当前位置: 仪器信息网 > 行业主题 > >

质谱小分子结果分析

仪器信息网质谱小分子结果分析专题为您提供2024年最新质谱小分子结果分析价格报价、厂家品牌的相关信息, 包括质谱小分子结果分析参数、型号等,不管是国产,还是进口品牌的质谱小分子结果分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱小分子结果分析相关的耗材配件、试剂标物,还有质谱小分子结果分析相关的最新资讯、资料,以及质谱小分子结果分析相关的解决方案。

质谱小分子结果分析相关的论坛

  • 【分享】液相色谱-质谱联用系统用于小分子化合物分析时的几点体会

    [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]因其对大部分化合物的高灵敏度得到越来越广泛的应用,适合于体内药物、体内有毒物质、药物的杂质等物质的定性和定量分析等领域。与传统的色谱分离检测器(紫外、荧光、视差、蒸发光散射、电化学等)检测的分析手段比较,质谱属于液相色谱的广适性检测器,具有明显的优势,该方法适用范围更广,灵敏度和高通量的特点,能够满足多个领域的定性和定量要求。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]用于小分子化合物定性已有多年历史,普通高效液相系统只能对已知化合物(有标准品的化合物)通过峰位来定性,对于未知化合物却无能为力。而高效液相色谱—质谱联用仪可以对化合物作多级质谱,通过多级质谱的分析来推测化合物的结构,从而对已知和未知化合物均可以较准确的定性。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]还可用于小分子化合物定量,且与用普通高效液相系统对化合物进行定量相比,其不需要定量的化合物必须与样品中的其它有类似性质的成分完全分离,而高效液相色谱—质谱联用仪对化合物间的分离度没有要求,不但对保留时间不一致的物质能区分开,即使保留时间完全一致也同样互不干扰,只要过滤出想测的物质即可;且该方法可在数分钟内对几十个化合物同时定量,简便、快捷、灵敏、可靠。 质谱仪的定量原理是在电压和气流的作用下把待测物加氢离子(正离子方式)或减氢离子(负离子方式)后带电荷,仪器检测到的是一定质核比(m/z)的物质,即选择离子监测(SIM),其他质量数的物质能被滤掉,其他原理及要求同一般色谱要求。目前多使用的一般仪器是单位质量分辨,可将分子量相差1的物质完全可以区分,专属性高,用单四级杆质谱仪就可以定量;有时为了进一步保证检测的准确性,把待测物加能量打碎,产生碎片离子(子离子),对母离子和子离子同时进行检测,采用三重四级杆质谱仪,也就是用选择反应监测(SRM)定量,母离子和子离子均完全一样的物质非常少见,因此定量的准确性更好,检测限更低。 根据使用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]的经验和审评体会,认为在使用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]测定和分析中需注意以下问题: 1) 测试者需根据自己的测试需要确定适宜的离子源。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]的质谱仪是大气压下的电离,电离方式属于软电离,当增加能量时,脱掉的碎片为中性分子,对于电离稳定性差的物质(如苷类,小肽等)逐步增加能量会依次逐个脱掉糖或氨基酸,得到非常多的片断信息,对于结构解析非常有好处,现有仪器最多可以做到11级质谱,该类质谱的缺点是至今还没有统一的谱库,不同的仪器碎片离子不很一致。以往常用的EI是一种强电离,一般得不到分子离子峰的信息,对于电离稳定的化合物有助于结构解析,FAB电离强度略弱,一般可以得到分子离子峰,碎片也较多,同时可以产生正负离子,EI和FAB的好处是电离方式稳定,有谱库可查,对于已知化合物鉴定更有帮助,但这两种质谱都没有多级质谱,提供的碎片信息有限。 2) 一级图谱测定和分析时,质量数范围应充分放宽,一是为了防止漏掉可能的杂质,二是防止观察不到多聚物。一般的质谱仪可以检测到50-1500。这点对于评价化合物纯度,以及选择适宜的杂质检测方法很有意义。 3) 多级图谱定性测定时,首先要保证一级质谱的峰强度,待测物是最强峰,以保证碎片峰的准确性,一般正离子检测达应达到e7(代表最强峰的强度,值越大,峰越强),负离子检测达e6;一级质谱峰足够强才能保证碎片峰的强度,否则将会导致碎片峰中杂峰过多,难于分辨哪一个碎片峰来源于样品,为结构解析带来难度。4) 提供图谱时信息尽可能详尽,一般质谱仪测定时会给出详细的相关信息,提供给对方时不要删除,如:电离方式是正离子(+ESI,+APCI,+APPI)还是负离子(-ESI,-APCI,-APPI),检测方式是一级质谱(MS)、选择离子监测(SIM)、选择反应监测(SRM)还是二级质谱全扫描(FULL MS2),峰强度等。这样不仅方便进行资料的回顾性分析,也便于审评人员进行技术评价。5) 用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]进行定量时,在提供上述信息的同时,而且定量图谱上尽可能标明峰面积和保留时间,要提供空白样品和最低定量限样品的图谱,以保证可靠性。6) 进行定量分析前,为保证检测下限尽可能低,需要对化合物的仪器参数进行优化。优化时应注意使待测物母离子峰强度保持适宜的强度(一般在e6左右即可),过强或过弱均可能会使优化的参数不准确;其次应在总离子流稳定的情况下进行参数优化,一般要求波动小于10%。参数优化后可根据经验再进行适当的调整,以保证更好的适用性。7) 用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]进行杂质分析时,最好有二极管阵列检测器(DAD),提供紫外色谱图、质谱色谱图和相应峰位杂质的多级质谱图。考虑到DAD一般多连接在质谱仪的前面,故质谱色谱图应比紫外色谱图的保留时间略长。 8) 由于质谱的稳定性没有普通检测器好,定量分析时最好有内标,内标与待测物最好性质相近,保留时间基本一致,待测物的氘代品为最佳选择。测定基质复杂的生物样品时,方法学确证要测定稀释效应和基质效应,建立的方法要消除这两种效应的干扰。

  • 【分享】液相色谱-质谱联用系统用于小分子化合物分析时的几点体会

    [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]因其对大部分化合物的高灵敏度得到越来越广泛的应用,适合于体内药物、体内有毒物质、药物的杂质等物质的定性和定量分析等领域。与传统的色谱分离检测器(紫外、荧光、视差、蒸发光散射、电化学等)检测的分析手段比较,质谱属于液相色谱的广适性检测器,具有明显的优势,该方法适用范围更广,灵敏度和高通量的特点,能够满足多个领域的定性和定量要求。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]用于小分子化合物定性已有多年历史,普通高效液相系统只能对已知化合物(有标准品的化合物)通过峰位来定性,对于未知化合物却无能为力。而高效液相色谱—质谱联用仪可以对化合物作多级质谱,通过多级质谱的分析来推测化合物的结构,从而对已知和未知化合物均可以较准确的定性。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]还可用于小分子化合物定量,且与用普通高效液相系统对化合物进行定量相比,其不需要定量的化合物必须与样品中的其它有类似性质的成分完全分离,而高效液相色谱—质谱联用仪对化合物间的分离度没有要求,不但对保留时间不一致的物质能区分开,即使保留时间完全一致也同样互不干扰,只要过滤出想测的物质即可;且该方法可在数分钟内对几十个化合物同时定量,简便、快捷、灵敏、可靠。 质谱仪的定量原理是在电压和气流的作用下把待测物加氢离子(正离子方式)或减氢离子(负离子方式)后带电荷,仪器检测到的是一定质核比(m/z)的物质,即选择离子监测(SIM),其他质量数的物质能被滤掉,其他原理及要求同一般色谱要求。目前多使用的一般仪器是单位质量分辨,可将分子量相差1的物质完全可以区分,专属性高,用单四级杆质谱仪就可以定量;有时为了进一步保证检测的准确性,把待测物加能量打碎,产生碎片离子(子离子),对母离子和子离子同时进行检测,采用三重四级杆质谱仪,也就是用选择反应监测(SRM)定量,母离子和子离子均完全一样的物质非常少见,因此定量的准确性更好,检测限更低。 根据使用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]的经验和审评体会,认为在使用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]测定和分析中需注意以下问题: 1) 测试者需根据自己的测试需要确定适宜的离子源。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]的质谱仪是大气压下的电离,电离方式属于软电离,当增加能量时,脱掉的碎片为中性分子,对于电离稳定性差的物质(如苷类,小肽等)逐步增加能量会依次逐个脱掉糖或氨基酸,得到非常多的片断信息,对于结构解析非常有好处,现有仪器最多可以做到11级质谱,该类质谱的缺点是至今还没有统一的谱库,不同的仪器碎片离子不很一致。以往常用的EI是一种强电离,一般得不到分子离子峰的信息,对于电离稳定的化合物有助于结构解析,FAB电离强度略弱,一般可以得到分子离子峰,碎片也较多,同时可以产生正负离子,EI和FAB的好处是电离方式稳定,有谱库可查,对于已知化合物鉴定更有帮助,但这两种质谱都没有多级质谱,提供的碎片信息有限。 2) 一级图谱测定和分析时,质量数范围应充分放宽,一是为了防止漏掉可能的杂质,二是防止观察不到多聚物。一般的质谱仪可以检测到50-1500。这点对于评价化合物纯度,以及选择适宜的杂质检测方法很有意义。 3) 多级图谱定性测定时,首先要保证一级质谱的峰强度,待测物是最强峰,以保证碎片峰的准确性,一般正离子检测达应达到e7(代表最强峰的强度,值越大,峰越强),负离子检测达e6;一级质谱峰足够强才能保证碎片峰的强度,否则将会导致碎片峰中杂峰过多,难于分辨哪一个碎片峰来源于样品,为结构解析带来难度。 4) 提供图谱时信息尽可能详尽,一般质谱仪测定时会给出详细的相关信息,提供给对方时不要删除,如:电离方式是正离子(+ESI,+APCI,+APPI)还是负离子(-ESI,-APCI,-APPI),检测方式是一级质谱(MS)、选择离子监测(SIM)、选择反应监测(SRM)还是二级质谱全扫描(FULL MS2),峰强度等。这样不仅方便进行资料的回顾性分析,也便于审评人员进行技术评价。 5) 用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]进行定量时,在提供上述信息的同时,而且定量图谱上尽可能标明峰面积和保留时间,要提供空白样品和最低定量限样品的图谱,以保证可靠性。 6) 进行定量分析前,为保证检测下限尽可能低,需要对化合物的仪器参数进行优化。优化时应注意使待测物母离子峰强度保持适宜的强度(一般在e6左右即可),过强或过弱均可能会使优化的参数不准确;其次应在总离子流稳定的情况下进行参数优化,一般要求波动小于10%。参数优化后可根据经验再进行适当的调整,以保证更好的适用性。 7) 用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]进行杂质分析时,最好有二极管阵列检测器(DAD),提供紫外色谱图、质谱色谱图和相应峰位杂质的多级质谱图。考虑到DAD一般多连接在质谱仪的前面,故质谱色谱图应比紫外色谱图的保留时间略长。 8) 由于质谱的稳定性没有普通检测器好,定量分析时最好有内标,内标与待测物最好性质相近,保留时间基本一致,待测物的氘代品为最佳选择。测定基质复杂的生物样品时,方法学确证要测定稀释效应和基质效应,建立的方法要消除这两种效应的干扰。

