当前位置: 仪器信息网 > 行业主题 > >

质谱联用离子化方法

仪器信息网质谱联用离子化方法专题为您提供2024年最新质谱联用离子化方法价格报价、厂家品牌的相关信息, 包括质谱联用离子化方法参数、型号等,不管是国产,还是进口品牌的质谱联用离子化方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱联用离子化方法相关的耗材配件、试剂标物,还有质谱联用离子化方法相关的最新资讯、资料,以及质谱联用离子化方法相关的解决方案。

质谱联用离子化方法相关的耗材

  • PID光离子化灯
    光离子化灯PID Lamp简介 光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。 贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理 将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号 用于设计制造小型化或手持式仪器灯型号PKR106-6填充气体Kr光离子强度(eV)10.6工作电流(mA)n/a起辉时间(ms)n/a长度×直径(mm)30×6产品优势 为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质 许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺 贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PAL118
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PAL 118填充气体Ar起辉电压(V)1500光离子强度(eV)11.8工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×35产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PAS118
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PAS 118填充气体Ar起辉电压(V)1500光离子强度(eV)11.8工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×19.6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PKR106
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PKR 106填充气体Kr光离子强度(eV)10.6工作电流(mA)80 - 150起辉时间(ms)100长度×直径(mm)53×12.7产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PXR096
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PXR 096填充气体Xe光离子强度(eV)9.6工作电流(mA)80 - 150起辉时间(ms)100长度×直径(mm)53×12.7产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PAR118
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PAR 118填充气体Ar光离子强度(eV)11.8工作电流(mA)80 - 150起辉时间(ms)100长度×直径(mm)53×12.7产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PKS106
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PKS 106填充气体Kr起辉电压(V)1500光离子强度(eV)10.6工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×19.6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PXL106
