当前位置: 仪器信息网 > 行业主题 > >

质谱泛素化位点检测

仪器信息网质谱泛素化位点检测专题为您提供2024年最新质谱泛素化位点检测价格报价、厂家品牌的相关信息, 包括质谱泛素化位点检测参数、型号等,不管是国产,还是进口品牌的质谱泛素化位点检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱泛素化位点检测相关的耗材配件、试剂标物,还有质谱泛素化位点检测相关的最新资讯、资料,以及质谱泛素化位点检测相关的解决方案。

质谱泛素化位点检测相关的资讯

  • ALPHA前沿案例 | 玩转泛素化筛选
    泛素化过程对于细胞稳态调控的重要性不言而喻。除了参与UPS(泛素-蛋白酶体系统,ubiquitin-proteasome system)介导的蛋白降解外,泛素化还是重要的信号通路和亚细胞定位调控手段。随着PROTAC药物的兴起,泛素化系统也受到了进一步的重视,成为了新兴的药物研发方向。在本期的前沿案例中,研究人员关注重要的细胞周期和DNA修复调控蛋白PCNA(增殖细胞核抗原),及其K164单泛素化修饰。该修饰过程是DNA损伤耐受通路激活的关键步骤,也是潜在的抗肿瘤靶点。利用强大、灵活,并可支持定量的ALPHA蛋白互作技术,研究针对PCNA单泛素化过程中的各个环节均建立了高通量筛选和分析体系。以此为基础,研究进一步开展小分子药物筛选,并成功获得一系列具有靶向活性的氧杂蒽酮化合物。这些药物不仅为研究PCNA单泛素化功能供了新的工具,也为该方向的抗肿瘤药物研发打下基础。作为核心的PPI筛选和分析平台,ALPHA技术主要参与了该研究以下工作:一、建立靶向PCNA单泛素化各个环节的筛选和分析体系与常见的泛素化过程一致,PCNA 单泛素化也需要E1(Uba1,泛素活化酶),E2(Rad6,泛素携带蛋白)和E3(Rad18,泛素蛋白连接酶)发挥作用。利用一系列反应中出现的相互作用,研究基于APLHA技术构建了Uba1-ubiquitin相互作用;Rad6-ubiquitin相互作用;Rad18自泛素化和最终的PCNA泛素化检测和分析平台(见上图)。并在此基础上,研究进一步建立Rad6和Rad18以及Rad6和Ubr1互作分析方法,用于协助评价候选小分子。上述方法全面覆盖了泛素化过程中的各个反应,也展现ALPHA技术用于PPI分析的高度灵活性。二、靶向PCNA单泛素化的小分子抑制剂筛选在之前PCNA单泛素化检测的基础上,研究继续从蛋白浓度、稀释倍数和Beads浓度等多个方面优化ALPHA体系,并开展高通量小分子药物筛选。研究发现一系列的氧杂蒽酮化合物,如NSC 9037能有效抑制PCNA的泛素化,而类似结构的荧光素和阴性化合物则不能。上述发现与经典的Western blot或 Gel-based法的检测结果有较好的一致性,也间接反应了ALPHA技术抗荧光干扰的优势(见上图)。三、候选小分子活性评价针对泛素化的主要环节,研究继续利用ALPHA技术分析一系列候选药物的特异性和可能的工作机制。通过对比Uba1-ubiquitin相互作用(上图左,该检测中NSC 9037为阴性化合物);Rad6-ubiquitin相互作用(上图中)和Rad18自泛素化(上图右)检测的结果,研究证明NSC 9037能特异抑制Rad6和ubiquitin的相互作用,以及下游的Rad18自泛素化。基于ALPHA平台,研究继续构建和优化Rad6和Rad18(上图左)/Ubr1(上图中)相互作用检测平台,证明NSC 9037能特异阻断Rad6和Rad18的相互作用,是首个报道的Rad6-Rad18互作抑制剂。最后,在肿瘤细胞模型上,NSC 9037和其他筛选获得的PCNA泛素化抑制剂,均表现出不同程度的细胞毒性(上图右),为肿瘤药物研发提供了新的潜在方向。在PCNA泛素化抑制剂筛选和解析的过程中,ALPHA技术因其强大的灵活性发挥了重要的推动作用。相较于传统技术路线,ALPHA具有高灵敏度、优越的动态范围和能灵活支持不同亲和力范围和距离下的互作检测,是蛋白互作筛选和分析的利器。靶向蛋白互作的抑制剂筛选,除了ALPHA平台外,我们还提供同样均相的HTRF技术和非均相DELFIA技术平台,和相应的涵盖试剂、微孔板、检测平台和自动化的全线解决方案,满足不同的蛋白蛋白/蛋白小分子互作检测需求。
  • Nature | 北化工冯越组揭示新型泛素化反应的分子机制
    p style="text-indent: 2em "北京时间5月24日凌晨,北京软物质科学与工程高精尖创新中心、北京化工大学生命学院冯越教授研究组在strongiNature/i/strong在线发表了题为span style="color: rgb(79, 129, 189) "iStructural basis of ubiquitin modification by theLegionella effector SdeA/i/span的研究长文(Article),报道了span style="color: rgb(255, 0, 0) "嗜肺军团菌内一种新型的泛素修饰与连接酶——SdeA及其与泛素复合物的晶体结构,揭示了其修饰泛素及催化新型泛素化过程的工作机理/span。这是北京化工大学历史上首篇发表在strongiNature、Science、Cell/i/strong三大国际顶级学术期刊主刊的研究论文。/pp style="text-align: center "img title="1.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201805/insimg/dbfb3a2a-d837-40e3-9ed6-2700d7be0684.jpg"//pp  泛素化是泛素在特定酶的作用下,对底物蛋白进行特异性修饰的过程,几乎参与一切生命活动的调控,与肿瘤、心血管等疾病的发病也密切相关【1】。常规的泛素化过程是由E1、E2、E3三个酶的级联反应催化的,最终将泛素蛋白转移到底物的赖氨酸残基上【2】。然而,美国普渡大学罗招庆研究组在2016年的istrongNature/strong/i文章中报道,嗜肺军团菌(嗜肺军团菌是一种条件性致病菌,引起人的以非典型性肺炎为主要症状的军团菌病,该菌通过其Dot/Icm IV型分泌系统输送超过300个效应蛋白到宿主细胞内,改变宿主的多种信号通路以构建其在宿主内的最适生长环境)中以SdeA为代表的SidE家族可以通过一种全新的、完全不同于经典泛素化的方式修饰泛素,并催化其对几种内质网相关蛋白的泛素化过程,实现all-in-one的泛素化模式【3】。紧接着,在2016年底,Ivan Dikic研究组报道了对该反应过程的进一步研究,明确了SdeA的mART和PDE结构域经过两步催化反应最终完成对底物的泛素化过程【4】。在该过程中,泛素第42位的精氨酸先在mART结构域的作用下被修饰成ADP核糖基化泛素。随后,该修饰形式的泛素在PDE结构域的作用下生成磷酸核糖基化泛素,并转移到底物或SdeA自身的丝氨酸残基上。此外,罗招庆实验室的另一项工作证明SidJ具有去泛素化功能以逆转由SidE家族蛋白对底物的修饰,其活性不依赖于活性的半胱氨酸残基【5】。br//pp  巧合的是,在Ivan Dikic组Cell文章在线发表的同一天(2016年12月1日),冯越研究组获得了SdeA核心区231-1190区域的初步结构信息(图1a),确认了SdeA中mART和PDE组成活性中心,C端结构域形成scaffold的基本结构组成方式(图1b)。通过结构分析和功能实验,冯越研究组发现,与PDE结构域自身即具备催化活性(即可以以ADP核糖基化泛素作为底物催化该新型泛素化反应)不同的是,mART结构域则需要PDE结构域的稳定作用才能维持正常的活性。在维持mART活性的结构要素中,mART结构域一段伸到PDE结构域中的loop(789-797段氨基酸)发挥了重要功能,在该文章中被命名为“Plug” loop。随后,冯越研究组又进一步获得了该区段SdeA与泛素复合物、及与泛素-NADH复合物的晶体结构,从而揭示了泛素与mART结构域的结合模式。span style="color: rgb(255, 0, 0) "在二者结合的过程中,mART结构域的ARTT和PN loop,以及α-helical lobe均发挥了重要作用/span(图1c)。而泛素分子中参与结合的则主要是其C端区域,尤其是泛素的R72和R74两个氨基酸分别结合到mART结构域表面的两个带负电的凹槽中(图1d),起到最关键的锚定作用。这两个氨基酸的单突变均可使得泛素失去被SdeA的mART结构域修饰的能力。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/ecdeddf9-3bc8-480c-94b1-0a95e6a21c9d.jpg"//pp style="text-align: center "图一 /pp  在SdeA mART和泛素-NADH复合物结构中,最令人吃惊的一点在于,R72要比被修饰的R42更靠近活性中心(作为亲核基团的R42的ε氨基N原子距离作为亲电基团的NAD+中与烟酰胺基团相连的核糖C1原子之间的距离为11.7埃)。从直观上看,这与R42被mART修饰是相矛盾的。经过查阅文献,冯越研究组发现部分mART蛋白的催化机制被认为是SN1反应,即烟酰胺基团会先从NAD+中脱离,使得NAD+转变为活性中间体(oxocarbenium cation intermediate),之后发生亲核攻击反应。受此启发,冯越研究组将复合物结构中的NADH替换成该活性中间体,并对该体系进行了分子动力学模拟。其结果显示,R72在模拟过程中远离了活性中心,而R42则进入活性中心并占据了之前R72所在的位置,最终使得R42的亲核基团和NAD+的亲电基团之间的平均距离缩短至4.46埃。br//pp  文章的最后部分还对SdeA的C端结构域的功能进行了研究,通过体外pull down和凝胶过滤层析实验,冯越研究组证明了SdeA的C端结构域结合IcmS-IcmW蛋白复合物,并且其1191-1350区域可与IcmS-IcmW及DotL的C端形成四元复合物。这表明span style="color: rgb(255, 0, 0) "SdeA的C端结构域可能在SdeA转移到宿主细胞的过程中发挥功能/span。br//pp  strongSdeA是目前为止世界上首个鉴定出的新型泛素连接酶,其与泛素复合物结构的解析揭示了一种全新的泛素化结构机理/strong。由于哺乳动物也含有类似结构,同时其他细菌可能也具有类似的、尚未发现的泛素化系统,所以在未来,该研究将帮助鉴定出其它新型泛素化系统,从而丰富我们对细胞生命过程的认知 同时,嗜肺军团菌是军团菌肺炎这一潜在致死性肺炎的致病微生物,SdeA的结构解析也为设计针对该家族蛋白的小分子抑制剂,作为治疗军团菌肺炎的潜在抗生素奠定了重要基础。br//pp  据悉,北京化工大学硕士研究生strong董亚南/strong、strong穆雅娟/strong、strong解永超/strong及清华大学博士研究生strong张玉鹏/strong依次为本论文的共同第一作者,strong冯越/strong教授为本文的通讯作者,strong北京软物质科学与工程高精尖创新中心/strong及strong北京化工大学/strong为第一完成单位。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/bd22f066-6d36-42e6-8e93-c7244d62eb5c.jpg"/ /pp style="text-align: center "冯越教授课题组合影/pp  span style="color: rgb(0, 176, 80) "BioArt后记:冯越研究组的这篇文章是与Ivan Dikic研究组和美国康奈尔大学的Yuxin Mao研究组一起以back-to-back的形式共同向Nature投稿的(span style="color: rgb(127, 127, 127) "2017年9月24日投稿,2018年3月28日接收/span)。在这三篇文章中,冯越研究组以mART结构域为主要研究对象,而另外两个研究组的重点则是PDE结构域。在三篇文章投到Nature四个多月后,中科院生物物理所高璞组将SidE家族的另一蛋白SidE的结构功能研究投稿到Cell杂志,该文章也于日前发表(span style="color: rgb(79, 129, 189) "Cell丨高璞组揭示新型泛素化修饰的作用机制——胡荣贵、王丰点评/span)。值得一提的是,在这四篇文章中,冯越研究组报道的结构所包含的SidE家族蛋白的长度是最长的,同时该文章也是四篇文章中最早接收的。/span/pp style="text-align: center " img title="4.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/7f148278-a4e4-4914-a656-49f2a40ebdae.jpg"//pp style="text-align: center "Nature同期发表的Ivan Dikic研究组和Yuxin Mao研究组的研究论文/ppspan style="color: rgb(192, 0, 0) "冯越教授简介:/span/pp style="text-align: center "  img title="5.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/43fed980-f71b-488b-9b41-08880433a4b5.jpg"//pp  冯越,1985年生,辽宁锦州人,教授、博士生导师。2013年7月博士毕业于清华大学结构生物学中心,经高层次人才引进进入北京化工大学生命科学与技术学院工作,主要以蛋白质结构生物学为手段,对多酶生物分子机器及重大疾病相关蛋白质的结构与功能进行研究。共发表SCI论文23篇,其中第一作者或通讯作者论文11篇,分别发表在Nature (两篇,第一作者和通讯作者各一篇)、Nature Plants (通讯作者)、PNAS (共同第一作者)等国际著名期刊上。作为项目负责人主持国家及省部级项目3项,其中国家自然科学基金青年项目和面上项目各一项,北京市自然科学基金项目一项。/ppspan style="color: rgb(192, 0, 0) "参考文献/span/pp1. Hershko, A., A. Ciechanover, and A. Varshavsky, Basic Medical Research Award. The ubiquitin system.Nat Med, 2000. 6(10): p. 1073-81./pp2. Komander, D. and M. Rape, The ubiquitin code. Annu Rev Biochem, 2012. 81: p. 203-29./pp3. Qiu, J., et al., Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature, 2016.533(7601): p. 120-4./pp4. Bhogaraju, S., et al., Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell, 2016. 167(6): p. 1636-1649 e13./pp5、Qiu, J., Yu, K., Fei, X., Liu, Y., Nakayasu, E. S., Piehowski, P. D., ... & Luo, Z. Q. (2017). A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell research, 27(7), 865./p
  • 我国科学家成功鉴定高选择性双泛素结合蛋白
    近日,中国科大生命科学学院、合肥微尺度物质科学国家实验室田长麟教授和清华大学刘磊教授合作,基于蛋白质化学全合成方法制备了不同类型的双泛素蛋白,在特定位点引入光活化交联基团,并成功鉴定高选择性双泛素结合蛋白。相关研究成果以“Chemical synthesis of diubiquitin-based photoaffinity probes for selectively profiling ubiquitin-binding proteins”为题发表在《Angewante Chemie Int. Ed.(DOI: 10.1002/anie.201611659)》上,该文章于2017年2月1日在网上公开发布。  泛素化修饰是蛋白质翻译后修饰中非常复杂的一类体系,目前发现存在8种多泛素连接方式,分别在泛素蛋白的Met1、Lys6、Lys11、Lys27、Lys29、Lys33、Lys48、ys63等不同位点上接入下一个泛素蛋白。这些不同类型的蛋白质多泛素修饰在细胞自噬、蛋白酶体降解、细胞信号传导及DNA损伤修复等生命活动中执行非常多样的功能。但是,目前针对多泛素蛋白的生物法制备较为困难,导致选择性识别并结合多泛素修饰的蛋白质的了解非常贫乏。近年来,中国科大田长麟实验室和清华大学刘磊实验室通过紧密合作,在蛋白质化学全合成尤其是含有特种标记、翻译后修饰的膜蛋白、蛋白质复合物的化学全合成及组装等方面取得了多项重要突破(Angew Chemie2013,52:9558,JACS2014, 126:3695,Angew Chemie2015, 54:14276, JACS2016, 128:3553等),并于近期发展了蛋白质泛素化修饰的化学合成技术并应用于含泛素化修饰核小体的冷冻电镜(cryo-EM)结构解析(ChemBioChem2017, 18:176)。这些为基于蛋白质化学全合成制备含有光交联基团的不同类型双泛素蛋白制备和高选择性结合蛋白的质谱鉴定提供了重要基础。   含有光交联基团的双泛素蛋白化学全合成及不同类型双泛素特异性结合蛋白的质谱鉴定  近期,中国科大田长麟实验室、严以京实验室和清华大学刘磊实验室密切合作,应用基于蛋白质化学全合成方法制备了Lys48连接、Lys63连接的双泛素蛋白,并在蛋白质化学合成过程中在Ala46位点上引入不同的光交联基团。通过和标准泛素蛋白结合实验,确认了双泛素蛋白合成的有效性,并优化了光交联基团的反应条件。在此基础上,从哺乳动物细胞HEK293裂解液中通过光激活双泛素蛋白,并应用质谱方法鉴定出多个能和Lys48-连接双泛素、Lys63-连接双泛素结合的蛋白质,为后续进一步分析这些双泛素结合蛋白在细胞自噬、DNA损伤修复等生理活动中的功能机制提供了重要的前期基础。相关工作将为分析其他蛋白质相互作用、细胞中配体-受体发现等重要科学问题提供可靠的方法学手段。  合肥微尺度物质科学国家实验室、化学物理系博士研究生梁军为该研究工作的第一作者。该研究工作得到了科技部、国家自然科学基金的资助。
