当前位置: 仪器信息网 > 行业主题 > >

质谱血清蛋白质定量

仪器信息网质谱血清蛋白质定量专题为您提供2024年最新质谱血清蛋白质定量价格报价、厂家品牌的相关信息, 包括质谱血清蛋白质定量参数、型号等,不管是国产,还是进口品牌的质谱血清蛋白质定量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱血清蛋白质定量相关的耗材配件、试剂标物,还有质谱血清蛋白质定量相关的最新资讯、资料,以及质谱血清蛋白质定量相关的解决方案。

质谱血清蛋白质定量相关的资讯

  • 高分辨非变性质谱绘制人血清蛋白全貌图
    大家好,本周为大家介绍的是一篇发表在Analytical Chemistry上的文章Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry1,文章通讯作者是来自荷兰乌得勒支大学的Albert J. R. Heck教授。  血清中大多数蛋白都是糖基化蛋白,这些糖蛋白对疾病诊断有着重要意义,基于质谱的糖链释放后分析和糖肽分析是目前普遍使用的糖蛋白分析方法,但仍存在一些局限,例如可能遗漏同时发生的翻译后修饰、缺乏对O-糖的研究、遗漏某些糖肽覆盖不到的糖基化位点等。高分辨非变性质谱为完整糖蛋白的分析提供了新的思路,本文开发了一种基于离子交换色谱的分离纯化方法,能够从150μL血清中分离和分析20多种血清(糖)蛋白,质量范围在30-190 kDa之间。  图1为血清糖蛋白的分离和分析方法。150μL血清首先经过亲和柱以快速去除大量的白蛋白、IgG和血清转铁蛋白等,这一步骤使用的是作者内部制造的机器人,可以加快过柱子的速度。接着血清被送入离子交换(IEX)色谱,使用40分钟的梯度时,大多数蛋白在14-27分钟内洗脱,故作者在13-30分钟内每隔0.5分钟收集一次级分,并将每个级分缓冲液换为乙酸铵溶液,最后进行Thermo Exploris Orbitrap质谱仪分析。    图1.血清糖蛋白非变性质谱分析方法  作者使用该方法分离了大约24种血清蛋白,并在文中详细介绍了其中4种蛋白的分析过程:α-1抗胰蛋白酶、补体C3、血红素结合蛋白、铜蓝蛋白。  (1)α-1抗胰蛋白酶(A1AT)是一种丝氨酸蛋白酶抑制剂,在呼吸系统的功能中起重要作用,作者使用唾液酸酶和PNGase F确认了蛋白上的糖型,又通过TCEP的还原处理发现大部分血清样品的A1AT都是半胱氨酸化的,也确认了A1AT存在N端截短的特征,综上,作者共统计出了13个A1AT异质体。针对捐献者提供的血清,作者区分出了携带V237A和E400D突变的A1AT蛋白的供体。  (2)补体C3蛋白在免疫调节过程中发挥作用,在血清中浓度相对较高,分子量为187kDa。与该蛋白共流出的还有两种约137kDa和80kDa的蛋白,在唾液酸酶处理后,只有80kDa的蛋白质量减少很多,证明其存在唾液酸,而C3和137kDa蛋白的糖型上无唾液酸。通过对级分的糖肽分析确定N糖位点在Asn 63和Asn 917。137kDa蛋白鉴定为C3缺失α链后降解而成。  (3)血红素结合蛋白(HPX)在血清中的主要功能是结合和运输游离的血红素,进行血红素和铁的再循环。非变性质谱显示HPX质量范围在58-63 kDa,而蛋白质主链质量仅50 kDa。本文首次解析了血清HPX的蛋白型谱,证明了4-5个N-糖和1个O-聚糖的存在,共17种独特的糖型。  (4)铜蓝蛋白(CER)负责在人体内转运大部分的铜,分子量132kDa,每个CER分子可以携带6-7个铜离子。CER在非变性质谱检测后的分子量比理论质量多409±5Da,作者将其归为6个铜离子和1个钙离子的结合所致,并发现了CER完全去糖后失去结合金属离子的能力。    图2.绘制血清糖蛋白组的全貌图。观察到的血清蛋白质量范围为30-190 kDa,浓度范围为0.2-50g/L  总结:本文开发了一种从少量人血清中分离多种糖蛋白的方法,并通过高分辨非变性质谱表征了蛋白型谱,为蛋白全貌提供完整视图。该方法的优势在于非变性质谱需要的样品处理步骤少,最大程度的还原了蛋白的生理状态,劣势在于目前通过完整质量只解析了20余种蛋白中的8种,后续需要结合自下而上或自上而下的蛋白质组学方法进行辨别。在未来的研究中,作者建议联用分子排阻色谱和离子交换色谱,实现高通量在线血清蛋白分离分析。  撰稿:英语佳 编辑:李惠琳  原文:Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
  • 最新成果:黄超兰与郑敏团队合作揭示新冠康复患者血清蛋白分子图谱
    当前,新型冠状病毒肺炎(COVID-19)仍在全球范围内持续威胁着人类的健康,截止到2021年6月初,新冠肺炎确诊病例已多达1.72亿,死亡人数超过370万。新冠爆发早期的研究主要集中在探索流行病学和发病机制上,随着人们对新冠病毒的认识逐渐加强,越来越多的临床专家开始关注新冠康复患者的预后评估。此前有研究指出新冠肺炎康复患者会持续出现不同程度的症状和意想不到的实质性器官功能障碍,然而这些后遗症发生的分子机制尚未明确。  近日,北京大学医学部精准医疗多组学研究中心黄超兰教授团队,和浙江大学第一附属医院郑敏教授团队开展合作研究,首次关注新冠肺炎康复患者的血清蛋白表达变化。通过蛋白质组学数据与临床数据的整合分析,提出康复患者在1个月后仍会出现胆固醇代谢紊乱和心肌受损。该研究以“Proteomic analysis identifies prolongeddisturbances in pathways related to cholesterol metabolism and myocardiumfunction in the COVID-19 recovery stage”为题于2021年6月3日线上发表在Journal of Proteome Research期刊上。  图. 基于DIA-PASEF方法的定量蛋白质组学分析  研究者对来自健康志愿者,COVID-19中症及重症病人的患病期和康复期的血清样本开展了基于DIA-PASEF方法的定量蛋白质组学分析。结果显示,与健康对照组相比,康复期的中症和重症患者体内分别有243和163个蛋白质发生了显著变化,其中,与患病期重合的蛋白数量分别为113和88个。进一步的研究结果表明,康复患者体内未恢复至正常水平的蛋白主要参与了胆固醇代谢、转运、酯化,及心肌肥大、心肌组织发育、心肌细胞分化、心血管系统发育等相关通路。值得关注的是,通过系统地统计600名新冠肺炎患者、1177名甲型流感患者和522名H7N9感染患者的总胆固醇水平数据,研究者发现仅新冠肺炎患者的血清总胆固醇在发病后呈上升趋势。相关研究结果有助于进一步探索针对新冠肺炎康复患者的临床治疗决策设计,未来有效改善患者的预后。本研究基于前沿的高通量DIA定量蛋白质组学技术,用高质量的数据为全面开展新冠康复患者的预后评估提供了可靠的重要分子基础和机制信息。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,开展协同创新研究,持续为抗击新冠病毒做出多方面的贡献。 北京大学医学部精准医疗多组学研究中心主任黄超兰教授,浙江大学第一附属医院郑敏教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心陈扬副研究员,浙江大学第一附属医院姚航平研究员,北京大学医学部精准医疗多组学研究中心博士研究生张楠,浙江大学第一附属医院吴杰副研究员为本文的共同一作。  原文链接:  https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00054
  • 基于质谱的血浆蛋白质组学领域新进展
    6月美国质谱学会年会(ASMS)上发布的最新数据表明,新的仪器和工作流程极大地提高了基于质谱的血浆蛋白组学实验的覆盖深度和通量。这些进步可使质谱成为各应用领域中更有用的工具,包括血浆蛋白生物标志物的开发以及迄今由Olink和SomaLogic等亲和性平台主导的大规模人群研究。  血浆是一种易于获取和常用的样本来源,尤其是在临床工作和人群研究中。然而,由于血浆含有大量丰度较高的蛋白质和较宽的动态范围,传统的质谱蛋白质组学分析能力不足。对于细胞裂解物的分析,质谱工作流程可测量8000到12000个蛋白质,但对血浆,类似的工作流程只能测量500到1000个蛋白质。虽然可通过去除丰度较高的蛋白质或进行粗分离来改善这一情况,但这也会牺牲通量。  去年,瑞士蛋白质组学公司Biognosys在Journal of Proteome Research杂志上发表了一项研究,他们使用赛默飞的Orbitrap Exploris 480质谱仪,通过两小时的液相色谱梯度测量了180个去除了高丰度蛋白的血浆样品中的2732个蛋白质,这是未进行血浆分离处理情况下最高深度的血浆蛋白质组分析。  最近,蛋白质组学公司Seer推出了一种新的血浆蛋白组学解决方案。该公司的Proteograph系统使用一组纳米颗粒来富集血浆蛋白质,然后可以使用质谱等技术对其进行鉴定和定量分析。与传统的血浆蛋白组学方法相比,Seer系统在覆盖深度和通量上都有所提升。在一份发表于四月BioRxiv 预印本的研究中,威尔康奈尔医学院-卡塔尔团队使用该系统分析了345个血浆样本,测量了大约3000种蛋白质,在其液相色谱-质谱法的运行时间下每天可分析大约10个样本。  根据以上数据,Biognosys分析和Seer系统的覆盖深度都接近于Olink的Explore平台,后者可以在血浆中测量大约3000种蛋白质,但它们仍远远落后于SomaLogic的SomaScan平台,后者可以在血浆中测量大约7000种蛋白质。在每周约70个样本的处理量上,Biognosys和Seer系统的通量仍然落后于Olink和SomaLogic平台,后者每周分别可以处理多达1000个和340个样本。  ASMS年会上,赛默飞展示了使用Seer最新发布的Proteograph XT试剂盒在其新的Orbitrap Astral仪器上测量大约6000种蛋白质的数据,每天处理大约30个血浆样本。这些数据标志着血浆蛋白组学工作流程的重大进展,并表明在大规模血浆研究方面,结合Seer Proteograph等血浆富集技术的质谱法与基于亲和性的平台现在可能成为竞争对手。  剑桥大学临床医学院MRC流行病学单位的生物信息学家Maik Pietzner表示:“坦白说,我们没有预见到这么大的飞跃。”他和他的同事在大规模蛋白质基因组学研究中使用了SomaLogic的SomaScan和Olink的Explore。他指出,根据ASMS展示的数据,“看起来现在似乎变得可行了”,因为他们的研究需要1000个或更大的样本队列。  华盛顿大学基因科学教授Michael MacCoss还表示,质谱技术具备的覆盖深度和通量使其成为大规模人群研究的有用工具。他说:“像英国生物库(UK Biobank)或弗雷明汉心脏研究(Framingham Heart Study)这样的大型队列……这些样本的价值是巨大的,研究人员希望能够以最少的资源获取最多的信息,很多实验都使用了Olink或SomaLogic。”  如果质谱技术能够可靠地提供ASMS演示中展示的覆盖深度和通量,它可能成为亲和性平台的有力补充和竞争对手。许多蛋白质存在多种形式,或称为蛋白质变体,其变异包括氨基酸变异、截断或翻译后修饰等,这些变化会影响它们的功能,在亲和性平台上往往不清楚或不确定测量的是蛋白质的哪种变体。质谱方法更适合分析这些不同的蛋白质变体。  Olink总裁Carl Raimond表示,他认为质谱和亲和性平台是“绝对互补的”,并补充说“看到蛋白质分析领域有创新是非常好的”。然而,他表示在Olink占据领先地位的大规模人群研究中质谱技术近期可能无法成为竞争对手,他同时也质疑ASMS展示的令人印象深刻的数据在广泛应用时是否能够经受考验。他说:“细节决定成败。提出要求很容易,但真正能够实现或提出关于这一要求背后的问题则是完全不同的事情。”Raimond补充说,虽然质谱技术不断改进,但亲和性平台也将不断进步。Olink正在将其Explore平台扩展到约5,000种蛋白质靶点,而SomaLogic计划在今年年底前将SomaScan平台扩展到覆盖约10,000种蛋白质。Pietzner同样表示,虽然在ASMS上发布的数据令人兴奋,但他和他的同事们期待看到更广泛的数据,包括总体的蛋白质覆盖范围,不同蛋白质和肽段在样本中检出的一致性和重复性。他说,“亲和性方法已经应用于规模大于50,000的人群队列中,并带来了惊人的发现。我们需要进行头对头的比较以评估这些新的质谱技术是否能够实现类似的扩展。”  MacCoss表示,使用质谱进行此类研究的公司或研究人员需要提供数据,证明他们能够在每个样本中一致且可重复地测量一组核心蛋白。他说:“当人们使用Olink时会有一个清单,上面列出了每次都会测到的蛋白质。我们仍然需要这样做。我们仍然需要说,这是每次实验都会返回定量值的蛋白质列表……以及测量中获得高质量分析数值的蛋白。”  Pietzner表示,他和他的同事目前正在努力扩展他们的蛋白质基因组学研究以包括质谱技术。强生和强生制药公司的神经科学数据科学主管,以及英国生物库药物蛋白质组学项目(PPP)主席Christopher Whelan表示,目前一个规模最大的蛋白质基因组学人群研究项目正在实施基于质谱的蛋白质组学。  Seer本月宣布推出Seer技术访问中心,该中心将组合其XT试剂盒与Orbitrap Astral质谱仪,为没有质谱仪的用户提供蛋白质组学服务。  尽管到目前为止很难全面评估赛默飞的Orbitrap Astral和Seer的Proteograph XT的性能,但一些早期用户表示其产生的结果很出色。  Cedars-Sinai精准生物标志物实验室主任Jennifer Van Eyk一直在使用Orbitrap Astral进行血浆蛋白质分析,在这方面它比先前的仪器有更强的能力。Van Eyk表示,在每天运行60个样本时,新仪器可测得的蛋白质数量是相同工作流程下使用Thermo Fisher的Exploris 480仪器的2到2.5倍。  她说:“我们不仅可以检测到更多蛋白质,而且可以定量更多蛋白质,并且这些蛋白质是可重复的,也就是说,如果我们运行一个样本五次,我们确实会五次都观察到同样的蛋白。这是一个很大的飞跃。”这台仪器最出色的或许是其高通量,Van Eyk表示,她和她的同事们每天可以运行多达180个的未去除高丰度蛋白的血浆样本并获得良好的数据和深度的覆盖。她说,“在每天运行180个样本的情况下,突然间你可以开始讨论运行10,000个样本,然后它就成为一个人群研究了。”Van Eyk和她的同事目前正在试验Seer Proteograph系统,以“充分测试”其性能,并评估是否要将其作为血浆蛋白质组学工作流程的一部分。  威斯康星大学麦迪逊分校的生物分子化学和化学教授Joshua Coon指出,他的实验室能够使用50分钟的液相色谱梯度在未处理的血浆中测量大约1,500种蛋白质,并且已经在该仪器上开发出了一种一分钟的直接注射方法,能够在每个样本中测量约200种蛋白质。  Coon还是SeerProteograph平台的用户,尽管他尚未将其与Orbitrap Astral结合使用。他的实验室一直在使用Seer XT试剂盒分析阿尔茨海默病患者的血浆样本以及长期新冠肺炎(long COVID)个体的样本。他说,尽管他的团队尚未开始处理大批量样本,但在初步工作中,实验室每个样本一致地测量到约3,000种蛋白质,这是不使用Seer系统时的五倍左右。他认为,当研究人员将工作流程应用于Orbitrap Astral系统时,这些数字还会进一步提高。  除了覆盖深度外,Coon表示,Proteograph对简化质谱样品制备非常有用。他说:“我没有完全认识到到它的自动化程度,它非常方便。现在主要的用户是一个一年级和二年级的研究生……所以他们必须快速学习。他们在处理样本、获得消化产物和肽段方面取得了很大的成功。当你有新人或者长时间不做该工作的人时,进行大规模蛋白质组学研究的样品制备将耗费整个实验一半以上的精力,只需使用该平台然后熟练掌握。”  尽管Seer Proteograph平台提供的覆盖深度使质谱血浆蛋白质组学在某些应用中与Olink和SomaLogic等亲和力平台更具竞争力,但Seer本身在血浆富集领域面临新的竞争。  在ASMS会议上,蛋白质组学样品制备公司PreOmics推出了其ENRICH-ist富集血浆和血清蛋白质的试剂盒。该试剂盒使用非功能化顺磁性微珠来富集低丰度蛋白质,据该公司称,与未去除高丰度以及未富集的血浆相比,用该试剂盒处理血浆可将蛋白质检出率从50%提升至100%。PreOmics首席执行官Garwin Pichler表示,微珠与缓冲液的结合可在去除高丰度蛋白的同时富集低丰度蛋白以提高覆盖深度。Biognosys推出了一种新的基于微珠的血浆蛋白质组富集试剂盒,作为其TrueDiscovery服务平台的一部分。据该公司称,这种试剂盒可以高通量定量人类血浆中约4,000种蛋白质。  此外,在本月,华盛顿大学研究人员领导的团队在BioRxiv预印本上发表了一篇论文,描述了一种使用ReSyn Biosciences的磁性微粒富集血浆蛋白质的方法,其通过结合血浆中的膜结合囊泡并分析相关蛋白质来提高覆盖深度。华大的MacCoss是这篇预印本的通讯作者,该预印本的第一作者Christine Wu也是该富集方法的主要开发者。他们能够在Orbitrap Astral上使用30分钟的液相色谱梯度稳定地定量约4,800种血浆蛋白质,每天可处理约40个样本。在使用一小时的液相色谱梯度时,他们能够测量5,000到6,000种蛋白质。MacCoss他们迄今没有过度挑战该方法的能力,所以这些数字是相对保守的。MacCoss表示,由于Seer公司的技术成本较高,研究人员对于血浆蛋白质组学富集的替代方法很感兴趣。他说:“Seer在制造这些产品方面做得很好,但成本是一个高门槛。”  维也纳分子病理研究所的蛋白质组学负责人Karl Mechtler表示,他与Seer的讨论中,每个样品的报价大约是600美元。他说:“如果我有100个样品,对于一个蛋白质组学实验室来说,这是一笔巨款。”他指出,对于一个典型的蛋白质组学实验室,一个合适的价格范围应该在每个样品25到50美元左右。Wu表示,使用华大的富集方法进行实验的每个样品成本低于5美元。PreOmics将ENRICH-ist试剂盒作为完整蛋白质组学样品准备工作流程的一部分销售,每个样品总共80美元。  在回答成本问题时,Seer公司董事长兼首席执行官Omid Farokhzad表示,他认为价格是“价值交换的问题”。他说:“并非所有内容都是等价的。问题在于,从Seer所提供的与其替代方案所提供的内容来说,价值交换是什么?”在血浆蛋白质组学领域最新的发展中,这个问题的答案似乎是一个不断变化的目标。  参考文献:[1] Tognetti Marco,Sklodowski Kamil,Müller Sebastian et al. Biomarker Candidates for Tumors Identified from Deep-Profiled Plasma Stem Predominantly from the Low Abundant Area.[J] .J Proteome Res, 2022, 21: 1718-1735.[2] bioRxiv - Genomics Pub Date : 2023-04-21 , DOI:10.1101/2023.04.20.537640Karsten Suhre, Guhan Ram Venkataraman, Harendra Guturu, Anna Halama, Nisha Stephan,Gaurav Thareja, Hina Sarwath, Khatereh Motamedchaboki, Margaret Donovan, Asim Siddiqui, Serafim Batzoglou, Frank Schmidt
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 基于离子淌度质谱对完整蛋白质形态进行非标记定量
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry [1],文章的通讯作者是美国俄克拉荷马大学的Luca Fornelli教授。完整proteoforms的非标记高通量定量方法的应用对象通常为从整个细胞或组织裂解物中提取的0 - 30 kDa质量范围内蛋白质。然而当前,即使通过高效液相色谱或毛细管电泳实现了proteoforms的高分辨率分离,可鉴定和定量的proteoforms的数量也不可避免地受到固有的样品复杂性的限制。近年来,随着质谱技术的发展,自上而下蛋白质组学质谱(top-down proteomics)研究中蛋白质的鉴定数量大大提升,生成了包含数万种proteoforms的数据集,但在proteoforms的量化能力方面并没有得到相应的性能提升。为克服这一问题,本文中作者通过应用场不对称离子迁移谱法(Field asymmetric ion mobility spectrometry, FAIMS)对大肠杆菌中的proteoforms进行了非标记定量。由此产生的改进允许在单次LC-MS实验中采用多个FAIMS补偿电压(Compensation voltages, C.V.),而不会增加整个数据采集周期。与传统的非标记定量实验相比,FAIMS的应用在不影响定量准确性的情况下,大大增加了鉴定和定量的proteoforms数量。首先,作者优化了质谱stepped-C.V.数据采集方法对Orbitrap Eclipse性能的影响,并从中筛选出了最优条件(−40、−20、0 V组合)。所有最新的基于Orbitrap的质谱仪(包括Exploris platform和Orbitrap Ascend)都可以采用single time-domain transients(即单次微扫描)在top down FTMS实验中生成高质量的质谱图。作者认为这对于在单次LC - MS2运行期间应用多个C.V.值的采集策略特别有益。接下来,作者应用该方法对大肠杆菌中的蛋白质进行了检测,并与传统的LC - MS2 DDA采集方法进行了比较(图1)。如图所示,每个C.V.值下的总离子流图都不同,且这一额外的分离导致在LB(Luria broth)和M9(醋酸钠处理)样品中鉴定到的proteoforms的数量显著提升。  图1. 样本制备方法和proteoforms鉴定结果总结虽然在LC-FAIMS和LC-only数据集中,大多数鉴定到的proteoforms质量都小于15 kDa,但其中约20%的质量大于18 kDa甚至高达33.3 kDa(图2)。对已鉴定的proteoforms列表的深入分析表明,达到鉴定低丰度proteoforms的关键参数之一是在串联质谱(MS2)中有足够的时间注入离子。  图2. A. FAIMS和非FAIMS鉴定到的proteoforms的质量分布。B. 鉴定到的proteoforms与注射时间之间的关系。最后,作者采用ProSight PD v 4.2 (Proteineous, Inc)进行了基于MS1的非标定量,结果显示基于FAIMS的数据集在LB样品(蓝色)和M9样品中检测到的差异表达的proteoforms均有所增加(图3)。作者评估了两个数据集之间的差异(使用和不使用FAIMS采集数据),以验证FAIMS的应用是否会对量化准确性产生不利影响,结果只有1个proteoform显示相互矛盾的丰度趋势。这种差异是由于该蛋白和一个共流出蛋白之间质谱峰几乎完全重叠造成的。它们具有非常接近的单同位素质量,这样高水平的信号干扰可以很容易地干扰基于MS1的量化。启用FAIMS可以使MS1谱图简化,因为两种proteoforms可以富集在两种不同的C.V. 值下。  图3. 大肠杆菌proteoforms无标记定量结果分析。作者将LC - FAIMS - MS2数据集与通过BUP在类似样品上获得的非标定量结果进行比较,得出两个主要的结论:1. BUP仍然对蛋白质组提供了更深层次的定量表征 2. BUP提供了与单个基因相关的所有产物的整体丰度水平信息 而TDP方法表明,给定的UniProt accession可以由多个差异表达的proteoforms组成,可能具有不同的行为(即在给定条件下,一些被上调,另一些被下调)。这一额外的信息可能具有潜在的生物学意义,但在基于BUP的定量分析中可能会被遗漏。本文描述的基于FAIMS的定量数据采集方法与PEPPI(Passively eluting proteins from polyacrylamide gels as intact species)蛋白分离技术完全兼容,产生0 - 30 kDa的组分,并且可以方便地根据待分析蛋白的平均质量调整质谱参数(C.V.值),未来在更大的蛋白质定量方面具有广阔的应用前景。  撰稿:张颖  编辑:李惠琳  原文:Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1.Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.
