引入退出机制。对干预大气环境监测、弄虚作假的相关行政负责人及监测工作人员要严肃查处和问责,情节严重的要追究刑事责任 建立第三方运维机构诚信体系和黑名单制度,明确责任,加强管理,对于诚信缺失、弄虚作假的机构,实行黑名单公告和淘汰退出制度。(牵头责任部门:省环境保护厅、省公安厅)/p
  • 无锡中科光电技术有限公司参与共建大气环境监测领域首个国家级工程实验室
    12月24日上午,大气环境污染监测先进技术与装备国家工程实验室建设启动大会在合肥圆满召开,标志着我国大气环境监测领域唯一的国家级工程实验室启动建设。无锡中科光电技术有限公司作为国家工程实验室共建单位,共同参与了此次盛会。揭牌仪式安徽省委常委、常务副省长邓向阳,合肥市委书记宋国权等省市领导,以及国家部委有关领导出席了建设启动大会。同时参加大会的嘉宾还有来自环境科技领域的九位院士、科研院校的知名学者与高新环保产业的企业家代表。大会由中科院合肥研究院江海河副院长主持。大气环境污染监测先进技术与装备国家工程实验室由国家发改委批准成立,是我国大气环境监测领域唯一的国家级工程实验室,我国环境工程科技创新体系的重要组成部分,合肥综合性国家科学中心环境研究领域建设内容。实验室将围绕我国大气环境监测和环保产业升级发展需求,开展地基、车载(船载)、机载和星载等多平台大气环境监测装备研发,形成共性技术研发、试验检测和工程化产业化开发能力,建成我国大气环境监测关键共性技术创新平台、国际一流的大气环境监测高技术研发和人才培养基地,成为国际一流的环境监测设备高技术成果辐射基地,加速推动我国大气环境监测仪器产业快速发展,成为该领域高技术创新的源头。签约仪式中科院安徽光机所首席科学家、工程实验室主任刘文清院士汇报了国家工程实验室建设、规划报告。分别从实验室建设背景、目标与定位、建设内容与方案、组织框架与运行机制等方面,为参会领导与嘉宾们做了有关介绍。国家工程实验室主任刘文清院士做实验室建设规划报告 合肥市市长凌云、环保部监测司副司长吴季友、中科院科发局局长严庆和安徽省常务副省长邓向阳分别致辞,热烈祝贺大气环境污染监测先进技术与装备国家工程实验室正式启动建设,殷切期望实验室团队响应党的十九大“五大发展理念”号召,开拓创新,不断取得重大科研进展与成果,“为建设美丽中国贡献安徽力量”。建设启动仪式上,省市、部委领导等嘉宾共同为国家工程实验室揭牌,并为中科院合肥物质科学研究院、中国环科院、北京大学、中国环境监测总站、无锡中科光电技术有限公司(以下简称“我司”)和聚光科技(杭州)股份有限公司等20家共建单位的代表授牌;安徽省常务副省长邓向阳为实验室理事长匡光力、实验室主任刘文清、工程技术委员会主任郝吉明、副主任张远航颁发了聘书;合肥市常务副市长韩冰与中科院合肥研究院副院长刘建国签署了市院共建国家工程实验室战略合作协议,该协议中筹备成立的“中国科学院合肥研究院环境产业技术研究中心”也将落户于合肥蜀山经济开发区,带动中科院的成果转化和促进我国环保产业发展。授牌仪式 启动仪式后,国家工程实验室工程技术委员会主任、清华大学教授郝吉明院士和国家工程实验室工程技术委员会副主任、北京大学教授张远航院士,分别向大会做了《中国改善环境空气质量的重要举措》和《京津冀冬季区域综合观测实验总体设计与初步结果》的主旨报告。在大会产业创新论坛上,河北先河环保科技股份有限公司、无锡中科光电技术有限公司、力合科技(湖南)股份有限公司等四家高新环保产业的企业家分别围绕大气环境监测技术产业的发展,进行了产业报告交流。我司总经理万学平以《大气立体监测产业创新探索与实践》为题进行汇报。在报告中,万学平系统回顾了公司五年来的创新发展历程。从“技术、产品、集成、应用、商业模式和管理”等六个方面汇报了公司的创新发展理念,并系统总结了公司在产品和应用上的六大创新成果(率先实现了激光雷达产品由“定点监测”到“扫描监测”的市场化,率先实现了由“固定监测”到“走航移动监测”的市场化,率先实现了“大气臭氧激光雷达”的设备市场化,率先实现了从“单一要素”向“多参数联合”的观测设备市场化,率先构建“地空天一体化”立体监测数据应用平台,率先构建“超级站综合数据分析平台”)。公司核心产品实现了50%以上的市场占有率,2017年销售额近2亿。无锡中科光电技术有限公司总经理万学平汇报“用户需求是企业创新发展的源泉”,万学平说,“无锡中科光电技术有限公司将继续在刘文清院士专家团队的引领下,以国家工程实验室为依托,汇聚更多行业资源,围绕供给侧改革,推进产业协同创新,继续为提升区域性空气质量的持续改善发挥更大的作用,继续引领立体监测的应用发展,为形成具有国际影响力的知名品牌努力。”同日,工程技术委员会专家咨询会议召开,安徽省发改委副主任胡再生为委员们颁发聘书。来自国家部委、省市发改委的领导,以及北京大学、中国环境科学研究院、中科院大气物理研究所、中国环境监测总站、清华大学、浙江大学、暨南大学、北京师范大学等多所科研院校的技术委员会专家,齐聚一堂,献言献策,共商实验室发展大计。在国家工程实验室首届理事会第一次会议上,中科院合肥研究院院长、实验室理事长匡光力为理事们颁发聘书。会议集中审议通过了理事会章程、实验室主任以及实验室技术委员会主任名单等重要文件。理事长匡光力为万学平办法证书无锡中科光电于2011年8月成立,由刘文清院士团队与聚光科技(杭州)股份有限公司共同发起,公司聚焦于大气环境立体监测核心产品与应用产业化发展。
  • 环保部:2014年大气环境监测质量管理等任务完成情况一般
    环保部今天透露,近日,国务院总理李克强对大气污染防治工作重要批示。为此,环保部对近年大气污染治理情况进行盘点。据环保部介绍,近三年,中央财政共划拨263亿资金用于大气污染防治,同时,“大气十条”要求制定的25项排放标准已全部完成 有消息透露,京津冀晋鲁内蒙古6省(区、市)机动车排放控制工作协调小组将于近期挂牌成立。  就263亿中央资金下拨情况,环保部说,2013年,中央财政划拨50亿元专项资金,重点支持京津冀及周边地区大气污染防治,北京、天津、河北、山东、内蒙古、山西获益 2014年,中央财政划拨98亿元专项资金,重点支持三大区域10省份,除了上述6省份,江苏、浙江、安徽、上海大气污染防治得到支持 2015年,中央财政拟划拨115亿元专项资金,目前已分两批拨付106亿元,河南省与上述10省份一起,得到中央财政支持。  除了资金到位外,有关大气污染的标准制定也一直没停。据环保部有关负责人透露,今年5月,环保部制定并会同国家质检总局发布了6项大气污染物排放标准。这6项标准涉及石油炼制、石油化学、合成树脂、无机化学、再生铜铝铅锌等。  这位负责人说,至此,“大气十条”要求制定大气污染物特别排放限值的25项重点行业排放标准已全部完成。  此外,环保部还披露了2014年“大气十条”的考核情况。环保部表示,完成情况较好的任务包括产业结构调整优化、清洁生产、燃煤小锅炉整治、煤炭总量控制、油品达标供应、黄标车淘汰等,平均得分率在80%以上。  完成情况一般的任务包括建筑节能与供热计量、大气污染防治资金投入等方面,以及煤炭洗选加工、新能源汽车推广、城市步行和自行车交通系统建设、重污染天气监测预警应急体系建设、大气环境监测质量管理等任务,平均得分率在50%~80%之间。  完成情况较差的任务主要包括工业大气污染治理、散煤清洁化治理、机动车环境管理、秸秆禁烧等,平均得分率在50%以下。  今年,环保部还会同有关部门,对各省(区、市)2014年度贯彻落实《大气污染防治行动计划》情况进行考核,督促13个环境空气质量恶化的省份采取整改措施。同时,环保部对减排存在突出问题的5个城市实行环评限批,对37家企业实行挂牌督办,对脱硫设施运行不正常的火电企业扣减脱硫电价款5.1亿元。  针对包括大气污染在内的环境问题,今年以来,环保部陆续对沧州、承德、临沂、吕梁、无锡、马鞍山等地政府主要负责人实施约谈。仅在华北环保督查中心管辖区域,被约谈后,沧州市29名、驻马店市7名、保定市3名、承德市18名,共57名相关主要负责人被批评、警告、免职。  在这一系列强硬措施实施前的2012年冬,我国1/4国土面积、约6亿人受雾霾影响 2013年,平均雾霾天数创52年之最 2014年,大范围雾霾依旧频频造访。