  • 北京重点检测祛痘化妆品是否含有抗生素
    香水,美白、防晒霜,烫、染等10大类化妆品的安全性今年将重点抽检。  记者昨天从北京市药监局了解到,今年的化妆品抽检计划中,将对10类特殊功效化妆品进行全市范围内的专项抽检,检测内容包括微生物、重金属的含量是否超标等,还包括重点抽验育发剂、祛痘除螨霜中是否含有违禁药物。  药监人员介绍,很多宣称迅速祛痘的化妆品,常会违法添加属于处方药管理的四环素、氯霉素、甲硝唑等。含这些抗生素虽然短期效果显著,但长期使用会引起皮肤过敏,甚至难以治愈的耐药性皮炎。因此,今年对祛痘化妆品的重点检测项目就是在实验室里,追踪其是否含有抗生素。  北京市药监局表示,对北京市售化妆品的“安检”结果,将及时公示,以指导消费者正确购买使用化妆品。
  • 我国科学家揭示去泛素化酶OTUD1抑制肠炎发生新机制
    中国科学院微生物研究所刘翠华团队长期致力于病原感染与宿主免疫调控方面的研究,在病原感染免疫以及蛋白泛素化等翻译后修饰调控机制等方面取得了一系列成果,先后在Nature Immunology、Molecular Cell、Nature Communications、Autophagy、Proc Natl Acad Sci、Cellular & Molecular Immunology、EMBO reports等杂志发表系列研究工作,为结核病(TB)等疾病防治提供了多种新思路和潜在新靶点。  炎症性肠病(IBD)是一类因免疫反应失调所致的反复发作的慢性肠道炎症性疾病,包括溃疡性结肠炎(UC)和克罗恩病(CD),多发于结肠和回肠末端。近几十年来,中国乃至全球的IBD发病率呈明显上升趋势,且目前临床上尚未找到有效根治IBD的治疗方案。肠道免疫系统能通过多种细胞和分子机制维持肠道免疫稳态,其紊乱可能导致多种炎症和免疫性疾病乃至肿瘤的发生。深入探寻肠道免疫微环境稳态的调控机制将为IBD等肠道免疫性疾病的防治提供新的分子标识。OTUD1 作为一种重要的去泛素化酶可调控自身免疫性疾病、病毒和真菌感染以及肠癌发生,但其在肠道炎症性疾病中的作用及调控机制尚不清楚。  近期,刘翠华团队与军事科学院军事医学研究院张令强研究员团队的最新合作研究揭示:去泛素化酶OTUD1能与RIPK1结合并通过去除其627位赖氨酸的K63多聚泛素化修饰,阻碍RIPK1对下游信号分子NEMO的招募及NF-κB信号通路的激活,进而抑制肠道免疫细胞中促炎细胞因子(包括TNF-α、IL-6和IL-1β等)的产生及肠炎发生(图1)。该研究发现葡聚糖硫酸钠(DSS)处理可诱导小鼠结肠组织中OTUD1的表达升高。通过在Otud1敲除小鼠中构建DSS结肠炎模型,发现Otud1敲除促进了小鼠肠道组织中促炎细胞因子的产生和肠炎发生。  同时,小鼠骨髓移植实验也证明了髓系细胞表达的OTUD1对肠炎的抑制作用是必不可少的。进一步的机制探寻发现LPS能诱导OTUD1启动子区域的低甲基化从而促进OTUD1的高表达。之后OTUD1与RIPK1相互作用并通过去除RIPK1的627位赖氨酸的K63多聚泛素链,从而抑制其对NEMO的招募以及NF-κB信号通路的激活。该研究还发现相比于健康人群,UC患者肠道粘膜中OTUD1的表达更低,并且与UC相关的OTUD1 G403V突变体丧失了抑制RIPK1介导的NF-κB信号激活和肠炎发生的能力。  综上,该研究揭示了去泛素化酶OTUD1通过去除RIPK1的K63多聚泛素链而抑制肠道免疫细胞中NF-κB通路介导的促炎细胞因子的产生进而抑制肠炎发生的分子机制,表明以OTUD1-RIPK1信号轴为靶点的免疫干预可能是治疗IBD的有效途径,该研究为肠道炎症性疾病的防治提供了潜在的干预新靶点。图1:去泛素化酶OTUD1抑制肠炎发生的机制示意图  相关结果已在线发表于Cellular & Molecular Immunology,题为“The deubiquitinase OTUD1 inhibits colonicinflammation through suppressing RIPK1-mediated NF-κB signaling”。军事科学院军事医学研究院的吴波博士,中科院微生物研究所的博士研究生强丽华,清华大学-军事科学院联合培养博士研究生、中科院微生物研究所的客座研究生张勇以及军事科学院军事医学研究院的付业胜博士为本文共同第一作者,中科院微生物研究所的刘翠华研究员和军事科学院军事医学研究院、国家蛋白质科学中心(北京)的张令强研究员为本文共同通讯作者。苏州大学生物医学研究院的郑慧教授为本研究提供了Otud1敲除小鼠。该研究受到了国家生物安全特别项目、国家自然科学基金、中科院战略先导科技专项和蛋白质组学国家重点实验室等联合资助。  文章链接:https://www.nature.com/articles/s41423-021-00810-9
  • 珀金埃尔默质谱专利纠纷 安捷伦反诉获批
    近日外媒曝出,珀金埃尔默(PerkinElmer)和安捷伦(Agilent)之间的质谱专利纠纷案仍在继续。2月份,被告Agilent提交的一项扩大反诉PerkinElmer的申请获得了批准。  Agilent此次修改了反诉要求,增加了一项违约指控。因为Agilent研究后发现,2010年PerkinElmer将其质谱专利按条款授权给了其他3家公司,从而获得的利益比Agilent许可使用相同质谱专利所得利益要多,Agilent辩称。  Agilent表示,这违反了Agilent和PerkinElmer之间的许可协议,构成违约。Agilent在申请中声称&ldquo PerkinElmer没有告知Agilent这些授权事宜,因此Agilent在签订许可条款时,没有机会从这些授权中找出可替代的更优惠条款。&rdquo   Agilent的违约指控是指PerkinElmer与岛津(Shimadzu)、日本电子(Jeol)和力可(Leco)3家公司之间的质谱专利授权协议。美国马萨诸塞区地方法院在今年2月13日批准了Agilent修订的这一反诉申请。  此前,Agilent曾提起过反诉,声称基于Agilent某种质谱仪销售额的专利使用费属于超额支付,因为该质谱仪在某种意义上并没有使用PerkinElmer授权的专利。因此,Agilent认为,PerkinElmer非法收取了此类多付款项,Agilent借此已经归还了欠款。  Agilent还声称,PerkinElmer违反了其与瓦里安(Varian)(2010年被Agilent收购)签订合同的若干条款。PerkinElmer违反协议, Agilent有权获得赔偿。  最近争辩中提出的这些反诉起始于2012年,PerkinElmer就质谱专利侵权对Agilent提起诉讼,称,Agilent质谱系统&mdash &mdash 6100系列四极杆、6200系列飞行时间、6300系列离子阱、6400系列三重四极和6500系列Q-TOF质谱&mdash &mdash 侵犯了PerkinElmer两项专利5686726和5581080。专利题目分别为&ldquo Composition of Matter of a Population of Multiply Charged Ions Derived from Polyatomic Parent Molecular Species &rdquo 和&ldquo A Method for Determining Molecular Weight Using Multiply Charged Ions&rdquo 。  两项专利的发明人为John Fenn、Chin-Kai Meng、 Matthias Mann,两项专利随后被分给了耶鲁大学,而耶鲁大学将专利独家授权给AOB公司(Analytica of Branford),2009年,PerkinElmer又将AOB公司收购。  在1997年3月,AOB与安捷伦达成协议,将两项专利授权与安捷伦使用。根据PerkinElmer的诉状,安捷伦在2011年6月30日以后停止支付特许权使用费,违反合同,并导致许可协议的终止。  据2011年6月28日Agilent公司LC/MS总经理John Fjeldsted写给PerkinElmer公司专利授权律师John Hamilton的一封信中显示,在PerkinElmer专利5130530和6188120授权使用期满后,Agilent停止了支付专利使用费,宣称5686726和5581080&ldquo 看起来非常像过期的专利。&rdquo   因此,John Fjeldsted写到:&ldquo Agilent不再欠该专利的授权使用费。&rdquo (编译:刘玉兰)
  • 技术革新——质谱技术让微生物检测进入新纪元
    培养、鉴定、药敏是微生物检测的三大环节,微生物鉴定在微生物检测中起到承上启下的作用,鉴定的结果不仅可以评价培养结果的成败,还为下一步药敏实验抗生素的选择提供依据,是微生物检测的重中之重。长期以来微生物的快速准确鉴定始终是非常困难的问题,不论是传统的形态学检测还是常用的生化鉴定,其检出率、准确性均不理想,并且结果报告时间较长,临床治疗不得不经验用药,造成了抗生素的滥用,耐药菌泛滥,甚至出现超级细菌。近年来精准医疗的概念越来越收到重视,临床微生物检验迫切需要一种快速、准确的方法确定微生物的种类。质谱的技术的出现及应用,使微生物检测成为现实,使精准医疗迈进一大步。 什么是微生物质谱仪? 微生物质谱,即基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS) ,其采用软电离技术,特别适合蛋白质等生物大分子的检测,基本原理是将样品分子转化成带电离子,并利用适当的电场磁场实现不同质荷比(m/z)的离子分离,进而检测每种离子的峰强度进行物质分析。 MALDI-TOF MS的性能参数一台微生物质谱仪性能的好坏主要从以下指标评估: 禾信康源MALDI-TOF MS有哪些特点?广州禾信康源医疗科技有限公司在全面掌握质谱仪核心技术和先进制造工艺下,不断改进技术壁垒,创新性的设计了近垂直(5°)激光入射离子源、双脉冲离子延迟引出技术,采用了高性能长寿命固体激光器,使质谱性能和应用范围大幅提高,同时标配国家疾控中心数据库,微生物鉴定结果更具权威性。 近垂直激光入射离子源 双脉冲离子延迟引出技术 仪器分辨率 案例一:空气微生物鉴定2018年8月于某食堂样本采集,一天中采样四次,每次收集3个平板,共计收集12个平板;经培养、分离纯化,最终获得98株纯菌,所得菌株分别使用禾信康源微生物质谱系统CMI-1600、进口某品牌BLT质谱仪、进口某品牌BRT质谱仪及16sRNA测序的结果相比对,CMI-1600鉴定至种属水平禾信康源匹配度可达到87%,分别比进口品牌高15%和10%;结果表明禾信康源CMI-1600微生物质谱的微生物鉴定能力已达到国际领先水平。 鉴定率 广州某检测中(BLT)北京某科学院(BRT)康源(CMI-1600)种水平59%58%74%属水平 77%62%87%案例二:临床微生物鉴定2021年8月云南某医院检验科收集临床菌株282例,使用质谱仪和细菌鉴定仪鉴定结果比对,结果不一致的样本采用第三方仪器验证,结果表明质谱仪鉴定至种、属水平以上菌株279例,准确率可达99%,对比细菌鉴定仪准确率(86%)具有明显优势,且质谱仪数据库菌种范围更广,可以对厌氧菌、丝状真菌进行快速检测。 此外,微生物质谱还可以应用于多种多样的场景,如蛋白组学分析、水环境中微藻类检测、肉类甄别、核酸SNP位点检测、大分子聚合物的分析等等,随着技术的提升以及功能的不断完善,相信在临床检测、科学研究、环境保护等领域微生物质谱的新纪元即将来临!
  • 甘肃将重点检测食用油等21种食品
    为了严把食品质量准入关,及时发现和控制食品安全风险,日前,甘肃省食药监局印发通知,要求全省开展流通环节食品安全快速检测,检测的重点区域包括商场超市、批发市场和集贸市场、小作-西部商报坊、农贸市场等。重点检测食用油、奶制品、酱油等21种食品。检测的主要项目包括农药(兽药)残留、亚硝酸盐等11类。  通知要求,重点区域包括:商场超市、批发市场和集贸市场、小作坊、食品经营户、经营门店等食品交易场所 食品仓储、运输和销售等物流服务场所 城乡接合部、农贸市场、农村食杂店等。  检测的重点品种包括食用农产品、食用油、糕点、糖果及糖、新鲜蔬菜、新鲜水果、干(腌)制蔬菜、干(坚)果、炒货、肉制品、禽(蛋)、酒,酱油、食醋、蜂蜜、饮料、调味品、奶制品、豆制品、水产品、儿童食品等人民群众日常生活必需品 消费者申(投)诉及举报比较多的食品 市场监督检查中发现问题比较集中的食品 根据查办案件、有关部门通报列为监测的食品。检测的主要项目是:农药(兽药)残留、亚硝酸盐、甲醛、双氧水、硼砂、二氧化硫、重金属、工业碱、三聚氰氨植、食盐碘和食品添加剂等。  省食药监局要求,要突出抓好交易额大、辐射面广、食品问题突出、消费者投诉较为集中的城乡集贸市场、超市、食用农产品批发企业等经营场所的食品安全监管工作,要将直接关系人民群众身体健康和生命安全的食品作为检测重点。实施食品快速检测工作应当购买样品,不得收取食品经营者的检验费和其他任何费用。各地要积极向当地政府争取食品快速检测经费,确保食品快速检测工作的落实。对快速检测不合格的食品,要及时送法定检验机构进行检验,根据法定检测结果依法处理。
  • 微纳塑料光学与质谱检测技术发展期望:微观化、可视化——访南开大学汪磊教授
    十八年前,英国普利茅斯大学研究人员发表在《Science》上一篇的文章,让“海洋微塑料”进入人们的视野。海洋微塑料是典型的人类污染物,任何一个海洋国家都存在着海洋微塑料的污染,南北极也不例外。这与地区的经济发展程度和人类活动密度直接相关,我国沿海地区多为人口密度大、经济较发达的地区,也不可避免地存在海洋微塑料污染。如今,微塑料已经成为我国乃至全球环境领域的研究热点,而且随着研究的深入,微塑料的介质、粒径以及研究方向均有了进一步的发展。近日,仪器信息网采访了南开大学汪磊教授,就环境微塑料研究现状、痛点和瓶颈及其对生态和人类健康造成的危害等话题进行了深入交流。汪磊教授 南开大学微塑料研究进一步发展:介质、粒径、研究方向微塑料的研究语境不再仅限于海洋,其介质已从海洋环境拓展到淡水环境、陆地环境及大气环境。如大量使用农膜,造成土壤环境出现微塑料;日常洗衣服时,涤纶和尼龙等材质的衣服释放出来的纤维也属于微塑料,进入淡水水环境,造成淡水环境的污染;空气环境中,微小的塑料颗粒通过扬尘进入大气环境,一些更小的颗粒可能会长期悬浮于大气当中,甚至会进一步向大气层上层迁移,并随着气团进行长距离的迁移。这些都是已经有科学证据的环境行为。因此,整个地球面临广泛的微塑料污染。随着微塑料研究的持续开展,研究方向和粒径方面也都有了更进一步的发展。研究方向从最开始的环境调查逐渐深入到毒理学效应和机制的研究;研究对象的粒径也越来越小,从最早微塑料定义的粒径5mm以下,到后来欧洲科学家提出的2mm以下,如今,动物实验发现亚微米级和纳米级的颗粒物更有可能在环境暴露后被吸收并进入到内循环,从而带来更大的健康风险,这引起科学家更为广泛的关注。微塑料研究难点:样品检测和源解析目前,微塑料研究的难点和瓶颈主要在于样品检测。实验室里对纯的化学品、塑料聚合物开展研究相对容易,因为这些物质在检测时加入的成分和剂量都是可控的,甚至还可以用一些染色或同位素标记的方法进行示踪。但环境里的微塑料本身表面粒径很小,比表面积很大,发生同质和异质聚集的能力较强,且有时易在环境中发生老化而与初始状态不同,给检测带来困扰。环境微塑料源解析也是一大瓶颈问题。微塑料的源头和归趋永远是大家关注的问题,由于塑料聚合物本身结构往往是由简单的碳氢结构组成的,很难建立特征性的指纹图谱去分析不同地域环境微塑料到底有哪些差别,所以常规通过化学成分指纹图谱进行污染物溯源的方法不一定适用于微塑料的污染研究。因此,找到合适的、能够对环境微塑料进行科学源解析的方法,也是目前研究当中的瓶颈问题。此外,亚微米级和纳米级别的颗粒已经成为研究人员关注的重点,同时,更小的粒径也使它们的检测难度也非常大,需要科学家和仪器公司技术人员共同努力来实现突破。首创化学解聚质谱检测技术 获学术界认可由于自身具有痕量污染物的环境行为和环境检测研究背景,汪磊自2015年开始关注环境微塑料,当时国内已经有许多团队在开展相关研究工作,但这其中环境分析化学领域的团队还不多。起初,环境生物学专家研究塑料污染时采用的检测技术仍以显微镜下对颗粒观察计数为主,汪磊认为镜检方法虽然可以满足部分实验要求,但由于偶然因素干扰较多,且受前处理过程和操作人员的限制,该方法不适用于痕量微塑料和亚微米尺寸的塑料颗粒检测,也难以实现方法的标准化,且其检测结果也难以用于环境微塑料的释放和迁移通量计算。结合自身研究专长,汪磊团队以将塑料聚合物通过化学解聚的手段解聚成具有特异性的单体化合物,以质谱对单体化合物进行分析检测,进而回溯到聚合物本身的质量思路,开发出聚酯、聚碳酸酯、聚乳酸、尼龙等微塑料的质谱检测技术,搭配镜检技术一起使用,具有更好的准确性和灵敏度。采用该方法,汪磊团队进行了包括污染调查和微塑料环境行为方面的研究,相关检测方法分别发表在美国化学会刊物Environmental Science & Technology Letters(EST Lett)、和Analytical Chemistry上,并被EST Lett杂志评为2017年年度最佳论文。