当前位置: 仪器信息网 > 行业主题 > >

质谱完整分子量检测

仪器信息网质谱完整分子量检测专题为您提供2024年最新质谱完整分子量检测价格报价、厂家品牌的相关信息, 包括质谱完整分子量检测参数、型号等,不管是国产,还是进口品牌的质谱完整分子量检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱完整分子量检测相关的耗材配件、试剂标物,还有质谱完整分子量检测相关的最新资讯、资料,以及质谱完整分子量检测相关的解决方案。

质谱完整分子量检测相关的论坛

  • 用ESI源质谱(如ESI-Q-TOF)测大分子完整蛋白分子量

    最近在考虑用ESI源测大分子蛋白的分子量的问题,总结起来有如下:1 用ESI源的质谱(比如常用的ESI-Q-TOF)测大分子完整蛋白(比如:BSA,分子量约64KDa)的分子量有哪些难点?对比测多肽来说有哪些不同的地方(参数设置,以某种质谱为例,毕竟不同的公司离子源的设计不一样)。2 现在用Q-TOF测完整蛋白分子量的比较多(AB,Waters的机器都有人做过),但用离子阱,或者离子阱串联的其它质量分析器很难(有文献报到,但是不多),为什么?大分子很难被离子阱囚禁?还是说大分子在离子阱内聚焦的时候容易被碰碎?大家畅所欲言哈,也欢迎各位兄弟关于这个主题(ESI源测大分子蛋白)提出自己的问题或者见解。

  • 质谱检测分子量过大

    [color=#444444]利用液相色谱-质谱做的酯类润滑油,检测出分子量都在七八百,实际情况应该在四百左右。请问什么因素会导致检测结果大这么多呢?[/color]

  • 质谱检测中精确分子量的计算

    质谱检测中精确分子量的计算

    1.问题描述在化合物检测中,质谱检测由于其高精密和宽检测范围,是化合物定性和定量分析的必要手段 其检测的离子峰基于精确分子量(ExcatMass),12C为12,1H为1.007825,16O为15.994915,而一般数据库或计算所得均为相对分子量,在实际检测过程中不能满足及时、快速的计算要求。利用[b]小程序-分子量计算器[/b]可以快速、准确解决这一问题。2.搜索小程序-分子量计算器[img=搜索小程序,627,377]https://ng1.17img.cn/bbsfiles/images/2019/07/201907231138351812_3608_3963607_3.png!w627x377.jpg[/img][align=left]3.分子量计算器主界面[/align][align=left]点击进入小程序后,主界面如下所示:[/align][img=,375,648]https://ng1.17img.cn/bbsfiles/images/2019/08/201908141636090567_9413_3963607_3.png!w375x648.jpg[/img][align=left]4.小程序计算相对分子量通过键盘输入分子式,如乙酸乙酯分子式为C4H8O2,依次点击’C’-’4’-’H’-’8’-’O’-’2’,然后点击‘≈’(即约等号),即可得到该化合物的相对分子量,结果为88.106。[/align][img=,372,649]https://ng1.17img.cn/bbsfiles/images/2019/08/201908141636370065_6838_3963607_3.png!w372x649.jpg[/img][align=left]5.小程序计算精确分子量[/align][align=left]同上操作,按‘=‘(即等号),即可得到该化合物的精确分子量,结果为88.05243。[/align][img=,374,644]https://ng1.17img.cn/bbsfiles/images/2019/08/201908141636560395_842_3963607_3.png!w374x644.jpg[/img]6.结束语简单快捷的操作,准确的计算结果,希望能够成为质谱检测工作者的手边利器。[img=,258,258]https://ng1.17img.cn/bbsfiles/images/2019/07/201907271601233013_7936_3963607_3.jpg!w258x258.jpg[/img]----------------------------------------[align=left]版本更新,界面稍有变化,功能有所加强。如乙酸乙酯C4H8O2,亦可输入CH3COOC2H5,小程序会自动简化分子式,并计算相对分子量/精确分子量,最大支持原子个数99。如无法使用,请更新至微信最新版本。[/align]

  • 【求助】质谱检测 怎么分析样品分子量?

    求大家帮忙看看这张ESI质谱图以下是我打的质谱图,样品为多肽。我的目的是想看分子量。我是用UPLC-QTOF-MS做的,ESI源,仪牌子是Waters MALDI SYNAPT QTOF MS液相色谱串联四级杆飞行时间质谱。那请问大家,从这张图上如何分析我样品的分子量?其次,图右上角的3.98e3是什么意思?代表样品的能量信号吗?样品含量越高,这个值也就越大吗?不甚感激!!!http://edu.emuch.net/attachment/0b/cd/1217637_1301900306_879.jpg

  • 气质联用的质谱与直接测的质谱检测结果有区别吗

    [color=#444444]最近在做一个项目,得到了一个产品的二氯甲烷溶液,分别用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]和直接测的质谱检测了分子量,但是两个检测结果差别很大。[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]的检测结果中有我目标产物的分子量,但是直接测的质谱里根本看不到我目标产物的分子量,局部放大了看,也没有啊。[/color][color=#444444]我一直以为这两种质谱检测的结果应该一致才对啊,所以现在我很迷茫,不知道这是什么原因,求高人指教![/color]

  • 质谱测小分子的分子量?

    [color=#444444]想用质谱测定一个小分子的分子量,该物质在水、甲醇中不溶解,而在乙腈中溶解度不是太大。。。。想问一下像这种在溶剂中溶解性不太好的物质,测分子量时有没有影响???或者说质谱测定分子量时,对被测物在溶剂中的溶解度有没有要求?[/color]

  • 液相质谱检测

    液相质谱检测不同样品,走出来的峰型都一样,也不是该样品的分子量,这种情况是什么原因导致?

