当前位置: 仪器信息网 > 行业主题 > >

质谱间歇式进样系统

仪器信息网质谱间歇式进样系统专题为您提供2024年最新质谱间歇式进样系统价格报价、厂家品牌的相关信息, 包括质谱间歇式进样系统参数、型号等,不管是国产,还是进口品牌的质谱间歇式进样系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱间歇式进样系统相关的耗材配件、试剂标物,还有质谱间歇式进样系统相关的最新资讯、资料,以及质谱间歇式进样系统相关的解决方案。

质谱间歇式进样系统相关的论坛

  • 实验室分析仪器--色谱质谱联用仪进样系统

    如下图是色谱质谱联用仪的接口与色谱仪组成的进样系统示意图。样品由色谱进样器引入色谱仪,经色谱柱分离的各个组分依次通过接口进入质谱仪的离子源。最常用的是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱(GC/MS)和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱(LC/MS)两种进样模式。该进样系统的关键部分是接口,应满足以下三个条件:[img=48ee648290cf0d2c445f899c1d26b6e.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643177994667223.jpg[/img]GC/MS进样器①接口不破坏离子源的真空,也不影响色谱柱分离的柱效(不增加色谱系统的死时间)。②接口应能使色谱分离的各组分尽可能多地进入质谱仪离子源,而使色谱流动相尽可能不进入。③接口的存在不改变色谱分离的各组分的组成和结构。GC/MS进样系统主要用于气体有机物的同位素测定,由GC分离的有机物,经燃烧炉焚烧后转变为C、H、O的氧化物,如二氧化碳和水,供质谱仪测定其同位素比和组成。

  • 实验分析仪器--有机质谱仪进样系统的直接进样

    质谱仪作为一种高灵敏度、高通量的分析仪器,其主要部件需工作于高真空环境2而常见的待测样品基本存在于常压环境下因此在早期质谱仪器中需要一些专用装置实现样品从常压环境到真空环境的引入。在现代质谱技术中,常压下的离子源[如电喷雾离子化技术(ES)]的发展,使得样品可以在大气压环境中被电离后以离子的形式通过质谱离子传输系统进入质谱。质谱还常与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url](GC)、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](LC)等分离仪器联用,而这些仪器也就成为了一种特殊的质谱进样系统,在最新的一些研究中微流控芯片也与质谱联用,实现了质谱前处理的微型化和多功能化。传统的直接进样系统是利用一个推杆(或称探头, probe)将样品送到离子源的电离盒样品口,然后使样品汽化的进样系统,主要用于固体与高沸点液体样品进样直接进样系统要由推杆、样品管(也称作样品坩埚)、闸阀、预抽室等组成。[img=Compress_1.jpg,800,]https://i2.antpedia.com/attachments/att/image/20220126/1643166891558540.jpg[/img]图1传统直接进样装置1离子源;2一样品管;3一样品推杆;4闸阀;5预抽室;6接真空泵;7真空密封样品管一般为石英或黄金制成的毛细管。使用中,将取好样品的样品管置于推杆顶端,利用推杆将样品管送入离子源。电离过程中样品利用率受样品管与电离盒样品口之间的相对位置影响,这里列出了三种情况,(a)、(b)的样品利用率很高,如果推杆头或样品管与进样口密封得好,样品利用率可达100%;(c)的样品利用率则低得多由于离子源处于高真空状态,当推杆推入或拉出离子源时为了不破坏源的真空,必须在离子源和直接进样系统之间安装一个高真空闸阀。闸阀关闭时,真空系统对预抽室抽真空,待真空达到一定要求时,闸阀打开,推杆便可推入,将样品送入离子源:测试完后,将推杆拉至预抽室,关闭闸阀,然后将预抽室放空,再拔出推杆,更换样品管。有些仪器的直接进样推杆还可以通水或液氮冷却,以防止样品在预抽真空时挥发掉,因此这种推杆也能适合于沸点较低的液态样品进样3该进样装置在现代质谱中使用相对较少。[img=Compress_2.jpg,800,]https://i2.antpedia.com/attachments/att/image/20220126/1643166895560663.jpg[/img]图2推杆头与电离盒的相对位置1推杆头;2一样品;3样品管;4一电离盒入口在最新质谱技术中,常压敞开式离子化技术是离子化技术的一个新兴领域,其特点是在无需样品预处理或简单预处理下,将样品中待测组分在大气压条件下进行电离,然后进入质谱质量分析器进行检测

  • 【分享】MAT-271质谱计进样控制系统改造

    针对MAT-271质谱计进样控制系统老化,操作方式繁琐的问题,提出一种基于Linux和MiniGUI的进样控制系统解决方案。利用PC/104主板控制PC/104总线规范的A/D及I/O驱动接口板,在Linux操作系统下,采用MiniGUI设计图形控制界面,通过大尺寸液晶触摸屏控制进样,并实时显示多个参数,实现对现有质谱计进样控制系统的升级改造。应用表明本系统不仅操作简便,而且显示直观,实现进样系统的自动化控制。