  • 应脉医疗又一战略合作,布局Seer高深度无偏蛋白质组学新技术
    2023年8月8日,应脉医疗科技(上海)有限公司(下称:应脉医疗)与上海康昱盛生物科技有限公司(下称:康昱盛)在上海签署战略合作协议,合作推广美国Seer公司的高深度无偏蛋白质组学新技术,助力基于血液的蛋白质组学精准医疗进入新时代,这是应脉医疗继2021年宣布与Seer达成合作进军中国蛋白质组学市场后的又一战略合作。  生物信息巨头布局中国蛋白质组学市场  2021年,Seer宣布与应脉医疗达成独家经销协议,重点是加速公司蛋白质图谱产品套件(Proteograph系统平台)的商业扩张。根据协议条款,应脉医疗将负责Seer Proteograph系统平台在中国的销售、市场营销和客户服务,并为在中国拓展这一颠覆性技术铺平道路。Seer公司拥有专有的纳米粒子(Nanoparticle, NP)技术,让血液蛋白质组在实现深度和通量上的“非特异性选择”方法成为可能。Seer公司提供的Proteograph™XT平台利用经过特殊制作的纳米粒子磁珠,在跨数十个数量级丰度之间,非特异性地结合各类蛋白,无需额外去除高丰度蛋白,再利用高性能的质谱技术,达到高精度测量。在兼顾深度,增强蛋白组分析通量的情况下,实现对大规模血液蛋白的可重复性定量分析,创造了无偏差高通量探寻生物标记物的机会。  作为Seer在中国市场的独家经销商,应脉首席运营官边英男博士表示,非常高兴能与康昱盛达成本次合作,康昱盛具有丰富的客户资源,专业的技术支持。双方将发挥各自在擅长领域的优势,产生一加一大于二的倍增效果,推动创新的血浆蛋白质组学技术在生命科学、医疗健康领域的应用。  康昱盛总经理林建成先生表示,应脉医疗的资源丰富、市场洞察力敏锐。相信高深度无偏蛋白质组学技术具有非常巨大的市场潜力,期待与应脉医疗共同为基于质谱的血浆/血清蛋白质组学研究与应用开启新的篇章。  中国的生命科学和医药市场是世界上规模最大、增长最快的市场之一,并且拥有蛋白质组学的巨大潜力。 随着肿瘤学、神经学和免疫学在全球卫生保健需求的激增,我们需要新的工具来加速对生物学的见解,识别生物标志物,并开发新的治疗方法。Seer提供的无偏、深入和大规模的蛋白质组学平台解决了这一需求,使制药和生物医学研究人员能够发现新的生物标记物,用于诊断和治疗癌症及其他疾病,并更好地了解健康细胞的功能。  关于康昱盛  康昱盛是一家专门提供生物制药领域科学信息整体解决方案的公司。公司由一批多年从事生物医药信息学前沿技术研究、科学咨询、技术服务以及产品研发的科学家于2009年创立。经过10多年的技术积累并得益于我们与国内优秀科研机构的紧密合作,我们拥有一支专业的技术服务团队和资深的专家咨询团队,服务于生物医药领域的各种创新研发型公司、学术科研机构、大学以及政府部门,提供从药物设计分子模拟、生物信息学、化学信息学与研发信息管理系统、化合物毒性预测分析、蛋白质组学、代谢调控分析、二代测序变异与疾病关联分析,到临床前、临床的数据分析以及管理等一系列国际知名的科研软件产品、平台以及成熟的科学信息解决方案。我们目前在中国服务超过900家生物医药行业的企业与学术客户,竭诚为他们研发创新提供强有力的技术服务与产品支持!
  • “鸟枪法(shotgun)”定量蛋白质组学技术介绍
    p  简介:/pp  1999年,Yates研究组提出“鸟枪法”(shotgun),其基本技术路线是针对液体或SDS-PAGE条带的复杂混合物用酶(Trypsin)酶解成肽段混合物,然后对肽混合物进行多维毛细管液相色谱分离和串联质谱分析以及数据库检索,从而确定蛋白质的种类,可同时鉴定成百上千种蛋白质。他们把这种思路称为多维蛋白质鉴定技术,即Mud PIT(multidi-mensional protein identification technology)。与传统的双向电泳技术相比具有灵敏度更高,动态检测范围更广等特点。/pp  鸟枪法(shotgun)可以分析全细胞裂解样品和组织抽提物,也可以分析亚细胞分级组分、分离的细胞器等其他亚蛋白质组。如果样品已经过稳定同位素标记。根据不同标记的信号强度比例就可以精确确定化学上具有均一性的蛋白在不同样品中的相对丰度,这种多重分析可以利用在谱图上产生前后次序的质量标记得以完成。质谱分析以前在样品中加入同位素标记的某种质量校准肽,通过对此肽的相对定量就可以获得绝对定量的信息。实现目的肽段的绝对定量,而这一性质可以被充分应用以提供临床诊断的标准值或阈值。/pp  差异蛋白质的定量研究是基于肽段水平而非完整的蛋白质,成为该技术最大的技术特色,该技术实现了样品分离与鉴定直接联合,完全自动化操作,可以用于各种蛋白质混合物的蛋白质组学分析,如血清、组织、各种体液以及尿液等。/pp  技术路线:/pp  鸟枪法为基因组测序,是先将基因组打断,分段测序, 然后利用计算机重组在一起。从而确定一段的基因序列。/pp  鸟枪法在蛋白质组研究中的应用方式与此相类似,首先将蛋白质混合物酶解成肽段的混合物, 利用质谱进行分析确定该肽段的氨基酸序列,然后计算机根据设定好的运算法则根据肽段的信息在理论蛋白质数据库中检索出这些蛋白质,从而确定该混合物中的蛋白质成分。/pp style="text-align: center "img title="1.gif" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/130ae366-baaa-4006-9cf4-2c70b8441925.jpg"//pp style="text-align: center "img title="2.gif" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/fe437d70-d969-4f29-a6c9-4e8e1d3e7b65.jpg"//pp  分析目标:/pp  寻找差异表达蛋白,并分析蛋白功能。/pp  Gene ontology分析/pp  GO数据库包含了基因参与的生物过程,所处的细胞位置,发挥的分子功能三方面功能信息,并将概念粗细不同的功能概念组织成DAG(有向无环图)的结构。Gene Ontology是一个使用有控制的词汇表和严格定义的概念关系,以有向无环图的形式统一表示各物种的基因功能分类体系,从而较全面地概括了基因的功能信息,纠正了传统功能分类体系中常见的维度混淆问题。在基因表达谱分析中,GO常用于提供基因功能分类标签和基因功能研究的背景知识。利用GO的知识体系和结构特点,旨在发掘与基因差异表达现象关联的单个特征基因功能类或多个特征功能类的组合。/pp  对于每一种表达趋势的基因,选择性的进gene ontology功能分析。对差异表达的所有基因向gene ontology数据库的各节点映射。计算每个节点的基因数目,并结合整个数据库的基因作为背景分部,对于每个节点,得到一个2x2的表格,使用超几何分布检验基因在每个GO节点的富集或贫乏程度。/pp  Pathway enrichment分析/pp  找出差异表达基因在生物学通路中的位置,以阐明其生物学功能以及不同基因之间的相互作用。/pp  1)把差异表达基因定位在生物学通路(Pathway)上。/pp  2)统计分析,确定差异基因可否可以代表某些生物学通路/pp  优点:信息量大,样本量低,检测低丰度蛋白更多,相对定量/pp  应用领域:/pp  1)差异蛋白组分析(疾病早期诊断、疗效监测)/pp  2)细胞差异性分析(如正义转染vs空载、目标基因RNAi vs空载)/pp  3)疾病标志检测(肿瘤标志物,如无血清培养后的分泌蛋白质组)/pp  4)治疗检测(术前vs术后)/pp  5)药物开发(给药vs对照)/pp  6)癌症研究(原位肿瘤细胞系vs转移)/pp  Shotgun法可以检测动态范围10000:1内的低丰度肽段,是目前蛋白质组学研究最主要的技术路线。 现已成功应用于中大规模蛋白质的分离鉴定,不再依赖于双向凝胶电泳。/pp  因大部分蛋白质在酶解后总有部分肽段是可用质谱鉴定的,因此,多维蛋白质鉴定技术弥补了碱性、疏水蛋白质、相对分子量极大和极小蛋白质在分离和鉴定方法上的不足。/pp  该方法可达到对低丰度蛋白、极端等电点、分子量、完整膜蛋白具有与其他蛋白有相同的灵敏度。 如鸟枪法可鉴定出10个跨膜域以上的膜蛋白,而2DE仅能检测出2~4个跨膜域的。/pp  Shotgun法可实现自动化、快速、高通量的蛋白组学分析。/pp  但Shotgun法数据冗余复杂,需要专业人员进行分析。/pp  在医学领域,Shotgun技术可用于以下方面:/pp  除血清血浆外,还可用于研究体液及组织的蛋白组/pp  分泌蛋白组/pp  大脑皮层神经元细胞蛋白组/pp  新生物标记物的发现/pp  疫苗研究,分析感染源的表面蛋白质,从而发现潜在的抗原。如,在分析人类疟疾致病源plasmodium falciparum时,发现了大量潜在的抗原, 目前这些抗原的特性巳经被评估出来。/pp  发现新的药靶。如,研究发现甲硫氨酸氨基肤酶是肿瘤生长抑制因子bengmide的分子作用靶点。/pp  部分参考文献:/pp  1)A proteomics approach to discovering natural products and their biosynthetic pathways, Stefanie B Bumpus, Bradley S Evans, Paul M Thomas, Ioanna Ntai1, Neil L Kelleher, Nature Biotechnology,27,951-956,2009/pp  2)High-throughput generation of selected reaction-monitoring assays for proteins and proteomes, Paola Picotti, Oliver Rinner, Robert Stallmach, Franziska Dautel, Terry Farrah, Bruno Domon, Holger Wenschuh, Ruedi Aebersold, Nature Methods 7, 43-46 (6 December 2009)/pp  3)Large-scale analysis of the yeast proteome by means of multidimensional protein identification technology, M.P. Washburn, D. Wolters and J. R. YatesNature Biotechnology, 19, 242-247, 2001/pp  4)Comparison of alternativeanalyticaltechniques for the characterisationof thehuman serumproteomein HUPO Plasma ProteomeProject, XiaohaiLi, Xiaohong Qian etc. Proteomics, 5, 3423–3441,2005/pp  5)An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics, Dirk A. Wolters, Michael P. Washburn, and John R. Yates, Anal. Chem., 73 (23), 5683-5690, 2001/pp /p
  • 复旦大学杨芃原团队建立糖蛋白质/糖链质谱定量新方法
    糖是组成生命体的四大类重要分子之一,糖蛋白质是由糖链与肽链中的特定氨基酸残基以糖苷键共价连接而成的蛋白质。糖蛋白质普遍存在于生物体内,在很多生命过程中起着重要作用,如蛋白质的折叠、细胞之间的相互识别、炎症反应等。同时,糖基化修饰在疾病中,特别是肿瘤的发生、发展和转移过程中也起到重要作用,许多疾病诊断标志物及治疗的靶标都是糖蛋白质。糖蛋白质组学和糖组学的研究具有重要的科学意义。以基质辅助激光解吸电离质谱(MALDI-MS)和电喷雾质谱(ESI-MS)为代表的生物质谱技术,因具有快速、灵敏、可提供结构信息等优点,已成为糖蛋白质组和糖组分析的重要工具。  由复旦大学杨芃原教授团队撰写的综述文章“质谱技术在糖蛋白质组学与糖组学方面的研究进展”发表于2016年第3期的《国家科学评论》。这篇综述论文系统介绍了近年来以质谱为核心的糖蛋白质组和糖组的研究策略和方法,以及该领域重要的生物和临床发现。重点讨论了国内糖蛋白质组学和糖组学研究团队在糖蛋白质和糖链的分离富集、糖链的衍生,糖链和糖蛋白质的质谱碎裂技术,糖链及糖蛋白质序列组成分析的软件技术等方面的进展,并分析了基于质谱技术的糖蛋白质组和糖组研究的关键问题,展望了该领域未来的发展趋势。  杨芃原教授团队在基于质谱的糖蛋白质组学和糖组学方面展开了系统的研究。他们发展了一系列糖蛋白质/糖链富集和质谱定性的新方法,建立了基于复合纳米材料的富集新方法,基于新的共价反应的富集新策略,以及基于协同富集思路的富集新流程 建立了一系列糖蛋白质/糖链的质谱定量新方法,提出了酶促去糖链过程中的标记定量新方法和糖蛋白质组在蛋白质水平、糖基化程度水平及糖链水平的同时定量新方法等 开发了高通量糖蛋白质质谱检索的新算法等。这些工作提升了中国糖蛋白质组学和糖组学的研究水平,为糖蛋白质组学和糖组学研究提供了新的研究方法。
  • 科研人员利用质谱等技术发布首个水稻全景定量蛋白质组图谱
    记者30日从中国农业科学院获悉,该院生物技术研究所联合国内多家单位共同绘制了水稻全景定量蛋白质组图谱。相关研究成果日前发表在国际期刊《自然植物》上。中国农业科学院 图一直以来,受限于蛋白质组技术的覆盖度和精度,人们对作物定量蛋白质组以及蛋白质表达的调控机制理解还不够深入。蛋白质是作物实现各种生物学功能的主要执行者,构建全景定量蛋白质图谱在阐释植物生长发育、逆境响应及代谢调控等方面具有重要意义。论文通讯作者、中国农业科学院生物技术研究所研究员梁哲告诉记者,科研人员利用质谱等技术,量化了水稻主要组织中超过15000个基因的蛋白质水平,鉴定了8964个蛋白质,并为另外7077个蛋白编码基因提供了蛋白质水平证据,从而绘制出水稻全景定量蛋白质组图谱。“本研究成功绘制了迄今为止首个作物全景定量蛋白质组图谱。此前的植物基因表达调控研究主要聚焦在基因组至转录组层面,建立了中心法则(生物体内遗传信息的流动方向)中转录本(RNA)到蛋白质这一关键环节的多组学研究策略。此次研究发现,蛋白质的表达量不仅受到转录过程的影响,还受到转录后修饰的调控。这一研究为水稻的基因功能研究提供了重要的蛋白表达量资源,为基于多组学数据的作物智能设计育种提供了新思路。另外,研究运用的定量蛋白质组的方法也给其他作物蛋白质组的深入研究提供了借鉴。”梁哲说。
  • 【综述】蛋白质组学研究进展
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201601/insimg/4a14f65e-cb82-47d8-87d5-ea4b0d204756.jpg" title="sss_56a5b6877c56c.jpg"//pp  1、蛋白质组和基因组br//pp  蛋白质组是指一种基因组所表达的全套蛋白质1,其英文为“proteome”。 有关蛋白质组的系统研究是蛋白质组学,英文为“proteomics”。基因组是生命体中全部基因的集合体,其英文为“genome”。有关基因组的系统研究是基因组学,其英文为“genomics”。 “proteome”和“proteomics”是由Marc Wilkins 及其同事于20世纪90年代初参照基因组和基因组学两个英文单词而创造出来的2。蛋白质组学是研发、利用、改进各种技术手段研究蛋白质组或在细胞某一生理通路中相关蛋白质集合的组成、结构、功能、代谢的一门新兴科学。/pp  基因决定蛋白质的水平,然而,蛋白质的水平分为转录水平和表达水平,mRNA只包含前者,后者则是由mRNA被翻译所实现,而在翻译过程中通常伴随对蛋白质功能和活性起至关重要的修饰过程,如糖基化、泛素化等3。通过研究蛋白质组学,可以获取蛋白定位与修饰的定性信息和相关定量数据,丰富认知蛋白质表达水平和相关蛋白作用,对了解生命复杂活动有更深更全的认识。/pp  2、蛋白质组的发展背景/pp  自二十世纪九十年代以来,传统生物学得以突飞猛进地发展,并取得瞩目成就,其中三个重要点彪炳史册,也促使传统生物学获得质的转变。/pp  第一 基因、表达序列标记(EST, expressed sequence tag)、蛋白质序列数据库的成长。细菌、酵母、线虫、果蝇的全部基因序列逐渐明了,甚至后来人类基因组计划也顺利告捷 其它的植物、动物、微生物也不断在探索。人们把已经掌握的基因分门别类地建立了序列数据库。/pp  第二 生物信息学的发展。易获取的浏览型生物信息工具层出不穷,这种免费的网页式数据库可以让我们从其中获得所需的特殊的物质结构,如蛋白质结构中的结构域和模体等。/pp  第三 寡核苷酸微阵列技术的发展。通过不同荧光标记的DNA样本同时与微阵列反应,形成不同荧光的现象,大幅提高Northern blot 的效率4。/pp  3、蛋白质组学分类/pp  蛋白质组学分类可有不同原则。/pp  根据蛋白质来源可分为植物蛋白质组学、动物蛋白质组学、微生物蛋白质组学。植物蛋白质组学是以来源于植物或与植物相关蛋白质为研究对象,分析其在植物发生、生长、调节、凋谢等生命过程中的作用、功能、代谢、结构等的体系。同理,动物蛋白质组学是以来源于动物或与动物相关蛋白质为研究对象,最重要的一大内容就是研究人类相关蛋白质。微生物蛋白质组学是以来源于微生物或与微生物相关蛋白质为研究对象。/pp  根据研究目的和阶段不同可分为结构蛋白质组学、表达蛋白质组学、功能蛋白质组学。结构蛋白质组学主要分析蛋白质大分子的多级结构形态,包括氨基酸顺序、二级结构、三级结构和四级结构 并着重于研究其共性结构特征和特殊功能基团 也是用于建立细胞内信号转导的网络图谱并解释某些特定蛋白表达对细胞产生特定的作用5。表达蛋白质组学是以经典蛋白质组技术如双向凝胶电泳和图像分析为方法着重于研究细胞内蛋白质表达过程及结果的体系3。功能蛋白质组学是以细胞内单一同种蛋白质功能体现、蛋白质之间、蛋白质与其他大分子之间相互作用关系为研究目的,研究和表述选定蛋白质,探明有关蛋白的修饰和信号转导通路,疾病机制或蛋白-药物作用关系3。