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PXL 106填充气体Xe起辉电压(V)1500光离子强度(eV)10.6工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×35产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PKS100
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PKS 100填充气体Kr起辉电压(V)1500光离子强度(eV)10.0工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×19.6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PKR100
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PKR 100填充气体Kr光离子强度(eV)10工作电流(mA)80 - 150起辉时间(ms)100长度×直径(mm)53×12.7产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PXL084
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PXL 084填充气体Xe起辉电压(V)1500光离子强度(eV)8.4工作电流(mA)0.2 – 2起辉时间(ms)1 – 2长度×直径(mm)53.5×35产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 直流激发光离子化灯PXS096
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全DC直流激发PID灯用于设计制造台式高稳定性仪器灯型号PXS 096填充气体Xe起辉电压(V)1500光离子强度(eV)9.6工作电流(mA)0.2 - 2起辉时间(ms)1 – 2长度×直径(mm)53.5×19.6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PKR106-6-14
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PKR106-6-14填充气体Kr光离子强度(eV)10.6工作电流(mA)n/a起辉时间(ms)n/a长度×直径(mm)14×6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 射频激发光离子化灯PKR106-6
    光离子化灯PID Lamp简介光离子化灯常用于气相色谱学(GC),痕量气体监测以及在质谱分析中对样品进行电离。PID技术使用的灯带有真空紫外(VUV)区域内的一致光子能量。当气态分子电离能低于光子发出的能量时,分子可被离子化。光离子化灯常用于测量浓度为ppm到ppb级的挥发性有机物(VOCs)和其他气体。贺利氏提供完整系列的光离子化灯,它们在强度光谱纯度和寿命上都达到最高标准。贺利氏光离子化灯包括不同填充气体和窗口材料,采用直流(DC)和射频(RF)两种激发方式。贺利氏技术团队拥有专业设计力量,通过和OEM仪器生产商合作,可以按照客户在外形和功率方面的特定要求进行设计和生产。特性填充气体:Xe,Kr,Ar窗口材质:LiF,MgF2,Al2O3驱动方式:DC直流,RF射频光离子化强度:9.6 eV,10.0 eV,10.6 eV,11.8 eV高纯度气体以保证更长寿命高纯度窗口材料以保证更佳的光谱透过率工作原理将PID灯发射的真空紫外光束射入测试腔,当被测有机挥发性气体进入测试腔时,受到紫外光的轰击而发生电离,分裂成带正负电性的两个基团。在测试腔的两边装有一对施加了适当工作电压的电极,受到电极电压的吸引,带电基团分别趋向相应电极而形成正比于VOC浓度的电流。通过测量该电流大小,确定VOC浓度。分裂的基团经过电极后重新复合离开真空腔。应用气相色谱仪(GC)质谱仪(MS)大气和土壤的监测报警器顶室测试气体泄漏监测危险区域中的人员安全RF射频激发PID灯型号用于设计制造小型化或手持式仪器灯型号PKR106-6填充气体Kr光离子强度(eV)10.6工作电流(mA)n/a起辉时间(ms)n/a长度×直径(mm)30×6产品优势为了达到无与伦比的光强、灵敏度和寿命表现,贺利氏使用高质量的原材料并精准地控制加工工艺。