当前位置: 仪器信息网 > 行业主题 > >

质谱离子检测

仪器信息网质谱离子检测专题为您提供2024年最新质谱离子检测价格报价、厂家品牌的相关信息, 包括质谱离子检测参数、型号等,不管是国产,还是进口品牌的质谱离子检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱离子检测相关的耗材配件、试剂标物,还有质谱离子检测相关的最新资讯、资料,以及质谱离子检测相关的解决方案。

质谱离子检测相关的资讯

  • 高选择性敞开式质谱离子源:让检测更高效
    p style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体,SimSun "离子源是质谱仪的关键核心部件,其技术及产品的发展不断推动着质谱仪器的进步和应用领域的拓展,如电喷雾离子源(ESI)、基质辅助激光解吸电离源(MALDI)的发明加速了各学科研究领域的革命。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体,SimSun "常压敞开式离子源是近年来新兴的一种离子源,这类离子源具有无需复杂的样品前处理、操作方便、快速、实时原位、非破坏性等特点。2004年,Cooks等报道了电喷雾解吸离子化(DESI)技术,且首次提出商业化常压敞开式离子源质谱技术的概念,为大气压下直接采样的常压离子化技术的发展起到了重要的推动作用。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体,SimSun "近日,中国检验检疫科学研究院科研团队在敞开式质谱离子源的研制方面又取得新进展!(点击链接了解更多:a href="https://www.instrument.com.cn/news/20200709/553444.shtml" target="_blank"span style="font-family: 宋体, SimSun color: rgb(192, 0, 0) "strong张峰团队成功研发出新型敞开式质谱离子源/strong/span/a)。/spanspan style="font-family: 宋体, SimSun text-indent: 2em "科研人员研制出一种新型敞开式质谱离子源。该离子源与常用的液相色谱串联质谱技术相比,检测时间由几十分钟可缩短至不到1分钟,检测灵敏度可达到ppb甚至sub-ppb级,而离子源成本由几十万元降至几千元。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun text-indent: 2em "仪器信息网编辑在了解到该研究进展后,第一时间联系到中国检验检疫科学研究院副院长张峰老师,请他详细介绍了该项目进展及其研制技术的发展现状与展望。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体,SimSun "据项目团队首席专家、中国检验检疫科学研究院副院长张峰介绍,科研团队是将传统的固体基板电喷雾离子源中的惰性基板改进为导电基板,引入分子印迹修饰技术,首次合成分子印迹聚合材料涂布的不锈钢片(MIPCS)。相较于传统固体基板电喷雾离子源,所研制的MIPCS既结合了分子印迹材料可选择性提取及富集目标物的特性,又结合了导电基板空白质谱噪音低的优势,实现选择性富集目标物并提高检测灵敏度。该技术不但可以应用于食品安全检测,还可应用于药品、化妆品、环境等复杂基质的检测中。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体,SimSun "由于无需繁琐复杂的样品前处理就可以将复杂基质中的目标物质离子化,因此敞开式质谱离子源有其独特优势。张峰说,其团队在该方面的研发主要围绕着“高选择性”进行,通过将高选择性富集材料涂布在导电基板离子源表面,从而提高对样品的选择性富集能力,提高检测灵敏度。 /span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体,SimSun "未来,该团队还将通过应用分子印迹技术、纳米材料技术、MOF/COF富集技术、免疫技术等研发一整套高选择性离子源,系统解决果蔬、牛奶、肉等食品中农兽药残留、生物毒素等有毒有害物质的检测,从而实现复杂食品中痕量目标物的快速灵敏检测。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体,SimSun " /span/ppbr//p
  • 质谱电离技术重要突破!超导纳米线检测单个蛋白质离子
    Fig. 1: View of the SuperMaMa laboratory at the University of Vienna. The hanging gold-plated insert is the radiation shield behind which the superconducting nanowire detectors are installed. C: Quantennanophysik @ Universität Wien  Fig. 2: Counting single proteins with a superconducting nanowire. The background and nanowire are altered in Photoshop with the Generative Fill AI. (Human Insulin PDB:3I40). C: CC BY-ND 4.0 Quantum Nanophysics University of Vienna.  据奥地利维也纳大学(University of Vienna, Boltzmanngasse, Vienna, Austria.)2023年12月4日提供的消息,由维也纳大学量子物理学家马库斯阿恩特(Markus Arndt)领导的国际研究团队在蛋白质离子检测方面取得突破:超导纳米线探测器凭借其高能量灵敏度,实现了蛋白质离子检测的突破(Quantum physics: Superconducting Nanowires Detect Single Protein Ions)。几乎100%的量子效率,比传统离子探测器在低能量下的探测效率高出1000倍。与传统探测器相比,它们还可以通过冲击能量来区分大分子。这允许更灵敏地检测蛋白质,并提供质谱分析中的附加信息。这项研究的结果于2023年12月1日已经在在《科学进展》(Science Advances)杂志网站发表——Marcel Straus, Armin Shayeghi, Martin F. X. Mauser, Philipp Geyer, Tim Kostersitz, Julia Salapa, Olexandr Dobrovolskiy, Steven Daly, Jan Commandeur, Yong Hua, Valentin Köhler, Marcel Mayor, Jad Benserhir, Claudio Bruschini, Edoardo Charbon, Mario Castaneda, Monique Gevers, Ronan Gourgues, Nima Kalhor, Andreas Fognini, Markus Arndt. Highly sensitive single molecule detection of macromolecule ion beams. Science Advances, 1 Dec 2023, Vol 9, Issue 48. DOI: 10.1126/sciadv.adj2801. https://www.science.org/doi/10.1126/sciadv.adj2801  参与此项研究的除了来自维也纳大学的研究人员之外,还有来自奥地利科学院(Austrian Academy of Sciences, Boltzmanngasse, Vienna, Austria)、荷兰MSVision(MSVision, Televisieweg 40, 1322 AM Almere, The Netherlands)、荷兰单量子(Single Quantum, Rotterdamseweg 394, 2629 HH, Delft, The Netherlands) 瑞士巴塞尔大学(University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland)以及瑞士洛桑联邦理工学院(école Polytechnique Fédérale de Lausanne简称EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel, Switzerland)的研究人员。  大分子的检测、识别和分析在生命科学的许多领域都很有趣,包括蛋白质研究、诊断和分析。质谱法通常用作检测系统即一种通常根据带电粒子(离子)的质荷比分离带电粒子(离子)并测量检测器生成的信号强度的方法。这提供了有关不同类型离子的相对丰度的信息,从而提供了样品组成的信息。然而,传统探测器只能对具有高冲击能量的粒子实现高探测效率和空间分辨率——这一限制现已被使用超导纳米线探测器的国际研究团队克服。  低能粒子的合力(Joined forces for low energy particles)  在当前的研究中,由维也纳大学与代尔夫特的单量子、EPFL、MSVision和巴塞尔大学的合作伙伴协调的欧洲联盟首次展示了超导纳米线的使用所谓的四极杆质谱(quadrupole mass spectrometry)中蛋白质束的优秀检测器。待分析样品中的离子被送入四极杆质谱仪并进行过滤。“如果我们现在使用超导纳米线而不是传统探测器,我们甚至可以识别以低动能撞击探测器的粒子,”维也纳大学物理学院量子纳米物理小组(Quantum Nanophysics Group at the Faculty of Physics at the University of Vienna)的项目负责人马库斯阿恩特 (Markus Arndt) 解释道。这是通过纳米线探测器的特殊材料特性(超导性)实现的。  借助超导技术实现这一目标(Getting there with superconductivity)  这种检测方法的关键是纳米线在非常低的温度下进入超导状态,在这种状态下它们失去电阻并允许无损电流流动。进入离子对超导纳米线的激发导致返回到正常导电状态(量子跃迁)。在此转变期间纳米线电特性的变化被解释为检测信号。“通过我们使用的纳米线探测器,”第一作者马塞尔 施特劳斯(Marcel Strauß / Marcel Straus)说,“我们利用了从超导到正常导电状态的量子跃迁,因此可以比传统离子探测器性能高出三个数量级。” 事实上,纳米线探测器在极低的冲击能量下具有显著的量子产率-并重新定义了传统探测器的可能性:“此外,配备这种量子传感器的质谱仪不仅可以根据分子的质量到电荷状态来区分分子,还可以根据分子的动能对它们进行分类。这改善了检测并提供了更好的空间分辨率的可能性,”马塞尔施特劳斯说道。纳米线探测器可以在质谱、分子光谱、分子偏转或分子量子干涉测量中找到新的应用,这些领域需要高效率和良好的分辨率,特别是在低冲击能量下。图 2(Fig. 2)是用超导纳米线计数单个蛋白质。  团队和资金(Team & Funding)  单量子(Single Quantum)领导超导纳米线探测器的研究,洛桑联邦理工学院的专家提供超冷电子学,MSVISION 是质谱专家,巴塞尔大学的专家负责化学合成和蛋白质功能化。维也纳大学将所有组件与其在量子光学、分子束和超导性方面的专业知识结合在一起。  本研究得到了戈登和贝蒂摩尔基金会 (Gordon and Betty Moore Foundation: 10771)、欧盟地平线2020框架计划(European Union’s Horizon 2020 Framework Programme: 860713 and 777222)的资助。  上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。  Abstract  The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previous studies have proven the sensitivity of superconducting detectors to high-energy particles in time-of-flight mass spectrometry. Here, we demonstrate that superconducting nanowire detectors are exceptionally well suited for quadrupole mass spectrometry and exhibit an outstanding quantum yield at low-impact energies. At energies as low as 100 eV, the sensitivity of these detectors surpasses conventional ion detectors by three orders of magnitude, and they offer the possibility to discriminate molecules by their impact energy and charge. We demonstrate three developments with these compact and sensitive devices, the recording of 2D ion beam profiles, photochemistry experiments in the gas phase, and advanced cryogenic electronics to pave the way toward highly integrated detectors.文章来源:科学网 诸平