/pp  根据研究内容,还可分为组成性蛋白质组学、差异显示蛋白质组学、相互作用蛋白质组学。组成性蛋白质组学是鉴定某个体系的蛋白质并阐述其翻译后修饰的特性。差异显示蛋白质组学又名比较蛋白质组学,是对重要生命过程或人类重大疾病进行生理、病理体系或过程的蛋白质表达比较。相互作用蛋白质组学则是研究蛋白质间相互作用,绘制某体系蛋白质作用网络图谱8。/pp  4、白质组学研究工具/pp  蛋白质组学研究的重要工具主要有四个。/pp  第一,蛋白质、表达序列标记(EST, expressed sequence tag)、基因序列数据库的建立与成熟 也可以说是生物信息学。因为蛋白质组学中所用的大多数技术所获得的数据通常都是高通量、高复杂度的,只有通过生物信息学分析才能对蛋白质的种类、结构和功能进行分析确定。/pp  第二,质谱(MS)技术。其将样品分子离子化,根据离子间质荷比的差异分离并确定质量,实现高灵敏度、高特异性。首先,质谱技术能准确测量高达100kDa的完整大分子蛋白质,其准确度和特异度比SDS-PAGE还要高。其次,质谱技术也能准确测量从蛋白质分解下来的多肽。最后,它还可以测定多肽的氨基酸顺序,即多肽测序4。现有三条途径,一是肽链质量图谱,二是串联质谱途径,三是联合途径7。其中一种较理想的技术平台是表面增强激光解吸离子化飞行时间质谱(SEL-DI)技术,可分析疏水性蛋白质、pI过高或过低蛋白质、低分子量蛋白质( 25 000)和未经处理的样品中许多被掩盖的低浓度蛋白质,短时间内即可获得蛋白质的分子量、PI、特殊修饰位点等参数8。/pp  第三,能将MS数据与数据库中特异的蛋白质顺序匹配的软件。它是快速、特异地将第一和第二工具联系在一起的分析方式。/pp  第四,蛋白分析分离方法。通过蛋白分析分离方法可以简化蛋白复合物,同时产生不同蛋白质差异比较方法。普通的蛋白质分析分离方法包括1D-SDS-PAGE、高效液相色谱法(HPLC)、毛细管电泳(CE)、等点聚焦电泳(IEF)等。其中二维凝胶电泳如2D-SDS-PAGE是目前蛋白质组学中分离单一蛋白质的广泛应用方法。当然,多维分析分离方法是最理想的分离蛋白质和多肽的方法,譬如,离子交换液相色谱与反相高效液相色谱串联形成的分离系统是分离多肽混合物的有力方法4。/pp  5、白质组学的应用/pp  蛋白质组学原则性应用包括四个方面4:组成性应用、蛋白质表达模型、蛋白质网络图谱、蛋白质修饰图谱。组成性应用是指运用质谱及其相关技术将目的蛋白质按相关标准定性或定量地纳入蛋白质数据库,在此过程中研发相应技术的应用。蛋白质表达模型是指研究在生理或病理状态目的蛋白质在细胞内定位并表达情况,同时研究细胞在暴露物理、化学、药物等因素下蛋白质表达状况。蛋白质网络图谱是研究两种或两种以上蛋白质在生物体内组成结构、表达功能、调节控制间作用情况。蛋白质修饰图谱是探明蛋白质的修饰定位及修饰后功能表现。/pp  当然,蛋白质组学在生活中无处不在,疾病、食品、植物、药品等等。/pp  蛋白质组学在疾病中应用方向主要是发现新的疾病标志物,以探明疾病发生机制、发展变化,为治疗途径提供思路。Brea等利用双向电泳串联质谱技术,差异比较心源性脑栓塞患者和粥样硬化血栓性梗死患者各12例的血清蛋白,发现触珠蛋白相关蛋白和淀粉样蛋白A等蛋白质在粥样硬化血栓性梗死患者血清中显著升高9。/pp  蛋白质组学在食品中应用方向主要是检测食品中过敏源检测、鉴定食品成分等,也给食品科学研究提供了新的研究思路和技术3。李明云等优化了相应的试验条件,并将蛋白质组双向电泳相关技术引入大黄鱼肝脏蛋白质分析中,得到了较清晰的大黄鱼肝脏蛋白双向电泳图谱。/pp  蛋白质组学在植物中应用方向主要是植物群体遗传、环境信号应答与适应机制、植物组织器官、植物亚细胞等7。其中,如果研究的植物是农作物如棉花、马铃薯、水稻等,就可以简单地视作蛋白质组学在农业中的运用了。Chang等对玉米强制缺氧和低氧研究,发现低氧处理的效应不仅是氧气含量过低诱导增加糖酵解酶,通过质谱鉴定了46个相关蛋白质10。/pp  蛋白质组学在药品中应用方向主要是药物研发、药物作用机制、耐药机制、药物毒理学等。在对紫杉醇类药物抗癌作用研究中,Bauer等对乳腺癌复发患者进行紫杉醇类药物治疗后进行蛋白质组学分析,发现a-防卫素可作为预测该类药物治疗乳腺癌治疗作用的生物标记物11。/pp  6、展望/pp  蛋白质组学在短短30年间发展迅猛,渗入到生活的许多方面,也对保证人类生存质量和良性繁衍有重大作用。但其思路不开阔,技术高效性、灵敏性、特异性仍有待提高,应用普及度低,蛋白质分离、纯化技术研发,基因组学丰富度低是制约蛋白质组学及其相关技术发展的瓶颈。不过,相信随着物理技术和化学方法的不断发展,研究水平的深入,蛋白质组学会随着基因组学的发展得到更进一步地丰富。/pp  参考文献:/pp  1.诗,吕建新主编《分子生物学检验技术》第2版/pp  2.Pandey A, Mann M. Proteomics to study genes and genomics [J] Nature,2000,405(6788):837-846./pp  3.尹稳、伏旭、李平《蛋白质组学的应用研究进展》 [J]. 生物技术通报 2014年第1期/pp  4.aniel C. Liebler《Introduction to Proteomics》:1-13/pp  5.英超,党源,李晓艳,等. 蛋白质组学及其技术发展 [J]. 生物技术通讯,2010,21(1):139-144./pp  6.鑫《比较蛋白质组学研究与应用进展》[J]. 国际免疫学杂志 2006年5月第29卷第3期:156-159/pp  7.宇,荆玉祥,沈世华《植物蛋白质组学研究进展》 [J] 植物生态学报,2004,28(1):114-125/pp  8.ore LE,Pfeiffer R,Warner M,et al. Identification of biomarkers of arsenic exposure and metabolism in urine using SELDI technology . Biochem Mol Toxicol , 2005,19(3):176./pp  9.rea D,Sobrino T,Blanco M, et al. Usefulness of haptog lob in and serum amyloid A proteins as biomarkers for atherothrombotic ischemic stroke diagnosis confirmation [J]. Atherosclerosis,2009,205:561-567./pp  10.ng,W.W.,L.Huang,M.Shen,C.Webster,A.L.Burlingame& J.K.Roberts.2000.Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low oxygen environment,and identification of proteins by mass spectrometry.Plant Physiology,122:295~318./pp  11.er JA,Chakravanhy AB,Rosenbluth JM,et al.Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neo-adjuvant paclitaxel and radiation[J].Clin Cancer Res,2010,16(2):681-690./ppbr//p
  • 蛋白质组学技术在病毒研究中的应用
    p style="text-align: justify text-indent: 2em line-height: 1.75em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 蛋白质组学是生命科学领域中的一门新兴学科,可以高通量的分析正常及病理条件下机体、组织、细胞或亚细胞成分中全部蛋白质,对不同空间、不同时间上动态变化的蛋白质组的整体进行比较,分析不同蛋白质组之间在表达数量、表达水平和修饰状态下的差异。蛋白质组学可以发现与疾病相关的特异性蛋白质,对病变相关蛋白的研究可以为探索病毒本身及其感染机制提供信息,且这些蛋白还可能作为疾病诊断潜在的生物标志和治疗的药物靶点。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong蛋白质组概念的提出及常用技术/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "蛋白质组(proteome)这一概念由Wilkins和Williams等在1994年首次提出,以它作为研究对象的蛋白质组学是后基因组时代产生和发展的一门新兴学科,其从整体上分析组织,细胞内动态变化的蛋白质组成、表达水平与翻译后修饰,探索蛋白质的功能及蛋白质之间相互作用与联系。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "蛋白质组学中对蛋白表达分析方面的研究应用较多的技术有双向凝胶电泳(two-dimensional electrophoresis,2-DE)、基于2-DE将其重复性和精确性加以改进的双向差异凝胶电泳(two-dimensional difference electrophoresis,2D-DIGE),以及对筛选到的差异表达蛋白进行快速精确鉴定的串联质谱技术(mass spectrometry,MS),其中质谱技术是蛋白质组学研究中的核心技术。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在质谱技术中的基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrum,MALDI-TOFMS)是分析多肽和蛋白质混合物的主要方法,此外,使用标记的氨基酸在细胞中进行稳定同位素标记(stable-isotope labeling by amino acids in cell culture,SILAC) 是一种鉴定和定量病毒感染后细胞蛋白中表达差异的有效方法。蛋白质组学技术在病毒学中的应用有助于病毒感染及病毒宿主间的相互作用机制研究。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong蛋白组学技术在及其感染机制研究中的应用案例/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "病毒寄生于宿主细胞中,需要不断地适应和改变宿主的环境。他们能够编码多种多功能蛋白质,这些蛋白能与宿主蛋白发生一系列的相互作用以完成病毒的各种功能。目前,许多病毒的基因组已完成测序,但由于受到病毒影响而发生相应改变的宿主蛋白组、宿主蛋白翻译后修饰等还未被完成阐明。近年来,高通量技术的兴起,如基于质谱技术的定量或半定量蛋白组方法,已被广泛应用于病毒宿主相互作用的研究中。依托质谱技术的蛋白质组学飞速发展,不仅促进了病毒蛋白质组学研究的不断进步,同时也加快了对于病毒相关的宿主蛋白鉴定。今后相关研究数据仍会急速增加,这需要更加先进的生物信息学技术对数据进行处理,更全面地了解病毒感染过程。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(255, 0, 0) "案例1: SARS(severe acute respiratory syndrome-associated coronavirus,SARS-CoV)冠状病毒研究中的蛋白组学技术/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "SARS基因组的基因产物包括20多种蛋白质,据报道,有研究学者首次应用DIGE技术分析了SARS-CoV感染的Vero E6细胞,鉴定出355个在SARS-CoV感染后表达发生变化的蛋白,其中186个显著差异表达蛋白,为理解SARS-CoV的感染和致病机制提供了线索。对感染SARS-CoV的BHK21细胞进行SILAC定量分析及进一步功能分析表明,BAG3可以抑制SARS-CoV的复制。对感染病人的血清蛋白质组分析,有助于返现可用于病毒感染的诊断、预后及治疗的生物标记。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(255, 0, 0) "案例2: 禽流感病毒(avian influenza virus,AIV)研究中的蛋白质组学技术/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "据报道,研究学者利用2-DE技术筛选H9N2感染人源细胞系后不同时间点的差异表达蛋白,运用质谱技术鉴定到22种蛋白,主要包括细胞骨架蛋白、RNA加工途径相关蛋白和代谢相关蛋白等,其中表达差异显著的蛋白主要参与细胞骨架网络的构成。这些蛋白的鉴定有助于理解禽流感病毒在哺乳动物中的复制及其宿主之间的相互作用。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(255, 0, 0) "案例3: 揭示新型寨卡病毒宿主因子的蛋白质组学技术/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "寨卡病毒(ZIKV)是一种与登革热病毒,西尼罗河病毒和丙型肝炎病毒(HCV)有关的黄病毒,具有单链RNA基因组,编码多蛋白,共翻译和翻译后加工成三个结构蛋白,前体膜和包膜以及七种非结构蛋白。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "据报道,有研究学者使用人类神经前体细胞和神经细胞 SK-N-BE2 进行整合蛋白质组学方法,以表征细胞在病毒侵染后的蛋白质组和磷酸化蛋白质组变化,并使用亲和蛋白质组学来鉴定ZIKV蛋白的细胞靶标。通过亲和纯化结合液相色谱和串联质谱技术(AP-LC-MS / MS)鉴定与人SK-N-BE2神经母细胞瘤细胞中表达的10种ZIKV蛋白中的每一种相互作用的细胞蛋白和相关复合物,研究鉴定到了386种 ZIKV 相互作用蛋白、ZIKV 特异性和泛黄病毒活性相关的宿主因子,这些宿主因子已知与神经元发育、视网膜缺陷和不育相关。由此,相关论文作者绘制了神经元细胞中的ZIKV蛋白-宿主蛋白相互作用网络。此外,研究还分析确定了在 ZIKV 感染后特异性上调或下调的1,216个磷酸化位点,表明病毒感染引起基本信号传导通路为 ZIKV 感染引起的增殖停滞提供了新的见解。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "当前,span style="text-indent: 2em "通过比较蛋白质组学对病毒感染前后的蛋白表达图谱进行鉴定,进一步对病毒感染引起的差异表达蛋白进行功能分析和验证,探索其在病毒感染中的潜在作用机制、寻找病毒的作用靶标,为病毒的预防诊治提供理论依据和解决途径。 /span因此,在继病毒感染细胞的差异蛋白质组分析后,为更能反映真实的变化规律,更到位的解释病毒感染和致病机制,进行病毒感染宿主机体的差异及功能蛋白质组分析将是研究发展的趋势。/ppbr//ppbr//ppbr//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/spanbr//pp style="text-align: justify text-indent: 2em line-height: 1.75em "strong参考文献:/strong/pp style="text-align: justify text-indent: 2em line-height: 1.75em "董 书 伟 ,荔 霞 ,刘 永 明 ,等 .蛋 白 质 组 学 研 究 进 展 及 其 在 中 兽 医 学 中 的 应 用 探 讨 [J ] . 中 国 畜 牧 兽 医 , 2 0 1 2 , 3 9 (1 ) : 4 5 ~ 4 9 ./pp style="text-align: justify text-indent: 2em line-height: 1.75em "Liu H.Advances of SARS-Cov genome[J].Journal of Chinese General Practice,2003,2(11):1~4./pp style="text-align: justify text-indent: 2em line-height: 1.75em "Liu N,Song W,Wang P,et al.Proteomics analysis of diferen- tial expresion of celular proteins in response to avian H9N2vi- rus infection in human cels[J].Proteomics,2008,8(9):1851~ 1858./pp style="text-align: justify text-indent: 2em line-height: 1.75em "Pietro S ,Alexey S , Haas D A , et al. An orthogonal proteomic survey uncovers novel Zikavirus host factors[J]. Nature, 2018./pp style="text-align: justify text-indent: 2em line-height: 1.75em " /ppbr//p
  • 蛋白质浓度测定常用的三种方法
