当前位置: 仪器信息网 > 行业主题 > >

质谱微生物分析方法

仪器信息网质谱微生物分析方法专题为您提供2024年最新质谱微生物分析方法价格报价、厂家品牌的相关信息, 包括质谱微生物分析方法参数、型号等,不管是国产,还是进口品牌的质谱微生物分析方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱微生物分析方法相关的耗材配件、试剂标物,还有质谱微生物分析方法相关的最新资讯、资料,以及质谱微生物分析方法相关的解决方案。

质谱微生物分析方法相关的方案

  • ACQUITY QDa质谱检测器在常规肽水平生物治疗药物分析中的应用
    本应用纪要旨在证明ACQUITY QDa质谱检测器为检测宽分子量范围的肽(尤其是生物治疗药物的肽图分析)提供了一种经济有效的简单解决方案,并且该质谱检测功能完全兼容基于光学检测的传统LC肽监测分析(使用TFA或甲酸(FA))。为此,我们采用监测曲妥珠单抗(一种治疗性单克隆抗体(mAb))肽图的一种现有方法,并应用ACQUITY QDa质谱检测器开展了此次研究。
  • 5-日立质谱检测器MSD分析微生物培养液
    使用LC检测时,将二极管阵列检测器(DAD)与质谱检测器串联起来使用,就可以同时得到UV谱图和质谱谱图。这样能够得到样品更多的信息量,在进行合成时的反应监控和副产品的确认是非常有效的。本文主要介绍在微生物培养液的有效成分筛选方面的相关应用。
  • 基于激光剥蚀-电感耦合等离子体质谱技术的生物元素成像分析
    生物体内的微量元素具有十分重要的生物功能,也与许多疾病密切相关。现代生物医学的研究亟需能在组织、细胞等不同水平上原位分析生物样品中微量元素的分析方法。本研究建立了激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)原位分析生物样品的方法。采用线扫描模式和较小的激光输出能量(<1 J/ cm2),得到了鼠脑切片和金纳米颗粒暴露后单细胞的金属元素成像图。LA-ICP-MS 具有空间分辨率高、检出限好、运行成本较低等优势,有望在生物医学研究中得到更广泛的应用,发挥更重要的作用。
  • 用气相色谱/质谱/质谱联用技术对海洋生物中杀虫剂等复杂样品进行分析
    用气相色谱/质谱联用技术对海洋生物样品(贻贝,蚌类)中的有机氯农药残留进行检测是极具挑战性的。虽然可以用快速溶剂萃取技术,同时使用尺寸排阻色谱以及氧化铝萃取技术处理样品,但提取样品中仍然含有大量基质。采用单四极杆气相色谱/质谱联用系统时,在选择离子检测模式下,这些基质不仅干扰定量分析,而且会造成衬管以及气相 色谱柱问题。导致气相色谱保留时间漂移和信号强度衰减。同时,质谱离子源会很快被 污染。 采用气相色谱/三重串联四极杆多反应监测分析模式时,因为复杂多重残留分析需要对多 反应监测的分段时间进行认真设置,所以采集数据时避免保留时间漂移尤其重要。本篇应用简要将介绍如何用安捷伦 7000A 三重串联四极杆气相色谱/质谱联用系统多反应监测模式,结合安捷伦微板流路控制技术对高沸点组分的反吹技术来对海洋生物样品进行分析。
  • 全自动微生物质谱检测系统整体解决方案
    全自动微生物质谱检测系统是禾信在全面掌握核心技术和先进制造工艺下,历时5年,完全自主、正向开发的一款基于基质辅助激光解吸电离法(MALDI)的质谱检测系统,主要应用于临床微生物菌株鉴定、病毒核酸检测、蛋白多肽分析等方面,具有检测通量大、准确可靠、经济快速、样品耗费量少与操作简单等优势,且是国内在核心期刊上以封面论文形式介绍该仪器研制的国产仪器。
  • 使用MALDImini-1紧凑型MALDI数字离子阱质谱仪进行微生物鉴定
    本文应用紧凑型MALDI数字离子阱质谱仪MALDImini-1结合微生物质谱数据库对2种常见的微生物(大肠埃希菌和金黄色葡萄球菌)进行检测。通过简单的样品前处理,成功鉴定2个标准菌株,结果与预期相符。分析过程具有分析成本低、速度快、结果准确可靠的特点。MALDImini-1作为紧凑型基质辅助激光解吸电离数字离子阱质谱仪,体型精巧、功能全面,在微生物快速检测和分析领域的发展未来可期。
  • 想提高对生物制药工艺的理解,提升工艺效率吗?过程质谱分析技术来支招!