  • 125万!电感耦合等离子体质谱仪检测仪器采购项目
    项目编号:GZHY22ZZ01A0126项目名称:电感耦合等离子体质谱仪检测仪器采购项目采购方式:竞争性磋商预算金额:1,250,000.00元采购需求:合同包1(电感耦合等离子体质谱仪检测仪器采购项目):合同包预算金额:1,250,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他货物电感耦合等离子体质谱仪1(套)详见采购文件1,250,000.00-本合同包不接受联合体投标合同履行期限:自合同生效之日起至合同全部权利义务履行完毕之日止。
  • 550万!谱育气相色谱质谱、离子色谱等中标生态环境局大气监测采购项目
    2022年3月,信阳市生态环境局发布大气监测监管采购项目中标公告,总金额为625.5万元,采购移动便携式碳组分监测仪、移动便携式金属监测仪、移动式在线离子色谱分析仪、大气环境监测管理与分析平台各1台(套),便携式气象色谱-质谱联用仪2套等。6套仪器设备的采购花落杭州谱育和天瑞仪器。项目基本情况1、采购项目编号:信财公开招标-2021-2302、采购项目名称:信阳市大气环境监测监管能力提升项目中标情况:可以看到,谱育中标近550万元,移动式在线离子色谱以171万元中标、EXPEC2000气质联用以145万元中标、移动式碳组分监测仪以61万元中标,一套定制化的大气环境监测管理分析平台以49.5万元中标。此外,天瑞仪器的移动式重金属监测仪以81万元中标。
  • 320万!民权县综合检验检测中心采购气质普联用仪及电感耦合等离子体质谱仪项目
    项目编号:商政采【2022】232号项目名称:民权县综合检验检测中心采购气质普联用仪及电感耦合等离子体质谱仪项目预算金额:320.0000000 万元(人民币)最高限价(如有):320.0000000 万元(人民币)采购需求:民权县综合检验检测中心采购气质普联用仪及电感耦合等离子体质谱仪项目招标公告河南务实工程管理有限公司受民权县综合检验检测中心的委托,就民权县综合检验检测中心采购气质普联用仪及电感耦合等离子体质谱仪项目进行公开招标,现欢迎国内具备相关资质且具有良好商业信誉的企业参加投标。
  • 一种实时直接分析离子源-高分辨质谱联用筛查减肥保健食品中非法添加物的检测方法技术
    p style="text-align: left "   本发明专利技术建立了一种减肥保健食品中非法添加物的筛查方法,其基于实时直接分析离子源,在数秒钟内完成目标样品的离子化过程 采用轨道离子阱高分辨质谱仪,通过基于全扫描的数据关联扫描模式,对进入质谱仪的带电离子进行数据采集,得到高分辨率的一、二级质谱信号 运用ToxID软件对采集的数据进行快速筛查和定性处理,对减肥保健食品中的非法添加物进行筛查。本方法灵敏度高、选择性强、定性能力强、操作简单快捷(数据采集过程在数秒钟内完成),更大程度的保留了被测物的完整信息,可用于减肥保健食品中非法添加物的快速筛查。/pp strong 【技术实现步骤摘要】/strong/pp  一种实时直接分析离子源-高分辨质谱联用筛查减肥保健食品中非法添加物的检测方法,本专利技术涉及一种减肥保健食品的分析,特别是涉及一种实时直接分析离子源-高分辨质谱联用筛查减肥保健食品中非法添加物的检测方法。/pp  技术介绍/pp  超重和肥胖是包括糖尿病、心血管疾病和癌症在内的若干慢性病的主要风险因素。中国疾病预防控制中心发布,2010年全国疾病检测地区慢性病及危险因素监测中得到的数据,18岁及以上居民超重率30.6%,肥胖率12.0%。面对肥胖,很多人寄希望于减肥保健食品。殊不知,减肥保健食品常被违法添加西布曲明和酚酞等化学药物。经过对78篇相关研究论文的整理和统计,减肥保健食品中可能的违法添加化合物多达85种,其中主要有布美他尼、咖啡因、去甲伪麻黄碱、氯噻嗪、氯苄雷司、麻黄碱、氟苯丙胺、氟西汀、吲达帕胺、二甲双胍、甲基安非他明、N-去甲基西布曲明、N-去二甲基西布曲明、奥利司他、酚酞、西布曲明等。长期服用含有违规成分、甚至有毒有害成分的违法产品,肝和肾脏都会遭到损害,甚至会引发肾炎等严重疾病。随着,相关检测方法研究的不断深入和检测部门监管的日趋严格,为了逃避法律法规的监管,很多新型的违禁药物被不法商家添加到减肥保健食品,例如克伦特罗。然而面对各式各样的违法添加化学药物,我国对减肥保健食品中非法添加物进行筛查的检测技术仍是空白,这势必会导致我国减肥保健食品市场的混乱,严重影响消费者的身心健康。减肥保健食品中非法添加化学药品常用的方法主要有酶联免疫法、高效液相色谱法、液相色谱质谱联用法等。但常见的检测方法多涉及到几种或更多的目标化合物,需要复杂的前处理过程,不仅耗.../pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/2af28595-bdaf-418f-b671-dba4fc22e031.gif" title="183218947.gif" width="472" height="273" style="width: 472px height: 273px "//pp  strong【技术保护点】/strong/pp  一种实时直接分析离子源?高分辨质谱联用筛查减肥保健食品中非法添加物的检测方法,其特征在于包括以下步骤:1)采用实时直接分析离子源,在数秒钟内完成目标样品的离子化过程 2)采用轨道离子阱高分辨质谱仪,通过基于全扫描的数据关联扫描模式,对进入质谱仪的离子化化合物进行数据采集,得到基于全扫描的数据关联扫描高分辨质谱数据 3)运用ToxID软件对采集的数据进行快速筛查和定性处理。/pp  strong【技术特征摘要】/strong/pp  1.一种实时直接分析离子源-高分辨质谱联用筛查减肥保健食品中非法添加物的检测方法,其特征在于包括以下步骤:1)采用实时直接分析离子源,在数秒钟内完成目标样品的离子化过程 2)采用轨道离子阱高分辨质谱仪,通过基于全扫描的数据关联扫描模式,对进入质谱仪的离子化化合物进行数据采集,得到基于全扫描的数据关联扫描高分辨质谱数据 3)运用ToxID软件对采集的数据进行快速筛查和定性处理。2.根据权利要求1所述的实时直接分析离子源-高分辨质谱联用筛查减肥保健食品中非法添加物的检测方法,其特征在于,所述的实时直接分析离子源条件为:正离子模式,离子化气体为氦气 待机气体为氮气 气体压力为0.5MPa 气体温度为300℃ 采用多重药片胶囊、筛网进样、镊柄等载样模块 载样器滑动速度为0.2mm/s 采.../pp  strong【专利技术属性】/strong/pp  技术研发人员:李建辉,程甲,严华,赵善贞,崔凤云,韩深,张朝晖,刘鑫,卢晓宇,高洋洋,/pp  申请(专利权)人:北京出入境检验检疫局检验检疫技术中心,/pp  类型:发明/pp  编号:201610955018/pp  国别省市:北京,11/ppbr//p
  • 宁波大学研发出新型质谱离子源 几秒内检测农药残留
    宁波大学科学仪器创新团队成功研发出“介质阻挡放电质谱离子源”,在几秒内就可检测出新鲜水果是否有农药残留。  据介绍,该成果已申请专利16项,通过专家鉴定,该研究成果处于国际先进水平,具有良好的应用前景和市场前景。   据创新团队负责人闻路红博士介绍,“介质阻挡放电质谱离子源”是一种非表面接触型的常压敞开式离子源,能够实现气体、液体和固体样品的离子化,并与质谱联用实现原位分析,无须耗时耗力的样品前处理过程,操作简单,性能稳定可靠,是近年来质谱离子源领域的一个重大创新,也是未来质谱技术发展的方向。利用该成果,对苹果可进行直接检测,无须任何前置处理,几秒钟内可获得检测结果。   假如检测土壤中污染物的成分,运用该成果,可在现场实现土壤表面的原位检测,不需要任何辅助试剂,只需一个便携式检测装置,配一台分析仪,设备结构简单,容易操作,检测灵敏度高。  专家说,掌握这种方法,可以做更广泛的应用测试,如在食品药品安全检测、环境事故应急、爆炸物毒品检测、药物研发、早期疾病筛查、肿瘤成像检测、高分子材料分析、微生物鉴别等领域具有很高的学术价值和广阔的市场应用前景。  除了科学技术效益和经济效益以外,介质阻挡放电质谱离子源将带来巨大的社会效益,如:提升国产质谱离子源设备水准和国际竞争力;丰富国产离子源类型,促进质谱应用普及;利于国家和地方科学仪器产业结构升级,形成新经济增长点;替代进口,节约外汇;拉动内需,促进就业。  据悉,创新团队目前已完成产品样机研制,实现小批量生产和应用示范,并在清华大学分析测试中心、宁波大学海洋学院开展了长时间的测试应用,产品性能指标已完全达到设计预期,短期内将具备批量产业化推广条件。
  • 用二次离子质谱法检测锂——表面形貌与化学分析的相关性
    古德伦威廉(Gudrun Wilhelm) 乌特戈拉-辛德勒(Golla-Schindler)蒂莫伯恩塔勒(Timo Bernthaler) 格哈德施耐德(Gerhard Schneider)二次离子质谱 (SIMS) 允许分析轻元素,尤其是锂。研究者使用三种不同的探测器将二次电子图像与表面形貌、化学分析相关的元素映射相结合,过测量标准样品并将其质谱信息与老化阳极的质谱信息相比较来鉴定化合物,获得了对锂离子电池老化现象的新见解。介绍电动汽车、自行车和踏板车的使用正在增加,而这些都需要高性能、长寿命的电池。在开发这些电池时,需要了解的一个重要主题就是老化过程。如果锂电池老化,阳极表面会发生锂富集,这与功能性工作锂的损失成正比,将会降低电池的容量。然而,确切的结构和化学成分仍然难以捉摸。我们预计,将二次电子成像和二次离子质谱 (SIMS) 与锂的相关可视化相结合,将带来新的见解。材料和方法使用配备 Gemini II 柱、肖特基场发射电子枪、Inlens 检测器、Oxford Ultim Extreme EDS检测器和使用镓离子的聚焦离子束的 Zeiss crossbeam 540 进行研究。连接了 Zeiss 飞行时间检测器和 Hiden 四极检测器以实现 SIMS 分析。第三个检测器是一个扇形磁场检测器,它连接到使用氦或氖离子工作的 Zeiss Orion NanoFab。使用三种不同的 NMC/石墨电池系统证明了锂检测,这些系统具有降低的容量 ( 80%) 和更高的 900 次充电和放电循环。 结果使用扫描电子显微镜 (SEM) 检测二次电子可以使循环阳极箔的表面形貌具有高横向分辨率(图 1a、b、c):阳极石墨板覆盖有 (a) 薄壳(几纳米厚),(b)纳米颗粒(约 10-100 nm),(c)大的沉淀物,如球形颗粒(约 100-500 nm),以及微米范围内的大纤维。这些结构具有不均匀分布,表明局部不同的老化条件和过程。化学成分使用能量色散光谱法(EDS,图 1d)进行了分析。EDS 光谱检测元素碳、氧、氟、钠和磷。除碳外,检测到的最高量是氧和氟。很明显,EDS场光谱和点光谱是不同的:场光谱具有更高量的氧、氟和磷。相位映射表明EDS点谱的测量点位于氧和氟含量低的区域,氧和氟都是纳米颗粒的一部分。这证明了不均匀分布与局部不同的元素组成成正比。图:1:具有高横向分辨率的循环阳极箔的表面形貌;石墨板覆盖有(a)结壳,(b)小颗粒,(c)由球形颗粒和微米级纤维组成的大沉淀物;(d) 用 EDS 分析的循环阳极表面;所呈现的点和场光谱显示了氧、氟和磷含量的差异;氧和氟在相位映射中更喜欢相同的表面结构。SIMS 可以检测到高锂信号(m/z 6 或 7),这允许锂映射与二次电子图像相关(图 2a、b)。锂覆盖整个表面并且是所有表面结构的一部分:结壳、纳米颗粒以及大小纤维。由于氧的电负性提高了对锂的检测,因此可以检测到具有高氧浓度的粒子的高信号。锂具有不同的键合伙伴,导致不同的表面结构。示例性地,显示了质荷比 33 和 55(图 2c,d)。M/z 33 是大纤维结构的一部分,而 m/z 55 在小纤维结构中富集。必须仔细解释质荷比。M/z 33 可以解释为正离子 Li2Li3+、OLi2+ 和 Li2F+。M/z 55 可以解释为锰。铜、钴和镍存在于与锰相同的表面结构中。这些元素表明正极材料(Mn、Co、Ni)的分解和负极集流体(Cu)的浸出。结壳和纳米颗粒均不含 m/z 33 和 m/z 55。在正离子质谱中只能检测到 m/z 6、7 和 14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。