  • 质谱检测结果的表示方法

    请问各位大神,质谱检测结果为什么是【M+H】+和【M+Na】+的m/z值,而不是直接【M】+的分子量的m/z呢?离子化方式是ESI,离子模式是正离子

  • 含钠盐物质的质谱监测分子量疑惑

    情况是这样的,我的标品为D-葡萄糖-6-磷酸钠盐,所用流动相水相含碱(二异丙基乙胺),有机相为乙睛。质谱模式为负离子模式,电离源esi源。设质谱方法检测该物质时,所设母离子分子质量是不是应该减去Na离子的质量呀。[img]https://ng1.17img.cn/bbsfiles/images/2020/04/202004151112489131_9916_3957768_3.png[/img]

  • LTQ VELOS 质谱仪检测分子量

    [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2022/09/202209191549439163_7093_5142232_3.gif!w690x517.jpg[/img]求大神,检测分子量,第二针有第一针的残留,并且,基线往上飘

  • EDCI质谱检测问题讨论

    各位大侠,我最近在做原料中EDCI残留时遇到一些问题,想请大家支支招,具体情况如下:1.色谱条件:柱温30℃,流速1.0ml/min,进样量10μl,色谱柱Sepax-Diol 4.6*250mm,5μm,流动相甲醇-水-乙酸铵(90-10-0.02),ELSD条件:50℃,2.0L/min。稀释液:流动相加入0.02%氨水获得典型图谱为EDCI于2.5min出峰,其脱水产物EDCU出峰于5min左右。2.质谱检测:采用上述相同方法(色谱柱流动相样品均为同一个)进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]测定,采用SIM模式提取EDCI对应分子量156.1和EDCU对应分子量174.2,结果发现EDCI于5.1min左右出峰而EDCU于5.3min左右出峰与ELSD测定时典型图不一致。存在疑问:1.液相洗脱与质谱粒子流洗脱不一致可能是什么原因? 2.EDCI不稳定,测定时稀释液选择有木有特别需要注意的?请求各位帮忙解疑,万分感谢。

  • 生物质谱技术及其在RNA 检测中的应用

    引 言在过去的30 年里,质谱技术尤其是测定生物大分子的生物质谱技术有飞速的发展,电喷雾离子化(ESI) 和基质辅助激光解吸电离(MALDI)离子化技术的发现为质谱的生物应用奠定基础;质谱的分辨率、灵敏度、准确度也达到很高的水平,生物质谱在蛋白、多肽领域得到广泛地应用,在核酸研究领域,质谱也逐渐发挥越来越重要的作用。下面分别介绍质谱技术、核酸的质谱检测方法以及质谱在核酸领域的应用。1 质谱技术简介质谱是测定物质分子量的工具,简单地说,质谱的操作部件由软件和硬件两部分组成。硬件主要包括三个核心硬件,分别为样品离子化、质量分析器(M/Z) 和离子检测器;软件部分包括机器的控制和质谱数据的分析处理。样品离子化有多种方法,在过去的20 多年,质谱领域的重大进展之一就是ESI 和MALDI 离子化方法的发现,可以在比较温和的条件下产生离子,这大大促进质谱在生物领域的应用。ESI 和 MALDI 离子化的原理在文献 中已经详细的介绍,这里不再详述。电喷雾离子化的特点是产生多电荷离子,使质量电荷比(m/z)降低到多数质量分析仪器都可以检测的范围,因而大大扩展分子量的分析范围。电喷雾离子化根据喷射源液体流量的大小,可分为纳升、微升、电喷和涡轮离子喷射。 MALDI 是通过气化的带电基质和样品之间发生碰撞,把激光的能量传递给样品,从而导致样品的离子化。它也是一种软电离技术,适用于混合物及生物大分子的测定。质量分析器是质谱的核心,目前质谱的质量分析器有四类:离子阱(Ion Trap)、飞行时间(Time of Flight,TOF)、四极杆(Quadrupole) 和傅立叶变换离子回旋共振。它们在设计和构造上各有不同,因而各有优缺点。质量分析器决定整个机器的分辨率、质量准确性、敏感性和质量检测范围。离子阱质量分析器使用频率分离离子,具有中等的质量准确度,且测量的质量范围有限。傅立叶变换离子回旋质谱使用频率分离离子,具有很高的质量准确度和分辨率,但傅立叶变换离子回旋质谱价格昂贵、仪器操作复杂。飞行时间分析器使用时间和距离分离离子,具有较高的质量准确度和分辨率,测量的质量范围大。四极杆质量分析器使用频率分离离子,具有较低的质量准确度和分辨率,且测量的质量范围有限。这些质量分析器的发明促进质谱的应用。近10 年来,质谱的重要进展体现在两个方面:(1)质谱技术的第一个重要进展就是开发串联质谱,就是对上述质量分析装置进行不同的组合,以达到特异性的目标;(2)质谱另一个重要进展不是在于技术层面上,而是在仪器化方面,商业化的仪器推动质谱在应用领域里的快速发展。各厂家为满足客户的需要,尤其是生命科学领域的需要,组合不同的特殊电离技术以及各种质量检测器,生产出超高分辨率、高灵敏度、宽质量范围的质谱仪;把质谱与气相色谱、高效液相色谱系统联用,大大拓宽质谱应用范围。下面主要介绍一些有代表性的质谱仪。傅立叶变换- 离子回旋共振质谱(Fourier Transform ion Cyclotron Resonance Mass Spectrometer, FT-ICR-MS) 具有超高质谱分辨率、高质量测量准确度、回旋池内现场反应等显著优点。生产傅立叶变换- 离子回旋共振质谱的主要厂家有 Thermo Fisher 和Bruker。Thermo Fisher 的LTQ-FT 是串联线性离子阱 FT-ICR,而Bruker 的APEX-Qe 是三级四极杆和FT-MS 的结合; FT-ICR-MS 质量准确度达1~2ppm, 分辨率超过105。静电场轨道阱(Orbitrap) 质量分析器,是第一个在静电场中进行离子捕获的高性能质量分析器,基于这一分析器,开发LTQ orbitrap 质谱仪。该机器使用线性离子阱实现离子分离、裂解以及多级质谱功能。它在质量准确度、分辨率、动态范围、灵敏度以及多级质谱能力等方面具有明显优势,具有高达30 万的分辨率。它与LTQ FT 线性离子阱回旋共振质谱仪有相近的工作原理,但仪器运行时无需消耗大量制冷剂,能够在降低运行成本的同时得到高分辨率的数据结果。MALDI - TOF 质谱采用一系列的新技术, 如提供二阶无网离子反射器,延长离子在飞行管中的飞行距离, 飞行路径可达3m ;创新的使用LIFTTM 技术来提升能量,可高速完成高质量的MS/MS 质谱数据;采用独有的PANTM 全景宽域聚焦技术,可以在非常宽的质量范围内获得大于25000 的分辨率。MALDI - TOF 质谱可用来分析较为复杂的混合物,在样品含量低于10-12mol 时,分子量的测定仍有相当高的灵敏度和分辨率。近年来发展的MassARRAY ™时间飞行质谱生物芯片系统由美国Sequenom 公司开发,是目前唯一采用质谱法直接检测单核苷酸多态性(SNP)的设备。该系统的突出特点是能以极高的精确度快速进行基因型识别,直接测出带有SNP 或其他突变的目标DNA。MassARRAY ™系统反应体系为非杂交依赖性,不存在潜在的杂交错配干扰,不需要各种标记物,其采用的高密度SpectroCHIP ™点阵芯片分析系统能在4h 之内完成多达3840 个多重性鉴定,每个检测点只需3~5s,结果实现全自动分析。这套系统所提供的大规模、高通量检测SNP 的技术平台,在当前疾病机制研究中发挥重要作用。