采用质谱检测-镜检结合方法,汪磊团队对一些典型塑料污染场景进行了研究,如提出以质谱检测配合光学显微方法能更准确地评估洗衣废水对污水处理厂进水中微塑料污染的贡献;评估了大气沉降与剩余污泥再利用对陆地环境中微塑料污染的输入通量;发现了垃圾填埋场矿化垃圾土中微塑料和它的前体物以及塑化剂在成分分布上的变化与填埋时间存在相关性;并结合环境微生物学技术,揭示了室内灰尘中较高浓度的微塑料特别是生物可降解塑料微粒会影响室内环境中微生物的群落结构,这些研究成果于在EST、科学通报等刊物上连续发表。此外,汪磊还对微塑料的长距离迁移、“双碳”战略背景下生物质塑料和可降解塑料等新课题进行了一些初步的探索。由于从事环境微塑料技术的研究,2021年,汪磊团队获得安捷伦公司的全球开放型课题的支持,汪磊表示:“我很感谢安捷伦,我们很多研究工作都是用安捷伦的仪器完成的,如Agilent 8700 LDIR激光红外成像系统,以及LC/MS/MS产品。安捷伦特别关注微塑料方面的技术开发,也愿意与科研单位合作,因此我们双方一拍即合。”汪磊团队合影质谱技术在反映聚合度和粒径方面存在局限性当前,环境微塑料研究主要用到光学和质谱学两种技术手段,光学手段包括普通光学显微镜和结合聚合物特征光谱开展的显微光学技术,后者如显微红外、显微拉曼等,实验室研究还可用到电镜、原子力显微镜等。大部分微塑料研究工作只会采用两种手段中的一种。在微塑料检测中,光学手段使用更为广泛,该技术简单直接,对研究条件要求较低,方便使用。光谱学手段可以识别塑料聚合物,因此红外光谱在微塑料检测中迅速成为主流技术。质谱学方法在采用不同解聚或裂解处理后,以液质或气质联用仪对相对完整的聚合物功能单体化合物或聚合物的分子碎片进行检测,再回溯聚合物质量。微塑料的质谱检测技术还存在一定局限性,如热裂解技术在产生碎片时一些环境基质会产生同类碎片,对样品分析造成干扰。而相对温和的化学解聚手段也并不能有效解聚所有塑料聚合物,且如果产生的功能单体不具有特异性,该方法将同样面临基质干扰的问题,这些问题限制了质谱技术的应用发展。质谱分析样品解聚手段的另一大局限性是无法有效区分不同聚合度的聚合物,低聚物也会产生相同的碎片和功能单体,因而会对微塑料的定量产生干扰。“在研究过程当中,我们也不断地被要回答编辑和审稿人提出的这类问题,尽管这些低聚物相对于高聚物来说体量常常微小到可以忽略不仅,但它总归是一个客观存在的误差。”汪磊讲到,“但低聚物本身是否也有环境风险和研究的意义呢?”光学技术需更微观 质谱技术期待原位可视化当前,两种主要的微塑料检测技术都存在一定的局限性,汪磊详细讲述了局限问题并提出了对微塑料分析技术的发展期许。光学技术最大的局限性体现在更小粒径的微塑料检测灵敏度不足。目前市场上常见显微红外技术产品灵敏度多在10~20微米左右,这个尺度以下的环境微塑料很难被识别;显微拉曼技术灵敏度相对较高,但对5微米以下的样品也很难检测。因此,光学技术,需要在灵敏度方面进一步发展,使分析更加微观化。质谱方面,希望能发展对高分子聚合物直接进行检测的质谱技术,虽然据悉已有相关技术,但尚未能应用到塑料聚合物的检测上;另外,现有质谱方法分析塑料聚合物时,只能间接证明它的存在,不能实现微塑料的直接原位检测,说服力不足,期待适用于微纳塑料的质谱成像检测技术出现,从而更直观地揭示这些人造高分子聚合物的生物富集行为和毒理学作用机制。政策监管尚空白 制定相关标准应考虑多技术结合目前,在政策方面,针对塑料本身的地方性和行业性的约束,如各类“限塑令”时有颁行,但目前尚未出台针对微塑料的监管或污染治理标准。据悉,国家海洋监测中心编制了《海洋微塑料监测评价技术规程(试行)》。全球公认的环境微塑料污染监测标准技术尚未形成,各国和各团队使用的方法不同程度上存在差别。“因为环境微塑料的检测本身有很大的困难,同时又要考虑到自身的污染现状、科研能力和软硬件条件,因此构建科学、实用的监测和检测标准方法十分具有挑战性。”汪磊解释。汪磊认为,在制定环境微塑料相关监测法规或标准时,应考虑多种技术结合,例如光学检测的计数结果不利于数据之间的比较,质谱学技术无法直接反映颗粒形态和聚合度,两种技术的结合可以提高检测结果的准确性和科学性。大众应正确面对微塑料危害 减少环境中的微塑料排放微塑料对于生态环境和人类健康都存在一定的风险。较大粒径的微塑料易被动物摄食,导致海洋生物食道阻塞、厌食甚至死亡;附着到珊瑚礁表面的微塑料会引起珊瑚病变,而由于珊瑚礁对于海洋环境调节十分重要,珊瑚礁的死亡会引起一系列不良海洋环境生态效应的出现;也有研究表明,土壤环境中,微塑料会影响营养物质的传质,导致植物对营养物质的吸收障碍;浮萍类水生植物容易与悬浮的微塑料结合在一起,影响生物表面膜的通透性;微塑料表面普遍具有疏水性,其负载的内生和外源污染物对生物也可能存在毒性,这些都反映了微塑料对生态环境的潜在风险。同时,微塑料的人体暴露广泛存在,由于微塑料中存在未聚合的单体化合物、及其含有的添加剂和吸附的其他污染物,人体摄入微塑料后,这些物质可在人体内释放,造成人类对这些化学品的额外摄入;微塑料表面微生物的特异性定植可能形成独特的微生物 “塑料域”,在致病菌和抗性基因传播方面可能导致新的风险。此外,塑料纳米颗粒本身也可能对人类健康产生危害,这方面的研究仍“在路上”。但由于人体摄入微塑料的机会和剂量都不大,微塑料对人体健康的已知影响并不显著。塑料是人造高分子聚合物,而自然界中动物、植物、微生物也都在制造高分子聚合物。人们每天都可能摄入木质素颗粒,这些植物聚合物颗粒无法被消化吸收而会自行排出体外,所以对人造聚合物也没必要过分紧张。汪磊认为,对于大众来说,还应正确面对其对健康产生的潜在影响。最后,汪磊建议,减少微塑料的污染,应该从减少塑料的污染。“塑料作为20世纪最伟大的发明之一,给人类带来了巨大的便利,减少塑料污染并不等于放弃使用塑料,而是增加其循环使用和回收再生,从而减少环境中的塑料排放,这对我们每一个人或者说对每一个消费者来说是最容易做到的事情。”人物简介:汪磊,南开大学教授、博士生导师,环境科学系系主任,“环境污染过程与基准”教育部重点实验室副主任。主要研究领域为新型污染物的环境行为与环境暴露。曾获得国家海洋科技进步二等奖、天津市科技进步一等奖、教育部高等学校科学研究优秀成果奖自然科学二等奖;首届全国环境化学青年奖。获得国家基金委优青基金项目、天津市杰青项目,入选天津市中青年创新领军人才、131创新人才第一层次,并担任Bulletin of Environmental Contamination and Toxicology亚洲副主编、Ecotoxicology and Environmental Safety编委、环境科学学会环境地学分会、环境化学分会委员。
  • 锂电检测有奖调研开启,邀您为锂电检测发展助力
    p  近年来,全球3C锂电池市场日趋成熟,动力锂电池市场已经成为全球锂电池市场快速增长的最大引擎。按照应用领域,锂离子电池可划分为消费电子类、储能及动力电池。/pp  动力电池方面,受政府一系列优惠政策的刺激,新能源汽车近年迎来飞速增长。据统计,2014年中国新能源汽车销量暴增至7.5万辆 2015年33万辆 2016年50.7万辆 2017年超过70万辆。新能源汽车的爆发式增长拉动了对新能源汽车三大核心部件之一电池的需求。2016年我国锂离子电池产业规模达到1280亿元,首次突破1000亿元大关,同比增长30%,至 2020年预计将达2000亿元。/pp  储能方面,2016年我国储能锂电池产量为3.1GWh,产值为52亿元,占全球产值比例超过50%,2016-2022年产值复合增长率达到18%左右。据预测,2020年我国锂电池需求量将达到16.64GWh,2016-2020年复合增长率达到44.75%。/pp  各项数据表明,未来一段时间,锂电池市场需求将保持强劲增长。而锂电池检测及检测设备作为生产、研发过程中不可缺少的环节,随着锂电池市场的大势扩增,需求量也将大幅增加。/pp  锂电检测设备除了生产制造环节必需的电芯分选检测系统、充放电检测系统、保护板检测系统、线束检测系统、BMS检测系统、模组EOL检测系统、电池组EOL检测系统、工况模拟检测系统等外。锂电新技术研发、开发也离不开各种分析测试仪器,如电镜表征锂电正极材料或包覆材料结构及形貌、热分析仪或X射线衍射仪分析锂电正极材料结晶性能、粒度仪及比表面仪器分析锂电正负极材料粒度、孔径等。/pp  从市面锂电检测相关市场调研报告或资料统计来看,多数主要针对生产制造环节的锂电检测系统,却鲜有涉及研发必需的各类分析仪器。然而,纵观目前国内锂电企业,低端产能过剩,高端产能不足是行业现状,锂电产品质量走向高端是必然发展趋势。走向高端则必须保持高研发投入,来保证不断材料改进和技术革新。基于此,仪器信息网组织本次锂电调研活动,以期从市场应用角度,对锂电检测设备及仪器做更全面的梳理归纳,最终以资讯专题、盘点等形式共业界参考。/pp  所以,转入正题:strongspan style="color: rgb(255, 0, 0) "1分钟赢200份话费流量啦!/span/strong仪器信息网特针对锂电检测用户开展有奖调研活动,并将结合调研结果,推出锂电检测专题盘点分析以飨读者。问卷调研活动期间(span style="color: rgb(0, 176, 240) text-decoration: underline "2018年6月13日-2018年7月15日/span),认真完成问卷,并经审核确定为有效问卷的用户,将获得10元话费或100M流量奖励,仪器信息网普通注册会员还将赠送20积分,奖励将于10个工作日送达,总共200 份,数量有限,先到先得!/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/4ebad512-044f-42c2-a945-998dc894b409.jpg" title="2.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "长按识别二维码,参与调研/span/pp  strong或点击进入调研链接参与:/strong/ppa style="color: rgb(0, 176, 240) text-decoration: underline " textvalue="http://www.instrument.com.cn/market/onlineInvestInfo.aspx?tid=339& ttype=0" title="" target="_blank" href="http://www.instrument.com.cn/market/onlineInvestInfo.aspx?tid=339&ttype=0"strongspan style="color: rgb(0, 176, 240) "http://www.instrument.com.cn/market/onlineInvestInfo.aspx?tid=339& ttype=0/span/strong/a/ppstrong span style="color: rgb(255, 0, 0) " 注意:/span/strongspan style="text-decoration: underline "为尽量避免无效问卷,进入答题页面,需要以仪器信息网注册用户登录方可答题,若不是注册用户可点击对话框“免费注册登录”,手机获取验证码,快速登录答题。span style="text-decoration: underline color: rgb(0, 176, 240) "如下图:/span/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/78ed31d6-bc65-403a-8f3f-11e7d4ed201a.jpg" style="width: 300px height: 476px " title="01.jpg" height="476" hspace="0" border="0" vspace="0" width="300"/img src="http://img1.17img.cn/17img/images/201806/insimg/4fc77a3f-8e89-406b-849f-95174381ec8a.jpg" style="width: 300px height: 484px " title="02.jpg" height="484" hspace="0" border="0" vspace="0" width="300"//ppspan style="text-decoration: underline "span style="text-decoration: underline color: rgb(0, 176, 240) "/span/spanbr//p
  • 顶尖医院“新标配”质谱检测给患者带来什么
    p  据说,如今普通医院与世界顶尖医院的距离,就是一台台质谱检测仪。这话有夸张成分,却在某种程度上反映了质谱检测在医学领域“正当红”的地位。有投资人将质谱检测市场誉为“基因检测后的下一个百亿蓝海”,毕竟精准医疗的发展很大程度上得依靠准确可靠的检测结果,而这,正是质谱技术的一大本领。/pp  质谱技术已广泛应用于全球顶尖医院,近年来,它也来到中国的部分大型医院,在疑难疾病诊断、精准用药等领域服务患者。不过与火热的市场相比,医生态度冷静。/pp  “好技术最怕一窝蜂滥用。”有医生这样说。/pp  span style="color: rgb(79, 129, 189) "strong难治高血压找到病因,肿瘤精准用药成为可能/strong/span/pp  前不久,复旦大学附属中山医院举办的“第四期中山医院检验科液相色谱串联质谱技术临床应用培训班”以及“中山医院临床质谱高级进修班”迎来报名名额又一次“被秒杀”的盛况,国内医院对掌握该技术的渴望可窥一斑。/pp  这到底是什么技术,如何引得国内医院趋之若鹜,对患者又意味着什么?/pp  中国医药教育协会检验医学专业委员会主任委员、原复旦大学附属中山医院检验科主任潘柏申教授举例说,在进行部分激素、药物检测时,现有检测方法难以做到精确定量或探测,质谱技术可以非常准确地检测到低浓度小分子物质,这为疾病诊断、治疗方案的设定提供了重要依据。/pp  不要小看检验水平的精准度。以临床常见慢性病高血压为例,高血压里有一类继发性高血压是由醛固酮升高所致,这类患者借助质谱检测若检出肾素-血管紧张素-醛固酮(RASS)系统相关激素水平异常,治疗将与常见高血压疗法有根本不同,有些患者甚至能通过手术彻底治愈高血压。/pp  还有一些难治性高血压实为嗜铬细胞瘤,借助质谱检测如果检测儿茶酚胺类激素异常波动、异常增高,加上影像学定位,这类患者可获得精准诊断,实现精准治疗。/pp  质谱技术还可用于药物监测。医生在使用肿瘤药时,多根据患者的身高、体重估算药量,而今借助质谱技术能精确知道血液或体液中的药物浓度,减少因个体间差异药物浓度过高引起的不良反应或过低导致的治疗失败,实现更精确给药。/pp  “精准医疗是指医生能精准治疗或精准预防,但无论何种,医生首先要依靠精准信息进行精准诊断,检验科就承担着为医生提供精准信息的重要职责,质谱技术是能为医生提供精准信息的重要手段之一。”潘柏申教授告诉记者。/pp span style="color: rgb(79, 129, 189) " strong应用项目取舍之间,服务“患者急需”/strong/span/pp  精准检测,意味着一些原本临床上不认识的疾病将获得确诊,一些所谓的难治疾病可找到真正的病因,治疗可能迎刃而解… … 这对医学的发展、医疗的走向将带来难以估量的改变。/pp  也难怪,有人毫不客气地说,如果说影像学的发展为外科插上了翅膀,那么,检验的发展为内科精准诊疗提供了“火眼金睛”。如今,质谱技术不但为内科医生提供了“火眼金睛” ,还为其插上了翅膀,可以帮助医生快速精准鉴别很多疾病。/pp  因为认识到这层非凡意义,欧美发达国家已广泛开展质谱检验项目,据不完全统计,在欧美发达国家,服务于临床诊疗的质谱检测项目已达400余项,包括新生儿遗传代谢病筛查、激素及其代谢物检测、治疗药物监测、维生素类化合物检测和微量元素检测等。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 600px height: 367px " src="https://img1.17img.cn/17img/images/201905/uepic/7a694c7d-ed97-4bf4-b29f-71dfc5a621f7.jpg" title="2.png" alt="2.png" width="600" height="367" border="0" vspace="0"//pp style="text-align: center "中国医药教育协会检验医学专委会主任委员潘柏申教授 (左)复旦大学附属中山医院检验科主任郭玮教授(右)/pp  质谱分析方法进入我国的临床应用迟于海外,却发展迅猛。中山医院是国内较早开展该前沿技术的三甲医院,2010年中山医院检验科成为国家临床重点检验专科后,2011年就开始建立质谱实验室、临床质谱平台,并进行了大量临床检测工作。/pp  面对国外已开展的大量应用,这群“吃螃蟹者”面临一个“选择”的问题。中山医院检验科从一开始就决定:在仪器有限的情况下,先瞄准临床急需项目。/pp span style="color: rgb(79, 129, 189) " strong何为临床急需?/strong/span/pp  中国医药教育协会检验医学专业委员会副主任委员兼秘书长、复旦大学附属中山医院检验科主任郭玮教授举例说道,嗜铬细胞瘤的术前确诊对其后续治疗、手术非常重要,术前漏诊,病人可能因为血压剧烈波动死在手术台上。无奈的是,传统的诊断方法十分有限,给医生的诊治带来巨大挑战。当中山医院检验科获得国家临床重点检验专科资助后,最先突破的就是嗜铬细胞瘤的诊断难题,即借助质谱技术检测儿茶酚胺类激素代谢产物的水平,对嗜铬细胞瘤诊断的灵敏度和特异性几乎达到100%,大量患者切实获益。/pp  郭玮教授感慨,这就叫“好钢用在刀刃上”。/pp  span style="color: rgb(79, 129, 189) "strong上马高端技术不是“赶时髦”,区域检验中心或成趋势/strong/span/pp  自2011年始建临床质谱平台,中山医院已取得大量喜人成绩,被国内同行誉为临床质谱技术的引领者。目前,中山医院检验科开展的质谱检测项目里,20%-30%是满足上海地区乃至上海以外地区的需求。/pp  “中国大部分大医院检验科都已经拥有或正在考虑购买质谱设备,真正为老百姓、临床医生带来帮助,面临的主要还是人才紧缺问题。”潘柏申教授感觉到质谱检测在中国“热起来了”,但他亦担心“一窝蜂赶时髦,把好技术做烂”。/pp  由中山医院牵头编写的我国首部《液相色谱-质谱临床应用建议》已在全国推广,其中特别强调要遵循一系列要求,建立操作规程,做好质量控制,保证每一份检测结果是稳定可靠的。/pp  潘柏申教授强调,这不仅因为质谱设备价格昂贵,好东西没用好浪费了钱财,更关键的是,检测不准确,耽误的是老百姓的病情。/pp  其实,质谱检测人才全球都普遍缺乏,这项技术对人员要求非常高。“质谱专业技术性非常强,对操作者的知识储备要求也很高,要了解的专业知识包括分析化学、有机化学、物理学、临床医学等众多学科。”郭玮教授提到,美国药监局(FDA)对所有检测方法采用一套标准进行难易程度评估,共七个条款,每个条款最高为3分,所有方法(生化方法、免疫方法、质谱方法等)如果都用这个标准进行评判的话,质谱检测得21满分,可窥见该技术的高性能。/pp  简言之,并不是拥有一台质谱仪就等同于有了好的数据,而是“用好了,才能有好的数据”。当然,质谱检测也并非临床检验的“一招鲜”,现有临床检测技术有很多,它只能替代其中部分。/pp  “这类先进的检测项目一定要扎扎实实地推进,因为这个数据出来以后对临床诊断将起到很重要的作用。我一直强调,每个数据背后是病人的生命,不只是一个数据。”潘柏申教授说。/pp  本次复旦大学附属中山医院临床质谱高级进修班由中国医药教育协会检验医学专业委员会主办、复旦大学附属中山医院牵头、沃特世公司提供学术支持。/p
