当前位置: 仪器信息网 > 行业主题 > >

便携线衍射显微镜

仪器信息网便携线衍射显微镜专题为您提供2024年最新便携线衍射显微镜价格报价、厂家品牌的相关信息, 包括便携线衍射显微镜参数、型号等,不管是国产,还是进口品牌的便携线衍射显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携线衍射显微镜相关的耗材配件、试剂标物,还有便携线衍射显微镜相关的最新资讯、资料,以及便携线衍射显微镜相关的解决方案。

便携线衍射显微镜相关的资讯

  • 首都医科大学附属北京朝阳医院2185.18万元采购生物显微镜,切片机,荧光显微镜,X射线衍射仪,PC...
    基本信息 关键内容: 生物显微镜,切片机,荧光显微镜,X射线衍射仪,PCR 开标时间: 2022-01-28 10:00 采购金额: 2185.18万元 采购单位: 首都医科大学附属北京朝阳医院 采购联系人: 胡老师 采购联系方式: 立即查看 招标代理机构: 中招国际招标有限公司 代理联系人: 范君 代理联系方式: 立即查看 详细信息 [公开]2021年自有资金设备购置项目第18、27、32、33、35、37、38、40、41、45、46、49、50、52、54、57、60、65、70、71、74、75、77包公开招标公告 北京市-朝阳区 状态:公告 更新时间: 2022-01-07 招标文件: 附件1 项目概况 2021年自有资金设备购置项目 招标项目的潜在投标人应在http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home获取招标文件,并于2022-01-28 10:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:21-025-JH007-XM001 项目名称:2021年自有资金设备购置项目 预算金额:2185.18 万元(人民币) 采购需求: 品目号 设备名称 数量 最高限价(万元) 是否允许进口 所属包号 ★保修期(年) 18-1 关节镜系统 2 240 是 18 5 18-2 胸骨锯 1 29.5 是 18 6 27-1 生物显微镜 11 94.6 否 27 6 32-1 荧光显微镜 1 40 否 32 6 33-1 荧光定量PCR仪(一) 1 47 是 33 3 35-1 医学图像工作站系统 1 42 否 35 5 37-1 推拉式切片机 2 32 是 37 8 38-1 组织盒激光书写仪 1 18 否 38 8 40-1 智能药柜 1 49.8 否 40 6 41-1 YAG激光治疗机(一) 1 98 否 41 6 45-1 乳腺导管内窥镜系统 1 50 否 45 6 46-1 眼震电图仪 1 49 否 46 5 49-1 强脉冲光与激光系统 1 150 是 49 6 50-1 便携式肺功能仪 3 24 否 50 5 52-1 肌电图/诱发电位仪 1 60 是 52 5 54-1 体腔热灌注治疗系统 1 98 否 54 5 57-1 全自动荧光免疫分析仪 1 80 否 57 终身保修 60-1 YAG激光治疗机(二) 1 120 否 60 5 65-1 脑室超高清神经内镜 1 170 是 65 5 70-1 耳声发射分析仪 1 12 是 70 5 70-2 快速听性脑干反应测试仪 1 26 是 70 5 71-1 眼表综合分析仪 1 60 否 71 7 71-2 医用超声雾化器 2 12 否 71 6 71-3 显微镜 1 3.28 否 71 6 74-1 高清电子内窥镜系统 1 350 是 74 5 74-2 注射泵 10 39 否 74 5 74-3 全自动荧光免疫分析仪 1 10 否 74 5 75-1 包埋机 1 18 否 75 5 75-2 轮转式切片机 2 28 否 75 5 77-1 全自动生化仪 1 120 否 77 终身保修 77-2 胶囊内窥镜系统 1 15 否 77 5 其余详见附件 核心产品: 第27包:本包为单一产品采购,无核心产品。 第32包:本包为单一产品采购,无核心产品。 第33包:本包为单一产品采购,无核心产品。 第35包:本包为单一产品采购,无核心产品。 第37包:本包为单一产品采购,无核心产品。 第38包:本包为单一产品采购,无核心产品。 第40包:本包为单一产品采购,无核心产品。 第41包:本包为单一产品采购,无核心产品。 第45包:本包为单一产品采购,无核心产品。 第46包:本包为单一产品采购,无核心产品。 第49包:本包为单一产品采购,无核心产品。 第50包:本包为单一产品采购,无核心产品。 第52包:本包为单一产品采购,无核心产品。 第54包:本包为单一产品采购,无核心产品。 第57包:本包为单一产品采购,无核心产品。 第60包:本包为单一产品采购,无核心产品。 第65包:本包为单一产品采购,无核心产品。 第70包:耳声发射分析仪 第71包:眼表综合分析仪 第74包:高清电子内窥镜系统 第75包:轮转式切片机 第77包:全自动生化仪 合同履行期限:自本合同生效之日起 90 日内一次性将本合同项下产品运送到合同约定交货地点向采购人交付。 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 1)在中华人民共和国境内注册,能够独立承担民事责任,有生产或供应能力的本国供应商,包括法人、非法人组织或者自然人; 2)具备《中华人民共和国政府采购法》第二十二条关于供应商条件的规定,遵守国家、本项目采购人本级和上级财政部门政府采购的有关规定; 3)以招标文件规定的方式获得了本项目的招标文件; 4)符合投标须知前附表中规定的其他要求。 三、获取招标文件 时间:2022-01-07 至 2022-01-14 ,每天上午09:00至11:00,下午13:30至17:00(北京时间,法定节假日除外) 地点:http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home 方式: 北京市政府采购电子交易平台免费领取 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-01-28 10:00(北京时间) 地点:中招国际招标有限公司(北京市海淀区学院南路62号中关村资本大厦) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、采购项目需要落实的政府采购政策: 《关于开展政府采购信用担保试点工作的通知》(财库【2011】124号)、《政府采购促进中小企业发展管理办法》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库【2014】68号)、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库【2017】141号)、《财政部关于调整优化节能产品、环境标志产品政府采购执行机制的通知》 (财库〔2019〕9号) 2、完整版采购需求详见附件。 3、本项目采用电子化与线下流程结合招标方式,相关操作如下。 3.1办理CA认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南” 一 “操作指南”一 “市场主体CA办理操作流程指引”,按照程序要求办理。 3.2于北京市政府采购电子交易平台“用户指南”一“操作指南”一“市场主体注册入库操作流程指引”进行自助注册绑定。 3.3招标文件获取方式:供应商按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持供应商自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。 3.4未按上述获取方式和期限下载招标文件的投标无效。 4、证书驱动下载: 4.1于北京市政府采购电子交易平台“用户指南”一“工具下载”一 “招标采购系统文件驱动安装包”下载相关驱动。 4.2CA认证证书服务热线010-58511086 4.3技术支持服务热线010-86483801 13669922829 注意:请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:首都医科大学附属北京朝阳医院 地址:北京市朝阳区工人体育场南路8号 联系方式:胡老师,85231230 2.采购代理机构信息 名 称:中招国际招标有限公司 地 址:北京市海淀区学院南路62号院1号楼6层(601-615室)、9层(903-915室) 联系方式:范君,010-62108225 3.项目联系方式 项目联系人:范君 电 话: 010-62108225 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:生物显微镜,切片机,荧光显微镜,X射线衍射仪,PCR 开标时间:2022-01-28 10:00 预算金额:2185.18万元 采购单位:首都医科大学附属北京朝阳医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中招国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开]2021年自有资金设备购置项目第18、27、32、33、35、37、38、40、41、45、46、49、50、52、54、57、60、65、70、71、74、75、77包公开招标公告 北京市-朝阳区 状态:公告 更新时间: 2022-01-07 招标文件: 附件1 项目概况 2021年自有资金设备购置项目 招标项目的潜在投标人应在http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home获取招标文件,并于2022-01-28 10:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:21-025-JH007-XM001 项目名称:2021年自有资金设备购置项目 预算金额:2185.18 万元(人民币) 采购需求: 品目号 设备名称 数量 最高限价(万元) 是否允许进口 所属包号 ★保修期(年) 18-1 关节镜系统 2 240 是 18 5 18-2 胸骨锯 1 29.5 是 18 6 27-1 生物显微镜 11 94.6 否 27 6 32-1 荧光显微镜 1 40 否 32 6 33-1 荧光定量PCR仪(一) 1 47 是 33 3 35-1 医学图像工作站系统 1 42 否 35 5 37-1 推拉式切片机 2 32 是 37 8 38-1 组织盒激光书写仪 1 18 否 38 8 40-1 智能药柜 1 49.8 否 40 6 41-1 YAG激光治疗机(一) 1 98 否 41 6 45-1 乳腺导管内窥镜系统 1 50 否 45 6 46-1 眼震电图仪 1 49 否 46 5 49-1 强脉冲光与激光系统 1 150 是 49 6 50-1 便携式肺功能仪 3 24 否 50 5 52-1 肌电图/诱发电位仪 1 60 是 52 5 54-1 体腔热灌注治疗系统 1 98 否 54 5 57-1 全自动荧光免疫分析仪 1 80 否 57 终身保修 60-1 YAG激光治疗机(二) 1 120 否 60 5 65-1 脑室超高清神经内镜 1 170 是 65 5 70-1 耳声发射分析仪 1 12 是 70 5 70-2 快速听性脑干反应测试仪 1 26 是 70 5 71-1 眼表综合分析仪 1 60 否 71 7 71-2 医用超声雾化器 2 12 否 71 6 71-3 显微镜 1 3.28 否 71 6 74-1 高清电子内窥镜系统 1 350 是 74 5 74-2 注射泵 10 39 否 74 5 74-3 全自动荧光免疫分析仪 1 10 否 74 5 75-1 包埋机 1 18 否 75 5 75-2 轮转式切片机 2 28 否 75 5 77-1 全自动生化仪 1 120 否 77 终身保修 77-2 胶囊内窥镜系统 1 15 否 77 5 其余详见附件 核心产品: 第27包:本包为单一产品采购,无核心产品。 第32包:本包为单一产品采购,无核心产品。 第33包:本包为单一产品采购,无核心产品。 第35包:本包为单一产品采购,无核心产品。 第37包:本包为单一产品采购,无核心产品。 第38包:本包为单一产品采购,无核心产品。 第40包:本包为单一产品采购,无核心产品。 第41包:本包为单一产品采购,无核心产品。 第45包:本包为单一产品采购,无核心产品。 第46包:本包为单一产品采购,无核心产品。 第49包:本包为单一产品采购,无核心产品。 第50包:本包为单一产品采购,无核心产品。 第52包:本包为单一产品采购,无核心产品。 第54包:本包为单一产品采购,无核心产品。 第57包:本包为单一产品采购,无核心产品。 第60包:本包为单一产品采购,无核心产品。 第65包:本包为单一产品采购,无核心产品。 第70包:耳声发射分析仪 第71包:眼表综合分析仪 第74包:高清电子内窥镜系统 第75包:轮转式切片机 第77包:全自动生化仪 合同履行期限:自本合同生效之日起 90 日内一次性将本合同项下产品运送到合同约定交货地点向采购人交付。 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 1)在中华人民共和国境内注册,能够独立承担民事责任,有生产或供应能力的本国供应商,包括法人、非法人组织或者自然人; 2)具备《中华人民共和国政府采购法》第二十二条关于供应商条件的规定,遵守国家、本项目采购人本级和上级财政部门政府采购的有关规定; 3)以招标文件规定的方式获得了本项目的招标文件; 4)符合投标须知前附表中规定的其他要求。 三、获取招标文件 时间:2022-01-07 至 2022-01-14 ,每天上午09:00至11:00,下午13:30至17:00(北京时间,法定节假日除外) 地点:http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home 方式: 北京市政府采购电子交易平台免费领取 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-01-28 10:00(北京时间) 地点:中招国际招标有限公司(北京市海淀区学院南路62号中关村资本大厦) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、采购项目需要落实的政府采购政策: 《关于开展政府采购信用担保试点工作的通知》(财库【2011】124号)、《政府采购促进中小企业发展管理办法》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库【2014】68号)、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库【2017】141号)、《财政部关于调整优化节能产品、环境标志产品政府采购执行机制的通知》 (财库〔2019〕9号) 2、完整版采购需求详见附件。 3、本项目采用电子化与线下流程结合招标方式,相关操作如下。 3.1办理CA认证证书(北京一证通数字证书),详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)查阅“用户指南” 一 “操作指南”一 “市场主体CA办理操作流程指引”,按照程序要求办理。 3.2于北京市政府采购电子交易平台“用户指南”一“操作指南”一“市场主体注册入库操作流程指引”进行自助注册绑定。 3.3招标文件获取方式:供应商按照规定办理CA数字认证证书(北京一证通数字证书)后,自招标公告发布之日起持供应商自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。 3.4未按上述获取方式和期限下载招标文件的投标无效。 4、证书驱动下载: 4.1于北京市政府采购电子交易平台“用户指南”一“工具下载”一 “招标采购系统文件驱动安装包”下载相关驱动。 4.2CA认证证书服务热线010-58511086 4.3技术支持服务热线010-86483801 13669922829 注意:请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:首都医科大学附属北京朝阳医院 地址:北京市朝阳区工人体育场南路8号 联系方式:胡老师,85231230 2.采购代理机构信息 名 称:中招国际招标有限公司 地 址:北京市海淀区学院南路62号院1号楼6层(601-615室)、9层(903-915室) 联系方式:范君,010-62108225 3.项目联系方式 项目联系人:范君 电 话: 010-62108225
  • 1100万!国科大杭州高等研究院单晶X射线衍射仪、扫描电子显微镜及电子束曝光系统采购项目
    一、项目基本情况 1.项目编号:0625-23218C93 项目名称:国科大杭州高等研究院扫描电子显微镜及电子束曝光系统 预算金额(元):6000000 最高限价(元):/ 采购需求: 标项名称: 扫描电子显微镜及电子束曝光系统 数量: 1 预算金额(元): 6000000 简要规格描述或项目基本概况介绍、用途:详见招标文件 备注:允许进口 合同履约期限:标项 1,详见招标文件 本项目(是)接受联合体投标。 2.项目编号:ZJ-2362384 项目名称:国科大杭州高等研究院单晶X射线衍射仪采购 预算金额(元):5000000 最高限价(元):5000000 采购需求: 标项名称: 单晶X射线衍射仪 数量: 不限 预算金额(元): 5000000 简要规格描述或项目基本概况介绍、用途:单晶X射线衍射仪1台。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 合同履约期限:标项 1,按照招标文件要求 本项目(是)接受联合体投标。二、获取招标文件 时间:/至2023年11月10日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政采云平台(https://www.zcygov.cn/) 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 三、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:国科大杭州高等研究院 地 址:杭州市西湖区转塘街道象山支弄1号 传 真: 项目联系人(询问):王老师 项目联系方式(询问):0571-86085786 质疑联系人:沈老师 质疑联系方式:0571-86080792 2.采购代理机构信息 名 称:浙江国际招投标有限公司 地 址:杭州市文三路90号东部软件园1号楼3楼317室 传 真:/ 项目联系人(询问):沈建平(18005883302)、倪樟如 项目联系方式(询问):0571-81061840,0571-81061802 质疑联系人:董福利 质疑联系方式:0571-81061818        3.同级政府采购监督管理部门 名 称:杭州市财政局政府采购监管处 /浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室 传 真:/ 联 系 人:朱女士/王女士 监督投诉电话:0571-85252453
  • 细胞膜层析新法弥补显微技术衍射缺陷
    最近,加州大学伯克利分校的Jay Groves及其团队开发出了一种新型层析技术用于研究细胞膜。  Groves解释说:&ldquo 我们开发出的是一种嵌于细胞膜的纳米点阵列平台,当其在一个活细胞的细胞膜中运作时,它将提供一种用于探测和操纵细胞膜组件的物理手段,包括信号簇。  截至目前为止,科学家主要通过各种显微镜研究细胞膜。受限于光的衍射作用,常规的显微技术很难观察比250nm更小尺寸的结构,然而,大部分细胞膜的成分,如蛋白质受体都比250nm要小。近年来,一些可以突破衍射障碍的超高分辨率显微技术问世,但这些技术更适合观察个体的静态图像,不能成为探测不断移动和变化中的细胞膜的理想技术。因此,科学家们需要一种用于细胞膜研究的全新技术。基于尺寸的新型层析技术并首次用于研究活细胞  由Groves及其团队开发的这种技术,首先需要创建一种含有蛋白质的人工脂质膜,在金纳米颗粒阵列沉积在细胞膜表面之前,这些人工膜将在细胞表面与受体结合。下一步,对细胞表面的受体进行荧光标记,然后让该细胞无限靠近人工膜,这使得人工膜中的蛋白质和细胞膜中的受体彼此捆绑结合。  通常情况下,受体在细胞膜的周围不断移动。但现在它们与人工膜中的蛋白质结合,其运动是受金纳米颗粒阵列约束的。只有当受体比金纳米颗粒之间的间隙更小时,他们才能够移动,而荧光标记物将显示出任何的移动轨迹。通过改变金纳米颗粒之间的距离,Groves及其团队可以测定受体的尺寸和研究影响受体功能的运动。  这是一种基于尺寸的新型层析技术并首次用于研究活细胞,Groves及其团队通过该方法研究免疫系统中T细胞表面的受体。这些T细胞受体(TCRs)包括聚集的蛋白质团簇,当遇到蛋白质抗原时,它们可以捆绑结合。通过人工膜以附着不同浓度的抗原,改变金纳米颗粒之间的距离,Groves及其团队发现,团簇的大小取决于抗原浓度,浓度越高越利于形成更大的团簇。Jay Groves  &ldquo T细胞受体微簇信号系统已经借助传统的光学显微镜有了很充分研究,但这部分是我们过去所不了解的。&rdquo Groves 表示:&ldquo 这是一种原理性的证据,它表明通过合成材料连接活细胞是实现细胞的分子级控制的另一个步骤。&rdquo (编译:刘玉兰)
  • 国家海洋局937万公开招标X射线衍射仪、扫描电镜、共聚焦显微镜等仪器
    p  厦门机电-公开招标- XM2015-TZ5146C1 X射线衍射仪等采购,预算金额(人民币):937万元。/pp  1、采购项目编号/包号:/pp  XM2015-TZ5146C1-3/-4/-5/-6/-7/-9/-10/-11/-12/-14/pp  2、采购人名称、地址和联系方式 :国家海洋局第三海洋研究所、厦门市大学路178号、0592-2195280/pp  3、采购代理机构名称、地址和联系方式 :厦门经发机电设备招标有限公司、厦门市湖里区机场北路476号、邮编361006/pp  4、采购项目名称:X射线衍射仪等采购/pp  5、采购方式:公开招标/pp  6、项目主要内容/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201512/insimg/c7e976b1-98b8-4359-bb3f-76d43fa97881.jpg"//pp  7、获取采购文件时间、地点、方式: 2015年12月07日至2015年12月24日(节假日除外) 上午8:00至12:00,下午1:30至5:30(北京时间)在厦门市湖里区机场北路476号4楼售标室购买招标文件。咨询电话:林小姐 电话:0592-2219823 传真:0592-5706660-6969/pp  8、投标截止时间、开标时间 :2015年12月28日09:00(北京时间)投标截止、2015年12月28日09:00(北京时间)开标/pp  9、采购项目联系人姓名和电话:曾小姐、王小姐0592-5784152、2223115/pp style="text-align: right "  厦门经发机电设备招标有限公司/pp style="text-align: right "  2015年12月07日/p