  • 质谱仪五大组成结构及作用

    [font=&][size=18px]质谱仪的组成:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。[/size][/font][font=&][size=18px]1、真空系统作用,是减少离子碰撞损失。若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等。[/size][/font][font=&][size=18px]2、进样系统[/size][/font][font=&][size=18px]高效重复地将样品引入到离子源中并且不能造成真空度的降低。间歇式进样系统——气体及低沸点、易挥发的液体;直接探针进样——高沸点的液体、固体;色谱进样系统——有机化合物。[/size][/font][font=&][size=18px]3、离子源或电离室作用是使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率本领。电子电离源的特点:电离电压:70eV;加一小磁场增加电离几率;EI源电离效率高,碎片离子多,结构信息丰富,有标准化合物质谱库;结构简单,操作方便;样品在气态下电离,不能汽化的样品不能分析,主要用于气-质联用仪;有些样品得不到分子离子。[/size][/font][font=&][size=18px]4、质量分析器作用将离子源产生的离子按质荷比m/z的大小分开。[/size][/font][font=&][size=18px]5、离子检测器[/size][/font][font=&][size=18px]法拉第杯(直接电测法)离子流直接为金属电极所接收,并用电学方法记录离子流大小。二次电子倍增器(二次效应电测法) 一定能量的正离子打击阴极的表面,产生若干二次电子,然后用多级瓦片状的二次电极(或称打拿极)使二次电子不断倍增,后为阳极所检测。 二次电子倍增器的检测极限更低。好点的质谱会同时配备这两种检测器[/size][/font]

  • 【质谱比较】质谱的进样方式与进样接口的区别

    LCMS、GCMS、ICPMS的进样方式各不相同,这也决定了仪器进样接口的种种设计。单GCMS就有液体和固体进样之分,目前质谱进样系统发展较快的是LCMS的接口技术。本期主题:质谱的进样方式与进样接口的区别讨论内容:1、质谱进样接口的分类与使用2、各种质谱是如何选择进样方式的?3、你觉得什么样的进样接口最微妙?...................等等相关的讨论筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇=总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • 质谱仪不同进样系统对样品的要求?

    [color=#444444]质谱仪器下列进样系统对样品的要求分别是什么?也就是分别适合什么样品?[/color][color=#444444]1:固体直接进样[/color][color=#444444]2:直接进样探头[/color][color=#444444]3:GC进样[/color][color=#444444]4:HPLC进样[/color]