  • 大气环境监测移动实验室仪器配置及性能指标详解
    p  随着我国经济的快速发展,大气环境污染事故频发,气象灾害日益增多,雾霾污染严重。大气环境监测移动实验室已在大气、噪声、光等污染防治的监督管理等领域得到越来越广泛的应用,移动监测监督稽查将得到生态环境部重视。日前,全国移动实验室标准化技术委员会发布关于通知,对《大气环境监测移动实验室通用技术规范》征求意见。/pp  “大气环境监测移动实验室通用技术规范件”是大气环境监测标准体系中的一个重要组成部分,对污染源进行移动特性识别,建立规范移动特性参数和配备设施及设备等一系列特性条件,有利于保证移动监测车在移动中队污染源的检测效性,为推动国家环境移动实验室健康发展起作重要作用。本标准为首次制定,技术归口单位为全国移动实验室标准化技术委员会,起草单位有江西江铃汽车集团改装车股份有限公司、武汉天虹环保产业股份有限公司、聚光科技(杭州)股份有限公司、北京雪迪龙科技股份有限公司、中国环境监测总站、沈阳质量监督检验研究院等。/pp  标准中给出了大气环境监测移动实验室宜配备大气环境监测仪器设备及性能指标。明确指出:移动实验室所有配置的仪器设备应完全自动化、智能化,并具有移动特性,符合GB/T 29476-2012中的规定;移动实验室应配备服务器数据处理系统,具备现场进行数据分析及数据输出和远程在线交互能力;移动实验室的采样及监测设备,满足设备监测性能,可独立或集中分离采样;移动实验室设备应具备自校准功能;移动实验室设备应具备时间同步功能,测试数据与时间同步,报告日期不可修改;移动实验室的实验舱内设备、器具与载具的安装连接应牢固、可靠,根据设备性能要求增加减振措施;移动实验室设备应具备电磁兼容性,应符合GB/T 18268.1的规定。/pp  详细要求如下:/pp style="text-align: center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"strong仪器设备监测内容/strong/a/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="115"p style="text-align:center "监测类别/p/tdtd width="138"p style="text-align:center "监测内容/p/tdtd width="85"p style="text-align:center "性能指标/p/tdtd width="267"p style="text-align:center "参考标准或依据/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"空气VOC/a/p/tdtd width="138"p style="text-align:center "VOC/p/tdtd width="85"p style="text-align:center "见附录A/p/tdtd width="267"p style="text-align:center "环保部《2018年重点地区环境空气挥发性有机物监测方案》的通知,VOC监测项目/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"常规气态污染物/a/p/tdtd width="138"p style="text-align:center "S02、NOx、CO、O3/p/tdtd width="85"p style="text-align:center "见附录B/p/tdtd width="267"p style="text-align:center "HJ/T 193-2013中附录A表A.1/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"颗粒物/a/p/tdtd width="138"p style="text-align:center "PM2.5/PM10/p/tdtd width="85"p style="text-align:center "见附录C/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.2/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气气象参数/a/p/tdtd width="138"p style="text-align:center "风速、风向、温度、湿度、气压/p/tdtd width="85"p style="text-align:center "见附录D/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.3/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"自动校准设备/a/p/tdtd width="138"p style="text-align:center "-/p/tdtd width="85"p style="text-align:center "见附录E/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.4/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录A a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境挥发性有机物监测项目/a/strong/ptable width="605" border="1" cellpadding="0" cellspacing="0"tbodytr class="firstRow"td width="121"p序号/p/tdtd width="123"p类型名称/p/tdtd width="395" valign="top"p style="text-align:center "监测项目/p/td/trtrtd width="121"p1/p/tdtd width="123"p监测项目/p/tdtd width="395" valign="top"p style="text-align:left "非甲烷碳氢化合物、含氧有机物、卤代烃/p/td/trtrtd width="121"p2/p/tdtd width="123"p目标物名称/p/tdtd width="395" valign="top"p1、监测因子:非甲烷碳氢化合物58种 br/ 序号 名称 化合物 化学式 br/ 1 Ethane 乙烷 C2H6 br/ 2 Ethylene 乙烯 C2H4 br/ 3 Propane 丙烷 C3H8 br/ 4 Propene 丙烯 C3H6 br/ 5 isobutane 异丁烷 C4H10 br/ 6 n-Butane 正丁烷 C4H10 br/ 7 Acetylene 乙炔 C2H2 br/ 8 trans-2-Butene 反—2—丁烯 