当前位置: 仪器信息网 > 行业主题 > >

色谱正己烷制备方法

仪器信息网色谱正己烷制备方法专题为您提供2024年最新色谱正己烷制备方法价格报价、厂家品牌的相关信息, 包括色谱正己烷制备方法参数、型号等,不管是国产,还是进口品牌的色谱正己烷制备方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱正己烷制备方法相关的耗材配件、试剂标物,还有色谱正己烷制备方法相关的最新资讯、资料,以及色谱正己烷制备方法相关的解决方案。

色谱正己烷制备方法相关的资讯

  • 农残级正己烷促销
    CBEQ-4-108709-4000农残级正己烷指标参数如下: ITEM Specification Assay (by GC) (as n-Hexane) &ge 95.0% Assay (by GC) (as isomers) 98.5% Water (by KF) &le 0.01% Non-volatile matter &le 0.0005% Acidity &le 0.0003 meq/g Signal ECD of pesticide (Lindane to DDT) (as Lindane) &le 5 ng/L Signal PND of pesticide (Ethylparathion to Coumaphos) (as Ethylparathion) &le 5 ng/L Signal FID of 2-Octanol to Tetradecanol (as 2-Octanol) p/t. 报价:560.00元/瓶包装:4瓶/箱整箱起订促销价为448元/瓶促销时间截止2010.11.30
  • 聚焦新技术 | AIS puriFlash® 制备纯化系统与流动化学集成,搭建连续分离纯化平台!
    流动化学创新地将传统独立分开的合成操作过程整合起来,在连续流动的系统中完成化学反应,加快了合成的速度,对于绿色化学和实验室自动化领域具有非常重要的意义。此前,我们与爱丁堡赫利瓦特大学 VilelaLAB 和流动化学实验室进行合作,借助 Advion Interchim Scientific puriFlash5.250 纯化制备系统,搭建了全新的连续分离纯化平台,进一步加快实验流程。AIS puriFlash5.250 纯化制备系统ONE平台搭建 平台大致上分为三部分:流动反应池部分、在线输送部分以及AIS puriFlash 5.250 制备纯化部分。实验平台搭建示意图ONE基本思路step 1:流动反应池系统用于进行合成并将粗反应混合物直接或通过在线萃取器输送到 AIS puriFlash 5.250 色谱仪的进样口处。step 2:puriFlash 5.250 通过仪器的 10 通阀,将原料交替切换注入到其中一个样品环中。step 3:两根相同的色谱柱:一个加载反应混合物,另一个用于平衡和执行色谱方法,确保样品环中的样品不损失。 step 4:使用 UV+ELSD 检测器监测并进行馏分收集。 ONE 实验关键点1、优化流动反应池的设置,以获得产品的最大产率;2、优化纯化方法,尽量减少离线实验中粗反应混合物纯化所需的时间;3、色谱方法与流动反应池的进料流速同步,以实现成功的耦合。ONE应用实例(A) 乙二醇和苯甲酰氯酯化反应的在线快速纯化流程示意图。 (B) 40 个连续分离的酯产物的色谱堆叠图。DMAP:4-(二甲氨基)吡啶,FBR:固定床反应器。 实验体系证明了流动化学集成 puriFlash 5.250 从粗反应混合物中同时分离两种产品(以克/小时为单位,纯度 99%)的潜力。在乙二醇和苯甲酰氯的连续流动酯化中,两种酯的产率分别为 9.9 和 7.6 mmol/h。ONE讨论 使用测试混合物(4-甲氧基苯酚和2,5-二溴对二甲苯,正己烷/乙酸乙酯体系)成功进行了原理验证研究,证明了流动化学-puriFlash5.250集成的可行性,并确认了 Advion Interchim Scientific Flash 柱的耐用性。 受到该方法成功的启发,另外几种不同的反应也得到了验证,连续分离出纯度为 97-99% 的产品。 除此之外,puriFlash 5.250 纯化制备系统还可以提供重要的辅助功能。 • 以4,7-二苯基-2,1,3-苯并噻二唑为均相光敏剂,催化 fmoc-l-蛋氨酸生成相应的亚砜为例,证明了均相催化剂在线回收的可能性。 • 可以实现 AIS puriFlash 纯化制备色谱系统与您的流动化学无缝集成,这种联合能够满足实验需求,有助于加速化学新反应的发现。
  • 【飞诺美色谱】食用油中 16 种多环芳烃的分析方法
    摘要:本实验建立了食用油中 16 种多环芳烃的前处理方法,采用 Cleanert PAHs-MIP 小柱结合气相色谱串联质谱的检测方法,对食用油中的多环芳烃进行了测定。样品经环己烷溶解,Cleanert PAHs-MIP 小柱净化,二氯甲烷洗脱, DA-5MS 气相色谱柱进行检测,外标法定量。结果表明,当多环芳烃加标量为 0.1 mg/kg 时,回收率在 80% ~ 150%之间,能够满足检测要求。关键词:食用油;多环芳烃;Cleanert PAHs-MIP;DA-5MS样品信息表 1. 16 种多环芳烃样品信息实验部分仪器、试剂与材料主要仪器设备气相色谱串联质谱仪(GC-MS);卓睿全自动固相萃取仪。试剂材料二氯甲烷为农残级;环己烷、正己烷均为色谱纯;16 种多环芳烃混合标准溶液;Cleanert PAHs-MIP 固相萃取小柱(玻璃柱):1000 mg/6 mL。样品制备样品提取称取植物油样品 0.5 g,加入 3 mL 环己烷溶解,作为待净化液。样品净化将 Cleanert PAHs-MIP 小柱依次用 5 mL 二氯甲烷,5 mL 环己烷活化平衡,将上述待净化液全部上样于小柱上,弃去流出液,用 4 mL 环己烷洗涤小柱,弃去流出液,将小柱抽干,再用 10mL 二氯甲烷洗脱小柱,收集流出液,于35℃下氮吹至近干,用正己烷定容至 1 mL,待检测。以上净化步骤可用卓睿全自动固相萃取仪完成。实验条件色谱条件色谱柱:DA-5MS 色谱柱,30 m × 0.25 mm × 0.25 µ m;进样口温度:280℃;柱温:初温 45℃,保持 1 min,然后以 10℃/min 升至 180℃,保持 1min,再以 10℃/min 升至 250℃,保持 2 min,再以 5℃/min 升至 285℃,保持2 min,再以 10℃/min 升至 320℃,保持 1 min,最后以 10℃/min 升至 345℃。载气:氦气,纯度≥99.999%流速:1 mL/min;电离方式:EI源。进样方式:不分流进样;样量:1 µ L;质谱参数表 2. 16 种多环芳烃 SIM 参数实验结果由表 3 可知,采用固相萃取结合 GC-MS 的方法检测食用油中 16 种多环芳烃,加标回收率在 80% ~ 150%之间,能够满足检测要求。由图 1 ~ 图 3 可知,用 DA-5MS 检测 16 种多环芳烃,分离度和峰形良好,且保留时间稳定。表 3. 食用中多环芳烃加标回收实验结果(添加水平 0.04 mg/kg)实验谱图图 1. 0.05 µ g/mL 16 种多环芳烃气质谱图图 2. 植物油样品基质空白谱图图 3. 0.1 mg/kg 植物油加标气质谱图结论本实验建立了植物油中 16 种多环芳烃的前处理方法,用 Cleanert PAHs-MIP 小柱结合高效液相色谱对加标量为 0.1 mg/kg 的样品进行了测定,加标回收率均在 80% ~ 150%之间,可以满足检测要求,且净化效果良好。说明 CleanertPAHs-MIP 可以用于检测植物油中多环芳烃。附:相关产品
  • 进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法—气相色谱串联质谱法
    &ldquo 奶粉疑致婴儿性早熟事件&rdquo 引起众多消费者的关注,据有关专家介绍,现代牛奶中的雌激素包括内源性雌激素(即奶牛本身产生的雌激素)和外源性雌激素(即应用于奶牛发情和泌乳的雌激素),但目前普遍认为在规范用药的前提下雌激素药物残留量可忽略不计。&ldquo 所谓的不允许检出雌激素是指不能检出人为添加的合成雌激素物质。&rdquo 上海安谱公司根据SN/T1744-2006《进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法&mdash &mdash 气相色谱串联质谱法》,对动物饲料中的人工合成激素己烷雌酚、己烯雌酚、双烯雌酚残留进行检测以降低外源性雌激素污染的风险。 产品信息请下载: 《进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法&mdash &mdash 气相色谱串联质谱法》相关耗材如需咨询、订购以及查询更多产品,请联系:上海安谱 021-54890099了解详情请进入安谱公司网站 http://www.anpel.com.cn/
  • 使用超高效合相色谱系统测定甲糖宁色谱含量
    使用超高效合相色谱(ACQUITY UPC2&trade )系统测定甲糖宁(tolbutmide)色谱含量 目的利用沃特世(Waters)ACQUITY UPC2&trade 系统,成功地将测定甲苯磺丁脲药物含量的美国药典正相HPLC方法转换为超临界流体色谱方法。 背景超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主要流动相,通常使用极性溶剂(如MeOH)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,从而减少溶剂的用量和处理,降低每次分析的成本,同时增强环境方面的保护。转换成SFC的色谱方法必须保持数据质量,而且必须得到与目前正相色谱方法一致的实验结果。目前,美国药典(USP)规定了含有甲糖宁(苯磺酰胺,CAS # 64-77-7)药物的正相HPLC方法。利用4.0 x 300 mm的硅胶柱(L3)进行等度分离,流速1.5mL/min,流动相为475:475:20:15:9的正己烷:水饱和的正己烷溶液:四氢呋喃:冰醋酸的混合溶液,运行时间约为20分钟。如大多数药典中的方法一样,本方法经过验证且可靠。但是,分析过程使用了含有正己烷和四氢呋喃的复杂流动相混合溶剂。出于环保和成本的原因,许多实验室都希望杜绝这些溶剂的使用。 这种新型的超高效合相色谱(UPC2&trade )方法得到的数据与目前的HPLC方法相当,甚至更好,速度是目前的HPLC方法10倍,且消耗的溶剂更少。 解决方案将甲糖宁与内标物甲糖宁混合,利用目前USP方法制备和分析样品。分析结果与使用ACQUITY UPC2方法得到的结果进行对比。UPC2方法的条件如下: 色谱柱: ACQUITY UPC2 BEH,3.0 x 100 mm,1.7微米温 度: 50 ° C流动相: 95% CO2:5%甲醇/异丙醇 (1:1),含 0.2% TFA流 速: 2.5 mL/min背 压: 120 Bar/1740 psi检测器: UV /PDA ,254 nm 目前的正相HPLC方法,获得仍可接受的色谱分离(见图1),虽然内标物色谱峰拖尾严重(拖尾因子1.65)。