  • 质谱一些基础知识

    本文汇总了26个常见的质谱知识,欢迎大家学习~1 质谱法定义 :是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。2 质谱的作用 :准确测定物质的分子量 质谱法是唯一可以确定分子式的方法 根据碎片特征进行化合物的结构分析。3 质谱分析的基本原理 :质谱法是利用电磁学原理,将待测样品分子解离成具有不同质量的离子,然后按其质荷比(m/z)的大小依次排列收集成质谱。根据质谱中的分子离子峰(M?+)可以获得样品分子的相对分子质量信息 根据各离子峰(分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰等)及其相对强度和氮数规则,可以确定化合物的分子式 根据各离子峰及物质化学键的断裂规律可以进行定性分析和结构分析 根据组分质谱峰的峰高与浓度间的线性关系可以进行定量分析。4 质谱分析的过程 :(1)进样,化合物通过汽化引入电离室 (2)离子化,在电离室,组分分子被一束加速电子碰撞,撞击使分子电离形成正离子 (3)离子也可因撞击强烈而形成碎片离子 (4)荷正电离子被加速电压V加速,产生一定的速度v,与质量、电荷及加速电压有关 (5)加速正离子进入一个强度为B的磁场(质量分析器),发生偏转。5 质谱仪的组成 :真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。6 真空系统作用 :是减少离子碰撞损失。若真空度低:大量氧会烧坏离子源的灯丝 会使本底增高,干扰质谱图 引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化 干扰离子源中电子束的正常调节 用作加速离子的几千伏高压会引起放电等。7 进样系统目的 :高效重复地将样品引入到离子源中并且不能造成真空度的降低。间歇式进样系统——气体及低沸点、易挥发的液体 直接探针进样——高沸点的液体、固体 色谱进样系统——有机化合物。8 离子源或电离室:作用是使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率本领。8电子电离源的特点:电离电压:70eV 加一小磁场增加电离几率 EI源电离效率高,碎片离子多,结构信息丰富,有标准化合物质谱库 结构简单,操作方便 样品在气态下电离,不能汽化的样品不能分析,主要用于气-质联用仪 有些样品得不到分子离子。9 化学电离源特点 :电离能小,质谱峰数少,谱图简单 最强峰为(M+1)+准分子离子峰 不适用难挥发试样。10 快原子轰击源 :高能量的Xe原子轰击涂在靶上的样品,溅射出离子流。本法适合于高极性、大分子量、低蒸汽压、热稳定性差的样品。FAB一般用作磁式质谱的离子源。11 电喷雾源结构 :喷嘴(金属毛细管),雾化气,干燥气。原理:喷雾蒸发电压。特点:ESI是最软的一种电离方式,只产生分子离子,不产生碎片离子 适用于强极性,大分子量的样品分析,如肽,蛋白质,糖等 产生的离子带有多电荷,尤其是生物大分子 主要用于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱联用仪,既用作[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]和质谱仪之间的接口装置,同时又是电离装置。12 场致电离源(FI) 和场解吸电离源(FD) :分子离子峰强 :碎片离子峰少 不适合化合物结构鉴定。13 基质辅助激光解吸电离特点 :准分子离子峰很强,且碎片离子少。通常用于飞行时间质谱,特别适合测定多肽、蛋白质、DNA片段、多糖等的相对分子质量。14 质量分析器作用 :将离子源产生的离子按质荷比m/z的大小分开。15 单聚焦分析器:离子的m/z与R,B, V有关。通过改变磁场可以把不同离子分开。-在一定磁感应强度B下,改变加速电压V可以使不同离子先后通过检测器,实现质量扫描,得到质谱。特点:结构简单,操作方便 只有方向聚焦,无能量聚焦,分辨率低。16 双聚焦分析器 :实现方向聚焦和能量(速度)聚焦 对于动能不同的离子,通过调节电场能,达到聚焦的目的。特点:分辨率高。17 四级杆质量分析器 :特点:结构简单,体积小、重量轻,扫描速率快,适合与色谱联机。18 飞行时间质量分析器 :特点:质量范围宽,扫描速率快,既不需磁场也不需电场,只需要直线漂移空间。19 离子阱质量分析器 :特定m/z离子在阱内一定轨道上稳定旋转,改变端电极电压,不同m/z离子飞出阱到达检测器。特点:结构简单、易于操作、灵敏度高。20 质谱的表示方法 :质谱一般可用线谱或表谱两种方法表示。常用线谱 线谱上的各条直线表示一个离子峰,横坐标为质荷比m/z,纵坐标为离子的相对强度(相对丰度),一般将原始质谱图上最强的离子峰定为基峰并定为相对强度100%,其他离子峰以对基峰的相对百分值表示。能够很直观地观察到整个分子的质谱全貌 质谱表是用表格形式表示的质谱数据,质谱表中有两项即质荷比及相对强度。对定量计算较直观。21 质谱仪的分辨率 :分辨率(R)指质谱仪能区别邻近两个质谱峰的能力。对两个相等强度的相邻峰,当两峰间的峰谷不大于其峰高10%时,则认为两峰已经分开。22 质谱图中主要离子峰的类型 :分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰。23 相对分子质量的测定 :分子离子峰的m/z相当于该化合物的相对分子质量。一般除同位素离子峰外,分子离子峰是质谱图中最大质荷比的峰,位于质谱图的最右端。24 确认分子离子峰的方法 :(1)分子离子峰必须符合氮数规则。有机化合物含有偶数个氮原子或不含氮原子,分子离子峰的m/z一定是偶数 含奇数个氮原子,分子离子峰的m/z一定是奇数。(2)分子离子峰与相邻离子峰的质量差应合理,如不可能出现比分子离子峰质量小4~13个质量单位的峰。(3)当化合物中含S,Br, Cl时,可利用M+?,(M+2) +?等同位素离子峰的比例来确认分子离子峰。(4)改变质谱仪的操作条件,提高分子离子峰的相对强度。采用化学电离源或降低电子轰击源电压可获得较强的M+峰。25 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪 :质谱:纯物质结构分析。色谱:化合物分离,定性能力差。色谱-质谱联用:共同优点。[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url] [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] CE-MS,色谱是质谱的进样及分离系统 质谱是色谱的检测器。主要问题:接口技术 除去色谱中大量的流动相分子。适用范围:适用于挥发度低、难气化、极性强、相对分子质量大及热稳定性差的样品。26 无损检测定义 :无损检测技术即非破坏性检测,就是在不破坏待测物质原来的状态、化学性质等前提下,为获取与待测物的品质有关的内容、性质或成分等物理、化学情报所采用的检查方法。

  • 质谱法(1)