C4H8 br/ 9 1-Butene 1-丁烯 C4H8 br/ 10 cis-2-Butene 顺—2—丁烯 C4H8 br/ 11 isopantane 异戊烷 C5H12 br/ 12 Isobutene 异丁烯 C4H8 br/ 13 1,3-Butadiene 1,3-丁二烯 C4H6 br/ 14 1-Pentene 1—戊烯 C5H10 br/ 15 Pentane 正戊烷 C5H12 br/ 16 trans-2-Pentene 反—2—戊烯 C5H10 br/ 17 Isoprene 异戊二烯 C5H8 br/ 18 cis-2-Pentene 顺—2—戊烯 C5H10 br/ 19 2,2-Dimethylbutane 2,2—二甲基丁烷 C6H14 br/ 20 2,3-Dimethylbutane 2,3—二甲基丁烷 C6H14 br/ 21 2-Methylpentane 2-甲基戊烷 C6H14 br/ 22 Cyclopentane 环戊烷 C5H10 br/ 23 3-Methylpentane 3-甲基戊烷 C6H14 br/ 24 1-Hexene 1-己烯 C6H12 br/ 25 n-Hexane 正己烷 C6H14 br/ 26 2,4-Dimethylpentane 2,4-二甲基戊烷 C7H16 br/ 27 Methylcyclopentane 甲基环戊烷 C6H12 br/ 28 2-Methylhexane 2-甲基己烷 C7H16 br/ 29 2,3-Dimethylpentane 2,3-二甲基戊烷 C7H16 br/ 30 Cyclohexane 环己烷 C6H12 br/ 31 3-Methylhexane 3-甲基己烷 C7H16 br/ 32 Benzene 苯 C6H6 br/ 33 2,2,4-Trimethylpentane 2,2,4-三甲基戊烷 C8H18 br/ 34 n-Heptane 正庚烷 C7H16 br/ 35 Methylcyclohexane 甲基环己烷 C7H14 br/ 36 2,3,4-Trimethylpentane 2,3,4-三甲基戊烷 C8H18 br/ 37 2-Methylheptane 2-甲基庚烷 C8H18 br/ 38 3-Methylheptane 3-甲基庚烷 C8H18 br/ 39 Toluene 甲苯 C7H8 br/ 40 Octane 正辛烷 C8H18 br/ 41 Tetrachloroethylene 四氯乙烯 C2Cl4 br/ 42 Ethylbenzene 乙苯 C8H10 br/ 43 n-Nonane 正壬烷 C9H20 br/ 44 m/p-Xylene 对/间二甲苯(p/m﹚ C8H10/C8H10 br/ 45 o-Xylene 邻﹙O﹚二甲苯 C8H10 br/ 46 Styrene 苯乙烯 C8H8 br/ 47 Isopropylbenzene 异丙苯 C9Hl2 br/ 48 n-Propylbenzene 正丙基苯 C9H12 br/ 49 m-Ethyltoluene 3-乙基甲苯 C9H12 br/ 50 p-Ethyltoluene 4-乙基甲苯 C9H12 br/ 51 1,3,5-Trimethylbenzene 1,3,5-三甲基苯 C9H12 br/ 52 O-Ethyltoluene 2-乙基甲苯 C9H12br/ 53 1,2,4-Trimethylbenzene 1,2,4-三甲基苯 C9H12 br/ 54 1,2,3-Trimethylbenzene 1,2,3-三甲基苯 C9H12 br/ 55 1,3-Diethylbenzene 1,3-二乙基苯 C10H14br/ 56 1,4-Diethylbenzene 1,4-二乙基苯 C10H14br/ 57 Udecane 正十一烷 C11H24br/ 58 Dodecane 正十二烷 C12H26br/ 含氧有机物13种 br/ 序号 化合物 化合物 化学式 br/ 1 acrolein 丙烯醛 C3H4O br/ 2 Propanal 丙醛 C3H6O br/ 3 Acetone 丙酮 C3H6O br/ 4 Acetonitrile 乙腈 C2H3N br/ 5 MTBE 甲基叔丁基醚 C5H12O br/ 6 Methacrolein 2-甲基丙烯醛 C4H6O br/ 7 n-Butanal 正丁醛 C4H8O br/ 8 Methylvinylketone 甲基乙烯基酮 C4H6O br/ 9 Methylethyl ketone 甲基乙基酮 C4H8O br/ 10 2-pentanone 2-戊酮 C5H10O br/ 11 3-Pentanone 3-戊酮 C5H10Obr/ 12 n-pentanal正戊醛 C5H10Obr/ 13 n-Hexanal 正己醛 C6H12O br/ 卤代烃31种 br/ 序号 化合物英文名称 化合物中文名称 化学式 br/ 1 Freon114(C2F4Cl2) 氟利昂114 C2F4Cl2 br/ 2 Chloromethane 氯甲烷 CH3Clbr/ 3 Vinylchloride 氯乙烯 C3H3Clbr/ 4 Bromomethane 溴甲烷 CH3Br br/ 5 Chloroethane 氯乙烷 C2H5Cl br/ 6 Freon11(CFCl3) 氟利昂11 CCl3F br/ 7 1,1-Dichloroethylene 1,1-二氯乙烯 C2H2Cl2 br/ 8 Freon113(C2F3Cl3) 氟利昂113 C2F3Cl3 br/ 9 Methyl iodide 碘甲烷 CH3I br/ 10 Dichloromethane 二氯甲烷 CH2Cl2 br/ 11 1,1-Dichloroethane 1,1-二氯乙烷 C2H4Cl2 br/ 12 cis-1,2-Dichloroethylene 顺-1,2-二氯乙烯 C2H2Cl2 br/ 13 Chloroform 氯仿 CHCl3 br/ 14 1,1,1-Trichloroethane 1,1,1-三氯乙烷 C2H3Cl3 br/ 15 Carbontetrachloroide 四氯化碳 CCl4 br/ 16 1,2-Dichloroethane 1,2-二氯乙烷 C2H4Cl2 br/ 17 Trichloroethylene 三氯乙烯 C2HCl3 br/ 17 1,2-Dichloropropane 1,2-二氯丙烷 C3H6Cl2 br/ 18 Bromodichloromethane 溴二氯甲烷 CHBrCl2br/ 20 trans-1,3-Dichloropropene 反-1,3-二氯丙烯 C3H4Cl2 br/ 21 cis-1,3-Dichloropropene 顺-1,3-二氯丙烯 C3H4Cl2 br/ 22 1,1,2-Trichloroethane 1,1,2-三氯乙烷 C2H3Cl3 br/ 23 Tetrachloroethylene 四氯乙烯 C2Cl4 br/ 24 1,2-Dibromoethane 二溴乙烷 C2H4Br2 br/ 25 Chlorobenzene 氯苯 C6H5Cl br/ 26 1,3-Dichlorobenzene 1,3-二氯苯 C6H4Cl2 br/ 27 1,4-Dichlorobenzene 1,4-二氯苯 C6H4Cl2 br/ 28 Benzylchloride 苄基氯﹙氯甲苯)C7H7Cl br/ 29 