由于已经通过了所列出的适应性标准(重复进样的相对标准偏差不超过2.0%;妥拉磺脲和甲糖宁的分离度R不小于2.0),因此也没有再作进一步的改进。 由新开发的UPC2方法得到的结果,同样符合美国药典适应性的要求(甲糖宁和妥拉磺脲的保留时间RSD值分别为1.2%和0.9%,两个化合物的面积RSD值小于0.90%,n=6),保持两个目标化合物间分离度(R = ~15)的同时,运行时间大大缩短。内标物妥拉磺脲拖尾现象得到大大改善(拖尾因子1.2)。需要注意的是,利用UPC2从混合物中分离并检测出许多小峰,说明了本方法具有很高的分离效率。本例中,每次正相HPLC分析大约使用29mL正己烷和各少于1mL的四氢呋喃和乙醇。相比之下,UPC2方法中每次进样大约使用0.25mL的甲醇和异丙醇。这说明,通过将正相HPLC方法转换为UPC2方法,可以大大地减少有机溶液的使用。根据目前的溶剂价格,每次正相HPLC分析的成本大约是1.40美元,而每次UPC2分析的成本大约是0.01美元,说明通过将正相HPLC方法转换为UPC2方法可以大大地降低成本。 总结使用ACQUITY UPC2,可以成功地将美国药典的HPLC方法转换为UPC2方法。这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好,速度是目前的HPLC方法的10倍,并且消耗的溶剂更少。我们以更快的速度得到高品质的分析数据,使实验室生产率提高,每个样本的分析成本降低。对于希望将目前的正相HPLC方法转化为更高效、更省钱方法的实验室而言,ACQUITY UPC2系统是一种理想的解决方案,同时也增强了健康、安全和环境方面的保护。 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 使用超高效合相色谱系统测定氨苯砜片(Dapsone)的色谱含量
    使用ACQUITY UPC2系统测定氨苯砜片(Dapsone)的色谱含量目的使用沃特世(Waters)ACQUITY UPC2&trade 系统将药典中氨苯砜含量的正相HPLC测定方法转换为超临界流体色谱(SFC)方法。背景目前,美国药典(USP)规定了含有氨苯砜(4,4&rsquo -二氨基二苯砜,CAS #80-08-0)药物片剂的正相HPLC分析方法。使用4.0 x 300 mm,10µ m的硅胶柱(L3)进行等度分离,流动相为正己烷、异丙醇、乙腈和乙酸乙酯(7:1:1:1)的混合溶液。该方法的运行时间约为12.5min(最后一个主峰出峰时间的2倍,流速1.5mL/min)。如大多数药典中的方法一样,本方法经过验证且可靠。但是,该方法使用了正己烷和乙酸乙酯溶剂。出于健康、安全和环保的原因,许多实验室都想减少这些溶剂的使用。超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主流动相,以极性溶剂(如甲醇)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,减少溶剂的消耗和处理,降低每次分析的成本,同时增强了健康、安全和环境方面的保护。转换成SFC的色谱方法必须保持数据质量,而且必须得到与目前正相色谱方法一致的实验结果。对寻求更高效、更低成本的氨苯砜片分析方法的实验室而言,ACQUITY UPC2系统不愧为理想之选,该方法同时加强了健康、安全和环境方面的保护。解决方案使用目前美国药典(USP)方法,制备和分析氨苯砜标准品和片剂样品,如图1所示(该样品也用于SFC分析)。使用目前USP方法的分析结果与使用ACQUITY UPC2方法得到的结果进行对比,如图2所示。SFC方法的条件如下:色谱柱: ACQUITY UPC2 BEH,3.0 x 50 mm,1.7µ m柱温: 45 ° C流动相: 85% CO2:15% MeOH流速: 3.0 mL/min,背压: 130 bar/1885 psi检测器: UV /PDA,254 nm药典方法所列出的适应性条件是最低要求(相对标准偏差不得大于2%)。标准品6次重复进样,目前正相HPLC方法得到的保留时间和峰面积的相对标准偏差(%)分别为0.1%,1.1%。超高效合相色谱方法UltraPerformance Convergence Chromatography&trade (UPC2)重复6次进样得到的实验结果符合USP药典系统适应性要求(保留时间RSD值0.8%,峰面积RSD值0.9%),且运行速度(1.75 min)大大加快。两种方法测定片剂样品的分析结果高度一致。本例中,每次正相HPLC分析使用正己烷13.1mL,异丙醇、乙腈和乙酸乙酯各1.9mL 。相比之下,UPC2方法仅消耗约0.50mL甲醇。这说明了通过将正相色谱方法转换为UPC2方法可以大大地减少有机溶液的使用。根据目前的溶剂价格,每次正相色谱HPLC分析成本大约为1.08美元;相比之下,UPC2仅为0.01美元。总结使用ACQUITY UPC2,可以成功地将美国药典的HPLC方法转换为UPC2方法。这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好;速度是目前的HPLC方法的7倍,并且消耗的溶剂更少。我们以更快的速度得到高品质的分析数据,则实验室生产率提高,每个样本的分析成本降低。ACQUITY UPC2系统是实验室将目前的正相HPLC方法转换为更高效、更省钱的UPC2的方法的一种理想的解决方案,同时也增强了健康、安全和环境方面的保护。 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的注册商标。联系方式: 叶晓晨沃特世科技(上海)有限公司市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 解决方案丨全自动样品净化浓缩仪-高效液相色谱法测定食品中苯并(a)芘的残留量
    苯并(a)芘,是一种含苯环的稠环芳烃,英文缩写BaP。苯并(a)芘是已发现的200多种多环芳烃中最主要的环境和食品污染物,污染广泛且污染量大,致癌性强。食物在熏制、烘烤和煎炸过程中,脂肪、胆固醇、蛋白质和碳水化合物等在高温条件下会发生热裂解反应,再经过环化和聚合反应就能够形成包括苯并(a)芘在内的多环芳烃类物质,尤其是当食品在烟熏和烘烤过程中发生焦糊现象时,苯并(a)芘的生成量将会比普通食物增加10~20倍。因此对食品中的苯并(a)芘进行检测具有重要意义。 本文参考GB 5009.27-2016《食品安全国家标准 食品中苯并(a)芘的测定》中的前处理方法,采用睿科集团全自动样品净化浓缩仪SPEVA 08N实现一键对油脂样品中苯并(a)芘的自动净化、洗脱和浓缩,乙腈复溶,高效液相色谱检测,外标法定量。在1.0μg/kg的加标水平下,苯并(a)芘的回收率在88%-93%之间,RSD值小于5%,说明本方法可以满足油脂样品中苯并(a)芘残留量高效、准确的测定。 1 仪器与耗材 1.1仪器 睿科集团SPEVA 08N全自动样品净化浓缩仪 Agilent 1260 Infinity II高效液相色谱仪 1.2耗材和试剂 苯并(a)芘分子印迹柱:500mg/6mL 正己烷(色谱纯) 二氯甲烷(色谱纯) 乙腈(色谱纯) 样品制备 2 称取1g油脂样品于玻璃试管中,加入10ml正己烷,涡旋溶解0.5min,全部样品待过柱。 依次用15ml二氯甲烷和10ml正己烷活化小柱,将待净化液全部过柱,用6ml正己烷淋洗柱子,弃去流出液。最后用5ml二氯甲烷洗脱,洗脱液于40℃氮吹至近干,加1ml乙腈复溶,过膜后上高效液相色谱检测。具体方法如下所示。 全自动样品净化浓缩仪 睿科集团SPEVA 08N 固相萃取柱 苯并(a)芘分子印迹柱:500 mg/6mL 活化 二氯甲烷、正己烷 淋洗 正己烷 洗脱 二氯甲烷 图1.SPEVA 08N固相萃取净化方法 图2.SPEVA 08N浓缩方法 3 检测条件 3.1液相条件 色谱柱 Agilent eclipse XDB-C18 (4.6×250 mm,5.0 um) 柱温 35 °C 流速 1.0 mL/min 进样量 20 µL 流动相 乙腈+水=88+12 荧光检测器 激发波长384nm,发射波长406nm 3.2色谱图 图3.苯并(a)芘液相色谱图(1.0 ng/mL) 结果与讨论 4 为了验证该方法的回收率,本实验取1 g油脂样品,加入苯并(a)芘标准品(1.0 ng)进行加标回收验证(n=3),数据如表-2所示。加标回收率在88%-93%之间,RSD值控制在5%以内。说明该方法能够很好地运用于油脂中苯并(a)芘的检测。 表-2.油脂样品苯并(a)芘加标回收率及RSD值(n=3) 序号 化合物 回收率(%)样品1 回收率(%)样品2 回收率(%)样品3 平均 回收率(%) RSD(%) 1 苯并(a)芘 88.4 89.8 92.4 90.2 2.3 5 总结 5.1 本解决方案操作方便,集样品净化和浓缩一体,回收率高,稳定性好,符合GB 5009.27-2016《食品安全国家标准 食品中苯并(a)芘的测定》的质控要求。 5.2 睿科集团SPEVA08N全自动样品净化浓缩仪将高通量固相萃取与高通量氮吹进行一体结合,可同时进行8通道样品净化与浓缩,支持样品架/收集架/柱架/柱插杆自动识别,氮吹浓缩自带通道红外定容,兼容常规SPE柱模式、大体积上样模式、枪头上样模式和膜萃取模式,一机多用,真正为批量前处理提供帮助。 扫码可领取 产品资料 产品报价 申请试用 解决方案 盲盒活动
  • 采用沃特世MV-10 ASFE和超高效合相色谱系统简化目前可萃取物分析方法