  • 【转帖】纳米筛能分析微小分子

    生物谷2007年5月24日报道:利用一滴样本溶液就能快速地鉴定其中的微小分子,如DNA或毒性物质,已不再是遥不可及的事了,美国国家标准及科技机构(National Institute of Standards and Technology,NIST)的科学家研发出一种奈米级的筛网,能侦测并分类不同分子量的的分子聚合链(polymer chain),此研究将发表于近期的PNAS期刊。一般来说,要分析未知的分子,大多是利用质谱分析(mass spectrometry)来进行,此技术可涵盖许多不同种类的大分子鉴定,但是此技术必需先将该分子崩解、离子化后才能分析质量,获得该分子的身份确认。而相反地,此研究中的单分子质谱分析(single-molecule mass spectrometry)则是一种非破坏性的技术,原则上一次在一个微芯片装置中可以分析一种分子。 研究人员制造了宛如细胞膜的脂质双层膜(lipid bilayer),再以金黄色葡萄球菌(Staphyloccoccus aureus)的α-溶血素(α- hemolysin)将之打洞,此孔洞最小的孔径只有1.5奈米(人类头发的直径约为10,000奈米),研究人员以溶液中不同大小的PEG(polyethylene glycol)混合物进行分析,再拿其中一种高纯度的PEG进行比对,结果显示混合溶液中该种PEG的质谱图几乎与标准品完全相同,显示这个奈米级的分子筛对于微小分子的身份确认极具潜力。

  • ABI公司与MDS Sciex联手推出用于小分子定量分析的新一代质谱产品

    1月12日,美国ABI公司与其合作伙伴MDS Sciex联合向外界宣布,API家族最新一代三级四极杆质谱仪—— API 5000(TM) LC/MS/MS系统问世。API 5000(TM) LC/MS/MS系统对于小分子的定量分析具有及其出色的灵敏度和准确性,尤其适用于药物代谢及其动力学研究(DMPK)和药物的吸收、分布、代谢及毒性分析的研究(ADMET)。该型产品较之目前市场上的同类产品,其灵敏度平均提高了9倍,信噪比提高了4倍,从而使其成为全新的工业标准。全球用户很快就可以在市场上见到这款产品。 ABI公司总裁Catherine M. Burzik表示,“针对医药研究机构对分析手段要求的日益提高,API 5000(TM) LC/MS/MS系统的高灵敏度极大增强了研究人员对于一个候选药物以及它的代谢物和污染物的评价”。 MDS Sciex公司总裁Andy Boorn则认为,“API 5000(TM) LC/MS/MS无与伦比的灵敏度源于其采用了创新的QJet(TM)离子引导技术,从而达到捕获更多离子和更高效率地聚焦离子束以提高离子传输效率的目的。再加上系统的Turbo V(TM)离子源技术,使用者可以很轻易地提高离子流速及通量而不会导致信号的损失,从而使得对于更小分子尺寸样品的分析成为可能”。 与API 5000(TM)系统配套的Analyst(R) 1.4.1软件为使用者提供从进样到数据分析的自动化操作,同时,Analyst(R) 1.4.1还可与实验室网络实现无缝链接,使用灵活又具有很好的安全性,极大提高了实验室工作效率,并有利于满足GLP和21 CFR Part 11的要求。

  • 含有巯基的生物小分子化合物的基质辅助激光解吸离子化质谱分析方法的研究

    [align=left][font='微软雅黑',sans-serif][color=black][back=white]【序号】:1[/back][/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font][font='微软雅黑',sans-serif][color=black][back=white]【作者】: 郭黎明[/back][/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font][font='微软雅黑',sans-serif][color=black][back=white]【题名】:含有巯基的生物小分子化合物的基质辅助激光解吸离子化质谱分析方法的研究[/back][/color][/font][/align][align=left][font='微软雅黑',sans-serif][color=black][back=white]【期刊】:吉林大学 博士论文[/back][/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font][font='微软雅黑',sans-serif][color=black][back=white]【年、卷、期、起止页码】:2022[/back][/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font][font='微软雅黑',sans-serif][color=black][back=white]【全文链接】:[/back][/color][/font][url=https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whLpCgh0R0Z-ia63qwICAcC3-s4XdRlECrTIkXoHr2EdHtSPC6BwqSJe8khappK2KsrLiQjj7VhBT&uniplatform=NZKPT]含有巯基的生物小分子化合物的基质辅助激光解吸离子化质谱分析方法的研究 - 中国知网 (cnki.net)[/url][/align][align=left] [/align]

  • 小分子质谱解析

    [color=#444444]用ESI-打了一张质谱图,HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]联用的,流动相是甲醇:乙腈:缓冲液的混合液,缓冲液中含有微量的盐酸。[/color][color=#444444]质谱图中出现了的峰有[/color][color=#444444]m/z=[/color][color=#444444]108,[/color][color=#444444]144,[/color][color=#444444]146[/color][color=#444444]而且144和146的强度比差不多3:1[/color][color=#444444]我一想,144和146肯定是加和了Cl35和Cl37,那么144-35=109,146-37=109,刚好108这又有一个信号峰,所以这个物质肯定分子量可能是109。[/color][color=#444444]但是原则上来说这个物质肯定分子量会小于108,所以说不定这个109中是这个物质加和了其他中性分子形成的。[/color][color=#444444]我就选用了m/z108的峰做ESI-的二级质谱,发现就只有m/z65的峰,如果说m/z65的峰是我的准分子离子峰的话,结果挺好的。但现在遇到一个问题,就是这个108-65=43的是什么东西,我没法解释,加和了43的到是个啥呀?[/color]

  • 质谱测小分子的分子量?

    [color=#444444]想用质谱测定一个小分子的分子量,该物质在水、甲醇中不溶解,而在乙腈中溶解度不是太大。。。。想问一下像这种在溶剂中溶解性不太好的物质,测分子量时有没有影响???或者说质谱测定分子量时,对被测物在溶剂中的溶解度有没有要求?[/color]

  • ESI质谱分析

    [color=#444444]前几天做了个UPLC-Q-TOF质谱,之前没做过,出现的结果不会分析。[/color][color=#444444]Polarity ES+[/color][color=#444444]Collision Energy 6.0[/color][color=#444444]Ion Energy 1.0[/color][color=#444444]Collision Energy (eV) 4.0[/color][color=#444444]Capillary (kV) 3.0[/color][color=#444444]Sampling Cone 35.0[/color][color=#444444]我的化合物分两步合成,每次加一个小分子化合物上去。合成结束后的理论分子量为471。但是质谱结果显示有三个主要的峰(311,385,494),是由于合成不完全还会碎片?[/color][color=#444444]另外,我的分子有苯环,为什么在做[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]时质谱对应时间下没有液相峰?[/color]

  • 转贴:质谱分析(一)

    质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家阿斯顿(F.W.Aston,1877—1945)于1919年制成的。出手不凡,阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。质谱仪开始主要是作为一种研究仪器使用的,这样用了20年后才被真正当作一种分析工具。它最初作为高度灵敏的仪器用于实验中,供设计者找寻十分可靠的结果。早期的研究者们忙着测定精确的原子量和同位素分布,不能积极地去探索这种仪器的新用途。由于同位素示踪物研究的出现,质谱仪对分析工作的用处就越发变得明显了。氮在植物中发生代谢作用的生物化学研究要求用15N作为一种示踪物。但它是一种稳定的同位素,不能通过密度测量来精确测定,所以质谱仪就成了必要的分析仪器。这种仪器在使用稳定的13C示踪物的研究中以及在基于稳定同位素鉴定的工作中也是很有用的。标准型的质谱仪到现在已经使用了大约45年。40年代期间,石油工业在烃混合物的分析中开始采用质谱仪。尽管这种质谱图在定量解释时存在着难以克服的计算麻烦,但在有了高速计算机后,这种仪器就能在工业方面获得重大的成功。(1)近20年来质谱技术随着新颖电离技术,质量分析技术,与各种分离手段的联用技术以及二维分析方法的发展,质谱已发展成为最广泛应用的分析手段之一。其最突出的技术进步有以下几个方面:新的解吸电离技术不断涌现,日趋成熟,可测分子量范围越来越高,并逐步适用于难挥发、热敏感物质的分析,例如海洋天然产物、微生物代谢产物,动植物二次代谢产物以及生物大分子的结构研究。最有发展前景的电离方法有:①等离子解吸采用252Cf的裂介碎片作为离子源,使多肽和蛋白质等生物大分子不必衍生化而直接电离进行质量分析。它与飞行时间质谱相配合,已成功地用于许多合成多肽的质谱分析,并已在一些实验室中作为常规分析方法来鉴定多肽和蛋白质。目前它的可分析的质量极限大约是50000D。②快原子轰击,把样品分子放入低挥发性液体中,用高速中性原子来进行轰击,可使低挥发性的,热敏感的分子电离,得到质子化或碱金属离子化的分子离子。由于很容易在磁质谱或四极杆质谱上安装使用,因此得到广泛应用,分子量很容易达到3000—4000。如果与带有后加速的多次反射阵列检测器的高性能磁质谱配合使用,可测分子量可达到10000amn以上,最高记录可达25000amn。③激光解吸,利用CO2激光(10.6μm),Nd/YAG激光(1.06μm)的快速加热作用使难挥发的分子解吸电离,与飞行时间质谱或离子回旋共振质谱相配合成功地分析了一系列蛋白质和酶的复合物,并创造了蛋白质分子质量分析的最高记录(Jack Bean Urease Mr~27万)。④电喷雾(electro spray,electrostatic spray,ion spray)把分析样品通过常压电离源,使分子多重质子化而电离。由于生成多重质子化的分子离子可缩小质荷比,因此一个分子量为数万的生物大分子,如果带上几十个,上百个质子,质荷比可降低到2000以下,可以用普通的四极杆质谱仪分析,其次由于得到一组质荷比连续变化的分子离子峰,通过对这些多电荷分子离子峰的质量计算可以得到高度准确的平均分子量。第三是这种多重质子化的分子离子峰可进一步诱导碰撞活化,进行串联质谱分析。第四是这种电离技术的样品制备要求极低,溶于生物体液的样品分子或HPLC,CZE的流出液都可直接引入常压电离源进行联机检测。