1,2-Dichlorobenzene 1,2-二氯苯 C6H4Cl2 br/ 30 Bromoform 溴仿CHBr3br/ 31 1,1,2,2-Tetrachloroethane 1,1,2,2-四氯乙烷 C2H2Cl4/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录B a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境监测移动实验室系统/a/strongstrong(NO2、SO2、O3、CO)监测仪器性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="128" rowspan="2"p style="text-align:center "检测项目/p/tdtd width="510" colspan="4"p style="text-align:center "性能指标/p/td/trtrtd width="128"p style="text-align:center "NO2分析仪器/p/tdtd width="128"p style="text-align:center "SO2分析仪器/p/tdtd width="128"p style="text-align:center "O3分析仪器/p/tdtd width="128"p style="text-align:center "CO分析仪器/p/td/trtrtd width="128"p style="text-align:center "零点噪声/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤0.25 ppb/p/td/trtrtd width="128"p style="text-align:center "最低检出限/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppb/p/td/trtrtd width="128"p style="text-align:center "量程噪音/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/td/trtrtd width="128"p style="text-align:center "示值误差/p/tdtd width="128"p style="text-align:center "± 2%F.S./p/tdtd width="128"p style="text-align:center "± 2%F.S./p/tdtd width="128"p style="text-align:center "± 4%F.S./p/tdtd width="128"p style="text-align:center "± 2%F.S./p/td/trtrtd width="128"p style="text-align:center "20% 量程精密度/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppm/p/td/trtrtd width="128"p style="text-align:center "80% 量程精密度/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppm/p/td/trtrtd width="128"p style="text-align:center "24h零点漂移/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/trtrtd width="128"p style="text-align:center "24h20%量程漂移/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/trtrtd width="128"p style="text-align:center "24h80%量程漂移/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录C a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"空气质量可吸入颗粒物自动监测仪/a/strongstrong技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="425" colspan="2"p style="text-align:center "测量范围/p/tdtd width="213"p style="text-align:center "0~1mg/m3或0~10 mg/m3(可选)/p/td/trtrtd width="425" colspan="2"p style="text-align:center "50%切割粒径/p/tdtd width="213"p style="text-align:center "10 μm± 1μm空气动力学直径/p/td/trtrtd width="425" colspan="2"p style="text-align:center "最小显示单位/p/tdtd width="213"p style="text-align:center "0.001mg/m3/p/td/trtrtd width="425" colspan="2"p style="text-align:center "采样流量偏差/p/tdtd width="213"p style="text-align:center "≤± 5%设定流量/24h/p/td/trtrtd width="425" colspan="2"p style="text-align:center "仪器平行性/p/tdtd width="213"p style="text-align:center "≤± 7% 或5μg/m3/p/td/trtrtd width="425" colspan="2"p style="text-align:center "校准膜重现性/p/tdtd width="213"p style="text-align:center "≤± 2%标准值/p/td/trtrtd width="213" rowspan="3"p style="text-align:center "与参比方法比较/p/tdtd width="213"p style="text-align:center "斜率/p/tdtd width="213"p style="text-align:center "1± 0.1/p/td/trtrtd width="213"p style="text-align:center "截距/p/tdtd width="213"p style="text-align:center "0± 5 μg/m3/p/td/trtrtd width="213"p style="text-align:center "相关系数/p/tdtd width="213"p style="text-align:center "≥0.95/p/td/trtrtd width="425" colspan="2"p style="text-align:center "输出信号/p/tdtd width="213"p style="text-align:center "模拟信号或数字信号/p/td/trtrtd width="425" colspan="2"p style="text-align:center "工作电压/p/tdtd width="213"p style="text-align:center "AC 220V± 10%,50 Hz/p/td/trtrtd width="425" colspan="2"p style="text-align:center "工作环境温度/p/tdtd width="213"p style="text-align:center "0~50 ℃/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录D a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境监测/a/strongstrong移动实验室气象设备技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="159"p style="text-align:center "测量项目/p/tdtd width="160"p style="text-align:center "测量范围/p/tdtd width="160"p style="text-align:center "测量精度/p/tdtd width="160"p style="text-align:center "输出信号/p/td/trtrtd width="159"p style="text-align:center "风速/p/tdtd width="160"p style="text-align:center "1~60 m/s/p/tdtd width="160"p style="text-align:center "± 0.3m/s/p/tdtd width="160" rowspan="5"p style="text-align:center "模拟信号或数字信号/p/td/trtrtd width="159"p style="text-align:center "风向/p/tdtd width="160"p style="text-align:center "0~360/p/tdtd width="160"p style="text-align:center "± 3° /p/td/trtrtd width="159"p style="text-align:center "温度/p/tdtd width="160"p style="text-align:center "-40~60 ℃/p/tdtd width="160"p style="text-align:center "± 0.2℃/p/td/trtrtd width="159"p style="text-align:center "湿度/p/tdtd width="160"p style="text-align:center "0~100%RH/p/tdtd width="160"p style="text-align:center "± 2%/p/td/trtrtd width="159"p style="text-align:center "气压/p/tdtd width="160"p style="text-align:center "300~1200 hPa/p/tdtd width="160"p style="text-align:center "± 1 hPa/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录E 大气环境监测移动实验室自动校准设备技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="159"p style="text-align:center "设备名称/p/tdtd width="160"p style="text-align:center "性能指标/p/tdtd width="160"p style="text-align:center "技术要求/p/tdtd width="160"p style="text-align:center "备注/p/td/trtrtd width="159" rowspan="5"p style="text-align:center "多气体校准装置/p/tdtd width="160"p style="text-align:center "稀释比例/p/tdtd width="160"p style="text-align:center "1/200~1/2000/p/tdtd width="160" rowspan="12"p style="text-align:center "1.要求所有的稀释源使用含氧量为20.9± 0.2%的无干扰干燥气体; br/ 2.渗透室温度为渗透室中渗透管周围的温度;/p/td/trtrtd width="160"p style="text-align:center "流量计准确度/p/tdtd width="160"p style="text-align:center "± 1%/p/td/trtrtd width="160"p style="text-align:center "渗透室温度准确度/p/tdtd width="160"p style="text-align:center "± 0.1 ℃/p/td/trtrtd width="160"p style="text-align:center "臭氧发生准确度/p/tdtd width="160"p style="text-align:center "± 2%/p/td/trtrtd width="160"p style="text-align:center "工作环境/p/tdtd width="160"p style="text-align:center "0~40 ℃/p/td/trtrtd width="159" rowspan="7"p style="text-align:center "零气发生器/p/tdtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"SO2监测分析仪/a/p/tdtd width="160"p style="text-align:center "SO2体积分数<0.5× 10?9/p/td/trtrtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"NO2监测分析仪/a/p/tdtd width="160"p style="text-align:center "NOx体积分数<0.5× 10?9/p/td/trtrtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"O3监测分析仪/a/p/tdtd width="160"p style="text-align:center "O3体积分数<0.5× 10?9/p/td/trtrtd width="160" rowspan="4"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"CO监测分析仪/a/p/tdtd width="160"p style="text-align:center "NOx<5× 10?9/p/td/trtrtd width="160"p style="text-align:center "O3体积分数<1× 10?9/p/td/trtrtd width="160"p style="text-align:center "不含HC/p/td/trtrtd width="160"p style="text-align:center "CO体积分数<10× 10?9/p/td/tr/tbody/tablepbr//p