  • 瑞士科学家开发X 射线消色差透镜 将很快实现X 射线显微镜商业应用
    仪器信息网讯 近日,瑞士保罗谢尔研究所(Paul Scherrer Institute,简称PSI) 的科学家开发了一种X射线显微镜的突破性光学元件——X 射线消色差透镜。这使得 X 射线束即使具有不同的波长也可以准确地聚焦在一个点上。对应成果于3月14日发表在科学杂志Nature Communications上,成果表示,新型X射线镜头将使使用 X 射线研究纳米结构变得更加容易;这种类型的X射线消色差仪将克服衍射光学和折射光学的色差限制,并为宽带X射线管光源在光谱学和显微镜中的新应用铺平道路。DOI: 10.1038/s41467-022-28902-8用于在微纳米尺度上无损研究物质内部结构和元素组成的X射线技术需要高性能的X射线光学系统。为此,在过去的十年中,人们开发了各种类型的反射、折射和衍射光学元件。衍射和折射光学元件已成为大多数高分辨率X射线显微镜的组成部分。然而,始终遭受固有色差的影响。到目前为止,这限制了它们在窄带辐射中的使用,从本质上说,这类高分辨率X射线显微镜仅限于高亮度同步辐射源。与可见光光学类似,解决色差的一种方法是将具有不同色散功率的聚焦光学和散焦光学结合起来。在这次新成果中,PSI科学实现了X射线消色差仪的首次成功实验,该消色差仪由电子束光刻和镀镍制作的聚焦衍射菲涅耳波带片(FZP)和3D打印双光子聚合制作的散焦折射透镜(RL)组成。利用扫描透射X射线显微镜(STXM)和光学显微镜,科学家演示了在宽能量范围内的亚微米消色差聚焦,而无需任何焦距调整。这种类型的X射线消色差仪将克服衍射光学和折射光学的色差限制,并为宽带X射线管光源在光谱学和显微镜中的新应用铺平道路。消色差镜头对于在摄影和光学显微镜中产生清晰的图像至关重要。它们确保不同颜色(即不同波长的光)具有共同的焦点。然而,迄今为止,X 射线还没有消色差透镜,因此只有单色 X 射线才能实现高分辨率 X 射线显微镜。在实践中,这意味着必须从 X 射线光束光谱中滤除所有其他波长,因此只能有效使用一小部分光,从而导致相对低效的图像捕获过程。由 3D 打印机创建的微结构:由 PSI 科学家开发的创新折射结构与衍射元件相结合,形成一个消色差 X 射线镜头,约一毫米长(或高,如图所示)。打开它的末端,就像一个微型火箭。它是由 3D 打印机使用特殊类型的聚合物创建的。该结构的图像由扫描电子显微镜拍摄。图片来源:Paul Scherrer Institute/Umut SanliPSI 科学家团队已通过成功开发用于 X 射线的消色差 X 射线透镜解决了以上问题。由于 X 射线可以揭示比可见光小得多的结构,创新的镜头将特别有利于微芯片、电池和材料科学等领域的研发工作。比可见光消色差更加复杂对于可见光,消色差透镜的应用已经超过200多年。但对于X 射线的消色差透镜直到现在才被开发出来,这一事实乍一看似乎令人惊讶。可见光的消色差透镜是由一对不同的材料组成,当可见光穿透第一种材料时,分散成不同光谱颜色(就像穿过传统的玻璃棱镜时一样),然后这些光谱再通过第二种材料时就会逆转这种分散效果,聚焦在一个点上。(在物理学中,分散不同波长的过程称为“色散”)消色差聚焦原理:散焦折射透镜(RL)的色度作为聚焦菲涅耳波带片(FZP)色度特性的校正器。b扫描电子显微镜(SEM)显示了通过电子束光刻和镍电镀制作的镍FZP,用于对比测量。c由四个堆叠抛物面组成的RL的SEM图像,使用双光子聚合光刻技术进行3D打印。d使用消色差作为聚焦光学元件的扫描透射X射线显微镜(STXM)和光学成像实验装置的草图。PSI 的X 射线纳米科学与技术实验室 X 射线光学与应用研究组负责人、物理学家 Christian David 解释说:“这种适用于可见光范围的基本原理在 X 射线范围内不再起作用。对于 X 射线,没有任何两种材料的光学特性能够在很宽的波长范围内足以抵消另一种材料的影响。换句话说,材料在 X 射线范围内的色散是太相似了。”两个原理而不是两种材料因此,科学家们没有将寻找答案放在在两种材料的组合中,而是探索将两种不同的光学原理联系在一起。“诀窍是要意识到我们可以在衍射透镜前面放置第二个折射透镜,”新研究的主要作者Adam Kubec说。Kubec 目前是 Christian David 小组的研究员,现在为 XRnanotech 工作,XRnanotech 是 PSI 在 X 射线光学研究过程中的一个衍生公司。“多年来,PSI 一直是 X 射线镜片生产的世界领导者,”David 说,“我们为全球同步加速器光源的 X 射线显微镜提供专门的透镜,称为菲涅耳波带片。” David 的研究小组使用已建立的纳米光刻方法来生产衍射透镜。然而,对于消色差透镜中的第二个元素——折射结构——需要一种新方法,这种方法最近才得以实现:微米级的 3D 打印。这最终使 Kubec 能够制作出一种类似于微型火箭的形状。使用消色差仪演示在不同能量下的 STXM 成像。a)使用消色差获得的图b 中所示的Siemens star样品的 STXM 图像,表明在最佳能量约 6.4 keV 的附近,消色差范围 1 keV。b) Siemens star 测试样品的 SEM 图像,外圈和内圈的径向线和间距 (L/S) 的宽度分别为 400 nm 和 200 nm,见红色箭头。c) STXM 的比较结果是使用消色差 (上) 和传统 FZP (下) 获得的能量范围为 6.0 keV 至 6.4 keV。虽然 FZP 图像的对比度随能量快速变化,但使用消色差获得的图像质量变化很小。潜在的商业应用新开发的镜头使得X射线显微镜实现了从研究应用到商业应用(例如工业)的飞跃。“同步加速器源产生如此高强度的 X 射线,以至于可以滤除除单个波长以外的所有波长,同时仍保留足够的光来产生图像,”Kubec 解释说。然而,同步加速器是大型研究设施。迄今为止,在工业界工作的研发人员被分配了固定的光束时间,在研究机构的同步加速器上进行实验,包括 PSI 的瑞士同步辐射光源 SLS。这种光束时间极其有限、昂贵,且需要长期规划。“行业希望在他们的研发过程中拥有更快的响应循环,”Kubec 说,“我们的消色差 X 射线镜头将在这方面提供巨大帮助:它将使工业公司可以在自己的实验室内操作紧凑型 X 射线显微镜。”PSI 计划与 XRnanotech 一起将这种新型镜头推向市场。Kubec 表示,他们已经与专门在实验室规模上建造 X 射线显微镜设施的公司建立了适当的联系。作为元件安装在瑞士同步辐射光源SLS上进行测试为了测试他们的消色差仪的性能,科学家们在将其作为聚焦光学元件安装在瑞士同步辐射光源SLS的cSAXS光束线上。其中一种方法是非常先进的 X 射线显微镜技术,称为 ptychography。“这种技术通常用于检测未知样本,”该研究的第二作者、Christine David 研究小组的物理学家、X 射线成像专家 Marie-Christine Zdora 说,“另一方面,我们使用 ptychography 来表征 X 射线束,从而表征我们的消色差透镜。” 这使科学家能够精确检测不同波长的 X 射线焦点的位置。他们还使用一种方法对新镜头进行了测试,该方法使样品以小光栅步长穿过 X 射线束的焦点。当改变 X 射线束的波长时,使用传统 X 射线镜头产生的图像会变得非常模糊。但是,在使用新的消色差镜头时不会发生这种情况。“当我们最终在广泛的波长范围内获得测试样品的清晰图像时,我们知道我们的镜头正在发挥作用,” Zdora高兴地说道。David 补充说:“我们能够在 PSI 开发这种消色差 X 射线镜头,并且很快将与 XRnanotech 一起将其推向市场,这一事实表明,我们在这里所做的这类研究将在很短的时间内实现实际应用。”
  • 1177万!哈尔滨工程大学扫描电子显微镜、X射线衍射仪和宁夏计量质量检验检测研究院仪器设备采购项目
    一、项目一(一)项目基本情况项目编号:2024-GFCG-115项目名称:哈尔滨工程大学扫描电子显微镜、X射线衍射仪采购项目预算金额:730.000000 万元(人民币)最高限价(如有):730.000000 万元(人民币)采购需求:采购标的名称单位数量最高限价单价(万元)是否接受进口产品投标简要需求扫描电子显微镜台1550是该设备主要为满足材料科学领域相关材料表征,微观组织观察,内部缺陷分析,材料的力学热学性质研究等需求。x射线衍射仪套1180是该设备主要为满足材料科学领域相关材料表征,微观组织观察,内部缺陷分析,材料的力学热学性质研究等需求。 合同履行期限:合同签订后150天内完成交货、安装、调试并具备验收条件本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年05月20日 至 2024年05月24日,每天上午8:30至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:按本公告第三部分规定的方式方式:邮件获取售价:¥500.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:哈尔滨工程大学     地址:哈尔滨市南岗区南通大街145号        联系方式:佟龙、王金丹、朱国凤、郑天琪 0451-55671212      2.采购代理机构信息名 称:宜国发项目管理有限公司            地 址:哈尔滨市道里区群力第四大道399号汇智广场中楼401            联系方式:佟龙、王金丹、朱国凤、郑天琪 0451-55671212            3.项目联系方式项目联系人:佟龙、王金丹、朱国凤、郑天琪电 话:  0451-55671212二、项目二(一)项目基本情况采购计划编号: 2024NCZ001446项目编号: SZT2024-NX-SC-ZC-HW-0354项目名称: 宁夏计量质量检验检测研究院2024年技术改造项目一标段、二标段预算金额(元): 4470000.00最高限价(如有): 4470000.00元采购需求:采购标段标的名称品目名称数量简要规格描述或项目基本概况预算金额(元)备注宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1手持式氧气吸入器检测仪(详见招标文件)24000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1婴儿培养箱/辐射保暖台检测仪(详见招标文件)148000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1滚筒反力式制动检验台检定装置(动态) (详见招标文件)85000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1自校式数字测温仪 (详见招标文件)18600宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1影像筛网检测仪 (详见招标文件)567000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1汽车制动检验台滑移率测试仪(详见招标文件)65000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具2二等标准铂铑30-铂铑6热电偶(详见招标文件)45600宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具2恒温水槽(详见招标文件)68000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1心脏除颤/起搏检测仪(详见招标文件)95000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1纳伏微欧测温仪(详见招标文件)58500宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1标准铂铑10-铂热电偶(一等)(详见招标文件)10600宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具2标准铂铑10-铂热电偶(二等)(详见招标文件)19400宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1热电偶清洗退火柜(详见招标文件)29000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1机动车检测设备响应时间测量仪(详见招标文件)30000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具2负压吸引器检测仪(详见招标文件)40000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具2二等标准铂电阻温度计 (详见招标文件)25600宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1多通道高精度温度、湿度数据采集记录分析系统(详见招标文件)95000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具120kg~1kg F1砝码(6个/套)(详见招标文件)67500宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1质量比较仪30kg/0.01g(详见招标文件)105000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1紫外、可见、近红外分光光度计(详见招标文件)640000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具2离心机(详见招标文件)4000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1汽车侧滑检验台自动检定装置(详见招标文件)70000宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具2二等标准铂铑10-铂热电偶(详见招标文件)19400宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1出租汽车计价器本机检定装置(详见招标文件)39800宁夏计量质量检验检测研究院2024年技术改造项目一标段其他计量标准器具其他计量标准器具1光照度计检定系统(详见招标文件)380000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1燃气调压器气密性试验装置(详见招标文件)118000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1燃气调压器耐压试验装置(详见招标文件)118000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1进出口压力及静特性试验设备(详见招标文件)285000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1燃气软管耐压试验机(详见招标文件)55000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1变频系统能效测试分析仪(详见招标文件)115000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1可燃气体探测器高低温、湿热试验箱(详见招标文件)400000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1燃气软管耐压试验机(详见招标文件)54000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1冷水及热泵机组能效测试分析仪(详见招标文件)118000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1波纹金属软管弯曲性能试验机(详见招标文件)34500宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1热力输送系统能效测试分析仪(详见招标文件)156500宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1供配电系统能效测试分析仪(详见招标文件)106000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1工业电热设备能效测试分析仪(详见招标文件)105000宁夏计量质量检验检测研究院2024年技术改造项目二标段其他试验仪器及装置其他试验仪器及装置1臭氧老化试验箱(详见招标文件)55000数量合计:45预算合计:4470000合同履行期限:合同签订后45个日历日本项目(是/否)接受联合体投标: 是 否(二)获取招标文件时间: 2024-05-17 16:22:26 至 2024-05-24 23:59:00 (提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00至12:00,下午12:00至24:00(北京时间,法定节假日除外 )地点:中国政府采购网;宁夏回族自治区政府采购网; 宁夏回族自治区公共资源交易网方式:电子下载售价:0元(三)对本次招标提出询问,请按以下方式联系 1、采购人信息 名 称: 宁夏计量质量检验检测研究院 地 址: 银川市贺兰县德胜工业园区清园路1-1号 联系方式: 0951-5065060 2、采购代理机构信息(如有) 名 称: 陕西中技招标有限公司 地 址: 银川市北京中路瑞银财富中心 B 座 14 楼 联系方式: 0951-5072070 3、项目联系方式 采购人项目联系人: 米江 电话: 0951-5065060 代理机构项目联系人: 赵伟、吴继东、刘超 电话: 0951-5072070
  • 多晶X射线衍射技术的应用要点
    现代化商用多晶X射线衍射仪具备无损、便捷、测量精度高等很多优点,同时配备有先进的陶瓷光管、高精度的测角仪、高灵敏度的探测器以及各种分析计算软件,因此它的应用范围是非常广泛的,不仅可以实现材料物相的定性表征,还可以对很多参数实现定量化的分析。常规的分析包括:材料的晶型结构分析、点阵参数的测定、物相定量、晶粒尺寸和结晶度计算等,还可以对材料的宏观微观应力以及取向织构进行测定;同时还包括诸如小角散射、薄膜衍射、反射率测定以及微区分析等新的技术。而在X射线衍射分析表征中,样品的制备过程、仪器参数设定以及数据分析这三个步骤往往决定了X射线衍射数据结果的质量。本文主要从这三方面进行阐述,与大家分享下多晶X射线衍射的应用要点。一、样品制备X射线衍射实验的准确性和实验得到的信息质量结果与样品的制备有很大关系,在进行材料的X射线衍射分析时应合理制备样品。样品制备主要分为粉末样品的制备和块状类样品的制备。1. 粉末样品首先要控制它的颗粒粒径,原则上要保证颗粒尺寸适中并且均匀,对于大多数样品来讲可以通过研磨加过筛的方式来实现;而对于受外力易产生晶体结构变化的样品而言,通常采用不研磨直接过筛的方式进行处理。在样品的整个研磨过程中要掌握研磨力度柔和均匀的原则,适中的粒度可以让样品中大部分或全部的晶粒参与衍射,从而可以获得反应样品真实晶体结构信息的实验数据;如果研磨不充分,会造成样品的粒度粗大,从而会引起参与衍射的晶粒数目减少,衍射强度降低,峰形变差,分辨率降低的情况;如果用力过度研磨,对材料的晶体结构会产生不同程度的破坏,衍射强度会降低,同时晶粒细化会带来衍射峰的宽化效应,不利于得到结构清晰的衍射谱图。至于研磨的程度,一般研磨到没有颗粒感,类似面粉的滑腻感即可,也不能研磨的过细。过筛这一步是为了保证样品粒径的均匀性,如果样品颗粒尺寸不够均匀,会产生一定的择优取向。图1是一个矿物样品的分析案例,红色谱图是未经研磨和未经过筛处理的样品,而黑色谱图是样品经过研磨和过筛处理的。从叠加图中可以明显看到:样品经过研磨过筛后,粒径尺寸适中且均匀,这就保证了参与衍射的晶粒数目。在X射线衍射谱结果中,经过处理的样品不论从衍射峰数目、强度、峰型和分辨率都要优于未处理的样品,从而确保了分析结果的真实性。图1 经过处理与未经过处理的矿物样品的叠加X射线衍射谱图在粉末样品的装填方面,需要准备的样品量一般在3g左右,最小不少于5mg。压片方法采用常规的正压法操作,在压片过程中让粉末样品最好能够铺满整个样品槽,关键要让粉末样品压平,如果样品表面不平整、存在凹凸起伏的情况,会导致出射的角度变大或变小,直接引起大角度的某些衍射峰偏移,还会造成入射X射线散射至任意方向,导致探测器接收到的峰值降低。这对于精修分析而言,会造成最终解析的晶体结构常数出现严重错误。压片过程中需要注意的是不要用力压太紧,否则容易影响样品的自由取向。2. 块状类样品从样品形态区分,常见的块状类样品有块状、板片状、圆柱状。在分析过程中需要把握样品的测试面面积、表面洁净度与表面平整程度。测试面的面积通常要大于1cm2,如果面积太小可以将几块样品粘贴在一起进行测试,同时样品的底面要与测试面相平行,从而保证衍射面的水平状态;在测试前,应该尽可能将测试面磨成平面,并进行简单的抛光,这样做不但可以去除金属表面的氧化膜,还可以消除表面的应变层,之后再用超声波清洗去除表面的杂质,保证测试面的平整光滑。二、仪器参数设置1. 扫描参数的设定X射线衍射的扫描方式主要分为步进扫描和连续扫描,步进扫描是将扫描范围按照一定的步进宽度(如常用的0.01度/步或0.02度/步)将整个扫描范围分成若干步,在每一步停留若干秒,并将这若干秒内记录到的总光强度作为该数据点处的强度,一般用于角度范围内的精细扫描,可以获得高质量的衍射数据结果,用于定量分析、线形分析以及精确测定点阵常数、Rietveld全谱拟合精修等应用;而连续扫描是测角仪从起始2θ角度到终止2θ角度进行的匀速扫描,其具备较高的扫描效率。