    应用:质谱是应用最为广泛的方法,它可以为我们提供以下信息:a)样品元素组成;b)无机、有机及生物分析的结构---结构不同,分子或原子碎片不同(荷质比不同)c)复杂混合物的定性定量分析------与色谱方法联用(GC-MS);d)固体表面结构和组成分析-----激光烧蚀等离子体---质谱联用;e)样品中原子的同位素比。历史:1813年,Thomson使用MS报道了Ne是由22Ne和24N两种同位素组成;随后,同位素分析开始发展。在30年代末,由于石油工业的发展,需要测定油的成份。通常用蒸馏(fractional distillation)的方法先分离这些烃类混合物,然后再分别测定其折光率(refractive index)的方法来分析它们。这通常要花数天时间。40年代初开始将MS用于石油工业中烃的分析,并大缩短了分析时间。50年代初,质谱仪器开始商品化,并被广泛用于各类有机物的结构分析。同时质谱方法与NMR、IR等方法结合成为分子结构分析的最有效的手段。80年代,非挥发性或热不稳定分子的分析进一步促进了MS的发展;90年代,由于生物分析的需要,一些新的离子化方法得到快速发展;目前一些仪器联用技术如GC-MS,HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url],GC-MS-MS,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]等正大行其道。第一节 质谱分析原理及质谱仪一、基本原理概述质谱分析是将样品转化为运动的带电气态离子,于磁场中按质荷比(m/z)大小分离并记录的分析方法。其过程为可简单描述为:离子源轰击样品 带电荷的碎片离子 电场加速(zeU) 获得动能( ) 磁场分离( ) 检测器记录其中,z为电荷数,e为电子电荷,U为加速电压,m为碎片质量,v为电子运动速度。二、质谱仪性能指标1、质量测量范围质量测定范围以原子质量单位量度,1个原子质量单位:1u=1.66054 10-27kg/12C原子如12C=12u, CH4=16.xxxx u在非精确测量中,常直接以原子或分子量大小来表示。2) 分辨本领指质谱仪分辨相邻质量数离子的能力。定义为:两个相等强度的相邻峰(质量分别为m1和m2),当两峰间的峰谷不大于峰高的10%时,则可认为两已分开,其分辨率R为: 可见在质量数小时,分辨率亦较小。实际工作中很难找到上述两相等的峰,常以下式表示: W0.05表示峰高5%处的峰宽。三、仪器组成按质量分析器(或者磁场种类)可分为静态仪器和动态仪器,即稳定磁场(单聚焦及双聚焦质谱仪)和变化磁场(飞行时间和四极杆质谱仪)。MS仪器一般由进样系统、电离源、质量分析器、真空系统和检测系统构成。 1、真空系统 如图所示,质谱仪中所有部分均要处高度真空的条件下(10-4-10-6Torr或mmHg), 其作用是减少离子碰撞损失。真空度过低,将会引起:a)大量氧会烧坏离子源灯丝;b)引起其它分子离子反应,使质谱图复杂化;c)干扰离子源正常调节;d)用作加速离子的几千伏高压会引起放电。2、进样系统 对进样系统的要求:重复性、不引起真空度降低。 进样方式:a)间歇式进样:适于气体、沸点低且易挥发的液体、中等蒸汽压固体。如图所示 注入样品(10-100 g)---贮样器(0.5L-3L)---抽真空(10-2 Torr)并加热---样品蒸分子(压力陡度)---漏隙---高真空离子源。b)直接探针进样:高沸点液体及固体探针杆通常是一根规格为25cm 6mm i.d.,末端有一装样品的黄金杯(坩埚),将探针杆通过真空闭锁系统引入样品,如图所示。 c)色谱进样系统:将在GC-MS联用中介绍

  • 真空泵的间歇运行

    对光室进行抽真空的光谱使用的都是真空泵,但有些是采用的间歇运行,即光室真空达到一定指标后,真空泵停止工作,待真空下降一定比例后再开始工作,这样无论对泵的寿命及其它损耗都是有利的;还有一种是连续运行,即泵不停的进行工作,这是为什么呢,是光室密封不好?还是泵的能力有限?或者?

  • 气相色谱间歇性熄火

    气相色谱间歇性熄火

    求助各位朋友,公司的色谱开机的时候基线高,然后开始往下走,空跑的时候机子会间歇性的熄火然后再点火。气体:气体用的是氢气钢瓶, 氮气钢瓶,纯度99.999%,铜质导气管,空气用的是色谱仪器配套的空气压缩器(变色硅胶蓝色);条件:氢气流量30ml/min,空气300ml/min,尾吹气18ml/min检测器FID下面是图片附件,希望有经验的朋友帮助下,谢谢!http://ng1.17img.cn/bbsfiles/images/2016/06/201606151015_596945_3117091_3.jpg