    采用沃特世MV-10 ASFE和ACQUITY UPC2 系统简化目前可萃取物分析的方法Baiba Cabovska、Andrew Aubin和Michael D. Jones沃特世公司(美国马萨诸塞州米尔福德)应用效益■ 超临界流体萃取法比微波萃取法更具可行性,与索氏萃取法(Soxhlet extraction)相比,可节省大量的溶剂消耗和运行时间。■ UPC2TM 技术通过精简工作流程,提高了萃取物分析的能力。沃特世解决方案ACQUITY UPC2 系统配备二级管阵列(PDA)检测器和SQD检测器MV-10 ASFE&trade 系统Empower&trade 3软件关键词可萃取物、SFE、UPC2、超临界流体、合相色谱引言制药和食品包装行业中的可萃取物的分析流程的建立已经很完善1-3。分析流程可能会涉及到各种技术。类似地,容器密闭系统的评价可能涉及到各种萃取技术。ACQUITY UPC2TM 系统可针对萃取操作中所用的各种常用溶剂体系来灵活选择分析溶剂,简化分析流程4。超临界流体在改善分析流程的过程中扮演重要角色的同时,也遇到了一个这样的问题:&ldquo 样品萃取操作能不能简化至仅采用一种技术,即仅采用超临界流体萃取法?&rdquo 在可萃取物分析过程中,样品的萃取可采用数种方法。通常采用的方法是索氏萃取法、微波萃取法或超临界流体萃取法(SFE)。萃取溶液必须涵盖各种极性范围,以保证非极性和极性分析物均能从包装材料中被萃取出来。索氏萃取器因其相对廉价而深受青睐。但是,如果考虑萃取溶剂及其废液处理的价格时,微波萃取法和超临界流体萃取法具有节省成本的优点,包括减少溶剂消耗量和废液处理量,以及节约宝贵的分析时间。在本应用纪要中,对四种不同类型的包装材料进行萃取,包括:高密度聚丙烯(HDPE)药瓶、低密度聚丙烯(LDPE)瓶、乙烯-乙酸乙烯酯血浆袋(EVA)和聚氯乙烯(PVC)泡罩包装材料。萃取后,使用配有PDA和SQD质谱检测的超效合相色谱(UPC2)系统对所得溶剂中的14种普通聚合物添加剂进行快速筛选。微波萃取法和索氏萃取法采用异丙醇和正己烷萃取液,而各种不同浓度的异丙醇用作超临界流体萃取的辅助溶剂。在本文中,我们对各种方法的萃取表现进行了对比。实验方法条件UPC2条件系统: ACQUITY UPC2 系统配备二级管阵列(PDA)检测器和SQD检测器。色谱柱: 3.0 x100mm、1.7&mu m辅助溶剂: 1:1甲醇/乙腈流速: 2 mL/min梯度: 1% B保持1min、2.5min达到20%、保持30s、重新平衡回归至1%柱温: 65 ℃APBR: 1800 psi进样量: 1.0&mu L运行时间: 5.1min波长: 220nmMS扫描范围: 200~1200m/z毛细管电压: 3kV锥孔电压: 25V补给流量: 0.1%蚁酸甲醇溶液,速度为0.2mL/min数据管理: Empower 3软件样品描述微波萃取将高密度聚丙烯(HDPE)、低密度聚丙烯(LDPE)、乙烯-乙酸乙烯酯(EVA)和聚氯乙烯(PVC)(各2g)切成1x1cm的小块,然后以10mL异丙醇或10mL己烷在50℃下萃取3个小时。索氏萃取索氏萃取的做法是将切碎的材料(聚氯乙烯(PVC)3g,高密度聚丙烯(HDP E)、低密度聚丙烯(LDP E)或乙烯-乙酸乙烯酯(EVA)各5g)小块(约1x1cm),放到华特曼33x94mm纤维萃取套管内。然后,将萃取套管置于普通的索氏萃取器中,其中包括冷凝管、索氏萃取室和萃取烧瓶。在索氏萃取器中加入大约175mL萃取溶剂(正己烷或异丙醇)。所有样品将使用热沸溶剂混合物萃取8小时。萃取完成后,将萃取溶剂几乎蒸干,重新以正己烷或异丙醇溶解。分析前,萃取物以0.45-&mu m玻璃纤维注射器滤头过滤,除去各种微粒。SFE超临界流体萃取(SFE)使用Waters MV-10ASFE系统进行。对于每个超临界流体萃取实验,将材料切成小块(大约1x1cm),加到10mL的不锈钢萃取容器中(聚氯乙烯(PVC)2g、高密度聚丙烯(HDPE)、低密度聚丙烯(LDPE)或乙烯-乙酸乙烯酯(EVA)各3g)。对于每种材料,进行两次不同的萃取。第一次使用5.0mL/min二氧化碳和0.10mL/min异丙醇,第二次使用4.0mL/min二氧化碳和1.0mL/min异丙醇。所有萃取操作均在50℃和300bar背压的条件下,采用30-min动态、20-min静态、10-min动态程序进行,重复该程序2次。异丙醇用作补充溶剂,速度为0.25mL/min。对于高体积异丙醇萃取,在完成萃取过程后,收集溶剂(共溶剂和补充溶剂的混合物),将收集的溶剂几乎蒸干并重新溶于异丙醇(对于聚氯乙烯(PVC)为10mL,对于高密度聚丙烯(HDPE)、低密度聚丙烯(LDPE)或乙烯-乙酸乙烯酯(EVA)分别为9mL)。对于低体积异丙醇萃取,收集的溶剂相应地补足至体积。分析前,萃取物以0.45-&mu m玻璃纤维注射器滤头过滤,除去各种微粒。每个样品的总萃取时间为2个小时。结果与讨论将各种萃取方法进行对比,索氏萃取法每个样品的萃取时间是8小时;微波萃取法在时长为3小时的萃取操作中可同时处理多达16个样品。超临界流体萃取法处理每个样品需要2个小时,可同时加载多达10个样品。即使同时使用更多的索氏萃取器,其萃取的总时间仍然远远超过微波萃取和超临界流体萃取所需的时间。就溶剂用量而言,索氏萃取需要多达175mL的溶剂,然后将溶剂蒸馏,以减少样品体积。微波萃取需消耗10mL溶剂,如果需要提高灵敏度,可以将这些溶剂量降低。超临界流体萃取法在样品预浓缩方面,具有最大的灵活性。在低体积异丙醇萃取条件下,最终收集的体积大约为5mL,将加至相应体积,使样品浓度与微波萃取和索氏萃取样品浓度相当。在高异丙醇萃取条件下,收集的溶剂总体积大约为30mL,蒸出部分溶剂,以达到最终的浓度。经微波萃取提取后,在聚氯乙烯(PVC)和乙烯-乙酸乙烯酯(EVA)样品中,可萃取物的数量最少。使用正己烷或异丙醇萃取低密度聚丙烯(LDPE)样品时,可萃取物的数量最多,如图1所示。图1使用微波萃取方法得到的正己烷和异丙醇萃取物使用索氏萃取,在聚氯乙烯(PVC)色谱图中可观察到一些附加的峰,如图2所示,而在微波萃取的色谱图中并未观察到这些峰。这种可观察到的差异可能是由于使用索氏萃取时,萃取时间较长,萃取温度较高。图2使用索氏萃取法得到的正己烷和异丙醇萃取物通过观察,将超临界流体萃取与其他两种方法进行对比,超临界萃取法萃出的聚氯乙烯(PVC)分析物的量与索氏萃取法萃出的量相似,但比微波萃取法萃出的量大,如图3所示。高体积异丙醇萃出的低密度聚丙烯(LDPE)的量高于低百分浓度异丙醇萃出的低密度聚丙烯(LDPE)的量。这就说明了用于确定改性剂百分含量的方法调整的灵活性和简易性,而这种灵活性和简易性正是塑料材料成功分析可萃取物所需的。图3使用低体积异丙醇和高体积异丙醇得到的超临界流体萃取物对于低密度聚丙烯(LDPE)样品,所有使用异丙醇作为溶剂的萃取方法得到的色谱图形状相似,如图4所示。增加可萃取物的浓度可以通过在微波萃取和索氏萃取中延长萃取时间、升高萃取温度,或者在超临界流体萃取中增加异丙醇的量得以实现。正己烷萃取不采用超临界流体萃取法进行,因为二氧化碳是一种非极性溶剂,与正己烷的化学性质相似,因而将会得到类似的结果。图4 低密度聚丙烯的异丙醇萃取物在低密度聚丙烯萃取物中鉴别的化合物示例如图5所示。图5 在低密度聚丙烯、超临界流体萃取物中鉴别的可萃取物总的来说,就萃出的化合物种类而言,所有方法大体相当。但是,经过确定,如果时间和资源成为重要的因素,则超临界流体萃取法相对于其他萃取方法具有诸多优势。MV-10 ASFE系统由软件控制,可进行自动化的方法开发。可使用的共溶剂达4种之多,在方法中可设定各种比例和萃取时间。在方法开发中,索氏萃取和微波萃取需要手动更换每一操作步骤的溶剂进行质量设计研究时,相当费时。结论与索氏萃取法相比,超临界流体萃取法可减少80%至97%的溶剂消耗量,同时可减少75%的萃取时间。通过软件控制的超临界萃取法使自动化方法开发能够确定最佳的萃取溶剂的比例和溶剂的选择。此外,与微波萃取法相比,超临界流体萃取法提供了样品预浓缩操作的灵活性。参考文献1. Containers Closure Systems for Packaging Human Drugs and Biologics Guidance for Industry U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER) Rockville, MD. 1999 May.2. Norwood DL, Fenge Q. Strategies for the analysis of pharmaceutical excipients and their trace level impurities. Am Pharm Rev. 2004 7(5): 92,94,96-99.3. Ariasa M, Penichet I, Ysambertt F, Bauza R, Zougaghc M, Rí os Á . Fast supercritical fluid extraction of low- and high-density polyethylene additives: Comparison with conventional reflux and automatic Soxhlet extraction. J Supercritical Fluids. 2009 50: 22-28.4. Cabovska B, Jones MD, Aubin A. Application of UPC2 in extractables analysis. Waters Application Note 720004490en. 2012 November.下载完整清晰应用纪要 请点击:http://www.waters.com/waters/library.htm?lid=134715590&cid=511436
  • 电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备
    这里是TESCAN电镜学堂第6期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!样品制备对扫描电镜观察来说也至关重要,样品如果制备不好可能会对观察效果有重大影响。通常希望观察的样品有尽可能好的导电性,否则会引起荷电现象,导致电镜无法进行正常观察;另外样品还需要有较好的导热性,否则轰击点位置温度升高,使得试样中的低熔点组分挥发,形成辐照损伤,影响真实的形貌观察。如果要进行EDS/WDS/EPMA定量检测,还需要样品表面尽可能平整。第一节 常规样品制备样品制备主要包括取样、清洗、粘样、镀膜处理几个步骤。§1. 取样在进行扫描电镜实验时,在可能的条件下,试样应该尽量小,试样有代表性即可。特别在分析不导电试样时,小试样能改善导电性和导热性能。另外,大试样放入样品室会有较多气体放出,特别是多孔材料,不但影响真空度,还大幅度增加抽真空的时间,可能也会引入更多的污染。因此对于多孔材料在放入电镜前,可以在不损伤样品的前提下,对样品进行一定的热处理,比如电吹风吹,红外灯烘烤,或者放入烘箱低温加热一段时间,将其空隙的气体排出,以减小进入电镜后的抽真空时间。对于薄膜截面来说最好能够进行切割、镶嵌、抛光等处理。在镶嵌时最好能将试样一分为二,将要观察的膜面朝里然后对粘,然后再进行镶嵌、抛光处理。这样做的好处是避免在抛光过程中因为膜面和镶嵌料之间的力学性能有一定的差异,而引起薄膜的脱落或者出现裂纹和缝隙,如图4-1。对粘后的膜面两面力学性能一样,会改善此种情况。 图4-1 单膜面力学性能不对称引起的损伤对于比较软的样品在制截面时,一般不要用剪刀直接剪断,直接剪断的截面经过了剪切的拉扯,质量较差。可以考虑用锋利的刀片切断,比如手术刀片等。或者在将试样浸泡在液氮中进行冷冻脆断。在冷冻脆断前可以先切一个小缺口,这样冻硬的样品可以顺着切口用较小的力就可发生断裂。有条件的话可以考虑用截面离子束抛光或者FIB抛光。对于粉末样品来说,取样要少量,否则粉末堆叠在一起会影响导电性和稳定性。粉末样品团聚严重的话,可以考虑将粉末混合在易挥发溶剂中(如纯水、乙醇、正己烷、环己烷等),配成一定浓度的悬浊液,用超声分散,然后取小滴滴在试样座或者硅片、铜(铝)导电胶带上。此时不要使用碳导电胶带,因为碳导电胶带不够致密,会使得样品嵌入在空隙中影响观察。等待溶剂挥发干燥后,粉体靠表面吸附力粘附在基底上,如图4-2。 图4-2 粉末超声分散制样不过值得注意的是溶剂的选择,溶剂不能对要观察的试样有影响,否则会改变试样的初始形貌而使得图像失真。如图4-3,高分子球样品在用水稀释分散后仍为球形,而用无水乙醇分散后,形貌发生了变化。 图4-3 水(左)和乙醇(右)稀释分散对形貌的影响§2. 