这里面有两个关键参数——步长和扫描速度。步长一般是根据衍射峰的半高宽来决定,最好要小于全谱中最尖锐衍射峰半高宽的1/2。步进扫描的停留时间或者连续扫描的扫描速度要根据步长(数据点间隔)进行设定,要搭配合适,遵循步长小扫速慢,步长大扫速快的原则。否则,在图谱中会出现基线噪声过大和上下波动增大的情况,会把一些可能的弱峰掩盖掉。图2是一个陶瓷样品的分析案例,采用连续扫描模式、5度/分钟的扫描速度分别使用0.01度/步和0.02度/步的步长进行分析测试,可以看出快速扫描速度配合稍大步长的分析效果要好于小步长;下图按照步长小扫速慢,步长大扫速快的原则进行测试,都可以较为准确的表征出晶体的结构信息,特别是慢速扫描的数据质量更高。图2 不同扫描速度与步长匹配得出的X射线衍射谱图对于扫描范围而言,表1列举了一些常见材料的扫描角度范围,对于需要进行精修的衍射数据截止扫描角度一般要到100度或120度。表1 常见材料的扫描角度范围扫描总时间的计算对于衡量总体测试时间成本以及合理选取扫描参数是很有必要的。步进扫描和连续扫描的计算如式(1)、式(2)所示:如从3度到90度使用步进扫描模式采集某样品的衍射谱,步长设定为0.02度/步,停留时间为0.2秒/步,则通过计算可以得到测量总时间为14.5分钟。连续扫描的总测量时间根据式(2)计算,但是实际的总测试时长还需要包括光源移动到起始角度的时间。2. X射线光源的参数设置(1)X射线管的管电压和管电流X射线管的工作电压一般为靶材临界激发电压的3~5倍,以铜靶为例,它的Kα能量为8.04KeV,为了获得靶材的有效激发,电压通常设置为40kV,这里需要说明的是,电压一般不能低于20kV,否则就不能对Cu靶的特征X射线进行有效激发。选择管电流时功率不能超过X 射线管的额定功率,较低的管电流可以延长X 射线管的寿命。除非特殊要求,通常X射线管使用的负荷不超过最大允许负荷的80%左右。(2)靶材的选择依据样品元素成分来合理地选择工作靶的种类,应保证样品中最轻元素(原子序数小于等于20的元素除外)的原子序数比靶材元素的原子序数稍大或相等。如果靶材元素的原子序数比样品中的元素原子序数大2~4的话,那么X射线将被大量吸收因而产生严重的荧光现象,不利于衍射的分析效果(比如分析Fe试样,应该尽量使用Co靶或Fe靶,如果采用Ni靶,则背底噪音会很高)。如果采用不同的靶材对相同材料进行分析,所获得的谱图相同吗?使用不同的靶材,首先其特征X射线波长是不同的,而材料晶体结构的晶面间距值是其固有的。根据布拉格方程可知,样品衍射峰的角度决定于实验使用的波长,因此,采用不同靶材测试相同材料所得衍射图谱中衍射峰的位置是不相同的、呈规律性变化的,与靶材的种类是无关的。(3)狭缝的选择狭缝的大小主要依据材料的表征目的以及探测器的类型来进行选择,原则就是在保证强度的情况下提高分辨率。一般的衍射仪配置有三种可变的狭缝(发散狭缝、防散射狭缝和接收狭缝),另外两个索拉狭缝的层间距是固定的。发散狭缝越大,衍射强度越高,但峰型的宽化越明显;防散射狭缝用于限制由于不同原因产生的附加散射进入探测器,有助于降低背景;接收狭缝越小,分辨率越高,强度越低,反之。分析测试时尽量让发散狭缝和防散射狭缝保持一致,接收狭缝尽量小,这样可以提高衍射谱的分辨率和信噪比,从而获得高质量的衍射结果,还可以起到保护探测器的作用。(4)样品放置高度的控制样品的放置高度对于获得高准确度的数据结果是非常重要的,高度的略微偏移都会对实验结果产生影响,具体来讲就是会造成衍射峰的位移以及衍射峰强度的变化。通过图3可以看出:低于正确的高度,衍射峰向左偏移,同时峰强降低;如果是高于正确的高度,衍射峰向右偏移,样品表面与防散射刀片的间隙更小,衍射峰强明显降低。图3 样品的不同放置高度所得到的衍射谱图三、数据分析1.获取的数据信息和物相定性分析首先,从X 射线谱的峰型中可以得到包括峰位、峰强以及峰型轮廓宽度形状的这些信息,通过衍射峰的峰位和峰强可以对物相进行定性定量分析,同时还可以通过计算获得点阵常数和晶体结构的相关结果;通过峰型轮廓宽度形状可以得到样品峰型的展宽,进而可以计算出晶粒尺寸和微观应力。物相定性分析是X射线衍射分析的基础,最重要的环节就是将样品谱图与标准卡片进行比对,以确定样品的物相组成。比对的过程中要遵循以下4点原则:(1)计算材料的晶面间距d值,这是材料晶体结构所固有的;(2)材料低角度的衍射线与标准卡片的匹配情况;(3)重点关注谱图中的强衍射线;(4)要尤为重视特征线。2.衍射谱比对功能的运用将衍射谱进行叠加比对是衍射数据分析中较为常用的一个方法,比如鉴定药物晶型结构的一致性,通常就采用谱图比对的方法进行晶型分析。在《药典》中明确规定判断两个晶态药物晶型状态的一致性,应满足“衍射峰数量相同、衍射峰强弱顺序一致、衍射峰角度误差范围在±0.2°内以及相同角度衍射峰相对峰强度误差在±5%内”这四个条件。以一批送检的降糖药为例,判断其晶型状态的一致性。首先对两种药物进行谱图叠加比对,如图4所示,可知这两个样品满足“衍射峰数量相同和衍射峰强弱顺序一致”这两个条件。图4 药物X射线衍射谱叠加图而后对两个样品进行衍射峰峰位和强度的定量比对,通过计算可以得出:两个样品的峰位一致,符合“二者2θ值衍射峰位置误差范围在±0.2⁰内”的条件;同时相同位置衍射峰的相对峰强度存在偏差,有的甚至超过了15%,因此不符合“相同位置衍射峰的相对峰强度误差在±5%内”的条件。表2 样品衍射峰的峰位和强度比较通过谱图定性比较和衍射峰的定量计算,比对结果满足前三个条件,但是晶粒生长方向存在差异造成相同角度衍射峰相对峰强度的误差超出了《药典》中给定的范围。X射线衍射谱的比对法可以为挑选药物晶型和优化药物生产工艺参数提供帮助。在分析表征过程中,需要根据样品特性以及表征目的把握好样品制备、仪器参数设置以及数据分析这三方面的要点,以获得准确、高质量的X射线衍射数据,充分发挥出多晶X射线衍射的技术优势,为科学研究、技术创新以及材料评价等方面持续提供强有力的数据支撑。附:作者简介黎爽,高级工程师,2008年就职于北科院分析测试研究所至今,主要应用电子显微镜、X射线衍射仪等大型科学工具作为表征手段,从事材料的电子显微分析、晶体结构表征以及相关科研工作。针对新材料的研究表征,建立了多种特色分析技术,涵盖了材料制备和分析测试表征等方向。特色分析技术广泛应用于日常科研工作中,已通过专业领域内多项能力验证和国家司法鉴定能力验证项目考核。
  • 岛津参加全国X射线衍射学术大会暨国际衍射数据中心(ICDD)研讨会
    由中国物理学会 X 射线衍射专业委员会、中国晶体学会粉末衍射专业委员会和国际衍射数据中心等单位共同主办的全国 X-射线衍射学术大会暨国际衍射数据中心(ICDD)研讨会是X-射线衍射技术最专业、最全面的学术会议。该系列学术会议每三年举办一次。本次为第13届该研讨会,于7月28日至8月1日在兰州组工大厦顺利召开,共吸引到约400多位国内外X射线专家从业者及仪器厂商与会,堪称业内一次盛会。 此次会议共安排学术报告129个,分大会和分会报告进行分享和交流。其中根据涉及前沿领域,设立了4个分会场,包括:衍射理论和方法、新材料和衍射应用、薄膜和低维材料、工业应用及其它。另外,为满足广大X射线衍射从业者的需求,特别安排了4个专题报告的培训班,涉及残余应力分析、织构测量、小角X射线散射等,得到了与会代表的一致好评。大会现场 作为有着100多年历史,从事X射线设备研发、生产、销售一体的仪器厂商,岛津企业管理(中国)有限公司受邀参加了此次会议。并带来了X射线全线产品展示,包括X荧光光谱技术、电子探针显微镜、X射线衍射技术、X射线光电子能谱技术,受到了与会代表的广泛关注。岛津展位关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 蔡司发布全新亚微米级X射线显微镜Xradia 600 Versa
    p  strong仪器信息网讯/strong 德国耶拿当地时间,2019年1月23日,屡获殊荣的蔡司Xradia Versa系列又推出了两款新型先进产品 — Xradia 610 Versa和Xradia 620 Versa X射线显微镜。它们的独特优势是能够在全功率和电压范围内更快速地对样品进行无损成像,且不会影响分辨率和对比度。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/ea57ce49-bb64-409b-939e-5d7cb9fc0001.jpg" title="1.jpg" alt="1.jpg" style="width: 450px height: 300px " width="450" vspace="0" height="300" border="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "新型蔡司Xradia 620 Versa/span/pp  蔡司Versa X射线显微镜凭借优异的大工作距离高分辨率(RaaD)的特性,成为了全球优秀研究人员和科学家的“有力帮手”。在相对大工作距离下也能保持超高分辨率,有助于产生意义非凡的科学见解和发现。随着当今技术的快速发展,对分析仪器也提出了更高的要求,而蔡司Xradia 600 Versa系列就是专为应对这一挑战而设计的。/pp  strong蔡司 Xradia 610 & 620 Versa采用改进的光源和光学技术/strong/pp  X射线计算机断层扫描成像领域面临的两大挑战是:实现大尺寸样品和大工作距离下的高分辨率和高通量成像。蔡司推出的两款X射线显微镜凭借以下优势完美解决了这些挑战:系统可提供高功率的X射线源,显著提高X射线通量,从而加快了断层扫描速度。工作效率提高达两倍,而且不会影响空间分辨率。同时,X射线光源的稳定性得到提升,使用寿命也更长。/pp  strong主要特性包括:/strong/pp  ● 最高空间分辨率500nm,最小体素40 nm/pp  ● 与蔡司 Xradia 500Versa系列相比,工作效率提高两倍/pp  ● 更加简便易用,包括快速激活源/pp  ● 能够在较大的工作距离下对更广的样品类型和尺寸的样品进行亚微米特征的观察/pp  strong先进科研和工业领域的更多应用将因此而受益/strong/pp  这两款用途广泛的仪器可以为不同领域的科研机构和工业客户带来更高的工作效率和价值,助力他们的研究和探索。/pp  凭借RaaD特性,蔡司 Xradia Versa在大工作距离下也能保证超高分辨率,并且能够对安放在环境试验舱室或高精度原位加载装置中的样本进行成像。这可以让材料科学研究人员在受控的环境条件下以无损的方式表征材料的3D微观结构,以探究不同原位条件下(如加热或拉压)造成的影响。/pp  随着全球能源材料需求呈现爆炸式增长,工业研究人员需要分析这些材料在多个固相和液相阶段的复杂多物理场行为及其相关的结构演变。蔡司 Xradia 600 Versa系列能够帮助研究人员解析这些结构的形态及其在工作条件下的行为。这些基于RaaD技术的X射线显微镜可以对完整的软包电池和圆柱形电池进行高分辨率成像,从而为数百次充放电老化效应的研究提供支持。/pp  strong在电子和半导体行业/strong中,用户常常会为了工艺开发、良率提高进行结构和失效分析,并对先进的半导体封装进行结构分析。蔡司Xradia 600 Versa系列可以通过无损成像进行封装产品的缺陷分析,如:Bumps或Microbumps中的裂纹、焊料润湿问题或TSV通孔结构。在物理失效分析(PFA)之前对缺陷进行三维可视化,减少人为物理切片引入的假象缺陷,从而提高失效分析的成功率。/pp  strong在增材制造行业/strong中,3D X射线显微镜在从粉末到零件的整个流程的多道工序中发挥着重要作用。典型应用包括:研究粉末床中颗粒的具体形状、尺寸和体积分布,以确定合适的工艺参数。蔡司Xradia 600 Versa系列具有更高的工作效率和结果效率,实现高效的工作流程。/pp  strong在原材料研究领域/strong中,用户会进行多尺度的孔隙结构分析,包括原位流体流动分析。全新蔡司Xradia Versa X射线显微镜以更快的运行速度为数字岩心模拟、基于实验室的衍射衬度断层扫描成像和多尺度成像等提供更精确的三维纳米尺度成像,从而减少研究前后衔接瓶颈限制。/pp  strong在生命科学领域/strong,蔡司 Xradia 600 Versa系列可实现更快、更高分辨率的成像,让研究人员能够研究软组织(如神经组织、血管网络、细胞结构、韧带和神经)、骨骼的矿物组织以及植物结构(如根和细胞结构)。/pp  strong持续改进和可升级性/strong/pp  蔡司X射线显微镜旨在通过不断创新和发展进行升级和扩展,以保护我们客户的利益。这样可以确保随着前沿技术的不断进步,显微镜技术也能向前发展,从蔡司 Xradia Context microCT到蔡司Xradia 500/510/520 Versa,再到现在新增的蔡司 Xradia 610/620 Versa,用户都可以将系统升级至最新的X?射线显微镜。/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong关于蔡司/strong/span/pp  蔡司是全球光学和光电领域的先锋。蔡司致力于开发、生产和行销测量技术、显微镜、医疗技术、眼镜片、相机与摄影镜头、望远镜和半导体制造设备。凭借其解决方案,蔡司不断推动光学事业的发展,并促进了技术进步。公司共有四大业务部门:工业质量与研究、医疗技术、视力保健/消费光学和半导体制造技术。蔡司集团在40多个国家/地区拥有30多座工厂、50多个销售与服务机构以及约25个研发机构。/pp  全球约27,000名员工在2016/2017财年创造了约53亿欧元的业绩。公司于1846年在耶拿成立,总部位于德国奥伯科亨。卡尔蔡司股份公司是负责蔡司集团战略管理的控股公司。公司由Carl Zeiss Stiftung(卡尔蔡司基金会)全资所有。/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong蔡司研究显微镜解决方案/strong/span/pp  蔡司研究显微镜解决方案是光学、电子、X射线和离子显微镜系统的一站式制造商,并提供相关显微镜的解决方案。产品组合包括生命科学和材料研究以及工业,教育和临床实践有关的产品和服务。该部门的总部设立在耶拿。其他生产和开发基地位于奥伯科亨,哥廷根和慕尼黑,以及英国剑桥、美国马萨诸塞州皮博迪和美国加利福尼亚州普莱森顿。蔡司研究显微镜解决方案属于工业质量和研究部门。部门约6,300名员工在2016/2017财年创造了总额达15亿欧元的业绩。/p
  • ACS:膨胀显微法与STED结合新法,衍射极限分辨提高30倍
    p  strong仪器信息网讯 /strong在提高显微镜分辨率方面,两种方法结合往往比一种方法更好。近日,德国马克斯普朗克分子细胞生物学与遗传学研究所Helge Ewers博士及其同事发表论文(ACS Nano 2018, DOI:10.1021/acsnano.8b00776),文中介绍了一种新的提高显微镜分辨率的方法——ExSTED,即将受激发射损耗(STED)荧光显微术与膨胀显微镜法相结合的方法。STED显微术使用一个环形的激光束精确地控制在标记样本上的荧光团激活的位置。通常情况下,STED的分辨率可以将显微镜光学衍射极限提升10倍。膨胀显微镜法是将固定样品嵌入水凝胶中,将样品溶胀并拉伸至其原始尺寸的四倍,导致物理分辨率提高的方法。将这两种方法结合,Helge Ewers博士及其同事获得了比光学衍射极限提升30倍的效果。/pp style="text-align: center"img style="width: 450px height: 388px " src="http://img1.17img.cn/17img/images/201805/insimg/26d1f3ac-c39c-4d29-8d6b-f2cda2131146.jpg" title="01.jpg" height="388" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "ExSTED法观察细胞中微管的图像,色标表示三维空间中各种小管的深度(来自ACS Nano)/span/pp  文章中使用ExSTED方法对三维细胞的微管网络进行成像。 由于扩大样品扩散荧光标记,所有样品观察区域的信号都大大减少。 为了抵消信号减少,研究人员使用多种抗体来增加添加到微管中的荧光标记的数量。他们希望通过第二次扩展样本和寻找放大荧光信号的方法来进一步提高显微镜的分辨率。/p
  • 1850万!中国科学院金属研究所场发射透射电子显微镜、广角X射线散射仪等采购项目
    一、项目基本情况1.项目编号:OITC-G230311156项目名称:中国科学院金属研究所场发射透射电子显微镜采购项目预算金额:850.0000000 万元(人民币)最高限价(如有):850.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期预算交货地点是否允许采购进口产品1场发射透射电子显微镜1套本系统主要用于各种材料高分辨快速成像和化学分析,系统由电子光学系统、高压系统、真空系统等部分组成。合同生效后18个月850万元中国科学院金属研究所是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。合同履行期限:合同生效后18个月内交货。本项目( 不接受 )联合体投标。2.项目编号:23CNIC-031692-009项目名称:中国科学院金属研究所广角X射线散射仪采购项目预算金额:700.0000000 万元(人民币)最高限价(如有):700.0000000 万元(人民币)采购需求:名称:广角X射线散射仪数量:1套简要技术要求:本设备用于在温度(普冷区)、应力、磁场等复杂环境下精准测量金属、塑晶、磁性等材料的X射线衍射谱;可在温度(深冷区)、压力等环境下测试材料X射线原子对分布函数。用以研究材料多尺度应力分配、压力诱导分子有序度变化等材料科学共性问题。★微焦斑转靶最大额定输出功率:不低于800 W★ 微焦斑转靶额定管电压:不低于50 kV★微焦斑转靶额定管电流:不低于16 mA(50 kV下)★无液氦分体式超低振动设计,不消耗液氦★ 温度范围:10 K-350 K★ 温度稳定性:≤100 mK合同履行期限:合同生效后8个月本项目( 不接受 )联合体投标。3.项目编号:23CNIC-031692-008项目名称:中国科学院金属研究所高温微动磨损试验机采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:名称:高温微动磨损试验机数量:1套简要技术要求:本设备用于各种材料、涂层和薄膜在高温环境下的摩擦磨损性能测试,可为各种材料和各种涂层以及薄膜的研究提供有效手段,符合国家及相关国际标准,接触形式包括点、线、面三种。★高载荷模块:3—2500N, 加载控制精度:±1%,分辨率:0.1N★行程:0.01—5mm ,位移控制精度:优于10um,重现性:0.3%位移传感器:分辨率:2 μm,响应时间: 10 s★频率:1—500Hz 合同履行期限:合同生效后6个月本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月04日 至 2023年07月11日,每天上午9:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:北京市西城区北三环中路25号英斯泰克大厦5层方式:电话联系购买售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。(一)1.采购人信息名 称:中国科学院金属研究所     地址:辽宁省沈阳市沈河区文化路72号        联系方式:佟老师 024-23971066      2.采购代理机构信息名 称:中国仪器进出口集团有限公司            地 址:北京市西城区北三环中路25号英斯泰克大厦            联系方式:唐经理 010-60961220/18612037725 陶经理010-60961520/18618131338            3.项目联系方式项目联系人:陶经理电 话:  010-60961520(二)1.采购人信息名 称:中国科学院金属研究所     地址:沈阳市沈河区文化路72号        联系方式:佟老师;024-23971066      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯;010-68290508、010-68290599            3.项目联系方式项目联系人:佟老师电 话:  024-23971066
  • 一文看懂透射电子显微镜TEM