  • 【原创大赛】电喷雾质谱(ESI-HRMS)在生物大分子检测中的应用

    【原创大赛】电喷雾质谱(ESI-HRMS)在生物大分子检测中的应用

    [align=center][b]电喷雾质谱(ESI-HRMS)在生物大分子检测中的应用[/b][/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]GLP 耿建瑞[/align][align=center] [/align]电喷雾离子源(ESI)的工作原理如图1.7所示,雾化器的喷针加有高电压,液态分析物质低速通过喷针时,在高压电场的作用下,形成泰勒锥,当泰勒锥表面张力小于静电斥力时,形成雾状液滴,含同种电荷的的液滴在高压电场的作用下向毛细管移动,高温氮气干燥气反向吹动,使液滴不断挥发,直至产生脱溶剂,分析物以气态离子进入毛细管。[align=center][img=,660,288]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081539_01_2904018_3.png[/img] [/align][align=center]图1. 电喷雾离子源(ESI)原理示意图[/align]ESI是一种“软电离技术”,在样品离子化的过程中,没有热汽化的过程,没有离子碎片的产生,能够保持样品丰度完整性;可以准确测出分子质量(mw),从而直观的区分出混合物中的不同组分;另外,ESI可以产生多电荷峰,而质谱测定的是质荷比,大大拓宽了仪器可检测的分子量范围,非常适合大分子化合物以及非共价复合物的分析。ESI也可用于核酸以及核酸与配体的相互作用的分析,与蛋白质的检测不同的是核酸的检测一般采用负离子模式。因为蛋白质含有较多的含氮碱基,在酸性及中性溶液中很容易质子化,而核酸含有磷酸基团,在溶液中容易失去质子,所以核酸的检测一般采用负离子模式。ESI离子源可以产生多电荷离子峰,使得质荷比大大降低,从而扩展了质谱的检测范围,可以检测蛋白质、核酸等大分子。但是同一化合物会产生多种电荷的质谱峰,不同的离子峰必须归属到能够产生该多电荷离子峰的离子,这是一个很复杂的过程。对于低分辨率的质谱,当质谱产生的多电荷质谱峰电荷较少时,每个质谱峰所带的电荷数可通同一离子的带不同电荷的离子峰的比值来确定。但是对于更复杂的样品如蛋白质、DNA等,由于其所含成分多,碎片离子也多多,生成的多电荷质谱情况很复杂——峰数目多,且会有峰折叠,掩盖等情况,其电荷数数和质量数的的确定就很困难。对于复杂样品的检测,提高质谱的分辨率则非常重要,对于一簇多电荷离子峰,我们可以通过相邻两个同位素峰的间距很容易的得到该离子峰所带电荷数,从而很计算出生成该多电荷峰的离子的分子量。但是生物样品成分复杂,即使一次小小的实验也可能会产生成千上万的质谱数据。这就需要对这些多点和质谱数据进行解卷积,对于质谱来说,“解卷积(Deconvolution)”是指利用电荷只能是整数的特点,将同一分子量的不同质荷比的峰按一定的算法组合到一起。科学家们开发出各种各样的算法及软件用于质谱数据的自动解卷积。但是各个仪器公司的解卷积软件价格昂贵,很多实验室,虽然可以利用ESI-HRMS可以得到大量的质谱数据,但是苦于无法解卷积,导致实验数据无法进行分析。在此,介绍由Horn等人提出一种基于高分辨数据的解卷积算法THRASH[sup][[/sup][url=#_ENREF_65][sup]65[/sup][/url][sup]][/sup]。THRASH的基本原理如图1.8:1,使用者设定质荷比m/z范围,质谱峰可能带电荷数目,信噪比阈值等信息。2,程序自动将高于指定信噪比阈值的质谱峰挑出。3,按照自相关算法[sup][[/sup][url=#_ENREF_66][sup]66[/sup][/url][sup]][/sup]计算出质谱峰的电荷数,并计算出平均分子质量。用第2步得到的平均分子质量结合Mercury算法 得出质谱峰簇的理论轮廓图[sup][[/sup][url=#_ENREF_67][sup]67[/sup][/url][sup]][/sup],4,将理论轮廓图与质谱中实际轮廓图对比,得到一个匹配分数(fit score),5,将高于fit score的质谱峰删掉,低于fit score的质谱峰重复第3步骤。[align=center][img=,655,494]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081539_02_2904018_3.png[/img] [/align][align=center]图2高分辨质谱数据解卷积原理[/align]Navdeep等人基于THRASH开发的开源软件Decon2LS,对质谱数据进行解卷积可以生成电荷数(charge)、单一同位素峰(monoisotopic mass)、同位素最高丰度离子峰(most abundant isotope intensity)、平均分子量(average mass)以及对应的质谱丰度(abundance)等信息,为ESI-HRMS研究蛋白质、DNA及其与小分子化合物的相互作用的分析提供了详细的数据。