吸气剂灯体内部的金属块或金属环用来吸收透过灯体玻璃进入的杂质气体。一些厂家的吸气剂仅能在灯生产时有效,而一些厂家甚至不适用吸气剂;这会导致PID灯使用过程中光谱纯度退化。虽然这不会干扰监测VOCs的VUV谱线,但是会降低VUV谱线的能量,从而导致灵敏度和寿命的降低。贺利氏专利设计的吸气剂可以在整个工作寿命中发挥作用以保证高纯度的输出光谱。光窗材质许多厂家使用天然晶体来加工光窗,但是这些天然晶体中含有一些杂质。这回导致输出光谱发出不规则反射而降低输出强度,从而减少工作寿命。贺利氏采用高纯单晶MgF2,并切割成平面以保证最大透过率。窗口封接和加工工艺贺利氏选择了最佳的窗口封接原料且在真空下严密贴合以防止外部气体进入污染光谱。灯体的封接加工工艺也非常重要,保证了不同灯内充气气压相同,从而达到高度重现性。请联系我们为您的仪器应用安排优化的定制设计!
  • 火焰离子化检测器(FID)
    适用于布鲁克,原瓦里安气相色谱系统的Agilent CrossLab 备件订货信息:火焰离子化检测器(FID)说明安捷伦 部件号收集极394958700下部FID绝缘体#173112100003200FID 火焰喷嘴,0.010英寸200187500FID 火焰喷嘴,带螺帽,0.020 英寸200193800陶瓷垫圈,25/包1500334701
  • 火焰离子化检测器(FID)备件
    产品特点:火焰离子化检测器(FID)组件订货信息:7890/6890/6850 火焰离子化检测器(FID)备件项目说明单位部件号1FID 收集极组件G1531-606902收集极螺帽19231-209403垫圈、弹簧、波形垫圈,内径 19.0 到 19.81 mm,外径 24.5 mm3050-12464 镍基耐蚀耐热合金点火器外罩(可选)19231-21060点火器外罩19231-209105点火器火花塞组件19231-606806收集极隔热垫G1531-207007 镍基耐蚀耐热合金收集极主体G1531-21090收集极主体G1531-206908螺帽,收集极扳手19231-209809收集极固定体G1531-2074010硅橡胶垫圈,0.890 英寸外径/0.709 英寸内径12/包5180-416511FID 点火器电缆,仅用于 7890AG3431-60680
  • 氢火焰离子化检测器配件
    磐诺色谱为气相分析工作者提供各类高品质GC专用零配件,为您的日常分析工作保驾护航——氢火焰离子化检测器配件系列No.DISC.1点火器点活塞组件(1个/包装)2FID收集极组件(1个/包装)3专用毛细柱喷嘴(0.29mm内径)4喷嘴用于毛细管柱(0.29mm喷嘴内径)5喷嘴用于填充柱(0.46mm喷嘴内径)6FID清洁工具包(1个/包装)
  • 安捷伦 6890气相色谱 G1531-00160 氢火焰离子化炉密封绝缘
    维修部件部件号 :G1531-00160FID oven seal insulation, used with series 6850 and 6890 gas chromatography systems用于6850和6890系列气相色谱系统的氢火焰离子化炉密封绝缘
  • 火焰离子化检测器 (FID) 394958700
    产品信息:订货信息:火焰离子化检测器 (FID)说明安捷伦部件号收集极394958700下部 FID 绝缘体 #173112100003200FID 火焰喷嘴,0.010 英寸200187500FID 火焰喷嘴,带螺帽,0.020 英寸200193800陶瓷垫圈,25/包1500334701
  • 氢火焰离子化检测器垫圈
    氢火焰离子化检测器垫圈货号:221-21922序号产品编号产品描述数量1221-21906-92收集器,W/Cable/FID12221-21925-91H.V.电极/FID13221-21920-91喷嘴组件/FID13-1221-33265-02喷嘴组件,0.3mm13-2221-21921喷嘴固定螺帽13-3221-21923垫圈13-4221-22500石墨压环13-5221-21922垫圈1
  • 芯片纳流电喷雾离子源 G4240A