  • B族维生素质谱检测技术令叶酸补充不再盲目
    记者从西湖大学获悉,该校生命科学学院独立实验室负责人施红军带领团队研发的红细胞B族维生素精准质谱检测技术,近日完成数千万元的Pre-A轮融资。B族维生素是人体不可或缺的水溶性营养元素,叶酸是B族维生素的一种。相关科学研究表明,怀孕前增补叶酸能降低神经管缺陷、先天性心脏病等出生缺陷的风险。应用该技术,备孕阶段的女性只需到医院抽一管血,即可得到一份可信赖的叶酸水平检测报告,再由医生据此提供个性化的用药指导。增补叶酸可预防出生缺陷已有研究表明,B族维生素的缺乏与出生缺陷、妊娠期高血压、子痫前期等问题相关。如今,增补叶酸作为预防出生缺陷的重要方法,已被多国专业组织写入医学指南。日常生活中,叶酸广泛存在于动植物类食品中,尤其在绿叶蔬菜中含量较多。但天然叶酸极不稳定,人体真正能从食物中获得的叶酸并不多,并且人体不能自行合成叶酸,只能依赖摄入补充。“根据大样本数据统计,目前建议孕前女性的叶酸摄入量是0.4—0.8毫克/天。但摄入相同剂量的叶酸,是否会让有些人用药过量,有些人却补充不足?” 施红军介绍,遗传因素不同、饮食习惯不同、生活方式不同,都会影响个人体内的叶酸水平。叶酸的快速精准检测,是临床上的一个难题。叶酸临床检测主要分为血清检测和红细胞检测两种。尽管血清检测技术比较成熟,但它主要反映的是人近期的叶酸摄入量,因此检测结果很容易受到饮食的影响,波动性较大。“相对于血清叶酸,红细胞叶酸反映了人体内叶酸的长期存储水平,被公认为是更好的叶酸指标。”施红军表示,与检测游离态的血清叶酸不同,检测细胞内的叶酸需要经过细胞纯化和裂解,叶酸多谷氨酸态的水解,以及抗氧化保护等多个步骤,技术难度较大。此外,B2、烟酸、B6等B族维生素辅酶的不足也可能会影响叶酸的代谢效率,因此想要完整评价叶酸水平及其代谢功能,得同时检测这些B族维生素在人体内的含量。抽血检测让剂量补充更精确“每一个小分子都有一个特定的质荷比(质量和电荷的比重),知道了质荷比就可以知道这是什么物质。”施红军说,团队创新性地将质谱检测技术运用到红细胞叶酸检测中。B族维生素在人体内有着不同的形态,而质谱设备可以清晰地分辨出不同形态的B族维生素的质荷比,从而精准地测量出其在人体内的含量。红细胞内很多B族维生素以辅酶小分子的形式存在,极不稳定。检测前需要用特殊的保护剂和提取剂,将细胞裂解,同时立即保护好释放出来的所有辅酶小分子,去除蛋白质和细胞碎片后再上机检测。施红军团队成功开发出一种全新的红细胞B族维生素的稳定提取方法,实现在30分钟内将红细胞中B2、烟酸、B6和叶酸同步提取、同步检测。“团队在国际上首次实现了红细胞B族维生素综合代谢能力的精准质谱检测。”施红军说,团队目前已经完成了来自全国各地的上万例样本的完全叶酸功能检测(CFT),检测结果可溯源至世界卫生组织(WHO)全血叶酸国际质控标准95/528,进一步证实了该方法的准确性。通过样本分析,研究团队发现,我国孕妇的叶酸平均水平与美国在强制添加叶酸之前的650纳摩尔/升的孕妇叶酸平均水平相当,但与他们目前1150纳摩尔/升的水平相去甚远。2017年,国务院办公厅出台的《国民营养计划(2017—2030)》中写道,要把育龄女性的叶酸缺乏率下降到5%以下。施红军介绍,根据团队的检测结果显示,现在我国10%—30%的孕妇叶酸缺乏,并且叶酸缺乏率从南方到北方再到西部地区呈现逐渐递增趋势。“团队之前在一项研究中发现,烟酸的缺乏也会导致包括先天性心脏病等在内的多器官出生缺陷。因此,烟酸已被我们列入了检测开发的研究计划。”施红军表示,这项研究的实验目前还停留在小鼠模型上,他们将尝试与更多医院合作,探明烟酸的缺乏与相关出生疾病的内在关联。
  • 西湖大学施红军团队实现红细胞B族维生素的质谱检测
    应用红细胞B族维生素精准质谱检测技术,备孕阶段的女性只需到医院抽一管血,即可得到一份可信赖的叶酸水平检测报告,再由医生据此提供个性化的用药指导。记者从西湖大学获悉,该校生命科学学院独立实验室负责人施红军带领团队研发的红细胞B族维生素精准质谱检测技术,近日完成数千万元的Pre-A轮融资。  B族维生素是人体不可或缺的水溶性营养元素,叶酸是B族维生素的一种。相关科学研究表明,怀孕前增补叶酸能降低神经管缺陷、先天性心脏病等出生缺陷的风险。应用该技术,备孕阶段的女性只需到医院抽一管血,即可得到一份可信赖的叶酸水平检测报告,再由医生据此提供个性化的用药指导。  增补叶酸可预防出生缺陷  已有研究表明,B族维生素的缺乏与出生缺陷、妊娠期高血压、子痫前期等问题相关。如今,增补叶酸作为预防出生缺陷的重要方法,已被多国专业组织写入医学指南。  日常生活中,叶酸广泛存在于动植物类食品中,尤其在绿叶蔬菜中含量较多。但天然叶酸极不稳定,人体真正能从食物中获得的叶酸并不多,并且人体不能自行合成叶酸,只能依赖摄入补充。  “根据大样本数据统计,目前建议孕前女性的叶酸摄入量是0.4—0.8毫克/天。但摄入相同剂量的叶酸,是否会让有些人用药过量,有些人却补充不足?” 施红军介绍,遗传因素不同、饮食习惯不同、生活方式不同,都会影响个人体内的叶酸水平。  叶酸的快速精准检测,是临床上的一个难题。叶酸临床检测主要分为血清检测和红细胞检测两种。尽管血清检测技术比较成熟,但它主要反映的是人近期的叶酸摄入量,因此检测结果很容易受到饮食的影响,波动性较大。  “相对于血清叶酸,红细胞叶酸反映了人体内叶酸的长期存储水平,被公认为是更好的叶酸指标。”施红军表示,与检测游离态的血清叶酸不同,检测细胞内的叶酸需要经过细胞纯化和裂解,叶酸多谷氨酸态的水解,以及抗氧化保护等多个步骤,技术难度较大。  此外,B2、烟酸、B6等B族维生素辅酶的不足也可能会影响叶酸的代谢效率,因此想要完整评价叶酸水平及其代谢功能,得同时检测这些B族维生素在人体内的含量。  抽血检测让剂量补充更精确  “每一个小分子都有一个特定的质荷比(质量和电荷的比重),知道了质荷比就可以知道这是什么物质。”施红军说,团队创新性地将质谱检测技术运用到红细胞叶酸检测中。B族维生素在人体内有着不同的形态,而质谱设备可以清晰地分辨出不同形态的B族维生素的质荷比,从而精准地测量出其在人体内的含量。  红细胞内很多B族维生素以辅酶小分子的形式存在,极不稳定。检测前需要用特殊的保护剂和提取剂,将细胞裂解,同时立即保护好释放出来的所有辅酶小分子,去除蛋白质和细胞碎片后再上机检测。施红军团队成功开发出一种全新的红细胞B族维生素的稳定提取方法,实现在30分钟内将红细胞中B2、烟酸、B6和叶酸同步提取、同步检测。  “团队在国际上首次实现了红细胞B族维生素综合代谢能力的精准质谱检测。”施红军说,团队目前已经完成了来自全国各地的上万例样本的完全叶酸功能检测(CFT),检测结果可溯源至世界卫生组织(WHO)全血叶酸国际质控标准95/528,进一步证实了该方法的准确性。  通过样本分析,研究团队发现,我国孕妇的叶酸平均水平与美国在强制添加叶酸之前的650纳摩尔/升的孕妇叶酸平均水平相当,但与他们目前1150纳摩尔/升的水平相去甚远。  2017年,国务院办公厅出台的《国民营养计划(2017—2030)》中写道,要把育龄女性的叶酸缺乏率下降到5%以下。施红军介绍,根据团队的检测结果显示,现在我国10%—30%的孕妇叶酸缺乏,并且叶酸缺乏率从南方到北方再到西部地区呈现逐渐递增趋势。  “团队之前在一项研究中发现,烟酸的缺乏也会导致包括先天性心脏病等在内的多器官出生缺陷。因此,烟酸已被我们列入了检测开发的研究计划。”施红军表示,这项研究的实验目前还停留在小鼠模型上,他们将尝试与更多医院合作,探明烟酸的缺乏与相关出生疾病的内在关联。
  • 清谱推出Cell微型质谱 为个性化医疗&快速检测提供有利分析工具——2021质谱新品大探秘
    随着质谱技术的发展和应用逐渐成熟,全球范围内质谱仪器销售增速迅猛,进入快速发展期。2021年,中国市场各厂商的质谱产品推陈出新,为更全面展现2021年中国市场推出的质谱新产品、新技术,仪器信息网特别策划MS GO:2021质谱新品大探秘的系列视频采访,向广大用户带来最新最前沿的质谱新产品速报。跟随仪器信息网的镜头,可以看到2021年多家国产厂商的质谱产品扎堆发布,品类囊括了ICP-MS、ICP-TOFMS、GC-MS、GCMS/MS、小型质谱以及核酸质谱等,可以说是你方唱罢我登场,好不热闹。自20世纪60年代以来,色谱质谱联用技术将色谱优越的分离性能与质谱提供结构信息的能力完美结合,满足了对复杂样品定性定量的需求,也使该联用技术广泛应用于食品安全、生态环境、药物以及生物医学等领域。其所用的离子化技术则基本依赖于20世纪80年代发明的电喷雾离子化和基质辅助解吸附离子化。而如今,质谱技术逐渐开始展现其直接分离离子的能力,离子源技术得到快速发展。原位电离(Ambient Ionization)最初由普渡大学教授、美国科学院院士R.Graham Cooks命名,特指在不做样品前处理的情况下直接对待测目标物实现离子化。业内专家评论道,在过去的15年间以原位电离和小型质谱为主要技术平台的即时化学及生物监测逐渐成为质谱分析发展的新方向,并在未来有可能形成更为强劲的质谱发展主流趋势。此外,随着现场检测对分析仪器的大量需求,便携式和小型化质谱已经成为发展趋势。我国学者在质谱仪器小型化方面已有不少成果,该进展极大地推动了相关研究领域的发展。北京清谱科技有限公司是由清华大学精密仪器系欧阳证教授创办的高科技企业,团队与清华大学及美国普渡大学深度合作,主营质谱检测设备的研发、生产和服务,为现场检测、科学研究等领域提供实时简便的检测方案。2021年,清谱科技在第一代 Mini β小型质谱分析系统的基础上推出了又一“开创性”的小质谱,即Cell微型质谱分析系统。清谱科技市场总监李玉玉表示,Cell系统的研发理念基于3A,"Anytime, Anywhere, by Anybody",其小巧精致且功能强大,倾注了清谱技术团队很多先进的理念和心血,也是构建未来即时化学检测完整生态系统的基本单元,因此该系统被称为“Cell”。据了解,Cell微型质谱分析系统仅重8.5kg,无需外接任何其他设备,内含锂电池,可以检测质荷比在50-1000之间的化学物质,是清谱科技为个性化医疗、快速检测等领域提供的又一有力分析工具。点击收看完整采访视频:
  • 毅新博创:飞行时间质谱与微量元素质谱双轮驱动
    临床检验技术的发展可谓日新月异,作为检验技术的代表之一,质谱检测平台因其快速、准确、特异的优点,受到越来越多的重视。质谱作为诊断领域的一种新兴技术,由科研逐渐走向临床,业界很多专家认为其和基因测序技术有许多共同点,也意味着质谱很有可能复制基因测序的发展,拥有很大的发展潜力,而目前处于快速发展阶段。据调研报告显示,2021年全球质谱在临床检验应用的市场规模在150亿美元左右,未来行业增速将在20%左右。其中,美国临床质谱检验市场约为55亿美元,占据整体医学检验市场约15%;而中国质谱检验在医学检验市场占比仅为1-2%,渗透率较低,未来市场潜力巨大。随着精准医学的发展、多组学研究上的突破,临床质谱迎来了发展机会。仪器信息网特别策划“临床质谱技术及应用进展”专题,聚焦临床质谱新产品新技术及相关临床领域的最新应用,以增强业界相关人员之间的信息交流,展示更丰富的临床诊断质谱产品、技术解决方案。本文仪器信息网特别邀请北京毅新博创生物科技有限公司(以下简称:毅新)市场部总监许明霞,谈谈她眼中的中国临床质谱行业以及相关产品、技术的发展趋势。北京毅新博创生物科技有限公司市场部总监 许明霞2006-2022:看毅新博创的飞行时间质谱发展之路质谱有着百年的发展历史,迄今为止,质谱科学领域已经诞生了11位诺贝尔奖。1906年,英国物理学家J.J.Thomson在实验中发现带电荷离子在电磁场中的运动轨迹与它的质荷比(m/z)有关,获得诺贝儿物理学奖,并于1912年制造出第一台质谱仪。2002年,飞行时间质谱技术与MALDI电离联用突破生物大分子检测的难题获得诺奖,在临床诊断领域显示出巨大的应用潜力。2003年,毅新在国内率先进入质谱领域。2006年,毅新在《生物技术世界》发表“MALDI-TOF MS 引领分子诊断新时代”,对飞行时间质谱在微生物鉴定、核酸检测、蛋白分析及分子诊断领域的前瞻应用进行了系统分析。经过几年发展后,飞行时间质谱技术的临床应用价值逐步获得全球认可、推广及应用:2013年8月,美国FDA批准MALDI-TOF用于微生物鉴定;2014年4月,FDA特许用质谱进行NGS验证,核酸质谱被公认为SNP检测的金标准;2014年6月,FDA批准核酸质谱技术平台用于临床基因检测。2011年,毅新推出第一台商业化飞行时间质谱,获得中国分析测试协会优秀新产品奖和北京创新产品质量金奖。2012年,毅新承担国家科技部重大专项(863计划)进行蛋白指纹图谱数据库的建立,历时6年后以91.7分优异成绩通过验收。2014年,毅新自主研发的 Clin-ToF I获得国内首个飞行时间质谱NMPA认证;毅新论文获得美国AACC小兰花奖,也是国内唯一获此殊荣的质谱企业。 2016年,毅新实现了单机多组学技术,一台飞行时间质谱同时实现微生物鉴定和核酸检测功能,技术已经完全达到国际领先水平;毅新参与编写全国第首个微生物质谱专家共识。2018 年,毅新参与编写中国首个核酸质谱专家共识;毅新质谱成为唯一入选科技部创新医疗器械产品目录的质谱设备。2019年,毅新获得国内首个微量元素质谱NMPA认证;毅新在全球首个利用核酸质谱进行新冠检测,满分通过上海临床检验质量控制中心新型冠状病毒(2019-nCoV)核酸检测室间质评。2020年,毅新参与编写中国首个飞行时间质谱行业标准;2020年,毅新质谱承担科技部重点专项--COVID-19新冠8重呼吸道病毒检测项目,毅新质谱设备作为首批入选新冠肺炎疫情防治急需医学装备目录。近两年,毅新与岛津达成深度合作,毅新的核酸质谱(GENE TOF)在非临床领域由岛津独家代理销售;毅新还与康圣环球达成全面战略合作。经过19年深耕运作,毅新在质谱技术、产品及市场等方面建立了领先优势。截至目前,毅新累计申请专利 215项,已获授权67项,毅新质谱获得包括协和医院、301医院在内的近90家权威用户认可。质谱通常分为基质辅助激光解析电离飞行时间质谱(MALDI-TOF MS)、液相色谱串联质谱(LC-MS)、气相色谱串联质谱 (GC-MS)、电感耦合等离子体质谱(ICP-MS)等。毅新认为,从临床质谱市场来看,飞行时间质谱应用潜力最广,覆盖从微生物、核酸检测到蛋白定量以及质谱成像等多领域的应用。毅新实现了飞行时间质谱和微量元素质谱双轮驱动,以更好满足临床发展的全面需求。在微生物鉴定领域,提供真菌、细菌鉴定及血培养报阳质谱鉴定;在核酸质谱领域,提供药物基因组相关、呼吸道病原检测等多类检测项目;同时提供不同元素组合的微量元素检测服务。毅新微生物检测试剂清单毅新核酸质谱检测项目毅新微量元素测项目市场培育成效显著 临床质谱迎来提速发展阶段质谱技术在灵敏度、特异性、多指标联检上优势明显,已成为当今分析科学领域最为前沿的技术之一。在微生物鉴定方面,传统生化方法费时费力,且准确度不高,而基因测序过程复杂、分析繁琐且成本高,飞行时间质谱则具有成本低、速度快、准确率高等明显优势;在核酸检测方面,飞行时间质谱多基因位点检测优势明显,可实现高通量、低成本、快速准确的检测,有效弥补荧光定量PCR的低通量、检测位点少及NGS耗时长、成本高的弊端;在微量元素检测方面,电感耦合等离子质谱具有对样本类型要求较低、检测灵敏度高、抗干扰、超痕量检测限、检测线性范围宽等诸多优势。理论上,质谱可用于几乎所有生物标志物的检测,可在多临床领域实现对传统生化、免疫、微生物、分子等方法学的替代。不过,相较国外,国内质谱行业起步较晚,检测项目的丰富程度还远不如国外,但几年发展较快,在终端用户的应用场景及创造的价值效益急剧增长。2014 年,毅新自主研发的 Clin-ToF-I在国内首家获得 NMPA认证,之后几年,问世的国产质谱设备仍寥寥无几。直到2018年,中金证券发布报告《质谱:临床检测的下一个百亿蓝海》,质谱的价值开始受到行业内外的关注。2018年也被称为国内质谱元年,质谱领域涌现了几十家企业,获批试剂盒数量激增。受厂商质谱理念、技术及应用的持续推广,市场培育成效显著,到如今,即使县医院的检验科主任,也都认识质谱和了解质谱的临床应用价值了。在国家政策、LDT模式开放、国产替代加速以及精准医疗发展需求的多重推动下,临床质谱获得快速发展,2022 年进入提速发展的拐点新阶段。同时,质谱应用场景不断拓展,促进单个医院质谱检测效益从前几年的几万元发展到今天的百万甚至上千万的级别,医院质谱采购需求及预算大幅上升。2021年,浙江人民医院、浙江大学医学院附属第二医院先后发布了700万预算质谱慢病外送特殊检验项目及3000万预算的质谱检测服务平台建设项目。整体来看,目前微生物质谱应用相对成熟;微量元素质谱有望在全国取代原子吸收法;而核酸质谱正处于爆发的蓄能阶段,目前采用的Sanger测序、PCR、NGS、基因芯片等方法,多数都可以用核酸质谱替代。质谱的潜力远远大于NGS,二代质谱只能做基因测序,而体外诊断已从基因组学进入生命组学引领的新时代,质谱将成为蛋白组学、代谢组学、元素组学战场的主力军。质谱仪器是基础,是起点,临床质谱对传统方法的替代及应用爆发,在于创新更多的检测场景和试剂产品。目前,国内核酸质谱试剂还未获得注册批准,在一定程度影响了核酸质谱的推广应用。毅新未来除了保持在微生物质谱及微量元素质谱的领先优势外,将加大核酸质谱市场的开拓力度,逐步强化ICL对质谱价值变现的支撑。