    p  透射电子显微镜(Transmission Electron Microscope, 简称TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。/pp strong 1 背景知识/strong/pp  在光学显微镜下无法看清小于0.2微米的细微结构,这些结构称为亚显微结构或超细结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM分辨力可达0.2纳米。/pcenterp style="text-align:center"img alt="" src="http://img.mp.itc.cn/upload/20170310/e4bcd2dc67574096b089e3a428a72210_th.jpeg" height="316" width="521"//p/centerp style="text-align: center "strong电子束与样品之间的相互作用图/strong/pp 来源:《Characterization Techniques of Nanomaterials》[书]/pp  透射的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。/pp  strong2 TEM系统组件/strong/pp  TEM系统由以下几部分组成:/pp  电子枪:发射电子。由阴极,栅极和阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速和加压的作用。/pp  聚光镜:将电子束聚集得到平行光源。/pp  样品杆:装载需观察的样品。/pp  物镜:聚焦成像,一次放大。/pp  中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式)。/pp  投影镜:三次放大。/pp  荧光屏:将电子信号转化为可见光,供操作者观察。/pp  CCD相机:电荷耦合元件,将光学影像转化为数字信号。/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/077c0e70dca94509a9990ee4bf72b7c8_th.jpeg" height="359" width="358"//centerp style="text-align: center "strong透射电镜基本构造示意图/strong/pp 来源:中科院科普文章/pp  strong3 原 理/strong/pp  透射电镜和光学显微镜的各透镜及光路图基本一致,都是光源经过聚光镜会聚之后照到样品,光束透过样品后进入物镜,由物镜会聚成像,之后物镜所成的一次放大像在光镜中再由物镜二次放大后进入观察者的眼睛,而在电镜中则是由中间镜和投影镜再进行两次接力放大后最终在荧光屏上形成投影供观察者观察。电镜物镜成像光路图也和光学凸透镜放大光路图一致。/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/e9d4e63ae7de44bdb90ac7b937a15169_th.jpeg" height="333" width="422"//centerp style="text-align: center "strong电镜和光镜光路图及电镜物镜成像原理/strong/pp 来源:中科院科普文章/pp  strong4 样品制备/strong/pp  由于透射电子显微镜收集透射过样品的电子束的信息,因而样品必须要足够薄,使电子束透过。/pp  试样分类:复型样品,超显微颗粒样品,材料薄膜样品等。/pp  制样设备:真空镀膜仪,超声清洗仪,切片机,磨片机,电解双喷仪,离子薄化仪,超薄切片机等。/pp  /pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/57ee42cd8391437292cd04cc7bd24694_th.jpeg" height="296" width="406"//centerp style="text-align: center "strong超细颗粒制备方法示意图/strong/pp 来源:公开资料/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/2ddf2c80dbe34a069bc51a3595a55160_th.jpeg" height="325" width="404"/br/strong材料薄膜制备过程示意图/strong/centerp  来源:公开资料/pp strong 5 图像类别/strong/pp  strong(1)明暗场衬度图像/strong/pp  明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。/pp  暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/c458ccf5fa5c4ffa9cb948e2d28b76b0.png" height="306" width="237"/br/strong明暗场光路示意图/strong/centercenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/701e2e4343ea4409b3afdd92e1717804.jpeg" height="318" width="294"/br/strong硅内部位错明暗场图/strong/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pp  strong(2)高分辨TEM(HRTEM)图像/strong/pp  HRTEM可以获得晶格条纹像(反映晶面间距信息) 结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。/pp  /pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/264c1d9b2f454ea9b8aa548033200a33.png" height="312" width="213"//centerp style="text-align: center "strongHRTEM光路示意图/strong/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/d53de1201a4e41948d4d095401c3dc3b.jpeg" height="234" width="321"/br/strong硅纳米线的HRTEM图像/strong/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pp  strong(3)电子衍射图像/strong/pp  选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。/pp  会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。/pp  微束衍射(Microbeam electron diffraction, MED): 纳米级微小区域结构特征。 br//pp  /pcenterp style="text-align:center"img alt="" src="http://img.mp.itc.cn/upload/20170310/f6fc1e403ef74234af93d4f9979429cd.png" height="296" width="227"//ppstrong电子衍射光路示意图/strong/p/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/b0631c33d4b44f10bf9bdb0f908830c5.png" height="174" width="173"//centerp style="text-align: center "strong单晶氧化锌电子衍射图/strong/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/2ac3b6fb7b03421096ee3af0790b9acb.png" height="174" width="175"//centerp style="text-align: center "strongstrong无定形氮化硅电子衍射图/strong/strong/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/02f2f6c3980a4450a36bc7bbc36f10e5.png" height="174" width="170"/br/strong锆镍铜合金电子衍射图/strong/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pp  strong6 设备厂家/strong/pp  世界上能生产透射电镜的厂家不多,主要是欧美日的大型电子公司,比如德国的蔡司(Zeiss),美国的FEI公司,日本的日立(Hitachi)等。/pp  strong7 疑难解答/strong/pp  strongTEM和SEM的区别:/strong/pp  当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、背散射电子、俄歇电子、特征X射线、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。扫描电镜收集二次电子和背散射电子的信息,透射电镜收集透射电子的信息。/pp  SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法特定剖面呈现出来,从而转化为可观察的表面 TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,一般为10到100纳米内,甚至更薄。/pp  strong简要说明多晶(纳米晶体),单晶及非晶衍射花样的特征及形成原理:/strong/pp  单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网格的格点上。/pp  多晶面的衍射花样为各衍射圆锥与垂直入射束方向的荧光屏或者照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald球的相贯线为圆环,因此样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴,2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。/pp  非晶的衍射花样为一个圆斑。/pp strong 什么是衍射衬度?它与质厚衬度有什么区别?/strong/pp  晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度称为衍射衬度。质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,适用于对复型膜试样电子图象做出解释。/pp  strong8 参考书籍/strong/pp  《电子衍射图在晶体学中的应用》 郭可信,叶恒强,吴玉琨著 /pp  《电子衍射分析方法》 黄孝瑛著 /pp  《透射电子显微学进展》 叶恒强,王元明主编 /pp  《高空间分辨分析电子显微学》 朱静,叶恒强,王仁卉等编著 /pp  《材料评价的分析电子显微方法》 (日)进藤大辅,及川哲夫合著,刘安生译。/pp  来源:中国科学院科普文章《透射电子显微镜基本知识介绍》/p
  • 便携式显微镜的广泛普及 加快相关学科的突飞猛进
    便携式显微镜的广泛普及 加快相关学科的突飞猛进1、 便携式显微镜之于科学的意义不在野外,而在于突破时空,让研究更精彩便携式显微镜允许科学家在野外、实验室外或其他难以接近的地点进行即时观察和分析。这大大加快了研究速度,减少了样本在运输过程中可能发生的降解或污染。对于生态学、环境科学、地质学等领域的研究人员来说,现场即时分析是他们工作的关键,便携式显微镜为他们提供了极大的便利。其实,便携式显微镜意义不仅是在室外,而更重要的是实时,突破了空间,拉近了时间,其不论是在实验室内、还是工厂车间,大家都需要随时、随手、简单而高效的显微观察与记录。便携式显微镜之于科学的意义不在野外 而在于突破时空2、 便携式显微镜之于教育不仅是启蒙,更是兴趣与好奇,撒向天空的种子,终将会生根发芽便携式显微镜是便携性、易用性、时尚性,融为一体的产物;使其非常适合用于中小学、大学的科学教育,其潜能可广泛应用在传统显微实验室内,助力传统显微镜生出翅膀,实现原位观察与测量,是对传统显微实验室一种有力补充。无须制样、原位观察、突破空间,是传统台式显微镜无法提供的体验,而新一代的青年学子,及青青奇兽们,是更喜欢这种简单、直接的沟通方式,生动而活泼的实验氛围,就像给传统实验室加上翅膀,增加对科学的兴趣和理解,能有效体会到更简单、更快捷的接近事物的本质,能促进人,从底层逻辑的思考,实现从0到1的启发。 教育不仅是启蒙 更是兴趣与好奇 撒向天空的种子 终将会生根发芽3、 便携式显微镜之于现场,这不是简单加持,更是一场行业赋能便携式显微镜的核心是“快”、是“来得快”(我小巧,随时在这里)、是“简单得快”(我操作方便、自动对焦)、是“记录得快”(随时拍照、录像)、是“分析得快”(可定量测量,上传云端、进行AI诊断);而一切的“快”,都是对时间的缩小,是现场机会的把握。不论是对于工业生产线上、或是考古研究、还是消防火调、或是海关、边检、食检、安监、等需要现场检测或办公的领域来说,便携式显微微镜之于现场、都不是简单加持,更是一场行业赋能,或说是一种工具升级,尤如石器之于火器。便携式显微镜之于现场 这不是简单加持 更是一场行业赋能最后、便携式显微镜发展到今天,诚然还有他的局制性,而现成熟的方向是5-100微米的显微尺寸,而5微米以下还需要更加努力;另外,也会科学家说,现在显微镜的应用空间越来越少了,其当然在实验室还受到电子束、X射线、质谱等的替代分析,但是显微镜是最早的科学研究的方式,其对影像最直接的观察,从来都是人类的天性,也会一直都是,我们最容易、最需要接受的一种方式,所以,他不是被替代,会一直在,尤其是便携式显微镜。 写到最后,作者本人是专注从事便携式显微镜领域的研究,很是期待各行业、各领域的精英、学者、从业人员,大家都可以广泛交流,促使完善便携式显微镜更加适应于相应的领域,共同制定相关的行业标准,以及更好的满足行业要求。
  • X射线衍射仪等精密仪器 为馆藏文物“增寿”
    希腊电子结构与激光研究所在卫城博物馆现场激光清洗大理石雕像 故宫博物院作为明清两朝皇宫,无数的奇珍异宝汇聚其中,很多馆藏文物都历经了数百年乃至上千年的沧桑,对于文物的保养修复似乎是一个永远说不尽的话题。近日,“中国-希腊文物激光技术联合实验室”在故宫启动并举行揭牌仪式。据故宫博物院院长单霁翔介绍,中国、希腊同为拥有悠久历史的文明古国,在文物收藏与研究保护领域多有共通之处。希腊电子结构与激光研究所在激光光学领域享誉欧洲,一直致力于将激光技术应用于文化遗产的研究与保护工作中。特别是他们最近与雅典卫城博物馆合作的“大理石文物表面污染物激光清除”项目,获得了国际文物修护协会(IIC)颁发的凯克奖,已经成为世界范围内石质文物激光清洗的代表案例。 高科技设备可分析釉烧温度 随着时代发展,科学技术在文物保护过程中应用日益广泛,为文物病害的诊断、文物的预防性保护和文物修复提供了重要的支撑。对于故宫内部的文物保护机构,公众也充满了好奇。在揭牌仪式的当日,故宫文保科技部对外展示了部分文物研究分析仪器。故宫文保科技部可以说是一个由“古法”和“今术”结合构建起的“文物医院”,众多文物在“文物医生”的“医治”和“呵护”下得到重生。“文物医生”的业务分两部分,一部分沿袭和继承优秀的传统保护修复技术,另一部分主要利用现代科学技术,探索现代科技手段在文物保护修复工作中的应用及其与传统修复技术的结合。据记者了解,目前文保科技部已发展成为一个拥有一百多位各类文物保护修复专业技术人员,具有“古字画装裱修复技艺”“古书画临摹复制技艺”“青铜器修复及复制技艺”和“古代钟表修复技艺”4项国家级非物质文化遗产项目为代表的十余个保护修复门类,同时包括一个拥有一流分析设备、文物分析类别齐全的文保科技实验室在内的,全国最大的文物保护修复机构。 文物的分析检测为文物的价值阐释、保存状况评估、保护方案的制定、保护处理效果的评价提供了科学依据,是文物保护修复不可或缺的重要和关键环节。目前,故宫博物院文保科技部实验室配置了一批国际一流水平的分析设备,近年来在分析门类健全与人才队伍建设方面也取得了显著的进步,显著地促进了故宫文物保护修复水平的提升。通过与国内外著名高校、研究机构的科研合作,在文物无损分析、先进同步辐射技术应用、古陶瓷科技研究等领域取得了一系列具有较高水平的研究成果。 活动当日,故宫对外展示了五个仪器——大样品室环境扫描电子显微镜、粉末X射线衍射仪、波长色散X射线荧光光谱仪、能量色散X射线荧光光谱仪和显微共聚焦激光拉曼光谱仪。据文保科技部主任史宁昌介绍,大样品室环境扫描电子显微镜,它的功能与放大镜相似,但放大倍数可达几十万倍,分辨率可达3.5纳米,还可对博物馆内几乎所有材质的文物进行显微观察和微区成分分析。粉末X射线衍射仪是进行矿物组成分析最有效的检测手段,可以利用它进行制作工艺、产地等研究工作。比如两个关于建筑琉璃瓦的有趣问题,都可用该射线仪进行破解:故宫早期到晚期的建筑琉璃使用了不同类型的原料;剥釉严重的琉璃瓦件,其胎体中的原料没有充分反应,烧结程度低,孔隙率大,因此受雨水等环境影响较大。令记者大开眼界的是显微共聚焦激光拉曼光谱仪,不仅可以测试分析故宫院藏古陶瓷釉、玉器及壁画上颜料的矿物组成,还可以测试分析高温釉瓷釉烧温度。还有波长色散X射线荧光光谱仪,可以测出釉中助熔剂K、Ca元素的变化,也就可以解释为什么南宋钙釉到钙碱釉的变化中,釉会增加一种迷人的玉质感。 目前,实验室正在对故宫考古发掘出土以及故宫收藏的青花瓷器标本进行无损研究。通过分析明、清不同朝代青花瓷器的元素组成,可揭示明清不同时期的青花瓷器采用何种青花料。如明代早中期多使用进口的苏麻离青,成化时期多使用国内的平等青,嘉靖万历时期使用了回青,而清代康熙、雍正、乾隆时期的青花使用了国产的青花料。正因为不同时期使用了不同来源的青花料,致使各个时期的青花瓷器呈现出鲜明的时代特征,而激光技术的加入称得上故宫“文物医院”的强大补充。 让文物长寿的有效途径 据单霁翔介绍,激光清洗技术在文保方面的运用,国内的兄弟单位也做过尝试,也有相关的设备。但要想真正把激光清洗技术用于文物本体,还需要大量的研究数据,例如何种波长的激光可以处理掉哪类污染物,这都需要前期研究和长期的经验积累,如果连清洗力度、强度都控制不了,对于文物的损害是难以想象的。这也是为什么要与希腊合作的原因。就激光技术在文保方面的应用,世界范围内希腊和意大利两个国家的技术相对纯熟。希腊电子结构与激光研究所是希腊研究与技术基金会下属的研究院所,在激光光学领域享誉欧洲。他们除了在石质文物、金属文物、建筑外墙污染的去除上经验丰富,同时在脆弱的有机质地文物激光清洗领域也有很多尝试,尤其是他们开发出的多种波长激光复合清洗技术,很好地解决了文物清洗效果与文物清洗程度之间的平衡问题。 那么激光技术的运用会对未来故宫文物保护工作带来哪些变化?单霁翔表示,故宫博物院收藏有184万余件(套)文物,其中珍贵文物占总量的93.2%,是世界上收藏铜器、陶瓷最多的博物馆,同时还收藏了大量的石质造像,以及数量众多、体量巨大的建筑石质构件,在激光技术应用方面需求与发展空间较大。与希腊电子结构与激光研究所的合作,有利于提升故宫博物院激光技术在文物保护、研究领域的研究与应用水平,乃至推动国内激光应用技术水平的整体发展。文物保护是一个长期的工作,光照、空气恶化等原因都会加速文物的老化,人工机械除垢等物理办法或者采用一些化学办法都会对文物造成损害,激光清洗则会精确很多,而且比较容易控制,和希腊合作的基础正是他们在这方面丰富的操作经验。据介绍,故宫有大量的金属、陶瓷、石质文物,如果激光技术运用得当,文物保护的效率将大幅提升,当然这也需要进行反复的研究和实验,同时也不排除将来对木质、彩绘等质地的文物使用激光清洗技术的可能。
  • 蔡司新一代突破性X射线显微镜—Xradia 600 Versa系列隆重上市
    德国耶拿,2019年1月23日 屡获殊荣的蔡司Xradia Versa系列又推出了两款新型先进产品 — Xradia 610 Versa和Xradia 620 Versa X射线显微镜。它们的独特优势是能够在全功率和电压范围内更快速地对样品进行无损成像,且不会影响分辨率和对比度。 蔡司Versa X射线显微镜凭借优异的大工作距离高分辨率(RaaD)的特性,成为了全球优秀研究人员和科学家的“有力帮手”。在相对大工作距离下也能保持超高分辨率,有助于产生意义非凡的科学见解和发现。随着当今技术的快速发展,对分析仪器也提出了更高的要求,而蔡司Xradia 600 Versa系列就是专为应对这一挑战而设计的。 蔡司 Xradia 610 & 620 Versa采用改进的光源和光学技术 X射线计算机断层扫描成像领域面临的两大挑战是:实现大尺寸样品和大工作距离下的高分辨率和高通量成像。蔡司推出的两款X射线显微镜凭借以下优势完美解决了这些挑战:系统可提供高功率的X射线源,显著提高X射线通量,从而加快了断层扫描速度。工作效率提高达两倍,而且不会影响空间分辨率。同时,X射线光源的稳定性得到提升,使用寿命也更长。 主要特性包括:l 最高空间分辨率500nm,最小体素40 nm l 与蔡司 Xradia 500Versa系列相比,工作效率提高两倍l 更加简便易用,包括快速激活源l 能够在较大的工作距离下对更广的样品类型和尺寸的样品进行亚微米特征的观察先进科研和工业领域的更多应用将因此而受益 这两款用途广泛的仪器可以为不同领域的科研机构和工业客户带来更高的工作效率和价值,助力他们的研究和探索。 凭借RaaD特性,蔡司 Xradia Versa在大工作距离下也能保证超高分辨率,并且能够对安放在环境试验舱室或高精度原位加载装置中的样本进行成像。这可以让材料科学研究人员在受控的环境条件下以无损的方式表征材料的3D微观结构,以探究不同原位条件下(如加热或拉压)造成的影响。 随着全球能源材料需求呈现爆炸式增长,工业研究人员需要分析这些材料在多个固相和液相阶段的复杂多物理场行为及其相关的结构演变。蔡司 Xradia 600 Versa系列能够帮助研究人员解析这些结构的形态及其在工作条件下的行为。这些基于RaaD技术的X射线显微镜可以对完整的软包电池和圆柱形电池进行高分辨率成像,从而为数百次充放电老化效应的研究提供支持。在电子和半导体行业中,用户常常会为了工艺开发、良率提高进行结构和失效分析,并对先进的半导体封装进行结构分析。蔡司Xradia 600 Versa系列可以通过无损成像进行封装产品的缺陷分析,如:Bumps或Microbumps中的裂纹、焊料润湿问题或TSV通孔结构。在物理失效分析(PFA)之前对缺陷进行三维可视化,减少人为物理切片引入的假象缺陷,从而提高失效分析的成功率。 在增材制造行业中,3D X射线显微镜在从粉末到零件的整个流程的多道工序中发挥着重要作用。典型应用包括:研究粉末床中颗粒的具体形状、尺寸和体积分布,以确定合适的工艺参数。蔡司Xradia 600 Versa系列具有更高的工作效率和结果效率,实现高效的工作流程。 在原材料研究领域中,用户会进行多尺度的孔隙结构分析,包括原位流体流动分析。全新蔡司Xradia Versa X射线显微镜以更快的运行速度为数字岩心模拟、基于实验室的衍射衬度断层扫描成像和多尺度成像等提供更精确的三维纳米尺度成像,从而减少研究前后衔接瓶颈限制。 在生命科学领域,蔡司 Xradia 600 Versa系列可实现更快、更高分辨率的成像,让研究人员能够研究软组织(如神经组织、血管网络、细胞结构、韧带和神经)、骨骼的矿物组织以及植物结构(如根和细胞结构)。新型蔡司Xradia 620 Versa能够对样品实现无损亚微米级高分辨率成像持续改进和可升级性 蔡司X射线显微镜旨在通过不断创新和发展进行升级和扩展,以保护我们客户的利益。这样可以确保随着前沿技术的不断进步,显微镜技术也能向前发展,从蔡司 Xradia Context microCT到蔡司Xradia 500/510/520 Versa,再到现在新增的蔡司 Xradia 610/620 Versa,用户都可以将系统升级至最新的X射线显微镜。更多产品信息请点击蔡司Xradia Versa至官网查看!