  • 【原创大赛】质谱应用之分子量的测量

    【原创大赛】质谱应用之分子量的测量

    质谱应用之分子量测量 最近10年质谱技术的飞速发展,耐用的离子源,高性能的质量分析器和多种有效的扫描方式推动了质谱仪器走进各个单位,质谱成为功能强大的生物化学分析平台。目前基于质谱的物质定量定性实验应用广泛,从普通色谱-质谱(GC-LC&LC-MS)连用技术的定量分析实验(药理药代、农残筛查、环境污染物分析……),到大规模发现鉴定的组学实验(蛋白质组学和代谢组学)。抛开这些酷炫的方法和技术,我们今天讨论一下质谱的基本应用——测定分子量,通过一些测定分子量的实验我们可以看到分子量代表的更多意义。 质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,质谱法(Mass Spectrometry, MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息(以上内容来自百度百科和高中教科书)。从定义我们看出,测定分子量是质谱的基本技能,一台质谱仪我们首先问的是它测量的分子量范围是多少,测量的准确度怎么样。1小分子的测定 质谱的首先发展是测定元素的相对分子量,比如我们一般说到元素C的分子量是12,其实说的是C在自然界的最高丰度12C的相对原子量,考虑自然界只有12C相对含量1.082%的13C,C准确平均分子量是12.011。化合物一般有C、H、O……多种元素组成,这些元素的同位素互相组合,如果我们的质谱可以区分相邻的同位素的相对分子量,质谱图上会显示的一簇峰,每个质谱峰对应相同的分子式下不同的同位素组成的化合物响应。因为化合物组形成元素的不同,他们的质谱簇峰分子量(momoisotopic mass)组成独特的质谱峰模式(pattern),如果质谱区分不了相邻的同位素峰,这一簇峰变成一个质谱峰所对应的是平均分子量(average mass)。 如果我们测定一个化合物分子量,如果通过质谱可以得到精细的元素分子量(momoisotopicmass)及其相对丰强度(在质谱上表现为簇峰的强度)的信息,可以通过谱图推测化合物的组成写出分子式。图1 A是测的城市污水提取物的分子量,三个主要质谱峰为同一个化合物的同位素质谱峰,推测分子式为C2HO2Br2,采用软件(很多软件都可以进行,最简单的是chem office)模拟此分子式的精确分子量,图2 B即为模拟所得的质谱图。可以看出所测得的质量偏差很小,最高元素峰216.8331-216.8328=0.0003Da,质谱峰分布模式(分子量和相对强度)实际测量图和模拟图几乎一致,可以确定该化合物的分子式是C2HO2Br2。http://ng1.17img.cn/bbsfiles/images/2014/12/201412131121_526995_2265735_3.jpg图1 污水提取物质谱图。A测量图,B模拟图。质谱Thermo LTQ-orbit,HESI源。 对于有特殊的元素的化合物,测量准确的分子量及其同位素质谱模式可以准确的判定特殊元素的存在,图2是测得某配位化合物的质谱图,通过其特殊的质谱图可以确定此化合物为Os金属配合物。http://ng1.17img.cn/bbsfiles/images/2014/12/201412131125_526996_2265735_3.jpg图2 Os配合物质谱图。质谱Thermo LTQ-orbit,HESI源。 上述测量过程简单实用,但是这个实验要求质谱有足够的质量准确度,所测的分子量与实际值最好在小数点最后一位有波动,不然预测分子式会有很大的偏差。2更高分子量的测量 对于同位素峰的测量,需要质谱区分相邻的同位素峰。在图1中两个同位素峰相差越2个道尔顿,在测量217分子量时候,只要质谱可以区分2个道尔顿的质谱峰就可以了,在图2中,同位素峰相差1道尔顿,区分度只有1个道尔顿。当分子量达到5K以上的时候,如果化合物仅仅由CHON等简单同位素组成,因为组成原子个数的增多,同位素峰越来越复杂,两个同位素峰之间的区分度越来越小,当质谱区分不开这些同位素峰的时候,测得是平均分子量(average mass)。图3 A测量的是一个分子量为10380Da的多肽,B和C是带10个电荷和11电荷同位素峰的局部方法图。在B中,同位素质谱峰间距(区分度)为0.1001Da。随着分子量的增加,需要质谱对相近同位素峰区分能力更强。评价质谱这种能力的指标是分辨率,我们一般用单位分辨率R=m/Δm来表示(该论述与严格定义有区别),图1需要的分辨率217/2=108,图2的分辨率780/1=780,而图三需要的分辨率1100/0.1=11000。所以说准确测分子量尤其是大分子量需要质谱具有高的分辨率。http://ng1.17img.cn/bbsfiles/images/2014/12/201412051959_526030_2265735_3.jpg图3多肽质谱测定。 A,质谱图B,,+10电荷质谱放大图C,+11电荷质谱放大图。Thermo LTQ-orbit,HESI源。3不同离子源的测定大分子的策略 目前测定大分子的主要离子源有基质辅助激光解吸(MALDI)和电喷雾(ESI)。图4是采用不同离子源测定聚乙二醇修饰药物分子量,A是MALDI质谱测得,几乎为所有分子的都带一个电荷,质谱间距为聚乙二醇重复单元-CH2-CH2-O-44Da;B为ESI质谱所测谱图,Z为分子所带电荷数,z=4质谱间距为44/4=11,z=3质谱间距为44/3=14.67。http://ng1.17img.cn/bbsfiles/images/2014/12/201412052001_526031_2265735_3.jpg图4聚乙二醇化药物质谱图。A AB MALDI-TOF谱图,基质DHB反射模式;B Thermo ESI-LTQ-Orbit谱图。 MALDI电离的离子一般带一个电荷(随着分子量增加,会出现带多个电荷的情况),图5是测得8478和11675多肽质谱图,5737为11675多肽带双电荷所得。采用MALDI测量分子量谱图测量结果直观方便,图6是测量分子

  • 求助解惑关于p53靶分子RITA的质谱检测问题

    [color=#444444]RITA的分子量是292,在负离子模式下进行质谱检测,在一些库中显示母离子为337的峰值匹配为RITA,请问为何会出现这种情况。并求RITA的二级典型碎片离子。[/color]

  • 【求助】质谱物质检测问题,请教大家!!