  • 戴安公司提供全套的奶制品热点检测方案!
    戴安公司针对最近牛奶事件,提供全套的奶制品热点检测方案,体现了戴安对大众健康的努力!具体内容如下:&diams 离子色谱法及液相色谱检测奶制品中三聚氰胺 &diams 离子色谱法检测奶粉和奶制品中硝酸盐及亚硝酸盐 &diams 离子色谱法检测奶粉和奶制品中的有机阳离子、胆碱、乙酰胆碱以及乌拉胆碱 &diams 离子色谱检测奶粉和奶制品中的微量碘下载请点击这里 DIONEX(戴安)中国市场部
  • 58个“百姓点检”食安快检服务点,萧山区打造15分钟便民检测服务圈
    近日,杭州市萧山区瓜沥第一农贸市场食品安全“百姓点检”快检便民服务点,一群身穿红马甲的大、中、小学生正在认真观察工作人员检测食用农产品……他们正在参加萧山区食品安全监督协会组织的食品安全“百姓点检”快检便民服务观摩体验活动。为了让社会公众更好地参与食品安全治理,更多地享受放心安全食品,萧山区市场监管部门建立了58个食品安全“百姓点检”快检便民服务点,包括与区食安协会联合建设的食安共治流动快检便民服务点,成功打造15分钟便民检测服务圈。为进一步发挥服务点的作用,吸引更多的人关注参与,这次区食安协会组织了浙江工商大学、萧山北干初中、钱塘临江新城实验小学的7名学生志愿者组成食品安全学生监督团观摩体验快检便民服务。上午9点不到,大大小小的学生志愿者们来到了瓜沥第一农贸市场,区食安全协会志愿大队负责人耐心地为他们讲解快检便民服务相关知识和本次观摩体验活动的内容流程。很快,学生们穿上了志愿服,拿着专用抽样工具及宣传资料开始了愉快的体验。“阿姨,我是学生志愿者,告诉您一个好消息,您购买的蔬菜可以免费到市场快检便民服务点进行检测。”“叔叔,您的蔬菜有进货票据吗?这是《浙江省食品安全数字化追溯规定》,从今年开始经营蔬菜需将相关信息录入浙食链了。”学生们一边收集样品,一边普及食品安全知识,很快收集了青菜、四季豆等5批次的样品。瓜沥第一农贸市场是全区第一个设立的食品安全“百姓点检”快检便民服务点的市场,市场检测员认真地为学生们讲解和演示检测的相关知识,学生们认真观察学习。经检测,5批次样品全部合格,检测结果实时上传萧山区市场食用农产品质量安全快速检测系统,社会公众可以实时查询。
  • 报名!直播圆桌探讨:锂电检测市场风向标与热点分析技术剖析
    根据工业和信息化部8月3日发布的数据,今年上半年,我国锂电池产业延续增长态势,产量超过400 GWh,同比增长超43%,锂电池全行业营业收入达到6000亿元。上半年,我国锂电池产品出口额同比增长69%。随着新能源的发展与推广,锂离子电池在新能源领域的运用逐渐广泛,其相关材料检测的需求也日益提高。电池材料与电池的测试评价和分析对保证电池的质量非常重要,电池材料的微观结构决定其性能,也直接影响到电动汽车的安全性和使用性能。基于此,2023年9月26日,仪器信息网携手赛默飞共同举办“赋能技术,助锂制造”主题网络研讨会,邀请行业专家、检测技术专家针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨。点击直达 直播详情页面一、 主办单位仪器信息网赛默飞二、 举办时间2023年9月26日 下午14:00-16:30三、 圆桌环节讨论话题1. 新能源电池行业政策热点、趋势;2. 新能源电池检测技术、实验室建设发展现状;3. 新能源电池检测技术趋势前瞻四、 直播嘉宾韩广帅 上海智能新能源汽车科创功能平台有限公司锂电事业部副总经理同济大学助理研究员,上海空间电源研究所博士后。上海智能新能源汽车科创功能平台有限公司锂电事业部副总经理;国家质检总局缺陷产品管理中心汽车缺陷调查与鉴定和汽车三包特聘专家;工信部教育与考试中心电池制造工程师的高级培训导师;上海市科委新能源领域技术委员会委员,江苏储能协会副理事长。建立了完整的非破坏和非大气暴露下的破坏性锂离子电池健康状态与安全评价与研究体系的“新能源电池医院”。唐玲 国联汽车动力电池研究院有限责任公司检测事业部技术副总监国联汽车动力电池研究院有限责任公司检测事业部技术副总监,担任会国汽车标准化技术委员会电动车辆分技术委员会委员及全国有色技术标准化技术委员会智能制造标准工作组委员,拥有12年锂离子动力电池关键技术研发、动力电池材料及电池测试评价、检测方法建立与标准编制等方面相关经验,负责完成国家动力电池创新中心动力电池测试验证平台建设。参与制定国家标准2项,团体标准10余项,企业标准20余项;获授权发明专利4项、实用新型专利12项;骨干参与国家级及省部级项目7项,参与的“高比能动力电池及其正极材料产业化研究”项目获2017年度中国有色金属工业科学技术奖一等奖;此外,参与了《电动客车安全风险评估报告》及《国家新能源汽车技术路线图V2.0版本》等重要报告编写工作。李华锋 四川新能源汽车创新中心实验室主任,四川赛科检测公司总经理清华大学硕博,现担任四川新能源汽车创新中心实验室主任,四川赛科检测公司总经理,从事电池材料评估、电池失效分析、原位/工况动态表征技术、电池系统安全性与可靠性测试方面的研究。曾先后负责苹果iPhone电池、微软surface电池开发与量产导入,石墨烯粉体与碳纳米管导电浆料研发以及产业化,柔性电池与智能穿戴研发等项目。目前共发表论文5篇,负责及参与研究项目5项、国家标准2项,获得国家发明专利与实用新型专利30余项。王英 赛默飞世尔科技色谱质谱部门分析科学工业市场经理分析化学专业硕士,具有多年仪器行业和产品管理经验。目前在赛默飞色谱质谱市场部工作,负责气相色谱产线和工业行业。五、 会议日程09月26日 赋能技术,助锂制造——锂电行业技术交流会14:00-14:05开场主持人14:05-15:05圆桌论坛国联汽车动力电池研究院有限责任公司检测事业部技术副总监,唐玲上海智能新能源汽车科创功能平台有限公司锂电事业部副总经理,韩广帅赛默飞世尔科技色谱质谱部门分析科学工业市场经理,王英仪器信息网圆桌论坛主持人,杨厉哲15:05-15:10直播抽奖主持人15:10-15:40锂离子电池的先进表征技术及其在失效分析中的应用研究四川新能源汽车创新中心(欧阳明高院士工作站)实验室主任,李华锋15:40-16:10赛默飞色谱质谱技术助力锂电QC检测和研发需求赛默飞世尔科技色谱质谱部门分析科学工业市场经理,王英16:10-16:15直播抽奖&结束主持人注意!扫码报名集赞即可赢豪礼!兑奖方式:报名成功+转发海报到朋友圈保留2天集赞截图发送至微信:943858233。数量有限先到先得,行业用户优先。
  • 日程公布|第四届“锂电检测技术与应用”网络会议第二轮通知
    一、 会议概述根据4月6日工信部网站消息,1至2月全国锂电总产量超过82GWh。锂离子电池环节,储能电池产量超过9GWh,新能源汽车动力电池装车量约30GWh。出口贸易稳步增长,1-2月全国锂电出口总额达到357亿元。我国锂离子电池行业保持高速增长态势。锂电池材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能与材料多种性质相关,没有特别统一的规律,这给电池的研究带来很大挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。2022年5月24-27日,仪器信息网将与中国化学与物理电源行业协会联合举办第四届“锂离子电池检测技术及应用”网络会议,按主要检测技术分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,促进我国锂电检测市场良性发展。主办单位:仪器信息网 协办单位:中国化学与物理电源行业协会直播平台:仪器信息网网络讲堂平台会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2022会议形式:线上直播,免费报名参会(报名入口见会议官网或扫码报名)扫码免费报名二、 会议日程第四届“锂离子电池检测技术与应用”网络会议5月24-27日时间专场名称5月24日 上午锂电成分分析技术专场5月24日 下午锂电结构形貌分析技术专场5月25日 上午锂电热性能分析技术专场5月25日 下午锂电粒度/表界面性能分析技术专场5月26日 全天锂电安全与失效分析技术专场5月27日 上午锂电环境可靠性试验技术专场报告题目演讲嘉宾致辞刘彦龙(中国化学与物理电源行业协会 秘书长)锂电成分分析技术专场(5月24日 上午)锂电材料的成分分析及表征技术进展许少辉(岛津企业管理(中国)有限公司 市场担当)清洁能源电池研发之材料选择策略王刚(默克化工技术(上海)有限公司 产品经理)待定赛默飞世尔科技分子光谱梅特勒托利多分析仪器锂电池材料成分检测方案冯师尚(梅特勒-托利多 产品专家)珀金埃尔默锂电池材料元素检测新方案程书莉(珀金埃尔默公司 首席无机分析应用科学家)锂电池电解液及气体成分分析技术介绍高璟昌(天目湖先进储能技术研究院 高级工程师)锂电结构形貌分析技术专场(5月24日 下午)锂离子电池材料的电子显微学表征闫鹏飞(北京工业大学 教授)欧波同锂电行业数字化显微分析解决方案张宁(北京欧波同光学技术有限公司 业务发展(BD)工程师)原子力显微镜在锂电池材料研发中的应用陈强(岛津企业管理(中国)有限公司 SPM产品担当)基于扫描电镜的气氛保护样品盒系统及在电池材料表征中应用周宏敏(中国科学技术大学理化科学实验中心 工程师)原位透射电镜技术在全固态电池领域的应用张利强(燕山大学 研究员)锂电热性能分析技术专场(5月25日 上午)基于等温量热的锂离子电池充放电产热测量方法研究许金鑫(中国计量大学 副研究员)电池及材料的热性能分析方法之绝热加速量热法(ARC)薛钢(苏州玛瑞柯检测技术有限公司 技术总监)电子探针在锂电材料表征中的应用崔会杰(岛津企业管理(中国)有限公司 应用工程师)锂离子电池热性能评估方法和产热规律陈诚(上海派能能源科技股份有限公司 高级热设计工程师)热分析相关技术在锂电池中的应用金诚(天目湖先进储能技术研究院 高级工程师)锂电粒度/表界面性能分析技术专场(5月25日 下午)锂电池界面结构与演变王雪锋(中国科学院物理研究所 研究员)锂电材料结构表征技术周琰(安东帕(上海)商贸有限公司 产品经理)锂离子电池中的表界面研究手段及应用张智寰(深圳市八六三新材料技术有限责任公司 研发工程师)XPS、TOF-SIMS、AES表面分析技术在锂电池研究中的应用王青青(天目湖先进储能技术研究院 高级工程师)锂电安全与失效分析技术专场(5月26日 全天)储能电池安全性与经济性评估余华强(国家化学与物理电源产品质量监督检验中心 技术总监/高级工程师)光学显微镜在锂离子电池质量管理中的应用姚永朋(徕卡显微系统(上海)贸易有限公司 徕卡工业显微镜应用工程师)EDS&EBSD技术在锂离子电池材料研发和清洁度分析中的应用陈帅(牛津仪器科技(上海)有限公司 应用科学家)提升安全性,降低次品率——如何找出锂电池中微小却“致命”的金属异物颗粒母起明(日立分析仪器 资深应用工程师)动力电池安全与失效分析技术马天翼(中汽研新能源汽车检验中心(天津)有限公司 技术总监/高级工程师)锂离子正极材料失效分析魏丽英(厦钨新能源材料股份有限公司 分析测试研究室主任)锂电储能系统安全解决方案牟建(上海派能能源科技股份有限公司 储能技术总监)待定赛默飞色谱与质谱量热技术及仪器在锂电池领域的应用汪光晨(杭州仰仪科技有限公司 市场技术支持工程师)新能源车电池安全及相关问题介绍厉运杰(合肥国轩高科动力能源有限公司 经理/高级工程师)锂电池失效分析技术介绍王愿习(天目湖先进储能技术研究院 技术经理)锂电环境可靠性试验技术专场(5月27日 上午)动力电池可靠性测试评价技术刘磊(中汽研汽车检验中心(常州)有限公司 高级工程师)电池系统的多因素耦合可靠性评价史冬(国联汽车动力电池研究院有限责任公司 高级工程师)锂电池安全可靠测试方法及痛点介绍杨超(国轩高科 安全可靠部测试经理)三、 线上报告征集倒计时1、 大会报告还有少量名额:欢迎踊跃推荐或自荐;2、 推荐或自荐安排:1)凡期望能够在本次会议上发表演讲的单位与个人,都可直接推荐或自荐,演讲为线上PPT报告形式,每个报告30分钟(含约5分钟线上答疑互动时间);2)推荐或自荐演讲人时,请写明演讲人姓名、单位、主要从事研究内容以、拟演讲专场名称、演讲题目及详细联系方式(邮箱、电话号码),并发送至liuxiaoxia@ciaps.org.cn或yanglz @instrument.com.cn ;3)推荐或自荐演讲人截止时间定于2022年5月16日前。四、 往届会议回顾1)第三届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc202 1 2)第二届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc2020 3)第一届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc/ 五、 会议联系会议内容:杨编辑(仪器信息网)15311451191 yanglz @instrument.com.cn 刘老师(中国化学与物理电源行业协会)15022617437 liuxiaoxia@ciaps.org.cn 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 核酸质谱快速检测新型冠状病毒变异株
    新型冠状病毒肺炎(Coronavirusdisease2019,COVID-2019)是由严重急性呼吸系统综合征冠状病毒(SARS-CoV-2)所引起的高传染性病毒疾病,对世界人口造成了灾难性影响,导致全球380多万人死亡,成为继1918年流感大流行以来影响最大的全球卫生危机。 新冠病毒不断变异的RNA病毒 作为单链结构的RNA病毒,新型冠状病毒的一大特点就是极其容易变异。随着感染人数的增加和疫情的持续,新型冠状病毒不断进化和变异,陆续产生多种新冠病毒变异株。世界卫生组织(WHO)根据新冠病毒变异株的传播力、致病力等将其分为VOCs(Variant of concern)和VOIs(Variant of interest)。新冠病毒VOCs的分类 新冠病毒VOIs的分类 目前市场对新冠病毒筛查主要采用荧光 PCR 方法,该方法检测灵敏度高,但成本也相对较高,并且单机通量小,容易被污染,制约了大规模病毒检测速度,对当前不同变异毒株区分荧光PCR方法存在一定难度。随着病毒感染多元化和疫情防控常态化的推进,市场急需一种更快速、准确、高通量的检测方法,用于满足大样本量的检测、基层的日常防控筛查,以及不同变异株的区分。 基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)主要用于分析包括蛋白质及核酸在内的生物大分子,该技术应用于核酸检测具有高通量、高灵敏、高准确率的特点。其主要工作原理是结合延伸分析法和碱基特异裂解分析法,将扩增后的核酸产物通过离子源使样品离子化,产生不同质荷比的离子,再经过质量分析器测定该样品中不同种类离子的分子量,按照从小到大的顺序依次排列从而得到一幅质量图谱,并根据检测项目不同给出相应的检测报告。该技术在遗传病筛查、肿瘤变异检测、甲基化检测、用药指导、病原体检测及功能医学健康管理等多个领域的应用日益深入,已经成为精准医学不可或缺的分子诊断技术。MALDI-TOF MS检测新型冠状病毒方法为通过特定引物扩增目标基因片段,再通过靶向位点探针特异性单碱基延伸,然后通过质谱技术检测延伸位点的碱基,判断病毒种类和变异类型。该方法灵敏度高、操作简单、成本低廉、人员需求低、通量高,可实现6小时384样本出报告,以后每1小时出384份样品报告。新冠病毒流行初期,Autof ms1000系统建立了完成病毒检测检测体系,对病毒毒株进行了精准检测(图3)。随着研究深入,Autof ms1000检测核酸的体系也日渐成熟,针对当前多变异毒株情况,研究人员通过合理设计扩增引物和探针,可实现单个样品,单芯片位点检测,一次区分当前所有可认知的新冠病毒变异株。随着疫情斗争的持续进行,病毒变异也不断发生,后续可能出现更多更复杂的病毒变异株,MALDI-TOF MS技术基于其检测原理,在大样本多病毒变异株检测方面的优势将日渐突出。随着人们对该技术的认知度的日渐加深,未来该技术在核酸检测方向的应用将出现更多的思路和方法,MALDI-TOF MS在临床应用领域中将会发挥更大的作用。
  • 40+报告直播|第五届“锂电检测技术与应用”网络会议邀您参会!