  • 720万!武汉大学离子减薄仪、微束定点离子减薄仪、显微激光拉曼光谱仪、X射线衍射仪采购项目
    项目编号:WHCSIMC2022-1602807ZF(H)项目名称:武汉大学离子减薄仪、微束定点离子减薄仪、显微激光拉曼光谱仪、X射线衍射仪采购项目预算金额:720.0000000 万元(人民币)最高限价(如有):720.0000000 万元(人民币)采购需求:1.本次公开招标共分4个项目包,具体需求如下。详细技术规格、参数及要求见本项目招标文件第(三)章内容。第一包:(1) 项目包名称:离子减薄仪(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:140万元人民币(6)其他:本项目包接受进口设备投标第二包:(1) 项目包名称:微束定点离子减薄仪(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:350万元人民币(6)其他:本项目包接受进口设备投标第三包:(2) 项目包名称:显微激光拉曼光谱仪(3) 类别:货物(4) 数量:一套(5) 简要技术要求:详见招标文件第三章(6) 采购预算:100万元人民币(7)其他:本项目包接受进口设备投标第四包:(2) 项目包名称:X射线衍射仪(3) 类别:货物(4) 数量:一套(5) 简要技术要求:详见招标文件第三章(6) 采购预算:130万元人民币(7)其他:本项目包接受进口设备投标合同履行期限:第一包:交货期 :合同签订后150日内;质保期 :本项目免费质量保证期要求不低于5年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第二包:交货期 :合同签订后150日内;质保期 :本项目免费质量保证期要求不低于5年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第三包:交货期 :合同签订后180日内;质保期:本项目免费质量保证期要求不低于1年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第四包:交货期 :合同签订后10个月内;质保期 :本项目免费质量保证期要求不低于1年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。本项目( 不接受 )联合体投标。
  • 世界首台!我国成功研制双光子-受激发射损耗(STED)复合显微镜
    p  在常规光学显微系统当中,由于光学元件的衍射效应,平行入射的照明光经过显微物镜聚焦之后在样品上所成的光斑并不是一个理想的点,而是一个具有一定尺寸的衍射斑。在衍射斑范围内的样品均会发出荧光,导致这些样品的细节信息没有办法被分辨,从而限制了显微系统的分辨能力。随着扫描电镜、扫描隧道显微镜及原子力显微镜等技术的出现,实现纳米量级分辨率的观测已经成为可能,但是以上这些技术仍然存在对样品破坏性较大,只能观测样品表面等缺点,并不适合对于生物样品,特别是活体样品的观测。因此,研究人员们急需找到一种光学的超衍射极限显微方法。二十世纪九十年代以来,研究人员们陆续提出了多种超分辨显微技术来实现超越衍射极限的高分辨率。在这些方法之中,以德国科学家S.W.Hell在1994年提出的受激发射损耗显微术(Stimulated Emission Depletion Microscopy,STED)的发展最为成熟,应用也最为广泛。/pp  受激发射损耗显微术(STED)是通过受激发射效应实现减小有效荧光发光的面积。一般STED显微系统中包含两束照明光,一束为激发光,一束为损耗光。当激发光的照射使得衍射斑范围内的荧光分子被激发,其中的电子跃迁到激发态后,损耗光使部分处于激发光斑外围的电子以受激发射的方式回到基态,而位于激发光斑中心的被激发电子则不受影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此探测器观测到的光子均是由激发光斑中心的部分荧光样品通过自发荧光方式产生的。通过这种方式可以减小有效荧光的发光面积,提高系统的分辨率。/pp  目前,受激发射损耗显微术的关键主要集中在损耗光斑的调制,激发光与损耗光激光类型和波长的选择等方面。/pp  根据国家科技部消息,近日,在国家重点研发计划“数字诊疗装备研发”专项的支持下,由苏州国科医疗科技发展有限公司、吉林亚泰生物药业股份有限公司、中国科学院物理研究所等多家单位共同承担的数字诊疗重点研发专项项目--双光子-受激发射损耗(STED)复合显微镜获得重要进展:成功研制出国内外首台双光子-STED复合显微镜样机。项目组完成了显微镜系统中核心部件的自主研制,成功研制出了具有自主知识产权的大面阵CMOS相机和长工作距离大数值孔径物镜等核心部件,打破了国外相关产品对我国的垄断。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/003b5e67-5cf9-4afd-8932-d8a32c788f59.jpg" title="首台复合显微镜.png" alt="首台复合显微镜.png"//pp style="text-align: center "strong国内外首台双光子-STED复合显微镜样机/strong/pp  在当今生物学及基础医学的研究中,超分辨显微光学成像是取得原创性研究成果的重要手段。国外双光子-STED成像技术研究开展的相对较早,德国、加拿大、法国、意大利等多个国家的科研机构都已经成功搭建了双光子-STED成像实验系统 而我国相关研究起步较晚,目前双光子STED成像技术仍停留在实验室研究阶段,国际上尚未出现相应的产品。因此,双光子-受激发射损耗(STED)复合显微镜的成功研制对于满足我国生物医学等前沿基础研究的定制化需求、提升创新能力以及推动我国显微镜行业升级等具有重要意义。/p
  • 500万!国际竹藤中心X射线衍射仪等采购项目
    项目编号:TC22040BE项目名称:国际竹藤中心2022年科研仪器购置项目预算金额:500.0000000 万元(人民币)采购需求: 包号采购内容(标的)数量预算(万元)交货时间简要技术要求1X射线衍射仪1套180合同签订后8个月内X射线光管:Cu靶,陶瓷X光管,2.2 kW,国际标准尺寸2智能激光扫描共聚焦显微镜1套320合同签订后6个月内系统激光器应覆盖可见光及紫外光,各激光器单独分立*是否允许进口:均允许*是否允许代理商参与:均允许*交货地点:均为国际竹藤中心合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 内乡县人民医院770.00万元采购X射线衍射仪
    基本信息 关键内容: X射线衍射仪 开标时间: 2021-10-19 09:00 采购金额: 770.00万元 采购单位: 内乡县人民医院 采购联系人: 许冉 采购联系方式: 立即查看 招标代理机构: 华新项目管理集团有限公司 代理联系人: 赵静 代理联系方式: 立即查看 详细信息 内乡县人民医院病理科等设备采购项目招标公告 河南省-南阳市-内乡县 状态:公告 更新时间: 2021-09-26 招标文件: 附件1 附件2 内乡县人民医院病理科等设备采购项目 招标公告 项目概况 内乡县人民医院病理科等设备采购项目的潜在投标人应在内乡县公共资源交易中心会员系统获取招标文件,并于2021年10月19 日09时 00 分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:4113250420210924001 2、项目名称:内乡县人民医院病理科等设备采购项目 3、采购方式:公开招标 4、预算金额:7700000.00元 最高限价:7700000.00元 序号 标段 采购内容 包预算 (元) 包最高限价(元) 1 第一标段 全自动组织脱水机1台 400000 400000 2 第二标段 全自动免疫组化染色机1台 600000 600000 3 第三标段 便携式彩超1台 1300000 1300000 4 第四标段 肌电/诱发电位仪1台 650000 650000 5 第五标段 神经外科显微镜1台 1400000 1400000 6 第六标段 IABP(主动脉内球囊反搏仪器)1台 1300000 1300000 7 第七标段 膝关节镜1台 1300000 1300000 8 第八标段 彩色经颅多普勒仪1台 750000 750000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1采购内容 第一标段:内乡县人民医院病理科等设备一批; 5.2质量标准:符合国家和行业规定的合格标准。 5.3供货地点:内乡县 6、合同履行期限:合同签订后 90 日历天内完成 7、本项目是否接受联合体投标:否 8、是否接受进口产品:第一至七标段是;第八标段否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 本项目为政府采购项目,落实扶持不发达地区和少数民族地区、促进中小微企业、监狱企业及残疾人福利性单位发展等政府采购政策 3、本项目的特定资格要求 (1)供应商若为生产厂家须提供医疗器械生产企业许可证及所投设备的医疗器械注册证,供应商若为经销商(代理商)的须提供医疗器械经营企业许可证或医疗器械经营备案凭证,及所投设备的医疗器械注册证。 (2)本项目投标截止日期前被“信用中国”网站列入“失信被执行人、重大税收违法案件当事人名单”的和被“中国政府采购网”网站列入“政府采购严重违法失信行为记录名单”的,不得参与本项目的政府采购活动;信用信息查询渠道:“信用中国”网站和中国政府采购网;【需提供“信用中国”网的失信被执行人、重大税收违法案件当事人名单、截图并加盖投标人公章,提供中国政府采购网的政府采购严重违法失信名单查询信息网站截图并加盖投标人公章】 三、获取招标文件 1、时间: 2021年09月 28日上午08:00至 2021年10月09日下午18:00(北京时间,法定节假日除外 ) 2、地点:各潜在投标人应在规定时间内凭CA密钥登录《全国公共资源交易平台(河南省﹒内乡县)》进行招标文件下载,(详见内乡县公共资源交易网办事指南《3.0投标人操作手册》、《上传资质包操作说明》)。 3、方式:由于内乡县交易中心启用新版电子交易系统,已在旧版系统中注册的各交易主体应重新在新版交易系统中注册完善相关信息后绑定原CA证书,新注册的各交易主体直接在新版交易系统中注册完善相关信息并绑定CA证书(详见内乡县公共资源交易中心网站《内乡县公共资源交易系统(3.0版)启用通知》,请各潜在投标人按内乡县公共资源交易中心网站规定及时办理,未按内乡县公共资源交易中心规定办理相关手续导致无法参与投标的,投标人责任自负)。新版电子交易系统技术支持/信安CA客服:0371-96596。 售价:0元。 四、投标截止时间及地点 1.时间:2021年 10月19日09时00分(北京时间) 2. 地点:《全国公共资源交易平台(河南省﹒内乡县)》电子交易平台(内乡县公共资源交易中心三楼开标室)。 五、开标时间及地点 时间: 2021年 10月 19日09时00分(北京时间) 地点:内乡县公共资源交易中心不见面开标大厅 六、发布公告的媒介及招标公告期限 本次招标公告同时在《河南省政府采购网》、《中国招标投标公共服务平台》、《内乡县公共资源交易中心网》上发布。 自本公告发布之日起5个工作日。 七、其他补充事宜 请各投标人在获取招标文件后及时关注网站更新信息,若因其他原因未能及时看到网上更新信息而造成的损失,采购人及代理机构将不负任何责任。 (1)招标文件获取有时间要求,错过时间后将无法完成操作,一切后果由投标人自负。 (2)潜在投标人务必在获取招标文件时间内完成招标文件下载并确保文件下载完整(电子版招标文件及相关附件一并下载),获取时间截止后将无法下载任何招标文件内容,若由此原因影响投标文件制作、投标文件递交、投标文件解密等情况,造成的损失由潜在投标人自行承担。 (3)该项目需要使用网上远程不见面开标系统开标。各投标人根据操作手册要求,提前做好相关准备工作,所有准备工作需自行到位,开标过程中如遇到紧急事项,可在不见面开标大厅中进行提出答疑,严重问题可拨打现场技术支持电话17518959397。各投标人需在投标截止前登录网上不见面系统进行等候签到。 (4)网上不见面开标过程中,如投标人准备不到位,造成无法及时解密、网络问题等情况造成开标无法继续的,视为该投标人自动放弃投标(签到截止时间30分钟内),不再执行投标文件解密。 (5)本项目实行资格后审,营业执照、资质、业绩、人员、财务、证书等内容,须在市场主体信息库中已登记的信息中选取。审查内容以投标截止时间24小时前(节假日顺延)填报上传企业诚信库信息为准,过期更改的诚信库信息不作为本项目评审依据。开评标现场不接受诚信库信息原件。诚信库上传信息必须内容齐全,真实有效,原件扫描件清晰可辨。否则,由此造成应得分而未得分或资格审查不合格等情况的,由投标企业承担责任。 八、凡对本次招标提出询问,请按照以下方式联系 采购人信息: 名 称:内乡县人民医院 地 址:内乡县灵山路与郦都大道交叉口 联 系 人:许冉 联系电话:037765187626 13782107730 统一社会信用代码:1241132541924512XU 监督单位信息: 名 称:内乡县卫生健康委员会 联系人:冯增照 联系电话:15936103377 地 址:内乡县城关镇大成西路 统一社会信用代码:11411325MB1538961K 采购代理机构信息: 名 称:华新项目管理集团有限公司 地 址:郑州市高新区公园道一号潮流茂C座1207室 联系人:赵静 电 话:037766099431 15837730395 统一社会信用代码:91430000722548406R 项目联系方式 : 项目联系人:赵静 联系方式:037766099431 15837730395 附件: × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:X射线衍射仪 开标时间:2021-10-19 09:00 预算金额:770.00万元 采购单位:内乡县人民医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:华新项目管理集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 内乡县人民医院病理科等设备采购项目招标公告 河南省-南阳市-内乡县 状态:公告 更新时间: 2021-09-26 招标文件: 附件1 附件2 内乡县人民医院病理科等设备采购项目 招标公告 项目概况 内乡县人民医院病理科等设备采购项目的潜在投标人应在内乡县公共资源交易中心会员系统获取招标文件,并于2021年10月19 日09时 00 分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:4113250420210924001 2、项目名称:内乡县人民医院病理科等设备采购项目 3、采购方式:公开招标 4、预算金额:7700000.00元 最高限价:7700000.00元 序号 标段 采购内容 包预算 (元) 包最高限价(元) 1 第一标段 全自动组织脱水机1台 400000 400000 2 第二标段 全自动免疫组化染色机1台 600000 600000 3 第三标段 便携式彩超1台 1300000 1300000 4 第四标段 肌电/诱发电位仪1台 650000 650000 5 第五标段 神经外科显微镜1台 1400000 1400000 6 第六标段 IABP(主动脉内球囊反搏仪器)1台 1300000 1300000 7 第七标段 膝关节镜1台 1300000 1300000 8 第八标段 彩色经颅多普勒仪1台 750000 750000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1采购内容 第一标段:内乡县人民医院病理科等设备一批; 5.2质量标准:符合国家和行业规定的合格标准。 5.3供货地点:内乡县 6、合同履行期限:合同签订后 90 日历天内完成 7、本项目是否接受联合体投标:否 8、是否接受进口产品:第一至七标段是;第八标段否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 本项目为政府采购项目,落实扶持不发达地区和少数民族地区、促进中小微企业、监狱企业及残疾人福利性单位发展等政府采购政策 3、本项目的特定资格要求 (1)供应商若为生产厂家须提供医疗器械生产企业许可证及所投设备的医疗器械注册证,供应商若为经销商(代理商)的须提供医疗器械经营企业许可证或医疗器械经营备案凭证,及所投设备的医疗器械注册证。 (2)本项目投标截止日期前被“信用中国”网站列入“失信被执行人、重大税收违法案件当事人名单”的和被“中国政府采购网”网站列入“政府采购严重违法失信行为记录名单”的,不得参与本项目的政府采购活动;信用信息查询渠道:“信用中国”网站和中国政府采购网;【需提供“信用中国”网的失信被执行人、重大税收违法案件当事人名单、截图并加盖投标人公章,提供中国政府采购网的政府采购严重违法失信名单查询信息网站截图并加盖投标人公章】 三、获取招标文件 1、时间: 2021年09月 28日上午08:00至 2021年10月09日下午18:00(北京时间,法定节假日除外 ) 2、地点:各潜在投标人应在规定时间内凭CA密钥登录《全国公共资源交易平台(河南省﹒内乡县)》进行招标文件下载,(详见内乡县公共资源交易网办事指南《3.0投标人操作手册》、《上传资质包操作说明》)。 3、方式:由于内乡县交易中心启用新版电子交易系统,已在旧版系统中注册的各交易主体应重新在新版交易系统中注册完善相关信息后绑定原CA证书,新注册的各交易主体直接在新版交易系统中注册完善相关信息并绑定CA证书(详见内乡县公共资源交易中心网站《内乡县公共资源交易系统(3.0版)启用通知》,请各潜在投标人按内乡县公共资源交易中心网站规定及时办理,未按内乡县公共资源交易中心规定办理相关手续导致无法参与投标的,投标人责任自负)。