  • 气质联用为什么不能分析小分子气体

    [color=#444444]前段时间做了一个实验,采用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]分析非金属材料受热释放的气体,但是只检测到了大分子有机物,没有检测到一氧化碳,氯化氢。氰化氢等小分子气体。老师说是由于这些分子量太小,质谱打不碎,想请教一下,是这样的吗?谢谢[/color]

  • 热分析/质谱联用的数据分析方法第1部分 理论基础

    热分析/质谱联用的数据分析方法第1部分 理论基础

    [b][font=华文楷体][size=14.0pt]1. [/size][/font][font=华文楷体][size=14.0pt]热分析联用简介[/size][/font][font=华文楷体][size=14.0pt]联用技术是近年来分析仪器的一个发展趋势,许多常规的分析仪器如色谱、X射线衍射、各类光谱仪等都已实现了与其他分析技术的联用,热分析仪当然也不例外。早在两千多年前,我国战国时期的楚国诗人、政治家屈原在《楚辞卜居》中就已指出“尺有所短,寸有所长。物有所不足,智有所不明”。这告诉我们每种分析技术均有其独特的优势,但我们也应清醒地认识到它们自身也会存在着一定的不足。只有在实际应用中对每种分析技术扬长避短,充分发挥其优势,才可以达到事半功倍的效果。其实,在许多中文版本的文献资料中,对联用技术的描述通常使用“联用”而不是“连用”来表述,这也充分表明联用技术不是简单地将两种或多种技术连接或拼接在一起,而是要在实际上有机地、合理地将其组合在一起。也就是说,对于由多种技术的联用仪而言,其不仅仅满足于可以达到1+1+…+1 = N的效果,而且应达到1+1+…+1 N的效果。当然,对于一些不成功的联用技术而言,有时达到的效果可能为1+1+…+1 N,甚至等于0。[/size][/font][font=华文楷体][size=14.0pt]由常规的热分析可以得到在热分析实验过程中所研究的对象在一定的气氛和程序控制温度下由于其结构、成分变化而引起的质量、热效应、尺寸等性质的变化信息。通过将热分析技术与常规的分析技术如红外光谱技术、质谱、色谱、显微技术、拉曼光谱、X射线衍射等联用,可以得到在物质的性质发生发生变化的过程中产物的结构、成分、形貌、物相等的变化信息。通过这些信息,可以使我们了解到物质在一定的气氛和程序控制温度下所发生的各种变化的更深层次的一些信息,对于过程中的反应机理、动力学信息有更深刻的认识。热分析联用技术的特点和优势可以概括为实时、全面、高效,但我们也应清醒地认识到对于一些高温分解产生的气体分析时在传输过程中的冷凝现象的影响,一些高温产物在传输管线中的冷凝会导致由红外光谱、色谱和/或质谱进行气体分析时丢失一部分气体产物的信息。当前应用最为广泛的热分析联用技术主要有:(1)热重-差热分析、热重-差示扫描量热法以及显微热分析等,这属于同时联用的范畴;(2)热分析与红外光谱技术、质谱的联用,这属于串接式联用的范畴;(3)热分析与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]等技术的联用,由于与热分析联用的这类技术自身在分析时需要一定的时间,因此通常称该类技术为间歇式联用技术。其实,这类技术也属于串接式联用的范畴。[/size][/font][font=华文楷体][size=14.0pt]2. [/size][/font][font=华文楷体][size=14.0pt]热分析/质谱联用技术简介[/size][/font][font=华文楷体][size=14.0pt]TA/MS[/size][/font][font=华文楷体][size=14.0pt]联用技术是在程序控制温度和一定气氛下,通过质谱仪在线监测由热分析(主要为热重仪、热重-差热分析仪以及热重-差示扫描量热仪)中由试样逸出的气体的信息的一种热分析联用技术,常见的联用形式有TG/MS、TG-DTA/MS以及TG-DSC/MS等技术。[/size][/font][font=华文楷体][size=14.0pt]质谱法(MassSpectrometry,简称MS)是一种检测和鉴别微量气体物质的非常灵敏的方法,通过这种技术可以得到化合物的化学和结构的信息(官能团和侧链)。质谱法即用电场和磁场将运动的离子(带[/size][/font][/b][url=https://baike.baidu.com/item/%E7%94%B5%E8%8D%B7/1144574][font=华文楷体][size=14pt][color=windowtext]电荷[/color][/size][/font][/url][b][font=华文楷体][size=14.0pt]的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于[/size][/font][/b][url=https://baike.baidu.com/item/%E6%A0%B8%E7%B4%A0/426295][font=华文楷体][size=14pt][color=windowtext]核素[/color][/size][/font][/url][b][font=华文楷体][size=14.0pt]的准确质量是一多位[/size][/font][/b][url=https://baike.baidu.com/item/%E5%B0%8F%E6%95%B0/2172615][font=华文楷体][size=14pt][color=windowtext]小数[/color][/size][/font][/url][b][font=华文楷体][size=14.0pt],决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。[/size][/font][font=华文楷体][size=14.0pt]由于对MS的详细描述内容已经超出了本文的范围,因此在本部分内容中我们仅讨论在应用时所必需的一些与MS相关的背景知识。[/size][/font][font=华文楷体][size=14.0pt]在联用的质谱中,样品分子通过一个离子源进入质谱,在离子源中样品分子被高能电子束(通常为~70 eV)轰击。这个能量比有机物的离子化势能和键强度大,该能量实际上足够从分子上移动一个或更多的电子,形成正电荷分子离子。另外,电子束的能量还能够引起分子发生大量的碎裂,通过复杂的裂解途径形成许多不同的正电荷碎片离子,形成的这种碎片离子与所研究的分子结构密切相关。[/size][/font][font=华文楷体][size=14.0pt]3. [/size][/font][font=华文楷体][size=14.0pt]热分析/质谱联用技术的工作原理[/size][/font][font=华文楷体][size=14.0pt]TA-MS[/size][/font][font=华文楷体][size=14.0pt]主要包括一台热分析仪(主要为TG、TG-DTA、DIL)、一台质谱仪以及将两者联合的接口。为了获得释放气体分析的最佳结果,热分析仪和接口一定要设计成保证释放气体有足够量转移到质谱仪,同时质谱仪要设计成能快速扫描和长周期稳定操作。由于质谱在高真空条件下工作,从热分析仪逸出的气体只有约1%通过质谱仪(否则会失去真空条件 )。如此低的逸出气体对于高灵敏度的质谱来说足够了。热分析仪和MS之间的联用需要通过特殊设计的接口来进行,这是因为热分析仪在1个大气压下正常工作,而MS则需要在大约10[sup]-6[/sup] mbar的真空条件下进行工作。通过可以加热的陶瓷(惰性)毛细管或内衬涂层的金属管将由热分析仪逸出的一小部分气体带入至MS仪中实现联用。实验时,主要使用He作为载气,但也可以使用诸如空气或O2等之类的气体。热分析和/或质谱设备的制造商提供了用于联用的接口和软件,使得MS可以在线监测由热分析仪逸出的气体(如图1所示)。一些MS设备的制造商已经扩展了它们的应用范围,现在已经有专门的MS设备可以通过更加方便的方式与热分析设备进行联用。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt][img=,647,297]https://ng1.17img.cn/bbsfiles/images/2020/06/202006020811465166_5753_1879291_3.png!w647x297.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图1热重/质谱联用仪工作原理示意图[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]质谱仪提供的定性信息是靠气体分子和原子的离子比,再将所得到的离子比按它们的质量电荷比分开,每种气体物质在离子化过程中分裂产生一个特征离子模型,可与已知物质的模型辨别比较。进入MS的气体在电离室中被电子轰击,气体分子被分解成阳离子,根据这些阳离子的质量/电荷将其分离。通过测量离子的电流,可以获得如图5所示的强度为质荷比函数的谱图[10]。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt][img=,562,273]https://ng1.17img.cn/bbsfiles/images/2020/06/202006020812056555_2241_1879291_3.png!w562x273.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图2. 强度作为质量/电荷比的函数的MS谱图[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]在图2中给出了一个瞬时扫描的MS谱图。由于在整个TG实验期间连续扫描,因此可以(用适当的软件)合并得到的每张所有瞬时扫描谱图中相同质量/电荷比的数据,还可以针对每个质量/电荷比获得强度随时间或温度的曲线。在图3中所列举的例子中,给出了在空气气氛中加热Nd[sub]2[/sub](SO[sub]4[/sub])[sub]3[/sub]· 5H[sub]2[/sub]O过程中的质量/电荷比为18(H[sub]2[/sub]O+)、32(O[sub]2[/sub]+)和64(SO[sub]2[/sub]+)的强度随温度和时间变化的曲线。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt][img=,381,246]https://ng1.17img.cn/bbsfiles/images/2020/06/202006020812206401_7706_1879291_3.png!w381x246.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图3. MS信号强度作为温度的函数[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]借助相应的谱图库,可以将获得的碎片的实验结果与谱图库进行比较,以便识别出在离子化之前的原始气体分子的信息。[/size][/font][font=华文楷体][size=14.0pt]在接下来的几部分内容中将陆续介绍与热分析/质谱联用技术相关的数据分析、作图及应用相关的内容,敬请关注。[/size][/font][/b]

  • 质谱图谱分析

    [color=#444444]最近做了一批小分子质谱,已经有推测的物质结构,就不知道怎么分析拿到的质谱图,求大神帮助,不胜感激。[/color]