  • 质谱仪真空系统的故障排查和日常维护

    真空系统提供和维持质谱仪器正常所需要的高真空度,通常在10-3~10-9Pa。由于日常工作中,需要经常更换配件或定期保养仪器,在拆卸安装仪器时,质谱仪容易出现空气泄漏的故障。而空气泄漏故障发生的位置比较多,排查时比较费时费力。本篇文章将对质谱仪真空系统的故障排查和日常维护进行简单介绍。  [b]质谱仪的真空要求[/b]  质谱仪必须在良好的真空条件下才能正常工作,一般要求离子源的真空度应达10-3~10-4Pa,质量分析器和检测器的真空度应达10-4~10-5Pa。  质谱仪器为什么需要高真空?  (1)离子的平均自由程必须大于离子源到收集器的飞行路程;  (2)氧气分压过高影响电子轰击离子源中灯丝的寿命;  (3)离子源内的高气压可能引起高达数千伏的加速电压放电;  (4)高气压产生的高本底会干扰质谱图及分析  (5)离子源内高气压会引起离子—分子反应,改变质谱图样;  (6)电离盒内的高气压会干扰轰击电子束的正常调节。  [b]真空泵的用途[/b]  质谱仪一般采用两级真空系统,由机械泵和高真空泵组合而成。常用的机械泵是旋转式油封泵。那么真空泵的主要用途是什么呢?  一是作为高真空泵-扩散泵或分子泵的前级泵,提供高真空泵正常工作所需要的前级真空;  二是预抽真空,为直接进样系统、间接进样系统以及离子源或整个仪器暴露大气后预抽真空,色质联用时也用于分子分离器抽低真空,高真空泵才能达到和维持质谱仪器正常工作所需要的10-4pa以上的真空水平。  为了保护高真空泵并使其充分发挥效率,必须在前级的机械泵达到一定真空度的条件下,才能开启和关闭高真空泵。常见的高真空泵有油扩散泵、汞扩散泵、溅射离子泵、涡轮分子泵等。  [b]空气泄漏症状[/b]  任何需要真空操作的仪器都存在空气泄漏的故障。出现空气泄漏时,主要症状有哪些?  (1)超过正常真空多级连接管压力或前级压力;(2)超过正常本底;(3)空气特征峰(m/z 18、28、32和44,或m/z 14、16);(4)灵敏度低;(5)m/z 502处相对丰度低(该值随所使用的调谐程序而有所不同)。  [b]确认空气泄漏的存在  如何才能发现空气泄露?[/b]  处于m/z 18、28、32和44的峰是MSD有空气泄漏时的典型峰。这些质量的小峰是正常的,m/z 14和16的大峰是空气明显泄漏的症状。如果MSD近进行过放空,需要经过4h,m/z 28(氮气)才能降至适当低的  水平;需要经过24h,m/z 18(水)才能降至适当低的水平。如果这些峰变大或干扰了分析,需检查调谐报告。  调谐报告比较m/z 18(水)和m/z 28(空气)的丰度与m/z 69(全氟三丁胺)的丰度之比。如果调谐报告中的比例不可接受(m/z 18大于m/z 69的10%),等待几个小时然后重新调谐。如果比例仍然不可接受,且没有降低,检查空气泄漏。如果空气泄漏存在,那么m/z 28与m/z 32的丰度比值约为5∶1。  [b]查找空气泄漏的方法  ①载气管线的检查[/b]  首先需要确定所有接头是否有明显松动。对于严重的漏气,可以采用皂液检漏的方法,在管线和阀的接口处挤上适量的肥皂检漏液,漏气的部位会出现明显的气泡;对于轻微的漏气,关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进样口的压力,关闭气瓶的总阀,开启分压阀,若有漏气,15min后分压表的压力会有明显的下降。  [b]②GC部分的检查[/b]  通常GC部分的空气泄漏通常会发生在内部的载气管接头、隔垫、隔垫定位螺母、O形圈、柱螺母等位置。此外,色谱柱断裂也会引起空气泄漏。若隔垫漏气,可以看到以下信号:如保留时间的延长或漂移,响应值降低,或柱前压降低等。  用适量的丙酮涂抹上述位置(进样口、进样口柱螺母、色谱柱),每次一个位置,先后顺序依照离MS部分由近及远的原则。在适当的时间后,观察数据系统中的峰图,若m/z 58和m/z 43处出现一个陡峭的、显著的攀升,说明在刚刚涂抹丙酮的位置存在空气泄漏。同样,也可以喷射惰性气体(如氩气)进行检漏,观察峰图中曲线在m/z 40处的攀升情况加以判断。  [b]③MS部分的检查[/b]  空气泄漏还可出现在MSD的更多处,如GC/MSD接口柱螺帽、GC/MSD接口O形圈、侧板O形圈(整个周围)、前端盖和后端帽的O形圈、三级真空规管的连头、校准阀。空气泄漏更容易出现在频繁开关的密封垫处,如色谱柱螺帽、侧板O形圈或放空阀的O形圈。空气泄漏在很少或从不打开的密封垫处出现较少,如前端盖和后端帽的O形圈或GC/MSD接口柱螺帽。  在MSD中查找空气泄漏的方法与GC部分类似,在可能发生空气泄漏的位置涂抹丙酮或喷射氩气,每次一个位置。总是从近被打开过的密封装置开始,这是有可能发生空气泄漏的地方。在涂抹完一个位置后,观察数据系统中的峰图变化加以判断。  [b]④隔离难以发现的泄漏[/b]  如果寻找空气泄漏过程中遇到困难,可以使用下述方法确定泄漏是在GC中还是MSD中:先进行空气和水检查;将[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]所有加热区冷却后,取下GC色谱柱,用一个隔垫盖住色谱柱端口;等待15~20min,再一次检查空气和水,比较次和第二次检查的结果。  如果结果基本相同,则泄漏存在于MSD中或GC/MSD接口末端的色谱柱螺帽处。如果结果显著不同,泄漏可能存在于GC。  [b]真空系统的维护  ①气源[/b]  载气纯度不够,或剩余的载气量不够时,也会造成m/z 28谱线丰度过大。选购的氦气纯度必须达到99。999%,当气瓶的压力达不到3MPa时,应更换载气,以防止瓶底残余物(N2)对气路的污染。载气管线 周围的温度改变和振动可导致载气供给和GC之间的管路接头泄漏,因此应定期对所有的外加接头进行检漏(大约每隔4~6个月)。  [b]②脱氧管[/b]  根据推荐,每用完3瓶气,应更换脱氧管,以防止气体的污染。脱氧管使用时间过长,吸附的氧气会随着载气进入仪器,导致m/z 32的谱线丰度过大。市售的脱氧管通常会用氮气进行饱和,安装时,必须用氦气将脱氧管内和管线里的氮气吹扫干净,再接至仪器上。  [b]③机械泵[/b]  为了保证机械泵的工作状态,达到要求的真空度,机械泵必须及时维护。由于前级泵油受热,或进入空气、水、溶剂和样品时会逐渐失效(一种症状是油的颜色逐渐变深),前级泵不能有效工作,可能增加前级压力和真空多路连接管压力。  国外公司要求三个月更换一次油,如果油变色或者有泡沫,应该随时更换。换的泵油型号也一定要相同,不同牌号的泵油不能混合使用。  [b]④进样口[/b]  隔垫的使用寿命由进样频率和针头质量决定。针头的毛刺、尖锐边缘,粗糙表面,或针头钝都会降低隔垫的使用寿命。隔垫应该少每100次进样后进行更换。当仪器连续使用时,建议每天更换隔垫。O形圈材料中有使其增加柔韧性的增塑剂,在高温下增塑剂会固化,使O形圈变硬,不能起到密封作用。  [b]⑤GC/MS接口和GC接口[/b]  GC/MS接口和GC接口在色谱柱温箱里,温差变化大,十分容易泄漏。在安装时,必须使用石墨化的Vespel圈,螺帽紧固到一定程度后,随色谱箱温度程序升温一个周期后再紧固1/4~1/2圈为好。  [b]⑥抽真空时间[/b]  每次开机时,等候直到MSD加热区位于其标准设定值至少2h,然后尝试自动调谐。如果MSD近进行过放空,需要经过4h,m/z 28(氮气)才能降至适当低的水平;需要经过24h,m/z 18(水)才能降至适当低的水平。  质谱仪开机时,需要将侧门用力的推一下,使侧门能在负压的作用下吸紧,防止细小纤维或灰尘吸附在侧门周围;放空后,放空阀要及时关紧。  质谱仪操作过程中,做好仪器的日常记录和维护。在质谱仪发生空气泄漏的故障时,根据近期的使用状况,仔细排查可能发生问题的部位,并采取适当的措施,空气泄漏的故障通常能很快排除