在正离子质谱中可以检测到图7和14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。 图 2:与 SIMS 元素映射 (bd) 相关的循环阳极箔的表面形貌 (a);(b) 锂覆盖整个表面,是所有表面结构的一部分;(c) m/z 33 和 (d) m/z 55(锰)偏好不同的表面结构,表明不同的化合物。使用 Zeiss Orion NanoFab [1] 测量了隔膜的阳极侧,与传统 SIMS 相比,它具有更高的横向分辨率。横向分辨率取决于离子探针的尺寸,因此 NanoFab 的横向分辨率显着提高(图 3)。可以识别球形颗粒和纳米颗粒。对于 (b) m/z 6 (锂)、(c) m/z 19 (氟)和 (e) m/z 16 (氧),球形颗粒显示出高信号。纳米粒子包含相同的元素和额外的 (d) 硅 (m/z 28)。可以使用每个像素的平均计数来半定量地解释质谱结果。这证明了球形颗粒和纳米颗粒的不同化学组成。 图 3:循环隔膜的表面形貌(阳极侧);与 SIMS 元素映射相关;沉淀物中含有锂和氟以及少量的氧气;纳米粒子含有锂、氟、硅和氧;二次离子质谱测量的半定量解释。SIMS 质谱由元素峰和分子峰组成。元素峰代表单个同位素,分子峰由几个同位素组成。通过将分子峰与标准样品的峰光谱进行比较,可以精确解释分子峰。这已在下一步中完成,并允许确定表面结构的化合物。图 4a 显示了化合物 LiF 的质谱(正离子)。可以找到几个峰:m/z 6、7、14 和 m/z 32 和 33 附近的一系列峰。这些是可以解释为 Li(6 和 7)和 Li2(14)的主峰。该组可能被视为 Li2Li3+ 或 OLi2+ 或 Li2F+。锂同位素 6 和 7 导致几个 m/z 比。该质谱可以与循环阳极的质谱(正离子)进行比较(图 4b)。主峰显示出良好的相关性,而由于循环阳极上的低 LiF 含量,强度较小的峰可能不可见。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。 图 4:(a) LiF 质谱与 (b) 循环阳极质谱的比较;m/z 6、7、14、32 和 33 的峰可以与循环阳极质谱相关;m/z 33 的正确解释需要进一步的标准样品测量。结论显示结壳、纳米颗粒和大沉淀物的不均匀表面形貌可以通过二次电子图像进行可视化,并通过 EDS 和 SIMS 进行分析。使用 SIMS 进行的锂分析表明,所有结构都包含具有不同键合伙伴的锂,例如纳米颗粒中的氧、氟和硅,球形颗粒中的锂、氟和氧,以及小纤维结构中的锰。标准样品(例如 LiF)的制备能够通过质谱解释来定义准确的化合物。 致谢我们感谢 Hiden GmbH 的四极质谱仪和 Graham Cooke 的有益讨论,我们感谢 Peter Gnauck、Fouzia Khanom、Antonio Casares 和 Carl Zeiss 使用 Orion 进行 SIMS 测量,我们感谢 Hubert Schulz 在飞行探测器,我们感谢 IMFAA 合作者的帮助和项目 LiMaProMet 的财政支持。联系古德伦威廉(Gudrun Wilhelm)德国,阿伦(Aalen),阿伦大学(Aalen University),材料研究所 (IMFAA),gudrun.wilhelm@hs-aalen.de 参考文献:[1] Khanom F.、Golla-Schindler U.、Bernthaler T.、Schneider G.、Lewis B.:显微镜和微量分析 25 (S2) S. 866-867 (2019) DOI:10.1017/S1431927619005063 ---------------------------------------------------------------------------------------------------关于作者古德伦威廉(Gudrun Wilhelm)德国,阿伦大学(Aalen University),材料研究所 (IMFAA),Gudrun Wilhelm 在弗里德里希-亚历山大-埃尔兰根-纽伦堡大学学习地球科学,重点是矿物学。2019 年,她以科学员工和博士生的身份加入阿伦大学材料研究所(IMFAA)。她的研究重点是锂离子电池的老化机制。主要方法有扫描电子显微镜法、能量色散光谱法和二次离子质谱法。原文Lithium detection with Secondary Ion Mass Spectrometry,Wiley Analytical Science 2022.8.10翻译供稿:符 斌
  • 《单颗粒电感耦合等离子质谱法检测纳米颗粒》国家标准解读
    单颗粒电感耦合等离子质谱法(spICP-MS)是一种在非常低的浓度中检测单个纳米颗粒的方法。与传统表征金属纳米颗粒技术相比,使用单台ICP-MS,不需联用设备就可以同时完成纳米颗粒的成分、浓度、粒径、粒度分布和颗粒团聚的检测,这是透射电子显微镜(TEM)、动态光散射(DLS)等纳米粒径表征技术无法完成的,并且此方法可将样品中溶解的纳米颗粒离子与固体纳米颗粒区分开来。近期,国家纳米科学中心牵头制定了国内首项单颗粒电感耦合等离子体质谱法(spICP-MS)国家标准《GB/T 42732-2023 纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法》。本文特邀国家纳米科学中心葛广路研究员、郭玉婷高级工程师对该标准进行解读。一、背景 目前,基于纳米技术或含有工程纳米颗粒的产品已广泛使用,并开始影响有关的行业和市场。因此,消费者可能直接或间接地接触到(除天然纳米颗粒外的)工程纳米颗粒。在食品、消费品、毒理学和暴露研究中,工程纳米颗粒的检测成为纳米颗粒应用潜在效益和潜在风险评估的必要部分,迫切需要建立产品、试验样品和环境等复杂基质中痕量纳米颗粒检测方法标准。二、标准概述本标准包括范围、规范性引用文件、术语和定义、缩略语、适用性、步骤、结果、测试报告8章内容和1个资料性附录。本标准描述了使用电感耦合等离子体质谱法(ICP-MS)在时间分辨模式下测定单个纳米颗粒的质量和悬浮液中离子浓度,检测水相悬浮液中纳米颗粒,并表征颗粒数量与质量浓度、颗粒尺寸及数均尺寸分布的方法。三、适用性本方法仅限用于纯纳米颗粒的水相悬浮液、材料或消费品的水相提取液、食品或组织样品的水相消解液、水相毒理学样品或环境水样品。非水相样品处理见标准参考文献。水相环境样品经过过滤和稀释,食品和毒理学样品经过化学或酶消解和稀释。将水相悬浮液中的颗粒数量或质量浓度与原始样品中的浓度联系起来需样品相关提取、效率和基质效应等信息,并由用户进行额外验证。四、主要技术内容本文选取原理、重要参数传输效率和响应值及线性的确定、结果计算方面部分重点内容进行讲解,详细内容及仪器设置、试样制备等相关内容与注意的事项参见标准原文。1 原理单颗粒电感耦合等离子体质谱(spICP-MS)是一种能够在非常低的浓度下检测单个纳米颗粒的方法,此方法适用于水相悬浮液中无机纳米颗粒的尺寸及数均尺寸分布、颗粒数量浓度与质量浓度,悬浮液中离子浓度的测定。将常规的ICP-MS系统设置为以高时间分辨率模式采集数据。水相样品连续进入ICP-MS中,雾化后,一部分纳米颗粒进入等离子体并被原子化和电离。每个原子化的颗粒相对应的离子团为一个信号脉冲。使用合适的驻留时间和适当稀释的纳米颗粒悬浮液,质谱仪可实现单个纳米颗粒检测,称为“单颗粒”ICP-MS。对纳米颗粒悬浮液进行稀释,以避免违反“单颗粒规则”(即在一个驻留时间内有一个以上的颗粒到达检测器)。由于离子团中的离子密度很高,其产生的脉冲信号远高于背景(或基线)信号。脉冲强度、脉冲面积与纳米颗粒中被测元素的质量,也即纳米颗粒直径的立方成正比(假定纳米颗粒的几何形状是球形)。单位时间检测到的脉冲数与待测水相悬浮液中纳米颗粒的数量成正比。2 确定传输效率引入的样品只有一部分到达等离子体,结果的计算需要知道传输效率。使用已知的纳米颗粒标准样品测定传输效率。如果没有可用的纳米颗粒标准样品,可以使用任何其他良好表征过的纳米颗粒悬浮液,重新计算稀释倍数和浓度。纳米颗粒尺寸已知,颗粒浓度未知时,结合分析一系列与纳米颗粒相同元素的离子标准溶液,确定传输效率。3 确定响应值及线性随着纳米颗粒的直径增大,信号响应值将按三次方增加,所以需要对纳米颗粒每种组成每种尺寸范围的响应进行验证。校准最好使用纳米颗粒标准样品,无法获得这样的标准样品时,在相同的样品分析条件下,使用被测元素的离子标准溶液进行此步骤中的校准。分析离子溶液的标准工作液,用线性回归法确定校准曲线的相关系数,校准函数的斜率,即为ICP-MS响应值。4 结果计算4.1 检出限的计算由空白对照样品中的颗粒数量确定颗粒数量浓度检出限,结合平均颗粒质量,计算质量浓度检出限。由刚好能从背景中区分出来的脉冲信号强度决定颗粒尺寸检出限。4.2 颗粒浓度和尺寸、离子浓度的计算由时间扫描中检测到的脉冲数、传输效率、样品流速计算水相样品中的颗粒数量浓度;样品中颗粒信号强度、离子标准溶液的ICP- MS响应值、传输效率、驻留时间、样品流速、纳米颗粒材料的摩尔质量和被测物的摩尔质量计算单个颗粒的质量,假设颗粒为球形,计算得到颗粒的直径。由离子产生的连续基线信号估算样品中的离子浓度。通常,可以用商用软件或将测试数据导入定制的电子表格程序进行处理,以计算纳米颗粒的数量、质量浓度、尺寸(等效球直径)和相应数均尺寸分布,并同时确定样品中存在的离子质量浓度。本标准的资料性附录A给出了定制的电子表格程序处理数据的示例。五、结语本标准等同采用ISO/TS19590:2017 Nanotechnologies—Size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry,于2023年8月6日发布,将于2024年3月1日实施,是国内首项使用单颗粒电感耦合等离子体质谱方法表征纳米颗粒的国家标准,支撑spICP-MS作为一种普适性方法的推广与应用。本标准由国家纳米科学中心、珀金埃尔默企业管理(上海)有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、清华大学、中国计量科学研究院、杭州谱育科技发展有限公司,安捷伦科技(中国)有限公司制定。在起草阶段,标准起草工作组选用金纳米颗粒,在国家纳米科学中心、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、安捷伦科技(中国)有限公司、杭州谱育科技发展有限公司,利用不同仪器进行了测试,使用仪器所带软件对颗粒尺寸和颗粒数量浓度进行了处理计算。在征求意见阶段,向四川大学、中国地质大学、武汉大学、清华大学深圳国际研究生院、东北大学、华东师范大学、中山大学、厦门大学、中国科学院过程工程研究所、中国科学院南京土壤研究所、中国科学院生态环境研究中心、上海市食品药品检验研究院、生态环境部南京环境科学研究所、中国科学院高能物理研究所、山东英盛生物技术有限公司等高校、科研院所和企业发送了标准征求意见材料,征求意见专家多为分析化学、纳米科学等领域专家,给本标准提出了具有代表性的意见,在此感谢他们对本项标准制定工作的支持。本文作者: 葛广路 研究员;郭玉婷 高级工程师 国家纳米科学中心 中国科学院纳米标准与检测重点实验室 Email:gegl@nanoctr.cn guoyt@nanoctr.cn
  • Hiden Analytical推出二次离子质谱仪,适用于锂电池检测
    科学仪器供应商 Hiden Analytical 近期宣布,其四极聚焦离子束二次离子质谱(FIB-SIMS)成功应用于锂离子电池研究。其四极聚焦离子束二次离子质谱(FIB-SIMS)成功应用于锂离子电池研究。这项技术具有高灵敏度和分辨率,适合低质量锂检测,将大幅推进锂离子电池研究的进程。  (图片来源:Hiden Analytical)  现在,人们对电动汽车和便携式电子设备的需求日益增长,更加需要可靠、有效的储能系统。锂离子电池被视为有前景的解决方案,但只有深入了解电池内部的复杂过程,才能进一步提高性能和安全性。Hiden Analytical 的 FIB-SIMS 为这一挑战提供了强大的解决方案,使研究人员能够获得关于电池内部锂分布和浓度的重要信息。  该研究展示了 Hiden Analytical 的 FIB-SIMS 在高灵敏度和高精度检测锂等低质量元素方面的能力。Hiden Analytical 的 FIB-SIMS 可与聚焦离子束扫描电子显微镜(FIB-SEM)无缝集成,为研究人员提供诸多优势,如相关成像、原位样品制备和三维元素分析。这样的组合有助于全面了解锂离子电池的微观结构,从而开发更高效、更安全的储能系统。该公司技术营销经理 Dr. Dane Walker 表示:" 很高兴看到 FIB-SIMS 技术在锂离子电池研究领域得到应用。这项突破表明,Hiden Analytical 致力于推进科学研究,为不断发展的储能市场提供尖端解决方案。"  产业分析人士表示,锂电池检测主要应用在锂电池领域,受到锂电池产业快速发展带动,锂电池检测应用需求持续攀升,行业发展前景较好。在生产方面,我国众多企业布局在领域,市场竞争激烈,但国内产品目前主要布局在低端的单体电池领域,在高端的电池组领域仍依赖进口。未来随着终端对于锂电池要求提升,未来锂电池检测向高精度方向发展。关于Hiden Analytical(点击了解)  Hiden Analytical 成立于1981年,位于英格兰沃灵顿。是世界著名的四极杆质谱仪及相关分析仪器的设计和生产者。客户多数都是工作在新技术研究的前沿,如等离子体、表面科学,致力为全球有关领域的研究者提供了最先进的技术手段,使其研究水平居于国际领先地位。产品