    微溶于水小分子样品如何做质谱分析测分子量?我有一未知样品,分子量大概是是七百多,水溶性很差,ESI离子源做质谱分析测分子量,但是得到的样品信号很弱,该怎么办呢?请各位高人帮忙解答,非常感谢。

  • 液质联用质谱图中,最大m/z与待测样品的分子量相差很大

    [color=#444444]我的质谱图中,最大的m/z与所测物质的分子量(878.46)相差很大。很困惑,分子结构在测样过程中难道发生了变化?质谱图具体反映的是个什么样的结构?希望各位大侠能够指点迷津!不胜感激!下面附上化学结构图和质谱图。[/color][color=#444444][img]http://muchongimg.xmcimg.com/data/bcs/2017/0908/w204h7138853_1504841057_675.jpg[/img][/color]

  • 质谱可以检测病毒吗?

    提到现在主流的病毒检测手段,首推本次疫情期间大放异彩的荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]为主,具备快速、灵敏的特点;传统细胞培养分离法,虽然操作繁琐,但仍旧是病毒分离鉴定金标准,如本次新型冠状病毒, 在初期是通过将呼吸道分泌物置于人呼吸道上皮细胞培养传代,通过透射电镜和培养上清液的全基因组测序得到最终确认;而基于抗原和抗体反应的血清学检测,操作简单、结果快速,但易产生交叉反应,可以与核酸检测配合使用进行诊断确认,或用于大规模人员排查。这些方法各有优势,但同时也存在操作复杂、检测周期长或特异性低等的特点。  自上世纪MALDI-TOF MS开始作为微生物检测工具开始,其高通量、成本低、简易操作的特点,一直吸引着科学家们在病毒检测领域进行探索,虽不及细菌学、真菌学诊断领域应用成熟而广泛,但迄今为止,MALDI-TOF MS已经成功应用于各类呼吸道病毒(流感病毒、冠状病毒、腺病毒等)、肝炎病毒、人乳头瘤病毒(HPV)、人肠病毒以及某些动物病毒等的检测,覆盖病毒鉴定、突变分析、分型、和抗病毒药物耐药性分析等各个应用方向。  这些病毒检测功能,主要依赖于MALDI-TOF MS能够准确检测多肽、蛋白质、核酸、多糖等生物大分子的分子质量和纯度,围绕不同检测目标,开发多种针对性检测方案:[b][color=#0070c0]01 基于细胞培养呼吸道病毒质谱鉴定[/color][/b][align=center][url=https://www.antpedia.com/batch.download.php?aid=267262][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740491.jpg[/img][/url][/align][b][color=#0070c0]02 基于MALDI-TOF MS的冠状病毒筛查[/color][/b][align=center][url=https://www.antpedia.com/batch.download.php?aid=267263][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740521.jpg[/img][/url][/align][b][color=#0070c0]03 抗体-磁性纳米粒子法对流感病毒分型[/color][color=#0070c0][url=https://www.antpedia.com/batch.download.php?aid=267264][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740551.jpg[/img][/url][/color][color=#0070c0]04 质谱检测乙肝病毒YMDD耐药突变[/color][/b][align=center][url=https://www.antpedia.com/batch.download.php?aid=267265][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740581.jpg[/img][/url][/align]  众多研究已经表明,基于不同方向MALDI-TOF MS 可以鉴定不同种类、来源的病毒,结果可媲美现有各类分子检测方法,且具有通量高、速度快,人工、试剂成本低、结果判读简单的优势,基于质谱核酸检测,可用于直接样本检测的同时,高通量的特点支持多位点多靶向检测,而其基于蛋白的检测则有助于早期监测确认、疫苗开发等。同时基于MALDI-TOF MS 系统的多种现有解决方案,支持同时鉴定和诊断多种类型的病原体感染,在不增加实验室成本的情况下,减少多重感染样本的误诊和治疗延误。  但质谱对病毒的检测,同时也受到了一些制约,如实例1中基于蛋白分析的病毒检测方法,前期需依赖于细胞培养,病毒的培养富集对实验室安全级别要求较高(BSL-3级以上),限制了该方法在常规实验室开展。而基于核酸的病毒检测方法如实例2,虽然前期依靠[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]扩增可以进行样本的直接检测,但却受制于缺乏广泛的参考数据库或差异性遗传标志序列,同时受到质谱核酸检测的灵敏度和稳定性限制,此外该方法还有对专业要求相对较高,标准化方案少,自动化方案成本较高等的缺陷。[b][color=#0070c0]总结[/color][/b]  MALDI-TOF MS 在临床病毒学检测中的应用已经取得一定的发展成果,但若要成为常规应用工具,还需依赖对流程进行进一步的优化、数据库的更新,以形成更多完整成熟的解决方案。但相信随着各领域科学技术的不断升级更新,必然会推动MALDI-TOF MS在病毒检测中发挥更重要的作用,成为病毒检测领域的主力军

  • 求助:质谱,分子量鉴定问题?

    [color=#444444]为什么分子量多24?[/color][color=#444444]我做了三个化合物,组成原子为C、H、O、N,进行分子量鉴定,质谱数据比理论上的分子量每个化合物都多24!我怀疑是质谱测试的系统误差,可是我不知道这个误差是怎么来的。请专家帮助我!谢谢[/color]

  • 请教质谱问题分子量少一

    [color=#444444]最近用同样方法做了一系列的化合物。就是苯环的官能团变一下。其中有一个化合物我做质谱时发现100%峰比我的分子量少了1,氢谱能对上挺纯的,其他的化合物的分子量都能对上,就差这一个化合物。不知道怎么回事儿,请教一下大家。谢谢了![/color][color=#444444]MS:GC-EI,[/color]

  • 【求助】液相色谱检测低分子量(4000以内)聚合物效果如何?