    产品特点:安捷伦的液相色谱-芯片纳流电喷雾离子源卓越的耐用性、可靠性和使用方便性 液相色谱-芯片纳喷流电雾离子源和液相色谱-芯片自动接口与您的安捷伦液相色谱/质谱系统联用可使您利用液相色谱-芯片的出色性能。安捷伦的液相色谱-芯片将传统纳流电喷雾液质联用系统的样品富集和纳流分离柱、连接管路和电喷雾针无缝地集成到一个生物兼容的聚合物芯片上。与传统的纳流柱相比,大大 改善了总体耐用性、可靠性和使用方便性,允许常规自动使用纳流电喷雾。* 可分析复杂混合物、样品量少的样品,并可靠地检测超痕量而且显著变化的组分* 在不用重新连接纳流 LC 系统的情况下,可以快速容易地在不同方法间切换* 有各种液相色谱-芯片,包括蛋白组学和代谢组学应用、小分子分离、流动注射或直接扩散进样,以及用户化的新格式、特点和功能安捷伦的电喷雾离子源电喷雾离子源 (ESI) 是液质联用系统的一个主要的离子源,可以用于分析大分子和小分子化合物。安捷伦的电喷雾离子源使用我们的专利技术正交喷雾和加热干燥气系统,具有优异的灵敏度和耐用性,以及可靠的性能。它可以生成正离子和负离子,可以在两次扫描之 间切换离子极性,从而使一次运行采集的信息量翻番。安捷伦的毛细管电喷雾雾化器为了与毛细液相色谱分离相兼容,标准的安捷伦电喷雾离子源可以配备一个毛细管雾化器, 它可以对微升级流速进行优化。不需要对离子源进行改进;您可以拥有正交喷雾和对流干燥气的全部优点。毛细管雾化器为毛细液相色谱/质谱提供出色的灵敏度和容易而可靠的操作。安捷伦用于毛细管电泳的电喷雾离子化雾化器 我们提供用于毛细管电泳系统与安捷伦液相色谱/质谱系统联用的特殊的毛细管电泳雾化器。它最常用于安捷伦的电喷雾源,但也用于我们的 APCI、组合离子源和 APPI 离子源。 不需要对离子源进行改进;您可以拥有正交喷雾和对流干燥气的全部优点。毛细管电泳雾 化器在低电位工作,从而使得毛细管电泳分离条件独立于质谱操作条件。安捷伦的纳流电喷雾离子源纳流电喷雾离子源提供埃摩尔级的灵敏度,具有可在一维或二维色谱中使用传统的纳流柱的灵活性,以实现样品的优化分离。纳流电喷雾离子源较少需要调节,它是密封的,这在分析潜在的有害生物样品时增加了安全性。安捷伦的大气压化学电离 (APCI) 离子源大气压化学电离是电喷雾离子化的常用补充技术,常用于分析较小的分子量、热稳定的极性和非极性化合物。安捷伦的大气压化学电离离子源灵敏度高,而且极其耐用。可以生成正离子和负离子,且可以在两张质谱图之间切换离子极性。安捷伦的大气压光电离 (APPI) 离子源当分析用电喷雾离子源和大气压化学电离难以离子化的化合物时,大气压光电离离子源是一个有用的替代离子源。它将安捷伦的享有盛誉的正交喷雾和对流干燥气与来自 Syagen 科技公司的创新性光电离技术结合起来。长寿命氪灯发射光子,其能量足够高,可以使许多类别的化合物电离,但是,能量又足够低,可以使空气和常用液相色谱溶剂的电离最小化。订购信息:安捷伦的液相色谱-芯片纳流电喷雾离子源说明部件号1200 系列液相色谱-芯片/质谱接口可以在所有的 Agilent 6000 系列质谱仪上使用包含 HPLC-Chip Cube、MS 安装工具包、带照相机和显示器的正交双电极纳流电喷雾离子源、用于在化学本底降低模式下操作的带刷的离子源顶部板、蛋白质鉴定芯片 #1 和 MS 校准及诊断芯片G4240A 安捷伦的电喷雾离子源 说明6000 系列部件号旧的 MS 系列部件号电喷雾离子源G1948BG1948A安捷伦的毛细管电喷雾雾化器说明部件号毛细管电喷雾雾化器组件G1385A安捷伦用于毛细管电泳的电喷雾离子化雾化器说明部件号CE-ESI-MS 雾化器工具包G1607ACE/MS 接头工具包G1603A安捷伦的纳流电喷雾离子源说明部件号纳流电喷雾离子源G1982C安捷伦的大气压化学电离 (APCI) 离子源 说明6000 系列部件号旧的 MS 系列部件号大气压化学电离源G1947BG1947A安捷伦的大气压光电离 (APPI) 离子源 说明6000 系列部件号旧的 MS 系列部件号大气压光电离离子源G1971BG1971A
  • 7890/6890/6850 火焰离子化检测器FID备件
    7890/6890/6850 火焰离子化检测器(FID)备件 项目说明单位部件号1FID 收集极组件–G1531-606902收集极螺帽–19231-209403垫圈、弹簧、波形垫圈,内径 19.0 到 19.81 mm,外径 24.5 mm–3050-12464镍基耐蚀耐热合金点火器外罩(可选)–19231-21060点火器外罩–19231-209105点火器火花塞组件–19231-606806收集极隔热垫–G1531-207007镍基耐蚀耐热合金收集极主体–G1531-21090收集极主体–G1531-206908螺帽,收集极扳手–19231-209809收集极固定体–G1531-2074010硅橡胶垫圈,0.890 英寸外径/0.709 英寸内径12/包5180-416511FID 点火器电缆,仅用于 7890A–G3431-60680