新版电子交易系统技术支持/信安CA客服:0371-96596。 售价:0元。 四、投标截止时间及地点 1.时间:2021年 10月19日09时00分(北京时间) 2. 地点:《全国公共资源交易平台(河南省﹒内乡县)》电子交易平台(内乡县公共资源交易中心三楼开标室)。 五、开标时间及地点 时间: 2021年 10月 19日09时00分(北京时间) 地点:内乡县公共资源交易中心不见面开标大厅 六、发布公告的媒介及招标公告期限 本次招标公告同时在《河南省政府采购网》、《中国招标投标公共服务平台》、《内乡县公共资源交易中心网》上发布。 自本公告发布之日起5个工作日。 七、其他补充事宜 请各投标人在获取招标文件后及时关注网站更新信息,若因其他原因未能及时看到网上更新信息而造成的损失,采购人及代理机构将不负任何责任。 (1)招标文件获取有时间要求,错过时间后将无法完成操作,一切后果由投标人自负。 (2)潜在投标人务必在获取招标文件时间内完成招标文件下载并确保文件下载完整(电子版招标文件及相关附件一并下载),获取时间截止后将无法下载任何招标文件内容,若由此原因影响投标文件制作、投标文件递交、投标文件解密等情况,造成的损失由潜在投标人自行承担。 (3)该项目需要使用网上远程不见面开标系统开标。各投标人根据操作手册要求,提前做好相关准备工作,所有准备工作需自行到位,开标过程中如遇到紧急事项,可在不见面开标大厅中进行提出答疑,严重问题可拨打现场技术支持电话17518959397。各投标人需在投标截止前登录网上不见面系统进行等候签到。 (4)网上不见面开标过程中,如投标人准备不到位,造成无法及时解密、网络问题等情况造成开标无法继续的,视为该投标人自动放弃投标(签到截止时间30分钟内),不再执行投标文件解密。 (5)本项目实行资格后审,营业执照、资质、业绩、人员、财务、证书等内容,须在市场主体信息库中已登记的信息中选取。审查内容以投标截止时间24小时前(节假日顺延)填报上传企业诚信库信息为准,过期更改的诚信库信息不作为本项目评审依据。开评标现场不接受诚信库信息原件。诚信库上传信息必须内容齐全,真实有效,原件扫描件清晰可辨。否则,由此造成应得分而未得分或资格审查不合格等情况的,由投标企业承担责任。 八、凡对本次招标提出询问,请按照以下方式联系 采购人信息: 名 称:内乡县人民医院 地 址:内乡县灵山路与郦都大道交叉口 联 系 人:许冉 联系电话:037765187626 13782107730 统一社会信用代码:1241132541924512XU 监督单位信息: 名 称:内乡县卫生健康委员会 联系人:冯增照 联系电话:15936103377 地 址:内乡县城关镇大成西路 统一社会信用代码:11411325MB1538961K 采购代理机构信息: 名 称:华新项目管理集团有限公司 地 址:郑州市高新区公园道一号潮流茂C座1207室 联系人:赵静 电 话:037766099431 15837730395 统一社会信用代码:91430000722548406R 项目联系方式 : 项目联系人:赵静 联系方式:037766099431 15837730395 附件:
  • 市中心医院分院340.00万元采购X射线衍射仪
    基本信息 关键内容: X射线衍射仪 开标时间: null 采购金额: 340.00万元 采购单位: 市中心医院分院 采购联系人: 杜占 采购联系方式: 立即查看 招标代理机构: 泰安市嘉恒建设工程项目管理有限公司 代理联系人: 王媛 代理联系方式: 立即查看 详细信息 市中心医院分院职业病防治能力提升项目需求公示 山东省-泰安市 状态:预告 更新时间: 2021-09-02 招标文件: 附件1 市中心医院分院职业病防治能力提升项目采购需求公示 一、项目概况及预算情况:基本情况:第一标段为数字化医用X射线摄影系统(DR)、移动式数字X射线机(DR)、尘肺诊断阅片系统各1套;第二标段为听觉诱发电位仪、耳声发射测试仪、纯音电测听仪(诊断型)、纯音电测听仪(便携式)各1套;第三标段为台式肺功能检测系统、便携式肺功能检测系统、心电图机各1套。 项目预算: 本项目预算为340万元,其中第一标段200万元,第二标段:80万元,第三标段:60万元。资金性质为财政性资金。 付款方式:本项目预付款为合同金额的30%,合同签订生效且具备实施条件后5个工作日内支付,合同签订前,中标人须向采购人交付合同金额8%作为质量保证金,货到交付后经乙方安装调试并经甲乙双方联合验收合格后付至合同总价款的100%,质保期满后无质量问题质量保证金无息退付。 二、采购标的具体情况:详见附件 三、论证意见: 无 四、公示时间:本项目采购需求公示期限为3天:自2021年9月2日起,至2021年9月5日止 五、意见反馈方式:本项目采购需求方案公示期间接受社会公众及潜在供应商的监督。 请遵循客观、公正的原则,对本项目需求方案提出意见或者建议,并请于2021-09-06前将书面意见反馈至采购人或者采购代理机构,采购人或者采购代理机构应当于公示期满5个工作日内予以处理。 采购人或者采购代理机构未在规定时间内处理或者对处理意见不满意的,异议供应商可就有关问题通过采购文件向采购人或者采购代理机构提出质疑;质疑未在规定时间内得到答复或者对答复不满意的,异议供应商可以向采购人同级财政部门提出投诉。 六、项目联系方式 1、采购单位:市中心医院分院 地址:泰安市长城路西万官大街336号 联系人:杜占 联系方式:0538-8626738 2.采购代理机构:泰安市嘉恒建设工程项目管理有限公司 地址:山东泰安泰山迎胜东路29鲲鹏商务楼三楼 联系人:王媛 联系方式:0538-6315028 附件: × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:X射线衍射仪 开标时间:null 预算金额:340.00万元 采购单位:市中心医院分院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:泰安市嘉恒建设工程项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 市中心医院分院职业病防治能力提升项目需求公示 山东省-泰安市 状态:预告 更新时间: 2021-09-02 招标文件: 附件1 市中心医院分院职业病防治能力提升项目采购需求公示 一、项目概况及预算情况:基本情况:第一标段为数字化医用X射线摄影系统(DR)、移动式数字X射线机(DR)、尘肺诊断阅片系统各1套;第二标段为听觉诱发电位仪、耳声发射测试仪、纯音电测听仪(诊断型)、纯音电测听仪(便携式)各1套;第三标段为台式肺功能检测系统、便携式肺功能检测系统、心电图机各1套。 项目预算: 本项目预算为340万元,其中第一标段200万元,第二标段:80万元,第三标段:60万元。资金性质为财政性资金。 付款方式:本项目预付款为合同金额的30%,合同签订生效且具备实施条件后5个工作日内支付,合同签订前,中标人须向采购人交付合同金额8%作为质量保证金,货到交付后经乙方安装调试并经甲乙双方联合验收合格后付至合同总价款的100%,质保期满后无质量问题质量保证金无息退付。 二、采购标的具体情况:详见附件 三、论证意见: 无 四、公示时间:本项目采购需求公示期限为3天:自2021年9月2日起,至2021年9月5日止 五、意见反馈方式:本项目采购需求方案公示期间接受社会公众及潜在供应商的监督。 请遵循客观、公正的原则,对本项目需求方案提出意见或者建议,并请于2021-09-06前将书面意见反馈至采购人或者采购代理机构,采购人或者采购代理机构应当于公示期满5个工作日内予以处理。 采购人或者采购代理机构未在规定时间内处理或者对处理意见不满意的,异议供应商可就有关问题通过采购文件向采购人或者采购代理机构提出质疑;质疑未在规定时间内得到答复或者对答复不满意的,异议供应商可以向采购人同级财政部门提出投诉。 六、项目联系方式 1、采购单位:市中心医院分院 地址:泰安市长城路西万官大街336号 联系人:杜占 联系方式:0538-8626738 2.采购代理机构:泰安市嘉恒建设工程项目管理有限公司 地址:山东泰安泰山迎胜东路29鲲鹏商务楼三楼 联系人:王媛 联系方式:0538-6315028 附件:
  • Anyty(艾尼提)便携显微镜成为工业检测重要工具
    一直以来,工厂在产品检测、品质控制环节,涉及到微小物体或要检测产品的局部微小的细节,或检测要求精度较高,都要用到显微镜放大观察。而随着科技的发展,尤其是便携式显微镜的成熟和发展,以其小巧轻便、操作简单等优势在工业检测方面得到广泛应用,成为工业检测重要工具。 Anyty[艾尼提]便携式显微镜3R-WM401WIFI检测刀具 显微镜是工业检测重要仪器,在工业上观测材料、品质检测等,为提示工业制造精度具有很大的帮助。不过随着市场经济的发展,在工业产品质量控制与检测中,需要在生产环节各个节点进行品质抽检等,因此传统的显微镜存在移动不便、操作困难等弊端。 另外,品质检测人员要在普通显微镜的强光下,用显微镜的目镜观察细节,这样时间长了,不但会影响员工的用眼健康,品质检测人员流失严重,耗费大量的员工培训和管理的时间和精力,而且造成品质控制不严,影响公司的产品品质和客户信誉,从而严重影响公司的发展。 Anyty[艾尼提]便携式显微镜3R-MSBTVTY检测零部件 在这样的市场环境下,此类问题亟待解决。依托光电技术不断发展,便携式显微镜应运而生。 当前针对工业检测等方面,3R公司推出了一系列高清晰的不同规格类型的Anyty[艾尼提]便携式显微镜方案,有手持的,有直接带显示屏的,也有无线WiFi的等,当前已在工厂产品检测及品质控制等方面得到广泛应用,有效的弥补了传统显微镜的一些问题。 相比于传统显微镜,Anyty[艾尼提]便携式显微镜优势明细,小巧便携,非常适合不同的工作现场;而且具体一键自动对焦,操作简单,容易上手;自带屏幕,可进行精准测量,可拍照录像,对数据进行采集储存,便于生产检测报告等,成为工业检测重要工具。 Anyty[艾尼提]便携式显微镜3R-MSA600S筛网检测 总而言之,Anyty[艾尼提]便携式显微镜在工业检测领域广泛应用,并且能够针对不同用户提供个性化解决方案,为企业制造水平的提升提供重要产品支持和技术支持。
  • 便携式显微镜:工业检测、科研、考古的得力助手
    便携式显微镜之所以在工业检测、科研和考古等领域得到广泛应用,主要是因为它克服了传统显微镜笨重、不易移动、操作繁琐等缺点。便携式显微镜设计紧凑,重量轻,携带方便,可以随时随地进行检测。便携式显微镜的几个典型的应用场景如下:一、表面检测在制造业中,产品的表面质量对其性能和使用寿命至关重要。便携式显微镜可以快速准确地检测产品表面的微观缺陷,如划痕、凹坑等。便携式自动对焦显微镜MSBTVTY检测喷漆划痕二、电子行业在电子行业中,对元器件的检测要求非常高。便携式显微镜可以用于观察、检测电路板、芯片等元器件的微观结构,确保其质量。同轴光金相显微镜检测晶圆示意图三、金属加工金属加工过程中,常常需要对工件进行无损检测。便携式显微镜可以通过观察金属的微观结构和质量,以及焊接点的连接质量等,检测其内部缺陷,提高工件的质量和可靠性。便携式显微镜MSA600S检测刀具划痕四、纺织行业纺织品的纤维结构和品质对其性能和外观至关重要。便携式显微镜可以用于观察纺织品的纤维结构,检测其质量和均匀性。五、考古行业便携式显微镜是分析鉴定和保护文物工作最常用的分析工具之一。由于其小巧便携、价格便宜、实用性强、操作简单等特点,越来越多的博物馆、科研机构的科技考古实验室都配备了便携式显微镜。便携式显微镜多用于观察纸张、织物、陶瓷、青铜器、石器等各类文物,也可以在考古现场对土壤等进行微观观察,是考古时最常用的工具之一。便携式显微镜看古玩六、生命科学研究在细胞生物学和解剖学研究中,便携式显微镜有助于观察细胞、组织、器官的超微结构和形态特征,以及病理变化等问题。在医学诊断中,它能够帮助医生对皮肤、黏膜等部位进行快速、准确的检测和诊断,例如用于鉴别癌细胞、真菌感染、精子计数等。随着科技的不断进步,便携式显微镜的性能和应用领域还将继续拓展,为科研和实际应用带来更多可能性。
  • 我国首台时间分辨透射电子显微镜研制成功
    p  10月30日,中科院条件保障与财务局组织专家对物理所李建奇课题组承担的2012年中科院科研装备研制项目“时间分辨透射电子显微镜” 进行了现场验收。项目技术测试专家组检查了设备的现场运行情况,进行了技术测试。项目验收专家组听取了项目组的工作报告、财务报告、用户使用报告以及测试报告,审核了相关文件档案。经讨论认为承担单位完成了实施方案规定的研制任务和技术指标,实现了研制目标,一致同意通过验收。/pp  时间分辨a href="http://www.instrument.com.cn/zc/1139.html" target="_self" title="" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "透射电子显微镜/span/a也称为四维超快电子显微镜(4D-UTEM)或动态电子显微镜,是近期发展起来的一种新型电子显微技术,是超快激光和高分辨电子显微术有机结合的产物, 超快电子显微术已经成为国际超快结构动力学和电子显微学的前沿领域。4D-UTEM可以在极高时间(皮秒至飞秒)和空间分辨率(纳米至埃)下观察材料中复杂的瞬态动力学过程,是研究物理、化学、生物以及材料科学中许多基本现象和机理的重要技术手段。/pp  在研制过程中,李建奇项目小组以现代电子显微镜为平台,在多功能电子枪研制中取得了突破,并成功将超快激光引入到电子枪阴极和样品室中,实现了超快光电子脉冲的发射与样品的超快激光激发。该项目在超快电子枪设计、光发射模式下的合轴、时间零点测定及超快结构信号分析、超快电镜样品制备、弱电子剂量衍射和成像技术、超快激光精确定位及调节等方面获得一系列专利技术。/pp  该仪器为我国首台时间分辨电子显微镜,在热发射或光发射模式下都具有优良性能。光发射模式下图像分辨率达到0.34nm,时间分辨率优于1ps,可以实现超快电子衍射和超快实空间成像,以及激光原位诱导的结构变化,对于结构动力学分析,新奇量子现象的探索和动态物理过程研究有重要意义。/pp  基于本仪器,李建奇课题组成功研究了多壁碳纳米管受激光激发后的晶格响应过程,揭示了多壁碳纳米管中存在的显著各向异性晶格动力学过程,展示了4D-UTEM的高空间和超快时间分辨率能力,论文发表在Scientific Reports 5 (2015) 8404上。/pp  该仪器的成功研制不仅提升了我国电子显微镜装备水平,也增强了我国科学仪器设备的自主创新能力。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/noimg/99dd246c-5f81-408a-9afc-b7fac3ce1003.jpg" title="图1.jpg"//pp style="text-align: center "项目验收会现场/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201511/noimg/b3e9f34f-cc83-4c7a-8360-203e06678631.jpg" title="图2.jpg"//pp style="text-align: center "现场考察及技术测试验收/p
  • 散射式近场光学显微镜(neaSNOM)助力有机半导体的分子取向探究
    导读:布拉迪斯拉发先进材料应用中心(Center of Advanced Material Applications in Bratislava)的科研工作者利用对光致各向异性有不同响应的超高分辨散射式近场光学显微镜-neaSNOM,研究了有机半导体薄膜的分子取向与离散分子结构异质性的关系,揭示了分子取向对分子缺陷的影响。在此过程中,作者自创了一种综合利用振幅和相位信号测量分子取向的方法。上图:利用Neaspec设备表征材料得到的s-SNOM结果 文献解析:近年来, 共轭高分子以及小分子在有机电子设备方面的应用受到广泛关注,这是因为相比于无机半导体,它们在以下方面展现了其潜在优势:应用适配性、生物相容性、以及相对简单的制备过程。简单的制备过程也吸引化学家设计并研发了具有各种不同结构和功能基团的共轭分子,以此来满足有机电子设备的需要。而电导率作为重要的功能指标之一,与分子的取向息息相关。考虑到大多数分子都是各向异性的,分子取向将直接影响其光电特性(也就是能量转换效率)和机械特性。而根据具体应用的不同,设备需要一种特定的分子取向以满足其需要,并且此时其他的分子取向会被视为材料的缺陷。也因此,缺陷分析在有机半导体设备的开发与改进工作中,起到了举足轻重的作用。然而,对尺寸小于100 nm缺陷的判定一直是一块未被充分研究与记录的领域。 光学技术是表征分子取向的主要手段。而衍射限的存在限制了其测量精度,致使得到的光学响应信号体现的只是(精度范围内)很多纳米颗粒的平均情况。面对该问题,德国Neaspec公司历经多年研发出散射式近场光学显微镜(scattering-type scanning near-field optical microscopy,s-SNOM)。该设备突破衍射限(优于10 nm空间分辨率)并完成了超高空间分辨率的纳米成像。它能表征薄膜材料的固有纳米晶体结构、局部多晶型、异质性或应变性以及反应分子取向等信息。尽管近些年技术方面的进步日新月异,利用s-SNOM分析分子取向的工作却迟迟没有进展,眼下只有寥寥几篇的相关报告得以被发表。在本文中,作者深入研究了分子取向,并对离散分子结构的异质性做了分析。在此之上,作者观察到了与表面形貌并不相关的定向缺陷。这些缺陷对有机电子系统的功能性产生了直接的影响。 参考文献[1] Nanoimaging of Orientational Defects in Semiconducting Organic Films, [J]. The Journal of Physical Chemistry C, 2021, 125(17):9229-9235.