  • 国际首创:基于敞开式大气压复合型离子源的移动式现场检测质谱仪通过鉴定
    p  strong仪器信息网讯/strong 2017年9月11日,华仪宁创AMS-100型移动式现场检测质谱仪技术鉴定会在北京召开。该鉴定会由中国分析测试协会主持,专家组成员为南京大学陈洪渊院士、中国钢研科技集团有限公司王海舟院士、中国分析测试协会负责人张渝英、中科院化学研究所研究员王光辉、国家食品安全风险评估中心研究员吴永宁、军事医学科学院研究员钱小红、北京大学教授刘虎威、中国分析测试协会研究员汪正范等分析仪器行业著名专家。陈洪渊院士在会上被推选为鉴定小组组长,王海舟院士被推选为副组长。清华大学教授张新荣作为合作单位代表参加了此次鉴定。/pp style="text-align: center "img title="会议现场0.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/e040f3ef-16a9-4714-9e8f-0b841cfee0a6.jpg"//pp style="text-align: center "strong鉴定会现场/strong/pp style="text-align: center "img title="陈洪渊1.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/159a64b1-475e-4941-a2a8-46dd192ecc06.jpg"//pp style="text-align: center "strong南京大学 陈洪渊院士/strong/pp style="text-align: center "img title="王海舟0.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/36415d4a-4983-4422-b6d7-cffa632a3a8d.jpg"//pp style="text-align: center "strong中国钢研科技集团有限公司 王海舟院士/strong/pp style="text-align: center "img title="x.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/6bf75b72-1a2e-4c82-a98d-cdb3f92f1b22.jpg"//pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/6d3fc1a7-43ee-4ab4-bcad-5cbf6d7ef07f.jpg"//pp style="text-align: center "strong(中国分析测试协会负责人 张渝英、中科院化学研究所研究员 王光辉、国家食品安全风险评估中心研究员 吴永宁、军事医学科学院研究员 钱小红、中国分析测试协会研究员 汪正范、北京大学教授 刘虎威、清华大学教授 张新荣、华仪宁创高级工程师 赵鹏)/strong/pp  在鉴定会上,华仪宁创总经理闻路红向鉴定专家及领导介绍了移动式现场检测质谱分析仪(AMS-100)。他从成果简介、技术总结、实施条件及产业化规划、效益分析、用户报告、查新报告六个方面进行了详细的鉴定汇报。/pp  在听取成果汇报和审阅查新报告、检验报告、用户报告等资料之后,专家组观看了产品。/pp style="text-align: center "img title="样品3.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/7cbb0191-f400-4904-be7b-29f2febc7ebc.jpg"//pp style="text-align: center "strongAMS-100产品/strong/pp style="text-align: center "img title="鉴定现场0.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/9fceddb1-2694-49aa-9ee2-41278235cfe1.jpg"//pp style="text-align: center "strong鉴定组成员观看产品/strong/pp  华仪宁创总经理闻路红与研发工程师周峰代表团队回答了鉴定组专家的质疑和提问。在答辩过后,专家组成员经认真讨论,一致达成以下鉴定意见:/pp  1、项目组提供的技术鉴定材料齐全,编写规范,符合鉴定要求。/pp  2、 移动式现场检测质谱分析仪采用了具有自主知识产权的介质阻挡放电离子化(DBDI)技术和敞开式电喷雾离子化(AESI)技术、低场离子漂移管技术、射频幅值、频率与相位自调整技术、线性离子阱质量分析器技术以及基于云端数据库与自学习功能算法相结合的质谱专用数据处理技术,仪器的质量范围为15~2000amu,质量轴稳定性为± 0.1amu/8h,直接进样方式样品单次分析时间≤7.5s。/pp  3、移动式现场检测质谱分析仪采用敞开式离子源,具有操作简便、免样品前处理和预分离的优点,分析速度快、操作简便、适用范围广、环境适用性强、自动化程度高,适用于车载、船载等现场快速原位分析和实验室样品高通量筛选,具有广阔的市场前景和推广应用价值。/pp  4、该成果已申请相关专利40项,其中已授权发明专利7项、授权实用新型专利9项,已受理发明专利13项,已受理实用新型专利11项。/pp  鉴定专家组一致认为:“基于敞开式大气压复合型离子源的移动式现场检测质谱分析仪器”属于国内外首创,采用介质阻挡放电离子源,可应用于毒品和危险爆炸品等现场快速准确检测,鉴定专家组一致同意通过该成果鉴定。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/712f106f-66a9-4ded-a3d6-4cde1125c001.jpg"//pp style="text-align: center "strong鉴定会参会人员合影/strong/pp style="text-align: center "img title="闻路红.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/22db24fb-81c3-415d-8026-49a34ae83485.jpg"//pp style="text-align: center "strong华仪宁创总经理 闻路红/strong/pp  成果鉴定会之后,华仪宁创总经理闻路红又与相关媒体进行了深入沟通。据闻路红介绍,相比于实验室常规质谱,该产品的特点是可以进行移动式现场检测;相比于其他便携式质谱,该质谱仪具有更高的检测灵敏度。/pp  为了达到移动式质谱的要求,在设计方面,仪器配置了结构紧凑、可移动的减震平台;集成式阀岛设计又可以降低软管快插接头在运输过程中的气密性隐患;同时采用了减震性更优的柔性连接技术解决真空接头的电气连接和真空密封问题。/pp  在提高检测灵敏度方面,公司对线性离子阱分析器及其驱动电源做了优化设计,高精度(5μm)线性离子阱质量分析器比三维离子阱具有更大的存储空间和检测效率;表面硅烷化处理可以提高离子阱的抗污染能力;射频电源VsubP-P/sub 10KV@1.0MHz,从而具备线性扫描能力;基于数字可编程频率合成技术的射频技术可提高电源的温度稳定度。/pp  仪器离子源系统采用的是自主创新的大气压敞开式介质阻挡放电(DBDI)& 敞开式电喷雾(AESI)复合式离子源,可以在常压下进行样品分析,从而满足了质谱仪原位、实时分析的要求。/pp  项目团队初期就非常注重知识产权的保护与专利布局,目前已就离子源和质谱仪申请专利40项,其中发明专利20项(授权7项),实用新型专利20项(授权9项),制定、起草相关标准2项,拟申请相关标准4项。/pp  华仪宁创自2015年成立至今已经有了很大的发展,公司比较注重创新方法论、人才建设、市场定位,特别强调技术的成果转化。目前,公司拥有多个学科专业背景的高端人才,骨干人员具有多年企业背景和丰富的工程化、产业化经验。产品是公司的根本,接下来,团队的精力仍会放在产品方面,营销方面会通过与华粤行仪器有限公司合作进行。团队定位于从事科研成果从实验室到市场的成果转化,致力于解决科学研究与市场产业化最后“一公里”的问题。/pp style="text-align: right "编辑:傅晔 仝令坤/pp /p
  • 167万!赛默飞等中标泸州市市场检验检测中心电感耦合等离子体质谱仪等采购项目
    一、项目编号:N5105012022000291二、项目名称:电感耦合等离子体质谱仪等一批设备采购三、采购结果合同包1:供应商名称供应商地址中标(成交)金额上药控股泸州有限公司四川自贸区川南临港片区福星路一段185号3栋301号1,674,500.00元四、主要标的信息合同包1:货物类(上药控股泸州有限公司)品目号品目名称采购标的品牌规格型号数量(单位)单价(元)总价(元)1分析仪器电感耦合等离子体质谱仪赛默飞世尔科技(中国)有限公司ICAP PQ ICP-MS1(套)1,158,000.001,158,000.001分析仪器食品快速检测仪厦门海荭兴仪器股份有限公司HHX-ZHA1(套)18,500.0018,500.001分析仪器实时荧光定量PCR仪生命科技控股私人有限公司75001(套)498,000.00498,000.00
  • 306万!内蒙古医疗器械检验检测研究院电感耦合等离子体质谱仪等采购项目
    项目编号:NMGZCS-G-H-220445项目名称:医疗器械检验检测仪器设备采购项目采购方式:公开招标预算金额:3,064,000.00元采购需求:合同包1(医疗器械检验检测仪器设备):合同包预算金额:3,064,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他医疗设备低温恒温培养箱2(台)详见采购文件192,000.00-1-2其他医疗设备高压灭菌锅2(台)详见采购文件200,000.00-1-3其他医疗设备电感耦合等离子体质谱仪1(台)详见采购文件1,760,000.00-1-4其他医疗设备气相色谱仪1(台)详见采购文件697,000.00-1-5其他医疗设备激光粒子计数器1(台)详见采购文件215,000.00-本合同包不接受联合体投标合同履行期限:合同签订后3个月内
  • 125万!宁波市鄞州区质量检测中心采购电感耦合等离子体质谱仪项目
    项目编号:CBZJ-20223083G项目名称:宁波市鄞州区质量检测中心采购电感耦合等离子体质谱仪项目预算金额(元):1250000最高限价(元):1250000采购需求:标项一:标项名称:电感耦合等离子体质谱仪数量:1预算金额(元):1250000简要规格描述或项目基本概况介绍、用途:具体详见招标文件第二章 招标需求。本标项允许采购进口产品。备注:公开招标、为宁波市鄞州区质量检测中心自用。合同履约期限:标项1,合同签订后60天内交货,安装调试期为15日历天,如因中标人责任而造成的延期而产生的费用由中标人负担。本项目(是)接受联合体投标。
  • 搭载质谱仪的“卡西尼”号探测器检测到神秘粒子
    p  近日,美国宇航局(NASA)的“卡西尼”号探测器还在继续产生着令人惊讶的发现,而早在一个多月前,这架探测器已经在任务结束后于土星大气中烧毁。来自“卡西尼”号探测器的新数据表明,土星的宏伟光环正在将微小的尘埃颗粒注入到行星的上层大气中,从而形成了一种复杂且意想不到的化学混合物。/pp  “卡西尼”号探测器上的一台质谱仪检测到这种奇特的化学物质——该探测器在最后的5个月里一直在土星和土星环之间环绕飞行。/pp  马里兰州劳雷尔市约翰· 霍普金斯大学应用物理实验室行星科学家Mark Perry说:“我们真的是中头彩了。”10月17日,他在犹他州普罗沃市召开的美国天文学会行星科学分部的一次会议上报告了这一发现。/pp  该项目科学家曾希望“卡西尼”号探测器的质谱仪能够在土星和土星环之间发现水分子的特征。在上世纪七八十年代,NASA的先驱者号探测器和旅行者号探测器在土星的最上层大气中发现了比预期更少的带电粒子。在这些数据的基础上,研究人员在1984年提出,脱离土星环的水分子——主要以冰的形式——起到催化剂的作用,将带电粒子从大气中分离出来。“卡西尼”号探测器的最后几个月给了科学家们第一次直接测试这个想法的机会。/pp  但吸引卡西尼团队的并不是突然出现的水的证据。质谱仪的数据揭示了一个巫师般存在的化学物质,其中包括甲烷,这种分子可能是一氧化碳和更复杂的分子。这些化学物质的浓度在土星的赤道和高海拔地区是最大的,这表明这些物质正在从土星环中脱落。/pp  “卡西尼”号探测器进入土星大气层的深度越深,测量值就愈发奇怪。Perry对与会者说,“卡西尼”号探测器以最近距离掠过土星表面揭示了大量的重分子。科学家还没有确定每种分子的类型,但很明显,除了水之外,还有很多其他分子。/pp  通过分析可能从土星环上脱落的物质的类型,Perry的研究小组得出结论,这些碎片必定是微小的尘埃颗粒的片段,这些颗粒的尺寸仅为1至10纳米,但相对较重。当这些粒子从土星环上落下并撞击“卡西尼”号探测器的质谱仪时,它们被粉碎成小碎片。/pp  这些粒子究竟是如何从土星环飘落到大气层的还有待观察。“我们有很多工作要做,以了解它们是如何到达那里的。”Perry说,“没有一个模型能预测到这一点。”/pp  在这些最后的俯冲过程中,“卡西尼”号探测器沿着土星的引力牵引,以每秒钟30公里的速度加速,这一速度超过了质谱仪设计所能承受的4倍之多。“这些速度比它所经历的任何时刻都要高。”Linda Spilker说,他是加利福尼亚州帕萨迪纳市喷气推进实验室的行星科学家,也是卡西尼项目科学家。/pp  在如此巨大的速度下,“卡西尼”号探测器所撞击的任何东西都会分裂成碎片。/pp  今年9月15日凌晨4时55分,数百名科学家见证了“卡西尼”号探测器在火焰中涅槃。“卡西尼”号探测器在土星的大气层中解体,这样做是为了防止探测器污染土星的卫星,包括土卫六和土卫二,这些卫星上可能存在生命迹象。/pp  “卡西尼”号探测器1997年10月15日发射升空,沿途造访过金星、地球、月球、小行星和木星,并于2004年抵达环土星轨道。近20年间,“卡西尼”探测任务大幅刷新了人类对土星的认识,包括它的复杂光环、类型多样的卫星体以及磁场环境等。它曾获得一系列重大发现,如土卫二存在全球性海洋、土卫六上存在液态甲烷海洋、在土卫二喷出的羽流中探测到氢等。/pp  与土星相伴的13年间,“卡西尼”号探测器曾发回大量数据资料,仅图像就差不多40万张。科学家依据这些信息,已发表了约4000篇科学论文。NASA还依据这些信息设计了前往木卫二的探测计划,以及未来十年间的其他太空探测项目。/pp  尽管“卡西尼”号探测器已经结束了自己的使命,但科学家表示未来仍有可能带来重大发现,例如,来自探测器的数据将有助于确定土星环的实际年龄及其磁场的持久性。/pp  (原标题:土星大气发现神秘粒子 卡西尼数据显示或来自土星环)/pp/p