清洗试样尽可能保证新鲜,避免沾染油污。特别是不要直接用手直接接触试样,以免沾染油脂。清洁不仅仅是针对试样的要求,同样还包括了样品台。样品台要做到经常用无水乙醇进行清洗。§3. 粘样试样的粘贴应该尽量保持平稳、牢固,并尽可能减少接触电阻,以增加导电性和导热性。特别是对于底面不平整的试样,最好用银胶进行粘贴,让银胶填满缝隙以保证平稳。如果要进行EBSD测试,最好也用银胶。EBSD采集要经过70度的倾转,重力力矩较大,而导电胶带有一定的弹性,可能会因为重力缘故而逐步拉伸,导致样品漂移。此外,平时大多数试样都是采用碳导电胶带进行粘贴,不过如果要进行极限分辨率的观察,最好也用银胶,以进一步增加导电性。我们粘贴样品的目的是使得样品要观察的表面要能和样品台底座之间具有导电通路,而不是仅仅认为表面导电就好。样品表面导电性再好,如果没有导电通路和样品台联通的话,仍然会有荷电。特别是对于不规则样品,更要注意粘贴时候的导电通路。如图4-4,左边与中间的表面并未和样品台导通,属于不合理的粘贴,而右边形成了通路,是合理的粘贴方式。 图4-4 合理(右)与不合理(左、中)的粘贴对于很多规则样品,比如块体或者薄片样品,也存在很多不合理的粘贴方式。很多人认为试样有一定的导电性,就将试样直接粘在导电胶带上,如图4-5左。样品表面和样品台之间依然会出现没有通路的情况,有时即使样品导电性好,可能也会因为有较大的接触电阻使得图像有微弱的荷电或者在大束流工作下有图像漂移。而图4-5右,则是开始将导电胶带故意留一段长度,将多余的长度反粘到试样表面去。这样使得不管样品体内导电性如何,表面都能通过导电胶带形成通路。而且即使样品整个体内都有较好的导电性,连接到表面的导电胶带相当于一个并联电路,并联电路的总电阻总是小于任何一个支路的电阻,所以无论试样的导电性任何,都应习惯性的将一段导电胶带连接到表面,以进一步减小接触电阻,增强导电性。 图4-5 将导电胶带延伸到试样表面的粘贴 对于粉末试样的粘贴,也是要少量,避免粉末的堆叠影响导电性和导热性。粉体可以取少量直接撒在试样座的双面碳导电胶上,用表面平的物体,例如玻璃板或导电胶带的蜡纸面压紧,然后用洗耳球吹去粘结不牢固的颗粒,如图4-6左。如果粉末量很少,无法用棉签或药勺进行取样,也可将碳导电胶带直接去粘贴粉末,如图4-6右。 图4-6 粉末试样的粘贴方法§4. 镀膜对于导电性不好的试样,我们通常可以选择镀膜处理。通常情况我们选择镀金Au膜,如果对分辨率有较高的要求,可以选择镀铂Pt、铬Cr、铱Ir。如果要对样品进行严格的EDS定量分析,则不能镀金属膜,因为金属膜对X射线有较强的吸收,对定量有较大影响,此时可选用蒸镀碳膜。现在的镀膜设备一般都能精确控制膜厚,通常镀5nm的薄膜就足够改善导电性,对于有些特殊结构的试样,比如海绵或泡沫状,表面不致密,即使镀较厚的导电层,也难以形成通路。所以我们镀膜尽量控制在10nm以下,如果镀10nm的导电膜仍没有改善导电性,继续增加镀膜也没有意义。一般镀金的话在10万倍左右就能看见金颗粒,镀铂的话可能需要放大到20万倍才能看见铂颗粒,而镀铬或者铱则需要放大到接近30万倍。所以对于导电性不好的试样来说,可以根据需要选择不同的镀膜。镀膜之后,由金属膜代替试样来发射二次电子,而一般镀的金、铂都有较高的二次电子激发率,在镀膜之后还能增强信号强度和衬度,提升图片质量。只要镀膜不会掩盖试样的真实细节,完全可以进行镀膜处理,而不用纠结于一定要不镀膜进行观察,除非有特别不能镀膜的要求。当然,对于要求倍数特别高或者严格测量的一些观察要求,则要谨慎镀膜处理。毕竟在高倍数下,镀膜会掩盖一定的形貌,或者使测量产生偏差。如图4-7,左边是镀金处理的PS球在SEM下的测量结果,右边是TEM直接拍摄的结果,可以发现SEM的测量结果大约在195nm左右,而TEM的测量结果在185nm左右,这就是因为给PS球镀了5nm金而引起直径扩大了10nm左右。 图4-7 PS球在SEM下镀膜观察和TEM直接观察的对比除了不导电样品需要镀膜,对于一些导热性不佳的试样,有时也需要镀膜。电子束轰击试样时,很多能量转变成热能,使得轰击点温度升高,升高温度表达式为ΔT(K) = 4.8 × VI / kd其中,V为加速电压、I为束流、d为电子束直径,k为试样热导率。对于导热性差的试样,k较低,ΔT有时能接近1000K,很容易对试样造成损伤。比如有时候对高分子样品进行观察时,会发现样品在不断的变化,其实是样品受到电子束轰击造成了辐照损伤损伤,如图4-8。而经过镀膜后,可以提高热导率,降低升温程度,避免样品受到电子束辐照损伤。 图4-8 电子束辐照损伤【福利时间】每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【奖品公布】上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 【本期问题】如果要对样品进行严格的EDS定量分析,可以镀金属膜吗,为什么?(快关注“TESCAN公司”微信公众号去留言区回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。这里插播一条重要消息:TESCAN服务热线 400-821-5286 开通“应用”和“维修”两条专线啦!按照语音提示呼入帮你更快找到想要找的人 ↓ 往期课程,请关注“TESCAN公司”微信公众号查看: 电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统
  • 盒子替代色谱柱,制备色谱法的新选择
    如果您想鉴定复杂样品中可能有的多种分析成分,那么你对色谱柱的主要要求就是高分辨率。另一方面,如果你想将大量的感兴趣的蛋白质(如生物反应器中产生的基于蛋白质的生物制药)与不需要的化合物分离,那么你对色谱柱的主要需求是产量。  这就是为什么分析柱倾向于高而薄,而用于大规模分离分析物的制备柱则倾向于更宽,以允许高流速。但是,虽然分辨率对于制备色谱柱的重要性不如对分析柱那样重要,但它仍需要足够高的分辨率,才能将感兴趣的蛋白质与不需要的化合物清晰分离。  不幸的是,实现所需的分辨率有时可能是相当大的挑战,因为宽的直径允许感兴趣的蛋白质采取各种不同长度的路线通过色谱柱。这将导致蛋白质洗脱成宽带,可能与一些不需要的化合物重叠。  科学家已经开发了各种技术来提高制备色谱的分辨率。现在拉戈什(Raja Ghosh)和他在加拿大麦克马斯特大学(McMaster University)的同事们提出了一种完全不同的方法,其中包括完全废除色谱柱并用一个盒子替换它。  他们的想法是用制备色谱中使用的常规离子交换颗粒填充特制的长方形盒子,体积为5mL至50mL。样品和流动相从一端引入盒子的顶部,而被分离的分析物则在相对端流出盒子的底部。这种安排使盒子具有与相同体积的制备柱相似的通量,但感兴趣的蛋白质通过盒子的路径都是相似的长度。  这是因为蛋白质都需要沿着盒子向下移动相同的距离以达到远端的出口,从而提高分辨率。它们可以先向前然后向下,或先向下然后向前,或沿着任何变化路径迁移,但它们都行进相同的距离,并在窄带中同时洗脱。  这种新型色谱盒,称为长方体填充床装置,Ghosh和他的团队的对其进行了测试,试图用它分离三种蛋白质的混合物。为了使其具有挑战性,他们选择了三种具有相似等电点的蛋白质:核糖核酸酶A,细胞色素C和溶菌酶,这些都很难分离。事实上,传统的制备柱很难做到这一点,而立方体填充床装置将蛋白质分离成三个清晰的峰。  他们的立方体填充床装置,所测试的每种效率指标都超过了制备柱。例如,对于分辨率的测量,计算出他们的装置,当流速为每分钟0.5mL时,每单位床高度的理论塔板数为8636 / m,而制备柱的则为1480 / m。  所以,相当有意味的是,Ghosh和他的团队通过思考如何改进制备色谱的方法,却想出了一个实际上可以取代制备色谱的应用生物制药纯化的盒子。  原文请参阅:  Thinking inside the box:A novel alternative to preparative chromatography   Published: Apr 9, 2018   Author: Jon Evans   Channels: Ion Chromatography,separationsNOW.com  符斌供稿
  • 利用超高效合相色谱系统对药物蒽啉(Anthralin)进行含量测定
    目的使用沃特世(Waters)ACQUITY UPC2&trade 系统成功将药典中蒽啉的正相HPLC含量测定方法转换为超临界流体色谱法。 背景目前,美国药典(USP)对于药品蒽啉,(9(10H)-蒽酮,1,8-二羟基-9-蒽酮)[CAS #1143-38-0]的含量测定方法是正相HPLC方法。使用4.6 x 250 mm硅胶柱(L3)进行等度分离,流动相为82:12:6的正己烷:二氯甲烷:冰醋酸混合洗脱液,流速2 mL/min,如图1所示。目前测定方法的运行时间大约为10 分钟(最后一个主峰出峰时间的2倍)。虽然该方法可行且可靠,但是,出于健康、安全、环境和成本等方面的考虑,很多实验室都希望减少典型的正相色谱溶剂的使用(如正己烷和二氯甲烷)。超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主流动相,通常会使用极性溶剂(如甲醇)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,从而减少溶剂的使用和处理,降低每次分析的成本,同时增强健康、安全和环境方面的保护。 成功地将美国药典中HPLC方法转换为高质量的UPC2&trade 方法,每次分析的成本为$0.05(相比于药典的$0.90),并且速度为药典的1.6倍。 将这些方法转变为SFC方法必须保持分析数据的质量(保留时间的重现性、样品中目标化合物和其它组分之间的分离度),并且必须得到与当前正相色谱方法一致的分析结果。图1. 蒽啉和邻硝基苯胺(内标物)的正相HPLC分离。图2. 蒽啉和邻硝基苯胺(内标物)的UPC2分离。 解决方案制备蒽啉样品并使用目前的USP方法进行分析(该样品也用于UPC2分析)。分析结果与使用ACQUITY UPC2方法得到的结果进行对比。超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2)方法的条件如下: 主要系统适应性参数的对比见表1。在所有的分析条件中,由转换后的UPC2方法得到的结果很容易达到USP要求的系统适应性的值,且与正相色谱方法得到的值相比,结果很理想。有趣的是,适应性混合物(蒽啉和丹蒽醌(danthron))选择性有所改变,但并不会对方法转换产生不良影响。两种方法测定未知纯度的蒽啉样品,分析结果一致。使用正相HPLC分析时,蒽啉样品含量为94.3%;而使用UPC2时,含量为94.6%。本例中,单次正相HPLC分析消耗16.4mL正己烷和1.2mL二氯甲烷。相比之下,UPC2方法仅消耗1.05mL甲醇。这说明了通过将正相色谱方法转换为UPC2方法可以大大地减少有机溶液的使用。根据目前的溶液价格,单次正相HPLC分析成本大约为0.90美元,相比之下,UPC2仅为0.05美元。 总结使用ACQUITY UPC2系统,可以成功地将美国药典的HPLC方法转换为UPC2方法。由这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好,速度是目前的HPLC方法1.6倍,消耗的溶剂更少。我们以更快的速度得到高质量的分析数据时,实验室生产率提高,而每个样本的分析成本降低。ACQUITY UPC2系统是实验室将目前的正相HPLC方法转换为更高效、更省钱的UPC2的方法的一种理想解决方案,同时也增强了健康、安全和环境方面的保护。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ###Waters, UPC2, UltraPerformance Convergence Chromatography, ACQUITY, NuGenesis, UPLC, TruView, XSelect, XBridge, Synapt, Xevo 和 Engineered Simplicity是沃特世公司的商标。联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 分离制备色谱(逆流色谱)专家研讨会召开