  • Science:透射电镜新突破!电子叠层衍射成像实现晶格振动原子分辨率极限
    透射电子显微镜(TEM)在物理、化学、结构生物学和材料科学等领域的微纳结构研究中发挥着重要作用。电子显微镜像差校正光学的进展极大地提高了成像系统的质量,将空间分辨率提高到了低于50pm的水平。然而,在实际样品中,只有在极端条件下才能达到这个分辨率极限,其中一个主要的障碍是,在比单层更厚的样品中,多电子散射是不可避免的(由于电子束与原子静电势之间的强库仑相互作用)。多次散射改变了样品内部的光束形状,并导致探测器平面上复杂的光强分布。当对厚度超过几十个原子的样品进行成像时,样品的对比度与厚度之间存在非线性甚至非单调的依赖关系,这阻碍了通过相位对比成像方式直接确定样品的结构。定量结构图像解释通常依赖于密集的图像模拟和建模。直接修正样品势需要解决多重散射的非线性反函数问题。尽管已经通过不同的方法对晶体样品的不同布拉格光束进行相位调整(其中大部分是基于布洛赫波理论),但对于具有大晶胞或非周期结构的一般样品来说,这些方法变得极其困难,因为需要确定大量未知的结构因子。Ptychography(叠层衍射成像)是另一种相位修正方法,可以追溯到20世纪60年代Hoppe的工作。现代成熟的装置使用多重强度测量——通常是通过小探针扫描广大的样品收集的一系列衍射图案。这种方法已广泛应用于可见光成像和X射线成像领域。直到最近,电子叠层衍射成像技术还受到样品厚度和电子显微镜中探测器性能的限制。二维(2D)材料和直接电子探测器的发展引起了更广泛的新兴趣。用于薄样品(如2D材料)的电子叠层衍射成像已达到透镜衍射极限的2.5倍的成像分辨率,降至39μm阿贝分辨率。然而,这种超分辨率方法只能可靠地应用于小于几纳米的样品,而较厚样品的分辨率与传统方法的分辨率没有实质性差异。对于许多大块材料来说,这样的薄样品实际上很难实现,这使得目前的应用局限于类2D系统(例如扭曲的双层)。对于比探针聚焦深度更厚的样品,多层叠层衍射成像方法提出了使用多个切片来表示样品的多层成像。所有切片的结构可以分别恢复。目前,利用可见光成像或X射线成像都成功地演示了多层叠层衍射成像。然而,由于实验上的挑战,只有少数的多层电子叠层衍射成像证据的报道,并且这些报道在分辨率或稳定性方面受到限制。透射电子显微镜使用波长为几皮米的电子,有可能以原子的固有尺寸最终确定的固体中的单个原子成像。然而,由于透镜像差和电子在样品中的多次散射,图像分辨率降低了3到10倍。康奈尔大学研究人员通过逆向解决多次散射问题,并利用电子叠层衍射成像技术克服电子探针像差,证明了厚样品中不到20皮米的仪器(图像)模糊以及线性相位响应;原子柱的测量宽度受到原子热涨落的限制,新的研究方法也能够在所有三维亚纳米尺度的精度从单一的投影测量定位嵌入原子的掺杂原子。相关研究工作以“Electron ptychography achieves atomic-resolution limits set by lattice vibrations”为题发表在《Science》上。图1 多层电子叠层衍射成像原理图2 PrScO3的多层电子叠层衍射重建图3 多层电子叠层衍射成像的空间分辨率和测量精度图4 多层电子叠层衍射的深度切片
  • 350万!嘉庚创新实验室透射电子显微镜货物类采购项目
    项目编号:[350200]WSCG[GK]2022009 项目名称:嘉庚创新实验室透射电子显微镜货物类采购项目 采购方式:公开招标 预算金额:3500000元 包1: 合同包预算金额:3500000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100301-显微镜透射电子显微镜1(套)是1、工作条件1.1 电力供应:220V(±10%),50Hz,1φ 380V(±10%),50Hz,3φ;1.2 工作温度:15℃-25℃;1.3 工作湿度:60%。2、透射电镜基本单元2.1 电子枪为LaB6或W灯丝,提供备用灯丝至少2根;2.2 TEM模式下分辨率:点分辨率: ≤0.30 nm,线分辨率: ≤0.15 nm;2.3 最高加速电压≥120 kV,提供最高加速电压下的合轴文件;2.4 TEM模式下的放大倍数范围至少满足x100–x650,000;2.5 照明系统束斑尺寸:对于W灯丝:80-4000 nm,对于LaB6灯丝:40-2000 nm,且照明系统束斑具有高的稳定度。2.6 具备高衬度成像模式以获得样品的更多细节和高分辨观测效果;2.7 具有合轴调整快速调用功能,透射/能谱分析/电子衍射分析三种模式仅需通过软件实现快速切换;2.8 具备会聚束电子衍射功能;2.9 配备全自动样品台:计算机控制,全对中,高稳定性,全自动马达样品台(至少4轴),支持单倾/双倾样品台,样品移动范围:X轴/Y轴≥2 mm;Z轴≥0.4 mm,样品台α倾斜角度:≥±30°;2.10 提供1根单倾样品杆,1根双倾样品杆;2.11 为保证不同用户的不同测试需求,电镜操作者可以根据需要,在透射、电子衍射等不同模式下设置一套或多套电镜状态参数,每套状态参数相互独立,可在使用过程中迅速切换调用。可设置任意多个用户,每个用户之间的参数设置相对独立,同时还可以相互调用。3、高速高分辨CMOS相机系统3.1 为保证成像质量,应配备一体化底装高灵敏度的CMOS相机;3.2 相机应具备高的像素数,其中最高像素数≥2048×2048,并可实现在不同像素数下的拍照和视频录制;3.3 相机的计算机平台应为Win10的64-bit,图像储存格式多样,如TIFF,BMP,JPEG,PNG等;3.4 相机具备直接拍摄电子衍射功能;3.5 相机具备自动对焦、自动对中、自动消像散等功能,提高样品拍摄的智能化和便捷化;3.6 相机应支持样品台导航功能,保证目标样品的快速定位和测试;3.7 支持DigitalMicrograph处理工具包进行数据处理,漂移校正,滤波,图像增强,图像裁切,可进行在线或后续的离线分析和数据处理。4、能谱仪系统4.1 探测器应具备高分辨、高信噪比和高稳定性且易于维护,SDD电子制冷探测器,无需其他辅助制冷手段,没有震动,探测器可自动伸缩,保护能谱仪免受高能电子辐照;4.2 能谱仪探测器应具有较大的有效面积,提高能谱仪计数率,保证有较强的接收信号,有效面积≥60 mm2;4.3 EDS系统应配备高的能量分辨率和大的元素分析范围;4.4 探测器具备防污染功能,减小样品对能谱仪的污染;4.5 能谱应用软件必须能够进行定性和定量分析。定性分析能够实现自动标识谱峰,也可手动选择元素标识谱峰,无禁止自动标定的元素;定量分析能够实现自动或手动对目标区域元素进行定量分析,可实现对测试样品任一区域、任一形状,任一面积的定量分析,获得原子百分比,元素质量比,元素重量比等多种形式的数据。能谱应用软件支持分屏显示及远程控制,支持中、英文等多种操作界面,可进行在线或后续的离线分析。5、系统配置5.1 具有高性能的硬件和软件配置,兼顾基本的原位实验。主机电脑内存RAM≥32G;显卡:显存≥8GB GDDR6,核心频率≥1845 MHz,显存位宽≥256 bit,视频输出支持DP/HDMI;CPU:主频≥3.7GHz,核心数量≥8核,线程数≥18线程,三级缓存≥20MB;固态硬盘容量≥3T,机械硬盘容量≥4T;数字化操作系统,Windows10的64-bit计算机控制系统,在用户图形界面上完成电镜的操作控制,支持包含高速相机软件、电子衍射分析软件、能谱软件等64位软件。5.2 提供足够的数量的数据处理软件拷贝(包含相机图片分析软件和能谱分析软件),方便后续对电镜测试数据进行处理,提供在线版license文件不少于1个,离线版license文件不少于6个。6、真空系统具有离子泵、扩散泵系统(前级机械泵)等,保证最优真空度,电子枪室≤1×10-7 Pa,样品室≤2×10-5 Pa。7、样品杆、存放架、套管、标样/标具、工具包7.1、提供原装单/双倾角样品杆,原装样品杆存放架,套管等至少一套;7.2、提供标样及耗材配件包,包含标样/标具,真空脂、密封圈、样品夹、样品杆固定螺丝等至少一套8、附件系统8.1 为保证透射电镜正常运行,必须配备相应的附件系统,包括稳定的电源供给,不间断电源设备(UPS),遇到断电,停电,主电源故障等不能供电情况,UPS立即切换工作,继续为透射电镜稳定供电至少2小时。此外,要求UPS设备对电压过高或电压过低都能提供保护;8.2 配备空气压缩装置;8.3 保证相机正常工作,配备空冷式循环冷却水装置;9、设备的场地动力条件要求9.1 提供设备的现场安装方案说明和图纸,主要包括设备占地面积、重量、动力要求(用电、用水、用气、尾排等);9.2 根据设备安装方案对场地进行必要的改造、装修,使其满足设备安装要求;9.3 在指定实验室除就位安装,并负责完成该设备相关的二次配工程,包括用气、用水、用电、尾排等,保证设备能够快速定位安装投入使用。另外要确保该二次工程符合国家相关标准,能够保证设备安全正常使用。3500000 合同履行期限: 合同签订后 (180) 天内交货 本合同包:不接受联合体投标
  • 超高分辨率显微镜:显微镜发展史上的新突破
    显微镜技术经过长期发展,加之近年来物理学界接二连三出现的重大科研进展,终于,在2008年,显微镜发展史上的新成果&mdash &mdash 超高分辨率荧光显微镜为科学家所研制出。人们预言,它定会成为生物学家的好帮手。  Stefan Hell打破了物理学界的传统看法  自从1873年Ernst Abbe第一次发现光学成像具有衍射限制现象以来,物理学界就公认,显微镜的分辨率具有极限,该极限与光源的波长有关。直到一个多世纪之后,罗马尼亚物理学家Stefan Hell推翻了这一观点。他是首位不仅从理论上论证了,而且用实验证明了使用光学显微镜能达到纳米级分辨率的科学家。  罗马尼亚物理学家Stefan Hell,现任德国马克斯· 普朗克生物物理化学研究院(Max Planck Institute of Biophysical Chemistry)主任。  早在上世纪80年代中期,当时师从德国海德堡大学(University of Heidelberg)一位低温固态物理学家的Stefan Hell就已经发现,如果不是像常规那样使用一个透镜聚焦,而是将两个大孔径的透镜组合在一起聚焦,就可以提高光学显微镜的分辨率。Stefan Hell是首位发现这一现象的研究人员。  Hell于1990年顺利完成了他的博士学业,但同时,这也意味着他将无法再凭借奖学金的资助进行研究了。Hell最终决定独自一人继续在家研究以上的发现,并最终成功发明了4Pi显微镜。4Pi显微镜,超高分辨率成像中的一个步骤  时任美国马萨诸塞州坎布里奇市哈佛大学(Harvard University)化学系教授的Sunney Xie遇到了Hell,当他了解了Hell发明的4Pi高分辨率显微镜时,Xie对Hell勇敢地对传统物理学观点提出挑战的精神表示赞许。  随后,Hell带着他的发明来到了位于德国海德堡的欧洲分子生物学实验室(European Molecular Biology Laboratory, EMBL),并获得了德国科学基金会提供的奖学金。1991年,Hell在该实验室开始他的博士后研究工作。  起初,许多科学家,包括那些声名显赫的物理学家都认为Hell的工作对于提高光学显微镜的分辨率没有太大的意义。他们认为,Hell仅用他那少得可怜的科研经费来从事这项研究简直就是在冒险。但Hell却始终坚信他能够打破衍射极限。  Hell的努力没有白费,他的冒险终于获得了回报。1992年,Hell第一次用他的4Pi高分辨率显微镜证明了他的确能将传统光学显微镜的分辨率提高3~7倍。然而,尽管Hell提高了Z方向的分辨率,他还是没能突破衍射极限的限制。  此后不久,Hell又在芬兰土尔库大学(University of Turku)得到了他的第二个博士后职位。一个星期六的早晨,Hell正躺在研究生公寓的床上看一本有关光学量子理论的书,突然,灵光一闪,Hell脑海里浮现了一个想法:如果使用一种合适的激光,仅激发一个点的荧光基团使其发光,然后再用一个面包圈样的光源抑制那个点周围的荧光强度,这样就只有一个点发光并被观察到了。Hell给他的这项发明取名STED,即受激发射损耗显微镜(stimulated emission depletion)。有了这个想法后,Hell立即行动,冲进实验室进行相关实验。每当回想起当时的心情,Hell都会觉得那是他科研生涯中最激动的时刻。  曾在EMBL与Hell共事,并共同研发4Pi显微镜的Pekka Hanninen指出,Hell在土尔库大学进行研究工作时非常刻苦。那时,他经常被许多问题困扰。尽管如此,研究过程中还是有许多快乐萦绕着他们。Hell不仅是一名严谨的科学研究者,还是一名音乐爱好者,每当工作至深夜时,实验室走廊总会回响起Hell吹奏萨克斯风的动听乐声。由共聚焦显微镜(左图)和STED(右图)成像的一个神经元。  1994年,Hell在《光学快报》(Optics Letters)上发表了他关于STED的理论文章。不过直到多年以后,这项理论才得以在实践中被证实。在那段时间里,Hell一面继续研究工作,一面四处奔走筹集科研经费,还卖掉了他4Pi 显微镜的专利。  但是那个时候Abbe的衍射极限理论仍然在学界占统治地位,许多物理学家对Hell的理论都持怀疑甚至批评态度,因此他们也都将研究重点放在其它的成像技术上。尽管如此,Hell还是在1997年与马普生物物理化学研究所签订了一份长达5年的合同,以继续他的STED研究。  1999年,Hell将他的研究成果分别投给了《自然》(Nature)杂志和《科学》(Science)杂志,不过都被退稿。当时两位杂志的主编都没有意识到他的研究成果将会改变整个显微镜领域。  直到2000年,事情才终于有了转机&mdash &mdash 《美国国家科学院院刊》(PNAS)发表了Hell的科研成果。采用 Hell的STED技术,人们第一次得到了纳米级的荧光图像。Hell的工作由此获得了广泛的肯定,2002年,他获得了马普研究所的终身职位。从此,Hell一直在马普研究所从事成像技术的研究工作。  紧随STED这项开创性工作之后,世界各地实验室等研究机构内陆续出现了一批高分辨率的显微镜技术。例如,由珍妮莉娅法姆研究学院(Janelia Farm Research Campus)的物理学家兼工程师Mats Gustafsson领导的研究团队开发出了结构光学显微镜(structured-illumination microscopy, SIM)。果蝇卵母细胞内的肌动蛋白的3D SIM成像,该照片拍摄于完整的卵泡内。  SIM技术的原理是通过一系列光成像的图案对低分辨率莫尔条纹形式的精细结构进行成像,此类图像是采用其它技术所无法观察到的。然后再由计算机处理、分析这些条纹中包含的信息,最终就可以获得高分辨率的图像。  同年,Gustafsson小组得到了HeLa细胞中肌动蛋白细胞骨架的图像,他的图像相比传统显微镜的图像来说,在测向上的分辨率提高了2倍。随后,Gustafsson小组又使用非线性技术将整体分辨率提高了4倍。  科研竞赛  2006年,超高分辨率显微镜研究行业翻开了新的篇章。Eric Betzig、Harald Hess以及Lippincott-Schwartz小组、Samuel Hess小组以及庄晓威(音译)科研小组几乎同时报道了他们提高显微镜分辨率的科研成果,下面分别介绍这三个小组的研究情况。  Eric Betzig、Harald Hess以及Jennifer Lippincott-Schwartz小组  2005年夏天,细胞生物学家Jennifer Lippincott-Schwartz卸下了她在美国马里兰州贝塞斯达美国国立卫生研究院(HIV)暗室里的红色灯泡。Lippincott-Schwartz正在为赋闲在家的两位物理学家Eric Betzig和Harald Hess腾出空间,筹备实验室。正是这两位物理学家研制出了光敏定位显微镜(photoactivated localization microscopy, PALM),他们的这种新产品能将荧光显微镜的分辨率提升至纳米级水平。  接下来的整个冬天,Eric Betzig、Harald Hess以及Lippincott-Schwartz等人都一直在那间狭小的没有取暖设备的实验室里工作。现在就职于美国弗吉尼亚州阿士伯恩霍华德休斯医学研究所珍妮莉娅法姆研究学院(Howard Hughes Medical Institute&rsquo s Janelia Farm Research Campus in Ashburn, Virginia)的Hess承认,自己与Betzig对生物学的认识都不深。不过近15年来,他们一直都在努力,希望能运用生物学知识获取高分辨率的显微图像,但是没有取得明显进展。然而,当Hess和Betzig了解到Lippincott-Schwartz和George Patterson在2002年发明的光敏绿色荧光蛋白(photoactivatable green fluorescent protein)后,他们知道他们已经找到了解决问题的关键所在。  回想起当时的情形,Lippincott-Schwartz指出:&ldquo 他们当时非常激动。我还记得当我们得到第一张显微图像时,你根本无法看出那是什么东西。直到我看到他们将荧光图像和电镜图像叠加之后的结果才相信,我们成功了。我当时觉得这一切真是太神奇了。&rdquo   2006年,Eric Betzig、Harald Hess以及Lippincott-Schwartz小组在《科学》(science)杂志上发表了他们的PALM研究成果。使用PALM可以清楚得看到细胞黏着斑和特定细胞器内的蛋白质。  Samuel Hess小组  Samuel Hess小组是上述三个小组之一。Hess是美国缅因州立大学(University of Maine)物理系的助理教授。2005年夏天,Hess一直在和他们学校的化学工程师和生物学工程师,就如何提高观察活体细胞脂筏结构的分辨率等问题进行交流。  2005年的一个夏夜,Hess被邻居家举办舞会的声音吵醒。半睡半醒的Hess走下楼来,随手画了一副设计图,他的这种设计是需要借助荧光标记的蛋白质来显示细胞形态的。第二天早上,当Hess重新翻看这幅非清醒状态绘制的潦草的设计图时,不由得大笑起来。不过令人吃惊的是,他的这幅设计图竟然没有一点问题。于是他把这幅图拿给物理系的同事检查,但同事也没有发现任何问题。  接下来,Hess就按照他的设计图开始制作显微镜了。此时,他的科研经费所剩不多,而结题时间转眼就到。因此,Hess等人以最快的速度组装好显微镜,并进行了试验。同时,在不到两天的时间里,缅因州立大学表面科学技术实验室的同事就为Hess制备好供检验显微镜效果的蓝宝石晶体样品。  对于同事们的帮助,Hess总是不胜感激。  2006年,《生物物理学期刊》(Biophysical Journal)刊登了Hess小组的科研成果。他们将这项研究成果命名为荧光光敏定位显微镜(fluorescence photoactivation localization microscopy, FPALM)。2007年,Hess小组证明了FPALM可以分辨细胞膜脂筏上的蛋白质簇。  庄晓威科研小组  与此同时,另一个研究小组&mdash &mdash 哈佛大学霍华德休斯医学研究所(Howard Hughes Medical Investigator at Harvard University)的研究员庄晓威科研小组也在研究高分辨率成像技术。  通过3D STORM观察到的一个哺乳动物细胞内线粒体网状系统。传统荧光成像(左图) 3D STORM成像(中图),其中,采用不同颜色标记出z的位置 3D STORM成像中xy维图像(右图)。  其实,这三个小组都有一个共同的也是非常简单的理念,那就是先获得单分子荧光图像,再将成千上万个单分子图像叠加在一起,获得最终的高分辨率的图像。  早在2004年初,庄等人就已经意外发现了有一些花青染料可以用作光敏开关。这也就意味着这些染料既可以被激活发出荧光,也可以被关闭不发光,人们可以使用不同颜色的光束来随意控制这些花青染料的开和关。  从那以后,庄等人就一直在研究如何用光敏开关探针来实现单分子发光技术。他们希望能用光敏开关将原本重叠在一起的几个分子图像暂时分开,这样就能获得单分子图像,从而提高分辨率。Eric Betzig小组和Samuel Hess小组也都采用了同样的策略,只不过他们使用的不是光敏开关而是一种可以先被荧光激活继而被漂白失活的探针。  2006年,庄的科研成果在《自然-方法》(Nature Methods)杂志上发表,他们将这项成果命名为随机光学重建显微镜(stochastic optical reconstruction microscopy, STORM)。使用STORM可以以20nm的分辨率看到DNA分子和DNA-蛋白质复合体分子。  此后几年,超高分辨率荧光显微镜又得到了进一步的发展。现在,生物学家已经能够使用超高分辨率荧光显微镜在纳米水平上观察细胞内部发生的生化变化了。以往那些大小在200nm至750nm之间的模糊泡状图像再也无法对他们造成困扰了。尽管早在上世纪80年代,科研机构里就已经出现了超高分辨率显微镜的构思,但只是最近几年里这项技术才伴随着它的商业化进程获得了快速发展。现在,已经有几十家实验室安装了这种最新型的显微镜并投入了使用。正像Lippincott-Schwartz所说的,超高分辨率显微镜正在以飞快的速度被科研界接受,在生物学界更是如此。  超高分辨率显微镜的成绩  已经开始使用这些显微镜的生物学家对这项技术都表示出了极高的热情。Jan Liphardt这位在美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)工作的生物学家,还清楚地记得他2006年第一次在《科学》(science)杂志读到Betzig的那篇有关PALM技术的论文时的激动心情。当他看到那幅线粒体蛋白的图像时立刻想到了该技术可以用于他自己的微生物研究领域。  Liphard说道:&ldquo 通常,我们得到的大肠杆菌荧光图像都只有20像素,甚至更低,现在突然有一幅几千像素的图片摆在你面前,你可以想象那是一种什么感觉。&rdquo   Liphard现在正与Betzig以及其他一些研究人员一起研究大肠杆菌的趋化现象(chemotaxis)。Liphard还提到:&ldquo 我从没想到这项技术达到的分辨率有这么高,可以如此清楚地看到细胞内单个蛋白质分子的定位,甚至还能定量。而对我来说,每天的工作实际上就是在弄清楚这些蛋白质在什么位置,什么时候存在。而之前我们的研究主要采用间接方法。但超高分辨率显微镜这项新技术是我从事科研工作这么长时间以来,感触最深,获益最大的一项科技成果。&rdquo   美国丹佛市科罗拉多州立大学医学院(Medicine at the University of Colorado Denver)的助理教授Nicholas Barry也正在和Betzig合作,他们使用了一台蔡司的全内反射荧光成像系统(total internal reflection fluorescence imaging, TIRF)来研究肾细胞顶端胞膜上的蛋白质簇。  Barry指出,只需要一台蔡司显微镜和普通电脑,差不多就足够了。此外,他们还花费3万美元添置了两台激光发射器。现在,Barry等人可以在8分钟内得到一幅图像,这幅图像由10000帧图像合成,每一帧图像上显示10个分子。最后的图像文件大小大约是0.3GB。