  • 质谱技术在抗体药物分析中的应用

    质谱技术是抗体药物分析最重要的技术手段之一。本文简述了抗体药物的发展和质谱技术的原理。对于质谱技术在抗体药物的分析中应用进行了归类整理,主要分为在一级结构和高级结构分析中的应用。抗体类药物是指含有抗体片段的蛋白类药物,所以在恶性肿瘤、自身免疫性疾病、心血管疾病、感染和器官移植排斥等重大疾病上得到了快速的发展,是当前生物药物领域增长最快的一类药物.1.抗体药物发展新趋势在生物药物领域,抗体药物占据着越来越重要的地位,全球销售排名前10位的药物中有6个为抗体药物,抗体药物按来源分类可以分为:鼠源单克隆抗体、人鼠嵌合抗体、人源化抗体和全人源抗体。目前,批准的单克隆抗体药物中,人源化单抗和全人源单抗数量已占据大多数。1.1 抗体药物偶联物(ADC)抗体药物偶联物(ADC)由单克隆抗体和小分子化合物两部分组成。通过抗体的靶向作用,ADC 的抗体部分和肿瘤细胞表面抗原特异性识别并结合,通过细胞内吞作用,将抗体和小分子化合物一起带进肿瘤细胞内部,释放出小分子化合物。这样既可以降低小分子药物的毒性,同时具有靶向结合的作用。已经上市的两个ADC 是Kadyla 和Adcetris。1.2 双特异性抗体(BsAb)双特异性抗体(BsAb)是含有两种特异性抗原结合位点的人工抗体,能在靶细胞和功能分子(细胞)之间架起桥梁,由于基因工程的发展,目前双特异性抗体已经研发出多种类型,主要类型有三功能双特异性抗体、IgG-scFv、三价双特异性分子、串联单链抗体(串联scFv)、DVD-Ig 等多种形式。2.质谱技术近年来质谱仪性能的显著改进主要基于开发出的两种离子化技术:一种是介质辅助的激光解吸/离子化技术。另一种是电喷雾离子化技术。由于这两种电离技术的出现,使原本只能检测小分子的质谱技术,可以运用于检测生物大分子。在过去质谱技术主要运用于对一级结构和序列的表征,而现在质谱技术越来越多地运用于高级结构的分析,而高级结构对于抗体药物的生物活性至关重要。3.质谱技术在抗体药物一级结构分析中的应用3.1 完整抗体药物精确分子量测定当得到抗体药物时,可以直接通过高分辨率的MALDI-TOF或者ESI-MS进行分子量的检测。通过对于脱糖后分子量的检测,可以对于抗体药物进行初步定性分析,并将可以作为药物常规放行的分析方法。对于脱糖前的抗体药物进行分析,可以得到抗体药物的糖基化类型的信息及糖基化水平的分布,对于快速了解生产工艺与药物质量的关系具有十分重要的意义。3.2 药物抗体偶联比(DAR)对于赖氨酸链接的抗体偶联药物,采用C4色谱柱及联用的质谱对去糖基化样品进行分析,根据偶联不同数目药物分子的质量数增加判断偶联数目。对于质谱测定的结果,不仅可以给出确切的药物抗体偶联比值,更能够给出链接不同个小分子药物的分布情况,及反应过程副产物空链接头的分布情况。3.3 肽图谱分析蛋白被特异酶切后的蛋白酶水解后得到的肽片段质量图谱。由于不同的抗体药物具有不同的氨基酸序列,蛋白质被酶水解后,产生的肽片段也各不相同,肽混合物的质量数具有唯一特征。可以通过LC-ESI-MS进行肽片段的一级质量数的鉴定,也可以通过LC-ESI-MS/MS对于每个肽片段进行进一步确证,提高肽图谱的准确性。3.4 翻译后修饰研究蛋白质的翻译后修饰(PTM)对于抗体药物的生物学功能十分重要。常见的翻译后修饰有:磷酸化、脱酰胺、甲硫氨酸氧化、糖基化修饰、N端焦谷氨酸环化,C端赖氨酸切除等。质谱分析仪检测蛋白和肽片段的分子量偏差,可以实现高灵敏、高通量和高精确地鉴别蛋白质的翻译后修饰的种类。3.5 N端氨基酸序列检测常规N端氨基酸检测用Edman降解法进行检测,但是抗体药物有时候会出现N 端环化的现象,在这种情况下用Edman降解法需要先对抗体进行去封闭处理,而直接使用质谱可以直接测出N端的氨基酸序列,同时可以检测出N端环化的相对比例。4.质谱技术在抗体药物高级结构分析中的应用4.1 氢/氘交换质谱(HDX-MS)常规的质谱只能获得蛋白的一级结构信息。氢/氘交换质谱(HDX-MS)可以进行蛋白质构象,溶液动力学和表位映射进行分析。在能够调查的蛋白质的高阶结构和动态结构技术中,HDX-MS已经证明适合单克隆抗体和单克隆抗体-抗原复合物的构象分析。4.2 离子淌度质谱法(IM-MS)离子淌度是根据蛋白的电荷和形状选择性分离的方法,可以区分相同分子量的蛋白和肽段,可用于检测蛋白的简单高级结构。4.3 高分辨率傅立叶变换离子回旋共振质谱(FTICR-MS)高分辨率傅立叶变换离子回旋共振质谱(FTICR-MS)能够检测最高质量数的质谱仪器,并且有着很高的分辨率。FTICR-MS 是目前被公认为是蛋白质组学研究的有力工具,特别是和完整的蛋白质鉴定和上/下调翻译后修饰(PTM)蛋白质的鉴定。

  • 液相质谱测试结果分析

    液相质谱测试结果分析

    做了未知物(几种有机添加剂混合)的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]分析,用的甲醇稀释到万分位。测试老师给的测试结果就是两个PDF(82 kb大小),求助该怎么去读懂,查书百度好像也只能得到有芳香族,以前没有做过分析,求大佬指点怎么能看懂得到的结果,或者有偿也行。(仪器是WATERS的液相-高分辨质谱联用仪)。简单截了图。非常感谢。[img=,690,188]https://ng1.17img.cn/bbsfiles/images/2020/10/202010091136272804_6067_5047826_3.png!w690x188.jpg[/img][img=,690,266]https://ng1.17img.cn/bbsfiles/images/2020/10/202010091138068080_9226_5047826_3.png!w690x266.jpg[/img][img=,690,261]https://ng1.17img.cn/bbsfiles/images/2020/10/202010091139165913_8270_5047826_3.png!w690x261.jpg[/img]

  • [经验]:质谱定量分析经验交流,欢迎多提宝贵意见!!

    1 要用目标离子的碎片定量,特征性强,排除干扰;2 在定量分析的方法设置上,尽可能提高扫描速率,提高准确率和重复性(可以通过a减小扫描质量数的范围来提高目标峰的扫描次数,或 将一个样品全部分析时间断分成n个segments,对目标离子单独设置扫描模式);3 一定要通过色谱柱分离后定量分析,避免竞争性离子的存在影响目标离子的离子化效率;如果目标分子未与竞争性分子完全分开,则在离子化过程中导致目标分子的离子化效率降低,导致样品分子的定量结果偏低,当然标准浓度的样品也要用相同的方法分析。4 如果样品都是纯品的话可以不经过色谱柱直接进样分析,包括做标准曲线的样品(虽然不建议直接进样分析)。5 如果用的离子源的喷针位置是可移的话,一定要记住做标准曲线时其位置,否则其位置移动后在相同的条件下进入质谱的离子流量会发生改变,标准曲线就不能使用了,白忙!对于调用的质谱方法不要改动shealth gas and aux gas 的流速,否则会影响进入质谱的样品量(谢谢Esquire提醒) 6 所建立的标准曲线一个月后如果想重复使用,则用QC样品检验一下该标准曲线!7 对于已经建立好的分析方法在扫描范围、流动相的组成、梯度或流速等方面不要作任何改动,否则,标准曲线要重作。扫描范围改变目标峰的扫描次数、流动相组成改变离子化效率,流速改变色谱峰的保留时间和峰宽。8 离子阱的强项在于多级-定性,四级杆的强项在于定量;9 对于热稳定性不好的样品可以通过提高气速,降低毛细管温度的方法保证定量分析的重复性;一旦方法固定后不要轻易改动;10 仅供参考,欢迎探讨!!

  • 【分享】蛋白质质谱分析研究进展

    蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上, 作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。 自约翰.芬恩(JohnB.Fenn)和田中耕一(Koichi.Tanaka)发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。 1.质谱分析的特点 质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。 2.质谱分析的方法 近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱;5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。 3.蛋白质的质谱分析 蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。 3.1蛋白质的质谱分析原理 以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。 3.2蛋白质和肽的序列分析 现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrospray ionisation,ESI)及基质辅助激光解吸质谱(matrix assisted laser desorption/ionization,MALDI)等质谱软电离技术的发展与完善,极性肽分子的分析成为可能,检测限下降到fmol级别,可测定分子量范围则高达100000Da,目前基质辅助的激光解吸电离飞行时间质谱法(MALDI TOF MS)已成为测定生物大分子尤其是蛋白质、多肽分子量和一级结构的有效工具,也是当今生命科学领域中重大课题——蛋白质组研究所必不可缺的关键技术之一 [5] 。目前在欧洲分子生物实验室(EMBL)及美国、瑞士等国的一些高校已建立了MALDI TOF MS蛋白质一级结构(序列)谱库,能为解析FAST谱图提供极大的帮助,并为确证分析结果提供可靠的依据[6]。

  • 帮忙有偿分析质谱分析结果

    各位你好,我是在校研究生,做了树叶的飞行质谱分析,但是得到结果后不知道该怎么分析,是wiff文件和scan文件,希望相关专业的人能够帮忙分析一下,可以提供劳务费的,谢谢各位了,可以在下回复,或者联系我的邮箱641750296@qq.com.非常感谢