    1、 会议概述据4月4日工信部发布数据,2023年1-2月,我国锂离子电池行业继续保持增长态势,全国锂电总产量超过102GWh,同比增长24%。出口贸易稳步增长,1-2月全国锂电出口总额达到706亿元。锂电池材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能与材料多种性质相关,没有特别统一的规律,这给电池的研究带来很大挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该系列会议已成为锂电检测领域广受关注的一年一度千人线上盛会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2023年5月23-26日,仪器信息网将联合国联汽车动力电池研究院有限责任公司共同举办第五届“锂离子电池检测技术与应用”网络会议,按主要检测技术、技术热点分设七个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,促进我国锂电产业市场良性发展。主办单位:仪器信息网 国联汽车动力电池研究院有限责任公司直播平台:仪器信息网-3i讲堂会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2023会议形式:线上直播,免费报名参会(报名入口见会议官网)扫码免费报名2、 会议日程(详细日程见会议官网)第五届“锂离子电池检测技术与应用”网络会议5月23-26日时间专场名称5月23日 全天锂电成分分析技术专场5月24日 上午锂电结构形貌分析技术专场5月24日 下午锂电热性能分析技术专场5月25日 上午锂电粒度/表界面性能分析技术专场5月25日 下午锂电安全与失效分析技术专场5月26日 上午锂电环境可靠性试验技术专场5月26日 下午锂电回收相关检测技术专场详细日程报告题目演讲嘉宾致辞国联汽车动力电池研究院领导专场1:锂电成分分析技术专场(5月24日 全天)动力电池安全性动态测试马天翼(中汽研新能源汽车检验中心(天津)有限公司 技术总监/高级工程师)创新的元素分析样品前处理技术及其应用刘艳(北京莱伯泰科仪器股份有限公司 无机事业部经理)安捷伦 ICP-OES 在锂电行业检测中的应用及创新技术张萍(安捷伦科技(中国)有限公司 安捷伦光谱应用工程师)锂电池检测实验中器皿洁净度控制方案郭建梅(天津语瓶仪器技术有限公司 产品经理)梅特勒托利多全自动实验室材料检测方案冯师尚(梅特勒托利多 产品经理)锂离子电池关键测试技术高璟昌(天目湖先进储能技术研究院 高级技术经理)午休锂电池产气反应的在线质谱分析彭章泉(中国科学院大连化学物理研究所 研究员)珀金埃尔默在锂电池材料元素分析中的应用程书莉(珀金埃尔默 应用科学家)赛默飞拉曼与红外光谱技术在锂电领域的应用吕歆玥(赛默飞世尔科技(中国)有限公司 赛默飞拉曼应用科学家)Gather-X无窗EDS——电池领域能谱分析的新型解决方案庞铮(捷欧路(北京)科贸有限公司 应用工程师)单波长X射线荧光光谱与快速基本参数法在锂电池材料(Li)元素分析中的应用刘晓静(安科慧生 应用工程师)锂电池元素分析前沿应用——单波长激发-能量色散X射线荧光光谱仪与快速基本参数法尹力(万华化学集团股份有限公司 研发工程师)专场2:锂电结构形貌分析技术专场(5月24日 上午)钴酸锂失效机理的电子显微学研究闫鹏飞(北京工业大学 教授)牛津仪器显微分析技术在锂电行业的应用王汉霄(牛津仪器科技(上海)有限公司 应用科学家)透射电镜技术在锂电池电极材料研究中的应用杨贤锋(华南理工大学分析测试中心 教授级高级工程师)锂电池材料原子力显微镜综合检测方案陈强(岛津企业管理(中国)有限公司 SPM产品担当)超声技术在锂离子电池检测中的应用邓哲(无锡领声科技有限公司 总经理)固态电池失效机理研究黄建宇(燕山大学 教授)专场3:锂电粒度/表界面性能分析技术专场(5月24日 下午)锂电池失效分析技术及案例介绍王其钰(中国科学院物理研究所 副主任工程师)磷酸铁锂生产工艺过程中颗粒的检测和质控解决方案李雪冰(丹东百特仪器有限公司 技术总监)HORIBA拉曼光谱技术在锂电中的应用及解决方案苗芃(HORIBA科学仪器事业部 工程师)岛津电子探针在锂电池材料中的典型应用崔会杰(岛津企业管理(中国)有限公司 应用工程师)电池材料单颗粒动力学表征方法与能源材料数据库左安昊(清华大学;北京易析普罗科技有限责任公司 博士研究生;CEO)锂离子电池粒度测试分析交流刘美(国联汽车动力电池研究院有限责任公司 检测工程师)锂离子电池Benchmark分析及模拟仿真周心宇(天目湖先进储能技术研究院 Benchmark高级工程师)专场4:锂电热性能分析技术专场(5月25日 上午)加速量热仪(ARC)在锂离子电池热失效研究中的应用薛钢(苏州玛瑞柯检测技术有限公司 技术总监)待定德国耐驰仪器制造有限公司锂离子电池热失效测试、表征与建模郑思奇(昆山清安能源科技有限公司 总经理)锂离子电池原位表征与仿真技术研究李华锋(四川新能源汽车创新中心(欧阳明高院士工作站) 实验室主任)动力电池热物性参数测试与应用技术林春景(重庆理工大学 高级工程师)专场5:锂电安全与失效分析技术专场(5月25日 下午)全生命周期中锂电池及其材料测评技术邵丹(广州能源检测研究院 主任工程师 / 高级工程师)锂离子电池元素分析解决方案文桦(钢研纳克检测技术股份有限公司 应用中心 主任)创新气相色谱技术助力锂电检测温焕斌(岛津企业管理(中国)有限公司 GC高级产品专员)待定徕卡显微系统动力电池循环失效机理分析沈雪玲(国联汽车动力电池研究院有限责任公司 高级工程师)储能锂离子电池失效机制及表征技术分析陈学兵(天目湖先进储能技术研究院 失效分析技术经理)新能源电池医院的功能解读韩广帅(同济大学 上海智能新能源汽车科创功能平台有限公司 副总经理)专场6:锂电环境可靠性试验技术专场(5月26日 上午)动力电池可靠性评价研究方法史冬(国联汽车动力电池研究院有限责任公司 高级工程师)电动汽车用动力蓄电池多轴振动测试规范研究杨洪宇(中汽研(常州)汽车工程研究院有限公司 工程师)振动试验基础知识薛峰(IMV株式会社 上海代表处 技术经理)专场7:锂电回收相关检测技术专场(5月26日 下午)动力电池回收利用产业发展及数据应用李 阳(新能源汽车国家大数据联盟、 中国工业节能与清洁生产协会新能源电池回收利用专用委员会 执行秘书长)新能源汽车动力电池回收利用技术热点分享武双贺(中汽数据有限公司 咨询研究员)退役电池综合利用检测与评价技术别传玉(武汉动力电池再生技术有限公司 副总经理/高级工程师)锂电回收产业发展与技术现状刘春伟(苏州博萃循环科技有限公司 战略部长)3、 往届会议回顾1)第四届锂离子电池检测技术与应用网络会议会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2022 第四届锂离子电池检测技术与应用网络会议于2022年5月24-27日线上举办,会议共吸引锂电领域2500余人报名参会,参会者单位性质、产业环节分布如下图:2)第三届锂离子电池检测技术与应用网络会议会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2021 3)第二届锂离子电池检测技术与应用网络会议会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2020 4)第一届锂离子电池检测技术与应用网络会议会议官网:https://www.instrument.com.cn/webinar/meetings/ldc/ 4、 会议联系会议内容:杨编辑(仪器信息网)15311451191 yanglz @instrument.com.cn 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 锂电技术高速迭代之下 锂电检测市场迎更大挑战——访纳凡检测技术(上海)有限公司创始人周健博士
    p  近年来,在全球3C锂电池市场日趋成熟的背景下,动力锂电池已经成为新的引擎,带动整个锂电产业链快速发展,预计未来几年国内对动力锂电池的需求将快速增加,全球锂电池设备市场也会逐渐向中国转移,中国也将成为最大的锂电应用市场之一。随之,锂电检测领域的多年深耕也迎来了新的发展机遇。那么当下锂电产业链对锂电检测的需求如何?锂电检测市场还有哪些亟待解决的痛点?锂电检测的未来市场在哪里?近期,仪器信息网采访了纳凡检测技术(上海)有限公司创始人周健博士,就这些问题进行了一一解答。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px "2018年创立 致力世界一流失效分析测试服务/span/h1p  纳凡检测(上海)有限公司为卡尔伯克科技咨询(香港)有限公司的下属实验室,由几位年轻的海归科学家于2018年创立,致力于为中国本土和跨国科技生产企业提供比肩世界一流实验室的制程研发以及失效分析测试服务。与传统检测服务公司不同的是,纳凡所有咨询师均在美国顶尖名校理工领域获得博士学位,具有极强的跨学科跨平台进行知识整合的能力。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/15d547ff-2992-4352-a64d-1ccb0924865a.jpg" title="1.jpg" alt="1.jpg" style="width: 450px height: 450px " width="450" vspace="0" height="450" border="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "纳凡检测技术(上海)有限公司创始人周健博士/span/pp  创始人周健博士于2014年毕业于美国加州伯克利大学材料工程系,怀科技报国的愿望回到上海从事科技咨询行业,为诸多世界级客户提供深度的材料分析和失效分析服务。在此过程中,周健目睹国内科技咨询和检测服务领域因人才资源分散,资质门槛林立等条件的制约,无法为一流的人才提供跨学科的综合性平台的现状,故联合众多海归校友以及天使投资人于上海创建了纳凡。/pp  周健认为,精英的人才理念是纳凡的最大优势。凭借创始团队高起点的学术背景,纳凡在创始之初便与国内顶尖的科研院所和大学建立了密切联系,并积极探索如何将最先进的材料表征手段运用在为客户解决在产品生产中遇到的实际问题。同时,纳凡在工业界和学术研究机构积极拓展外部顾问,其庞大的顾问团队包括了国家实验室首席工程师,世界知名科学仪器应用专家等,为纳凡团队提供行业见解。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/5c8e5120-7a4a-443f-a17a-6ededcc154bf.jpg" title="2.jpg.png" alt="2.jpg.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "纳凡检测实验室/办公室一角/span/pp  作为一家高起点科技服务公司,纳凡坐落于上海虹桥商务区,通过机场和高铁与长三角珠三角科技企业紧密相连。目前公司尚处于初创阶段,拥有扫描电子显微镜(SEM)、气相质谱仪(Py-GC\MS)、傅里叶红外光谱(FTIR)、动态热机械分析仪(DMA)、差示扫描量热仪(DSC),卡尔费休水分仪,冷冻聚焦离子束切割 (cryo-FIB),电化学工作站,电池循环测试系统等,固定资产过千万。公司目前与众多国内Tier One消费者电子产品制造商开展业务合作。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px "用户锂电安全性/可靠性信息缺乏已成痛点纳凡专攻定制服务/span/h1p  锂电池的主要消费群体之一为众多消费者电子的生产企业-尤其是大量的中小型生产企业。锂电池对于他们来说,除了价格和基本的技术参数,其安全性和可靠性几乎是未知的。一旦发生安全问题,这些生产企业无法通过自己的技术团队去快速的甄别失效原因,并采取合适的对应措施对未来批次的电芯进行有针对性的监控,导致安全隐患无法消除。周健表示,针对锂电池应用行业的痛点,纳凡检测专攻锂电池在使用中的安全性和可靠性,为客户提供定制化的分析服务。结合自身团队的背景,通过对失效电芯进行root cause analysis, 并对参比电芯进行深度的理化测试,以找出症结所在。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/e87d7efd-33d7-40f5-b8d3-16981d460e89.jpg" title="3.jpg.png" alt="3.jpg.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "对于劣化电池的代表性理化分析/span/pp  据介绍,在锂电池分析行业,纳凡可谓拥有一个跨界团队,如结合他们在消费者电子产品领域的经验,主打从系统的角度去理解电芯的性能和失效,而非将分析局限在电芯本身。典型案例为某电动滑板车厂商发现其电池组在消费者使用一段时间后出现了个别电芯自放电增高的现象,而怀疑是电芯厂商的质量管控问题。而纳凡在接到该项目后,对失效电芯进行交流阻抗谱分析和惰性气氛拆解后,排除了因颗粒物夹杂或锂枝晶生长造成的软短路。通过进一步研究客户电池组的散热和功耗情况,发现其独特的配组方式和刹车充电模块的介入,有可能在某些低内阻电芯上通过超规电流,导致其电芯正极集流体附近出现了过百摄氏度高温,局域的SEI膜发生了分解导致了上述现象的发生。纳凡进一步对可疑发热区域的负极材料进行了惰性气氛提取和DSC分析,为客户证实了上述失效模式。客户在了解了该问题后,通过限制超规电流,提高电池组散热效率方面迅速改进其电池组,避免了大规模产品召回的风险,产生了可观的经济效益。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px "锂电安全最大挑战:热失控极低概率和不可预测性/span/h1p  锂电检测设备除了生产制造环节必需的电芯分选检测系统、充放电检测系统、保护板检测系统、线束检测系统、BMS 检测系统、模组 EOL 检测系统、电池组 EOL 检测系统、工况模拟检测系统等外。锂电新技术研发、开发也离不开各种分析测试仪器,如电镜表征锂电正极材料或包覆材料结构及形貌、热分析仪或 X 射线衍射仪分析锂电正极材料结晶性能、粒度仪及比表面仪器分析锂电正负极材料粒度、孔径等。当问及常规科学仪器与大型锂电检测系统设备在检测需求及应用场景上有哪些不同?周健认为,大型锂电检测系统设备可以帮助我们在统计意义上了解大批量电芯的性能参数,再现失效工况,并为进一步的科学仪器研究提供有价值的指导。从本质上来说,二者相辅相成,缺一不可。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/247a2d10-982e-4597-81c5-78a4ca094c26.jpg" title="4.jpg.png" alt="4.jpg.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "对于发生内短路的18650电池的高精度CT分析/span/pp  接着,周健补充道,纳凡更倾向于围绕具体问题制定高度定制化的测试分析方案,而非像常规的锂电检测机构的固定的检测流程。我们通常会使用工业高精度CT对问题电芯进行无损剖析,使用电化学阻抗谱(EIS)了解其内部劣化信息,必要时还会对电芯进行拆解,运用综合的理化分析手段(SEM/EDS, DSC, FIB, TEM/EELS, GC/MS)对电极材料,隔膜材料,电解液和集流体进行分析。/pp  锂电安全研究最大的挑战在于热失控事件的极低的概率 (目前成熟厂商的电芯失效概率在ppm级别)和不可预测性。