    Prima系列过程质谱仪可监测生物技术应用(包括生物能源、维生素生产、食品添加剂和热量测定)中存在的气体和挥发物。使用赛默飞世尔科技的Prima BT台式质谱仪在最前沿的研究实验室优化生化过程,或使用赛默飞世尔科技的Prima PRO过程质谱仪帮助确保工厂的批量生产。
  • 色谱,X荧光分析,生物样品前处理中一款性价比极高的球磨机——德国Fritsch公司P23 微型球磨机
    对于色谱分析,X-荧光分析,生物样品分析以及法医的痕量鉴定方面的样品前制备工作,由于样品处理量小,采用传统的玛瑙研钵或常规的研磨仪器,常常造成样品大面积的附着在研磨腔室的内壁上,造成样品的浪费。 本文着重介绍了,德国Fritsch公司推出的P23 微型球磨机,从根本上解决了传统方法和常规研磨设备的缺陷,可以说填补了目前市场上的一个空白。 德国Fritsch公司的P23微型球磨机广泛的应用于色谱,质谱,x-荧光分析样品的制备,生物中基因测试样品的制备,公安系统刑侦分析,贵重金属分析,颜料,染料及燃料分析,矿物分析,农产品分析,食品分析,环境分析,纤维性样品分析等方面。而且这台微型球磨机价格绝对的具有吸引力,是一台性价比极高的球磨机。具体的研磨粉碎实验方法及相关实验数据,欢迎您来电话与北京飞驰科学仪器有限公司取得联系。
  • 实时飞行时间质谱直接分析快速测定血清代谢组指纹图谱的方法优化
    体液的代谢组指纹图谱能够揭示许多代谢异常相关性疾病的发病原因,从而成为疾病诊断和治疗预后诊断的潜在工具。本文报导了一种将实时直接分析(DART)与飞行时间质谱(TOF MS)联用的快速方法,用该方法对人血清代谢组指纹图谱进行了分析。在本研究中,首先对血清样品进行蛋白沉淀处理,并通过衍生化提高代谢物的挥发性,然后进行DART MS分析。用同体积健康人血清样品优化了电离气体温度和流速等仪器参数,获得了DART MS的最佳性能。实验表明这些参数对所检测代谢物全质量范围及DART质谱图信噪比有显著影响。每次DART分析只需要1.2分钟,在此过程中可以按时间顺序观察到1500多张不同的特征图谱。用手动取样臂得到的总离子信号重现性为4.1% 到4.5%。DART MS最令人感兴趣的特点是高通量、无记忆效应和简单性,因此有望成为代谢组指纹图谱研究极宝贵的工具。 代谢组指纹图谱,一种基于代谢模式或“指纹图谱”对样品分类的无偏差全面筛查方法,已经在尿、血浆、血清和体液等各种生物样品类型上进行了实验。核磁共振(NMR)和质谱是代谢组指纹图谱研究广泛使用的两种分析平台。NMR的优势是几乎不用进行样品处理,更容易获得大量数据,但成本高、灵敏度低是它的两个主要缺陷。气相色谱-质谱(GC-MS)和液相色谱-质谱(LC-MS)是代谢组学工作流程中常用的两项补充技术。除非常复杂以外, GC-MS和LC-MS还有分析通量低和有色谱记忆效应等缺点,尤其是在研究生物基质(如血清)中的代谢物时。为了克服上述局限,人们还在不断研究能有效分析代谢组学的技术。 实时直接分析(DART)是一种在室温和大气压条件下操作的基于等离子体的电离技术。属于大气压等离子体电离技术,该技术包括直接大气压光电离(DAPPI)、实时直接分析(DART)流动大气压辉光放电?(FAPA)、等离子体辅助解吸附电离(PADI)、低温等离子体(LTP)电离和介质阻挡放电电离(DBDI)等。DART以记忆效应最小的非接触方式电离。样品可以手动处理,也可以通过自动进样器辅助,主要的消耗品是高纯压缩气体(氦气或氮气),每个样品的分析成本较低。DART的工作原理是,首先在气流(氮气或氦气)中发生辉光放电,形成的亚稳原子与大气压中的水发生相互作用,生成质子化的水簇。这些clusters通过质子转移与热气流解吸附的分析物发生作用。在大多数情况下,不经过样品制备即可发生直接电离。DART已成功用于制药产品、仿冒药物、细菌脂肪酸、调料和香料等分析领域。 本文报导了一种用DART-TOF和DART-Q-TOF MS快速分析人血清代谢组指纹图谱的方法。讨论了各种实验参数的优化,通过精确质量测定和添加实验,对血清代谢物进行了鉴定。用DART离子源与Q-TOF质谱联接,用DART进行血清代谢组学研究的工作,迄今尚未见文献报导。