  • 400万!上海市检测中心高分辨电感耦合等离子体质谱仪采购招标项目
    招标项目编号:0705-224005008002招标项目名称:高分辨电感耦合等离子体质谱仪采购招标项目项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1高分辨电感耦合等离子体质谱仪1套用于痕量杂质的检测。对痕量杂质进行定量、定性分析。设备预算:人民币400万
  • 深圳市检验检测认证协会发布《果蔬中多组分农药残留的快速检测 直接离子化小型质谱法》团体标准征求意见稿
    各有关单位及专家:由深圳市检验检测认证协会归口管理,协会成员等相关单位共同起草的《果蔬中多组分农药残留的快速检测 直接离子化小型质谱法》团体标准已完成征求意见稿,现面向社会各界公开征求意见。有关意见反馈,请填写《团体标准征求意见反馈表》, 并于 2024年2月15 日之前以邮件方式反馈至联系邮箱,逾期未回复意见的按无异议处理。联系人:彭建新/13326997196 ;文子瑞/17608991213邮箱:sztic2019@163.com;地址:深圳市宝安区新安街道兴东社区群辉路3号优创空间2号楼428 附件:《团体标准征求意见反馈表》深圳市检验检测认证协会2024年01月15日关于对《果蔬中多组分农药残留的快速检测 直接离子化小型质谱法》团体标准征求意见的通知.pdf团体标准征求意见反馈表(果蔬中多组分农药残留的快速检测 直接离子化小型质谱法).docx水果蔬菜中多种农药残留量的快速测定 直接离子化小型质谱法(征求意见稿).pdf
  • 中国农业科学院867万元购买离子阱质谱检测器等一批仪器
    6月28日,中国农业科学院蔬菜花卉研究所公开招标,购买离子阱质谱检测器、植物乙烯分析仪、体视荧光显微镜等多台/套仪器,预算867万元。  项目编号:HXJC2021HG/033  项目名称:蔬菜有害生物控制与绿色高效优质栽培平台仪器设备购置项目  预算金额:867.0000000 万元(人民币)  最高限价(如有):867.0000000 万元(人民币)  采购需求:  本次招标共分3包,各包拟择优选择1家合格的供应商为采购人提供仪器设备的供货服务。具体采购内容如下:序号名称数量可采购进口产品需要授权函(是/否)核心产品预算控制价(台/套)(是/否)(是/否)(万元)第一包1四旋翼无人机1否否否2382多光谱表型成像分析系统1是是否3蒸发光散射检测器1是是否4高通量单细胞转录组测序建库仪1是是否5超微量紫外分光光度计1是是否6荧光分光光度计1是是否7酶标仪1是是否8大气压气相电离源1是是是9显微镜图像采集系统1是是否第二包1卵母细胞放大器1是是否2682显微注射仪1是是否3微操纵器1是是否4微电极拉制仪1是是否5灌流给药仪1是是否6全能型成像系统1是是否7离子阱质谱检测器1是是是8全自动耗散型石英晶体微天平1是是否9梯度PCR仪1否否否10实时荧光定量PCR仪1是是否11昆虫触角电位测量系统1是是否第三包1真空冷冻干燥机1否否否3612调制叶绿素荧光成像系统1是是否3自动气象站1否否否4植物在线光合生理生态监测系统1是是否5多离子测定仪1否否否6植物乙烯分析仪1是是是7土壤养分速测仪(台式)1否否否8露点水势仪1是是否9植物微根管观测系统1是是否10原位植物根系生长监测系统1是是否11超低温冰箱1否否否12高通量组织研磨机1否否否13体视荧光显微镜1否否否  具体内容及要求详见招标文件第三部分“采购内容及要求”。符合条件的供应商可以投1包或多包并分包编制投标文件。  最高投标限价:第1包:人民币238万元   第2包:人民币268万元   第3包:人民币361万元  合同履行期限:合同签订后90天内。  本项目( 不接受 )联合体投标。  开标时间:2021年07月20日 09点30分(北京时间)
  • 半导体硅片检测标准汇总 涉气相色谱、二次离子质谱等多类仪器
    p  span硅基半导体材料是目前产量最大、应用最广的半导体材料,90%以上的半导体产品都离不开硅片。/spanspan硅片行业是资金和技术密集型行业,垄断度极高,目前前四厂商市场占有率占比超过80%,分别是/spanspan日本信越、日本SUMCO、台湾环球晶圆、德国世创。/span/pp  硅元素是地壳中储量最丰富的元素之一,以二氧化硅和硅酸盐的形式大量存在于沙子、岩石、矿物中。硅从原料转变为半导体硅片要经过复杂的过程:首先硅原料和碳源在高温下获得纯度约98%的冶金级硅,再经氯化、蒸馏和化学还原生成纯度高达99.999999999%的电子级多晶硅。半导体材料的电学特性对杂质浓度非常敏感,而硅自身的导电性不佳,常通过掺杂硼、磷、砷和锑来精确控制其电阻率。一般,将掺杂后的多晶硅加热至熔点,然后用确定晶向的单晶硅接触其表面,以直拉生长法生长出硅锭,硅锭经过金刚石切割、研磨、刻蚀、清洗、倒角、抛光等工艺,即加工成为半导体硅片。根据制造工艺分类,半导体硅片主要可以分为抛光片、外延片、SOI 硅片等。根据半导体尺寸分类,半导体硅片的尺寸(直径)主要有 50mm(2 英寸)、75mm(3 英寸)、100mm(4 英寸)、150mm(6 英寸)、200mm(8 英寸)、 300mm(12英寸)等规格。目前硅片生产以8英寸和12英寸为主,其中8英寸硅片主要应用于电子、通信、计算、工业、汽车等领域,而12英寸硅片多用于PC、平板、手机等领域。/pp  在生产环节中,半导体硅片需要尽可能地减少晶体缺陷,保持极高的平整度与表面洁净度,以保证集成电路或半导体器件的可靠性。硅片检测要检查直径、厚度、弯曲、翘曲、缺陷、晶面、表面污染(有机物)、电阻率、晶面取向、氧碳含量、表面平整度和粗糙度、微量元素含量、反射率等。使用到的仪器有测厚仪、显微镜、XRD、气相色谱、X射线荧光光谱、二次离子质谱、电阻率测试仪等。/pp style="text-align: center "strong硅片测试国家标准/strong/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none" align="center"tbodytr style=" height:18px" class="firstRow"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pstrongspan style="font-family:宋体"标准编号/span/strong/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pstrongspan style="font-family:宋体"标准名称/span/strong/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T11073-2007/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片径向电阻率变化的测量方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T13388-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片参考面结晶学取向/spanspanX/spanspan style="font-family:宋体"射线测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T14140-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片直径测量方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T19444-2004/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片氧沉淀特性的测定/spanspan-/spanspan style="font-family:宋体"间隙氧含量减少法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T19922-2005/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片局部平整度非接触式标准测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T24577-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"热解吸气相色谱法测定硅片表面的有机污染物/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T24578-2015/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片表面金属沾污的全反射/spanspanX/spanspan style="font-family:宋体"光荧光光谱测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T26067-2010/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片切口尺寸测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T26068-2018/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片和硅锭载流子复合寿命的测试非接触微波反射光电导衰减法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T29055-2019/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能电池用多晶硅片/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T29505-2013/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片平坦表面的表面粗糙度测量方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T30701-2014/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"表面化学分析硅片工作标准样品表面元素的化学收集方法和全反射/spanspanX/spanspan style="font-family:宋体"射线荧光光谱法/spanspan(TXRF)/spanspan