    测定蛋白质浓度的方法有很多,科研工作者广泛使用的方法比如紫外吸收法,双缩脲法,BCA方法,Lowry法,考马斯亮蓝法,凯氏定氮法等等 ,今天小编以UV法,BCA法,考马斯亮蓝法,其中的三种方法的测定蛋白质浓度的原理、优缺点、操作以及注意事项做详细介绍。UV法这种方法是在280nm波长,直接测试蛋白。选择Warburg 公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋白 质。从而显得结果很不稳定。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受 到平行物质的干扰,如DNA的干扰;另外敏感度低,要求蛋白的浓度较高。(1)简易经验公式 蛋白质浓度(mg/ml) = [1.45*OD280-0.74*OD260 ] * Dilution factor(2)精确计算 通过计算OD280/OD260的比值,然后查表得到校正因子F,再通过如下公式计算最终结果:蛋白质浓度(mg/ml) = F *(1/d) *OD 280 * D,其中d为测定OD值比色杯的厚度,D为溶液的稀释倍数BCA法原理:BCA(bicinchonininc acid)与二价铜离子的硫酸铜等其他试剂组成的试剂混合一起即成为苹果绿,即 BCA 工作试剂。在碱性条件下,BCA 与蛋白质结合时,蛋白质将 Cu2+ 还原为 Cu+,工作试剂由原来的苹果绿色变为紫色复合物。562 nm 下其光吸收强度与蛋白质浓度成正比。BCA 蛋白浓度测定试剂盒,Abbkine的蛋白质定量试剂盒(BCA法)提供一个简单,快捷,兼容去污剂的方法,准确定量总蛋白。成分试剂 A100 mL试剂 B2 mL标准蛋白(BSA)1 mL×2,1 mg/mL保存条件 运输温度:室温(标准蛋白 4~8 ℃ 运输)保存温度:室温(标准蛋白 -20 ℃ 保存)有效日期:12 个月使用方法方法一:96 孔板1. 配制 BCA 工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液。充分混匀。2. 将蛋白标准品按 0 μL,1 μL,2 μL,4 μL,6 μL,8 μL,10 μL 加入 96 孔板的蛋白标准品孔中。加灭菌双蒸水补足到 10 μL。取 10 μL 待测样品加入 96 孔板的待测样品孔中。每个测定要做 2~3 个平行。3. 向待测样品孔和蛋白标准品孔中各加入 200 μL BCA 工作液(即样品与工作液的体积比为 1:20),混匀。4. 37 ℃ 温浴 30 min。冷却至室温。5. 酶标仪 562 nm 波长下测定吸光度。6. 制作标准曲线。从标准曲线中求出样品浓度。方法二:试管法1. 配制工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液,充分混匀。工作液配制的量要与测定所用的比色杯对应。每个测定要做 2~3 个平行。本处列举的比色体系所用的是 0.5 mL 的比色杯。如比色杯规格不同,体系需要放大到实验将采用的比色杯准确读数所需要的体积。2. BSA 标准品和样品的准备:样品用水或其它不干扰显色反应的缓冲液配制,使待测定的浓度位于标准曲线的线性部分。每个反应准备 3 个平行测定。标准曲线一般 5~6 个点即可。根据样品的估测浓度确定各点的具体浓度。稀释 BSA 时可以用水或与样品一致的溶液。如待测样品的浓度约为 200 μg/mL,可按下表的次序加入 BSA 标准品、样品及 BCA 工作液。3. 取适量体积的标准蛋白,以蛋白液:工作液=1:20 的比例混匀。37 ℃ 温浴 30 min。冷却至室温。4. 将样品与标准品在 562 nm 波长下测定吸光度。考马斯亮蓝法实验原理:考马斯亮蓝 (Coomassie Brilliant Blue) 法测定蛋白质浓度,是利用蛋白质―染料结合的原理,定量测定微量蛋白浓度快速、灵敏的方法。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。目前,这一方法是也灵敏度最高的蛋白质测定法之一。考马斯亮蓝 G-250 染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰 (lmax) 的位置,由 465 nm 变为 595 nm,溶液的颜色也由棕黑色变为蓝色。通过测定 595 nm 处光吸收的增加量可知与其结合蛋白质的量。研究发现,染料主要是与蛋白质中的碱性氨基酸 (特别是精氨酸) 和芳香族氨基酸残基相结合。突出优点(1)灵敏度高,据估计比 Lowry 法约高四倍,其最di蛋白质检测量可达 1 mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比 Lowry 法要大的多。(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要 5 分钟左右。由于染料与蛋白质结合的过程,大约只要 2 分钟即可完成,其颜色可以在 1 小时内保持稳定,且在 5 分钟至 20 分钟之间,颜色的稳定性最好。因而完全不用像 Lowry 法那样费时和需要严格地控制时间。(3)干扰物质少。如干扰 Lowry 法的 K+、Na+、Mg2+ 离子、Tris 缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA 等均不干扰此测定法。缺点(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用 g-球蛋白为标准蛋白质,以减少这方面的偏差。(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、 Triton X-100、十二烷基硫酸钠 (SDS) 等。试剂与器材1、试剂 考马斯亮蓝试剂:考马斯亮蓝 G-250 100 mg 溶于 50 mL 95% 乙醇中,加入 100 mL 85% 磷酸,用蒸馏水稀释至 1000 mL。2、标准和待测蛋白质溶液(1)标准蛋白质溶液结晶牛血清蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度用 0.15 mol/L NaCl 配制成 1 mg/mL 蛋白溶液。(2)待测蛋白质溶液。 人血清,使用前用 0.15 mol/L NaCl 稀释 200 倍。3、器材 试管 1.5×15 cm(×6),试管架,移液管管 0.5 mL(×2) 1 mL(×2) 5 mL(×1);恒温水浴;分光光度计。操作方法 一、制作标准曲线 取 7 支试管,按下表平行操作。摇匀,1 h 内以 0 号管为空白对照,在 595 nm 处比色。绘制标准曲线:以 A595 nm 为纵坐标,标准蛋白含量为横坐标,在坐标纸上绘制标准曲线。二、未知样品蛋白质浓度测定 测定方法同上,取合适的未知样品体积,使其测定值在标准曲线的直线范围内。根据所测定的 A595 nm 值,在标准曲线上查出其相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/mL)。注意事项(1)在试剂加入后的 5-20 min 内测定光吸收,因为在这段时间内颜色是最we定的。(2)测定中,蛋白-染料复合物会有少部分吸附于比色杯壁上,测定完后可用乙醇将蓝色的比色杯洗干净。(3)利用考马斯亮蓝法分析蛋白必须要掌握好分光光度计的正确使用,重复测定吸光度时,比色杯一定要冲洗干净,制作蛋白标准曲线的时候,蛋白标准品最好是从低浓度到高浓度测定,防止误差。
  • 蛋白质样品清洁验证中TOC分析仪的比较
    总有机碳TOC一般理论所有TOC分析仪都具备两种功能:将水中有机碳氧化成二氧化碳CO2,并测量所产生的CO2。TOC可用于对未正确清洁的设备中的杂质和残留物进行定量,以及检测所有含碳化合物:药物活性成分 (Active Pharmaceutical Ingredients, API)、清洁剂、蛋白质和中间产物。用来测量TOC的分析技术有着相同的目标:把有机分子完全氧化成CO2,检测所生成的CO2,并以碳浓度表示。所有方法都必须区分无机碳和有机碳,无机碳可能来自水中溶解的CO2和重碳酸盐,而有机碳则是由样品中有机分子氧化而成的。总碳(TC)是有机碳与无机碳之和,因此测得的总碳(TC)减去测得的无机碳(IC)的值就是TOC:TOC=TC–IC。各种TOC测定仪的不同之处在于氧化样品水中有机物的方法,以及检测样品中所生成CO2浓度的方法。不同的检测方法对样品分析的准确度有很大影响,进而影响清洁验证检测程序。TOC氧化技术市面上所有TOC测定仪都使用以下两种方法之一来氧化有机化合物并将之转换为CO2气体:燃烧法,或紫外(UV)+过硫酸盐法。燃烧技术使用氮气、氧气或空气流,温度在600°C以上。燃烧方法在氧化步骤中也使用催化剂。该类方法中常用的催化剂有氧化铜、氧化钻或铂。UV过硫酸盐氧化方法利用UV光使有机物完全氧化为CO2。将样品暴露在设备内汞蒸汽灯的UV光之下,将样品内的有机物转化为CO2气体。对于浓度大于1 ppm的样品或化合物 ,则在样品流中加入过硫酸盐并混合均匀,从而利用接受照射的样品生成的负价氢氧(HO-)基来确保氧化过程顺利进行。过硫酸盐是一种强氧化剂,在UV辐射下生成硫酸盐和氢氧基,可将有机化合物完全氧化为CO2。TOC检测方法为检测CO2浓度,分析仪器需要使用检测方法以区分样品中的CO2和其他分子。现有两种检测方法:非色散红外(Non-Dispersive Infrared, NDIR)或电导检测。用于气体测量的NDIR技术依靠各种气体在红外光谱范围内的能量吸收特征来判别分子类型。运用NDIR技术的TOC测定仪使红外线穿过两根完全相同的导管射入检测器。第一个导管作为参比池,充满无红外吸收的气体,如氮气。第二个导管(池)用于气体样品的测量。电导检测方法使用电导传感器,通过计算电导率确定CO2的浓度。为计算TOC,水溶液通过两个电导传感器,其中一个检测总碳(TC)浓度而另一个检测无机碳(IC)浓度。根据检测结果,计算出样品的TOC浓度。NDIR方法可对含碳范围在0.004–50,000 ppm的样品进行定量,而电导率法可以进行十亿分之一(part per billion, ppb)级的定量。总体而言,NDIR和电导率检测器对于低浓度的TOC有足够的灵敏度,但会受到离子干扰。使用只允许CO2选择性透过的半透膜可减轻此因素的影响。Sievers TOC技术与众不同的特点结合使用UV过硫酸盐氧化与独特的选择性CO2膜技术,是Sievers系列TOC分析仪优于常规TOC技术(如燃烧 NDIR技术)的众多要素之一。Sievers技术能持续为用户提供更为精确的TOC读数。在Sievers基于选择性膜的电导方法中,CO2传送模块中的选择性CO2膜可阻止离子进入,在使CO2无阻通过的同时,排除了干扰化合物和氧化副产物。选择性CO2膜消除了背景干扰,并防止非碳基化合物和副产物聚集。清洁验证是一项充满挑战的工作,因为各种样品的TOC浓度有时是未知的,因此很难达到最佳分析条件。以下几个优点确保了UV过硫酸盐+膜电导技术在清洁验证应用中无可比拟的分析结果。试剂自适应功能保证完全氧化为使清洁验证样品完全氧化,Sievers M系列TOC分析仪具有试剂自适应功能,可优化酸和过硫酸盐氧化剂的流量。非催化燃烧方法非催化燃烧方法消除了向燃烧反应器中添加催化剂的定量(根据样品中碳浓度而定)时的人为误差。燃烧氧化方法会产生毒性气体。若清洁验证样品中含氯化物,燃烧可能生成对人体有潜在危害的气体,某些TOC分析仪不吸收这类气体。无需NDIR检测器NDIR检测器需要一定的时间来预热 (30到45分钟),因此造成更多的停工时间和样品积压。NDIR技术需要经常进行校正(每小时或每天),具体时间由清洁验证样品的碳浓度决定。这类检测器经常出现校正漂移现象。校正时间占NDIR仪器运行时间的6%到10%。不用载气NDIR检测器的载气价格不菲,并且泄漏和不稳定的校正经常会引起高TOC背景。载气污染也可能造成检测困难和引起碳的高背景。出色的灵敏度和高回收率Sievers TOC分析仪的电导池由高纯度石英制成,提供更佳的稳定性和0.03 ppb级别的检测。图1和表1从灵敏度和TOC回收率两个方面,就牛血清蛋白(Bovine Serum Albumin, BSA)对Sievers TOC技术与传统燃烧-NDIR TOC技术进行比较。图1. 牛血清蛋白 (BSA) TOC回收百分比对比研究表1. 牛血清蛋白 (BSA) TOC回收百分比对比研究****该对比研究使用完全校准后的仪器。分析之前,先进行并通过系统适应性测试。对两种仪器,制备并使用同一BSA储各溶液。研究在可控的环境中进行;分析期间,仪器未出现偏差。为什么说现在正是改用Sievers TOC分析仪进行清洁验证的时候?HPLC分析很漫长,增加了实验室清洁验证分析所需时间。使用HPLC将导致数小时或数天的停工,造成高额成本并减少提供给患者的产品数量。有例子表明,某些制药企业单日停工损失超过100万美元。表2将Sievers TOC分析仪与燃烧/催化-NDIR和燃烧-NDIR TOC分析仪进行了详细比较,其中包括估算的月运行成本。TOC是一种用于低浓度级别有机化合物检测的、简单快速的分析方法,并且可用于检测无法使用HPLC检测的污染物。与常规方法相比,TOC已被证明可减少75%以上的停工时间和方法验证时间。FDA出台的指导方针——21世纪现行药物生产质量管理规范 (cGMP' s for the 21st Century),旨在加强和更新药物制造规则,使用TOC分析进行清洁验证,与专属性分析方法相比 (如HPLC)在质量和效率上的优势已引发越来越多的关注。表2. TOC方法比较◆ ◆ ◆联系我们,了解更多!
  • 西湖大学研究员项目获数千万种子轮融资,利用蛋白质组学+AI辅助精准诊疗
    西湖大学自主科技成果转化再落地  将蛋白质组大数据与人工智能相结合,致力于开发基于蛋白质组和其他分子组学的辅助临床诊断新方法,助力实现肿瘤等人类重大疾病的精准辅助诊断——近日,由辰德资本、高榕资本共同领投,高瓴创投跟投的“西湖欧米生物科技有限公司”得数千万元种子轮融资,其核心技术来自于西湖大学郭天南实验室,西湖大学成果转化办公室全程助力。  此前,郭天南实验室与合作团队率先完成了COVID-19轻重症患者的血清蛋白质组与代谢组的分析,发现了重症患者一系列特征性的重要生物标志物,并绘制世界首张新冠肺炎致死患者多器官蛋白质分子调控的全景图,相关研究成果均发表在Cell杂志上。  我们的故事可以从这里说起  人们在吞咽的时候,颈部有个器官会随着吞咽动作上下活动,它就是甲状腺。西湖欧米有望实现临床转化的第一个项目,就是基于蛋白质标志物的甲状腺结节的良恶性诊断。  甲状腺很小,但它影响到五脏六腑。数据显示,每5个成年人中就可能有1人患有甲状腺结节。其中,约60%的甲状腺结节都是良性的。但有10%的结节是恶性的,剩下约30%难以判断,无论通过血液检测、B超、CT还是甲状腺组织穿刺活检,都难以辨别到底是良性还是恶性。很多人不得不选择手术切除——代价是终身服药补充甲状腺素,以维持体内的甲状腺激素在正常水平。国外有数据显示,切除甲状腺的患者中,70-80%都不用挨这一刀(即实际上为良性结节)。  科学家们曾经寄期望于基因检测解决这一难题。但经过十几年的尝试发现,基因诊断能够达到的特异性也仅在10%~50%左右,这主要是因为甲状腺结节恶性程度低等原因,基因水平上的改变并不频繁、也不明显。  作为一名蛋白质组学专家,郭天南选择从“蛋白质”入手破题。  一个人从出生到死亡,从健康到疾病,绝大多数情况下基因都是不变的。但蛋白质不一样。在不同健康状态下,人体内的蛋白质会发生变化。难点在于,这种变化非常细微,怎么才能检测到?  郭天南说:“在宏观世界里,我们辨识一个人是通过看他的脸部特征,但在分子水平我们是看不到的。所有的蛋白质,即使你能看到,因其复杂的结构也很难准确辨识。我们是通过测量它的重量,来鉴定这是一个什么样的蛋白质。给蛋白质称重的这杆‘秤’叫质谱仪,我们目前的质谱仪可以达到约小数点后30位(kg)的精度,当然这后面涉及到很多数学计算,包括多个物理、化学等过程。”  但即使做到这一步,结节的良恶性辨别依然很艰难,因为这样的差别是由质谱数据中众多因素的复杂关系所决定的,是一个模式识别问题。而这正是西湖大学人工智能领域专家李子青的擅长。  在李子青看来,从甲状腺结节质谱大数据中鉴别其良恶性,就像从一张图像中辨识“两个”长像类似的人脸。研究团队采用了机器学习的方法,从原始质谱数据中选择出2622个有意义的候选特征蛋白质,并通过神经网络技术构建了一套适用于蛋白质组学数据的独特的算法,将2622个蛋白质组学数输入了这个模型,进行了大约 2*1019次运算,终于找出了能够帮助医生辨别患者结节良恶性的20个关键蛋白。用这套模型给这20个蛋白的总体情况打分(分值在0-1之间):当综合得分大于等于0.5,即为恶性结节 小于0.5,就是良性结节。临床试验显示,这种检测方法的综合准确率达到了89%。  蛋白质组学+AI技术  未来的运用场景远远不止于甲状腺结节  作为一门新兴学科,蛋白质组学(proteomics)是继基因组学、转录组学后人类对生命活动奥秘探究的又一突破。人类的几乎所有生命活动都是由人体内的蛋白质执行的,疾病治疗的效果也取决于蛋白质机器的调控。未来蛋白质组学+AI技术的运用场景,远远不止于甲状腺结节。  比如我们可以用它来筛选治疗肿瘤的药物。徐峥导演的电影《我不是药神》里面说到白血病中有一类叫慢性髓系白血病,几乎90%的这类患者都会出现一个特殊的融合蛋白BCR-ABL,科学家找到一个叫伊马替尼的药,可以有效抑制这个融合蛋白的功能,有效率可以达到90%以上。研究表明,每个肿瘤都可能有一个或多个这样的引起疾病的异常蛋白,并且还可能随着疾病的演进出现改变。这时如果能通过蛋白质组学+AI技术,实时找到当前疾病阶段的异常蛋白,就能实现“对症下药”。  蛋白质组学正在构建下一个生物医药风口  在郭天南实验室这一科研成果转化的过程中,西湖大学成果转化办公室从技术保护、政策咨询、法务服务、融资建议、团队搭建等方面为企业所做的深度培育,加速推进了技术走向市场的进程。相信随着分子医学、大数据技术和人工智能的快速发展,蛋白质组学在精准医疗领域将发挥出越来越大的应用潜力。  关于西湖欧米  创始人郭天南博士表示,“蛋白质组学在精准医疗中广泛应用的黄金时代正在来临。我们的使命是在尽可能短的时间内,从尽可能小量的生物样本中,对尽可能多的蛋白质进行准确定量,进而解析生命活动的数学规律,最终实现基于蛋白质组的精准医疗。未来,我们将不断挑战世界技术难题,突破极限,助力人类重大疾病辅助诊断技术。”
  • 谁是蛋白质质谱与蛋白质组学领域世界第一牛人?