  • 分析串联质谱的优、缺点

    所谓的[url=https://www.chem17.com/st370866/]串联质谱[/url]就是两个或者更多的质谱仪连接在一起,进行分析样品的技术。两个质谱串联而成的质谱联用技术是简单的,通常个质量分析器(ms1)将离子预分离或加能量修饰,由第二级质量分析器(ms2)分析结果。三级四极杆串联质谱是常用的串联质谱,级和第三级四极杆分析器分别为ms1和ms2,第二级四极杆分析器所起作用是将从ms1得到的各个峰进行轰击,实现母离子碎裂后进进ms2再行分析。串联质谱能够分析小分子,也可测试有些蛋白质等生物大分子,还可以直接进行如中草药等混合物成分的分析的仪器。随着采用新技术的质量分析器不断推出,大大促进了串联质谱技术的发展,如四极杆-飞行时间串联质谱(q-tof)和飞行时间-飞行时间(tof-tof)串联质谱等。离子阱和傅里叶变换分析器可在不同时间顺序实现时间序列多级质谱扫描功能。上风分析:1.在混合物分析中的上风,ms/ms基本的功能包括能说明ms1中的母离子和ms2中的子离子间的联系。根据ms1和ms2的扫描模式,如子离子扫描、母离子扫描和中性碎片丢失扫描,可以查明不同质量数离子间的关系。在质谱与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]联用时,即使色谱未能将物质完全分离,也可以进行鉴定。ms/ms可从样品中选择母离子进行分析,而不受其他物质干扰。2.在药物分析中的上风,子离子扫描可获得药物主要成分,杂质和其他物质的母离子的定性信息,有助于未知物的鉴别,也可用于肽和蛋白质氨基酸序列的鉴别。3.在药物代谢动力学研究中的上风,对生物复杂基质中低浓度样品进行定量分析,可用多反应监测模式消除干扰。如分析药物中某特定离子,而来自基质中其他化合物的信号可能会掩盖检测信号,用ms1/ms2对特定离子的碎片进行选择监测可以消除干扰。mrm也可同时定量分析多个化合物。在药物代谢研究中,为发现与代谢前物质具有相同结构特征的分子,使用中性碎片丢失扫描能找到所有丢失同种功能团的离子,如羧酸丢失中性二氧化碳。假如丢失的碎片是离子形式,则母离子扫描能找到所有丢失这种碎片的离子。[b]串联质谱的缺点:[/b]1.串联质谱结构复杂,维护成本高。[url=https://www.chem17.com/st370866/]质谱仪[/url]是高精密仪器,在实验室使用时要经过专门培训的技术职员才能操纵质谱仪。2.串联质谱对环境的温度、湿度等要求高。3.测试速度慢,而且功能复杂。影响分析工作的效率

  • [资料]有机质谱分析方法通则

    MV_RR_CNJ_0003有机质谱分析方法通则1. 有机质谱分析方法通则说明编号JY/T 003—1996名称(中文) 有机质谱分析方法通则(英文) General principles for organic mass spectrometry归口单位国家教育委员会起草单位国家教育委员会主要起草人郑思定批准日期1997年1月22日实施日期1997年4月1日替代规程号无适用范围本通则规定了有机质谱法分析方法,适用于带有计算机数据处理及控制的质谱仪器。本通则适用于所用仪器规定质量范围内的有机化合物定性和定量分析。本标准包括:有机磁质谱法通则;四极质谱法通则;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—离子阱质谱联机方法通则。共三部分。本通则规定了四极质谱法分析方法,适用于带有计算机数据处理及控制的四极质谱及与[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相色谱联机仪器。应具备进样器,色谱与质谱联用所需的接口,离子源,质量分析器,检测器,计算机控制与数据处理系统,真空系统等。本通则适用于仪器规定质量范围的有机化合物定性和定量分析。本通则规定了有机质谱法对离子阱质谱仪的要求和分析方法,本通则适用于仪器规定质量范围内的有机化合物定性和定量分析。主要技术要求1. 定义2. 方法原理3. 试剂和材料4. 仪器5. 样品6. 操作步骤7. 分析结果的表述是否分级无检定周期(年)附录数目无出版单位科学技术文献出版社检定用标准物质相关技术文件备注2. 有机质谱分析方法通则的摘要本通则规定了有机质谱法分析方法,适用于带有计算机数据处理及控制的质谱仪器。本通则适用于所用仪器规定质量范围内的有机化合物定性和定量分析。本标准包括:有机磁质谱法通则;四极质谱法通则;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—离子阱质谱联机方法通则。共三部分。3 定义本通则采用下列定义3.1 原子质量单位 Atomic Mass Unit定义C原子质量的1/12为一个质量单位,简写为amu或u。3.2 毫原子质量单位 Milli Mass Unit千分之一的原子质量单位,简写为 mmu,lmmu=1/1000u。3.3 质荷比 Mass to Charge Ratio离子的质量和所带电荷的比值,简写为m/z。3.4 质谱图 Mass Spectrum质谱分析中以质荷比为横坐标,离子的相对强度为纵坐标所作的谱图。3.5 分子离子 Molecular Ion试样分子失去或得到一个电子而形成的离子。它在正离子场合下表示为M+。它的质荷比即表明试样分子所对应的分子量数值。在分子中含不同同位素时,以天然丰度最大者作分子离子。3.6 亚稳离子 Metastable Ion是指离子在质谱仪的离子源中产生,在达到检测器前分解的离子。其表观质量记为m※。3.7 母离子 Parent Ion是指产生某一碎片的前体离子,母离子不一定是分子离子。3.8 子离子 Daughter Ion是指由母子离子裂解后形成的离子。3.9 碎片离子 Fragment Ion分子离子经过裂解后形成的离子。3.10 重排离子 Rearrangement Ion是指质谱过程中产生的与前体离子中原子排列不同的离子。3.11 电子轰击电离 Electron Impact Ionization试样分子在离子源内经电子流轰击电离成离子的方法,简写为EI。3.12 化学电离 Chemical Ionization在离子源内电子流首先使反应气如 甲烷、异丁烷、氨等离子化,然后再与试样分子发生分子离子反应,使试样分子离子化,这种方法称化学电离,简写为CI。3.13 解吸电离 Desorption Ionization通以电流使涂在金属线圈上的试样分子迅速解吸下发生电子电离或化学电离,简写为DEI或DCI。3.14 场致电离和场解吸电离 Field Ionization and Field Desorption Ionization经过活化处理的发射丝,尖端的曲率半径可达微米级,加上高电压后,其附近的场强可达108V/cm,高场强使挥发性的试样分子产生离子化称为场致电离,简写为FI;而把试样涂在发射丝上并通以加热电流在高场强下使样品离子化称为场解吸电离,简写为FD。3.15 快原子轰击电离和二次离子质谱 Fast Atom Bombardment and Secondary Ion Mass Spectrometry快速Ar原子(或Xe原子)轰击涂敷有某种底物靶面上的试样,使试样分子离子化,这种方法称为快原子轰击电离,简写FAB;如用高能量的一次离子如Xe+、Ar+、Cs+来轰击涂敷在靶面上的试样而溅射出试样分子的二次离子来进行质谱分析,称为二次离子质谱法,简写SIMS。3.16 磁式质谱仪 Magnetic Sector Mass Spectrometer是一种使试样分子电离成离子,并通过扫描磁场,使它们按质荷比不同进行分离,并依次检测它们的强度,对它们进行定性和定量分析的一种仪器。3.17 双聚焦质谱仪 Double Focussing Mass Spectrometer是由静电场(E)和磁场(H)所组成的质量和能量分析器的有机磁质谱仪。如静电场排列在前,称为正置式(EH)双聚焦质谱仪,反之,如磁场排列在前,称为反置式(HE)双聚焦质谱仪。3.18 联动扫描 Linked Scanning是在双聚焦磁质谱仪中,加速电压(V)固定,将磁场强度H和静电场强度E的比值保持不变,来扫描不同质荷比的离子,由母离子来找到各种子离子的测定方法以及将H2/E的比值保持不变来扫描,由于离子来找母离子的测定方法,皆称为联动扫描。3.19 碰撞诱导解离或碰撞诱导活化 Collision Induced Dissociation & Collision Induced Activation在电场和磁场中间的无场区,具有较高动能的离子与中性原子或分子(一般为惰性气体如N2,He)发生非弹性碰撞,离子的一部分动能转化为内能,结果导致离子的解离,这种由离子与中性原子或分子碰撞而引起的解离称为碰撞诱导解离或碰撞诱导活化,简写为CID或CIA。3.20 色质联机 Chromatography Mass Spectrometer由色谱仪与质谱仪通过接口构成为整体的一种联用仪器。3.21 色质联用法 Chromatography Mass Spectrometry通过色质联机对物质进行分析的方法,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与质谱联用分析简写为GC/MS,液相色谱与质谱联用分析简写为LC/MS。3.22 质谱/质谱联用法 Mass Spectrometry/Mass Spectrometry在第一质谱仪中进行离子的质量分离,选择感兴趣的离子在碰撞室中进行解离,得到所选离子的各种裂解碎片谱图。这一过程等于获得一个质谱中某一离子的质谱,称为质谱/质谱法,此类仪器称为串联质谱仪,简写为MS/MS。3.23 总离子流色谱图 Total Ion Chromatogram是未经质量分离的各种质荷比离子,所产生的总电流强度信号与时间相对应的关系图。在色质联用分析时,TIC与色谱分析时各种检测器所得到的色谱图相对应,各峰的面积可作为GC/MS定量分析的依据,简写为TIC。

  • 【资料】质谱分析的发展(共1讲)