style="font-family:宋体"测定/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T30859-2014/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能电池用硅片翘曲度和波纹度测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T30860-2014/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能电池用硅片表面粗糙度及切割线痕测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T30869-2014/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能电池用硅片厚度及总厚度变化测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T32280-2015/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片翘曲度测试自动非接触扫描法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T32281-2015/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能级硅片和硅料中氧、碳、硼和磷量的测定二次离子质谱法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T32814-2016/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅基/spanspanMEMS/spanspan style="font-family:宋体"制造技术基于/spanspanSOI/spanspan style="font-family:宋体"硅片的/spanspanMEMS/spanspan style="font-family:宋体"工艺规范/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T37051-2018/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"太阳能级多晶硅锭、硅片晶体缺陷密度测定方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6616-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"半导体硅片电阻率及硅薄膜薄层电阻测试方法非接触涡流法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6617-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片电阻率测定扩展电阻探针法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6618-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片厚度和总厚度变化测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6619-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片弯曲度测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6620-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片翘曲度非接触式测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T6621-2009/span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片表面平整度测试方法/span/p/td/trtr style=" height:18px"td width="112" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspanGB/T29507-2013 /span/p/tdtd width="456" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspan style="font-family:宋体"硅片平整度、厚度及总厚度变化测试自动非接触扫描法/span/p/td/tr/tbody/tablep  据 Gartner 预计,2017-2022 年半导体增速最快的应用领域是工业电子和汽车电子;预计2020年半导体发货总量将超过一万亿,其中增长率最高的半导体细分领域包括智能手机、汽车电子以及人工智能等。/pp  需要相关标准,请到a href="https://www.instrument.com.cn/download/L_5DBC98DCC983A70728BD082D1A47546E.htm" target="_self"仪器信息网资料中心/a查找。/p
  • 98万!生态环境部海河局监测科研中心电感耦合等离子体质谱仪采购项目
    项目编号:STBHHJDGOHCG-2022-01项目名称:生态环境部海河局监测科研中心电感耦合等离子体质谱仪采购项目采购方式:竞争性磋商预算金额:98.0000000 万元(人民币)最高限价(如有):98.0000000 万元(人民币)采购需求:采购电感耦合等离子体质谱仪1套。合同履行期限:签订合同之日起30日内完成全部仪器设备的供货及安装调试。本项目( 不接受 )联合体投标。
  • 195万!国家海洋环境监测中心电感耦合等离子体质谱仪采购项目
    项目编号:DLZY-2022-0901项目名称:国家海洋环境监测中心电感耦合等离子体质谱仪采购项目预算金额:195.0000000 万元(人民币)最高限价(如有):195.0000000 万元(人民币)采购需求:电感耦合等离子体质谱仪1台(详细内容见招标文件) 注:1.招标文件中要求投标单位须提供非进口产品(进口产品是指通过中国海关报关验放进入中国境内且产自境外的产品),否则视为无效投标文件。 2.本项目招标不能只对个别品目进行投标,否则将被视为非响应性投标而被拒绝。 合同履行期限:按招标文件要求。本项目( 不接受 )联合体投标。
  • 625万!江西省药品检验检测研究院电感耦合等离子体质谱仪等采购项目
    1.项目编号:JXYL2022-G0616-01项目名称:江西省药品检验检测研究院生物制品批签发检验检测能力建设项目01包采购方式:公开招标预算金额:1466000.00 元最高限价:1466000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000618939电感耦合等离子体质谱仪(进口产品)1台1466000.00元详见公告附件2.项目编号:JXYL2022-G0616-02项目名称:江西省药品检验检测研究院生物制品批签发检验检测能力建设项目02包采购方式:公开招标预算金额:783000.00 元最高限价:783000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000618906实验动物饮水机(国产产品)1套150000.00元详见公告附件赣购2022B000618929气相色谱仪(进口产品)1台633000.00元详见公告附3.项目编号:JXYL2022-G0616-03项目名称:江西省药品检验检测研究院生物制品批签发检验检测能力建设项目03包采购方式:公开招标预算金额:805250.00 元最高限价:805250.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000618922微泄漏密封性测试仪(国产产品)1台285000.00元详见公告附件赣购2022B000618919超声波清洗器①(国产产品)3台15900.00元详见公告附件赣购2022B000618938高效液相色谱仪(进口产品)1台466000.00元详见公告附件赣购2022B000618917隔膜真空泵(国产产品)1台1550.00元详见公告附件赣购2022B000618911暗箱式紫外分析仪(国产产品)1台1600.00元详见公告附件赣购2022B000618932智能崩解仪(国产产品)1台6200.00元详见公告附件赣购2022B000618918超声波清洗器②(国产产品)3台22500.00元详见公告附件赣购2022B000618935熔点仪(国产产品)1台6500.00元详见公告附件4.项目编号:JXYL2022-G0616-04项目名称:江西省药品检验检测研究院生物制品批签发检验检测能力建设项目04包采购方式:公开招标预算金额:794060.00 元最高限价:794060.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000618903澄明度检测仪(国产产品)1台1560.00元详见公告附件赣购2022B000618931渗透压测定仪(国产产品)1台43600.00元详见公告附件赣购2022B000618921澄清度测定仪(国产产品)1台36800.00元详见公告附件赣购2022B000618927智能热原仪(国产产品)1台94000.00元详见公告附件赣购2022B000618909涡旋混匀器(国产产品)7台55300.00元详见公告附件赣购2022B000618920药物溶液颜色测定仪(国产产品)1台64800.00元详见公告附件赣购2022B000618924光密度扫描仪(进口产品)1台146000.00元详见公告附件赣购2022B000618925凝胶成像系统(进口产品)1套352000.00元详见公告附件5.项目编号:JXYL2022-G0616-05项目名称:江西省药品检验检测研究院生物制品批签发检验检测能力建设项目05包采购方式:公开招标预算金额:816000.00 元最高限价:816000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000618914电子天平①(国产产品)1台39500.00元详见公告附件赣购2022B000618913电子天平②(国产产品)1台30000.00元详见公告附件赣购2022B000618904微粒检测仪(国产产品)1台120000.00元详见公告附件赣购2022B000618937全自动凯氏定氮仪(国产产品)1套570000.00元详见公告附件赣购2022B000618934多功能微生物自动测量分析仪(国产产品)1台56500.00元详见公告附件6.项目编号:JXYL2022-G0616-06项目名称:江西省药品检验检测研究院生物制品批签发检验检测能力建设项目06包采购方式:公开招标预算金额:796600.00 元最高限价:796600.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000618928紫外可见分光光度计(国产产品)1台99000.00元详见公告附件赣购2022B000618912立式自动压力蒸汽灭菌器②(国产产品)1台89800.00元详见公告附件赣购2022B000618905立式自动压力蒸汽灭菌器③(国产产品)2台120000.00元详见公告附件赣购2022B000618936原子吸收分光光度计(国产产品)1台398000.00元详见公告附件赣购2022B000618916立式自动压力蒸汽灭菌器①(国产产品)1台89800.00元详见公告附件7.项目编号:JXYL2022-G0616-07项目名称:江西省药品检验检测研究院生物制品批签发检验检测能力建设项目07包采购方式:公开招标预算金额:788800.00 元最高限价:788800.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000618933恒温水浴锅(国产产品)5台7000.00元详见公告附件赣购2022B000618898往复振荡器(国产产品)1台19500.00元详见公告附件赣购2022B000618910手动压力机(国产产品)1台2300.00元详见公告附件赣购2022B000618901电子天平④(国产产品)2台48000.00元详见公告附件赣购2022B000618926磁力搅拌器(国产产品)1台4000.00元详见公告附件赣购2022B000618923溶出度仪(国产产品)1套303000.00元详见公告附件赣购2022B000618899水浴恒温振荡器(国产产品)1台7400.00元详见公告附件赣购2022B000618908药品冷藏箱(国产产品)5台165000.00元详见公告附件赣购2022B000618902电子天平③(国产产品)2台28600.00元详见公告附件赣购2022B000618900低温保存箱②(国产产品)1台42000.00元详见公告附件赣购2022B000618907低温保存箱①(国产产品)1台14000.00元详见公告附件赣购2022B000618915冷冻组织研磨仪(国产产品)1台48000.00元详见公告附件赣购2022B000618930色谱工作站(国产产品)20套100000.00元详见公告附件合同履行期限:合同签订日后 90个日历日内交货,所有货物运抵现场且安装调试合格的日期为最终交货日期。本项目不接受联合体投标。
  • 300万!甘肃省平凉生态环境监测中心电感耦合等离子体质谱仪等设备采项目