    2010年1月16日,分离制备色谱(逆流色谱)专家研讨会在北京市理化分析测试中心顺利召开,业内专家共计20人出席了会议,上海同田生物公司作为唯一一家逆流色谱仪器制造厂家有幸参与了此次大会。本次会议在张经华处长的主持下,主要就成立分离制备色谱(逆流色谱)专业委员会等相关事宜进行了可行性论证。     会上,众专家一致认为目前国内还没有逆流色谱的专业交流平台,迫切需要成立全国性的专业委员会,来促进该技术的交流和发展 北京从事这一技术的专家较多,从北京发起这一行动也具有必然性。另外,专业委员会的定位很关键,应尽可能掌握国内的主导权,以利于与国外的对话 专业委员会应与逆流色谱的生产企业相互配合,并建议占有主要市场份额的上海同田生物公司不断创新、优化技术,为分离制备工作者提供更便利的逆流色谱应用解决方案。专家们表示:逆流色谱在分离制备上具有较大优势,应不断找准定位,做好方法学研究,产、学、研相结合,在分析测试上力争有所突破,一定能够找到自己的特色。最后会议决定,2010年年中举办逆流色谱专业委员会成立大会。  作为全球第一家专业生产高速逆流色谱仪的上海同田生物公司将以推动行业技术发展为己任,最大限度的支持业内技术交流平台的工作。  上海同田生物公司市场部  2010.1.28
  • 培安新伙伴——ISCO制备色谱专家
    ISCO 多通道平行和连续快速制备色谱的发明者1950年,创始人Dr. Allington认识到制备液色谱法需要自动收集器,开发了通用于各类色谱的馏分收集器,风靡全球实验室。从此, ISCO不断创新获得多项专利技术,专注于特别是实验室色谱量化制备的应用。早期创新包括开发第一个独立吸光单元的吸光度检测器(AU),峰检测信号输出控制专利用于馏分收集器,以及专利的高效液相色谱(HPLC)的高压梯度泵,从60-70年代, ISCO推出了适用于低压和高压液相色谱的各种泵和检测器, 20世纪80年代,推出了半自动制备型高效液相色谱系统,包括大容量自动进样器, 90年代末, ISCO发明了自动闪式色谱系统,为小分子化合物的研究发展做出了贡献。ISCO在丰富历史基础上,发明了各种先驱的制备色谱系统,我们聆听用户的心声,保持持续创新的传统,并继续领先未来。 ISCO 制备色谱市场的领导者ISCO一直是闪式色谱设备的市场领导者,销售了成千上万套系统。独家推出了闪式梯度色谱系统,并首先推出了包括平行闪式和顺序闪式系统,全自动大容量系统,和系列检测技术,包括蒸发光散射检测(ELSD)和质谱检测器,覆盖大范围尺寸和分离填料的系列RediSep闪式色谱柱,备受市场尊崇。 ISCO 经过ISO 9001认证的色谱专家ISCO拥有专业团队, ISO 9001垂直一体化生产管理体系,集研究、工程、销售、服务和制造包括塑料成型、机械车间、自动化色谱柱填装和组装操作于一体,是积极进取、关注质量,追求理想的公司。 ISCO 设计理想和宗旨:绿色、环保、节省实验室时间绿色化学和工艺重要原则&ldquo 最大化效率、满足需求、减少过剩", ISCO设计理念是帮助用户实现这一原则。优化梯度方法最大限度地提高效率,允许在较大的样品装载下进行纯化,最大限度地减少废物输出和溶剂消耗,节省时间。优化梯度消除了超过80%的默认梯度过程的需要,目标化合物没有洗脱到色谱柱或已经被洗脱的情况。减少色谱浪费是创新产品提高生产力的方式,共同改善地球上的生活质量。 ISCO 相关产品快速中低压制备色谱仪系列 CombiFlash NextGEN系列快色液相制备色谱仪可从制备纯化过程中进行自动识别色谱尺寸和类型,提高制备实验效率,无论是在提纯合成化合物、天然产品、肽或聚合物。直观的PeakTrak软件可在数秒内开始分离。根据要纯化的样品的类型和数量选择正相或反相柱,允许RFID标签载入运行参数,确认检测器设置(UV, Vis, ELS和MS),按下开始,载入样品,即可开始自动工作,无需人员值守。实验进行时随时更改参数?当分离实验开始时,依然可以修改参数,包括溶剂百分比、波长、流速和运行时间等,不需要进行重复分离。流量300ml和压力300psi允许运行750 g或高达1-2kg的色谱柱以较高的压力极限纯化低溶解度的样品12"或15"智能触摸屏更宽动态范围的检测器改进的基线校正支持使用吸收性溶剂通过简化的用户界面更快地处理节省空间:顶部托盘可容纳四个4L的瓶子改进的梯度曲线可减少多达50%的溶剂 EZ Prep 中压/高压制备色谱一体机 EZ Prep制备系统是一种双重功能的纯化设备,提供了 FLASH 闪式和 Prep HPLC 两种色谱模式无缝切换,灵活和性能的不妥协,应对多样化类型样品分离。闪式色谱,中低压预分离后,对于要进一步提高纯度,从高压分离得到更高分离率和纯度化合物,是非常理想的选择,满足高纯度要求。高压运行HPLC大范围高效液相色谱柱,高压高流速减少运行时间。中压制备液相FLASH和HPLC高压制备液相二合一紧凑空间设计, 自动从正相到反相溶剂的智能切换FLASH中压预纯化4mg-100gHPLC高压精纯化mg-g级,纯度达99%HPLC色谱柱最大直径50mm,填料粒径在5um以下二元梯度流速达200 mL/min,最大耐压: 3500 psiUV, UV/VIS, ELSD和MS等多种检测器可选 ACCQ Prep HP150 高压制备型HPLC色谱系统 HP150直观、易于使用、简单纯化设计理念,用户界面友好,消除了普通高效液相色谱系统中不必要的和复杂的参数设置。提高高效液相制备色谱性能和准确性,提高纯化样品回收率。内置馏分收集器和集成触摸屏,紧凑设计节省空间,HP150系统技术特点:流速1-150 mL/min开发分析方法和制备方法操作压力可达6000 psiUV或UV/VIS基础上选择ELSD和MS检测器一键生成聚焦优化梯度纯化时间最小化,样本回收率最大化 TORRENT 大型纯化制备色谱仪 无人值守大规模自动分离纯化,自诊断系统确保足够溶剂进行纯化和废液溢出;适合各种溶剂器皿和废液排放,专利智能液位技术监测溶剂供应和废液。1 L/min流速、100 psi压力、300g纯化、多功能定制系统,满足各种样品、溶剂、馏分和废物处理设置。大流量泵在1L/min流速即使梯度很小的情况下,可提供准确可靠的、重复性高的二元梯度。性能:1000ml/min 的流速,可快速的分离高达600g的样品。安全:安全性超过了法规的要求,标准配备了流动相系统的压力传感器和仪器周边环境溶剂蒸汽传感器,确保仪器在正常情况下运行,一旦出现异常及时给出报警并停机。多功能性:用户可使用或修改默认的参数,开发自定义的分离程序,同时所有实验参数均可在运行过程中加以更改,可实时控制实验过程(包括点击并拖动修改梯度)。操作简便:使用Peaklrak软件,可以非常直观地在屏幕中了解参数。应用范围:可用于工艺放大、化学研发、生产制造等生产实验。广泛应用于制药、药物化学、天然物质、农用化学、化妆品、香精香料等行业。
  • 2026年全球制备色谱市场将达130亿
    仪器信息网讯 根据外网研究机构调研显示, 2021年全球制备、过程色谱市场规模约为93亿美元,而到2026年,该市场规模将达128亿美元,年复合增长率约为6.7%。对例如胰岛素等生物制品需求增加,对ω−3脂肪酸的高需求,业内对制备和过程色谱认识的进一步提高,食品安全问题增多,以及政府对合成生物学和基因组项目的投资增加,都将推动预测期内市场的增长。由于印度和中国等新兴国家需求旺盛,在预测期内,亚太地区的制备和过程色谱市场将显著增长。该地区制药和生物技术公司研发投入增加,是支持市场增长的主要因素。报告指出,近年来,制备及过程色谱的市场参与者,例如色谱仪器、消耗品、配件制造商和服务提供商,正在积极提高应用行业对制备色谱和过程色谱技术进步的认识。大量相关会议和专题讨论会召开,形成了广泛的影响力。这些都有助于提高人们对制备色谱法和工艺色谱法以及即将推出和可用的先进技术产品的认识,这对于推动市场增长有着积极意义。制备色谱和过程色谱的终端用户主要集中在生物技术、制药、食品、保健品等行业以及科研实验室。其中,由于生物制药行业的蓬勃发展,药物、疫苗开发等研发活动增多,研发投入增长明显,生物技术和制药行业对制备和过程色谱的需求在各行业中最高,终端用户数量也最大。特别是目前大热的单克隆抗体对于制备色谱、过程色谱市场是一个很好的机会。单克隆抗体作为生物制药在治疗多种疾病方面显示出巨大潜力,目前主要的制药公司都增加了对单克隆抗体的关注,同时各国监管机构批准的单克隆抗体数量不断增加。制备色谱、过程色谱在纯化单克隆抗体中起着至关重要的作用,单克隆抗体市场的发展将推动制备和过程色谱市场的增长。但是也要看到,制备及过程色谱相关仪器成本居高不下限制了相关技术的应用推广。中小型的石化、食品、生物技术和制药企业等在其生产过程中需要许多此类系统,因此,采购这些系统的会使得企业资本投入显著增加。此外,由于预算控制等因素,中小型的科研实验室很难负担这些系统。同时,较高的维护成本以及一些其他间接费用也使得拥有并使用这些系统的成本变高。此外,目前使用制备色谱法和过程色谱法的制药公司也不愿投资于新仪器。在这种情况下,仪器的高成本预计会限制制备色谱和过程色谱市场的增长。同时,缺乏熟练的专业人士也对技术的推广带来了负面影响。色谱分析技术的正确使用需要具有相关经验的专业知识。特别是,色谱仪器的技术不断进步,也大大增加了其复杂性。操作维护仪器、方法开发以及分析数据等都需要具备相关知识以及有大量实践经验。专业人员的严重缺乏,将抑制色谱市场在未来几年的增长。报告也指出,制备及过程色谱的主要市场参与者包括上赛默飞、丹纳赫、默克、伯乐、安捷伦、岛津、沃特世、诺华赛、大赛璐、珀金埃尔默、日立、技尔、赛多利斯、瑞普利金等。
  • 利用超高效合相色谱系统对联二酚萘(BINOL)对映体进行分离