  • 先河环保共建大气环境监测领域首个国家级工程实验室
    12月24日,大气环境污染监测先进技术与装备国家工程实验室建设启动大会在合肥圆满召开,标志着我国大气环境监测领域唯一的国家级工程实验室正式启动建设。本次大会由国家发改委高新技术产业司、中科院科技促进发展局为指导单位,合肥市人民政府、安徽省发展和改革委员会、中国科学院合肥物质科学研究院联合主办。 先河环保作为共建单位应邀参会。大气环境污染监测先进技术与装备国家工程实验室理事会由国内20多家大气污染防治领域的顶级科研院所、高新技术企业的专家、院士组成,国家工程实验室主任由刘文清院士担任,工程技术委员会主任由郝吉明院士担任。先河环保作为大气监测装备产业龙头企业,被认定为大气污染环境监测先进技术与装备国家工程实验室的共建单位和理事单位,再次进入中国大气污染防治的国家级团队,先河环保董事长李玉国被聘为国家工程实验室第一届理事会副理事长。启动仪式告成后,大会主会场举办大气监测技术产业创新论坛,先河环保技术与产品开发中心主任尚永昌围绕大气环境监测技术产业的发展,通过报告进行交流。尚永昌指出,结合现阶段环境管控特点,公司布局了生态环境监测装备、运维服务、社会化检测、环境大数据分析及决策支持服务、VOCs治理、农村污水处理以及民用净化等核心业务。围绕国家大气污染防治规划,公司在常规空气监测的基础上,布局了机动车尾气、工业园区、扬尘、PM2.5源解析、预警预报、大气污染防治网格化精准监控以及全防全控、联防联控的环境监测整体解决方案,为环境管理提供了强有力的支撑保障。实验室将围绕我国大气环境监测和环保产业升级发展需求,开展地基、车载(船载)、机载和星载等多平台大气环境监测装备研发,形成共性技术研发、试验检测和工程化产业化开发能力,建成我国大气环境监测关键共性技术创新平台、国际一流的大气环境监测高技术研发和人才培养基地。
  • 中科光电携大气环境监测激光雷达亮相第33届气象学年会
    11月2日,以“加强学科融合、助力气象事业发展”为主题的第33届中国气象学会年会在陕西西安召开。会议为期三天,共组织22个分会场,并首次组织5场交叉学科交流活动。中国气象局副局长、中国气象学会副理事长宇如聪,陕西省副省长冯新柱、陕西省气象局局长丁传群等出席了开幕式。中国科学院院士曾庆存、中国工程院院士丁一汇、中国科学学院院士万卫星等近2000名杰出代表参加了此次会议。  会议期间,聚光科技子公司无锡中科光电技术有限公司(以下简称“中科光电”)的技术学者们与业内专家相互交流科研发展,探讨业务,并携大气环境监测雷达亮相展台,获得不少关注。第33届中国气象学年会现场  在这次会议中,中科光电研究员就《激光雷达在环境气象领域中的应用》、《重庆地区秋季大气臭氧垂直分布特征研究》与各位专家学者做了学术交流。  在当下,激光雷达已经广泛应用于大气边界层、水汽、大气温度、大气风场等探测中。中科光电的大气颗粒物激光雷达能对沙尘的过境、高空输送、沉降等信息进行探测,能输出高时间分辨率的大气光学厚度、边界层高度等数据信息,还可以观测到云底高度及云体结构性质的演变过程,为降水、降雪、冰雹等天气的预测预报提供前期的指示信号。 大气颗粒物监测激光雷达(双波长三通道)大气颗粒物监测激光雷达(高能扫描)短临预报:降雨短临预报:冰雹  在气象学中,气象因素会对臭氧产生影响,臭氧是城市光化学烟雾的最主要成分之一,同时也是重要的温室气体, 高浓度臭氧将对人类、动植物以及建筑物造成极大的危害。中科光电臭氧探测激光雷达能获取大气臭氧的时空分布信息,对大气环境、大气物理、化学分析等的监测控制有着较大的指导意义。气象条件与臭氧的垂直分布特征大气臭氧探测激光雷达  中科光电研究院还向各位专家学者分享了《大气颗粒物监测激光雷达的性能参量标校》。据悉,现在气象学领域还未曾出现统一的对激光雷达系统性能参数的测量验证。中科光电提出的是目前主流的激光雷达系统标校方法,能让使用者对大气颗粒物监测激光雷达的距离准确性和退偏比得到清楚的认识,对后期雷达系统的改进起到重要作用。激光雷达探测距离精度标校不少专家学者莅临中科光电展位参观了解激光雷达实物,中科光电工作人员向各位参观学者们演示了激光雷达的工作过程,展位人气不断。专家学者参观中科光电展台  作为国内外环境监测仪器的领先制造商,中科光电一直致力于为气象环境监测工作提供精准的数据,凭借多年在气象应用领域积累的经验与技术能力,集中优势技术团队,成功将多种产品应用于气象环境监测的各个领域中,参与了许多重要事件。在今年的杭州“G20”峰会、2015年“APEC”峰会、“抗战胜利70周年”首都阅兵现场、2015世界互联网大会和2014年南京青奥会等重大项目中,都起到了重要的保障作用。  在未来,中科光电依然会将气象环境监测作为重要的工作使命,致力于为气象部门提供更专业的服务。
  • 920万!河南许昌市生态环境局大气环境监测能力建设项目”招标公告
    项目概况 许昌市生态环境局大气环境监测能力建设项目招标项目的潜在投标人应在《全国公共资源交易平台(河南省.许昌市)》(http://ggzy.xuchang.gov.cn/)获取招标文件,并于2021年09月23日08时30分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:许采-2021-1438 2、项目名称:许昌市生态环境局大气环境监测能力建设项目 3、采购方式:公开招标 4、预算金额:9,200,000.00元 最高限价:9200000元 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 本项目主要建设内容包括配置气质联用仪及采样和前处理设备,低浓度颗粒物监测分析仪、离子色谱、气相色谱、电感耦合等离子体质谱(ICPMS)、石墨炉原子吸收仪等设备,形成大气挥发性有机物监测能力和辖区内重点行业主要污染因子的执法监测能力,为我市大气污染防治和环境执法工作提供数据支撑。 6、合同履行期限:自合同生效之日起60日历天 7、本项目是否接受联合体投标:否 8、是否接受进口产品:否 二、申请人资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求:无 3、本项目的特定资格要求:无 三、获取招标文件 1.时间:2021年08月30日 至 2021年09月23日,每天上午00:01至12:00,下午12:01至23:59(北京时间,法定节假日除外。) 2.地点:《全国公共资源交易平台(河南省.许昌市)》(http://ggzy.xuchang.gov.cn/) 3.方式:在线下载 4.售价:0元 四、投标截止时间及地点 1.时间:2021年09月23日08时30分(北京时间) 2.地点:本项目采用网上投标,请符合投标条件的供应商使用CA数字证书加密上传投标文件。 五、开标时间及地点 1.时间:2021年09月23日08时30分(北京时间) 2.地点:本项目采用“不见面”网上开标方式,请投标供应商使用CA数字证书登录全国公共资源交易平台(河南省.许昌市)——进入公共资源交易系统(http://ggzy.xuchang.gov.cn:8088/ggzy/)——点击“项目信息——项目名称”——在系统操作导航栏点击“开标——不见面开标大厅”, 在规定的开标时间内进行解密开标。 