    俗话说:文无第一,如果非要整出个蛋白质质谱与蛋白质组学领域世界第一牛人,显然并不是一件容易的事,也注定是一件有争议的事。作为一个半路出家的准业内人,我就本着无知者无畏的革命精神,说一下我自己心目中的第一牛人:Ruedi Aebersold。  考虑到科学网的大多数网友对蛋白质组学并不了解,先简单科普一下,根据百度百科的定义:“蛋白质组学(Proteomics)一词,源于蛋白质(protein)与 基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。” 1995年(也有1994,1996年之说)Marc Wikins首次提出蛋白质组(Proteome)的概念1,1997年, Peter James(就职于有欧洲MIT之称的瑞士联邦工学院(ETH))又在此基础上率先提出蛋白质组学的概念2。基因组学和蛋白质组学的概念又进一步催生了N多的各种各样的组学(omics),两者的诞生的发展,也使系统生物学成为可能,本文的主人公Ruedi Aebersold与Leroy Hood一起于2000年在美国西雅图创办了系统生物学研究所(ISB),该所的建立不但标志着系统生物学作为一门独立的学科的诞生(此句话貌似不靠谱,参见文后14楼的评论),也带动了包括蛋白质组学在内的多种组学的发展,当然各种组学的发展也同时促进了系统生物学的发展。尽管日本也于2000年在东京建立了系统生物学研究所,但是同为第一个吃螃蟹的,东京的这个所,无论是学术水平还是世界影响都无法和西雅图的那个系统生物学领域的麦加相提并论。闲话少叙,我之所以认为Ruedi Aebersold是蛋白质质谱与蛋白质组学领域世界第一牛人,是基于如下原因:  Ruedi Aebersold对蛋白质组学的最大贡献可谓是同位素代码标记技术(ICAT),现在这一蛋白组定量技术自从1999年在Nature上发表以来,该技术已世界广泛应用,该论文迄今(截至2013年1月11日)已被引用了近3000次。Web of Science的检索结果显示,蛋白组学领域迄今已经至少有超过10万篇论文发表,按照被引用次数排名,该论文位居第三位。有意思的是,被引用次数排第四位的是Ruedi Aebersold和另外一位牛人Mathias Mann(下面会介绍)于2003年发表在Nature上的有关蛋白质质谱与蛋白质组学的综述论文,迄今也已被引用近2800次。而引用次数排第一和第二的两篇论文的通讯作者并算不上是蛋白质质谱与蛋白质组学领域的,蛋白质组学仅仅是他们使用的工具,他们的影响也在这个领域之外。蛋白质组学领域,最重要的专业协会应该算是HUPO (国际人类蛋白质组组织), 最重要的专业会议也当属HUPO世界大会,Ruedi Aebersold曾获HUPO含金量最高的成就奖,他本人也经常是HUPO世界大会的分会主席或大会特邀报告人。当然Aebersold还获得了包括美国质谱协会(ASMS)大奖在内的许多专业大奖。可能有人会列出另外的自己心中的第一牛人(如上述的Mathias Mann),但Ruedi Aebersold无疑至少是领域内公认的前几位的世界级牛人。另外,顺便说一下德国马普所的Mathias Mann(其在丹麦首都也有实验室),Mann和Aebersold可谓是蛋白质组学领域的双子星座,都是该领域的顶级牛人,Mann发表的论文有多篇都在蛋白质组学领域被引用次数前10位,不少被引用次数都上千次。上述的Mann和Aebersold两人能在Nature发表综述论文也说明了他们的江湖地位。Aebersold和Mann所发表的论文总被引次数分别超过了5万和3万次,这个数字在世界所有领域都是惊人的。另外,Mathias Mann在蛋白质组学最大的贡献可以说是发明了蛋白质组体内标记技术SILAC3,这种技术与Ruedi Aebersold发明的ICAT已及另外一种标记iTRAQ是公认的应用最为广泛的蛋白质组学定量标记技术。  今年年近花甲的Ruedi Aebersold是世界蛋白质组学的开拓者之一,现在在上述的ETH的工作,和最早提出蛋白质组学Peter James在同一个大学。作为土生土长的瑞士人,Ruedi Aebersold是在2004年底、2005年初才开始在ETH全职工作的,可谓是瑞士的大海龟。Ruedi Aebersold此前在西雅图的ISB和华盛顿大学工作,作为ISB的元老和共同创办人,Ruedi Aebersold现在还是ISB的兼职教授,发表论文时也还署ISB地址。Mann和Aebersold都是欧洲人,现在又都致力于将蛋白质质谱与蛋白质组学应用到临床,尽管蛋白质组学已有十多年发展历史,现在最大的一个瓶颈可以说在基本无法应用到临床,现有的技术,对于临床应用而言,时间和经济成本都太高(无法高通量、检测成本太贵)。这一块硬骨头显然不是一般人能够啃得动的,需要从临床样品制备、质谱技术到数据分析都要有突破甚至革命性的创新,我很期待,也相信Mann和Aebersold有能力最终使蛋白质组学(尤其是基于此的生物标志物鉴定技术)应用到临床。  我国在蛋白质质谱与蛋白质组学领域在世界上最出名的无疑非贺福初莫属,贺福初的名字在国内搞蛋白质组学应该都知道他的名字,他的头衔很多(如将军、院士),我就不一一列举了,新年伊始他又多了一个牛头衔:万人计划中的科技领军人才。贺的工作和学术水平,我不熟悉,不敢评头论足。他的文章被引用次数最高的是发表在Cancer Research一篇论文,迄今已有126次,但并非是蛋白质组学领域。在蛋白质组学领域,他的被引次数(含自引)最高的论文是2007年发表在蛋白质组学顶级期刊MCP的文章4,迄今已有105次引用。蛋白质质谱领域,我国在世界上最出名的学者估计要数复旦大学的杨芃原了,他的被引用次数最高的一篇论文,是2005年发表在化学顶级期刊德国应用化学的文章5,迄今已被引用70次,杨芃原为该论文的共同通讯作者。我国在蛋白质组学目前被引用次数最高的是南开大学王磊(澳大利亚海归、长江学者)2007年发表在美国科学院院刊(PNAS)的论文6,迄今被引次数已经超过500次。  蛋白质质谱仪主要生产商Thermo Fisher(即原来的Finnegan), 最近新出了本挂历,这本特别的挂历上列了13位在蛋白质质谱与蛋白质组学领域的牛人,上述的Ruedi Aebersold和Mathias Mann都在之列,其余11位简单介绍、列表如下。姓 名工作单位主要贡献Richard D. Smith美国太平洋西北国家实验室1990年首次用三重四级杆质谱Top-down(自上而下)分析完整蛋白John Yates III美国Scripps研究所SEQUEST MS/MS数据库搜索程序Joshua Coon美国威斯康星大学麦迪逊分校发明了电子转移解离技术(ETD)Neil Kelleher美国西北大学Top-down蛋白质组学Kathryn Lilley英国剑桥大学蛋白质组学定量技术Pierre Thibault加拿大蒙特利尔大学应用生物质谱和蛋白质组学到细胞生物学Michael MacCoss美国华盛顿大学(西雅图)稳定同位素标记技术Albert Heck荷兰Utrecht大学基于质谱的结构生物学Catherine Costello美国波士顿大学HUPO前任主席,质谱技术发展及应用Alexander Makarov德国Thermo Fisher Scientific 生物质谱全球研发总监领导研发Orbitrap质谱仪Donald Hunt美国弗吉尼亚大学FT-MS and ETD  简单的说,上述13位世界级牛人都来自欧美,没有一位来自亚洲,也没有一位华人。我不知道以Ruedi Aebersold代表的上述牛人是如何炼成的,但可以肯定的是:他们不是欧美版的“百人”计划,也不是“千人”计划,更不是“万人”计划而“计划”出来的。网上的公开信息表明:Ruedi Aebersold除了在国际专业协会和期刊有学术兼职外,没有任何行政职务,就是一普通教授,但是这不妨碍他成为蛋白质质谱与蛋白质组学领域世界第一牛人。
  • 威斯康星大学李灵军自然通讯最新成果:胰腺蛋白质组的质谱定量分析揭示癌症相关特征
    仪器信息网讯 胰腺是人体最重要的器官之一。它产生胰岛素来调节血糖和帮助消化食物。如果胰腺失控,糖尿病、癌症或其他疾病就会威胁生命。然而,关于胰腺如何使人们保持健康以及器官如何衰竭,还有很多未知之处。数以万计的蛋白质控制着胰腺的工作方式:它如何生长和发育,如何产生消化酶以及如何分泌胰岛素。因此,科学家需要进一步了解蛋白质结构如何随时间变化,以帮助开发针对糖尿病或癌症的治疗方法。  基于此,威斯康星大学麦迪逊分校药学院与化学系的李灵军课题组与医学和公共卫生移植外科医生Jon S Odorico合作开展了追踪从出生前到成年后期胰腺蛋白质组(整套蛋白质)变化的相关研究。研究团队还开展了细胞外基质(extracellular matrix,ECM)的研究和分析,该物质能够指导细胞分化、迁移、形态和功能,对于在实验室细胞培养和器官移植过程中生长和支持胰腺细胞至关重要。但在人类胰腺研究中,目前尚未系统研究过不同发育阶段的ECM蛋白质组。该研究中,科学家们应用了基于质谱的定量蛋白质组学策略,并描述了四个年龄组的全蛋白质组和ECM特异性变化:胎儿(妊娠18-20周),青少年(5- 16岁),青年(21-29岁)和老年(50-61岁)。研究团队鉴定了3523种蛋白质,其中包括185种ECM蛋白质,并对其中的117种进行了定量。课题组检测了胰腺发育和成熟过程中以前位置的蛋白质组和基质组的特征。他们还使用免疫荧光染色观察特异性CEM蛋白质,并研究CEM在胰岛和腺泡间的定位变化。该研究全面的蛋白质组学分析有助于深入了解CEM在人类胰腺发育和成熟过程中所起的关键作用。  成果表明,胰腺在人类整个童年时期都会显著重塑其蛋白质,最终在成年阶段稳定。值得一提的是,与癌症相关的蛋白质之间存在明显的年龄特异性变化,这一发现有助于研究人员加深对胰腺癌的了解。  该成果于2月15日发表在《自然通讯》杂志上,论文题目为“Proteome-wide and matrisome-specific alterations during human pancreas development and maturation”。论文链接:https://www.nature.com/articles/s41467-021-21261-w关于研究团队:威斯康星大学麦迪逊分校 李灵军教授    李灵军教授在神经肽和功能性肽组学研究领域取得了开拓性的成果。她所带领的课题组针对神经生物学中的关键性课题,开发了一系列的基于质谱和微分离技术的研究平台,对由分子、细胞水平认识神经肽的功能以及神经退行性疾病生物标志物的发现作出了突出的贡献。据仪器信息网跟踪报道,李灵军教授曾荣获美国质谱学会颁发的Biemann奖章,是世界质谱领域的最高荣誉之一,授予那些长期在质谱学研究领域做出突出贡献的学者。此外,2016年英国分析科学家网站公布了全球50位最具影响力女性分析科学家名单,李灵军教授也荣誉获选。  在以往的采访中,李教授也曾表示:”我最热衷于开发新型分析工具和策略来解决具有挑战性的生物问题。我们很高兴开发一套用于发现神经肽功能的多功能质谱工具,并使用这些技术来提高我们对大脑工作原理的理解。最近,我们正致力于开发用于定量MS分析和系统生物学中高通量测量的新型化学标签。我也热爱培训和指导研究生和博士后,并帮助他们过渡到成功的职业生涯的这个过程。”课题组官网: https://www.lilabs.org/  团队合照
  • 蛋白分子质谱诊断先行者许洋:蛋白质谱目前有三种临床应用
    p  用于生物样品分析的蛋白指纹法,该专利技术被国际顶级科学杂志《科学》以及医学界权威杂志《柳叶刀》评为世界蛋白指纹图谱和蛋白质芯片排名第一的技术。针对这项技术的一些问题,火石创造对许洋博士进行了深度的专访。/pp style="text-align: center "img width="300" height="385" title="001.png" style="width: 300px height: 385px " src="http://img1.17img.cn/17img/images/201711/insimg/ebf3be8e-c0c2-49d6-9891-a76d207d183f.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strong  许洋博士/strong/pp  许洋博士一直致力于蛋白质组学研究开发,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。2009年他创办了湖州赛尔迪生物医药科技有限公司,凭借专利产品蛋白指纹图谱仪成为行业领头羊,也成为此类器械行业标准的起草者。/ppstrong  火石:请问您为什么做蛋白质谱?/strong/pp  许洋博士:我研究蛋白质谱是偶然也是必然。在美国纽约著名的Sloan-Kettering研究所单克隆抗体实验室早期研究治疗白血病时,我们制造了全世界第一枚人源化单克隆抗体(抗CD33人源化单抗)。后来我又和顶尖美国公司合作第一个将人源化单克隆抗体做成了靶向药。有了扎实的基础,必然能在更窄的蛋白质谱领域做的更好。/pp strong 火石:蛋白质谱当前的临床应用情况如何?/strong/pp  许洋博士:只有拿到医疗器械注册证才算进入临床,蛋白质谱目前只有三种临床应用:对肿瘤的筛查 对早期肾脏疾病的分析 在细菌上的鉴定应用。蛋白质谱在国内仍处于非常早期的阶段,且具有垄断性,极少人能做且在做。/ppstrong  火石:作为国家“千人计划”医疗器械特聘专家,您认为蛋白指纹图谱仪在医疗器械中的角色是什么?/strong/pp  许洋博士:蛋白指纹图谱仪分析的大数据可以生动地比喻为人体疾病的健康地图。/pp  蛋白指纹究竟是什么?把质谱仪的显示屏中的每一个蛋白质都用一个分子量来表达,这些分子量组合起来就叫蛋白指纹。就像每个人的指纹都是不同的,每种疾病的特定蛋白质表达物也不同,称之为指纹图谱。蛋白指纹图谱技术是由蛋白质芯片及分析仪器——表面加强激光解析电离飞行时间质谱仪两部分组成,可以将病人血清中蛋白质成分的变化记录下来,绘制成蛋白指纹质谱图,并显示样品中各种蛋白的分子量、含量等信息。将这张图谱与正常人、某种疾病病人的谱图或基因库中的谱图进行对照,就能最终发现和捕获新的特异性相关蛋白及其特征。这种方法具有微量、精确、简易、快速的特点,适应于基础和临床等各个领域。/pp  之所以将蛋白指纹图谱仪分析的大数据比喻为人体疾病的健康地图(MAP),是因为既然β2—微球蛋白是11731、人绒毛膜促性腺激素是37580、转甲状腺素蛋白是13761(数字对于计算机的应用更好管理),而每个蛋白质在质谱仪分析中都是数字,它本身就是大数据。任何物质在质谱底下都是数字,综合起来就是大数据。我把大数据串联起来,就能将分子在身体的MAP做出来。譬如一位吸烟的男士来体检,能发现他吸了烟数年之后肺部出现影像学病理性位点,结合质谱仪分析发现相关的疾病标志物,我们能够模拟出肺部疾病的健康地图,即通过质谱仪检测的健康大数据,可以模拟出该患者肺部出现了数个小红点,点击每个红点后都会解释原因,如显示铅、铬等数据是否超标,以及告诉你相应的对策。这样的技术开启了全智能健康4.0时代。/pp  Tips:β2—微球蛋白(β2—MG)被认为是诊断早期肾功能损伤的敏感指标,尤其对于糖尿病肾病、高血压肾病、红斑狼疮肾炎的早期诊断具有重要参考价值,因此β2—微球蛋白的测定在临床上是有多种价值的。/pp  strong火石:您和您的团队在蛋白质组学研究的技术或者方法上有什么突破吗?/strong/pp  许洋博士:蛋白质作为标志物对肿瘤的诊断,确实没有太大的进展。/pp  一直以来蛋白质组学研究面临的重大瓶颈是蛋白质分离问题:人体内有十万种蛋白质与衍生物,多数可能与疾病有关联,但这十万种蛋白质与衍生物只有分开后,质谱才能分析清楚。此前蛋白质组学技术中最流行、最通用的蛋白质分离方法是双向电泳,基本上能分离近二千种血浆蛋白质,远远不及十万种,所以成为了瓶颈。/pp  2006年我提出了一个设想:和蛋白有关的抗体至少有一万多种,那为什么不用抗体来分离蛋白质?这件事一直有人在做,但之前都没有人想到用抗体组把一千个蛋白质一次性快速、实时地分离出来。之后就诞生了免疫质谱分析方法(专利号ZL 200610140652.0),可以在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析,还可以同时检测多个生物标志群。用免疫组质谱技术能测定抗原变异片段的分子量。另外,还可以将多种疾病特异性抗原的抗体同时标在一个基质点上。/pp  Tips:免疫质谱分析方法:质谱与抗体分离技术联合应用即为免疫组质谱(Immunomic mass spectrometry,IMS)。免疫组质谱检测为一组多种(类)抗体与质谱联合来精确地鉴别变异或修饰生物标志群的方法。在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析。可以同时检测多个生物标志群(biomarkers)。/pp  双向电泳(Two-dimensional electrophoresis):是一种等电聚焦电泳与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术。目前是快速成长的蛋白质组学技术中最流行最通用的蛋白质分离方法。目前2D-PAGE能够在同一块凝胶上同步检测和定量数千个蛋白质。/pp  从整个2015年的政策看,医疗器械行业是受到国家大力扶持的,行业地位与重要性大幅提升,法规向国际化看齐,行业监管不断趋严,医疗器械正成为与药物齐头并进的新兴产业。/pp  strong火石:是什么驱动着行业的高增长?/strong/pp  许洋博士:一是需求,老龄化加剧,家庭支付能力增强,导致医疗需求高增长 二是政府加大医疗卫生投入,《医疗器械科技产业“十二五”专项规划》表示,“十二五”期间将扶植形成8~10家产值超过50亿元的大型医疗器械产业集团 三是为配合新医改完善基层医疗建设的目标 四是国内生物技术研发应用进入突破期。/pp  strong火石:您认为接下来医疗器械未来发展的特点和前景会是怎么样的?/strong/pp  许洋博士:未来5年,医疗器械和制药占比将会达到1:1。近十年,我国医疗器械市场规模快速增长,国内医疗器械工业总产值从2003年的189亿人民币上升到2013年的1889亿,2013年同比增长21%,增长速度远快于药品。预计在未来5年左右,我国医疗器械行业仍然将保持高速增长。医疗器械行业涉及到医药、机械、电子、塑料等多个行业,中高端医疗器械更是多学科交叉、知识密集、资金密集的高技术产业,研发成本高,决定了只有大型厂商才能在大中型医疗器械方面有所作为。此外,器械“国产化”也会成为必然趋势。/pp  strong火石:赛尔迪当前开展的业务、研发的产品有哪些?公司部署战略是怎么样的?/strong/pp  许洋博士:我们现在正在做一张人类的大健康MAP。通过精准医疗计划,基于环境健康大数据,通过蛋白指纹图谱仪完成健康管理。现在的疾病市场最关注的问题分别是:检测0~6岁儿童智力、优生优育(为什么生不出聪明宝宝)、高达5千万的肿瘤人群以及3.5亿的高血压、糖尿病人群。/pp  其中糖尿病肾病是糖尿病最常见且严重的并发症之一,是糖尿病所致的肾小球微血管病变而引起的蛋白排泄和滤过异常那个渐进性肾功能损害。而微量白蛋白尿即早期糖尿病肾病是可逆的,这不同于大量白蛋白尿即临床糖尿病肾病,因此积极防治早期糖尿病肾病就显得尤为重要。去年底,赛尔迪公司与中国医学科学院北京协和医院签署协议,承担国家对糖尿病肾病体内铅、镉毒素的临床大样本检测。全新升级的蛋白指纹图谱仪,是目前唯一获国家药监局批准、能检测含微量白蛋白、β2—微球蛋白以及泛素3项指标的医疗器械。这对糖尿病肾病的早发现、早治疗具有重大意义。/pp  赛尔迪接下来将按照个体化精准检测所附带的信息,由这些信息与大数据库交流,提出符合个体化治疗的方案,向个体化精准医学管理方式转变。/pp  随着大数据时代的来临,“互联网+”概念的提出让医疗健康事业呈现出了新的发展势态和特征。医学知识体系正被大数据、精准医疗所重构,信息化进程提高了知识传递速度与医疗协同效率。/ppstrong  火石:蛋白质组学技术如何助推精准医疗?/strong/pp  许洋博士:常识知道铅、镉会引起糖尿病性肾病。但铅、镉指标不是医院常规检测的项目。如果采取个体化精准治疗,每年常规检查一次体内铅与镉的指标,发现异常就能进行针对性的从尿液排泄的治疗。已经得了肾病正在透析的病人,检测铅与镉指标后进行针对性排泄也会增强治疗效果。利用蛋白指纹图谱仪能够发现早期的肿瘤和心血管标志物,这就会对疾病的治疗带来极大的希望。随着质谱技术在精准医疗的应用,越来越多的个体化标志物将会被发现,人体的蛋白指纹图谱测定将会成为医院的常规工作。/pp  精准医疗,即考虑每一个体健康的差异,制定个性化的预防和治疗方案。正确的选中一个工具,解决关键问题,这就是精准医疗。基于基因组测序技术、生物医学工具以及大数据工具逐步成熟和完善,精准医疗能够为个体基因特征、环境以及生活习惯进行疾病干预及治疗,但如何尽快与大数据结合才是发展重点。日前我与北京协和医院合作,创立了中国特色的首个百万人疾病与环境毒素数据库与IMS(爱睦世)特检中心:HZIMS2008,首次在复杂疾病系统中构建了基于环境毒素大数据的移动网络数据库的质量控制体系,使我国重大疾病,如高血压、糖尿病、肿瘤的大数据病因学研究处于世界领先。/pp/p
  • 定量蛋白质组学揭示内质网应激作用下蛋白质的构象变化
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress1,文章的通讯作者是来自美国佐治亚理工学院的Ronghu Wu助理教授。在真核细胞中,内质网(endoplasmic reticulum,ER)负责蛋白质组中40%蛋白质的合成和成熟。蛋白质合成或折叠过程中的变化都将影响内质网的稳态,进而导致未折叠蛋白的积累和蛋白分泌效率的降低。在过去几十年的研究中,内质网应激反应被广泛研究,但是内质网应激反应后蛋白质折叠状态的变化却没有被深入研究。基于丰度的蛋白质组学方法不能直接用于分析蛋白质状态的变化,在这篇文章中,作者整合了半胱氨酸(cysteine,Cys)共价标记、选择性富集和定量蛋白质组学,称为半胱氨酸靶向共价蛋白绘制(cysteine targeted covalent protein painting,Cys-CPP),用于研究蛋白质组范围内的蛋白质结构和变化(图1A)。  使用CPP分析蛋白质结构,需要一种具有高反应活性的探针。作者设计了一种针对半胱氨酸的探针,其中包含半胱氨酸反应基团、用于富集的生物素部分和用于生成半胱氨酸特异性识别位点标签的可裂解连接部分(图1B)。以变性处理后的蛋白样品作为蛋白质展开形式的参考,计算肽段在原始样本和变性样本中的比例从而获得宝贵的蛋白质结构信息。  图1.利用半胱氨酸反应探针定量分析人细胞蛋白质组中半胱氨酸暴露率的原理。(A)Cys-CPP的一般工作流程。(B)半胱氨酸残基与探针之间的反应。富集后,进行紫外裂解,在修饰的半胱氨酸上留下一个小标记,用质谱进行位点特异性分析。  半胱氨酸暴露率Rexpo通过每条肽段在原始样本和变性样本中的比值进行计算。结果显示:(1)半胱氨酸的暴露率和溶剂可及性呈现正相关(图2C) (2)在丝氨酸和苏氨酸等极性氨基酸残基旁边的半胱氨酸具有相对较高的暴露率,这与人们普遍认为亲水残基更有可能暴露在蛋白质表面的观点一致 (3)甘氨酸和脯氨酸附近的半胱氨酸具有更高的暴露率,这是因为这两种氨基酸通常出现在蛋白质的转角和环结构中,对半胱氨酸的空间位阻较小 (4)半胱氨酸暴露率与其有/无序区(图2D)或所处二级结构(图2E)的相关性分析均表明,较低的暴露率与更稳定和结构化的局部环境有很好的相关性。这些数据结果共同证明目前的方法可以准确地测得半胱氨酸暴露率,并为蛋白质结构提供有价值的信息。  图2.HEK293T细胞中半胱氨酸暴露率的分析。(A) VAHALAEGLGVIAC#IGEK(#代表标记位点)的串联质谱样本。报告离子的强度使我们可以准确定量一个半胱氨酸的暴露率(左框为报告离子强度的放大视图)。(B)蛋白CCT3中被定量半胱氨酸的定位和暴露率演示(PDB代码:6qb8)。(C−E)比较不同的溶剂可及性(C)、预测无序区(D)和二级结构(E)的半胱氨酸暴露率。  衣霉素(Tunicamycin,Tm)可抑制 N-糖基化并阻断 GlcNAc 磷酸转移酶 (GPT)。由于蛋白质的N-糖基化经常发生在共翻译过程中,在蛋白质折叠的调节中起着至关重要的作用,所以衣霉素会引起细胞内质网中未折叠蛋白的积累并诱导内质网应激。基于此,作者用衣霉素对细胞进行处理,计算并对比了衣霉素处理样本和正常样本中的半胱氨酸暴露率。正如预期的那样,Tm处理样本中许多半胱氨酸的暴露率升高,且Tm对于蛋白质不稳定区域的作用尤为显著。根据Tm处理样本和正常样本之间半胱氨酸暴露率的差值,作者将所有位点划分为5个部分,在Tm处理下,近三分之一的半胱氨酸定位区域没有明显的结构变化(差值在-0.05~0.05之间),而28%的位点则高度暴露(差值0.15)(图3B)。对这两种蛋白质进行基因本体(GeneOntology,GO)功能富集分析(图3C),结果显示:差值在-0.05~0.05之间的蛋白通常是糖异生或折叠过后具有良好结构区域的蛋白,而差值0.15的蛋白则是与囊泡转运相关的蛋白。这表明抑制N-糖基化主要影响经典分泌途径中的蛋白质,与预期相符。  图3.利用Tm抑制蛋白质N-糖基化对蛋白质折叠影响的系统研究。(A)Tm处理和对照样品之间半胱氨酸暴露率的比较。(B) 不同暴露率变化范围内的蛋白质数量。(C)在具有高度展开或稳定区域半胱氨酸的蛋白之间进行GO功能富集分析。  由于Tm对于预先存在的、折叠良好的蛋白质所产生的影响可能远小于对新合成蛋白的影响,分别研究Tm对这两种蛋白的影响是必要的。作者通过将目前的方法Cys-CPP与细胞培养中氨基酸的稳定同位素标记(pSILAC)结合(图4A),探究了细胞中已存在蛋白和新合成蛋白在内质网应激作用下的不同变化。结果显示:(1)抑制N-糖基化对新合成蛋白的去折叠影响比对已存在蛋白的影响更显著(图4C) (2)N-糖基化除了调节蛋白质的二级结构外,在蛋白质三级或四级结构的形成中起着更重要的作用(图4D)。  图4. 抑制N-糖基化对新合成蛋白和已存在蛋白折叠状态影响的研究。(A)量化新合成蛋白和已存在蛋白折叠状态变化的实验设置。(B) 经Tm处理和未经处理的细胞中新合成和已存在蛋白质的重叠。括号内为每组蛋白质数。(C)不同蛋白质组中暴露率的分布。(D) 在有或没有Tm处理的细胞中、在不同的二级结构下,新合成和已存在蛋白之间半胱氨酸暴露率的差值分布。  本文通过设计一种半胱氨酸靶向探针,定量半胱氨酸残基的暴露率,系统地研究了蛋白质的结构以及结构的变化。结果表明,半胱氨酸暴露率与蛋白质局部结构的相关性非常好。利用该方法,作者研究了Tm引起的内质网应激反应下细胞中蛋白质的结构变化。此外,通过将Cys-CPP与pSILAC结合,研究了在内质网应激反应下原有蛋白和新合成蛋白的结构变化差异,并详细分析了内质网应激对蛋白质去折叠的影响,深入和准确地了解内质网应激下的蛋白质结构变化,有助于深入了解蛋白质的功能和细胞活性。  参考文献:[1] Yin K, Tong M, Sun F, et al. Quantitative Structural Proteomics Unveil the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress[J]. Analytical Chemistry, 2022,