    项目编号:2022zfcg00768项目名称:甘肃省平凉生态环境监测中心2022年生态环境监测能力提升项目预算金额:300.00(万元)最高限价:300.0(万元)采购需求:本项目招标范围为采购环境仪器设备3台(套),分别为:▲(一)电感耦合等离子体质谱仪((ICP-MS))1台;(二)购置气相色谱-质谱联用仪1台;(三)购置气袋法采样器1台(标注“▲”符号为核心产品,具体详见招标文件第三章技术参数)合同履行期限:自合同签订生效之日起60日历天内完成供货。本项目(是/否)接受联合体投标:否
  • 中山市质量技术协会批准发布《环境空气 104种挥发性有机物的测定 罐采样 气相色谱-氢火焰离子化检测器 质谱联用法》团体标准
    各有关单位:根据《中山市质量技术协会团体标准管理办法》规定,现批准《环境空气 104种挥发性有机物的测定 罐采样/气相色谱-氢火焰离子化检测器/质谱联用法》为本协会的团体标准,标准编号为T/ZSZJX 010-2023。2023年12月29日发布,自2024年1月1日起实施,现予公告。中山市质量技术协会2023年12月29日【50号文】关于《环境空气 104种挥发性有机物的测定 罐采样 气相色谱-氢火焰离子化检测器 质谱联用法》团体标准发布的公告.pdf
  • 质谱技术的新方向—电荷检测质谱法(CDMS)
    电荷检测质谱法是通过同时测量单个离子的质荷比和电荷数,进而算得离子质量m的单粒子统计方法,在测定超大分子离子的质量分布方面有独特的优势。现有质谱仪在超大分子量测量方面面临的挑战在质谱仪中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来,因此形成质谱。所以,目前的质谱仪测量的是离子的质荷比(m/z),而不是质量本身。经过一个多世纪的发展,质谱仪从原先只能分析无机元素和小分子,逐步发展到能够分析有机物分子、生物大分子直至具备生命体特征的病毒颗粒。2002年诺贝尔化学奖之一授予了用电喷雾电离(ESI)进行蛋白质质谱分析的创始人John Fenn。在电喷雾质谱对蛋白质进行分析时,溶液中的蛋白质样品被传送到加有高压的毛细管尖端,强电场促使样品溶液喷雾,喷雾中的液滴通过蒸发,库仑爆炸等过程,形成带有多个电荷的蛋白质离子,被引入处于真空中的质谱分析器。每个离子所带的电荷数的多少,取决于分子的大小、分子在溶液中的几何构象(折叠或打开)以及电喷雾尖端处的电压和气流等参数。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以用电脑程序退卷积得到m分布。对于分析较小(分子量在5万以下)、较简单纯净的蛋白样品,退卷积还是很有效的。然而,在实际应用中对蛋白和蛋白组的分析,特别是对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化(heterogeneity),很宽的质量m分布(可达上千Da)使得不同价态的峰群连接在一起。图1中,用高分辨质谱仪对二种病毒壳体的质量进行测定,由于各种价态的质谱峰群连城一片,根本无法辨别谱峰,得到样品分子的质量。同时,实际样品也可能因处理不善或自然裂解,使谱图混杂着不同大小的分子离子,它们各自的价态z分布可能导致它们的峰群在m/z轴上交叠在一起。目前对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用退卷积软件来获得分子量的分布信息。事实说明,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。图1 ESI质谱对大型病毒壳体质量测定的困难。(a,b)晶体结构效果图 (c,d) 的“高分辨”质谱分析图。(摘自:Kafader, J. O., Nature methods, 17(4), 391-394)糖蛋白是生物制品中比例最大的一类药物,其糖修饰对其功能非常关键,准确解析此类药物的糖修饰是药物研发、报批和质量监控的关键内容。但它们在ESI-MS的质谱中,看到的好像是一堆杂草,无法辨别有什么蛋白组分。将一个糖蛋白药物中的各组分进行高分辨检测,是当前生物质谱面临的巨大挑战。电荷检测质谱仪的提出与技术发展早在上世纪90年代,美国西北太平洋国家实验室R.D.Smith组的 Bruce, J. E等就提出可以在傅里叶变换质谱仪中同时测量单个离子的电荷和质荷比,从而算出离子的质量m。随后,美国劳伦斯伯克利国家实验室W. H. Benner 发明了一种线形的静电离子阱,并用其测量单个高价离子的电荷数和质荷比,进而得到单个事件中的离子质量m。只要连续不断地进行大量的单个离子测量,就可以把总离子事件统计出来,形成按质量分布的直方图,而这就是一张电荷检测质谱。图2,Benner小组采用的直线形静电离子阱进行CDMS测量的原理图CDMS技术的关键是如何准确地测量单个离子的电荷。测量中,离子在静电离子阱内进行周期性运动并在电极上感应出“镜像电荷”信号。通过对信号的傅里叶变换,得到离子信号的频率从而决定离子的质荷比,而由频谱峰的强度得到离子所带的电荷数。虽然单个离子的镜像电荷频谱的峰强度与离子的电荷数成正比,它也同时与离子在阱内的轨道形状、离子存活时间有关,而这些参量都存在不定性;并且由于镜像电荷信号强度极弱,回路中的电子噪声对精确测量镜像电荷产生很大的影响,因此早期的电荷测量的RMS误差达2.2e以上,由此计算出的质量精度只比凝胶电泳好一点。近年来随着人们对天然、复杂蛋白分析的需求日益显现,CDMS技术也进一步得到了发展。美国印第安纳大学Jarrold小组通过对线形静电离子阱分析器的不断改进,特别是采用了低温前级信号放大器等优化设计后,实现了最小RMS 0.2 e的电荷测量误差,测量的样品包括2 MDa以上的蛋白复合体(protein complex)和20 MDa以上的病毒外壳。在这个RMS误差下,通过电荷数取整可以大概率获得精准的电荷值,从而得到精准的质谱分布。图3给出了用普通ToF质谱仪和CDMS测量天然态丙酮酸激酶(PKn)多聚体的效果比较。当3个以上四聚体组装在一起时,ToF质谱完全无法辨别其质量分布,而CDMS可以看到近10个四聚体组合的质量峰。图3.用常规ToF质谱(左)和用CDMS测量的丙酮酸激酶(PK)多聚体,使用相同样品和相同电喷雾条件。(摘自D. Keifer: Analyst, 2017,142,1654)目前,虽然用线形静电阱结合傅里叶变换可以得到较好的电荷测量精度,但该方法每次只能测一个离子,否则库伦相互作用会影响测量。在实际测试中,每次引入的离子数是随机分布的,需要用软件鉴别超过一个离子注入的事件,也要发现因为和残余气体碰撞而半路夭折的事件,并把这些“不良”记录剔除。考虑单次分析时间大约需要1s,得到一张良好统计的CDMS谱图需要几个小时甚至一天的数据积累。加利福尼亚大学E. Williams团队对线形静电离子阱分析器的设计和的数据处理方法进行了创新,能让宽能量范围的离子同时进入离子阱进行分析,避免了离子之间的空间电荷作用,可以在一个测量周期内测量10-20个离子,进而有望提高了检测效率。与此同时,其他尝试使用商业傅立叶FT质谱仪进行CDMS的研究团体也逐步浮现。美国西北大学Kelleher团队、荷兰乌得勒支大学的A.R.Heck团队先后使用热电公司的静电场轨道阱(Orbitrap) 系统,通过更新数据处理软件,对CDMS进行了应用研究。除了Orbitrap是成熟的商业化仪器这一优点外,轨道静电离子阱内的离子由于其轨道运动,导致电荷分布在中心电极周围,因此其空间电荷相互作用较小。Kelleher 在Nature Method上的论文声称,基于Orbitrap的CDMS可以同时分析100个离子。不过,在电荷测量精度上,Orbitrap-CDMS目前只达到RMS 1 e左右,较Jarrold的线形静电阱还有一定的差距,但Orbitrap对m/z的测量精度、分辨率远远超过ELIT,一定程度上帮助消除在多离子同时分析时可能出现的m/z相近离子的信号干涉效应。笔者在岛津公司的欧洲研发团队去年也在JASMS发表了用CDMS测量糖蛋白的尝试。该工作采用了一种盘状平面静电离子阱分析器,如图4,而这种分析器也能像Orbitrap那样获得超高分辨质谱。通过对测量硬件和软件进行改进,实现了CDMS实验。该报道给出了一种全新的CDMS数据处理方法,能够克服离子在分析过程中因碰撞夭折造成测量不准的问题,同时实验验证了该方法的有效性,还对多个离子同时分析时的信号干涉等问题提出分析和研判,为深入研究CDMS技术,消除造成电荷测量误差的障碍打下了基础。图4,用于CDMS 实验的平面静电离子阱系统 (A. Rusinov, L. Ding, JASMS, 32, 5, 2021)CDMS技术的应用现状目前,电荷检测质谱技术还处于早期发展阶段,还没有现成的商品仪器出售,只有能够自己开发质谱仪器硬件,或自己改编FTMS(含Orbitrap)软件的专家才能进行这样的实验。 今年初美国沃特世公司宣布成功收购专攻电荷检测质谱技术(CDMS)及服务的初创企业Megadalton Solutions Inc. Megadalton Solutions是由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立,他们目前是研发的CDMS仪器最长久的团队并拥有最成熟的技术。沃特世曾于2021年将Megadalton的CDMS技术引进到了沃特世Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。沃特世公司首席执行官Udit Batra博士表示要进一步开发Megadalton的CDMS技术并将其商业化。在国内,CDMS无论是仪器技术开发还是应用都属空白。虽然国内在复杂生物大分子结构与功能的研究、病毒载体空壳率监测方面对CDMS已经产生需求,但我们在高端质谱仪器研制方面远远落后于西方。CDMS在技术上是基于FTMS分析原理而演化产生的,但国内目前对FT类型的质谱仪器研究,除了少量理论分析与离子光学仿真工作外,还没有实质性的进展,也没有企业能够提供FTMS类商品仪器。针对这些需求,笔者打算在前期研究工作的基础上,研究开发静电离子阱分析器,并进一步结合开发CDMS特定的数据处理软件,建成一套拥有自主知识产权的新型质谱仪器。同时建立国内的研发应用合作机制,解决目前国内超大分子蛋白质生物药剂质量分析的问题。预测CDMS技术未来的市场空间如前所述,目前对复杂蛋白等大型生物分子进行质谱分析时,由于其分子量的差异性(heterogeneity), 存在着严重的多价态峰群重叠问题,导致无法通过质谱仪获得这些大分子在样品中的质量分布。而用电荷检测质谱仪,无需对电荷态退卷积,可以直接得到蛋白质、蛋白复合体、各种转译后修饰造成的特定质量分布图。因此,该仪器的发展在天然蛋白质、糖蛋白、病毒颗粒的成分和结构研究,抗原-抗体作用机理研究和疫苗研发方面有很大的未来市场空间,具体可以列举以下几个方面:(1)新型电荷检测质谱仪可实现复杂样品的蛋白离子精确分析,可时提供复杂样品中各蛋白分子的结构,密度分布等。(2)可直接测定糖蛋白及其它各种转译后修饰造成的特定质量分布图,为解释蛋白大分子及其转译后修饰分子量或结构表征变化信息等之间的关系,从而对糖蛋白相关的疾病诊断具有重要意义。(3)通过研究DNA等生物大分子离子的电荷分布,以及质量与电荷的关联,可以推断这些大分子的结构,比如它的聚合程度、纤维股数等。(4)在病毒研究中,可以用来确定病毒衣壳的蛋白复合体结构及其组装反应的过程,这将在抗病毒药物的研究中发挥作用。(5)在基因疗法研究和产品质控中,本项目研制的电荷检测质谱仪可以用来测定腺病毒载体的空壳率,检查载体内的基因完整度。推动现代临床医学的发展;(6)电荷检测质谱仪还可以用来测定纳米聚合物分子的聚合度和分散指数,推动材料科学的发展。值得关注的是新冠疫情给质谱分析带来了全新机遇,除了对新冠病毒本身的蛋白进行分析研究以外,也可以在灭活疫苗、病毒载体疫苗以及核酸疫苗产品的质量控制、效果评价、免疫机制研究以及载体类疫苗的体外模拟产物的评价等方面发挥优势。关于笔者:宁波大学材料科学与化学工程学院/质谱技术研究院 丁力1990年于复旦大学物理系获理学博士学位。先后工作于复旦大学材料科学系,以色列魏兹曼科学研究所,英国贝尔法斯特女王大学纯粹与应用物理系。1998年加入岛津欧洲研究所。2007年至2011年任岛津分析技术研发(上海)有限公司总经理。2011-2020年任岛津欧洲研究所高级研究员,研发二部经理。主要领导了多项质谱仪器的研发,是国际上数字离子阱质谱技术的创始人,在离子源,四极场离子阱,静电离子阱,飞行时间等分析器技术及其联用技术方面有很多创新和突破。发表论文、报告、专著一百余篇,有三十余项发明专利。领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital Ion Trap、Linear Ion Trap、Electrostatic Ion Trap,FTMS、 CDMS、MSMS、ECD、Ambient Pressure Ion Sources 等。目前丁力在宁波大学组建团队,继续静电离子阱的设计和优化工作,已提出了静电“和谐阱”的设计概念,充分利用其高次谐波来提高质谱分析器的分辨本领。同时也在探索在国内实现这种精密分析器的加工和组装工艺,为下一步实现超高分辨质谱仪国产化做准备,也为在国内研制电荷检测质谱仪打好基础。
  • 电荷检测质谱是什么?为何如此引得质谱巨头关注?