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》《中国政府采购网》、《许昌市政府采购网》、《全国公共资源交易平台(河南省.许昌市)》、《中国.许昌 许昌市政府网》上发布, 招标公告期限为五个工作日。 七、其他补充事宜 1.本项目采用电子系统进行招投标,请在投标前详细阅读全国公共资源交易平台(河南省.许昌市)首页“资料下载”栏目的《交易系统全电子操作手册(投标人)》及其附件。 2.投标供应商在电子系统使用过程中遇到涉及系统使用的问题,可致电0374-2961598进行咨询。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:许昌市生态环境局 地址:许昌市龙兴路创业服务中心 联系人:郑雪燕 联系方式:15503742366 2.采购代理机构信息(如有) 名称:许昌市政府采购服务中心 地址:许昌市龙兴路与竹林路交汇处创业服务中心C座 联系人:许昌市政府采购服务中心 联系方式:详见http://ggzy.xuchang.gov.cn/ywdh/38864.jhtml 3.项目联系方式 项目联系人:李女士 联系方式:0374—2968687
  • 丹东百特与华南师大共建大气环境仪器检测技术中心揭牌
    经过一年多的努力,丹东市百特仪器有限公司与华南师范大学共建的“大气环境监测仪器工程技术中心”于6月18日在百特公司正式揭牌,同时进行了“大气环境自动检测系统”合作项目签字仪式,标志着依托百特公司,联合华南师大等高校共建环境监测仪器创新平台取得实质性进展,为丹东市仪器仪表产业增添了一个全新领域,为仪器仪表产业基地建设添上浓墨重彩的一笔。  华南师范大学是广东省属唯一国家重点高校,特别是杨冠铃、何振江教授带领的团队在大气监测仪器研究方面在国内处于领先地位,为改变我国仪器仪表行业“引进生产线就落后、生产出产品就过时”现状做了大量工作,在高端大气监测仪器研究方面取得众多成果,已先后取得10余项授权发明专利,许多指标达到或超过国外同类产品。 2009年,丹东市科技局专门邀请华南师大参加“辽宁(丹东)仪器仪表产业基地科技合作洽谈会”,会议期间,百特公司与华南师大双方就“大气环境监测系统”达成合作意向。随着经济发展和环保意识增强,我国将逐步在1642个县(市)建设环境监测站,对大气监测仪器有较大需求,具有50-60亿元市场容量,对双方合作开发的大气环境自动检测系统开发和打入市场将产生巨大推动作用。产品进入市场后,可有效打破相关高端大气监测仪器国外产品的垄断地位,并将占有重要份额,为企业发展壮大提供新的增长点,为丹东市仪器仪表产业发展树立新的形象。
  • 大气环境质量监测分析方法
    摘 要:大气中的有害物质是多种多样的,不同地区污染类型和排放污染物种类不尽相同,因此,在进行大气质量评价时,应根据各地的实际情况确定需要检测的大气环境指标。  关键字:大气环境 质量监测 分析方法  大气中的有害物质是多种多样的,不同地区污染类型和排放污染物种类不尽相同,因此,在进行大气质量评价时,应根据各地的实际情况确定需要检测的大气环境指标。  大气中常见的污染物有总悬浮颗粒物、降尘、可吸入颗粒物、二氧化硫、氮氧化物、总烃、铅、氟化物、臭氧和苯并[a]芘。  颗粒物质的测定:颗粒物质是大气污染物中数量最大、成分复杂、性质多样、危害较大的一种,它本身可以是有毒物质,还可以是其他有毒有害物质在大气中的运载体、催化剂或反应床。在某些情况下,颗粒物质与所吸附的气态或蒸气态物质结合,会产生比单个组分更大的协同毒性作用。所以,对颗粒物质的研究是控制大气污染的一个重要内容.大气中颗粒物质的检测项目有:总悬浮颗粒物的测定、可吸入颗粒物浓度及粒度分布的测定、降尘量的测定、颗粒中化学组分的测定。  其中,颗粒物浓度的测定最常用的是重量法,原理是:使一定体积的空气进入切割器,将大于某一粒径的微粒分离,小于这一粒径的微粒随着气流经分离器的出口被阻留在已恒重的滤膜上。根据采样前后滤膜的重量差及采样体积,计算出颗粒物浓度,以mg/m3表示(m3指标准状况下)。  二氧化硫的测定: 大气中的含硫污染物主要有H2S、SO2、SO3、CS2、H2SO4和各种硫酸盐。他们主要来源于煤和石油燃料的燃烧、含硫矿石的冶炼、硫酸等化工产品生产排放的废气。  作为大气污染的主要指标之一,二氧化硫在各种大气污染物中分布最广、影响最大,因此,在硫氧化物的检测中常常以二氧化硫为代表。  二氧化硫对人体健康、生活和工农业生产等各方面的影响。  测定二氧化硫的方法主要有四氯汞钾溶液吸收-盐酸副玫瑰苯胺分光光度法(GB 8970-88)、甲醛缓冲溶液吸收-盐酸副玫瑰苯胺分光光度法(GB/T 15262-94)、钍试剂分光光度法、紫外荧光法、电导法、库仑滴定法、火焰光度法、定电位电解法(HJ/T57-2000)。  甲醛缓冲溶液-副玫瑰苯胺分光光度法测定二氧化硫:二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、甲醛作用,生成紫红色化合物,用分光光度计在577nm处测定。  氮氧化物的测定:氮氧化物主要来源于石化燃料高温燃烧和硝酸、化肥等生产排放的废气,以及汽车排气。  氮氧化物包括NO、NO2、N2O、N2O3、N2O4、N2O5等,这些氧化物中占主要成分的是一氧化氮和二氧化氮。  氮氧化物及其在空气中的反应产物对人体健康的影响。  大气中氮氧化物的测定可分为化学法和仪器法两类。  化学法中最常用的是Saltzman法( GB/T 15435-95)、酸性高锰酸钾溶液氧化法、三氧化铬-石英砂氧化法。其中Saltzman法仅适于测二氧化氮的含量,酸性高锰酸钾溶液氧化法和三氧化铬-石英砂氧化法可以检测大气中氮氧化物总量。  仪器法有化学光化法和库仑原电池法等。  Saltzman法测定二氧化氮的基本原理: 空气中的二氧化氮与吸收液中的对氨基苯磺酸进行重氮化反应,再与N-(1-萘基)乙二胺盐酸盐作用,生成粉红色的偶氮染料,于波长540~545 nm之间用分光光度计测定其吸光度。  更多详情请关注:青岛佳明测控仪器有限公司官方主页 http://www.cn-cems.com/
  • 各市、县加快配备这些环境监测仪器∣京津冀及周边地区、汾渭平原秋冬季大气污染综合治理攻坚行动方案征求意见
    日前,生态环境部办公厅发布通知,对《京津冀及周边地区、汾渭平原2023-2024年秋冬季大气污染综合治理攻坚行动方案(征求意见稿)》公开征求意见。行动方案要求:2023 年底前,各城市确保完成上级人民政府下达的 2023 年空气质量改善目标。秋冬季期间(2023 年 10 月 1 日至 2024 年 3 月 31 日),各城市完成 PM2.5浓度控制目标和重度及以上污染天 数控制目标。实施范围涵盖:北京市,天津市,河北省石家庄、唐山、秦皇岛、 邯郸、邢台、保定、沧州、廊坊、衡水市以及雄安新区、定州、辛集市,山西省太原、阳泉、长治、晋城、晋中、运城、临汾、吕梁 市,山东省济南、淄博、枣庄、东营、潍坊、济宁、泰安、日照、 临沂、德州、聊城、滨州、菏泽市,河南省郑州、开封、洛阳、平 顶山、安阳、鹤壁、新乡、焦作、濮阳、许昌、漯河、三门峡、商 丘、周口市以及济源市,陕西省西安、铜川、宝鸡、咸阳、渭南市 (含韩城市)以及杨凌示范区。行动方案中特别强调要加强监测监控能力建设。具体来说:加强大气环境监测能力建设。持续推进环境空气 PM2.5组分、VOCs 监测站点及路边交通、工业园区、产业集群环境空气监测站点建设, 并与中国环境监测总站联网。