  • 【已应助】间歇精馏的论文(请转换成悬赏帖)

    恒全回流动态累积间歇精馏的研究赵旭 【摘要】:间歇精馏是化工生产中常用的分离技术,设备简单,操作灵活,广泛应用于精细化工及制药工业。间歇精馏全回流的分离能力最大,无须考虑回流比,操作方便。为了更好的利用全回流间歇精馏这一特点,本文提出了一种新操作方式——恒全回流动态累积间歇精馏,其特征是每隔一段时间将中间罐内液体转移到上一级储罐内,塔内始终保持全回流操作。 本文首先建立了恒全回流动态累积间歇精馏过程的数学模型,用模拟的方法验证该操作方式,并在同等条件下对比部分回流操作。模拟结果表明,由塔顶浓度随时间变化趋势看出该方式能够较长时间的保持较高的塔顶浓度,与部分回流操作比较,新方式节省了约15%的操作时间。 在实验研究中,建立了具有三个储罐恒全回流动态累积间歇精馏的实验装置,以水/乙酸为实验物系,对新方法进行了研究。实验结果表明,与部分回流间歇精馏操作过程比较,恒全回流实验操作节省了约10%的时间,而得到的产品纯度最高,为85.6%(R=4时81.0%,R=8时84.7%)。模拟和实验验证表明,恒全回流动态累积间歇精馏操作得到的产品浓度更高,所需的操作时间更短。【关键词】:间歇精馏 恒全回流 动态累积 【学位授予单位】:天津大学【学位级别】:硕士【学位授予年份】:2010【分类号】:TQ028.31【DOI】:CNKI:CDMD:2.1011.262586【目录】: 摘要3-4ABSTRACT4-7第一章 文献综述7-171.1 间歇精馏操作方式概述7-81.1.1 间歇精馏操作方式的优点71.1.2 间歇精馏的发展概况71.1.3 间歇精馏过程7-81.1.4 间歇精馏操作特点81.1.5 间歇精馏应用特点81.2 间歇精馏的研究内容8-91.3 间歇精馏操作方式的研究9-141.3.1 回流比恒定的操作方式91.3.2 中间罐间歇精馏塔操作和多罐间歇精馏塔操作9-111.3.3 全回流累积操作和动态累积操作11-141.4 间歇精馏模拟的研究进展14-151.5 简捷模型15-161.5.1 FUG 模型15-161.5.2 ISC 模型161.6 本文的研究内容16-17第二章 恒全回流动态累积操作概述17-212.1 提出恒全回流操作方式的背景17-192.1.1 传统间歇精馏部分回流操作172.1.2 全回流操作17-182.1.3 循环全回流回流罐填充的无回流阶段18-192.2 恒全回流动态累积间歇精馏的提出19-202.3 本章小结20-21第三章 恒全回流动态累积间歇精馏的模拟21-303.1 数学模型假设213.2 恒全回流操作方式的模型及条件21-223.3 恒全回流操作方式的数学模型建立22-243.4 恒全回流操作的数学模型计算24-273.5 模拟结果27-293.6 本章小节29-30第四章 恒全回流动态累积间歇精馏实验30-494.1 实验准备30-324.1.1 实验试剂30-314.1.2 分析条件31-324.2 实验前相关数据的测定32-344.2.1 校正因子32-334.2.2 理论板数33-344.3 部分回流间歇精馏实验34-364.3.1 实验设备及流程图34-364.3.2 实验操作364.4 恒全回流动态累积操作实验36-414.4.1 实验设备及流程图37-394.4.2 实验操作流程39-414.4.3 实验步骤414.5 实验结果和数据处理与分析41-434.6 恒全回流塔内状态43-474.6.1 恒全回流动态累积的塔内稳定性43-454.6.2 恒全回流塔顶浓度45-464.6.3 恒全回流中间罐液体浓度46-474.6.4 恒全回流中间罐液体转换时间474.7 本章小节47-49第五章 结论与展望49-505.1 结论495.2 展望49-50参考文献50-54发表论文和参加科研情况说明54-55致谢55

  • 【求助】质谱进样时真空度是如何变化的?