起火燃烧后的电池内部结构及化学组分被严重破坏,导致可靠的逆向根因分析几乎不可能完成。这对锂电安全分析机构提出了新的挑战,即我们必须有针对每一种电池平台的系统性测试,总结归纳其可能的失效模式,预防性的建立数据库以进行失效时的比对(即失效模式的正向模拟)。据介绍,纳凡联合上海地区某国家锂电研究所,正在有序的开展该方面数据库的搭建工作。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px "锂电生活应用场景广泛渗透 锂电检测机构面临更高挑战/span/h1p  对于锂电检测机构的未来市场,周健认为,锂电产业在未来势必蓬勃发展,并渗透到更多的生活应用场景。与此同时,对电池的安全性和可靠性都提出了更高的要求。国内锂电检测,尤其是深度的分析方面尚缺乏权威机构,所以纳凡希望能与众多科研院所以及国内外检测机构一起开拓这方面的市场。由于锂电研发迭代速度快,许多之前尚处于实验室阶段的成果(例如高压电解液添加剂,正极材料包覆)正快速的被运用到商用电池中。所以对检测分析机构的研发和学习能力提出了极高的挑战,而这正是纳凡的优势领域所在。/pp  针对以上锂电检测市场发展背景,周健表示,纳凡目前有两大发力方向,一是在锂电池安全与可靠性方面测试方面持续的投入资源,研发新的检测技术并推动其商业运用。二是运用公司与锂电池表征和测试相关的资源,继续为国内外客户提供一流的综合性材料研发以及失效分析测试服务。在人才培养方面,纳凡希望为国内外的理工科背景的青年博士们提供一个跨学科的舞台施展自己的才华,在中国建立一个现代化的高端科技服务集团。/pp span style="font-size: 18px " span style="font-family: 楷体, 楷体_GB2312, SimKai "strong后记/strong/span/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  锂电产业蓬勃发展和广泛应用的背景下,锂电安全问题已逐渐成为广大用户关注的焦点,相关检测机构便成为助力解决这一问题的平台之一。而纵观中国检测机构市场,专注锂电检测的机构并不多,而针对锂电不同应用场景深度定制化的检测机构更是缺乏。在此背景下,以“定制化”、“深度分析”定位的纳凡检测的出现,或映射了锂电检测精细化蓝海市场的悄然开启。/span/p
  • 手机也能变成心电检测仪
    晚报讯手机除了当游戏机、MP3之外,还能变成心电检测仪器?这样的奇思妙想近日在第三届恩智浦杯创新设计大赛中成为现实,来自全国多所高校的12支决赛团队通过这些有趣的发明获得了多项大奖。  恩智浦杯创新设计大赛在9月至11月开赛,吸引了多所高校的217组学生设计团队踊跃参加,共递交了约140项微控制器设计,最终有12个最佳方案进入决赛。其中,“能够检测心电的手机”获得了最具网络人气奖,发明者是天津大学的李崇崇等3名同学。他们发现,现在普遍应用的生物电检测仪体积较大,不易携带,使用不便,于是便想到了现在越来越多样的手机功能,“给手机配备相应装置,手机屏幕完全可以显示心电检测结果,手机本身还有信号存储功能,为什么不能将手机和心电检测仪结合在一起呢?”  于是,他们研制出一个具有USB接口的模块系统,可以和手机相连,或直接植入手机中,再用手机屏幕显示、传输采集信号。虽然目前的模块较大,不过他们认为,完全可以通过技术手段,将模块缩小至当前的十分之一,也就是硬币大小,从而可以方便地植入手机。在他们的努力下,这款新颖的手机具有高性价比、高可靠性、多功能、智能化、微功耗的特点,相关技术目前已被深圳的一家公司采纳。
  • 复旦中山检验升级RAAS激素质谱检测方法,助力原醛症精准诊疗
    复旦大学附属中山医院检验科郭玮教授团队开发了三合一肾素-血管紧张素-醛固酮系统(Renin-angiotensin-aldosterone system,RAAS)激素质谱检测方法,有效简化了RAAS激素的检测流程,在保证检测准确性的前提下显著降低成本,具有重要的临床应用价值。该成果发表于国际期刊《Journal of Chromatography B》 [1] ,受到业内广泛关注。RAAS激素检测的临床意义RAAS由一系列激素及相应酶组成,在调节人体血压、水、电解质平衡,维持人体内环境稳定中发挥重要作用。其中肾素作为一种酶直接催化血管紧张素原向血管紧张素I转化,临床中常用的肾素活性即为血管紧张素I的生成速率。RAAS激素水平的变化对多种高血压综合征具有关键的指示作用,尤其是原发性醛固酮增多症(也被称为原醛)。原醛是由肾上腺皮质肿瘤或增生等病变引起的醛固酮自主分泌过多,导致潴钠排钾和体液容量扩张的一种综合征,也是临床上最常见的继发性高血压病因之一。原醛在新诊断高血压中的发生率超过4.0%,在难治性高血压人群中占比更高达17-23% [2] 。图1 肾素-血管紧张素-醛固酮系统原醛患者多以高血压起病,而普通降压药物往往效果不佳,手术或盐皮质激素受体拮抗剂药物才是原醛患者的有效治疗方式。此外,原醛诊断和治疗的延误会增加高血压靶器官并发症的发生风险,研究发现过量醛固酮会增加代谢综合征和心脏重塑风险。因此,对高血压特别是难治性高血压及新诊断高血压人群进行RAAS激素筛查,对高血压精准诊疗有着现实的指导意义,国内外原醛的诊疗指南均将RAAS激素的检测作为重要的筛查、诊断和定位手段 [2] 。精益求精——从逐一击破到一网打尽中山医院检验科利用质谱平台的高敏感性和高特异性,分别开发了血浆醛固酮、肾素活性(即检测血管紧张素I的生成速率)、血管紧张素II的质谱检测方法,在实际应用中得到临床广泛好评,但是上述三种激素的分开检测导致了较高的检测成本和繁琐的工作流程。为了优化RAAS激素检测,中山医院质谱团队利用多种酶抑制剂共同作用,升级开发了三合一RAAS激素检测方法。该方法只需经过一次样本前处理,便可同时准确定量检测醛固酮、肾素活性和血管紧张素II。三合一RAAS激素检测三合一RAAS激素检测方法采用离子源正负离子切换模式,同时兼顾了三种不同类型化合物的不同电离模式,从而获得较优响应。该检测方法具有以下优势:更经济:减少固相萃取板的用量,减少操作人员数量,直接降低耗材和人员成本。更方便:检测三种激素只需一次样品前处理,简化操作流程,也减少了样本用量。更快速:仪器检测一个样本只需5 mins,同时得到醛固酮、肾素活性和血管紧张素II的检测结果,提高了分析通量。更稳定:全新设计的孵育体系,确保实验结果的准确性。三种激素同时检测,简化流程,减少了人为影响因素,有利于方法的稳定性。图2 血管紧张素I、血管紧张素II和醛固酮色谱图复旦大学附属中山医院检验科遵循以患者为中心,以临床需求为导向的原则,依托LC-MS(液相色谱-质谱)技术平台,在类固醇激素、儿茶酚胺类激素、治疗药物监测等检测项目的研发与临床转化上,取得了大量的实践经验和成果。本实验室的RAAS激素质谱检测是实验室自建方法(Laboratory developed tests, LDT)的典型代表。LDT项目具有极高的灵活性,并且具有自我更新迭代的巨大优势。在临床不断增加的新需求面前,LDT作为常规商品化检测项目的有益补充,发挥着越来越重要的作用。中山质谱团队将一如既往地利用好质谱LDT的诸多优势,精益求精,不断创新,致力于让临床在准确结果前满意,患者从技术创新中受益。
  • 赛默飞与美国最大临床诊断公司就靶点检测业务达成合作
    p  日前,赛默飞与美国最大临床诊断公司Quest Diagnostics(奎斯特诊断)达成合作意向,后者将为赛默飞公司提供基于基因测序的下一代伴随式非小细胞肺癌伴随诊断板。/pp  赛默飞 Oncomine Dx 靶点检测可作为阿斯利康的EGFR抑制剂Iressa(吉非替尼),辉瑞的 ALK、ROS1抑制剂Xalkori(克唑替尼)以及诺华MEK抑制剂Mekinist(曲美替尼)和RAF抑制剂Tafinlar(达拉非尼)的组合测试方法。该方法共涉及23个基因改变的检测,测试报告不仅可以发现患者是否具有与FDA批准的三种治疗方法相关的ROS1、EGFR和BRAF改变,还可以发现其他基因是否存在变异。/pp  通过此次合作,Quest公司还将及早获得赛默飞世尔公司新型平台和检测方法,以帮助开发用于临床和生物制药应用的Oncomine品牌解决方案。/pp  Oncomine Dx靶点检测方法于6月份获得美国食品和药物管理局批准。赛默飞世尔表示,它希望能够迅速扩大专家组的适应症,适应新的药物/生物标志物组合以及新的癌症类型。/pp  10月份,赛默飞世尔宣布已经与Blueprint Medicines签署了一项诊断协议,使用该诊断小组开发和商业化Blueprint的BLU-667伴侣诊断系统,以确定非小细胞肺中心患者的RET融合。/pp  Quest将在位于得克萨斯州Lewisville的Med Fusion工厂的肿瘤学卓越中心进行Oncomine Dx 靶标测试。 Quest从这个中心提供了循证的新一代测序服务,重点服务于社区肿瘤医师,他们在美国提供了大部分的癌症护理服务。/pp  该检测业务同时由美国实验室公司诊断部门、Covance公司、NeoGeonomics实验室和Cancer Genetics公司提供。/ppspan style="color: rgb(0, 112, 192) "  /spana title="" style="color: rgb(0, 112, 192) text-decoration: underline " href="http://www.instrument.com.cn/news/20180208/239918.shtml" target="_self"span style="color: rgb(0, 112, 192) "附:美国顶尖独立医学实验室:奎斯特诊疗Quest Diagnostics(DGX)/span/a/pp/p
  • 海水重金属元素监测小型质谱仪课题通过检查
    日前,由山东省科学院海洋仪表仪器研究所组织和承担、中国海洋大学参加的国家科技支撑计划项目&ldquo 海水重金属元素监测小型质谱仪产业化及示范应用研究&rdquo 顺利通过课题执行情况检查。科技部项目管理办公室陈舜琮研究员组织东华理工大学陈焕文教授、中国科学院科学仪器研究中心于科歧研究员等组成专家组对项目进行了审查。  专家组听取了课题执行情况汇报,现场查看了装置及运行情况。分别从项目实施、项目进展、项目组织管理及经费执行等几个方面进行了审计和检查。专家组成员经过质询和讨论,对项目组的工作给予了肯定,认为课题已完成阶段预期目标及考核指标。  会议结束后,专家组成员参观了山东省海洋环境监测技术重点实验室,对山东省科学院海洋仪表仪器研究所在海洋环境监测技术、海洋生态监测方面开展的工作给予了充分的肯定。  &ldquo 海水重金属元素监测小型质谱仪产业化及示范应用研究&rdquo 项目 可实现铅、汞、镉、铁、锌、锰、铜、铬、砷等重金属元素现场、实时的分析监测,项目研制成功将极大提高海洋环境重金属元素分析的速度,提高分析仪器的现场适用性,是分析技术的进步,也能能更好地促进相关学科的研究和发展。
  • 中国检验检测学会发布《液相色谱-质谱联用用于脂溶性维生素检测通用技术要求》团体标准征求意见稿
    各有关单位:根据《中华人民共和国标准化法》《团体标准管理规定》《中国检验检测学会团体标准管理办法》及相关规定,《液相色谱-质谱联用用于脂溶性维生素检测通用技术要求》团体标准经多次修改后,已形成征求意见稿。现面向社会公开征求意见。请各有关单位及专家学者对本标准提出宝贵意见,填写《中国检验检测学会团体标准征求意见表》(见附件)并加盖公章,于2024年6月28日前,通过电子邮件或邮寄等方式反馈至中国检验检测学会,以确保本项目正常进行。如您希望进一步了解上述标准,我们将根据您的需求,为您提供相应资料及信息。联 系 人:戴其全联系电话:13321109648电子邮箱:cnIS@bjgjb.org.cn附件:【编制说明】液相色谱-质谱联用用于脂溶性维生素检测通用技术要求 20240529.docx【征求意见稿】液相色谱-质谱联用用于脂溶性维生素检测通用技术要求 20240529.docx附件 中国检验检测学会团体标准征求意见表.docx中国检验检测学会2024年6月11日
  • 【质谱文献】超高效液相色谱-串联质谱法同时快速检测微量血清中6种脂溶性维生素
    本文来源: 柯瑞斯质谱平台摘 要目的  建立超高效液相色谱-串联质谱法(UPLC-MS/MS)同时快速检测微量血清中维生素A、维生素D(25-OH-VD2、25-OH-VD3)、维生素E(α-、β-和γ-生育酚)的方法。 方法  血清中脂溶性维生素经甲醇-乙腈(50:50, v/v)沉淀蛋白、正己烷萃取,以Phenomenex Kinetex F5色谱柱为分离柱,2.5mmol/L甲酸铵-0.1%甲酸水溶液和甲醇为流动相,梯度洗脱,电喷雾电离(ESI~+)、多反应监测(MRM)模式下检测,同位素内标法定量。结果  血清中6种脂溶性维生素线性范围内线性关系良好,相关系数r0.995;6种脂溶性维生素的检测限为0.20~1.25ng/mL,定量限为0.39~3.88ng/mL;加标回收率为86.6%~107.7%,日内精密度9.6%,日间精密度9.3%。NIST标准参照品SRM 968f验证方法准确度,结果偏差均在5%以内。结论  本方法准确度高、重现性好、用血量少,适于婴幼儿等采血困难者微量血样中多种脂溶性维生素的同时快速检测。正 文维生素在人体生长代谢过程中发挥着重要作用,是人体必须的微量营养素,缺乏或过量都会对人体健康产生不利影响。维生素A、D、E是脂溶性维生素,研究表明缺乏这些维生素会增加患夜盲症、骨质疏松、心血管疾病及免疫系统相关疾病的风险[1],婴幼儿及未成年人缺乏其对生长发育的影响则更为明显[2-4]。目前维生素检测的方法主要有高效液相色谱法[5-7]、液相色谱-串联质谱法[8-14]等,其中液相色谱-串联质谱法因其灵敏度高、重现性好、可同时快速检测多种维生素已成为很多临床实验室的首选方法。但是目前的液相色谱-串联质谱方法血液需求量较大[10,13],检测项目单一[8-9,14]或检测时间较长[11],不能满足临床同时快速检测多个项目的需求,特别是婴幼儿采血困难采血量很难满足需求。虽然已有部分学者建立微量检测方法用于维生素检测,但是这些方法需要衍生化过程,前处理复杂耗时较长[8-9,14]。因此,建立能够用微量血液同时快速检测多种维生素的方法满足临床不同年龄段的检测需求显得尤为必要。此外,视黄醇,维生素D的代谢产物25-OH-VD2、25-OH-VD3,α-生育酚是脂溶性维生素A、D、E在血液循环中的主要存在形式,常作为脂溶性维生素检测的首选指标[15-18]。γ-生育酚是维生素E主要的饮食摄入形式,但其与α-生育酚转移蛋白(α-TTP)的亲和力较低,在体内含量较α-生育酚低,但是,近年来文献报道其在人体健康活动中也扮演着重要角色[19]。本文建立超高效液相色谱-串联质谱法(UPLC-MS/MS)同时快速检测微量血清中视黄醇,维生素D(25-OH-VD2、25-OH-VD3)和α-、β-、γ-生育酚的方法,满足临床各年龄段尤其是对婴幼儿同时快速检测多种维生素的需求。1实验部分1.1  仪器与试剂 液质联用仪;高速冷冻离心机;涡旋振荡仪;超声波振荡器;氮吹仪(Agela);紫外分光光度计。视黄醇、25-OH-VD2、25-OH-VD3、α-生育酚、β-生育酚、γ-生育酚均购自美国Sigma-Aldrich;视黄醇-d6标准品购自上海谱芬生物;25-OH-VD2-d3购自美国IsoSciences、25-OH-VD3-d6、α-生育酚-d6标准品购自加拿大TRC 血清质控样品购自美国NIST 收集安徽省第二人民医院近期健康体检正常儿童血液样本17份,避光保存。LC-MS级甲醇,色谱级乙腈、正已烷及甲酸均购自美国Fisher;甲酸铵、牛血清白蛋白(BSA)购自美国Sigma-Aldrich;色谱级乙醇购自国药集团。