  • 赛默飞:蛋白质组学研究追求定量准确、深度分析及高通量
    p style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai color: rgb(31, 73, 125) "蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质组的研究不仅能为生命活动规律提供物质基础,也能为众多种疾病机理的阐明及攻克提供理论根据和解决途径。因此,蛋白质组学研究不仅是探索生命奥秘的必须工作,也能为人类健康事业带来巨大的利益。/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai color: rgb(31, 73, 125) "蛋白质组学研究需用到二维电泳和质谱技术等多种关键技术,此外,随着蛋白质组学研究的发展,高通量和高精度的蛋白质相互作用检测、蛋白质芯片的发展等更多新技术也逐步发展起来。/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai color: rgb(31, 73, 125) "为帮助从事相关研究的用户梳理蛋白质组学研究技术及方法,仪器信息网特别策划了a href="https://www.instrument.com.cn/zt/dbzxyj" target="_blank"span style="font-family: 楷体, 楷体_GB2312, SimKai color: rgb(192, 0, 0) "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 18px "“蛋白质组学新技术、新方法”/span/strong/span/a专题,并邀请赛默飞技术专家唐家澍分享了他的观点。/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="color: rgb(192, 0, 0) "strong蛋白组学体现出三大应用倾向 /strong/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "蛋白质组学的研究对象非常广泛,从细胞系到模式动物乃至人群样品,都是典型的蛋白质组学研究对象。蛋白质组学可以为生物学和医学研究提供表达差异的变化,信号级联的传递以及蛋白质相互作用的时序以及空间调控等种种信息。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "近些年,蛋白质组学体现了几个重要的应用倾向,strong一是作为常规手段越来越多的运用到生物学功能研究中,二是针对人群队列样本的多组学整合研究从而在大数据的指导下由相关性推导出新的诊断或是治疗靶点, 三是更加精细化的着眼于单细胞的研究,从而在肿瘤异质性以及抗体筛选等前沿领域发挥作用。/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="color: rgb(0, 112, 192) "strong蛋白质和核酸以及小分子的最大不同在于以下几点: /strong/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "(1)蛋白质含量动态范围大,且蛋白质不能像DNA一样进行扩增 /pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "(2)蛋白质存在广泛的翻译后修饰和选择性剪切;/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "(3)蛋白质之间存在非常复杂的相互作用网络来执行生理功能。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="color: rgb(0, 112, 192) "strong因此可见目前蛋白质组学面临的主要挑战在于: /strong/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "(1)足够的分析速度以应对越来越大规模的队列研究 /pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "(2)足够的分析深度以实现对全蛋白质组乃至修饰组的更深度覆盖 /pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "(3)定量分析的质量以提供更加准确的表达差异的信息。 /pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "所以,strong当定量准确、深度分析和更高通量得以同时实现,那么无疑就是占领了蛋白质组学研究的制高点。/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "span style="color: rgb(192, 0, 0) "strong从质谱采集到数据分析 赛默飞方案覆盖蛋白质组学分析全流程/strong/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "ThermoFisher作为蛋白质组学的研究的领先企业,可为蛋白质组学研究提供丰富的解决方案。在定量蛋白质组学领域,ThermoFisher提供了丰富的工作模式,包括基于体外化学标记的TMT技术,用于大队列研究的DIA模式以及兼具灵敏度和高通量的SureQuant靶向定量流程以应对不同的应用场景。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "在更新兴的结构生物学领域,ThermoFisher提供了更为丰富的武器,例如化学交联质谱技术用于研究蛋白质相互作用和为蛋白质结构解析提供辅证,氢氘交换质谱用于研究蛋白质二维构象,非变性质谱用于研究蛋白质及复合物的高维结构,更有UHMR质谱使得直接分析MDa级分子量的完整病毒颗粒成为可能。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/SH100244/C242497.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 332px height: 340px " src="https://img1.17img.cn/17img/images/202004/uepic/52b82a64-fb40-43f2-89b4-ebcd2fa541d7.jpg" title="图片1.png" alt="图片1.png" width="332" height="340"//a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "a href="https://www.instrument.com.cn/netshow/SH100244/C242497.htm" target="_blank"赛默飞EASY-nLC 1200纳升级UHPLC/a/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "为了使客户能够更加系统和深入的理解复杂的蛋白质组学,ThermoFisher也提供了业内最为专业和全面的培训服务体系。从样品前处理,质谱采集,数据分析到生物信息学和实验室质控流程建立,ThermoFisher一直致力于帮助客户顺利的克服研究过程所遇到的技术问题。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "Orbitrap质谱+TMT技术 实现深度和高通量研究/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "ThermoFisher的Oribitrap系列质谱一直是蛋白质组学研究的金标准。其具有的高分辨,高灵敏度和高可靠性使得绝大多数发表于CNS等顶刊的蛋白质组学研究工作都不约而同的选择该系列仪器。Orbitrap系列质谱仪将蛋白质的定性和定量实现了完美的统一。2019年ASMS上发布的全新平台的Orbitrap Exploris 480更是将仪器的性能推向了一个全新的高度。span style="text-align: center text-indent: 0em " /span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/sh100244/C333158.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 316px height: 316px " src="https://img1.17img.cn/17img/images/202004/uepic/cd501f99-31ee-43df-8c20-d4cfae91ec73.jpg" title="图片2.png" alt="图片2.png" width="316" height="316" border="0" vspace="0"//a/pp style="margin: 10px 0px padding: 0px text-align: center background: rgb(255, 255, 255) text-indent: 2em line-height: 1.5em "a href="https://www.instrument.com.cn/netshow/sh100244/C333158.htm" target="_blank"赛默飞Orbitrap Exploris 480 高分辨质谱仪/a/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "回到我们上面所提到的定量准确,分析深度和通量的问题上,Orbitrap质谱结合多标TMT技术一直被广泛应用于定量蛋白质组学研究中。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "TMT标记试剂采用了巧妙的化学结构使得其可以在一针采集中同时分析多达11个样本。而TMT技术带来的不仅仅是分析通量的提高,将11个样本标记后同时分析实际上是提供了一个封闭的定量环境,以完全消除在前处理过程和质谱分析时可能产生的定量误差。传统基于非标记定量的策略则在定量准确性方面存在先天的劣势。除此之外,在TMT标记实验中为了得到更深的蛋白质组覆盖以及对修饰组的研究,研究者们通常还可以结合肽段分级或是修饰肽段富集等策略,以满足丰富多样的研究需求。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "在2020年ThermoFisher发布了TMTpro 16通道标记技术, 将TMT标记技术推向了新的高度,该技术已于今年3月份在Nature methods上发表。该技术刚发布便在实际的科研工作中体现了无与伦比的价值。中国西湖大学的科学家利用Orbitrap结合TMT标记技术,并结合代谢组学的数据,发现了COVID-19的病人血清中的潜在靶点,有望为预测轻症患者向重症发展提供导向。相信在往后的科研工作,尤其是基于大队列的精准医学研究中,Orbitrap结合TMTpro标记技术将会极大程度的助力广大科研人员取得更多等显著的成果。/p
  • 我国开发定量蛋白质组学数据解析软件
    中科院计算所究团队与董梦秋实验室合作,成功开发了定量蛋白质组学数据解析软件,用计算方法排除干扰信号的影响、提高肽段和蛋白质的定量准确度并对每个定量值进行准确性评价。  基于质谱的定量蛋白质组学是现代生物学技术的生长点之一,用于测量复杂生物体系中蛋白质及其翻译后修饰在不同条件下的丰度变化,是研究蛋白质功 能和药物作用机制的重要工具。已有的定量软件往往不能有效排除干扰信号,定量值的计算方法有待完善,而且缺乏准确性评价,致使输出结果&ldquo 鱼龙混杂&rdquo ,引起 的假阳和假阴两方面的困扰都比较严重。  为了更好地解决问题,开发者研究了几百个可疑定量值的原始质谱图和色谱图数据,找原因、攒经验,充分挖掘肽段的质谱、色谱信号特点以及从肽段定量到蛋白 质定量的方法,灵活应用各种组合和统计算法,建立了一整套非常细致的数据分析流程。为了验证软件的性能,董梦秋实验室的同学通过轻重SILAC或 14N/15N标记哺乳动物细胞或细菌,从10:1到1:10按不同比例混合得到14套标准样品,产生了14套测试数据集。 测试结果表明,定量结果的准确性明显超过定量蛋白质组学领域的两个主流软件Census和MaxQuant,主要表现在输出的非数比值数目(即 不能定量的部分)占总比值数目的0.01&ndash 0.5%,远低于Census的MaxQuant的对应比例2.5&ndash 10.7%和 1.8&ndash 2.7%;Census和MaxQuant输出了许多不准确结果,其定量值的标准差是软件的1.3&ndash 2倍;给出了肽段和蛋白质定量比值的置信区 间,而Census和MaxQuant没有准确性评价。目前,该研究工作得到了科技部、基金委、中科院和北京市政府的资助。
  • “临床定量蛋白质组的质谱仪以及配套试剂的研发”项目公示
    p  根据《科技部 财政部关于印发 国家重点研发计划管理暂行办法 的通知》(国科发资〔2017〕152号)、《财政部 科技部关于印发 国家重点研发计划资金管理办法 的通知》 (财科教〔2016〕113号)等文件要求,现对国家重点研发计划“精准医学研究”重点专项2017年度项目“临床定量蛋白质组的质谱仪以及配套试剂的研发”进行公示,具体内容如下:/ptable border="1" cellpadding="0" align="center"tbodytr class="firstRow"td width="134" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size: 16px font-family:宋体"项目编号/span/p/tdtd width="160" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size: 16px font-family:宋体"项目名称/span/p/tdtd width="70" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size: 16px font-family:宋体"项目牵头承担单位/span/p/tdtd width="62" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size: 16px font-family:宋体"项目br/ 负责人/span/p/tdtd width="85" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size: 16px font-family:宋体"中央财政经费(万元)/span/p/tdtd width="85" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size: 16px font-family:宋体"项目实施周期(年)/span/p/td/trtrtd width="134" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size:16px font-family:宋体"SQ2017YFSF090099/span/p/tdtd width="160" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size: 16px font-family:宋体"临床定量蛋白质组的质谱仪及配套试剂的研发/span/p/tdtd width="70" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size: 16px font-family:宋体"复旦大学/span/p/tdtd width="62" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size: 16px font-family:宋体"刘宝红/span/p/tdtd width="85" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size:16px font-family:宋体"1296/span/p/tdtd width="85" style="border-width: 1px border-style: solid border-color: windowtext padding: 1px "p style="margin-top:auto margin-bottom: auto text-align:center"span style="font-size:16px font-family:宋体"3/span/p/td/tr/tbody/tablep  公示时间为2017年11月2日至2017年11月7日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,逾期不予受理。个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。联系人和联系方式如下:/pp  1.“精准医学研究”重点专项/pp  联系人:赵凯利/pp  联系电话:010-52325612/pp  传真:010-52325607/pp  电子邮件:jzyxdcmst@vip.163.com/pp  2.申诉监督邮箱:ssjd@dcmst.org.cn。/pp  3.纪检监督邮箱:jjdd@dcmst.org.cn。/pp style="text-align: right "  国家卫生计生委医药卫生科技发展研究中心/pp style="text-align: right "  2017年11月2日/p
  • AB SCIEX 推出创新的蛋白质组学质谱应用新技术
    2011年6月8日,苏黎世联邦理工学院及 AB SCIEX(全球领先的生命科学分析技术公司)的科学家汇聚一堂,公布一项基于质谱应用的新技术,利用此项技术,科学家有史以来首次可以获得单独蛋白质组学样品分析中每个肽段的数据。SWATH 采集模式 是一项重大技术突破,使用质谱研究蛋白质组学的用户得以获知整个蛋白质组的完整数据。在与苏黎世联邦理工学院 Ruedi Aebersold 博士进行的 MRMAtlas 合作的过程中,AB SCIEX 将开发 MS/MSALL 增强功能,使 AB SCIEX TripleTOF™ 5600 系统可以运行 SWATH 采集模式供全球科学家使用。有关 SWATH 的详情将于本周在丹佛召开的美国质谱协会 (American Society of Mass Spectrometry, ASMS) 会议上公布。  SWATH 采集模式是 Aebersold 博士及其在苏黎世联邦理工学院的团队共同开发,为未来的蛋白质组学研究提供的一种新的工作流程,该系统预计将产生令人震撼的蛋白质组学新发现,并克服目前的质谱平台中因数据重复而给科学家带来的困惑。本技术关键优势在于其能提供样品的完整定量与定性结果,该结果能按照提出的新假设经电脑模拟进行回溯性的挖掘。  这一新技术是对 MRMAtlas 的完美补充,MRMAtlas 以质谱技术为基础,向大多数人类蛋白质组提供研究平台。全球科学家利用这一图谱极大推进了生物标志物研究、蛋白药物开发、基础生物及生物医学研究。MRMAtlas 提供简单及有效分析能力,探索蛋白质组中前所未见的新领域。利用 TripleTOF 5600 系统的 SWATH 采集模式,将有更多科学家能使用 MRMAtlas。  现有高分辨率及轨道阱质谱系统仅能定性检测出复杂样品中的蛋白质子集,因为它们 MS/MS 获取速度相对较慢,且为探知更准确的定量结果,常常会采用其他仪器再次进样分析样品。面对这些挑战,AB SCIEX 开发出 SWATH 采集模式可以在单一进样分析中同时对所有蛋白质与肽进行定量与定性检测。  与 Aebersold 博士及其团队共同展开的这一活动还将继续开发软件处理方法,更好解析 MRMAtlas 的数据。SWATH 采集模式 是 AB SCIEX 的 MS/MSALL 技术的延伸,只能在 TripleTOF™ 5600 上完成,这是因为需要将极高的采集速度与定量能力、精确质量及高分辨率整合在一起方可实现。MS/MSALL 以前已成功用于脂质组学及特种结构表达。现在进一步扩展此能力,MS/MSALL 采用 SWATH 采集模式,极大提高了工作效率,因此可以结合 LC/MS, 显著提高了质谱技术。  瑞士联邦理工学院(苏黎世联邦理工学院)分子系统生物学学院Ruedi Aebersold 博士、教授  “利用 SWATH 和 MRMAtlas,我们能够重新思考研究蛋白质组学的方法。我们能够利用前所未有的方法研究样品,我们预计这将产生令人震撼的新发现。与 AB SCIEX 合作使我们达到开发此项技术所必须的速度与定量层次,我们将向全球整个科学界提供这一技术。”  AB SCIEX 制药与蛋白质组学业务部总经理兼副总裁 Dave Hicks  “AB SCIEX 再一次与世界一流科学家紧密合作,推动质谱技术发展,达到其他任何厂家均难以想象的高度。TripleTOF 5600 系统提供的能力和速度使这一革命性的 SWATH 技术成为现实。我们预计这一发展将在接下来的几年中重振蛋白质组学研究。”