    请教各位高手几个问题:本人刚刚接触质谱,在做样品时出现如下问题,恳求各位帮忙。1.在做GC-MS 进样时,真空度有所下降,是否为正常现象,例如,不进样品时为50mT,进样后就会下降到45mT,有时会更低。2.进样品后,真空度偶尔出现上升现象,例如突然变到60mT,但是5-6s内又恢复正常了。这是否是质谱的异常现象呀!谢谢各位了。

  • 质谱进样分流和不分流对灯丝寿命的影响

    前几天质谱手动调谐,发现分流状态氮氧比例都很小,而不分流进样氮气100%,氧气30%多,于是怀疑质谱是不是漏气,折腾了半天无果,最后问800,一个很拽到工程师直接鄙视了一顿,问为什么要不分流调谐(汗,因为进样经常用到不分流啊,所以就在不分流状态下调谐了),工程师讲在不分流的状态下因为分流阀在0.75min会打开,这时候可能会进去空气,所以氮氧比例会升高,让把控制面板上的prerun关掉再调谐,果真就正常了(貌似这种状态调谐没有分流阀的开关),这几天做样就想在做实际样品的时候分流阀打开会不会混进去点空气啊,几分钟的溶剂延迟会把它抽走吗?会不会对缩短灯丝寿命啊?

  • 气相色谱质谱联用仪(GC-MS)进样后灯丝自动关闭

    [size=20px][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪(G[/size][size=20px]C-[/size][size=20px]MS)进样后灯丝自动关闭[/size] [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪8860-5977B([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])在进样过程中出现的灯丝自动关闭问题,通过([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])系统的工作原理、故障诊断流程和数据分析,确定了导致灯丝自动关闭的主要因素。 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪是一个高性能分析仪器仪器,用于分离、检测和鉴定化合物的组成。系统主要由样本引入系统、色谱柱、接口、质谱仪和数据处理系统等部分组成。灯丝位于质谱仪部分,是产生离子的关键组件,其稳定性对实验结果的准确性有着直接的影响。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])是一种广泛应用于化学分析领域,它结合了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url](GC)分离化合物的能力和质谱(MS)检测化合物特性的敏感性。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])一直以高性能和高可靠性著称。 其实所有精密设备都一样,([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])在持续运行过程中也可能出现各种技术问题,其中之一就是在进样后灯丝自动关闭的现象,这会直接影响仪器的稳定性与分析结果的准确性。灯丝在([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])系统中是个至关重要的角色。它负责将样品分子转化为离子,进而使得质谱仪能够进行检测。灯丝的正常运作对整个分析过程至关重要。灯丝自动关闭的问题可能由多种因素引起,包括电子控制系统的异常、电流供应的不稳定性以及机械结构的微小变形等。 在进样后的操作过程中,偶尔会遇到灯丝自动关闭的问题。这一故障的发生似乎与特定的操作条件有关,例进样速度、样品的种类和浓度等,灯丝自动关闭发生时,仪器通常会显示错误代码,并立即中断分析过程,导致数据丢失和实验延误。为了系统地研究灯丝自动关闭的问题,并监测灯丝的行为。数据收集工作主要依赖于仪器自带的软件和外部测量工具,以确保获取准确的实时数据。 在实际操作过程中呢,也是需要注意以下几点的 1. 确保仪器的工作环境稳定,避免温度、湿度等环境因素对仪器的影响。 2. 严格按照操作规程进行操作,避免因操作不当导致的故障。 3. 定期对仪器进行维护和检查,确保各部件正常工作。 4. 对于出现的问题,及时进行分析和处理,避免问题的累积和扩大。 5. 在使用仪器时,尽量保持稳定的进样速度和样品浓度,以减少灯丝自动关闭的可能性。 总之,通过对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])的工作原理、故障诊断流程和数据分析的深入理解,我们可以有效地解决灯丝自动关闭的问题,提高仪器的稳定性和分析结果的准确性。同时,我们也需要注意仪器的日常维护和使用注意事项,以确保仪器的正常运行。

  • 最好可以养成间歇饮水的习惯

    最好可以养成间歇饮水的习惯,不要等到口渴时才最好可以养成间歇饮水的习惯,不要等到口渴时才喝水,因为大脑发送口渴信号的时候,其实体内已经处于脱水状态。脱水时间过长不但会引起体能、新陈代谢、抵抗力的下降,还会使皮肤失去光泽和弹性。喝水,因为大脑发送口渴信号的时候,其实体内已经处于脱水状态。脱水时间过长不但会引起体能、新陈代谢、抵抗力的下降,还会使皮肤失去光泽和弹性。