    目的采用沃特世(Waters)ACQUITY UPC2&trade 系统比较正相HPLC和UPC2&trade 方法分离联二苯酚对映体的效果。背景生物体由手性生物分子,如蛋白质、核酸和多糖组成;因此,它们对药物、食品、农药和废弃化合物中的对映体表现出不同的生物反应。因此,分离手性化合物,尤其是具有药物意义的化合物尤为重要。其重要性表现是以单对映体形式获批的手性药物数量不断增加。为符合FDA关于研发立体异构药物的严格指令,制药行业在进行药代动力学、药物代谢、生理学以及毒理学评价之前,已经加强手性纯化合物的制备。在过去的10年里,超临界流体色谱(SFC)已经显示出其作为分离立体异构体(包括对映体和非对映体)的巨大前景。与传统的手性高效液相色谱(HPLC,主要是正相HPLC)相比,超临界流体色谱(SFC)平均快了3-10倍。超临界流体色谱使用廉价的CO2和极性改性剂(如MeOH)作为流动相,减少有机溶剂的消耗和处理,使分析更高效,更环保。与正相色谱HPLC相比,超高效合相色谱(UPC2)能够实现联二酚萘更快的分离(为正相HPLC的9倍),且每次分析成本大大降低。解决方案联二酚萘是一种轴手性有机物,如图1所示。联二酚萘样品采用正相HPLC和ACQUITY UPC2系统进行分离,两种方法的主要参数见表1。图2给出了采用正相HPLC(A)和UPC2(B)分离手性联二酚萘图谱。与正相HPLC中的第二个峰18min的出峰时间相比,UPC2的出峰时间为2min,使用UPC2速度增加至正相HPLC的9倍。正相HPLC的分离度(USP)为1.73,而UPC2为2.61。这种情况也说明了使用UPC2可以大大地节约每次分析的成本。UPC2方法使用2mL的甲醇洗脱化合物,但正相HPLC需要35.28mL正己烷和0.72mL甲醇。根据有机溶溶剂的用量计,使用正相HPLC每次分析大约需要2.85美元,而使用UPC2,每次分析仅需要0.08美元。UPC2图谱中的峰形比使用正相HPLC色谱得到的峰形性对称更好。正相HPLC的拖尾因子(USP)分别为1.33和2.18;而UPC2的拖尾因子分别为1.03,1.03。UPC2图谱中的色谱峰比正相HPLC色谱峰更高,更窄,意味着更高的灵敏度和峰容量。在UPC2中,由于使用超临界CO2作为流动相,超临界CO2固有的高扩散性和低粘度对分离产生巨大的影响。高扩散性减少了由流动相和固定相间的传质造成的色谱峰扩散。低粘度可实现最佳高流速而不产生明显的压降。况且,ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。总结ACQUITY UPC2系统展示了使用UPC2在2min内实现联二酚萘对映体的成功分离。与正相HPLC相比,UPC2速度快了8倍,且得到的色谱峰更高,对称性更好。ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。速度上的改善以及使用相对廉价的甲醇代替了正己烷可大大节约每次分析的成本(正相HPLC的2.85美元/次分析对比UPC2的0.08美元/次分析)。沃特世ACQUITY UPC2是实验室常规分离对映体的理想之选。
  • 液相色谱应用:完善制备纯化过程
    概述制备色谱(Prep-LC)以其高分离效率,重现性和低溶剂消耗而闻名,是一种纯化技术。来自中国的色谱专家团队应用了传质动力学建模和吸附等温线,以改善该技术的缺点之一,即超载导致的非线性,这是纯化工艺发展的重要问题。保持直率对于药物提取,纯化仍然是一个巨大的挑战,因为结构相似的化合物可以共存于基质中,特别是对于从生物发酵或多肽合成中获得的药物而言。Prep-LC广泛用作分离和纯化技术,但是由于过载导致的非线性(用于提高通量)对于开发高效的纯化过程一直存在问题。为了克服这个问题,来自中国西南医科大学的一组研究人员选择了羟基酪醇(与橄榄果和叶片中橄榄苦苷水解产生的其他成分同时生成)作为模型化合物,用于系统地开发纯化方法。甲醇和乙醇用作有机改性剂,并在三种商用色谱柱C8TDE,C18ME和C18TDE上确定了最佳流速。曲线用van Deemter方程拟合,并对A,B和C项进行了全面分析。然后研究了吸附等温线,并提出了最合适的基于制备液相色谱的羟基酪醇纯化方法。纯化方法的开发与优化使用Shimadzu Prominence-i9(LC-2030)系列仪器进行HPLC分析,该仪器配备有脱气器,低压梯度仪,混合器,自动进样器和柱箱,并与UV检测器相连。在配备P680A泵,低压梯度仪,带有500μL样品定量环的手动进样器,TCC 100柱温箱和PDA 100检测器的Dionex P680A系列仪器上进行馏分收集。色谱条件为5%甲醇或乙醇水溶液。进样量5μL 柱温40°C 检测波长为280 nm。使用三根色谱柱(C8TDE,C18ME和C18TDE)在0.1至1.5 mL/min的15种不同流速下以0.1 mL/min的增量比较羟基酪醇的传质动力学。为了精确确定变量对等效于理论塔板(HETP)的高度的影响,使用van Deemter方程,Gidddings方程,Horvath和Lin方程以及Knox方程计算了羟基酪醇的传质动力学。 van Deemter方程的三个项,即涡流扩散(A项;由于固定相色谱柱的存在而导致的峰展宽,与流动相的速度无关),分子扩散(B项)和传质阻力(C项) ),确定了三列中的两种有机改性剂。随后研究了吸附等温线,以探讨溶质在固定相和流动相之间处于平衡状态的分布。将浓度较高的羟基酪醇(10–160mmol/L)的标准溶液泵入C18TDE色谱柱,并记录穿透时间。在这项工作中,发现在5%甲醇-水条件下C8TDE和C18ME色谱柱的最佳线速度为6.37 mm/s(0.3 mL/min),在5%乙醇条件下为4.24 mm/s(0.2 mL/min)。以水为流动相。对于C18TDE色谱柱,发现5%甲醇-水的最佳线速度为14.85 mm/s(0.7 mL/min),而5%乙醇-水的最佳线速度为4.24 mm/s(0.2 mL/min)。发现C18TDE柱是最高效的色谱柱,传质动力学分析表明,乙醇是分离羟基酪醇的合适溶剂,因为带有甲醇流动相的B项极其敏感,因此在改变其他条件时很难稳定其性能。由于C18TDE的最小A项以及可接受的B和C值,因此它是最佳选择。因此,选择C18TDE和乙醇纯化羟基酪醇是因为这种组合对变化不敏感,具有最佳的A,B和C项,并且符合Langmuir等温线模型。羟基酪醇已成功纯化,样品量为1.6%,回收率为90.98%,纯度为98.01%,以5%乙醇-水为流动相,采用了优化的分馏方法,流速为0.2 mL/min。动力学使其线性在制备型液相色谱中,传质动力学建模和吸附等温线的使用证明对开发和优化羟基酪醇纯化方法非常有帮助。此方法应适用于其他制药和生物技术产品的纯化。未来将如何在行业中采用这种方法将是很有趣的。(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)根据下列两篇文章编写1. Nonlinear behavior in preparative liquid chromatography: A method-development case study for hydroxytyrosol purificationPublished:Dec 22, 2020Author: Ruting Xiao2. LEGO MINDSTORMS fraction collector: A low-cost tool for a preparative high-performance liquid chromatography systemPublished:Dec 20, 2020Author: Marco Caputo
  • 你的朋友都收藏啦!卡拉洛尔残留测定前处理方法
    卡拉洛尔的危害及检测目的卡拉洛尔又名咔唑心安,化学名4- (3-异丙胺基-2-羟丙氧基) 咔唑,属β肾上腺受体阻断剂,在兽医临床中常用于消除动物紧张,特别是在运输过程中防止因应激导致的动物死亡。β肾上腺受体阻断剂目前已成为临床上常见的七类兽药残留之一,其代表性药物卡拉洛尔常在动物屠宰前数小时内注射使用,因此相对其他兽药可能对消费者造成的健康风险更高。因此我国农业农村部和国家市场监督管理总局2019年发布的GB 31650-2019《食品安全国家标准食品中兽药最da残留限量》中明确规定了卡拉洛尔在猪靶组织中的残留限量。本文阐述了如何将卡拉洛尔从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据行标SN/T 4144-2015,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡拉洛尔应用范围:猪肉、鱼肉、虾肉、肝脏、肾脏、脂肪、奶、鸡蛋和蜂蜜高效液相色谱-质谱/质谱法方法原理:试样中的卡拉洛尔用甲醇(脂肪用乙酸乙酯-正己烷溶解提取)提取,提取液经MCX柱净化(脂肪用GPC净化)后,供液相色谱-质谱/质谱仪测定,外标法峰面积定量。前处理仪器:凝胶净化色谱仪;电子天平(感量0.01 g 和0.1 mg);组织捣碎机;涡旋混匀器;氮吹仪;均质机(10000 r/min);离心机(6000 r/min);具塞塑料离心管(50 mL)。检测仪器:LC-MS/MS+ESI源 样品的制备与保存1.肌肉(猪肉)、内脏(肝脏、肾脏)、脂肪和水产品(鱼肉、虾肉):取代表性样品约500 g,用组织捣碎机捣碎,装入洁净容器作为试样,密封并做好标识,于零下18 ℃下保存。2.奶、蜂蜜、鸡蛋:取代表性样品约500 g,搅拌均匀后装入洁净容器内密封并做好标识,于4 ℃下保存。 前处理方法1.提取肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉称取5 g试样(精确至0.01 g)于50 mL具塞离心管中,加入15 mL甲醇,涡旋提取2 min,用均质器(10000 r/min)均质2 min,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用15 mL甲醇均质提取一次。离心合并有机相,用水定容至50 mL,待净化。 奶、蜂蜜、鸡蛋称取5 g试样(精确至0.01 g)于50 mL具塞离心管中,加入15 mL甲醇,涡旋提取2 min,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用15 mL甲醇涡旋提取一次。离心合并有机相,用水定容至50 mL,待净化。 脂肪称取2 g试样(精确至0.01 g)于50 mL具塞离心管中,加入20 mL乙酸乙酯-环己烷(1+1)溶解并混匀,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用20 mL乙酸乙酯-环己烷(1+1)溶解提取一次。离心合并有机相,用乙酸乙酯-环己烷(1+1)定容至50 mL,待净化。 2.净化肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉、奶、蜂蜜、鸡蛋MCX柱(60 mg/3 mL)依次用甲醇3 mL和水3 mL活化,加入5.0 mL待净化液,用3 mL水淋洗,用抽空3 min。用5 mL 5 %三乙胺-甲醇洗脱,收集洗脱液,于40 ℃氮气浓缩吹干,残渣用50 %乙腈水溶液1.0 mL溶解后,加2 mL乙腈饱和正己烷脱脂,下层清液过0.45 μm滤膜,供液质测定。 脂肪凝胶渗透色谱条件凝胶色谱净化系统:Accuprep(J2);凝胶净化柱:Bio-Beads S-X3(38 μm~75 μm),400 mm×25 mm(内径);流动相:乙酸乙酯-环己烷(1+1);流速:5 mL/min;收集时间:7 min~17 min。净化过程:取10 mL待净化液于GPC样品管中,用GPC柱净化,收集洗脱液,于40 ℃旋转蒸发至干,残渣用50 %乙腈水溶液1.0 mL溶解后,加2 mL乙腈饱和正己烷脱脂,下层清液过0.45 μm滤膜,供液质测定。 国标解读及注意事项1.卡拉洛尔标准物质用乙腈配成100 μg/mL的标准储备液,在0 ℃~4 ℃ 避光保存。2.本方法使用甲醇提取两次目标化合物,阳离子交换柱富集净化,相当于0.5 g试料进行上机检测(其中脂肪样品用乙酸乙酯-正己烷提取两次,再用GPC柱净化,相当于0.4 g试料进行上机检测)。3.MCX固相萃取过程中需要控制流速,使溶液一滴一滴地流下,以保证离子交换的效果。洗脱过程中洗脱溶剂少量多次加入,可以增加洗脱率。4.在GPC净化过程中配合紫外检测器使用,可以准确监测目标化合物及杂质的流出情况。 参考文献SN/T 4144-2015 出口动物源性食品中卡拉洛尔残留量的测定 液相色谱-质谱/质谱法 图1 肌肉、内脏和水产中卡拉洛尔残留量测定的前处理流程图图2 奶、蜂蜜和鸡蛋中卡拉洛尔残留量测定的前处理流程图图3 脂肪中卡拉洛尔残留量测定的前处理流程图