实验用水由Milipore纯水仪(美国密理博)提供。1.2  标准溶液和内标溶液的配制  用无水乙醇配制视黄醇标准品储备液100μg/mL;α-生育酚、β-生育酚、γ-生育酚标准品储备液各1000μg/mL,并用紫外分光光度计对其浓度进行校正[18,20]。用甲醇配制25-OH-VD2标准品储备液25μg/mL和25-OH-VD3标准品储备液100μg/mL,视黄醇-d6标准品储备液100μg/mL,25-OH-VD2-d3标准品储备液50μg/mL,25-OH-VD3-d6标准品储备液50μg/mL,α-生育酚-d6标准品储备液1000μg/mL。将各目标化合物标准储备液用复溶液(初始流动相)稀释混匀,配制成混合标准溶液(视黄醇2.50μg/mL、25-OH-VD2 0.20μg/mL、25-OH-VD3 0.40μg/mL、α-生育酚50.00μg/mL、β-生育酚5.00μg/mL、γ-生育酚 5.00μg/mL);将各同位素标品储备液用甲醇稀释混匀,配制成混合内标工作液(视黄醇-d6 2.00μg/mL、25-OH-VD2-d3 0.10μg/mL、25-OH-VD3 0.20μg/mL、α-生育酚-d6 20.0μg/mL)。取4g BSA溶解于100mL水中配成4% BSA溶液。1.3  样本前处理  取血清样品20μL至2mL离心管中,加入10μL同位素内标工作液,80μL水,2000r/min涡旋振荡30s后加入200μL甲醇-乙腈(50∶50,v/v),2000r/min混匀60s;加入800μL正己烷,2000r/min,混匀5min,然后4℃,12000r/min离心5min;吸取600μL上清液至1.5mL离心管中,室温下氮气吹干;加100μL初始流动相复溶,涡旋振荡60s,4℃,12000r/min离心5min,上清液转移至进样瓶中待分析。1.4  色谱 - 质谱条件  采用Phenomenex Kinetex F5(100mm × 2.1mm, 2.6μm)色谱柱,柱温35℃,流动相A含2.5mmol/L甲酸铵和0.1%甲酸的水溶液;流动相B含2.5mmol/L甲酸铵和0.1%甲酸的甲醇溶液,梯度洗脱程序:0~2.0min,70%B,2.0~2.5min,70%~88% B,2.5~3.5min,88% B,3.5~3.51min,88%~81%B,3.51~11.0min,81% B,11.0~12.0min,81%~70%B,流速0.5mL/min。进样量:20μL。采用多反应监测(MRM)、电喷雾正离子模式(ESI+),离子源温度 150℃,脱溶剂温度500℃,毛细管电压3kV,脱溶剂气流速1000L/h;6种脂溶性维生素的MRM 离子参数见表1。2  结果与讨论2.1  前处理条件优化  对血清前处理过程中蛋白沉淀剂(甲醇、乙腈、乙醇)的选择及萃取溶剂正己烷的用量(400μL、600μL、800μL)进行了优化,结果表明,甲醇-乙腈(50∶50,v/v),沉淀效果最好,色谱图杂峰明显减少;正己烷用量较大时萃取更完全,信号值更高。另外,考察了不同复溶液体系:甲醇-水(50∶50,v/v)、甲醇-水(70∶30,v/v)、甲醇均含2.5mmol/L甲酸铵和0.1%甲酸对色谱分离的影响,结果如图1所示,使用b组复溶液即初始流动相时视黄醇响应值较a组增加1倍以上,c组视黄醇峰宽变大且峰形不对称。同时b组中25-OH-VD3和25-OH-VD2响应值是a组的2倍、c组的4倍以上,且峰形明显改善有利于25-OH-VD3和 25-OH-VD2的分离检测。最终,采用血清样加水混匀后用200μL沉淀剂(甲醇:乙腈(50∶50,v/v)沉淀蛋白,800μL正已烷液液萃取,取600μL上清液氮吹,初始流动相复溶进样。2.2   液 相 色 谱 条 件 优 化   Kinetex F5色谱柱可以实现所有组分包括β、γ-生育酚的分离。此外,25-OH-VD3同分异构体3-epi-25-OH-VD3在婴幼儿体内含量较高,对维生素D含量测定影响较大[21],该色谱柱可以实现25-OH-VD3和3-epi-25-OH-VD3的分离,减少3-epi-25-OH-VD3对检测结果的影响。故采用Kinetex F5色谱柱进行所有组分的分离(见图2)。研究发现在流动相中加入甲酸铵后其促进目标化合物离子化的效果较加入乙酸铵好,响应值增加明显,故在水相和有机相中均加入2.5mmol/L甲酸铵。2.3  线性范围、检出限和定量限  将混合标准溶液用复溶液逐级稀释,得到一系列标准工作液,各取20μL,分别加入10μL内标工作液和80μL 4% BSA溶液,其余操作同样本前处理。由于人血中存在内源性脂溶性维生素,故在标曲制作中加入4% BSA。以各目标化合物的色谱峰与其相对应的同位素内标色谱峰的峰面积比值-浓度比值作图,得到各目标化合物的标准系列工作溶液的直线拟合方程,并计算相应的线性相关系数。6种脂溶性维生素的标准曲线和线性范围见表2。结果表明,6种脂溶性维生素在对应的浓度范围内线性关系良好,相关系数0.995,标准溶液色谱图如图3所示。每个浓度重复检测6次,满足相对标准偏差20%且信噪比S/N≥3的最低浓度值定为检测限,满足相对标准偏差20%且信噪比S/N≥10的最低浓度值定为定量限。6种脂溶性维生素检测限为0.20~1.25ng/mL,定量限为0.39~3.88ng/mL(见表2)。2.4  方法精密度 将低、中、高三个浓度标准品溶液加入4% BSA混合血清样本经本法处理后进行检测,每个浓度重复6次,连续检测三天,计算日内精密度为0.9%~9.6%,日间精密度为3.0%~9.3%(见表3)。该方法同时测定6种脂溶性维生素的日内精密度和日间精密度均在15%以内,方法精密度满足检测需求。2.5  方法准确度  将低、中、高浓度的标准品溶液加入混合血清样本中按本法进行前处理后进行检测,每个浓度重复6次,计算加标回收率,3个水平的加标回收率为86.6%~107.7%,相对标准偏差(RSD)为1.46%~9.39%(见表4)。该方法加标回收率均在80%~120%以内,方法准确度高满足检测需求。2.6  方法验证  采用建立的UPLC-MS/MS方法对美国国家标准技术研究所(NIST)制定的标准参照品SRM 968f进行检测,每个水平重复2次取平均值,验证方法准确度。结果表明,除25-OH-VD2含量较低未能检出外,其它检测结果与靶值偏差均在5%以内,该方法检测结果准确可靠(表5)。2.7  实际样品测定  使用本方法对17份健康儿童血液样本进行检测,其中视黄醇含量为0.22~0.43μg/mL,25-OH-VD2含量为未检出~5.19ng/mL,25-OH-VD3含量为6.83~49.21ng/mL,α-生育酚含量为5.63~12.73μg/mL,β-生育酚含量为0.03~1.37μg/mL,γ-生育酚含量为0.11~1.68μg/mL。本法适用于微量临床血液样本6种脂溶性维生素的同时快速检测。3结  论本研究建立了超高效液相色谱串联质谱法同时测定微量血清样本中多种脂溶性维生素的方法,并对前处理过程中的蛋白沉淀试剂、萃取液用量,复溶液等进行了优化,以减少色谱图中噪音干扰,改善色谱峰形,提高检测灵敏度。并比较了不同色谱柱对多种脂溶性维生素尤其是不同类型维生素E的分离效果,最终选择Phenomenex Kinetex F5色谱柱,该色谱柱可以实现β-生育酚和γ-生育酚的有效分离。本研究中只需20μL血清就能够快速完成6种脂溶性维生素的测定。该方法测定样本需求量少、操作简单、检测结果准确快速可实现大量临床样本的同时检测,尤其对采血较为困难的婴幼儿可以实现少量血液样本检测多数项目的需求。参考文献(略)本文引用来源: 李雪梅,吴慧慧,陈竞,赵盼,唐玉菲.超高效液相色谱-串联质谱法同时快速检测微量血清中6种脂溶性维生素[J].现代预防医学,2022,49(07):1297-1302.
  • 质谱助力亲水性藻毒素痕量检测研究取得新进展
    近年来,自然资源部第一海洋研究所科研人员利用所公共分析测试平台的大型仪器,通过系统的方法学研究,攻克了天然淡水资源及海水中多种痕量高亲水性藻毒素精准检测的技术瓶颈。近日,研究结果先后在环境科学与生态学期刊《总体环境科学》和《化学层》上发表。近几十年来,全球地表水及近海水生环境有害藻华发生频率和危害明显增加,尤其是蓝藻和甲藻释放的藻毒素一定程度上影响了饮用水安全和渔业资源的健康发展。加强对天然水体中高亲水性藻毒素的监/检测技术,有利于对高亲水性藻毒素潜在的生态风险进行客观评估,并将大大促进我国对饮用水、农业用水及海洋养殖环境等天然水体中藻毒素的全面监测和污染防控。针对这些情况,第一海洋研究所科研人员创新地将石墨化碳黑离线固相萃取技术与亲水相互作用在线固相萃取技术相结合,对天然水体样品中的多种亲水性藻毒素进行两步高效富集,采用超高效液相色谱-三重四极杆串联质谱技术进行精确定量,二维液相色谱-四级杆飞行时间质谱辅助定性鉴别,成功建立了适用于天然水体中15种主要亲水性蓝藻毒素同步精准测定的新方法。据介绍,该方法仅需80mL天然水样品即可实现鱼腥藻毒素-a、柱孢藻毒素、石房蛤毒素、新石房蛤毒素、N-磺酰氨甲酰基类毒素、脱氨甲酰基类毒素以及各种膝沟藻毒素等的鉴别和准确定量。与国外报道的方法相比,该方法大幅提升了可检测亲水性藻毒素的种类,并且方法的灵敏度显著提高。该研究系首次基于两步固相萃取富集技术和液质联用分析技术,实现了天然水体中各类高亲水性蓝藻毒素高灵敏度检测,可为我国淡水资源及近海水生环境亲水性藻毒素污染监测、预警提供技术支撑。
  • 干货分享:色谱图/质谱图傻傻分不清楚
    p  LC-MS/MS作为蛋白组学分析的主要手段,所分析的样品分子过于微小肉眼不可见,需要借助色谱图、质谱图判断其表现,但你看到文章里的质谱图是否感觉迷惑不解,甚至色谱图和质谱图傻傻分不清呢?文章返修编审让补充的有注释信息的二级质谱图究竟是个什么东东?今天小编带你一起解密。/pp  我们常说的图谱分为两类,色谱图与质谱图。色谱图评价的是母离子在色谱上的表现,质谱图则是一级母离子和二级碎片子离子在质谱里的信号表现。这里小编跟你分享一个区分两种图谱的秘密,那便是看横坐标,横坐标是时间轴的为色谱图,横坐标是质荷比的那就是质谱图了,不管色谱图还是质谱图,纵坐标都是信号强度!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/d2a264a0-7451-4f84-98dc-0b5062ac709e.jpg" title="1.jpg"//pp  常见的色谱图有Basepeak图、TIC图、XIC图 质谱图经常提到的是一级质谱图,二级质谱图,b,y离子匹配图(有注释信息的二级质谱图),下面我们逐一看过来。/pp  strong【色谱图】/strong/ppstrong  Basepeak 图:/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/363edb6d-6fda-4948-81e5-4c0da2a627b5.jpg" title="2.jpg"//pp  看到上图,做过LC-MS/MS实验的童鞋是不是有一种似曾相识的感觉?你肯定在哪里见过。/pp  Basepeak图是色谱分离过程中将每个时间点质谱检测信号最强的肽段的强度值连续描绘得到的图谱。图中峰多信号强说明样品复杂度高量也足。由于上机的样品是蛋白质酶解后的肽段,所以如果你要问小编能否将鉴定到的蛋白质在basepeak图上标出来,答案是不能!!!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0e1dca0d-99a3-4c0d-83e6-259c06cc0fd8.jpg" title="3.jpg"//ppstrong  TIC图:/strong/pp  全称为Total ion chromatogram,即总离子流图,相比Basepeak图是用每个时间点质谱信号强度最高的母离子绘制的图谱,TIC是样品中所有离子的色谱图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/8d76db07-faf1-4889-a7a7-d28156306780.jpg" title="4.jpg"//ppstrong  XIC图:/strong/pp  全称是Extracted ion chromatogram,即提取离子流色谱图,为某个特定母离子的色谱图,XIC图的峰面积可以用于蛋白定量分析。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/30b83abf-94dc-44f3-a7c4-305e22fc80fa.jpg" title="5.jpg"//pp  strong【质谱图】/strong/pp  一级质谱图是一次质谱全扫描内所有母离子的信号分布图,二级质谱图是特定母离子在高能碎裂后产生的二级离子的信号分布图,样品经质谱鉴定后生成的质谱文件实质是数万张一级质谱图和二级质谱图的叠加。/pp  原始二级质谱图,如下图(m/z=377.54),为实际检测到的二级离子的质荷比的分布图,只有一个个孤独的峰,代表一个个孤单的子离子,没有归属,只有将其大小与宗氏族谱(理论的肽段序列碎裂后生成的二级离子分布)匹配后,方能知道其名姓(肽段序列)。匹配后的图就是文章里提到的有注释信息的二级图,也叫做b,y离子匹配图。修饰组学及一段肽的蛋白发文章时可能会被要求提供b,y离子匹配图。/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201706/insimg/741b86e1-6126-4e8e-a498-782c779009ae.jpg" title="6.jpg"//strongbr//pp style="text-align: center "  B,y离子匹配图/pp  将实际检测到的二级离子的质荷比分布与肽段序列断裂后理论形成的子离子匹配后的图谱。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/383ca26b-e241-4004-8430-5f9ab963f299.jpg" title="7.jpg"//pp  肽段在能量作用下断裂后会生成一个个b,y离子对。左面的碎片为b离子,右边的碎片为y离子,以上图为例,KTQAASVEAVK理论生成的b,y离子对为:/pp  第一个氨基酸与第二个氨基酸中间断开(K|TQAASVEAVK),则生成b1=K(从左往右数1),y10=TQAASVEAVK(从右往左数10) /pp  第二个与第三个氨基酸中间断开(KT|QAASVEAVK),生成b2=KT,y9= QAASVEAVK 其他位置断开,依次类推……。/pp  本肽段中如果第一个氨基酸K上发生了泛素化修饰(已经标红),我们应该如何找出该位点被修饰的证据呢?请往下看。(哎哎继续往下看,别走神儿!)/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/e98257d8-53f4-496b-9f0e-c37fb645c9ce.jpg" title="8.jpg"//pp  肽段碎裂后检测的b3(KTQ),b4(KTQA)离子可能带有修饰集团,以b3为例,如果K上发生修饰,则b3的分子量应该比不带修饰的b3(KTQ)理论分子量(376.22-18.01(QA连接是脱了水的)=358.21)多一个修饰集团glygly-的分子量(114.04),即=358.21+114.04=472.25,而我们检测到的b3离子的分子量刚好为472.25,说明b3(KTQ)离子携带了泛素化修饰集团.因泛素化常发生在K上,推测应为K发生了泛素化修饰。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制