  • 5890 火焰离子化检测器(FID) 备件
    订货信息: 火焰离子化检测器(FID)备件     项目 说明   部件号 1 收集极组件(包含2-9项)   19231-60690 2 PTFE收集极(可选)   19231-21050 3 收集极螺帽   19231-20940 4 弹簧垫圈,10/包   5181-3311 5 点火器外罩   19231-20910   镍基合金点火器外罩(可选)   19231-21060 6 点火器火花塞组件   19231-60680 7 上部收集极绝缘体   19231-20970 8 收集极主体   19231-20960   镍基合金收集极(可选)   19231-21080 9 下部收集极绝缘体   19231-20950   绝缘杯   19234-60720   FID 和 TCD样品   18710-60170   FID 备件工具包包括喷嘴、点火器、塞、标准和清洗配件 5182-3450
  • 岛津GC-14A/B 氢火焰离子化检测器 FID
    岛津GC-14A/B 氢火焰离子化检测器 FID岛津GC-14A/B 氢火焰离子化检测器 FIDNo.产品编号描 述数 量1221-21906-92收集器12221-21925-91H.V. 电极/ FID13221-21920-91喷嘴/ FID13—1221-33265-02喷嘴组件,0.3mm13—2221-21921喷嘴固定螺帽13—3221-21923垫圈13—4221-22500石墨压环13—5221-21922垫圈1
  • 岛津 GC-14C 氢火焰离子化检测器 FID
    岛津 GC-14C 氢火焰离子化检测器 FID岛津 GC-14C 氢火焰离子化检测器 FIDNo.产品编号描 述数 量1221-21906-92收集器,W/Cable/FID12221-21925-91H.V. 电极/ FID13221-21920-91喷嘴组件/ FID1221-37304-03喷嘴组件/ FID - SP221-32361-91FID 池(包括安装部分)
  • GMAGS-24 气相质谱联用自动进样阀
    GMAGS-24 气质联用仪自动进样阀 气质联用仪自动进样阀是将气体样品准确导入GC的装置,可用于各种型号气相色谱仪器的气体进样。该进样阀通过色谱仪的可控24VDC电源的开关来完成自动进样切换。有常温和加热两款。配件:进口6通阀,定量环0.5ml,安装件,连接件等 选件:各种规格定量环:0.05ml、0.1ml、0.25ml、1ml、2ml等。 适用:GC-2010,GC-2014,岛津色谱仪器等各种气相色谱仪 根据所分析样品的性质和分析需求,可选择不同进样温度: 货号 温度范围 GMAGS-24室温 GMAGS-24H2室温+10--220GMAGS-24H3室温+10--3304通 四通 6通 六通 10通 十通 自动进样阀 切换阀 样品进样阀 进样装置 进样器 气相色谱 液体进样阀 气体进样阀 定量环 MGS-4 MGS-5 VICI 7725i VALCO 手动进样阀
  • 质谱分流阀 MRA
    MRA 精密分流阀应用于液质联用系统(LC/MS)的主动分流用于 LC/MS 的主动分流高效液相色谱(HPLC)分流器通常用于将质谱仪耦合到液相色谱仪,以降低传送到质谱仪的样品的数量和浓度。这在自动化系统中尤其有用,可避免不必要的质谱(MS)进样过载。在平行于质谱需要第二个检测器或者需要馏分收集器的应用中,也需要分流。液质联用系统(LC/MS)的分流在自动分析如组合库、药物代谢物和杂质表征时具有代表性。液质联用系统(LC/MS)的分流在单个设备中广泛的可编程分流比排除了对特定应用或流量范围的限制精确、一致的分流比,与温度、流动相粘度和管道长度的变化无关指定为一百万次采样,最小化维护停机时间用于反相和正相色谱用于制备和分析级色谱,无需权衡取舍独立设备,可轻松集成到新的或之前安装的液质联用系统(LC/MS)中主动分流的优点与传统的被动分流装置相比,MRA ® 的单个装置中提供了广泛的可重复分流比。IDEX Health & Science 创新的主动分流技术——MRA,可以在 100 : 1 到 100,000 : 1 的范围内轻松方便地选择各种不连续分流比。