    质谱法是一种强大的分析工具,其原理是测量带电粒子质量的方法,当分析样品进入质谱仪后,首先在离子源处使分析物进行游离化以转换为带电离子,进入质量分析器后,在电场、磁场等物理力量的作用下,探测器可测得不同离子的质荷比(m/z),从而从电荷推算出分析物的质量。传统质谱法难以分辨质量大于几百千道尔顿的物质(例如蛋白质复合物)的电荷状态。然而近些年,一种新的质谱方法出现,即电荷检测质谱 (Charge Detection Mass Spectrometry,CDMS) 。CDMS 是一种通过同时测量单个离子的质荷比(m/z)来确定单个离子质量的单粒子技术。确定数以千计的单个离子的质量,然后将结果合并提供质谱图。使用这种方法,可以测量通常不适合传统质谱分析的异质和高分子量样品的准确质量分布。最新发表的CDMS技术的应用就包括了高度糖基化的蛋白质、蛋白质复合物、蛋白质聚集体(如淀粉样蛋白纤维)、传染性病毒、基因疗法、疫苗和囊泡(如外泌体)。虽然到目前为止,CDMS 仍然是少数能够自制仪器的科研人员在应用。而随着生物医学的快速发展,研究人员分析分子量超大样品的需求快速增长,传统的质谱方法面临一定的限制,以CDMS为焦点的分析技术也许将成为下一个里程碑。前沿技术发生革新,行业巨头公司一定是反应最快的。日前,全球著名的质谱仪器公司Waters便发布公告,成功收购了一家专攻电荷检测质谱技术(CDMS)的初创企业,Megadalton Solutions。该公司由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立。笔者进一步查询到,Martin F. Jarrold 本人在过去十年一直致力于 CDMS技术的研究,也于2015年发表了“Charge Detection Mass Spectrometry with Almost Perfect Charge Accuracy”相关文章。(DOI:https://doi.org/10.1021/acs.analchem.5b02324)。2021年还发表了关于CDMS在生物分子学和生物技术相关的应用进展文章“Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology”。(DOI:https://doi.org/10.1021/acs.chemrev.1c00377)2018年,Martin Jarrold和David Clemmer教授因在离子淌度质谱技术上的开创性发明,共同获得了美国质谱学会颁发的质谱杰出贡献奖。不仅如此,David Clemmer教授还曾获得2006年的Biemann奖章。2018年ASMS质谱杰出贡献奖可以说,Megadalton Solutions公司是由两位质谱界大佬为了研发CDMS仪器创立的,技术实力很强硬。Waters公司的眼光也非常独到,于2021年就已经将Megadalton的CDMS技术引进到了Waters的Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。(相关链接:沃特世收购电荷检测质谱技术 扩大细胞和基因治疗领域应用)此外,笔者还注意到了另外一家基于CDMS技术的初创企业,荷兰公司TrueMass。TrueMass 于 2020 年在荷兰成立,并在英国曼彻斯特设有制造工厂。这家私营投资公司已从天使投资人获得大量资金,公司的使命是提供新技术,帮助全球研究人员和临床实验室推进药物开发和材料技术的研究。该公司于2021年10月26日在宾夕法尼亚州费城举办的ASMS上推出了其研发的CDMS仪器。笔者也搜索了TrueMass创始人 John Hoyes博士相关的信息,以飨读者。TrueMass创始人 John Hoyes博士TrueMass 创始人 John Hoyes 博士在质谱行业拥有 30 多年的从业经验。他于 1989 年在曼彻斯特大学完成了激光物理学博士学位,并在该大学科学技术学院仪器与分析科学系 (DIAS) 担任了一年的博士后研究助理。 Hoyes博士1990 年首次加入 VG Analytical,担任曼彻斯特工厂的开发物理学家。在头两年致力于改进磁扇磁场质谱仪器后,他开始研究飞行时间 (TOF) 质谱仪器。他是 VG Analytical 第一台 TOF 仪器的项目负责人,该仪器采用了 MALDI 离子源。 1995 年,他领导开发了世界上第一台商用 Q-TOF 仪器,该仪器于1996 年底由Micromass(后被Waters收购)推出。 2000 年,他发明了高分辨率光学 TOF 几何结构,并被纳入下一代 Q-TOF 仪器的改进。 2003 年,Hoyes博士离开 VG,成立了一家名为 MS Horizons 的新公司,专门提升该领域现有 Q-TOF 仪器的性能。在此期间,Hoyes博士对离子淌度和飞行时间杂合质谱仪器产生了兴趣,并为此申请了专利。他于 2006 年回到 Micromass(后被Waters收购) 担任研究总监,并于 2010 年成为技术总监。在他任职期间,公司推出了 SYNAPT G2、Vion 仪器和 StepWave 离子源等产品。 2013 年,他成为Waters科学研究员,并于 2016 年在 HUPO(人类蛋白质组组织)获得“科学技术奖”。2018 年 4 月,Hoyes博士离开公司,成立了 HGSG Ltd咨询公司。2020年Hoyes博士创立了 TrueMass公司以实现他对商业电荷检测质谱仪器的想法。总体看来,CDMS技术在复杂生物分析中能够发挥质谱技术的精确性优势,不久之后,质谱巨头们关于CDMS技术一定会动作频频,仪器信息网也将持续带来最新报道,敬请关注。
  • 400万!赛默飞中标上海市检测中心高分辨电感耦合等离子体质谱仪采购项目
    一、项目编号:0705-224005008002(招标文件编号:0705-224005008002)二、项目名称:高分辨电感耦合等离子体质谱仪采购招标项目三、中标(成交)信息供应商名称:上海协通集团国际贸易有限公司供应商地址:中国(上海)自由贸易试验区西里路55号13层1327室中标(成交)金额:399.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 上海协通集团国际贸易有限公司 高分辨电感耦合等离子体质谱仪 Thermofisher Scientific Element XR 1套 3999000.00
  • 向质谱领域进军 滨松重点推广离子源、探测器等新品
    p  第十七届北京分析测试学术报告会暨展览会(BCEIA 2017)已于10月10日-13日在北京国家会议中心举行,科学仪器核心零部件厂商滨松带着众多新产品新技术参展。其中质谱相关器件很是亮眼,就滨松如何看待质谱市场与技术发展趋势等问题,仪器信息网编辑采访了滨松中国分析领域质谱项目推进负责人周旭升先生。/pp style="TEXT-ALIGN: center"img title="滨松展位.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/99fe9b3e-edd1-462e-91ff-07f52812cff1.jpg"//pp style="TEXT-ALIGN: center"滨松展位/pp  滨松用于原子吸收、原子荧光等光谱仪器的光电倍增管盛名已久,其实滨松的质谱相关器件也已经有40多年的历史。不过由于某些原因一直没有“走”出日本,直到这两年,才开始不断在中国等市场宣传推广。/pp  至于为什么选择这个时候进行推广,以及作为零部件供应商,滨松是如何看待质谱市场的前景、以及技术与应用的发展方向,周旭升谈到,如今质谱技术与应用非常“热”,升势迅猛。尤其是中国市场,由于环境大气颗粒物源解析、以及相关的VOC分析等都需要质谱技术。相关标准制定时,涉及了大量的质谱方法。/pp style="TEXT-ALIGN: center"img title="周旭升.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/18c8613b-4cb7-4d54-8d2e-b5576ec8ad72.jpg"//pp style="TEXT-ALIGN: center" 滨松中国分析领域质谱项目推进负责人周旭升/pp  近年来,解读一些大公司财报时都会发现,质谱业务保持着很好的增长。尤其是2008年金融危机后,质谱市场增长趋势越发迅猛,而且中国市场增长情况更加“剧烈”。几乎各大公司财报中都专门提到,中国环境、健康等相关市场中质谱仪器销售额大幅增长。/pp  从另一个角度来看,国产质谱企业的数量越来越多,而且除了像东西分析、普析通用、聚光科技、天瑞仪器、广州禾信等,还出现了很多新企业,如宁波华仪宁创、北京清谱、青岛融智等。这些新型公司从MALDI或小型便携质谱开始,这也体现着质谱仪器的两个发展方向。小型便携质谱在环境、执法等领域有着很好的前景。MALDI质谱更专注于医疗、临床,而医疗临床领域也是近年来质谱应用的热点;最早奥巴马提出精准医疗战略,去年习主席在G20公告上承诺减少抗生素滥用,MALDI是鉴定身体里细菌、微生物、血细胞、组织的分析一种很好的手段,可以读取细胞中蛋白质的全面信息,是遗传疾病等诊断的好手段。另外,从利益角度来说,国内的三甲医院有实力、也有意愿配备MALDI等仪器设备展开更多的服务。/pp  “如能将质谱技术用到更多领域或是人们的生活中,那将是对分析技术或仪器市场非常大的革新。”周旭升说到。/pp  “应对这些市场需求,滨松开始大力在中国推广质谱相关器件。”至于滨松推广的手段,周旭升介绍到,国产质谱企业中多数已经是滨松光谱等器件的客户,当知道滨松有这些质谱器件时也都愿意尝试使用。而滨松的产品,如真空器件微通道板(microchannel plate, MCP)产品“身上”有着滨松60多年真空技术的积累,在产品一致性等大批量生产时的品质有很好的保证。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"电子倍增器(electron multiplier, EM)是目前使用最多的质谱探测器,其形式多样,基本原理是对带电粒子产生的次级电子进行放大。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  MCP是一种可以二维探测和倍增电子的电子倍增器。MCP也对离子、真空紫外射线、X射线和伽马射线等敏感,因此MCP可以应用在这些物质的位置和能量的探测器件中。/span/pp  除了MCP、EM的固有产品,滨松不断进行着革新,几乎在每年的ASMS上都会发布一款最先进的技术信息。周旭升介绍了近两年来推出的几款新技术。如,2016年发布了复合型MCP,由于增加了一个1000倍增的雪崩管使得其使用寿命提升7-10倍。2017年专门针对大分子分析的MALDI质谱推出了另一种复合型MCP,与传统MCP相比其信噪比大幅提高。另外还有一种用于小型化离子阱质谱的检测器CEM(连续式倍增电极,Channel electron multiplier)在真空度低的情况下仍能耐高压;而且器件不含铅对环保或仪器认证方面具有一定优势。不过,周旭升也提到,“这些新技术目前都还处在开发阶段,不过已提供给国内质谱企业试用,进行评估反馈,直到性能稳定下来能达到用户的要求,才会进行批量生产。”/pp  质谱技术的核心是“制造离子”和“检测离子”,其他所有的一切都是为这个目的服务。因此,在此次BCEIA 2017上,滨松就重点展出了离子源、检测器相关产品。/pp  如全新光致电离离子源——VUV氘灯 L13301,基于MgF2窗材的VUV氘灯可以促成一种高电离效率、碎片离子峰产生量少的新型软电离方式。它的电离能可达到10.78eV,电离效率提高,且相对于传统PID灯可以电离出更多的离子,使仪器整体灵敏度有数倍提高,此外还具备低成本、易安装等特点。在VOCs监测等领域有着较好的应用,VUV氘灯最大至10.78ev的电离能可电离绝大多数VOCs。/pp  针对TOF-MS的特点及对MCP探测器的要求,滨松最新的F12396-11、F13446-11、F1094-11作为代表在此次BCEIA中登场。这几款MCP具有响应速度快、极小的后脉冲、鲁棒性\无畸变、漏斗型MCP\保持更高探测效率的特征,其还可结合荧光屏进行电光转换、后端加CCD相机可显图像。/pp  近年来,针对冶金、环保、地质矿产、食品等领域越来越多的痕量重金属检测需求,ICP-MS得到更加广泛的应用,ICP-MS面向的是痕量无机元素的测定(检出限ppt级别)。针对ICP-MS的特点及对探测器的需求,本次展会滨松展示了具有大动态范围双模式输出(模拟输出和计数输出)的EM R13733。/pp style="TEXT-ALIGN: right"撰稿:刘丰秋/pp /p
  • 日立携新型质谱检测器亮相34届质谱盛会
    2016年9月10日-12日,由中国质谱学会主办、中国科学院青海盐湖研究所等联合承办的“第34届中国质谱学会学术年会暨全国会员代表大会”在青海省西宁市隆重召开。来自质谱行业的500余位专家齐聚西宁,共聚盛会。 日立高新技术公司高度关注此会,携新型质谱检测器Chromaster5610亮相西宁。牟晓丽经理做了题为《小身材,大作用-日立新型质谱检测器特点及其应用》,着重介绍了Chromaster5610的四大特点:(1)安装环境要求简单,在常规的液相实验室即可安装;(2)比起大型质谱仪,价格有优势;(3)常规液相检测器级别的操作性,即使是初次操作者也可轻松完成分析;(4)常规液相检测器级别的维护性,用户可自行拆下大气压离子过滤器进行清洗。图为.日立高新报告现场 介绍结束后,用户来到日立高新展位,亲自动手感受拆卸大气压离子过滤器,用户纷纷为日立新型质谱检测器独特的研发思路点赞。图为.日立高新展位现场关于日立新型质谱检测器Chromaster5610,请参考链接:http://www.instrument.com.cn/netshow/SH102446/C223442.htm关于日立高新技术公司: 日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 上海精科气相色谱光离子化检测器通过评定
    上海精密科学仪器有限公司自主研发的GC126━PID 气相色谱仪光离子化检测器,于2011年7月通过了上海市计量院的型式评定。该产品具有自主知识产权,获国家专利局发明专利授权,研发论文已刊登在《分析化学》杂志上,目前装备在公司生产的GC126气相色谱仪上。  精科公司由“质谱开发团队”开发的GC126━PID 气相色谱仪光离子化检测对苯类、含羰基类化合物等有较高的选择性与分析灵敏度 灵敏度比FID高50-100倍,可与毛细管连接,克服了传统填充柱易流失、柱效低等弊端。具有线性范围宽、可检测环境中0.5ppb-500ppm的苯系物等。其主要性能指标达到了国际同类检测器的标准。该产品配套使用相应的仪器,一可以监测大气中苯、甲苯、乙苯、二甲苯、苯乙烯、甲醛和乙醛 二可以监测汽车尾气(一氧化氮) 三可以检测食品中有机溶剂的残留(6号溶剂)和对食品进行保鲜度分析(硫醇、硫醚、硫化氢等) 四可以检测航空航天推进剂生产中产生的有毒气体(苯、苯乙烯、丙酮、肼等)。  该产品如与FID、质谱、 红外检测器等实行联用,可获取更多的信息,它无辐射,无需氢气、助燃气体,可用高纯氮气或空气作载气,无需复杂的化学前处理(如热解析等),安全可靠,有直接进样分析的优点。科技人员在调试气相色谱仪光离子化检测器精巧的小型的气相色谱仪光离子化检测器
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制