    [B][size=4]RT,我公司想利用液相检测产品中分子量的分布情况,请教高手用液相色谱检测低分子量聚合物(分子量大约在500-4000),检测器能准确分离吗?分离效果如何?新手上路高手多多指教。PS:我公司原先已买过一台液相色谱,由于仪器比较陈旧且我公司产品分子量偏低,检测的结果一直不理想。这次想买台新仪器,来解决检测分子量4000以内产品检测的问题。如有仪器设备厂商能满足我公司检测需求,可发e-mail和我联系.[/size][/B]

  • 当质谱技术应用于医学检验-2

    二、质谱技术在医学检验中的主要应用  1、质谱技术在临床生化检验中的应用  质谱技术在应用较早的国家已成为继免疫学方法和化学发光法之后的第三大生化检测技术。目前采用质谱技术检测的项目数量虽然与其他两种方法相比还有很大差距,但越来越多的生化检测项目正被转移至质谱技术平台进行检测;质谱技术也成为生化检验领域新兴的发展方向和不可或缺的重要技术[6]。  质谱技术在临床生化检验中应用最为成熟的项目主要包括:生化遗传检测、治疗药物监测、类固醇激素检测、营养素检测以及毒理学检测。技术高特异性的特点可有效避免结构类似物对检测结果的影响,为临床提供更准确的结果,提高患者的依从性。技术高灵敏度的特点可在很大程度上弥补内分泌类固醇激素检测中,低浓度化合物检测困难和测不准的难题,为疾病的预测和诊疗分型提供准确结果。  国外许多内分泌实验室已经将大部分体内激素类物质的检测由放射免疫学方法或免疫学方法转换为[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS方法,并将质谱技术作为内分泌类固醇激素类物质检测的首选方法。质谱技术一次可检测多种化合物的特点,可提高检测通量、减少样品用量和降低检测成本。如在生化遗传检测中,质谱技术一次可分析60多种氨基酸和酰基肉碱,筛查40余种新生儿遗传代谢病;在营养素检测中一次可分析20种氨基酸、20种脂肪酸、10余种微量元素或5种脂溶性维生素,有效提高了检测通量、减少了样品用量,并提供了丰富的检测信息;在毒理学检测中一次可检测尿液中19种药物,实现了高通量、快速高效的药物筛查技术[7]。  在临床生化检验领域,质谱技术相比于传统方法的优势较为突出,但随着技术的深入应用与经验的积累,技术应用的缺点也逐步凸显出来,包括质谱技术应用的陷阱问题、实验室日常运行过程中的管理问题以及相关政策法规问题等,主要体现在:  (1) 质谱技术在分析基质复杂的生物样本时,检测结果易受到基质效应、结构类似物干扰以及质谱信号产生的不稳定所带来的干扰影响;对这些问题认识和预防不当,则质谱的检测结果将存在较大的错误风险;  (2) 质谱技术相比于免疫学方法和化学发光法,检测的自动化程度较低,对人员依赖性较大;同时各厂家仪器系统还未实现与临床实验室信息管理系统 (LIS) 的接口双向对接,在数据处理和报告发放环节,仍未实现自动化;  (3) 对于质谱技术应用较成熟的项目,检测数据仍缺乏统一的应用标准[4];  (4) 质谱技术检测方法所需的标准物质、试剂和耗材等,目前主要依赖于进口,较多的检测项目受限于这些因素而开展受阻;  (5) 目前质谱实验室的方法基本为自建方法,标准化和规范化较为薄弱。美国临床实验室标准化协会已发布了临床质谱的使用指南[8],中华医学会检验医学分会、卫生计生委临床检验中心和《中华检验医学杂志》编辑部也于2017年10月份共同发布了《[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱临床应用建议》[9],这些都为质谱技术临床检测工作提供良好了的指导和参考;  (6) 由于质谱技术较为复杂,仪器构成多样化,在实际的应用过程中,需要有经验的专业技术人才进行规范的使用操作,但目前国内相关的技术人才匮乏;质谱实验室的仪器设备昂贵,对于安装条件有特殊要求,建设需要投入大量的资金;这些使得质谱技术临床应用的门槛较高,一定程度上限制了技术的应用;  (7) 在日常运营过程中仪器的维修服务成本较高,维修周期较长,维修的及时性也存在不能满足临床检测的报告周期固定性的要求;  (8) 国内对于质谱技术在临床的应用监管还不成熟,相关的检测项目在临床上无收费标准,也在一定程度上限制了技术的应用普及。  虽然质谱技术的应用仍存在较多缺陷,但随着技术的革新与发展,应用监管的成熟,各项瓶颈将被不断突破,未来随着质谱仪器的各项性能的提升;前处理自动化的实现;检测数据自动输出并实现与实验室信息系统的双向对接,以及结果报告自动预警功能的实现,质谱仪有望像免疫学方法和化学发光法一样,成为临床生化检验中自动化、智能化、易用化的检测平台。  2、质谱技术在微生物检验中的应用  近年来,MALDI-TOF技术已成功应用于微生物的鉴定及分型,并逐渐成为微生物鉴定的主流技术,可快速检测和鉴定革兰阳性菌、革兰阴性菌、厌氧菌、分枝杆菌、酵母菌和丝状真菌等[6,10-14]。相比于传统的革兰染色、菌落形态、表型鉴定及分子生物学技术, MALDI-TOF技术具有快速、准确、经济、高通量等优点。MALDI-TOF是基于细菌表面蛋白分子检测的技术,通过测定未知微生物自身独特的蛋白质指纹图谱及特征性的图谱峰,并与数据库中参考菌株的蛋白指纹图谱进行比对,从而实现菌株的鉴定[11]。  