  • 利用固相微萃取和气相色谱-质谱联用法分析嫁接红茶香气变化的化学计量学方法
    开发出一种固相微萃取 (SPME) 和气相色谱/三重四极杆质谱 (GC/QQQ) 方法,用于分析嫁接红茶样品。使用 Agilent MassHunter Profinder 和 Agilent Mass Profiler Professional (MPP) 软件进行数据提取和统计分析。对鉴定或初步鉴定的特征挥发性化合物进行主成分分析和层次聚类分析,以揭示不同茶叶样品之间的差异。
  • 在线固相萃取--快速双三元液相质谱联用分析水中的呋喃丹和甲萘威
    甲萘威和呋喃丹属于高效广谱氨基甲酸酯类农药,广泛用于各种粮食作物的害虫防治,有很强的环境生物毒性,在我国被列为不得使用和限制使用的农药品种。由于其性质稳定,残留期长。在许多国家和地区的水体中均检出这类化合物残留。为防止污染水源影响人体健康,水体中农药残留的快速有效测定具有非常重要的意义。《GB/T5750.9 - 2006生活饮用水检验方法 农药指标》中采用固相萃取-高效液相色谱-紫外检测方法测定了水样中的甲萘威,采用液液萃取-高效液相色谱-柱后衍生-荧光检测方法测定了水样中的呋喃丹。本文采用在线固相萃取为样品前处理方法,样品经固相萃取柱浓缩后在线转移至分析柱进行分析,串联质谱检测,样品无需前处理,过滤后即进样分析,5分钟即可完成一次样品分析。本方法对水中甲萘威的检测限是0.3 ng/L,呋喃丹的检测限是0.15 ng/L。
  • 液相色谱串联质谱法+小麦+麦角生物碱
    在食品方面的研究领域中,对麦角生物碱的研究,常见的方法有:比色分析法(Colorimetry),但此方法只适合总碱含量测定,不能区分麦角生物碱的差向异构体;薄层色谱分析法(Thinlayerchromatography,TLC)分析方法简便、快速、成本低,但灵敏度低、重现性差,因此目前多用于定性分析及半定量分析;酶联免疫吸附法(ELISA),具有检测时间短、特异性强、仪器设备和样品前处理简单的特点,适用于大批量样品筛查与现场检测,然而也存在酶标记抗体保存时间有限且用量大,交叉反应;气相色谱法(Gas Chromatography,GC)一般要求被分析物在一定温度下易气化且在气化温度下较稳定。采用GC检测肽型麦角生物碱时,肽型麦角生物碱在进样口温度(250~300℃)下不稳定、易分解,肽型麦角生物碱会发生热分解,产生缩氨酸部分。利用质谱法(Mass spectrometer,MS)可以区分肽型麦角生物碱和其他麦角生物碱,但对于肽型麦角生物碱的差向异构体,如:麦角胺和麦角胺宁,则不能进行区分;高效液相色谱分析法(High performance liquid chromatography,HPLC),该方法具有分析效率高、重现性好、专一性强、灵敏度高等优点,是目前常用的一种麦角生物碱的检测方法,该方法不宜鉴定新化合物、区分特征麦角生物碱及其异构体;综合来说,液相色谱串联质谱法(LC-MS/MS)应用广泛,这种方法能定量分析麦角生物碱的同时确定麦角生物碱的相对分子质量,还可能得到新的化合物。本方案参考GB 2715-2016《食品安全国家标准 粮食》采用液相色谱串联质谱法(LC-MS/MS)。
  • 微透析样品中生物胺和代谢产物的快速UHPLC测定方法
    开发一个超高效液相色谱(UHPLC)方法来解决主要的生物胺,并在他们的酸性代谢产物微透析样本收集从大鼠脑使用改进吞吐量Thermo Scientific的戴安?的UltiMate??3000平台的高效液相色谱法。从前额皮质细胞外液的样品中收集的20分钟持续使用2毫米微透析探针。随后的分析通过进行样品生物胺和酸性代谢产物的含量采用了一块2.4?m的,2.1×100毫米C18柱3000的UltiMate HPLC系统。一个UHPLC方法在微透析神经化学物质的测量样品被开发。主要的生物胺和酸性代谢物使用的电化学组合的细胞外液样品中检测氧化和还原技术。