MRA 如何工作IDEX Health & Scinece 的创新产品MRA是一种智能、主动的切换设备,可将一小部分柱后液相色谱(LC)液流转移到另外独立的流动相液流,送往质谱仪。详见图 1 。根据不同的应用,该独立液流允许对送往质谱(MS)的流动相的组成和流速进行优化。由于MRA是一种切换以及物质转移装置,而不是基于靠静态压力分流的“T”型装置,因此不受流动相或粘度、管道长度和温度变化的影响。此外,IDEX Health & Science的MRA不易堵塞,而且提供的分流比随着时间的推移保持准确和一致。参见图2和图3。在标准分流阀中,有三种不同的定量转移体积(22nL,100nL和300nL),以及0.2Hz至2.0Hz的切换频率。在使用中,一个可用的分流比和液相色谱(LC)流动相流速由用户确定,在分流因子表中可以找到分流因子。通过RS-232通信或手动触摸板将分流因子输入MRA。基于此输入,MRA会自动选择三个可用定量体积之一和切换频率来实现所选的分流比。这种独特的技术极大简化了方法的改变。IDEX Health & Science MRA可用于多种液质联用系统(LC/MS)的应用。实际上,相对于被动分流器仅限于固定的预设分流比而言,IDEX Health & Science的MRA具有更大的灵活性和时间经济性。使用周期和维护使用时,MRA具有高占空比,最小停机时间。为了扩展性能,IDEX Health & Science 采用其专有的RPC-8™ 密封表面技术。这使得结果是,在预防性维护前,在正常的操作条件下能够以最快的切换频率转移100万个样本。当需要维护时,通过更换切换密封件可以快速轻松地完成任务。我们提供含多个密封件和说明书的套件作为维护使用。模块化设备独立设计的MRA可轻松集成到现有系统功能中。系统集成程度将取决于所需的自动化水平。MRA接受输入线控或RS-232用于自动操作,触摸板输入用于手动操作。适用性IDEX Health & Science 的MRA可作为独立的模块化设备提供给分析仪器制造商,可以集成到新的液质联用(LC/MS)系统或当前已安装的液质联用(LC/MS)系统。
  • 岛津 GC-2014C 氢火焰离子化检测器(FID)
    岛津 GC-2014C 氢火焰离子化检测器(FID)订货信息:产品编号品 名用 途221-70162-92喷嘴FID 喷嘴(用于毛细管柱)221-70162-95喷嘴FID 标准喷嘴221-41847-93灯丝FID 点火?
  • 瓦里安热导检测器和火焰离子化检测器
    瓦里安GC 的部件和备件安捷伦现在为原来瓦里安制造的GC 提供更换部件和备件。以下部分包括GC 进样口、检测器和GC/MS 系统的订购信息。检测器更换部件和备件热导检测器(TCD)说明部件号转换接头,TCD/DEFC 毛细管尾吹气392585291转换接头,TCD/DEFC 参比气工具包392585292转换接头,TCD 毛细管尾吹气,MPC,3800392560591TCD/DEFC 14(非-H2),2通道392561290火焰离子化检测器(FID)说明部件号收集极394958700下部FID 绝缘体#173112100003200FID 火焰喷嘴,0.010英寸200187500FID 火焰喷嘴,带螺母,0.020英寸200193800陶瓷垫圈,25/包1500334701
  • 安捷伦7890/6890/6850火焰离子化检测器(FID)备件
    7890/6890/6850 火焰离子化检测器(FID)备件项目 说明 单位 部件号1 FID 收集极组件 G1531-606902 收集极螺帽 19231-209403 垫圈、弹簧、波形垫圈, 内径19.0 到19.81 mm,外径24.5 mm 3050-12464 镍基耐蚀耐热合金点火器外罩(可选) 19231-21060 点火器外罩 19231-209105 点火器火花塞组件 19231-606806 收集极隔热垫 G1531-207007 镍基耐蚀耐热合金收集极主体 G1531-21090 收集极主体 G1531-206908 螺帽,收集极扳手 19231-209809 收集极固定体 G1531-2074010 硅橡胶垫圈,0.890 英寸 外径/0.709 英寸内径12/包 5180-416511 FID 点火器电缆,仅用于7890A G3431-60680
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制