Barry等人还使用Perl语言自己开发了一套免费程序。Barry表示:&ldquo 这里面包含了每帧图像的资料信息,客户可以根据这些信息进行相关计算。&rdquo Barry充满信心地提到,很快就会有人为NIH的那套免费图像分析软件ImageJ开发出一套运算程序作为插件使用。  美国斯坦福大学(Stanford University)化学及应用物理系教授W.E. Moerner曾于1989年第一个在试验中使用光学显微镜得到了单分子图像。W.E. Moerner教授表示,这几年来,超高分辨率显微镜研究领域已经取得了巨大的进展,终于达到了纳米级单分子分辨率。他兴奋地说:&ldquo 经过了近20年对单分子成像课题的研究,我们终于取得了完美的成果。&rdquo   展望  自从2006年STORM技术和PALM技术问世以来,科技工作者就一直在不断努力,对它们进行改进、完善和提升。2008年,Lippincott-Schwartz的研究团队将PALM技术和单颗粒示踪技术(single-particle tracking)结合,成功地观测到活体细胞胞膜蛋白的运动情况。同年,庄小威研究组在《科学》(science)杂志上也发表了他们的3D STORM成像成果,该技术的空间分辨率比以往所有光学3D成像技术的分辨率都要高出10倍。论文中,他们展示了用3D STORM成像技术拍摄的肾细胞内微管结构图和其它的分子结构图。随后,他们又进一步将该技术发展成了多色3D成像技术(multicolor 3D imaging)。Gustafsson,还有其他一些科研工作者使用3D SIM技术(该技术使用3束干涉光,而不是常见的2束)观察到了共聚焦显微镜(confocal microscopes)无法观测到的哺乳动物细胞核内结构。位于德国的世界知名光学仪器制造公司蔡司公司进一步发展了SIM和PALM技术,不过他们将PALM称为PAL-M。蔡司公司预计将于2009年末推出全新的成像产品。  2008年,Hell小组使用STED技术通过抗体标记目标蛋白,观察到了活体神经元细胞中突触小泡(synaptic vesicles)的运动过程。同年稍晚些时候,他们又使用4Pi显微镜和STED技术得到了固定细胞内线粒体的3D图像,分辨率达到了40至50nm。最近,他们又使用超高分辨率显微镜成像技术对脑切片组织中的形态学变化进行了研究,并得到了活体神经元细胞树突棘(dendritic spines)的3D图像。PALM在哺乳动物细胞内拍摄到的粘附复合物。  由于最近几年这些新技术的不断涌现,现在可以对活体细胞进行三维观察了。Gustafsson指出,随着PALM技术和STORM等新技术的出现,以前很多看起来不可能的事情现在都变得可能了。  尽管已有许多科学家从这项技术进展中获益,但是仍然可以进一步提高,以使更多的研究人员能够在自己的工作中使用它。到目前为止,那些成功应用此项技术的实验室都采取了正确的技术组合:研究人员可以很好地将物理学与生物学相结合&mdash &mdash 他们将显微镜装配并做适当的调节,然后用它对生物学样品进行检测。Moerner指出,软件的编写也不容小觑:对检测到的光子进行定位和报告需要进行准确计算,从而得到合适的分辨率。  仅仅是显微镜的价格就已经限制了它的普及性,Leica&rsquo s TCS STED显微镜高达100万美元。因此,如何获得相应的资金来购置显微镜仍然是摆在研究人员面前的一个难题,位于丹佛市的科罗拉多大学(University of Colorado)光学显微镜组主任Bill Betz这样说道。  Betz曾申请用于显微镜购置的资金,但遭到了拒绝。但他表示,他们已经计划再次申请相关资金。而Stefan Hell曾指出,激光领域的技术进展已经可以使得研究人员自己在实验室内构建一个STED平台,花费只需不到10万美元。  除了要将这一技术方法普及,使生物学家能够加以利用之外,该项技术的研发人员还表示,他们已经开始致力于研究更宽范围及更多样的荧光探针了。更好的探针当然能够为我们带来更高的分辨率及更快速的图像处理。美国纽约阿尔伯特&bull 爱因斯坦医学院(Albert Einstein College of Medicine)解剖学及结构生物学副教授Vladislav Verkhusha说到:&ldquo 为了对活体哺乳动物细胞进行研究,你就需要有一整套的荧光标记蛋白和可通过光控开关控制的蛋白质。&rdquo 他本人在荧光蛋白领域的研究工作就受益于PALM的出现。  庄晓威的众多项目之一便是与Alice Ting及其在麻省理工学院(MIT)的实验室合作,对蛋白标记技术进行研究,希望能够找到一种方法可以将小和明亮的光控开关可控的探针标记于细胞的特异蛋白上,从而可以对活细胞进行成像。她提到:&ldquo 将遗传标记方法与小而明亮且可被光控开关控制的探针结合在一起,将是今后发展分子级别超高分辨率成像的十分理想的一种方法。&rdquo   尽管研发人员还将继续努力,以进行相应技术的提高,但是超高分辨率荧光显微镜更加广泛的应用还是毫无疑问地成为新的一年的标志。Harald Hess说:&ldquo 这一技术的确会为生物学家的工作带来很大的帮助。同时,我们也在不断询问,&lsquo 你们想要用它做什么精彩的实验?&rsquo 事实上,我们也得到了许多精彩的答案。&rdquo
  • 结构生物学里程碑:低温电子显微镜技术时代来临
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/noimg/fea33c3e-9d39-4848-8e95-052ebaa33259.jpg" title="1.jpg"//pp  strongX射线晶体衍射技术(X-RAY CRYSTALLOGRAPHY)即将成为历史,低温电子显微技术(CRYO-ELECTRON MICROSCOPY)引起了揭示细胞内隐秘机制的革命。/strong/pp  在剑桥大学一幢建筑的地下室里,一场技术革命正在酝酿。/pp  一个笨重的、大约3米高的金属盒子通过连接细胞的橙色缆线,安安静静地传输着以万亿字节计算的数据。这是世界上最先进的低温电子显微镜之一:低温电子显微镜通过电子束对冷冻的生物分子进行成像,从而得到分子的三维结构。站在这个耗资770万美金的仪器旁,英国医学研究委员会分子生物学实验室(UK Medical Research Council Laboratory of Molecular Biology, LMB)的结构生物学家 Sjors Scheres表示,低温电子显微镜非常敏感,一声喊叫就会带来极大误差,导致实验失败。“英国需要更多低温电子显微镜,因为未来它会成为结构生物学的主流。”/pp  低温电子显微镜震惊了结构生物学。过去30年里,低温电子显微镜揭示了核糖体、膜蛋白和其它关键细胞蛋白的精细结构。这些发现都发表在顶级杂志上。结构生物学家们表示,毫不夸张地说,低温电子显微技术正处于革命之中:低温电子显微镜能够快速生成高分辨率的分子模型,这一点远超X射线晶体衍射等方法。依靠旧方法获得诺奖的实验室也在努力学习这一技术。这种新模型能够准确地揭示细胞运行的必要机制,以及如何靶向针对疾病相关的蛋白。/pp  “低温电子显微镜能够解决很多以前无法解决的谜题。”旧金山加利福利亚大学(University of California)的结构生物学家David Agard这样说道。/pp  几年前Scheres被招进LMB,任务是帮助改进低温电子显微镜,最终他成功了。上个月,他们发表了这个领域最令人振奋的成就:阿兹海默症相关的酶的高清图片,图片包括该酶的1200左右个氨基酸,分辨率达到零点几纳米。/pp  生物学家们如今仍在努力发展该技术,以期用它解决小分子或可变形分子的精微结构——这对低温电子显微镜来说,也是一大挑战。来自加利福利亚大学(University of California)的结构生物学家Eva Nogales表示,叫它革命也好,飞跃也好,低温电子显微镜的确打开了一扇大门。/pp strong 蛋白结晶/strong/pp  结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,研究者们才能了解这个蛋白的功能。例如,核糖体是如何根据mRNA的序列来制造蛋白,分子孔道是如何开和关的。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,接着利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100,000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。很多诺贝尔奖也与这一技术相关,例如1962年揭示DNA双链螺旋结构的诺奖。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/noimg/fe5402ce-8a68-46ea-a731-d1b2f037ea42.jpg" title="2.jpg"//pp  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它有较大的限制。科学家们可能需要几年才能找到把蛋白形成大块结晶的方法。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。/pp  当Richard Henderson 1973年到LMB,研究菌视紫红质(一种利用光把质子运进膜内的蛋白)结构时,X射线晶体衍射是首选工具。Henderson和他的同事Nigel Unwin成功地做出了该蛋白的二维结晶,但却不适用于X射线衍射。因此他们决定使用电子显微镜。/pp  当时,电子显微镜主要用于研究用重金属染过色的病毒或组织切片。一束光子打在样本上,新生的电子被检测到,被用于解析样本结构。这种方法成功制作了第一幅病毒的精微图片——一种烟草病毒。但染色导致无法看清各个蛋白,更不要说原子细节了。Agarad表示,样本上要么满是斑点,要么没染上,你只能看到分子的轮廓。/pp  Herderson等人省略了染色的步骤,把菌视紫红质的单层晶体放到金属网格中,然后用电子显微镜进行成像。Agard表示,这个过程里,你看到的是蛋白的原子。这在当时是很大的进步,因为当时人们都认为不可能利用电子显微镜解析蛋白结构。Henderson等人在1975年发表了这一成果。/pp  20世纪80年代和90年代,低温电子显微镜领域发展迅速。一个关键性突破是利用液态乙烷来快速冷冻蛋白溶液。这也是为什么叫低温电子显微镜的原因。但这个技术的分辨率仅为1纳米,远远达不到针对蛋白结构进行药物设计的需求。而当时X射线晶体衍射的分辨率能达到0.4纳米。NIH等资助者投入了数亿美金来支持蛋白晶体领域的发展,但对于低温电子显微镜领域的资助却很少。/pp  1997年,Henderson参加了高登研究会议(Gordon Research Conference )关于3D电子显微镜的年会。一位同事以这样的话做为开幕致词,“低温电子显微镜技术非常有限,不可能超越X射线晶体衍射。” 但Henderson的想法完全不同,在下一场发言中,他做出了反击。Henderson指出,低温电子显微镜会超越其它各种技术,成为全球研究蛋白结构的主流工具。/pp strong 革命由此开始/strong/pp  在此之后,Henderson等人致力于提高电子显微镜的性能——尤其是感知电子的灵敏度。在数码相机席卷全球很多年后,很多电子显微镜学家仍然倾向于使用传统的胶片,因为比起数码感应器,胶片能更有效地记录电子。与显微镜生产商合作时,研究者们发明了一种新的直接电子探测器,这种探测器的灵敏度远高于胶片和数码相机探测器。/pp  大约在2012年,这种探测器能够以一分钟几十帧的高速得到单个分子原子的连续图像。同时,和Scheres一样的研究者们精心编写了将多张2D图片建成3D模型的软件程序。这些3D图像的画质可以媲美X射线晶体衍射获得的图像。/pp  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。/pp  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。/pp  5月,多伦多大学(University of Toronto)结构生物学家John Rubinstein等人使用了100,000张低温电子显微镜图片来生成V-ATPase 的“分子电影”,V-ATPase的作用是消耗ATP,把质子运进运出细胞液泡。”我们发现,这个酶非常灵活,可以弯折、扭曲和变型。” Rubinstein说道。他认为,这是由于这个酶的灵活性,它能够高效地把ATP 释放的能量传递到质子泵。/pp  2013年Nogales的团队拼接了调控DNA转录成RNA的复合体的结构。他们发现,复合体的一个臂上悬挂着紧绕DNA链的10纳米结构,这段结构可能影响基因转录。Nogales表示,这个结构很漂亮,它可以帮助我们分析这个分子起作用的机制。/pp strong 小而漂亮/strong/pp  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。/pp  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。“当我看到TRPV1的结构时,我激动得一晚上睡不着觉。”Rubinstein说道。/pp  研究者们可能面临更多这样无眠的夜晚。Agard表示,会有更多膜蛋白相继被解析出来。/pp  上个月由Scheres和清华大学的结构生物学家施一公合作发表的一篇文章就成功解析了一个膜蛋白。他们建立了& #947 -分泌酶的模型,& #947 -分泌酶负责合成与阿兹海默症相关的& #946 -淀粉斑。0.34纳米分辨率的图谱显示,比较少见的遗传性阿尔茨海默病的& #947 -分泌酶突变后会在图谱上呈现两个“热点”(突变或者重组频率显著增加的位点),并且这种突变最终会合成有毒性的& #946 -淀粉斑。& #947 -分泌酶的结构图帮助研究者发现为什么以往的抑制剂会无效,从而促进新药的研发。程亦凡表示,& #947 -分泌酶的结构非常惊人。/pp  类似的成功吸引了制药公司的注意。他们希望借助低温电子显微镜去解析那些无法结晶的蛋白,从而更好地研发药物。Scheres如今和辉瑞公司合作,攻克离子通道。离子通道包含很多膜蛋白,例如痛感受分子和神经递质受体。“我几乎被每一个人联系过。”Nogales这样说道。/pp  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。/pp  与任何热门领域一样,低温电子显微镜的发展也有烦恼。一些专家担心研究者们盲目追求该仪器会诱发一些问题。2013年HIV表面蛋白的结构图遭到了科学家们的质疑,他们认为用于建模的图片很多都是白噪声。此后,其他团队得到的X射线晶体衍射和低温电子显微镜模型也对原模型提出了质疑。但这些研究者们坚持相信自己的结果。今年6月,在高登研究会议(Gordon Research Conference )上,研究者们希望低温电子显微镜的结构图要有严格的质量控制。并且杂志要求作者们提供详细的建模方法。/pp  成本问题可能会限制低温电子显微镜的推广。Scheres估计,LMB每天用于支持低温电子显微镜的经费就达到近3万人民币,外加近1万的电费——这是由于存储和处理图片的电脑耗电量很大。Scheres表示,每天至少要花费近4万人民币,对于很多地方来说,这个费用太高。为了推广低温电子显微镜,很多基金会建立了对外公开的设备,各地研究者们可以预约使用。霍华德· 休斯医学研究所(Howard Hughes Medical Institute, HHMI)在珍利亚农场研究园区配备了一台。这台设备对所有HHMI资金的研究者公开。在英国,政府和维康信托在牛津大学附近建立了低温电镜公开使用平台。参与该平台搭建的伦敦大学(University of London)的结构生物学家Helen Saibil表示,有很多人想学习使用低温电镜。/pp  洛克菲勒大学(Rockefeller University)的生物物理学家Rod MacKinnon就是这些人之一。他在2003年因解析一些离子通道的结晶结构而获得诺贝尔奖。MacKinnon现在对低温电镜非常着迷。“我现在处于学习曲线的斜坡阶段,非常热切。” MacKinnon这样说道。他打算用低温电镜来研究离子通道是如何开和关的。/pp  1997年时,Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。/pp  原文检索:/pp  Ewen Callaway. (2015) The revolution will not be crystallized. Nature, 525(7568):172-174./p
  • 美科学家结合X射线和显微镜进行精细实验
    美国能源部阿贡国家实验室的科学家若斯近日宣布:他们已经通过同时使用X射线分析和高精度显微镜,能够同时判定物质接近原子级的物理结构和化学构成。这项研究为运用于能源的各种材料开辟了新路径。  扫描隧道显微镜(STM)能让研究人员在原子级看到更大范围的不同材料。但是只能大概看见原子在哪里,并不能提供化学或者磁性方面的信息。若斯最近的一项研究弥补了这一缺陷。他带领的团队综合了阿贡实验室的高级光子源、纳米材料中心和电子显微镜中心所提供的资源,发明了X射线同步加速器扫描隧道显微镜技术。该技术将X射线同步加速器(由高级光子源提供)同STM结合在一起。该团队曾用一个小铜样品检测该技术的局限和优势。只用加速器达不到STM能检测到空间分辨率,但是把两者结合起来就能得到研究者期望的数据。  若斯坚信这项技术能帮助科学家和工程师开发新一代的催化剂、纳米磁系统和太阳能电池。对于催化剂,有这种程度的分辨率可以根据个别催化剂显示活性部位在哪里,而且能准确地看到这种反应是怎样发生的。对于太阳能电池,能得到目前降低它效率的表面杂质的更好图像。  若斯预测这项新技术将最终能够研究各个原子的电子化学和磁性能。  基于这项研究的报告《X射线同步加速器扫描隧道显微镜:同步辐射诱导铜远近场转换的指纹图谱》刊登在《先进功能材料》上。
  • 泰安市中心医院分院340.00万元采购X射线衍射仪
    基本信息 关键内容: X射线衍射仪 开标时间: null 采购金额: 340.00万元 采购单位: 泰安市中心医院分院 采购联系人: 杜主任 采购联系方式: 立即查看 招标代理机构: 泰安市嘉恒建设工程项目管理有限公司 代理联系人: 王工 代理联系方式: 立即查看 详细信息 山东省泰安市中心医院分院职业病防治能力提升项目采购预告 山东省-泰安市 状态:预告 更新时间: 2021-09-02 招标文件: 附件1 山东省泰安市中心医院分院职业病防治能力提升项目采购需求公示 一、项目概况及预算情况: 基本情况:第一标段为数字化医用X射线摄影系统(DR)、移动式数字X射线机(DR)、尘肺诊断阅片系统各1套;第二标段为听觉诱发电位仪、耳声发射测试仪、纯音电测听仪(诊断型)、纯音电测听仪(便携式)各1套;第三标段为台式肺功能检测系统、便携式肺功能检测系统、心电图机各1套。 项目预算: 本项目预算为340万元,其中第一标段200万元,第二标段:80万元,第三标段:60万元。资金性质为财政性资金。 付款方式:本项目预付款为合同金额的30%,合同签订生效且具备实施条件后5个工作日内支付,合同签订前,中标人须向采购人交付合同金额8%作为质量保证金,货到交付后经乙方安装调试并经甲乙双方联合验收合格后付至合同总价款的100%,质保期满后无质量问题质量保证金无息退付。 二、采购标的具体情况: 详见附件 三、论证意见: 无 四、公示时间: 本项目采购需求公示期限为3天:自2021年9月2日起,至2021年9月5日止 五、意见反馈方式: 本项目采购需求方案公示期间接受社会公众及潜在供应商的监督。 请遵循客观、公正的原则,对本项目需求方案提出意见或者建议,并请于2021年9月6日前将书面意见反馈至采购人或者采购代理机构,采购人或者采购代理机构应当于公示期满5个工作日内予以处理。 采购人或者采购代理机构未在规定时间内处理或者对处理意见不满意的,异议供应商可就有关问题通过采购文件向采购人或者采购代理机构提出质疑;质疑未在规定时间内得到答复或者对答复不满意的,异议供应商可以向采购人同级财政部门提出投诉。 六、项目联系方式 1.采购单位:泰安市中心医院分院 联系人:杜主任 电话:0538-8626738 地址:泰安市长城路西万官大街336号 2.采购代理机构:泰安市嘉恒建设工程项目管理有限公司 联系人:王工 电话:0538-6315028 地址:泰安市迎胜东路29号,鲲鹏商务楼三楼 附件: × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:X射线衍射仪 开标时间:null 预算金额:340.00万元 采购单位:泰安市中心医院分院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:泰安市嘉恒建设工程项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 山东省泰安市中心医院分院职业病防治能力提升项目采购预告 山东省-泰安市 状态:预告 更新时间: 2021-09-02 招标文件: 附件1 山东省泰安市中心医院分院职业病防治能力提升项目采购需求公示 一、项目概况及预算情况: 基本情况:第一标段为数字化医用X射线摄影系统(DR)、移动式数字X射线机(DR)、尘肺诊断阅片系统各1套;第二标段为听觉诱发电位仪、耳声发射测试仪、纯音电测听仪(诊断型)、纯音电测听仪(便携式)各1套;第三标段为台式肺功能检测系统、便携式肺功能检测系统、心电图机各1套。 项目预算: 本项目预算为340万元,其中第一标段200万元,第二标段:80万元,第三标段:60万元。资金性质为财政性资金。 付款方式:本项目预付款为合同金额的30%,合同签订生效且具备实施条件后5个工作日内支付,合同签订前,中标人须向采购人交付合同金额8%作为质量保证金,货到交付后经乙方安装调试并经甲乙双方联合验收合格后付至合同总价款的100%,质保期满后无质量问题质量保证金无息退付。 二、采购标的具体情况: 详见附件 三、论证意见: 无 四、公示时间: 本项目采购需求公示期限为3天:自2021年9月2日起,至2021年9月5日止 五、意见反馈方式: 本项目采购需求方案公示期间接受社会公众及潜在供应商的监督。 请遵循客观、公正的原则,对本项目需求方案提出意见或者建议,并请于2021年9月6日前将书面意见反馈至采购人或者采购代理机构,采购人或者采购代理机构应当于公示期满5个工作日内予以处理。 采购人或者采购代理机构未在规定时间内处理或者对处理意见不满意的,异议供应商可就有关问题通过采购文件向采购人或者采购代理机构提出质疑;质疑未在规定时间内得到答复或者对答复不满意的,异议供应商可以向采购人同级财政部门提出投诉。 六、项目联系方式 1.采购单位:泰安市中心医院分院 联系人:杜主任 电话:0538-8626738 地址:泰安市长城路西万官大街336号 2.采购代理机构:泰安市嘉恒建设工程项目管理有限公司 联系人:王工 电话:0538-6315028 地址:泰安市迎胜东路29号,鲲鹏商务楼三楼 附件:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制