  • 间歇式自动研磨仪在动物样品处理中的应用

    间歇式自动研磨仪在动物样品处理中的应用

    间歇式自动研磨仪在动物样品处理中的应用随着应用方向的不断拓展,能够用到研磨仪的领域越来越多,但随着研究的深入,研磨条件也在不断细化,特别是一些生物活性样品,在研磨过程中既要达到研磨效果,又要保证成分不失活,这就要求在研磨样品时温度升高不能太高。众所周知,研磨的过程是通过研磨珠与样品剧烈碰撞、摩擦而完成的。在这个过程中,随着产生的热量增大,温度也会增加。速度越快,热量越高,温度增高也越多。目前为了抵御温升的影响,通常采用的方法是低温预冷和加缓冲液保护,低温预冷即将样品预先放置到低温环境中,一般为液氮或超低温冰箱,液氮预冷的速度较快,且温度较低,但不太适合新鲜动物组织,因为新鲜动物组织含水较多,经液氮冷冻后容易形成冰块,使样品变得更加不易破碎。另外,一些动物组织成分经液氮冻融之后容易失活,也不能经受太大的温度变化,所以动物组织研磨通常会采用缓冲液研磨或直接研磨。缓冲液研磨可以一定程度上保护样品不过度升温,但从另一方面也会吸收研磨珠撞击的能量,故在缓冲液研磨时,通常要选择更高的速度才行。加缓冲液研磨时,研磨时间大于2min,且速度较高(≥1800rpm)时,温度还是会有所升高。为了有效的解决这一矛盾,我们的自动研磨仪采用了化整为零的方式,即将一个较长的研磨过程分为几次来进行,每次研磨一段时间停顿一会,循环几次,原理类似于超声波破碎,举个例子来说:如果原来研磨一个样品需要1800rpm、3min,我们的自动研磨仪就可以将其分为3次进行,转速不变,每次都是研磨1min,暂停30s,在3次过后样品实际被研磨了3min,但由于每次时间都较短,温度不会升高太多,暂停过程中,由于有缓冲液还能降温。这样既保证了样品的研磨效果,又保证了样品温度不会过度升高,可谓一举两得。 下图为鸡淋巴组织用自动研磨仪的研磨效果: http://ng1.17img.cn/bbsfiles/images/2013/06/201306141551_444948_2267_3.jpg目前,间歇式自动研磨仪对动物组织的处理无疑是一种很好的仪器。相信随着实验条件的不断优化,间歇式自动研磨仪研磨仪会有更大的应用空间。

  • API 4000三重四极杆串联质谱系统操作规程

    [align=center][b]API 4000三重四极杆串联质谱系统操作规程[/b][/align][align=center][b](美国AB Sciex公司)[/b][/align][b]设备准备:[/b]1. 经常检查各气路气体压力高于阈值。Curtain:0.35-0.4 Mpa;Source:0.7 Mpa。2. 仪器运行前检查流动相瓶中液面高度。3. 经常检查废液瓶液面高度。4. 用test方法应保证系统平衡时间大于10 min,色谱压力不超过150 psi,后开始进样。[b]进样:[/b]1. 取极少量样品于液相尖底小瓶,加800 mL 甲醇和200 mL 水溶解(一般样品浓度为10 mg/mL以内),再次检查小瓶中无沉淀现象,加入样品进样序列表,即可进样。2. 提交样品序列后,进样器采样过程不得打开、关闭进样室门。3. 样品序列全部完成,采样结束后,应分别调用Wash 1和Wash方法,对50%甲醇样品(样品位置:1-1-50位)进样清洗仪器流路。4. 待Wash样本结束,使仪器处于Standby状态,即设备处于正常待机状态。[b]日常维护:[/b]1. ESI源与APCI源的切换:无需使用工具,只要换探针就可以切换ESI源和APCI源;用手或螺丝起子调节电晕针的方向,使用APCI源时,电晕针尖端朝向气帘板;使用ESI源时,电晕针尖端朝向离子源玻璃罩;电晕针一直在离子源中。2. 一周清洁一次离子源(使用频繁时) 。一定要等离子源完全降温!清洗离子源腔体,清洗Curtain Plate、 0rifice Plate外部。用50:50的甲醇水,无尘纸进行擦拭,擦拭金属部分,不要碰到白色的陶瓷部分。3. 一周观察一次机械泵的泵油液面变化,一般不变,有变动代表机械泵异常。4. 每周检查氮气发生器,观察氦气发生器的三路气压力是否正常(Curtain: 0. 35-0.4 Mpa Source: 0.7 Mpa Exhaust:0. 35-0.4 Mpa)。5. 三个月和开机时进行一次调谐校正。6. 三个月清洗或者更换空气过滤网。7. 一年更换一次机械泵油。8. 半年更换一次喷雾针,旋下Peek管线与接头,旋松黑色螺帽和黄铜螺帽,轻轻向上拔起喷雾头,取下黑色螺帽,拔出喷针注意保护小弹簧,使用小扳手旋开喷针与两通的链接,更换新的喷针,重新装配即可。9. 关机流程:关闭质谱主机电源→等待20-30 min→关闭机械泵电源→关闭氮气发生器→结束10. 开机流程:打开氮气发生器确定气压正常→打开机械泵电源→等待约1 h→打开质谱主机电源→结束11. 仪器室除尘,每周都应组织人员清洁仪器室,保证仪器环境清洁,且常年保持仪器室18 ℃,温度过高会影响质谱正常工作。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制