该技术是将完整的微生物细胞直接进行检测,样品制备简单,检测周转时间短,在数分钟内就可以得到一个菌种的测试结果,且分析用菌量极少,而传统方法完成常规细菌鉴定至少需要8~18h或更长时间。MALDI-TOF通过检测细菌胞膜成分或表达的特异蛋白对细菌进行种群的鉴别,敏感性和准确性高,可以区分表型相似或相同的菌株,提供属、种、型水平的鉴定,对临床常见分离菌鉴定到种水平的准确率很高。以16S r RNA基因测序结果为标准,质谱检测结果准确率为90.0%~95.0%[15],不仅可以识别病原菌,而且有助于发现新的病原菌。此外,质谱技术还用于病原体的药物敏感性检测,常规的药物敏感性实验方法比较费时,局限于少数细菌,MALDI-TOF通过比对耐药菌株和药物敏感菌株间的特征性蛋白和图谱峰及检测耐药菌株与抗生素共培养后的分解产物,可以分析几乎所有的耐药机制。  研究表明,相比于标准的微生物培养技术,质谱技术可降低约50%的试剂成本和劳动力成本[16]。但是,MALDI-TOF作为一项新兴技术,在微生物鉴定方面也存在着一定的局限性。如对于具有特殊结构的菌种和图谱极为相似的菌种的鉴定区分存在一定的难度、对于一些罕见菌种或新型细菌鉴定困难、对血培养样本中的混合菌种难以准确鉴别等,原因是质谱数据库中标准菌株的图谱有限、质谱峰的数据不充分以及细菌库中无这些菌株[17,18]。  随着仪器技术参数、质谱数据库及分析软件的不断更新完善,所有的分离株将被逐步的明确鉴定出来。因此,随着质谱技术在临床微生物实验室的应用数据库进一步完善,MALDI-TOF技术必将在微生物鉴定、菌种分型、同源分析、耐药监测等多方面发挥出更大作用,有望成为新一代病原微生物诊断的常规技术。  3、质谱技术在核酸检测中的应用  核酸质谱检测技术是在MALDI-TOF原理的基础上,结合引物延伸分析法和碱基特异裂解分析法,针对双链DNA的特性进行了特殊优化,使样品在电离过程中不产生或产生较少的碎片离子,可用于检测核酸的分子量和研究基因组单核苷酸多态性 (single nucleotide polymorphism, SNP) ,是近年来应用于临床核酸检测的新型软电离生物质谱[19]。相比于以凝胶电泳为基础的测序法,质谱技术具有分辨率高、分离速度快、杂质干扰少的优点,被广泛应用于核酸测序、核酸指纹图谱、核酸SNP分析等[20]。  SNP是指基因组DNA序列上某个位置单个核苷酸碱基的差异,即基因位点的突变,在人群中的发生频率大于1%,是决定个体疾病易感性和药物反应性差异的重要因素,通过分析突变的位点,可预测疾病,并提供诊断意见和指导用药。MALDI-TOF分析检测SNP是根据不同的分子量将等位基因排序,区分和鉴别相对分子量达7000左右 (含20多个碱基) 、仅存在1个碱基差别的不同DNA,可以精准地分辨到碱基种类。  药物代谢酶遗传多态性是产生药物毒副作用、降低或丧失药物疗效的主要原因之一,通过检测药物代谢酶的基因型可对临床用药方案进行指导和调整,为临床个体化用药提供依据。以往检测药物代谢酶基因多态性通常采用化学法,依赖于核苷酸的互补性对核酸序列进行分析,对于序列的长度、复杂性、反应条件等都具有较高的要求,容易受到不同程度的化学因素干扰,导致检测结果出现偏差。若能将化学和物理方法结合起来对药物代谢酶基因进行检测,将极大提高检测结果的准确性。  MALDI-TOF是药物代谢酶基因多态性的新型检测方法,其根据核苷酸分子被电离后在真空管中的飞行时间来确定其分子量大小,最终确定核苷酸序列,检测结果仅仅依赖于核酸分子量。经过验证比较,MALDI-TOF检测结果与Sanger测序的结果符合率为100%[21,22]。传统的Sanger测序方法虽然是序列测定的金标准,但其操作步骤繁琐费时和试剂成本高等限制了其临床应用。MALDI-TOF可通过一次实验检测多个标本的多个突变,实现基因型的高通量、快速检测,为个体化用药提供更加多样化的检测手段。  4、质谱技术在蛋白质组学中的应用  质谱技术可检测蛋白质的氨基酸组成、分子量、多肽或二硫键的数目与位置及蛋白质的空间构象等,从而实现未知肽段的筛选、测序、肽指纹图谱、蛋白质表达谱、蛋白质翻译后修饰谱、全蛋白完整无损分析等。质谱多样化的前端连接方式极大地促进了研究者对基础蛋白科学领域的认识,但将这些认识转变为对临床实践的有效信息则有相当大的难度。到目前为止,基于质谱技术的将蛋白组学多样性的蛋白和多肽标志物, 成功应用于临床检测的案例并不多见[22]。  相反,对于已知的、确定的多肽和蛋白标志物即目标蛋白组学,质谱技术得到了较好的应用。目前,已经有一些关于[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS用于临床目标多肽和蛋白分析的文章发表,如甲状腺球蛋白 (Tg) 和淀粉样蛋白的鉴定与定量分析等[23-25]。质谱技术在这一领域的应用,在很多情况下均可为临床提供有价值的信息[21],如对某一分析物的免疫学方法不存在时;已经存在的免疫学方法不能给出某些临床关键问题的答案时;已经存在的免疫学方法存在干扰时;某一分析物存在多个异构体时;对同一分析物的检测,不同的检测方法间存在较大的结果变异性时;已经存在的分析方法流程较为复杂时,质谱技术均可发挥相应作用,弥补免疫学方法的不足。  质谱技术在医学检验领域中应用的下个目标和挑战,是如何弥补免疫学方法在蛋白和多肽检测方面的局限性。相信随着技术的发展,这方面的突破会越来越多,为临床提供更多的有价值的质谱检测数据。