  • 应用原子吸收光谱分析技术测定生物样品中的铊含量
    近年来,铊中毒案件在我国逐年增加。对生物样品中铊元素进行准确的定性、定量分析鉴定,用普通的化学方法是非常困难的。目前,有条件的地方可以用原子吸收光谱仪、电感藕合等离子体光谱仪、离子色谱仪等分析技术来确定铊元素的存在与定量。本文应用国产原子吸收光谱仪对一起铊中毒案件进行了分析鉴定。检验样品分别为受害人尿、透析后血(昏迷住院),及开棺后解剖提取的另一受害人的脑、心、胃、肝、肾和肌肉等组织。应用原子吸收光谱分析技术测定生物样品中铊元素含量,其方法具有可靠、准确、简便、快速、抗干扰性强等优点。实验部分一、仪器及试剂1.AA-7001型火焰/石墨炉原子吸收光谱仪(北京东西电子技术研究所),配备铊空心阴极灯。2.波长276.8nm3.工作曲线线性范围:0.2~30mg/L4.测定Tl的特征浓度:0.12mg/L5.AA-7000原子吸收工作站;6.浓硝酸、双氧水(均为分析纯)。二. 实验方法分别取检材(肝、肾、尿等)1~2克(毫升),剪碎后放入三角烧瓶中,加浓硝酸浸没检材,放置加热板上加热消解,同时滴加适量双氧水帮助样品彻底消化水解。将消化液转入25ml容量瓶,用去离子水分次洗涮三角烧瓶并转入容量瓶定容。供原子吸收光谱仪及ICP/MS定性、定量分析。结果与讨论1.采用上述实验方法对所送生物样品进行了分析鉴定,结果见表一。(见全文)2.为了比较国产原子吸收光谱仪与进口高档电感耦合等离子体质谱仪(ICP/MS)在检测生物样品中有毒金属元素时的差异,我们应用Agilent 7500 ICP/MS对所送样品进行了分析测定,结果见表一。从表一所示检测结果可知,国产原子吸收光谱仪与进口高档电感耦合等离子体质谱仪对生物样品中铊元素的检测结果基本一致。3.随着国产原子吸收光谱仪制造技术的不断进步,如今,国产原子吸收光谱仪已可同时安装六只元素灯,在微机的控制下,可快速自动设定分析参数,在技术性能上和进口原子吸收仪相当接近,成为同时准确测定多种常见有毒金属元素的有效工具。参考文献(略)
  • 岛津MALDI-TOF对生物药品中聚糖评价方法的研究 O-聚糖分析前处理中的剥皮反应的抑制
    本稿报道了一种基于PMP标记法1)的可以抑制剥皮反应的O-聚糖的化学切除方法,并报告了研究结果。以抗体药物为代表的蛋白质类药物,多由来源于真核生物的培养细胞如CHO(Chinese hamster ovary)细胞合成。出于这个原因,生物合成的蛋白质中不可避免地会存在众多翻译后修饰。其中,多聚糖的修饰除参与蛋白质的功能调节外,根据其结构的不同,有时还会产生抗原性,因此在生物药品质量相关评价方面备受瞩目。但是,聚糖的评价尚存在许多技术上的挑战。尤其是O-结合型聚糖(O-聚糖),很难用酶将其从蛋白质上完全切除,因此,主要采用肼解反应和β 消除反应这两种化学切除方法进行聚糖的切除,但上述方法还存在必须改善的问题。肼解反应过程中需要处理一种爆炸性试剂,必须小心注意,所以操作性不强。而β 消除技术由于连续的β 消除反应会引发使多糖逐步降解的剥皮反应(peeling reaction)。一般来说,在使用β 消除反应分析O-聚糖时,加入还原性试剂的还原性β 消除技术可以在碱性条件下释放聚糖的同时还原糖链根部,而不引发连续的β 消除反应。但由于该方法会完全还原聚糖的根部,无法在切除糖链后用荧光试剂等进行标记,这限制了该方法的应用。此外,由于聚糖自身的离子化效率不高,使用质谱对该方法获得的样品进行分析时,灵敏度较低。为了解决这个问题,研究者对一种可以结合2-AB或PA等荧光标记试剂而不还原聚糖根部的非还原性β 消除/荧光标记技术进行了探索,但未能大幅度抑制连续的β 消除反应。即使如此,在以O-聚糖为分析对象的学术研究中,剥皮反应生成的副产物的存在并未对研究造成重大妨碍。但是,对于生物药品等应用于人体的药物而言,必须对多糖进行评价以进行质量控制,此时如何处理评价过程中的副产物便成为了一大问题。
  • 超高效液相色谱三重四极杆质谱联用法测定鲮鱼罐头中9种生物胺