  • 新型制备色谱技术搭载石墨烯研究 更具未来市场
    如今,气相制备色谱主要用于石油化工产品和挥发性天然产物的色谱纯样品制备领域发挥着重要作用。在化学化工医药等广泛采用的层析法以及薄层色谱就是最为典型的制备色谱,换言之,将分析色谱的进样量增大,同时得出大量的所需物质(馏分)的过程就是制备色谱。 石墨烯是石墨中剥离出的单层碳原子厚度的一种结构。据刘剑洪教授介绍,目前市面上比较主流的石墨烯制备方法主要有两种。其一是化学气相沉淀CVD法,主要利用的是化学反应冷却沉积的方式来沉积石墨烯。由于化学反应可控性不强,沉积所形成的石墨微片层数不稳定,其制备的石墨微片很难达到石墨烯的结构要求。第二种方法是氧化还原法,强氧化剂使石墨多层结构中,层与层之间的链接分开,从而得到石墨烯。这种方法市场认可,但是不能准确分离石墨层,并且化学反应会破坏石墨烯结构,产出的石墨微片很难达到市场化要求。 近年来,随着色谱技术的进步和发展,一种全新的制备色谱技术——高速逆流色谱(HSCCC)得到更广泛地应用。由于被分离物质与液态固定相之间能够充分接触,使得样品的制备量大大提高,是一种理想的制备分离手段。 相对于传统的固—液柱色谱技术,高速逆流色谱具有适用范围广、操作灵活、高效、快速、制备量大、费用低等优点。HSCCC技术正在发展成为一种备受关注的新型分离纯化技术,已经广泛应用于生物医药、天然产物、食品和化妆品等领域,特别在天然产物行业中已被认为是一种有效的新型分离技术;适合于中小分子类物质的分离纯化。 我国是继美国、日本之后最早开展逆流色谱应用的国家,俄罗斯、法国、英国、瑞士等国也都开展了此项研究。美国FDA及世界卫生组织(WHO)都引用此项技术作为抗生素成分的分离检定,90年代以来,高速逆流色谱被广泛地应用于天然药物成分的分离制备和分析检定中。 同时工业4.0时代到来,科学技术发展更加变得广泛,新型制备色谱技术将因工业制造业更加精细化发展变得更加具有市场前景。
  • 博纳艾杰尔制备色谱技术交流会顺利举行
    仪器信息网讯 2011年10月13日上午,在BCEIA 2011召开期间,博纳艾杰尔举办了“制备色谱技术交流会”,邀请数位制备色谱专家分享最新的制备色谱材料、制备仪器和方法在药物纯化、多肽物纯化、天然产物的提取等领域的应用。同时,50余名制备色谱用户参加了此次技术交流会。研讨会现场  制备色谱作为纯化的一种重要手段,越来越受到从事药品研究、天然产物提取和高纯试剂研究科学家的重视,并得到了广泛的应用。此次技术交流会由博纳艾杰尔刘建波博士主持,并围绕制备色谱技术的发展和应用展开了热烈讨论。报告人:浙江海正药业股份有限公司中央研究院 陈峰主任报告题目:制备色谱在医药行业的应用  陈峰主任向大家介绍了制备色谱在医药行业的应用及展望。陈峰主任表示高压制备色谱由于其纯化的高效性,在减少时间成本、人力成本、原料成本以及整体成本方面与中低压相比有非常明显的优势,必将成为替代中低压色谱纯化工艺的良好途径。并且随着博纳艾杰尔科技等国内生产商的发展成熟,高性价比高压制备填料的推出,对于降低运行成本、进行工艺推广有着积极的意义。报告人:北京大学药学院 傅宏征教授报告题目:制备色谱技术在皂苷类化合物分离中的应用  傅宏征教授介绍说,制备色谱技术是皂苷分离纯化过程中的必要手段,制备液相色谱具有柱效高、制备的化合物纯度高、制备量大、分离速度快等优点,没有制备液相色谱很难进行复杂结构皂苷的结构研究和生物活性研究。此外,傅宏征教授还向与会者介绍了自己在皂苷分离纯化过程中正相和反相制备色谱分离条件的研究成果。报告人:百济神州(北京)生物科技有限公司 刘红霞博士报告题目:浅谈制备色谱技术与应用  刘红霞博士在会上介绍了制备色谱的特点,并同大家分享了自己在使用制备色谱过程中的一些心得体会。刘红霞博士表示在制备色谱的应用中需要根据样品性质、样品量、时间要求、成本等因素选择合适的条件。其中最重要的是要关注成本,如方法优化、柱子的选择、流速大小、是中压还是高压都是由成本来决定的。仪器本身的质量水平是一方面,使用人员的操作和维护水平也很重要。希望大家以后在使用制备色谱中能够多和色谱、色谱填料生产商交流,在相互交流中促进制备色谱更好的发展。报告人:军事医学科学院放射与辐射医学研究所 马百平教授报告题目:中药化学成分的分离制备  马百平教授根据自己多年来的研究情况,向大家介绍了制备色谱在中药化学成分的分离制备中的应用,如葫芦巴中甾体皂苷的分离纯化、合欢皮中皂苷分离纯化、MCI有效分离中药远志中的皂苷和糖脂等,以及一些最新技术及填料的应用。马百平教授详细介绍了不同应用实例中提取、粗分、纯化等步骤中所采用等具体分析条件。马百平教授特别强调在研究中要明确自己的目的是什么,然后确定自己的研究思路,这样才能更好的选择合适的制备色谱分析条件。报告人:天津博纳艾杰尔科技有限公司工程师王洪宇先生报告题目:纯化创造价值 创新成就梦想  王洪宇先生向与会者详细介绍了博纳艾杰尔的新型分离纯化材料和设备。王洪宇先生介绍说博纳艾杰尔最新研制的CHEETAHTM HP100,是一种高智能化、高普适性、操作更为简单的制备系统,使得制备色谱的使用人员也从色谱分析工作者扩展到非色谱专业人员。  对于博纳艾杰尔可提供的制备纯化服务,王洪宇先生介绍说主要包括:推荐纯化填料规格、实际样品对填料性能进行验证、配套仪器整体解决纯化方案、标准品的制备、纯化工艺研究与放大可行性评估,天然产物、有机合成等提纯mg至kg级纯化服务,分离纯化专业技术培训等。最后,王洪宇先生介绍了天然酚类活性成分、肟类杂质标准品、生物活性小分子、多肽类提取物单一成分的制备等案例。抽奖环节  研讨会中,各位专家的报告均得到了用户的热切关注,大家就自己的疑问及感兴趣的问题同专家做了充分的交流,通过此次研讨会,大家对于制备色谱的应用有了更多的了解和认识。另外主办方博纳艾杰尔为了感谢大家对于此次活动的支持,还特别设置了抽奖环节,给与会人员准备了一份惊喜。  更多精彩报道,敬请关注仪器信息网“BCEIA 2011网络直播”专题。
  • 汇通色谱发布制备型二维液相色谱系统新品
    制备型二维制备液相色谱系统原理:特点:1.集样品的净化与浓缩及分离测定于一体,能起到样品预处理的作用,分析柱受到的污染少,而且大大减少了溶剂用量,避免大量样品的手工前处理工作,可以直接进样分析,加快了分析速度;2.进样量大,灵敏度高,适合做大量样品的痕量分析;3.联用降低样品损失和遭受污染的风险,消除了水蒸气及光照的负面影响,提高方法的可靠性和重要性;4.能从复杂的多组分中排除干扰物质,有选择性的针对感兴趣组分分析;5.容易实现自动化。应用条件: 1.样品组分必须被两种或两种以上的色谱模式分离。这些分离维应该显示出不同的选择性;2.经一种模式分离的样品组分不应该在其后续的分离维中被混合。制备型2D-LC设备流程图:一维和第二维分离模式的分离—富集原理如图所示该装置的一维分离可以将复杂的天然产物分离成18个可重复获得的组分或有效部位,第二维分离使其进一步分离,得到单体化合物,全部的分离工作在计算机控制下,极大地提高了系统性分离制备的效率,为植物提取物全组分纯化,药物杂质多组分纯化提供了高效、可靠的平台。植物提取全组分纯化植物提取物化学成分组成极为复杂,建立一种高效、高通量、系统性地分离制备植物提取物的方法是植物提取物全组分纯化的先决条件。传统的色谱分离方法对于复杂的植物提取物体系存在色谱分辨率低、峰容量低、样品峰重叠等一系列问题,难以实现高通量、系统性的分离制备。而二维色谱的分离制备因为其良好的正交性、更高的峰容量、较高的分辨率和高通量等特点,具有广阔的应用前景。应用实例 : 1、葛根中葛根异黄酮的分离纯化2、多粘菌素的分离纯化创新点:这款产品在以下几个方面进行了创新:(1)在线样品捕集并导入二维分析,这需要在系统设计和软件控制方面做较多的优化;(2)是自动化软件控制,通过多维柱选择阀和软件协同作用,实现一次进样,自动化高纯馏分的收集;(3)是正交模式应用,对于二维液相色谱,唯有保持较高正交性,才能实现最大的分离效果。汇通色谱基于自身在填料选择、流动相优化,以及分析二维液相色谱上多年积累的经验,将多方面的技术整合成新一代的制备型二维液相色谱系统。制备型二维液相色谱系统
  • 制备型色谱柱选择指南
    很多小伙伴对选择一根合适的制备柱而困扰,本文介绍了制备型色谱柱的一些选择要点。 什么是制备型色谱柱 制备的目的是从混合物中得到纯物质,即分离-纯化-目标物,制备柱则是完成这一过程的工具。制备柱固定相种类和分析柱类似,制备柱的特点是:1、柱长短,内径大为了加快分离时间和提高分离效率,制备色谱的进样品量会很大,一般制备柱柱长为50mm-250mm,而内径为10mm-50mm。2、流速高流动相流速一般在10-20ml/min,可以提高产率,降低生产成本。如何选择一款合适的制备柱第一步:选择合适的键合相目前市场需求来看,蛋白质、多肽等类的物质分离纯化十分普遍,其中以C18、C8、C4的键合相居多,月旭科技提供完整的键合相产品线。 第二步:选择合适的填料粒径和孔径根据化合物的性质来选择合适的填料粒径和孔径由分子量选择合适的孔径由压力耐受性和分离难度来选择合适的粒径 第三步:由上样量大小和样品特性选择合适的柱管 第四步:确定合适的流速和上样量制备柱的流速一般与直径的平方成正比,举例:4.6mm分析柱流速为1ml/min,则10mm制备柱约为4.7ml/min。 上样量选择过载上样,特点是节约溶剂、节省时间、增加柱子的使用率,但是过载越多,分离度越差,一般以目标化合物与杂质分离度1.5为标准。上样量可以依据下式计算: Ultimate系列制备柱 采用与分析柱所用填料完全相同,保证了分析规模和制备规模的良好重现性,支持直线放大;独特的装柱技术和全不锈钢的modular柱管,保证了柱床的稳定性,经过测试10μm理论塔板数>35000/m,5μm理论塔板数>75000/m,峰的对称性值为0.95~1.20;还有上样量高、支持线性放大、制备时间短、节约溶剂等特点。更好的柱效和封尾 更好的分离效率、易于线性放大不同内径的柱子能得到同样完美分离 月旭科技拥有Sail 1000制备液相系统和Ultimate,Xtimate 制备色谱柱系列,小伙伴如果在选择制备色谱柱过程中有什么疑问,欢迎咨询月旭科技当地销售代表和经销商。