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙沃特世科技(上海)有限公司实验中心氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。参考文献(1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875(2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61(3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554(4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933.(5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27(6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217(7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22.(8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506(9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167(10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speedand high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820(11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414(12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40(13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52.(14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132(15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem.2011, 3, 172-177(16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 大化所高通量多重蛋白质组定量分析方法研究获进展
    近日,中科院大连化学物理研究所王方军博士、邹汉法研究员等人在高通量多重蛋白质组定量分析方法研究方面取得新进展,发展了一级质谱(MS1)谱图中六种不同蛋白质样品同时规模化定量分析的同位素标记方法,并将该方法应用于细胞蛋白质合成-降解周转更新分析,分析通量是常规同位素标记方法的三倍,研究成果发表在自然出版社新创立的综合性刊物《科学报告》(Scientific Reports, 2013, 3, 1827. doi: 10.1038/srep01827)上。  基于一级质谱(MS1)的蛋白质组学定量分析由于定量精度高,是现今蛋白质组学定量分析中应用最为广泛的分析技术。由于同位素标记的限制,现有的方法最多可以在一次液相色谱-质谱联用分析中定量三种不同的蛋白质样品,极大限制了蛋白质组学定量分析的通量。王方军博士、邹汉法研究员等人将体内氨基酸同位素标记方法与体外二甲基化同位素标记方法进行有机组合,实现了六种不同蛋白质样品的差异标记并在单次实验中实现了相对定量分析。该六重同位素标记策略还可以应用于细胞中蛋白质的合成及降解速率的高通量分析,成功测定了HeLa细胞中1365个蛋白质的合成-降解周转更新时间。此外,该工作中使用的基于MS1六重蛋白质组学定量及蛋白质周转分析软件系统也由我所自主开发,是国际上首个可以同时定量六个不同蛋白质样品的软件系统。Quant-ArMone 六重蛋白质组学定量及蛋白质周转分析软件示意图HeLa细胞内蛋白质降解动态拟合曲线示例
  • 蛋白质组学Cell重磅新成果:黄超兰团队利用新型绝对定量质谱法揭示CD3ε 的多重信号转导功能
    p style="line-height: 1.5em text-align: justify text-indent: 2em "span style="text-align: justify "日前,黄超兰课题组及合作者的最新成果,利用新型绝对定量质谱法解析T细胞受体(TCR)磷酸化修饰动态全过程,揭示了CD3ε 的新型信号转导及其在CAR-T细胞治疗中的应用。相关成果近日发表在《Cell》。/spanbr//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 193px " src="https://img1.17img.cn/17img/images/202007/uepic/c9be87de-7748-4400-ab38-28fab92a68ad.jpg" title="黄超兰.png" alt="黄超兰.png" width="600" height="193" border="0" vspace="0"//pp style="text-align: justify "strongspan style="text-align: justify "  2020年7月29日,北京大学医学部精准医疗多组学研究中心黄超兰团队,中科院上海生化与细胞所许琛琦团队、美国加州大学圣地亚哥分校惠恩夫团队,联手在Cell上发表了题为“Multiple signaling roles of CD3ε and its application in CAR-T cell therapy”的论文,该研究通过开发基于质谱的绝对定量蛋白质组新方法,揭示了T细胞受体-共受体(TCR-CD3)复合物酪氨酸在不同抗原刺激下的动态磷酸化修饰全貌,解析了不同CD3链ITAM结构域磷酸化特征的奥秘,从中发现了其中一条亚基CD3ε的单磷酸化新功能,有望助力于设计全新的CAR-T疗法。/span/strong/pp style="text-align: justify "strongspan style="text-align: justify "/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 245px " src="https://img1.17img.cn/17img/images/202007/uepic/b6abe943-5c1a-4258-8d80-ee14ae449013.jpg" title="high light.png" alt="high light.png" width="600" height="245" border="0" vspace="0"//pp style="line-height: 1.5em text-align: justify "  TCR-CD3复合物在T细胞的发育、激活及对病原的免疫反应中起着决定性作用。这一重要作用来自于CD3链胞内端的免疫受体酪氨酸激活基序(Immunoreceptor tyrosine-based activation motif-ITAM)。而ITAM的多样性功能主要取决于其结构域的酪氨酸(Tyrosine)磷酸化,比如招募SYK激酶家族蛋白ZAP70进而激活下游的信号传导。另外,ITAM的功能也被广泛应用在对嵌合抗原受体(CAR)的研究中。其中CD3ζ亚链便常用于构建CAR-T细胞疗法抗肿瘤活性,但其他CD3链的功能和对于CAR的设计也还有很多未知。/pp style="line-height: 1.5em text-align: justify "  strong深入探索 CD3 ITAM的酪氨酸动态磷酸化模式可为全面理解不同CD3链的功能提供核心信息。/strongTCR-CD3受体复合物有10个ITAM结构域分布着20个磷酸化位点,在时间分辨率下实现对全部磷酸化位点的同时定量分析在技术上极具挑战性。为了直观比较不同TCR刺激下的磷酸化模式,精确绘制出TCR所有酪氨酸磷酸化的动态过程,黄超兰团队开发了一种新颖的绝对定量方法Targeted-IP-Multiplex-Light-Absolute-Quantitative Mass Spectrometry(TIMLAQ-MS)。区别于目前报道的蛋白组绝对定量手段,不需要加入同位素重标的合成肽段,而是巧妙地利用串联质量标签(TMT),设计将6个标准样品和4个分析样品混合起来作为内标。标准样品为不同浓度梯度的合成非重标磷酸化/非磷酸化CD3肽(A)和从未经抗原刺激的T细胞中通过IgG抗体免疫沉淀下来的背景蛋白(B)的混合物 用数据依赖采集(Data-dependent acquisition, DDA)结合平行反应监测(Parallel reaction monitoring, PRM)的方式获得抗原刺激下,TCR-CD3免疫沉淀(IP)复合物中不同酪氨酸位点的磷酸化/非磷酸化在不同时间点的定量结果。strongTIMLAQ 成功绕过了以前的定量方法中通常使用的同位素重标记肽,既节约了成本,又有效降低了方法的复杂性和数据采集误差,进一步提高了定量准确性,最终可完全实现在一次测量中对不同时间点全部ITAM磷酸化修饰的绝对定量,描绘TCR-CD3复合物的酪氨酸动态磷酸化修饰全貌。/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 492px " src="https://img1.17img.cn/17img/images/202007/uepic/17408230-fe19-4e90-a93b-06bbeea1254b.jpg" title="111.png" alt="111.png" width="600" height="492" border="0" vspace="0"//pp style="line-height: 1.5em text-align: center "基于TIMLAQ-MS法的CD3 ITAM磷酸化修饰鉴定/pp style="line-height: 1.5em text-align: justify "  strong利用这一方法鉴定到在不同的TCR刺激条件下,CD3各亚基主要表现为双磷酸化修饰模式,而唯独CD3ε呈现出单磷酸化修饰模式。/strong前研究表明,双磷酸化的ITAM与激酶家族蛋白ZAP70有很强的结合而激活下游信号传导,而单磷酸化的ITAM则表现出很低的结合性。strong本文中这一特殊的新发现驱使作者进一步深入探索CD3ε在TCR通路中的新潜在功能。/strong结果显示,单磷酸化的CD3ε可通过专门募集抑制性Csk激酶减弱TCR信号传导,strong说明TCR中既有激活基元又有抑制基元,总体呈现为一种自制的信号传导机制。/strong作者团队进一步深入研究,发现一旦将CD3ε细胞质结构域整合到第二代CAR中,CD3ε的ITAM结构域可以通过募集Csk减少CAR-T细胞因子的产生,而CD3ε的BRS结构域则可以通过募集p85促进CAR-T细胞的持久性。总体而言,将CD3ε应用于CAR的设计可显著提高CAR-T细胞的抗肿瘤活性。/pp style="line-height: 1.5em text-align: justify " strong 从一个重要的基础生物学问题开始,为解决问题而开发一个新颖方法,得到新发现,再深入探索生物学功能,最后有望贡献在治疗方法上。黄超兰教授,许琛琦教授和惠恩夫教授作为本文的共同通讯作者,完美地演绎了不同交叉领域共同合作而产生的精彩结果。/strong/ppstrong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 338px " src="https://img1.17img.cn/17img/images/202007/uepic/e5f4a9aa-d6b8-4604-a6a5-28e0177de6e9.jpg" title="222.png" alt="222.png" width="600" height="338" border="0" vspace="0"//pp style="text-align: justify "span style="text-align: justify "  黄超兰教授是北京大学医学部精准医疗多组学研究中心主任,北京大学医学部基础医学院长聘副教授,北京大学生命科学联合中心研究员,曼彻斯特大学荣誉教授。近年来,黄超兰教授带领团队积极开发基于质谱的蛋白质组学新方法,实验室拥有国际领先的仪器、技术和方法,致力于为生物学和临床研究中遇到的难题提供最有质量保证的全面蛋白质组和质谱技术手段。 仅从2015年至今,黄教授在高影响因子的杂志上就发表了近50篇文章 (目前已累计发表SCI论文80余篇),不但自己开发最前沿的质谱技术(迄今为止,课题组研发的单细胞蛋白质组技术,在单一体细胞中鉴定的蛋白数量是全球领域最高水平),更发挥了强大的合作力量,以她高超的质谱技术助力了众多科学家的科研发展。曾协助美国普林斯顿大学教授,美国科学院外籍院士颜宁课题组,利用质谱技术有效分析了ACAT1蛋白周围游离的脂质,为ACAT1作用底物的鉴定提供了最为直接有效的证据,相关工作发表在Nature上sup1/sup。最重量级的是协助中科院院士,西湖大学校长施一公教授利用高分辨交联质谱技术对剪接体复合物的成分和相互作用进行准确鉴定,促进了剪接体复合物在冷冻电镜上的超高分辨率结构鉴定,相关工作发表在两篇Science上sup2,3/sup。/span/pp style="text-align: justify line-height: 1.5em text-indent: 2em "strongspan style="text-align: justify "北京大学医学部精准医疗多组学研究中心/span/strongspan style="text-align: justify ",在“双一流”的支持下,正式成立于2018年6月,为北京大学医学部直属二级单位。黄超兰教授担任中心主任。中心主要基于临床医学热点和难点问题,通过临床医学,创新技术和基础学科的交叉,开展协同创新研究和研发,攻克医学重大难题。/spanspan style="text-indent: 2em "以重要的临床问题为根,利用前沿的高通量多组学技术(基因、转录、蛋白、翻译后修饰、代谢、微生物)和人工智能分析手段,结合临床信息,打造成规模化专业化的临床生物标志物(包括疾病预防,诊断,机制,疗效和药物靶点)开发、验证和标准化的创新平台。/span/pp style="text-align: justify "span style="text-align: justify "br//span/pp style="line-height: 1.5em text-align: justify "  原文链接:a href="https://doi.org/10.1016/j.cell.2020.07.018" target="_blank"https://doi.org/10.1016/j.cell.2020.07.018/a/pp style="line-height: 1.5em text-align: justify "br//pp style="line-height: 1.5em text-align: justify "  参考文献:/pp style="line-height: 1.5em text-align: justify " span style="font-size: 14px " sup1 /supQian et al., Nature, 2020 581(7808):333-338/span/pp style="line-height: 1.5em text-align: justify "span style="font-size: 14px "  sup2/sup Yan et al., Science, 2015 349(6253):1182-1191/span/pp style="line-height: 1.5em text-align: justify "span style="font-size: 14px "  sup3 /supWan et al., Science, 2016 351(6272):466-475/span/ppbr//p
  • 质谱技术帮助科学家发现蛋白质组学重要成果
    最近,来自瑞士和荷兰的科学家,对在22种不同生长条件下大肠杆菌表达的蛋白质,进行了定量和定性分析。确定了超过2300个蛋白质,其中一些处于每个细胞一个副本的平均水平。由此产生的数据集描述了细胞中大多数( 90%)的蛋白质量,对细胞生物学家来说这将是一个宝藏。相关研究结果发表在十二月出版的《Nature Biotechnology》。  为了了解细胞内的基因组信息和它们的生理机能之间的关系,重要的是要评估哪些基因在不同条件下积极参与产生蛋白质。收集这些信息的最直接的方式是,对细胞中存在的蛋白质进行定量测量。  随着技术的进步,最近才使得绝对蛋白质水平的大规模测量成为可能。来自巴塞尔大学和苏黎世大学(瑞士)、格罗宁根大学(荷兰)的科学家们,联手测量在22种不同条件下生长的大肠杆菌中的蛋白质。使用质谱法为基础的蛋白质组学方法,他们不仅确定了存在哪些蛋白质,而且还确定了每个细胞中有多少个副本。  大型数据集  系统生物学教授Matthias Heinemann说,来自大规模数据集的结果,将激励更多新的研究成果,他与巴塞尔大学的Alexander Schmidt一起协调实验。他解释说:“我们成功地分析了这些细胞中百分之90的蛋白质量。我们发现,有超过2300种不同的蛋白质,代表着4300个细菌基因中的超过一半。这使大肠杆菌中绝对定量的蛋白质数量增加了一倍。对于这些蛋白质中的一些,还没有确定其功能。但是,通过研究超过22种不同生长条件下的表达模式,我们现在获得了一个关于‘它们正在做什么’的线索。”  免费索取Life Tech蛋白质组学产品信息  蛋白质有非常不同的表达水平,从每个细胞平均超过100000个副本,到两个、一个甚至更少的水平。Heinemann说:“首先,这表明我们的方法是多么的敏感,但它也会让你想知道,在非常低的水平表达的蛋白质有什么功能,通过纯粹的随机效应,虽然一些基因可能是活跃的(从而随机产生蛋白质),但我们并不排除一个细胞中一个蛋白单拷贝的一种适当功能。毕竟,其他的生物实体——显示为单拷贝(如基因),也具有一种功能,研究还发现了对细菌蛋白质的新翻译后适应性。  新问题  在这篇论文中描述的数据集,正在被其他科学家所使用,并引发了新的令人兴奋的研究调查。作者指出:“我们的数据将作为新研究的参考数据,并已经促成了一些正待出版的研究结果。这个数据集可让科学家们能够提出并回答新的问题。”  对于这项研究,在不同条件下生长的细菌是在格罗宁根大学培养的。样品被运到巴塞尔大学,蛋白质含量(包括膜结合蛋白)是通过质谱分析法分离和分析的。最后,整个团队对这些结果进行了分析。
  • 重磅!史上首次定量检测完整的人类蛋白质组
    重磅!史上首次定量检测完整的人类蛋白质组在一项新的研究中,来自瑞士苏黎世联邦理工学院(ETH Zurich)和美国系统生物学研究所等机构的研究人员开发出人类SRMAtlas(Human SRMAtlas),即靶向识别和可重复地定量预测的人类蛋白质组中所有蛋白质的高度特异性质谱检测方法汇编目录,包括许多剪接变异体、非同义突变和翻译后修饰。利用一种被称作选择性反应监控(selected reaction monitoring, SRM)的技术,研究人员利用166174种已被充分了解的化学合成蛋白特征性肽(proteotypic peptide)开发出这些检测方法。相关研究结果发表在2016年7月28日那期Cell期刊上,论文标题为“Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome”。论文第一作者为来自美国系统生物学研究所的Ulrike Kusebauch博士。论文通信作者为来自美国系统生物学研究所的Robert Moritz教授和来自瑞士苏黎世联邦理工学院的Ruedi Aebersold。SRMAtlas资源在http://www.srmatlas.org网站上可以免费获取,将有助于公平地开展重点的、假设驱动的和大型蛋白质组规模的研究。研究人员期待这一资源将极大地加快基于蛋白质的实验室生物学发展从而有助理解疾病转化和健康轨迹,这是因为如今在理论上能够鉴定和定量检测出任何样品中的任何人类蛋白。能够可靠地和可重复性地检测任何组织或细胞类型的人类蛋白质组中的任何一种蛋白在理解系统层次的性质以及正常生理下和患病时的特异性途径方面引发变革。在Moritz教授实验室中,研究团队能够利用SRM方法产生并验证了一种由高度特异性地靶向蛋白质组检测方法组成的汇编目录,而且通过这种广泛获取的、灵敏的和强健的靶向质谱方法SRM,能够定量检测20,277种已被标注的人类蛋白中的99.7%。这种人类SRMAtlas提供明确的检测坐标来确定性地鉴别生物样品中蛋白质特征性的肽。尽管2003年,人们成功地了完成人类基因组计划(Human Genome Project),构建出所有人类基因的目录,但是大多数蛋白质研究仍然聚焦在在绘制出人类基因组图谱之前科学家们研究的蛋白中相对较小的一部分蛋白上。若要超越这种停滞不前的蛋白质-基因组学研究方法,就应需要为几乎每种人类蛋白开发高度特异性的检测方法。利用人类SRMAtlas等资源,测量任何一种人类蛋白质的前景如今变成现实。如今,人类SRMAtlas提供已经过验证的质谱检测方法,这些检测方法是基于一种统一的一致的检测人类蛋白质组中几乎每种蛋白的过程开发出的SRM技术而开发的。这些检测方法可快速地用于系统生物学和生物医学研究中以便高度灵敏地和高度选择性地鉴定和定量检测任何一种人类蛋白,以及指导完整的蛋白质图谱绘制来了解它们的生物学功能。个人化医学奖依赖于分子特征来监控人们的健康状态,提供信号来鉴定健康轨迹发生的变化,以及首先在临床试验随后在临床实践中提供信息来让合适的患者匹配正确的药物。这种人类SRMAtlas计划稳步地将蛋白组学推到前沿,并且为蛋白质组学在癌症登月计划(Cancer Moonshot)中发挥较大的作用添砖加瓦。
  • 颠覆认知,重塑可能 | 全新Orbitrap Astral质谱仪在蛋白质组学应用中的进展