    [B][center]质谱分析的发展 [/center][/B] 质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家阿斯顿(F.W.Aston,1877—1945)于1919年制成的。出手不凡,阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。质谱仪开始主要是作为一种研究仪器使用的,这样用了20年后才被真正当作一种分析工具。它最初作为高度灵敏的仪器用于实验中,供设计者找寻十分可靠的结果。早期的研究者们忙着测定精确的原子量和同位素分布,不能积极地去探索这种仪器的新用途。由于同位素示踪物研究的出现,质谱仪对分析工作的用处就越发变得明显了。氮在植物中发生代谢作用的生物化学研究要求用15N作为一种示踪物。但它是一种稳定的同位素,不能通过密度测量来精确测定,所以质谱仪就成了必要的分析仪器。这种仪器在使用稳定的13C示踪物的研究中以及在基于稳定同位素鉴定的工作中也是很有用的。标准型的质谱仪到现在已经使用了大约45年。40年代期间,石油工业在烃混合物的分析中开始采用质谱仪。尽管这种质谱图在定量解释时存在着难以克服的计算麻烦,但在有了高速计算机后,这种仪器就能在工业方面获得重大的成功。(1)近20年来质谱技术随着新颖电离技术,质量分析技术,与各种分离手段的联用技术以及二维分析方法的发展,质谱已发展成为最广泛应用的分析手段之一。其最突出的技术进步有以下几个方面:新的解吸电离技术不断涌现,日趋成熟,可测分子量范围越来越高,并逐步适用于难挥发、热敏感物质的分析,例如海洋天然产物、微生物代谢产物,动植物二次代谢产物以及生物大分子的结构研究。最有发展前景的电离方法有:①等离子解吸采用252Cf的裂介碎片作为离子源,使多肽和蛋白质等生物大分子不必衍生化而直接电离进行质量分析。它与飞行时间质谱相配合,已成功地用于许多合成多肽的质谱分析,并已在一些实验室中作为常规分析方法来鉴定多肽和蛋白质。目前它的可分析的质量极限大约是50000D。②快原子轰击,把样品分子放入低挥发性液体中,用高速中性原子来进行轰击,可使低挥发性的,热敏感的分子电离,得到质子化或碱金属离子化的分子离子。由于很容易在磁质谱或四极杆质谱上安装使用,因此得到广泛应用,分子量很容易达到3000—4000。如果与带有后加速的多次反射阵列检测器的高性能磁质谱配合使用,可测分子量可达到10000amn以上,最高记录可达25000amn。③激光解吸,利用CO2激光(10.6μm),Nd/YAG激光(1.06μm)的快速加热作用使难挥发的分子解吸电离,与飞行时间质谱或离子回旋共振质谱相配合成功地分析了一系列蛋白质和酶的复合物,并创造了蛋白质分子质量分析的最高记录(Jack Bean Urease Mr~27万)。④电喷雾(electro spray,electrostatic spray,ion spray)把分析样品通过常压电离源,使分子多重质子化而电离。由于生成多重质子化的分子离子可缩小质荷比,因此一个分子量为数万的生物大分子,如果带上几十个,上百个质子,质荷比可降低到2000以下,可以用普通的四极杆质谱仪分析,其次由于得到一组质荷比连续变化的分子离子峰,通过对这些多电荷分子离子峰的质量计算可以得到高度准确的平均分子量。第三是这种多重质子化的分子离子峰可进一步诱导碰撞活化,进行串联质谱分析。第四是这种电离技术的样品制备要求极低,溶于生物体液的样品分子或HPLC,CZE的流出液都可直接引入常压电离源进行联机检测。(2)各种联用技术。色谱、电泳等分离方法与质谱分析相结合为复杂混合物的在线分离分析提供了有力的手段,GC—MS联用技术的应用已得到充分的证明。近年来把液相色谱、毛细管电泳等高效分离手段与质谱连接已在分析强极性、低挥发性样品的混合物方面也取得了进步。主要的接口技术有:①粒子束(particle beam),它能把液相色谱与质谱连接起来,其优点是得到的质谱与普通的EIMS谱十分接近,因此可以用标准谱库的数据去检索。缺点是要耗用大量的氦气,并且只能分析中等极性和中等分子量(2000以下)的分子。②热喷雾(thermospray),是目前与HPLC连接最广泛使用的接口技术。它是一种软电离技术,可测的分子量上限大约为8000amn,缺点是流速需要0.12ml/min,对于质谱分析来说仍嫌太大。③连续流快原子轰击(CF—FAB),利用适当孔径的石英毛细管把液相色谱的流出液直接引入FAB电离源,进行连续的FAB—MS分析。由于它的流速小于5μl/min,与质谱仪更为匹配,因此具有更大的应用潜力。④电喷雾。由于采用常压电离源,因此很容易把微细径柱液相色谱,甚至普通液相色谱(只要有适当的分流装置)通过它与质谱连接起来。最近藉此把毛细管区带电泳与质谱连接起来也取得了成功,实现了高灵敏度(10-15mol),高分离效力(25万理论塔板数)的联用分析。这是一种极有希望,并很有发展前途的联用技术。(3)串联质谱等二维质谱分析方法。如果把二台质谱仪串联起来,把第一台用作分离装置,第二台用作分析装置,这样不仅能把混合物的分离和分析集积在一个系统中完成,而且由于把电离过程和断裂过程分离开来,从而提供多种多样的扫描方式发展二维质谱分析方法来得到特定的结构信息。本法使样品的预处理减少到最低限度,而且可以抑制干扰,特别化学噪音,从而大大提高检测极限。串联质谱技术对于利用上述各种解吸电离技术分析难挥发、热敏感的生物分子也具有重要的意义。首先解吸电离技术一般都使用底物,因此造成强的化学噪音,用串联质谱可以避免底物分子产生的干扰,大大降低背景噪音,其次解吸电离技术一般都是软电离技术,它们的质谱主要显示分子离子峰,缺少分子断裂产生的碎片信息。如果采用串联质谱技术,可使分子离子通过与反应气体的碰撞来产生断裂,因此能提供更多的结构信息。近年来把质谱分析过程中的电离和碰撞断裂过程分离开来的二维测定方法发展很快,主要的仪器方法有以下几种。①串联质谱法(tandem MS),常见的形式有串联(多级)四极杆质谱,四极杆和磁质谱混合式(hybride)串联质谱和采用多个扇形磁铁的串联磁质谱。②傅里叶变换质谱(FT—MS),又叫离子回旋共振谱,它利用电离生成的离子在磁场中回旋共振,通过傅里叶变换得到这些离子的质量谱,这种谱仪过去由于电离造成真空降低与回旋共振要求高真空条件相矛盾,性能不能过关。近年来由于分离电离源技术日趋成熟,这种分析方法得到较大发展,它的优点是很容易做到多级串联质谱分析,目前可分析质量范围已达5万左右,分辨力也可达1万。③整分子气化和多光子电离技术(LEIM—MUPI),它是在微激光解吸电离技术的发展中最近出现的一种新方法。它把解吸和电离二个环节在时间和空间上分离开来,分别用二个激光器进行解吸和电离。使用红外激光器来实现整分子气化,使用可调谐的紫外激光器对电离过程实行宽范围的能量控制,从而得到从电离(只显示分子离子)到各种程度不同的硬电离质谱,并成功地用于生物大分子的序列分析。

  • 【原创大赛】热分析/质谱联用的数据分析方法之理论基础

    【原创大赛】热分析/质谱联用的数据分析方法之理论基础

    [b]作者:[/b][font=&]丁延伟,[/font][font=&][color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color][/font] 1. 热分析联用简介 联用技术是近年来分析仪器的一个发展趋势,许多常规的分析仪器如色谱、X射线衍射、各类光谱仪等都已实现了与其他分析技术的联用,热分析仪当然也不例外。早在两千多年前,我国战国时期的楚国诗人、政治家屈原在《楚辞• 卜居》中就已指出“尺有所短,寸有所长。物有所不足,智有所不明”。这告诉我们每种分析技术均有其独特的优势,但我们也应清醒地认识到它们自身也会存在着一定的不足。只有在实际应用中对每种分析技术扬长避短,充分发挥其优势,才可以达到事半功倍的效果。其实,在许多中文版本的文献资料中,对联用技术的描述通常使用“联用”而不是“连用”来表述,这也充分表明联用技术不是简单地将两种或多种技术连接或拼接在一起,而是要在实际上有机地、合理地将其组合在一起。也就是说,对于由多种技术的联用仪而言,其不仅仅满足于可以达到1+1+…+1 = N的效果,而且应达到1+1+…+1 N的效果。当然,对于一些不成功的联用技术而言,有时达到的效果可能为1+1+…+1 N,甚至等于0。 由常规的热分析可以得到在热分析实验过程中所研究的对象在一定的气氛和程序控制温度下由于其结构、成分变化而引起的质量、热效应、尺寸等性质的变化信息。通过将热分析技术与常规的分析技术如红外光谱技术、质谱、色谱、显微技术、拉曼光谱、X射线衍射等联用,可以得到在物质的性质发生发生变化的过程中产物的结构、成分、形貌、物相等的变化信息。通过这些信息,可以使我们了解到物质在一定的气氛和程序控制温度下所发生的各种变化的更深层次的一些信息,对于过程中的反应机理、动力学信息有更深刻的认识。热分析联用技术的特点和优势可以概括为实时、全面、高效,但我们也应清醒地认识到对于一些高温分解产生的气体分析时在传输过程中的冷凝现象的影响,一些高温产物在传输管线中的冷凝会导致由红外光谱、色谱和/或质谱进行气体分析时丢失一部分气体产物的信息。当前应用最为广泛的热分析联用技术主要有:(1)热重-差热分析、热重-差示扫描量热法以及显微热分析等,这属于同时联用的范畴;(2)热分析与红外光谱技术、质谱的联用,这属于串接式联用的范畴;(3)热分析与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]等技术的联用,由于与热分析联用的这类技术自身在分析时需要一定的时间,因此通常称该类技术为间歇式联用技术。其实,这类技术也属于串接式联用的范畴。 2. 热分析/质谱联用技术简介TA/MS联用技术是在程序控制温度和一定气氛下,通过质谱仪在线监测由热分析(主要为热重仪、热重-差热分析仪以及热重-差示扫描量热仪)中由试样逸出的气体的信息的一种热分析联用技术,常见的联用形式有TG/MS、TG-DTA/MS以及TG-DSC/MS等技术。 质谱法(Mass Spectrometry,简称MS)是一种检测和鉴别微量气体物质的非常灵敏的方法,通过这种技术可以得到化合物的化学和结构的信息(官能团和侧链)。质谱法即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。 由于对MS的详细描述内容已经超出了本文的范围,因此在本部分内容中我们仅讨论在应用时所必需的一些与MS相关的背景知识。 在联用的质谱中,样品分子通过一个离子源进入质谱,在离子源中样品分子被高能电子束(通常为~70 eV)轰击。这个能量比有机物的离子化势能和键强度大,该能量实际上足够从分子上移动一个或更多的电子,形成正电荷分子离子。另外,电子束的能量还能够引起分子发生大量的碎裂,通过复杂的裂解途径形成许多不同的正电荷碎片离子,形成的这种碎片离子与所研究的分子结构密切相关。 3. 热分析/质谱联用技术的工作原理 TA-MS主要包括一台热分析仪(主要为TG、TG-DTA、DIL)、一台质谱仪以及将两者联合的接口。为了获得释放气体分析的最佳结果,热分析仪和接口一定要设计成保证释放气体有足够量转移到质谱仪,同时质谱仪要设计成能快速扫描和长周期稳定操作。由于质谱在高真空条件下工作,从热分析仪逸出的气体只有约1%通过质谱仪(否则会失去真空条件 )。如此低的逸出气体对于高灵敏度的质谱来说足够了。热分析仪和MS之间的联用需要通过特殊设计的接口来进行,这是因为热分析仪在1个大气压下正常工作,而MS则需要在大约10-6 mbar的真空条件下进行工作。通过可以加热的陶瓷(惰性)毛细管或内衬涂层的金属管将由热分析仪逸出的一小部分气体带入至MS仪中实现联用。实验时,主要使用He作为载气,但也可以使用诸如空气或O2等之类的气体。热分析和/或质谱设备的制造商提供了用于联用的接口和软件,使得MS可以在线监测由热分析仪逸出的气体(如图1所示)。一些MS设备的制造商已经扩展了它们的应用范围,现在已经有专门的MS设备可以通过更加方便的方式与热分析设备进行联用。[align=center][img=,690,331]https://ng1.17img.cn/bbsfiles/images/2019/10/201910310934470794_5318_3224499_3.jpg!w690x331.jpg[/img][/align][align=center]图1 热重/质谱联用仪工作原理示意图[/align] 质谱仪提供的定性信息是靠气体分子和原子的离子比,再将所得到的离子比按它们的质量电荷比分开,每种气体物质在离子化过程中分裂产生一个特征离子模型,可与已知物质的模型辨别比较。进入MS的气体在电离室中被电子轰击,气体分子被分解成阳离子,根据这些阳离子的质量/电荷将其分离。通过测量离子的电流,可以获得如图5所示的强度为质荷比函数的谱图。[align=center][img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/10/201910310934599640_9061_3224499_3.jpg!w690x342.jpg[/img][/align][align=center]图2. 强度作为质量/电荷比的函数的MS谱图[/align] 在图2中给出了一个瞬时扫描的MS谱图。由于在整个TG实验期间连续扫描,因此可以(用适当的软件)合并得到的每张所有瞬时扫描谱图中相同质量/电荷比的数据,还可以针对每个质量/电荷比获得强度随时间或温度的曲线。在图3中所列举的例子中,给出了在空气气氛中加热Nd2(SO4)3· 5H2O过程中的质量/电荷比为18(H2O +)、32(O2+)和64(SO2+)的强度随温度和时间变化的曲线。[align=center][img=,504,329]https://ng1.17img.cn/bbsfiles/images/2019/10/201910310935098720_2749_3224499_3.jpg!w504x329.jpg[/img][/align][align=center]图3. MS信号强度作为温度的函数[/align] 借助相应的谱图库,可以将获得的碎片的实验结果与谱图库进行比较,以便识别出在离子化之前的原始气体分子的信息。