    本文建立使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用技术测定鲮鱼罐头中9种生物胺的方法。通过深度的方法优化,使用该方法分析9种生物胺,8种生物胺线性相关系数均大于0.9950, 仅精胺因碱性过大,其线性相关系数为0.9920。该方法测试的灵敏度高,各化合物仪器定量限在1.01 μg/L~7.52 μg/L之间,大大高于常规液相色谱法的灵敏度。各化合物的峰形良好,精密度高,不同浓度水平的标准溶液连续进样7次,保留时间和峰面积的相对标准偏差分别在0.18%和5.76%以下。本测试方法灵敏度高、分析简单、快速,可满足食品类样品中生物胺的检测需求。
  • 多维脂质组学方法:HILIC联合离子淌度Tof质谱分析
    本研究中将使用结合TransOmics信息学软件的沃特世组学研究平台和采用离子淌度Tof MS (SYNAPT G2-S HDMS)的HILIC-UPLC分离可实现复杂生物混合物的多维分离,改善脂质分析中获取的信息。HDMS对照软件和TransOmics信息学软件可帮助实现生物样品之间的比较。
  • 赛默飞色谱与质谱:食品中阿维菌素残留量的检测方法 液相色谱 - 串联质谱法
    手册包括22个食品安全检测中常见检测方法,涉及农药残留分析包括400多种农药残留检测方法、苯并咪唑类抗菌剂、苯甲酰脲类农药检测方法、氨基甲酸酯类农药检测方法、有机磷类农药检测方法等;兽药残留分析包括β- 受体激动剂、常见抗生素类药物、激素类药物、抗球虫病类药物、抗蠕虫病类药物等;还包括生物毒素分析。每个检测方法均包含液相方法、质谱方法及详细的SRM条件,可作为参考资料辅助食品安全检测方法的开发。此外,这本手册还包括使用增强定量数据关联二级扫描(QED-MS/MS)的功能进行目标危险物筛查时的应用实例。
  • 采用液相色谱-质谱联用技术直接分析水中全氟癸烷磺酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十八酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十一酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十二酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟丁酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟己酸酯
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十六酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十四酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟癸酸酯
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟十三酸
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 采用液相色谱-质谱联用技术直接分析水中全氟壬酸酯
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 高分辨率和低分辨率质谱与纳升级LC和微流LC平台相结合,定量分析人血清中的肽生物标志物
    本应用纪要将串联四极杆质谱仪和飞行时间质谱仪与纳升级和微流(ionKey)液相色谱平台相结合,对经胰蛋白酶酶解的未分馏、未除高丰度的人血清样品中的肽进行MRM的定量分析,并全面比较了不同的LC-MS配置。不同的LC和MS平台相结合组成了八套不同的LC-MS配置。此外,我们还比较了这些平台的通量、灵敏度、线性和重现性,以证明它们在转化研究中用于分析大规模样品组的适用性。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制