  • 多聚核苷酸的分子量和分子量分布的检测方法的建立

    本人最近准备做“一种多聚核苷酸的分子量和分子量分布的检测方法”的建立研究工作,由于本人在此方面没有经验,希望大家帮帮小弟。分子量主要分布在20000-240000(30-400bp)(1)凝胶色谱柱的如何选择?(2)标准物质(DNA marker)的选择(3)紫外检测器和示差检测器是否均可使用?(4)流动相如何选择?(5)凝胶色谱仪型号的选购?

  • 电荷检测质谱是什么?为何如此引得质谱巨头关注?

    质谱法是一种强大的分析工具,其原理是测量带电粒子质量的方法,当分析样品进入质谱仪后,首先在离子源处使分析物进行游离化以转换为带电离子,进入质量分析器后,在电场、磁场等物理力量的作用下,探测器可测得不同离子的质荷比(m/z),从而从电荷推算出分析物的质量。传统质谱法难以分辨质量大于几百千道尔顿的物质(例如蛋白质复合物)的电荷状态。然而近些年,一种新的质谱方法出现,即电荷检测质谱 (Charge Detection Mass Spectrometry,CDMS) 。CDMS 是一种通过同时测量单个离子的质荷比(m/z)来确定单个离子质量的单粒子技术。确定数以千计的单个离子的质量,然后将结果合并提供质谱图。使用这种方法,可以测量通常不适合传统质谱分析的异质和高分子量样品的准确质量分布。最新发表的CDMS技术的应用就包括了高度糖基化的蛋白质、蛋白质复合物、蛋白质聚集体(如淀粉样蛋白纤维)、传染性病毒、基因疗法、疫苗和囊泡(如外泌体)。虽然到目前为止,CDMS 仍然是少数能够自制仪器的科研人员在应用。而随着生物医学的快速发展,研究人员分析分子量超大样品的需求快速增长,传统的质谱方法面临一定的限制,以CDMS为焦点的分析技术也许将成为下一个里程碑。前沿技术发生革新,行业巨头公司一定是反应最快的。日前,全球著名的质谱仪器公司Waters便发布公告,成功收购了一家专攻电荷检测质谱技术(CDMS)的初创企业,Megadalton Solutions。该公司由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立。[img=mega创始人.png]https://img1.17img.cn/17img/images/202202/uepic/6936b2e1-2955-452e-9eb5-9ca539fb600a.png[/img][font=&][size=16px][color=#333333]笔者进一步查询到,Martin F. Jarrold 本人在过去十年一直致力于 CDMS技术的研究,也于2015年发表了“Charge Detection Mass Spectrometry with Almost Perfect Charge [/color][/size][/font][font=&][size=16px][color=#333333]Accuracy”相关文章。(DOI:[url]https://doi.org/10.1021/acs.analchem.5b02324[/url])。[/color][/size][/font][font=&][size=16px][color=#333333]2021年还发表了关于CDMS在生物分子学和生物技术相关的应用进展文章“Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology”。(DOI:[url]https://doi.org/10.1021/acs.chemrev.1c00377[/url])[/color][/size][/font]2018年,Martin Jarrold和David Clemmer教授因在离子淌度质谱技术上的开创性发明,共同获得了美国质谱学会颁发的质谱杰出贡献奖。不仅如此,David Clemmer教授还曾获得2006年的Biemann奖章。[align=center][img=2018 ASMS杰出共享奖.png,600,259]https://img1.17img.cn/17img/images/202202/uepic/1967a9e8-bc50-4b33-80f6-46585d05a407.png[/img][/align][align=center]2018年ASMS质谱杰出贡献奖[/align]可以说,Megadalton Solutions公司是由两位质谱界大佬为了研发CDMS仪器创立的,技术实力很强硬。Waters公司的眼光也非常独到,于2021年就已经将Megadalton的CDMS技术引进到了Waters的Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。[url=https://www.instrument.com.cn/news/20220207/605434.shtml][color=#ff0000](相关链接:沃特世收购电荷检测质谱技术 扩大细胞和基因治疗领域应用)[/color][/url]此外,笔者还注意到了另外一家基于CDMS技术的初创企业,荷兰公司TrueMass。[align=center][img=True.png]https://img1.17img.cn/17img/images/202202/uepic/1513aab2-aa16-408e-914a-00cdf762c4ca.png[/img][/align][align=center][/align]TrueMass 于 2020 年在荷兰成立,并在英国曼彻斯特设有制造工厂。这家私营投资公司已从天使投资人获得大量资金,公司的使命是提供新技术,帮助全球研究人员和临床实验室推进药物开发和材料技术的研究。该公司于2021年10月26日在宾夕法尼亚州费城举办的ASMS上推出了其研发的CDMS仪器。[align=center][/align][align=center][img]https://img1.17img.cn/17img/images/202202/uepic/a9414deb-6b4c-4547-93b0-af042aab0c2c.png[/img][/align][align=center][img]https://img1.17img.cn/17img/images/202202/uepic/000b48b0-acd8-4420-98f4-9ffe3137fc02.png[/img][/align][align=center][/align]笔者也搜索了TrueMass创始人 John Hoyes博士相关的信息,以飨读者。[align=center][img=john Hoyes.png,600,373]https://img1.17img.cn/17img/images/202202/uepic/efa105d1-a0e5-40b4-acf2-5dd6eabfce69.png[/img][/align][align=center]TrueMass创始人 John Hoyes博士[/align]TrueMass 创始人 John Hoyes 博士在质谱行业拥有 30 多年的从业经验。他于 1989 年在曼彻斯特大学完成了激光物理学博士学位,并在该大学科学技术学院仪器与分析科学系 (DIAS) 担任了一年的博士后研究助理。 Hoyes博士1990 年首次加入 VG Analytical,担任曼彻斯特工厂的开发物理学家。在头两年致力于改进磁扇磁场质谱仪器后,他开始研究飞行时间 (TOF) 质谱仪器。他是 VG Analytical 第一台 TOF 仪器的项目负责人,该仪器采用了 MALDI 离子源。 1995 年,他领导开发了世界上第一台商用 Q-TOF 仪器,该仪器于1996 年底由Micromass(后被Waters收购)推出。 2000 年,他发明了高分辨率光学 TOF 几何结构,并被纳入下一代 Q-TOF 仪器的改进。 2003 年,Hoyes博士离开 VG,成立了一家名为 MS Horizons 的新公司,专门提升该领域现有 Q-TOF 仪器的性能。在此期间,Hoyes博士对离子淌度和飞行时间杂合质谱仪器产生了兴趣,并为此申请了专利。他于 2006 年回到 Micromass(后被Waters收购) 担任研究总监,并于 2010 年成为技术总监。在他任职期间,公司推出了 SYNAPT G2、Vion 仪器和 StepWave 离子源等产品。 2013 年,他成为Waters科学研究员,并于 2016 年在 HUPO(人类蛋白质组组织)获得“科学技术奖”。2018 年 4 月,Hoyes博士离开公司,成立了 HGSG Ltd咨询公司。2020年Hoyes博士创立了 TrueMass公司以实现他对商业电荷检测质谱仪器的想法。总体看来,CDMS技术在复杂生物分析中能够发挥质谱技术的精确性优势,不久之后,质谱巨头们关于CDMS技术一定会动作频频,仪器信息网也将持续带来最新报道,敬请关注。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制