  • 质谱分析原理

    [color=#444444]负离子模式下的质谱图如何分析啊?质谱图上的质荷比不是应该比真实的相对分子质量小的嘛?哪位大神知道原理的,拜托了![/color]

  • 【原创大赛】【生活中的分析】“月饼香精等成分的气相色谱质谱联用分析探讨(2)

    【原创大赛】【生活中的分析】“月饼香精等成分的气相色谱质谱联用分析探讨(2)

    俗话说:“八月十五月正圆,中秋月饼香又甜”。中秋佳节来临,月饼是必吃之佳品。大家也许关心月饼里面到底有什么成分,实际测定会怎么样呢?也许要问月饼里面的香气和香味哪里来的? 是那些化合物呢?上次和大家分享玫瑰月饼的香气测定,这次和大家分享一下一款凤梨味月饼里面的香精等成分的GCMS测定的结果。这次的香精含量要高,明显。月饼含较多的面粉、糖、油脂等,一般香气都很淡,个别月饼添加的香精,但添加量极少,又是固体,无法直接进行GCMS分析,必须选择合适的方法来提取里面的香精或香气成分,然后用GCMS分析。本文采用吸附搅拌子(SBSE)提取月饼的香气香味成,大体积冷却进样口PTV热脱附TDU气相色谱质谱法分析鉴定凤梨味月饼的香精成分和部分看氧化剂防腐剂成分;利用Amdis质谱解卷积软件识别拆分共流出色谱峰,得到更纯净的质谱图,更利于下一步质谱检索的工作;并结合保留指数校正使质谱检索结果更为准确。1试验部分1.1 仪器与装置美国安捷伦7890A/5975C气相色谱-质谱联用仪,带有德国Gerstel的MPS TX多功能自动进样系统,德国Gerstel的CIS4大体积分流/不分流进样口和TDU热脱附单元,整合FID检测器,同时带德国Gerstel毛细管柱分流装置。吸附搅拌子(PDMS, 0.10mmX10mm,Gerstel)。1.2样品和标样样品:凤梨月饼,购于上海某超市。实物图片:http://ng1.17img.cn/bbsfiles/images/2015/09/201509171629_566473_1615838_3.jpg香气香味化合物标准品均来自Sigma-Aldrich等主要试剂公司,少数为实验室内部精制标样。C6-C30正构烷混合标准物来自安谱公司。1.3GC/MS条件1.3.1 色谱条件:色谱柱:安捷伦VF-Waxms (30m×0. 25 mm ( i.d.)×0.25μm)毛细管柱;升温程序:40℃保持2 min,以3 ℃/min升至230℃,保持30 min;载气(He, 纯度99.999%以上)流速1.8 mL/min;进样口:PTV大体积冷进样口,温度10℃-250℃,15℃/S;TDU:25-200℃, 100℃/min, 不分流,传输线温度:260℃检测器:FID,氢气:30ml/min, 空气:350ml/min, 尾吹:30ml/min N2, 温度:270℃。1.3.2质谱条件: 电子轰击(EI)离子源;电子能量70eV;传输线温度280℃;离子源温度230℃;四级杆温度150℃。SCAN扫描范围:29-400。1.4样品的提取处理及分析方法样品的提取处理:月饼配料表有面粉、植物油、水、糖、鸡蛋、凤梨原浆、食用香精、食品添加剂(碳酸钾、碳酸钠、脱氢乙酸钠、柠檬酸)等。凤梨月饼的香气香味主要来源于馅料,皮只是一些烘烤的香气,所以主要分析馅料的香精成分。取出里面的馅捣碎,精确称取1g左右月饼样品,加适当内标物(本实验加入187ppb的内标物。内标物暂不公布),加3g超纯水,放入磁力搅拌子,提取1小时。用超纯水冲洗干净,用干净的餐巾纸吸干,放入热脱附的小管,运行序列。在分析样品前,和样品分析完全相同的条件下,用0.05%的C6-C30的正构烷标样注射到GCMS,获得正构烷的保留时间,用于计算保留指数。分析样品后,用软件计算样品各个组分的保留指数,并和标样的保留指数对比来,结合质谱来定性。事先也用同样方法测定标样的保留指数备用。

  • 【分享】质谱分析技术原理与方法简介

    质谱方法(Mass Spectroscope,MS)是通过正确测定蛋白质分子的质量而进行蛋白质分子鉴定、蛋白质分子的修饰和蛋白质分子相互作用的研究。质谱仪通过测定离子化生物分子的质荷比便可得到相关分子的质量。但长期以来,质谱方法仅限于小分子和中等分子的研究,因为要将质谱应用于生物大分子需要将之制备成[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]带电分子,然后在真空中物理分解成离子。但如何使蛋白分子经受住离子化过程转成[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]带电的离子而又不丧失其结构形状是个难题。20世纪70年代,解吸技术的出现成功地将蛋白分子转化成[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子。尔后快原子轰击与其紧密相关的溶液基质二次离子质谱法使得具有极性的、热不稳定的蛋白分子可经受住电离过程。但这些方法仅限于10kD以下蛋白分子的研究。80年代电喷雾电离(ESI)和软激光解吸(SLD)电离技术的发展则使得质谱方法应用于高分子量蛋白分子的研究。 GtqA@&5& ueJ_F#y 电喷雾电离(ESI)原理可按电荷残留模型予以描述,带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子。针对电喷雾电离所产生的多电荷状态,Fenn将多电荷状态理解为对分子质量进行多次独立的测量,并基于联立方程解的平均方法,获得对分子质量的正确估量,解决了多电荷离子信息的问题,使蛋白分子质量测量精度获得极大的提高,并于1988年首次成功地测量了分子量为40 kD的蛋白质分子,精确度达到99.99%。 {0} Q5 p@=B\A] 软激光解吸(SLD)是指从激光脉冲中获得能量后,样品分子以完整的低电荷分子离子释放,然后由电场加速。运用激光解吸电离蛋白分子时,激光的能量和波长、化学/物理基质的吸收和热传递特性,与基质中分析物的分子结构之间需要作合理的选择调配。Tanaka选用了低能量氮激光和含有胶状颗粒的甘油作基质,成功地测定了高分子量的糜蛋白酶原、梭肤酶-A以及细胞色素。由于Tanaka成功的开创性工作,SLD技术迅速发展。目前占主导的方法是基质辅助激光解吸电离(MALDI)。这一方法是将样品掺入一种低分子量的结晶基质,基质的最大吸收与激光脉冲波长匹配。由于MALDI产生的是低电荷的完整[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]大分子,可用于检测纯度不高的生物分子。MALDI与飞行时间(TOF)联合已经成为鉴别大分子的重要方法,成为鉴定细胞内蛋白组分不可或缺的研究手段。

  • 实验室分析仪器--质谱仪的功用介绍

    质谱仪本身具有侦测化合物分子量的基本功能,更可以有效地定性及定量分析物种的种类。质谱仪的运用开始于一九一二年,汤木森(Joseph J. Thompson)对小分子结构的分析。此外,一九三四年诺贝尔奖得主哈诺德?尤瑞(Harold Urey)发现氘,以及一九九六年的诺贝尔奖「富勒烯」(fullerenes,又称碳六十、球烯)的发现,皆借助于质谱仪的分析。质谱仪的发明,让我们可以快速鉴定出一个样品中化合物的分子量,并且可以进一步知道其分子结构,随着新式质谱仪的开发,更提供了一个针对生化大分子研究的有利工具。质谱仪的结构共分为五大部分,包括样品导入系统、离子源、质量分析器、侦测器、及数据处理系统。二○○二年的诺贝尔化学奖得主芬恩和田中耕一的主要贡献,就在游离源方法的研发与突破。游离源的功能是使原本是中性的分子变成带电荷的离子,而质谱仪是利用侦测物质的质量与电荷比值大小来分析离子。传统上使分子游离的方法有电子游离法(EI)、化学游离法(CI)、热洒法(TS)、场游离法(FI)、场脱附法(FD)、快速原子撞击法(FAB)、电浆脱附法(PD)等

  • 气相色谱- 质谱/质谱联用仪进行亚硝胺分析(二)