    2023年6月4日,ASMS会议中,赛默飞推出了基于全新质量分析器的Orbitrap Astral质谱仪,为生命科学质谱应用带来了未来的无限可能。蛋白质组学因其在理解生命科学中的重大意义及技术上对于质谱仪的高分辨率、高灵敏度、高质量精度以及定量准确性的全方位高要求,使得我们愈发得期待全新Orbitrap Astral质谱仪能够为蛋白质组学向更快、更深、更全面的发展提供帮助。而全新Orbitrap Astral质谱仪的表现如何呢?让我们用数据说话~在对于生命体的理解中,作为生命活动的最终执行者,蛋白质的重要性不言而喻;而蛋白的复杂性极高,在不同的物种、组织、细胞等层级中,它具有不同的时空表达特异性;在这些变化中,同样的蛋白可能会有不同的形态,而呈现中多种多样的功能;而这些变化可能发生在不同的细胞中,也可能发生在不同的细胞组分甚至是不同的蛋白复合物中。分析蛋白质的金标准技术是质谱技术,现代质谱技术应用于蛋白质组学的分析中,我们明确的有三个大的方向亟待改进:1. 检测通量,我们需要将检测的能力提升至上万个样品的大队列的水平;2. 更高的蛋白组覆盖度,我们期待在每次检测中都能够得到所分析样品更高的蛋白鉴定深度,从而鉴定与定量更多感兴趣的蛋白;3. 灵敏度,即在极低量的样品中如单细胞样品中即可获得最大蛋白组覆盖度的能力。赛默飞一直致力于多个质谱质量分析器的组合,期待它们能如同交响乐般的发出混合且和谐的声音,对于质谱仪而言,我们现在所使用的质谱仪无疑是非常强大的,以Orbitrap为例,它具有超高的分辨率、质量精度和动态范围,它一直支撑着我们走过了蛋白质组学的蓬勃发展的阶段,时代的脚步再一次来到了全新的Orbitrap Astral质谱仪,在这里,我们将在检测通量、蛋白组覆盖深度、灵敏度及精准定量等多个维度展示其超强悍的性能:图1:全新一代Orbitrap Astral质谱仪全面提升蛋白质组学分析能力首先,我们看检测通量的变化:现在我们的科学家们所拥有的的丰富的样品量与目前市面上的质谱所能提供的单日检测通量有着显著的矛盾,目前我们的质谱仪约能提供的单日最大检测通量约为48个样品,而Orbitrap Astral 创造历史的将这个值提升至每天180个样品,这使得蛋白质组学在分析中的限速步骤不再是质谱的通量;每天180个样品通量意味着我们的单个样品总梯度为8min,实际分离梯度为5.5min,超短的梯度能提供超过8000个protein group的鉴定深度!而如果使用略长的14.4min梯度,达到100SPD(单日检测样品量),可以得到单个样品9000个protein group的鉴定深度;而24min梯度60SPD,则可以得到单针超过10000个蛋白的鉴定;60min梯度就可以得到超过12000个蛋白的鉴定水平;超高的检测通量兼具鉴定深度,使得用户能更加游刃有余的根据其实验需求,在检测样品通量与样品鉴定深度之间寻求更好的平衡;更深的鉴定能力带来对于生物学功能的更深的认知,我们期待着全新一代Orbitrap Astral质谱仪带给我们更有趣的生物学发现!图2:全新一代Orbitrap Astral质谱仪兼具超高的检测通量与深度蛋白组覆盖能力(点击查看大图) TMT技术路线是定量蛋白质组学的重要方法之一,目前TMT的通量已经达到18-plex,而全新的Orbitrap Astral质谱仪,其结合了超高分辨率和动态范围的Orbitrap质量分析器与超高扫描速度及超高灵敏度的Astral质量分析器,分别执行一级与二级扫描,二级Astral质量分析器在m/z524时的分辨率约为8万分辨率(m/z130时分辨率约为5万),适用于分辨TMT的报告离子从而进行TMT定量。如果将TMT样品分为2个fraction,运行90min梯度,即可拿到8000个定量蛋白;按照TMT-18plex的通量,我们可以达到每天144个样品的检测通量;而如果我们使用4个fraction进行检测,则可以拿到超过10000定量蛋白。图3:全新一代Orbitrap Astral质谱仪为TMT定量检测注入全新动力(点击查看大图)其次,我们来关注蛋白组的覆盖度:更深的蛋白质组覆盖度一直是我们的追求,以目前的质谱技术,蛋白鉴定的最大深度在12000个蛋白附近,这个值与mRNA测序相当;其实我们如果想要使用质谱技术来实现目前的鉴定深度,要牵扯到很多步骤,一般需要进行离线分级后多针上机检测的操作,比如,我们可以首先运行一个77min的离线分离梯度,收集46个馏分,每个馏分33min梯度;消耗了34.5个小时,最终达到12000个蛋白的鉴定水平;人们用这种方法,这样的蛋白鉴定深度,得到了很多生物学信息,比如肿瘤细胞系的通路等,发现了很多关键蛋白;如果我们想把这样的技术路线用在真正的大规模研究上,它对机时的消耗过于巨大了,实验过程过于艰苦;而我们使用全新的Orbitrap Astral质谱仪,能够实现单针,60min色谱梯度的情况下,即可达到12000个蛋白的鉴定;那如果我们在Orbitrap Astral上也使用多次进样的方法,4.5小时我们就可以拿到超过15000个蛋白了,这也使得我们在历史上第一次无限接近于整个蛋白质组的鉴定深度。其一天内的鉴定通量达到了8个proteomes的水平,我们真正具备了处理大规模研究的能力。图4:全新一代Orbitrap Astral质谱仪为蛋白质组学带来前所未有的鉴定深度(点击查看大图) 在蛋白质组学中,除了常规的细胞裂解液样品,解决具有极大的动态范围的血液样品也是巨大的挑战。在180个SPD的通量下,未经高丰度去除的血浆样品可以达到600个蛋白的鉴定水平,若需要更深的覆盖度,经seer处理后的5个fraction长梯度可达到超过6000个蛋白鉴定深度。而使用30min梯度分析经富集的血浆样品(5个fraction单独进样),DIA方法更是能够重复定量样品里的4500多种蛋白。全新一代Orbitrap Astral质谱仪鉴定深度,使得我们的用户可以根据实验需要,在鉴定深度与通量之间寻求到平衡。图5:全新一代Orbitrap Astral质谱仪为血液样品研究带来新的可能(点击查看大图) 而后,我们来关注灵敏度:✦ ✦ ✦ ✦ 如今单细胞组学快速走进了人们的视野,要进行更深度、更高通量的单细胞蛋白质组学,对质谱的灵敏度提出了更高的要求。我们研究蛋白质组学,从来便是越深入越困难。而全新的Orbitrap Astral质谱仪,可以以极高的速率进行高动态范围的检测,同时兼具超高的灵敏度。在进行单细胞蛋白质组学的检测中,全新的Orbitrap Astral质谱使得我们可以以80个SPD的检测通量(18min梯度单针运行时间)的同时得到超过5000个蛋白的鉴定水平。这表明,使用全新的Orbitrap Astral质谱仪,我们可以在检测通量翻倍的同时,得到更高的蛋白鉴定能力,从而为单细胞蛋白质组学树立了新的标准。图6:全新一代Orbitrap Astral质谱仪为单细胞蛋白质组学树立新的标准(点击查看大图) 定量蛋白质组学不仅追求更高的鉴定能力,我们也同时迫切的需要更加精准的定量,从而为我们提供准确的差异蛋白信息,指导生物学研究。全新的Orbitrap Astral质谱仪具有在宽线性动态范围的基础上的精准的定量能力,如图7,在经过不同比例混样的样品比较中,Orbitrap Astral所产生的定量比值,均符合实际混样比例,提供了精准的定量比值。甚至即使是极低的拷贝数的蛋白(如200-3000个拷贝数),Orbitrap Astral也能提供精准的定量值。图7:全新一代Orbitrap Astral质谱仪展现了精准的定量性能(点击查看大图)在拥有了强劲的性能后,我们还需要仪器能够更加稳健的运行:在仪器的鲁棒性测试中,进行了超过2200次进样,其间的QC数据均表现出优异的鉴定稳定性与重现性。图8:全新一代Orbitrap Astral质谱仪拥有优异的稳定性与重现性(点击查看大图)总 结赛默飞全新划时代的蛋白质组学工作流,为您的蛋白质组学研究提供无缝衔接的全面支持。新的时代,无比期待!图9:赛默飞全新划时代的蛋白质组学工作流 了解Astral高分辨质谱仪应用详情,请点击“血浆蛋白质组学的新标准”
  • “蛋白质组学研究技术与方法进展”会议精彩视频出炉
    p style="text-indent: 2em "6月18日,仪器信息网主办的“蛋白质组学研究技术与方法进展”主题网络研讨会成功召开,会议为期半天,共吸引近700人报名参会。会议现场,网友纷纷积极提问,与在线专家形成良好的互动氛围。br//pp style="text-indent: 2em "为方便更多从事蛋白质组学研究的科研人员学习相关技术,现特将会议内容剪辑整理,点击strong报告题目/strong或strong报告图片/strong即可进入视频页面。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112929.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/13b79024-5ab6-46a9-ba61-aa729fa12726.jpg" title="1.jpg" width="550" height="413" border="0" vspace="0" alt="1.jpg"//a/pp style="text-align: center "报告嘉宾:邓海腾(清华大学 )/pp style="text-align: center "报告题目:《a href="https://www.instrument.com.cn/webinar/video_112929.html" target="_blank"功能蛋白质组学技术的进展和挑战》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "随着质谱技术的发展,高通量地检测细胞、体液和组织中的蛋白表达谱已经成为常规分析,蛋白质组学的研究重心开始从揭示蛋白的表达水平转移到蛋白的生物学功能研究上。在本次讲座中,我将和大家一起探讨常用的功能蛋白质组学方法和在分子生物学研究中的应用,以及功能蛋白质组学分析面临的挑战。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112930.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/e6517efa-7c9c-4df5-8b90-784a1ff0e53d.jpg" title="2.jpg" width="550" height="413" border="0" vspace="0" alt="2.jpg"//a/pp style="text-align: center "报告嘉宾:申华莉(复旦大学 ) /pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112930.html" target="_blank"《拟靶向质谱定量技术用于大规模生物标志物筛选》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "血液包含了人体各器官实时的生理病理状态信息,是最理想的检测目标样本。目前的血清标志物研究方法通量小、效率低,导致血清标志物发现少,向临床转化效率低。我们利用MRM技术的特点实现血清中标志物的高灵敏、高精确定量,并通过时间窗口的设置大幅度提高MRM检测的通量。这一策略可以实现高灵敏、高通量的血清标志物筛选。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112932.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/3ecece59-eff5-4527-b974-047f2710ee1a.jpg" title="3.jpg" width="550" height="413" border="0" vspace="0" alt="3.jpg"//a/pp style="text-align: center "报告嘉宾:田瑞军(南方科技大学 )/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112932.html" target="_blank"《基于生物质谱技术的动态蛋白质复合物分析及生物医学应用》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "蛋白质复合物是介导细胞微环境信号转导网络的关键分子机制,一般都经历一个由细胞间、细胞膜、细胞质到细胞核的“链条式”激活和动态组装的过程。目前针对细胞信号转导的蛋白质组学研究大多集中于对蛋白质表达量及其翻译后修饰的分析,仅能阐述通路节点的变化,无法诠释信号蛋白的动态组装和信号传递过程。本团队致力于开发基于生物质谱技术的蛋白质组学新方法和新技术,并专注于其在动态蛋白质复合物及肿瘤微环境信号转导研究方面的应用。最近,我们设计合成出一种具有酪氨酸磷酸化识别蛋白结构域SH2、光交联基团和富集基团的化学生物三功能亲和探针,实现了对疏水性动态受体膜蛋白复合物及相关药物靶点蛋白的高效富集和质谱精准鉴定;发展了样品前处理新技术SISPROT,实现了微纳克级别亲和富集样品前处理的集成化和通量化操作,并实现了受体膜蛋白相关复合物分钟级别动态变化规律的高准确度定量表征;发展了通用的受体膜蛋白复合物多维度协同富集和蛋白质组学分析方法,并成功地用于胰腺癌肿瘤微环境受体膜蛋白复合物的规模化发现。上述研究发现并验证了胰腺癌的新药靶点和疾病标志物白血病抑制因子LIF,并促成了首个针对胰腺癌的anti-LIF抗体药物的美国一期临床试验。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112935.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/79709921-762a-47fe-b158-b7195b607ca9.jpg" title="4.jpg" width="550" height="413" border="0" vspace="0" alt="4.jpg"//a/pp style="text-align: center "报告嘉宾:陆豪杰(复旦大学 ) /pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112935.html" target="_blank"《定量蛋白质翻译后修饰组学》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "对蛋白质翻译后修饰的定量分析可以帮助我们了解和调控生命过程。蛋白质翻译后修饰使蛋白功能多样以满足复杂的生命过程,同时使得蛋白质的结构复杂。基于生物质谱的组学技术,极大推动翻译后修饰的规模化定量分析。我们发展了一系列方法用于蛋白质后修饰组的定量研究,包括蛋白质的糖基化、泛素化、棕榈酰化、4-羟基壬烯醛(HNE)修饰以及蛋白质的N/C末端。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112933.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/b27ac34d-5153-4f1c-9d16-8a679f98d718.jpg" title="6.jpg" width="550" height="413" border="0" vspace="0" alt="6.jpg"//a/pp style="text-align: center "报告嘉宾:隋欣煜(安捷伦)/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112933.html" target="_blank"《安捷伦蛋白组学样品前处理自动化解决方案》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "AssayMAP Bravo生物样品前处理工作站,由96通道的注射器式移液头、微量色谱小柱、功能全面的工作站台面和为生物制药专家量身定制的操作软件组成,利用自动化操作来减少人为实验操作带来的误差,提升实验结果的稳定性,减少污染的可能性,同时利用自动化精准的时间控制和操作,来优化实验流程,提高实验室运行效率,同时适应未来趋势,节省时间和体力让实验人员从事更加有深度的分析和探索职能。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "●AssayMAP Bravo仪器功能介绍;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "●AssayMAP Bravo实验的稳定结果;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "●AssayMAP Bravo在蛋白组学前处理的应用和文献解读;/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112931.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/9d190992-caea-4b22-afb1-1f04a98f1095.jpg" title="5.jpg" width="550" height="413" border="0" vspace="0" alt="5.jpg"//a/pp style="text-align: center "报告嘉宾:陈宁(布鲁克· 道尔顿)/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112931.html" target="_blank"《布鲁克4D-Proteomics™ 研究方案及dia-PASEF@、prm-PASEF@最新技术进展》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "随着分析技术的不断发展,高分辨率质谱已成为蛋白质组学研究的核心仪器。由于生物样本的高复杂性和宽动态范围,蛋白质组学的深度研究仍面临极大挑战。捕集型离子淌度的引入,带领着传统蛋白质组学进入了4D新时代,带来了鉴定深度、定量准确性、扫描速度、仪器稳定性等性能的全面提升。本次报告将主要介绍4D-ProteomicsTM研究方案,以及dia-PASEF® 、prm-PASEF® 技术进展。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112934.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/074d05d3-7121-4343-adc9-0205390abdb5.jpg" title="7.jpg" width="550" height="413" border="0" vspace="0" alt="7.jpg"//a/pp style="text-align: center "报告嘉宾:周岳(赛默飞 )/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112934.html" target="_blank"《突破蛋白质组学分析的极限——赛默飞蛋白质组学技术最新进展》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "赛默飞近几年在蛋白质组学领域开发了多种新技术来突破蛋白质组分析的极限。FAIMS Pro离子淌度可以接在Orbitrap质谱的前端选择特定的离子进入质谱,提高了蛋白质组学的覆盖度和定量准确性,同时也提高了质谱的稳定性。Orbitrap Eclipse独有的实时检索算法(RTS)使TMT定量的覆盖度和准确度可以兼得,加上TMT 16plex标记试剂的推出,使得TMT定量具有更高的通量。靶标定量一直是蛋白质组学的最后一环也是最关键的一环,基于Orbitrap质谱的独有SureQuant定量方法可以在很短的梯度内绝对定量500多个蛋白,同时不需要太多方法优化,该方法可以很快地在实验室间进行方法转移。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em "点击链接,观看全部“蛋白质组学研究技术与方法进展”网络会议视频: a href="https://www.instrument.com.cn/webinar/Video/Video/Collection/10572" target="_blank"https://www.instrument.com.cn/webinar/Video/Video/Collection/10572/a/p
  • 蛋白质测序技术发展漫谈(上)
    本期中国科学院大连化物所单亦初老师将分享蛋白质测序技术的发展,本次分享将以连载形式以飨读者。蛋白质一级结构是组成蛋白质的氨基酸序列。蛋白氨基酸序列分析是确定蛋白质全部氨基酸序列的过程。通过蛋白质测序获得的信息有许多用途,包括:蛋白质的鉴定;合成可用作免疫原的肽段;用于治疗的抗体仿制产品的研发;以市场上销售的抗体试剂为基础进行抗体药物研发。目前的蛋白质测序方法主要分为三类:基于PCR扩增的蛋白质测序、Edman降解测序以及基于质谱的蛋白质测序。基于PCR扩增的蛋白质测序是利用细胞中表达的DNA或者RNA进行基因测序,然后再按照氨基酸密码子表转换为蛋白质的氨基酸序列,本质上属于基因测序技术。Edman降解测序是较早发展的蛋白质测序技术,利用化学方法从蛋白质的N端将氨基酸依次降解,再使用高效液相色谱对氨基酸进行鉴定。但是这种方法只能用于鉴定蛋白质和多肽的N-末端氨基酸残基(通常是几个-十几个残基,最多不超过四十个残基),无法对大的蛋白质进行全序列测定。此外,Edman降解法也有一定的局限,例如N末端封闭或有化学修饰的情况下将不能使用Edman降解法对蛋白质序列进行分析。目前使用最广的蛋白质测序方法是质谱法,较Edman降解法而言,其优点在于,质谱法更敏感,可以更快地裂解肽,可以识别末端封闭或修饰的蛋白质。基于质谱的蛋白质测序策略可分为两大类:自上而下策略(Top-Down)和自下而上(Bottom-Up)策略。自上而下的策略无需对蛋白质进行降解,直接使用LC-MS对完整蛋白质进行分析,根据谱图中碎片离子确定其序列;自下而上策略是先将蛋白质水解成肽段,通过LC-MS对肽段检测,再对肽段从头测序以及序列拼接从而得到完整蛋白质序列。图 :蛋白质序列测定原理Kira Vyatkina[1]通过自上而下的策略发展了一种Twister测序算法对单克隆抗体测序,虽然不需要使用蛋白酶酶解,减少了蛋白质预处理的步骤,但仅可以鉴定到抗体的序列片段。Liu[2]结合自上而下和自下而上两种策略发展了TBNovo测序算法对蛋白质进行测序,将自上而下的质谱数据作为抗体序列的骨架,再将胰蛋白酶酶解肽段的质谱数据对骨架的序列进行补充覆盖。由于特异性蛋白酶酶解后肽段种类少、覆盖率低,对抗体的轻链和CAH2区的测序覆盖率为86.9%和75.2%。Sen[3]发展了一种基于同源数据库搜索与从头测序结合的Supernovo测序算法,通过4种蛋白酶对单克隆抗体分别酶解,该测序方法仅可实现对抗体重链的可变区测序,无法对抗体全序列进行测定。Savidor[4]发展了一种蛋白质全序列从头测序的方法。将蛋白质在微波辅助下快速酸解,得到了种类丰富的肽段,使用其发展的肽段序列拼接算法——“肽段标签组装”(Peptide Tag Assembler,PTA),对从头测序的肽段进行序列拼接,但由于酸解的消化方式会使谷氨酰胺和天冬酰胺发生脱酰胺化,分别变为谷氨酸和天冬氨酸,降低了对蛋白质序列测定的准确度。为了解决蛋白质测序覆盖度低、准确度低的问题,我们发展了一种蛋白质全序列测定新方法[5]:该方法使用多种非特异性蛋白酶对蛋白质连续酶解,提高蛋白质酶解肽段种类和重叠度,从而提高蛋白质测序的覆盖度;此外,发展了一种序列拼接算法,根据从头测序得到的肽段序列中每个氨基酸的得分值和出现次数,对蛋白质序列进行组装和拼接,显著提高了蛋白质全序列测定的准确度。利用该测序方法对牛血清白蛋白的多种非特异性蛋白酶酶解后的肽段序列进行测序和拼接,实现了对牛血清白蛋白全序列100%准确度的测定。此外,将该方法应用于对乳腺癌药物单克隆抗体赫赛汀的全序列测定,重链和轻链的测序准确度分别达到99.6%和100%。参考文献[1] K V. De Novo Sequencing of Top-Down Tandem Mass Spectra: A Next Step towards Retrieving a Complete Protein Sequence [J]. Proteomes, 2017, 5(1), https://doi.org/10.3390/proteomes5010006[2] LIU X, DEKKER L J M, WU S, et al. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra [J]. J Proteome Res, 2014, 13(7): 3241-3248.[3] KI S, WH T, S N, et al. Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery [J]. J Am Soc Mass Spectrom, 2017, 28(5): 803-810.[4] SAVIDOR A, BARZILAY R, ELINGER D, et al. Database-independent Protein Sequencing (DiPS) Enables Full-length de Novo Protein and Antibody Sequence Determination [J]. Mol Cell Proteomics, 2017, 16(6): 1151-1161.[5]杨超,单亦初,张玮杰等,基于非特异性蛋白酶连续酶解的蛋白质全序列测定方法,化学学报,修稿中。作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制