完善城市空气质量监测网络,加快推进六参数乡镇空气质量自动监测站点建设,基本实现乡镇全覆盖, 并与国家、省、市三级联网。加强环境空气质量监测网络日常运维 和质量管理,充分运用各类站点监测数据进行综合研判,快速识别污染高值区域等,为精准施策提供依据。强化城市空气质量预报体系,提高预报准确率。提升污染源监测监控能力。大气环境重点排污单位依法安装自动监测设备,与生态环境部门联网并按规范要求稳定运行。推动企业安装工况监控、用能用电监控、视频监控等设备。各市、县根据大气环境管理和执法监管需求,加快配备红外热成像气体泄漏检测仪、手持式氢火焰离子检测仪、手持式光离子化检测仪、便携式紫外烟气分析仪、便携式烟尘分析仪、便携式氨气分析仪、便携式不透光烟度计、林格曼烟度仪、便携式油品和尿素检测仪、油气回收 三项检测仪、OBD 诊断仪等装备。提高自行监测和执法监测数据质量。2024 年3月底前,对排污单位自行监测和社会化检测机构承担的执法监测开展部门联合监督抽查,加强对监测点位设置、仪器设备功能参数、原始监测记录、 自行监测信息公开的检查力度,推动委托单位保存原始监测记录,更换性能不满足标准规范要求的自动监测仪器设备,强化手工监测报告和过程数据的平台化管理,严厉打击自动监测数据弄虚作假以及出具虚假检测、对比报告等行为,依法公开一批人为干预、篡改、伪造监测数据的机构、单位和人员名单。为了进一步探索当前我国大气监测技术与应用研究进展,仪器信息网将于2023年10月11日-13日组织召开“第四届大气监测技术及应用”网络会议,将汇集多位来自科研院校、检测单位的出色专家,共同探讨大气监测技术及仪器设备的研发应用等。同时,会议旨在搭建互动平台,为同行提供在线学习机会,点击报名》》》附件:京津冀及周边地区、汾渭平原2023-2024年秋冬季大气污染综合治理攻坚行动方案(征求意见稿)
  • 先河环保与河北科技大学将在大气环境监测技术等方面展开合作
    2月23日,河北科技大学李铁军校长一行到先河环保考察调研,并签署战略合作协议,重点围绕大气环境监测技术、碳排放研究、双碳达标规划、高端学术会议、科研合作等方面,建立长效合作机制。   李铁军校长一行参观了公司展厅、大数据应用中心,全面了解了先河环保的发展历程、技术创新和产品研发情况,以及先河在环境监测、管理咨询、环境治理领域的新成果、新模式、新案例。随后听取了先河环保双碳业务和河北先进环保产业创新中心整体情况介绍。李铁军校长对先河取得的研发成果和持续创新的精神给予充分肯定。   李铁军校长一行参观了公司展厅、大数据应用中心,全面了解了先河环保的发展历程、技术创新和产品研发情况,以及先河在环境监测、管理咨询、环境治理领域的新成果、新模式、新案例。随后听取了先河环保双碳业务和河北先进环保产业创新中心整体情况介绍。李铁军校长对先河取得的研发成果和持续创新的精神给予充分肯定。   共话合作   河北科技大学以视频形式展示了学院风采,介绍了学科优势和技术创新实力。李铁军校长表示,协同创新是时代发展、科技进步的加速器,先河环保是科大组织的“百县千企万校友”第一站,双方在前期已经建立了良好的合作基础,希望在新一轮的创新实践中开展全面合作,搭建一个更有高度、更深层次的协同创新体系。   陈荣强总裁表示,“打开院墙办企业”一直是先河环保的传统。双方秉承开放合作的创新理念,共同开展了许多的项目、技术合作,河北科技大学也为公司持续输送了许多优秀人才。先河环保愿同河北科技大学开展各领域、全方位的交流合作,开启校企合作、协同创新的崭新篇章。   签约仪式 河北科技大学王军院长与先河环保何谓总裁助理代表双方签署战略合作协议   随后,在双方领导共同见证下,河北科技大学与先河环保签署战略合作协议。遵照协议,双方将充分发挥各自业务领域优势,重点围绕大气环境监测技术、碳排放研究、双碳达标规划、高端学术会议、科研合作等方面,建立长效合作机制。   河北科技大学张文俐副校长、林雪峰主任、崔建升院长、曹东方书记及周庞、曹磊、赵瑞红、段二红等专家教授;先河环保总裁助理刘水东、潘本锋、王立明,产创中心主任王春迎等领导一同出席了活动。
  • 四项团体标准汇总,涉及多款大气环境监测仪器
    由中华环保联合会归口,中国环境监测总站、上海市环境监测中心、上海大学、中华环保联合会VOCs污染防治专业委员会和上海警合科学仪器股份有限公司等国内外50余家企事业单位共同起草的《便携式挥发性有机物检测仪 (FID)技术要求及监测规范》《便携式挥发性有机物检测仪 (PID) 技术要求及监测规范》《挥发性有机物泄漏检测红外热像仪(0GI) 技术要求及监测规范》《PM2.5中金属元素走航监测系统技术要求及监测规范》四项团体标准,经编制组会议、专家咨询、专家研讨会等对标准内容研讨论证,并对技术指标开展实验验证,已完成标准征求意见稿,相关信息如下:1、《便携式挥发性有机物检测仪 (FID)技术要求及监测规范》(征求意见稿)此标准规定了用于泄漏检测的便携挥发性有机物检测仪(FID)的术语和定义、基本要求、技术要求、试验方法、检验规则、标志、包装、运输和贮存、测定、质量保证与质量控制和注意事项等,适用于爆炸性危险气体场所及非爆炸性危险气体环境用便携式FID检测仪(以下简称分析仪)的设计、生产和检测技术等。2、《便携式挥发性有机物检测仪 (PID) 技术要求及监测规范》(征求意见稿)此文件规定了便携式挥发性有机物检测仪(以下简称仪器)的规范性引用文件、术语和定义、基本要求、性能要求、检验方法、检验规则、标志、包装、运输和贮存等,适用于采用光离子化检测器(PID)原理测试挥发性有机物浓度的便携式仪器。3、《挥发性有机物泄漏检测红外热像仪(0GI) 技术要求及监测规范》(征求意见稿)此文件适用于基于便携式光学气体成像技术开展工业企业设备、管道组件、储罐等挥发性有机物的泄漏检测、现场应急监测、污染筛查等调查与监测工作,规定了便携式挥发性有机物泄漏检测红外成像仪(以下简称“成像仪”)的检测原理、基本参数、技术要求、试验项目及要求、质控质保规范等。在线式检测设备可参考本小准执行,适用于石油炼制、石油化学、精细化工、石化和天然气储运以及其他行业挥发性有机物泄漏检测的控制和管理。4、《PM2.5中金属元素走航监测系统技术要求及监测规范》(征求意见稿)此文件规定了PM2.5中金属元素的走航监测的方法概述、试剂或材料、仪器和设备、监测方法、结果计算与表示、质量保证与质量控制及安全防护要求,适用于环境空气、无组织排放废气的PM2.5中金属的走航监测工作。附:1、《便携式挥发性有机物检测仪(FID)技术要求及监测规范(征求意见稿)》.pdf2、《便携式挥发性有机物检测仪(FID)技术要求及监测规范(征求意见稿)》编制说明.pdf3、《便携式挥发性有机物检测仪(PID)技术要求及监测规范(征求意见稿)》.pdf4、《便携式挥发性有机物检测仪(PID)技术要求及监测规范(征求意见稿)》编制说明.pdf5、《挥发性有机物泄漏检测红外成像仪(OGI)技术要求及监测规范(征求意见稿)》.pdf6、《挥发性有机物泄漏检测红外成像仪(OGI)技术要求及监测规范(征求意见稿)》编制说明.pdf7、《PM2.5中金属元素走航监测系统技术要求及监测规范(征求意见稿)》.pdf8、《PM2.5中金属元素走航监测系统技术要求及监测规范(征求意见稿)》编制说明.pdf
  • 无锡中科光电中标成都市大气环境监测超级站建设项目
    2013.11.22,公司中标四川省成都市环境监测中心站的大气环境监测超级站建设项目,中标产品为大气颗粒物监测激光雷达。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制