    [b]SRM 方法建立[/b]我们使用了Thermo Scientific TSQTM 8000 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS 软件套件中的AutoSRM 软件进行了三重四极杆质谱方法的建立,且并未对AutoSRM 生成的方法进行任何手动修改。一个装有待分析亚硝胺化合物标准品溶液的自动进样器样品瓶专供AutoSRM 程序使用。AutoSRM 程序自动进行以下三个步骤:1. 首先对标准品溶液进行全扫描分析(图1.)。从全扫中得到的信号最强的离子将被作为一级离子。2. 对上一步确定的一级离子(母离子)进行二级离子(子离子)谱图获取(可以根据分析需求设定一级离子的个数)。找出每个一级离子产生的信号最强的二级离子(可以手动选择最感兴趣的一级离子进行进一步优化)。[img=,1009,623]https://i5.antpedia.com/attachments/att/image/20200518/1589800505412622.jpg[/img]表1. AutoSRM 生成的SRM 方法设置3. 对所有化合物的选定的母离子/ 子离子对进行碰撞能的优化,以获得最大化合物响应及最佳方法灵敏度(图2)。AutoSRM 程序能够根据需要从一个标准品样品瓶启动,完成所需的进样次数。表1 就是由AutoSRM 自动生成的SRM 离子对表格。该表同时还显示了TSQ8000 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS 在Timed-SRM 模式下、在化合物洗脱时间左右用一个60 秒的短采集窗口进行采集的SRM 采集方法。无需对扫描时段进行任何其他的设置,或者说如果需要在某化合物的洗脱时间之外对其进行监测,则需要手动添加该化合物。[b]样品测定[/b]在大量各种可能的亚硝胺化合物之中,本方法涵盖了那些被报道与发芽麦芽干燥的过程相关的亚硝胺化合物。被分析的样品包括未添加标样的麦芽啤酒样品,以及作为空白样的4%乙醇。如需对其他食物基质进行分析,其它化合物可以随时参照前述AutoSRM 方法建立的步骤添加至本方法中。[b]实验结果[/b]本方法中包含的亚硝胺类化合物的色谱呈现了较快的流出,从7.87 的NDMA 到12.47 分,能够实现较短的循环时间并提高样品通量。图3 显示了用校准曲线中的最低浓度--1 ppb 的样品得到的峰强度。从图中可见NDMA 检测的信噪比依然很好。[img]https://i5.antpedia.com/attachments/att/image/20200518/1589800506229376.jpg[/img]图1. AutoSRM 对NDMA 从EI 全扫谱图中进行一级离子选择[img]https://i5.antpedia.com/attachments/att/image/20200518/1589800506329379.jpg[/img]图2. AutoSRM 对所有亚硝胺一级离子进行碰撞能优化[img=,611,468]https://i5.antpedia.com/attachments/att/image/20200518/1589800507403482.jpg[/img]图 3. 浓度为1ppb 的标准品混合物的色谱图

  • 【分享】质谱分析法应用

    [size=3][b][/b]  质谱是纯物质鉴定的最有力工具之一,其中包括相对分子量测定、化学式确定及结构鉴定等。[/size][size=3][b]  一、相对分子质量的测定[/b][/size][size=3]  利用质谱图上分子离子峰的m/z可以准确的确定该化合物的相对分子质量。一般说来,除同位素峰外,分子离子峰一定是质谱图上质量数最大的峰,它应该位于质谱图的最右端。但是,由于有些化合物的分子离子峰稳定性较差,分子离子峰很弱或不存在,给正确识别分子离子峰带来困难。因此,在判断分子离子峰时应注意以下问题。[/size][size=3][b]  (一)分子离子稳定性的一般规律[/b][/size][size=3]  分子离子的稳定性与分子结构有关。碳数较多,碳链较长(有例外)和有支链的分子,分裂几率较高,其分子离子峰的稳定性较低 具有π键的芳香族化合物和共轭。[/size][size=3][b]  ( 二)分子离子峰必须符合氮规律[/b][/size][size=3]  在只含有C、H、O、N的化合物中,含有偶数个(包括零)氮组成的化合物,其相对分子质量必为偶数 含有奇数个氮原子的化合物的相对分子量为奇数。这是因为在由C、H、O、N、S、P卤素等元素组成的化合物中,只有氮原子的化合价为奇数而质量数为偶数。这个规律称为"氮律"。不符合"氮律"的离子峰一定不是分子离子峰。[/size][size=3][b]  (三)利用碎片峰的合理性判断分子离子峰[/b][/size][size=3]  在离子源中,化合物分子电离后,分子离子可以裂解出游离基或中性分子等碎片。若裂解出一个• H或• CH3、H2O、C2H4碎片,对应的碎片峰为M-1、 M-15、M-18、M-28等,这叫做存在合理的碎片峰。若出现M-3至M-14,M-21至M-25范围内的碎片峰,称为不合理碎片峰,则说明分子离子峰的判断有错。表明试样中可能存在杂质或者把碎片峰错误判断为分子离子峰。表7-2中列出从分子离子中裂解的常见碎片。[/size][size=3]  表7-2 从分子离子中裂解的常见碎片[/size][size=3]  [b](四)利用同位素峰识别分子离子峰[/b][/size][size=3]  有些元素如35Cl、79Br、32S的同位素37Cl、81Br、34S相对丰度较大,其M+2同位素峰十分明显,通过M、M+2等质谱峰来推断分子离子峰,若分子中含一个氯原子时,M峰与M+2峰的强度比为3:1 若分子中含一个溴原子时M峰与M+2峰强度比为1:1,这是因为M峰与M+2同位素峰强度比与分子中同位素种类、丰度有关。总之,同位素离子峰的信息有助于分子离子峰的正确判断。[/size][size=3][b]  (五)由分子离子峰强度变化判断分子离子峰[/b][/size][size=3]  在电子轰击离子源(EI)中,适当降低电子轰击电压,分子离子裂解减少、碎片离子减少,则分子离子峰的强度应该增加 在上述措施下,若峰强度不增加,说明不是分子离子峰。逐步降低电子轰击电压,仔细观察m/z最大峰是否在所有离子峰中子后消失,若最后消失即为分子离子峰。[/size][size=3][b]  二、化学式的确定[/b][/size][size=3]  用质谱法确定有机化合物的化学式,一般是通过同位素峰相对强度法来确定。各元素具有一定天然丰度的同位素(见表7-1),从质谱图上测得分子离子峰M、同位素峰M+1和M+2的强度,并计算其(M+1)/M、(M+2)/M强度百分比,根据拜诺(Beynon J H)质谱数据表查出可能的化学式,再结合其他规律,确定化合物的化学式。[/size][size=3] [b] 例题:某化合物的质谱数据如下,试确定该化合物的化学式。[/b][/size][size=3]  m/z M(150) M+1(151) M+2(152)[/size][size=3]  与M强度比/% 100 9.9 0.9[/size][size=3]  下一页[/size][size=3]  第七章 质谱分析法[/size][size=3]  解:由M+(M)的质量数,可知此化合物的相对分子质量为150。M+2峰的强度百分比为0.9%,由表7-1可知,该化合物不含Cl、Br、S。查阅拜诺表可知,相对分子质量为150的化学式共有29个,其中M+1峰的强度百分比在9%-11%的化学式有如下7种:[/size][size=3]  此化合物相对分子质量为偶数,根据氮规律,应该排除②、④、⑥三个化学式 在剩下的四个化学式中,⑤化学式的M+1峰的强度百分比与9.9%最接近,M+2峰的强度百分比与0.9%也最接近。因此,该化合物的化学式应该是C9H10O2。[/size][size=3]  [b]三、结构式的确定[/b][/size][size=3]  在确定了未知化合物的相对分子质量和化学式以后,首先根据化学式计算该化合物的不饱和度,确定化合物化学式中双键和环的数目。然后,应该着重分析碎片离子峰、重排离子峰和亚稳离子峰,确定分子断裂方式,提出未知化合物结构单元和可能的结构。最后再用全部质谱数据复核结果。必要时应该考虑试样来源、物理化学性质以及红外、紫外、核磁共振等分析方法的波谱信息,确定未知化合物的结构式。[/size][size=3]  例题:某化合物分子式为C3H8O,其质谱图如图7-7所示。红外光谱数据表明在3640cm-1和1065~1015cm-1有尖而强的吸收峰,试解析该化合物的分子结构。[/size][size=3]  图7-7 C3H8O质谱图[/size][size=3]  解:分子的不饱和度为[/size][size=3]  说明化合物分子内的化学键皆是单键。在3640cm-1及1065~1015cm-1有强红外吸收峰,表明化合物属醇类。[/size][size=3]  由质谱图可知,m/z 60峰是分子离子峰,该化合物的相对分子质量为60。 由于m/z 59峰的出现,可能发生下述裂解:[/size][size=3]  m/z 42峰是由分子离子峰失去中性碎片H2O而生成的,其裂解反应的机理如下:[/size][size=3]  反应中有亚稳离子生成, ,这与质谱图中的亚稳离子峰的位置相符合。[/size][size=3]  基峰m/z 31是CH=碎片离子峰,断裂的机理为:[/size][size=3]  因此,该化合物为正丙醇,结构式为CH3-CH2-CH2-OH。[/size][size=3] [b] 四、质谱定量分析[/b][/size][size=3]  (一)无机痕量分析[/size][size=3]  火花源质谱仪可以分析无机固体试样,它已成为金属、合金、矿石和超导体中痕量元素分析的重要方法。通过离子峰相对强度的测量可进行质谱定量分析。该方法的特点是灵敏度高,对元素的检出限约为纳克每克数量级(ng• g-1)。由于质谱图简单,并且各元素峰强度大致相当,应用很方便。[/size][size=3]  (二)同位素的测定[/size][size=3]  质谱定量分析最早用于同位素丰度的研究。稳定的同位素可以用来"标记"各种化合物,例如确定氘苯C6D6的纯度,通常可用C6D6+与C6D5H+、 C6D4H2+等分子离子峰的相对强度进行定量分析。在考古学和矿物学研究中,应用同位素比测量法来确定岩石、化石和矿物年代。[/size][size=3]  (三)混合物中的定量分析[/size][size=3]  混合物的质谱定量分析,目前常用于多组分气体和石油中挥发性烷烃的分析。通过计算机求解数个联立方程,得到各组分的含量。该方法一次进样实现全分析,快速、灵敏。[/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制