  • 固相微萃取-高效液相色谱测定水产中丁香酚类麻醉剂
    丁香酚作为一种渔用麻醉剂,在水产品长途运输中,可降低呼吸和代谢强度,减少碰撞,降低其死亡率而被广泛使用。但有研究表明,高剂量的丁香酚会引起心律失常、肾脏损伤、消化系统等问题,对人类健康造成潜在危害,因此日本食品安全法规定丁香酚在水产品体内的最大残留量为50 μg/kg,但我国还未对其使用和残留量制定相关法规,针对其在水产品中的痕量残留检测的文献报道较少。  目前,丁香酚类麻醉剂常用的检测方法有气相色谱-质谱(GC-MS)、高效液相色谱-质谱(HPLC-MS)、高效液相色谱-紫外(HPLC-UV)和电化学(EC)等,但水产品中丁香酚类麻醉剂含量少,基质复杂,对其进行准确检测存在一定困难。  高效的样品前处理方法是获得准确结果的有效方法,现有液液萃取(LLE)、固相萃取(SPE)、分散固相萃取(DSPE)和固相微萃取(SPME)等方法应用在水产品前处理中,其中LLE方法操作简单,但很难消除水产品中色素、脂肪和蛋白质等杂质对测定的干扰,DSPE方法在处理过程中容易造成目标物损失导致回收率偏低,所以SPE和SPME技术在水产品前处理中更为常用,特别是针对水产品中一些挥发性和痕量物质检测时,SPME技术因其高效低耗、绿色环保显示出更大的优势而被广泛使用。  SPME涂层是决定方法选择性、灵敏度、寿命、重现性和应用价值的关键。SPME涂层的种类有限,其萃取容量或选择性难以满足不同性质复杂样品的痕量分析要求,亟待发展新型SPME涂层。氟化共价有机聚合物(fluorinated covalent organic polymer, F-COP)是一类具有拓扑结构的新型多孔聚合材料,主要由轻质原子通过较强的共价键相互连接而成,具有物理化学性质稳定、吸附容量高、孔结构和尺寸可控等特点,而且F-COP结构中含有氟官能团,可以与酚羟基之间形成氢键相互作用,从而实现对目标物的特异性识别与吸附,因此F-COP吸附剂在丁香酚类化合物的富集与分析中有很大的应用潜力。  本文以三氟甲磺酸钪为催化剂,在室温下合成一种F-COP材料,并采用黏合法在石英棒表面制备SPME涂层,结合HPLC-UV建立了测定丁香酚、乙酸丁香酚酯和甲基丁香酚的分析方法,并将该方法成功应用到罗非鱼和基围虾的分析中,为水产品中丁香酚类麻醉剂的残留检测提供技术支持。  01色谱条件  色谱柱:Diamonsil Plus C18-B(250 mm×4.6 mm, 5 μm);紫外检测波长:280 nm;流动相:甲醇-水(60:40, v/v);流速:0.800 mL/min;进样量:20.0 μL;柱温:30 ℃。  02标准溶液的配制  准确称取10.0 mg(精确至0.2 mg)丁香酚、乙酸丁香酚酯和甲基丁香酚标准品,用色谱纯甲醇配制成400 mg/L的混合标准储备液,于4 ℃下冷藏保存备用。实验所需不同浓度溶液均用超纯水进行稀释。  03F-COP-SPME石英棒的制备  F-COP材料的制备  根据文献报道的合成方法并进行适当修改,制备F-COP材料。具体合成方法如下:称取TAPB (36 mg)和TFA (31 mg),加入4 mL的1,4-二氧六环-1,3,5-三甲苯(4:1, v/v)混合溶液,超声至完全溶解。在超声条件下缓慢加入2 mg Sc(OTf)3催化剂,室温下密封静置反应10 min,得到黄色固体物质,分别用1,4-二氧六环和甲醇超声洗涤3次(3×10 mL),然后离心分离,获得的材料在60 ℃真空条件下干燥12 h备用。  F-COP-SPME石英棒的制备  截取5 cm石英棒,依次用1 mol/L氢氧化钠和1 mol/L盐酸溶液各浸泡5 h,再用超纯水超声清洗后于100 ℃下烘干备用。采用黏合法制备F-COP-SPME石英棒,具体过程如下: (a)分别称取90 mg F-COP粉末和90 mg PAN粉末于3 mL玻璃小瓶中,加入1.5 mL DMF,放入小磁子搅拌,超声分散形成均匀浆液;(b)将石英棒插入浆液中,再从浆液中缓慢拉出,置于空气中晾干1 min,再放入80 ℃烘箱中加热30 min,重复此操作2次;(c)将涂覆后的石英棒放入150 ℃烘箱中老化2 h; (d)老化后的石英棒涂层分别用10 mL丙酮、甲醇和超纯水各超声清洗10 min; (e)用刀片小心刮去多余涂层,保留涂层的长度为2.0 cm,最终得到SPME石英棒。F-COP-SPME石英棒每次使用前用10 mL甲醇和10 mL超纯水各清洗10 min后再进行萃取。  04样品前处理  鲜活罗非鱼和基围虾购于广州当地水产品市场,将其洗净去除鱼鳞、虾皮和内脏,然后用组织匀浆机绞碎样品,放入-20 ℃下保存待分析。称取2.00 g样品放入50 mL离心管中,加入5 mL乙腈和5.00 g硫酸钠后,依次涡旋振荡和超声各10 min,再以5000 r/min速度离心10 min,移取上层清液至另一支离心管中,残渣按上述步骤重复提取一次,合并两次上清液,加入5 mL正己烷脱脂,涡旋振荡10 min,静置10 min,去除上层正己烷相,将剩余溶液在室温下氮气吹干,加3.00 mL超纯水重溶,得到样品溶液。  05F-COP-SPME萃取过程  将3.00 mL样品溶液置于4 mL带密封垫的样品瓶中,插入制备的F-COP-SPME石英棒,涂层需全部侵入样品溶液中,室温下搅拌萃取(700 r/min) 30 min。然后将石英棒立即放入加有500 μL乙腈解吸液的小瓶中,超声解吸10 min,解吸液经0.45 μm滤膜过滤后待HPLC-UV分析。F-COP-SPME石英棒每次使用后,用10 mL甲醇和10 mL超纯水各清洗3次后待下次使用。  06模拟计算  通过Gaussian 09和Discovery Studio软件,在密度泛函理论方法优化结构的基础上,计算丁香酚、乙酸丁香酚酯和甲基丁香酚与所制备F-COP材料间的吸附能和电子云分布情况。
  • 解决方案丨GB 31656.9-2021水产品中二甲戍灵残留量的测定 液相色谱-串联质谱法
    实验步骤样品制备本方法适用于鱼、虾、蟹、贝、海参、龟鳖类可食性组织中二甲戊灵残留量的检测样品提取低残留,多种清洗方式自由组合;高通量,最多可达36位样品均质样品净化高精度注射泵,精准控制流速;12通阀快速切换;6通道同步运行,效率高样品浓缩兼容Fotector Plus样品架,无需转移;80个样品可同时浓缩;氮吹针追随液面自动下降定容上机小贴士固相萃取柱用乙腈3mL活化,取备用液过柱,控制流速不超过1mL/min,用乙腈3mL淋洗,加正己烷-丙酮溶液8mL洗脱。收集洗脱液,40 ℃氮吹至近干,准确加入乙腈2mL复溶,加C18吸附剂0.5g,以3000r/min涡旋1min,以4000r/min离心10min,取上清液过0.22μm 滤膜,供液相色谱-串联质谱仪测定。订购信息规格包装货号60mg/3mL50支/盒RC-204-36473RayCure HLB特点高品质进口填料通用型填料,反相吸附剂具有水润性,不怕抽干表面同时具有亲水性和憎水性基团可耐受pH范围:1-14,兼容大多数溶剂对各类极性、非极性化合物具有均衡的保留作用
  • 新品上市 | 给制备柱找一个稳定的“家” ——制备色谱柱架
    制备液相色谱仪作为一种高效的分离纯化利器,在生产和研发等领域都有非常广泛的应用,但是如何放置分离的核心——制备色谱柱却成了一个小小的“难题”。未放置好的制备色谱柱容易发生滚动,造成连接管路的断开甚至是制备柱填料断裂。平放的制备色谱柱为解决用户的制备柱固定问题,月旭科技研发团队设计了一款多功能的制备色谱柱架,可以放置多种不同规格的制备色谱柱,让制备柱的使用更方便。WelPrep R20001制备色谱柱架WelPrep R20001制备色谱柱架容量表中色谱柱规格以月旭科技的色谱柱为标准。产品特点● 可容纳多种规格的制备色谱柱,使用和更换色谱柱更方便,安全;● 304不锈钢材质,表面拉丝加工,美观且耐腐蚀;● 可选择搭配手动进样阀支架,匹配手动进样阀进样阀。产品货号WelPrep R20001制备色谱柱架应用(中间放置了GPC柱
  • 动物性食品中伊维菌素残留量测定的前处理方法
    伊维菌素的危害及检测目的阿维菌素类药物(Avermectins,AVMs)由链霉菌的发酵产物中分离的大环内酯类抗生素,包括伊维菌素、多拉菌素、阿维菌素、爱普菌素等品种。阿维菌素类药物是目前兽医临床上应用广泛的兽用驱虫药,被广泛应用于牛、羊等动物,其作用机理是干扰害虫神经生理活动,致使害虫出现麻痹而中毒死亡。阿维菌素类药物虽然作用剂量小,但其脂溶性较高,残留时间长,世界卫生组织将其列为高毒化合物。该类药物的不规范使用和食物链富集,易引发运动失调、呼吸缓慢、中枢神经系统中毒等症状,甚至致人死亡,对人类健康造成严重威胁,所以应对动物性食品中阿维菌素类药物含量进行监测。我国农业农村部和国家市场监督管理总局2019年发布的GB 31650-2019《食品安全国家标准食品中兽药最 大残留限量》中明确规定了伊维菌素、多拉菌素、阿维菌素、乙酰氨基阿维菌素在动物靶组织中的残留限量。本文阐述了如何将伊维菌素从样品基质中分离提取出来,并经过净化后,转化成液相色谱-串联质谱仪可以检测的形式。以提取、净化为重点,依据国标GB/T 22953-2008,为检测人员和相关领域研究人员提供一定的参考。检测项目:伊维菌素、阿维菌素、多拉菌素、乙酰氨基阿维菌素应用范围:河豚鱼肌肉、鳗鱼肌肉、烤鳗高效液相色谱法方法原理:河豚鱼、鳗鱼和烤鳗中残留的伊维菌素、阿维菌素、多拉菌素和乙酰氨基阿维菌素残留用乙腈提取后,正己烷脱脂,中性氧化铝柱净化。样品溶液供液相色谱-串联质谱仪检测,外标峰面积法定量。前处理仪器:分析天平(感量0.1 mg和0.01 g);组织捣碎机;匀浆机(8000 r/min);离心机(4000 r/min);超声波水浴;液体混匀器;固相萃取装置;氮吹仪。 检测仪器: HPLC-MS/MS+ESI源试样的制备与保存取样品约500 g用组织捣碎机捣碎,装入洁净容器作为试样,密封,并标明标记,于零下18 ℃冰箱中保存。制样操作过程中应防止样品受到污染或残留物含量发生变化。 前处理方法1.提取准确称取2 g组织样品(准确至0.01 g)至50 mL离心管中,加入8 mL乙腈,匀浆机上8000 r/min均质20 s,4000 r/min离心5 min,上清液转移至50 mL离心管中;另取一50 mL离心管加入8 mL乙腈,洗涤匀浆刀头10 s,洗涤液移入前一离心管中,用玻棒捣碎离心管中的沉淀,液体混匀器上振荡30 s,4000 r/min离心5 min,上清液合并至50 mL离心管,离心管中的沉淀再加入6 mL乙腈,用玻棒捣碎离心管中的沉淀,液体混匀器上振荡30 s,4000 r/min离心5 min,上清液合并至50 mL离心管中,乙腈定容至25.0 mL刻度,混匀备用。2.净化向上述装有样品提取液的50 mL离心管中加入10 mL乙腈饱和的正己烷脱脂,涡旋振荡1 min,4000 r/min离心5 min,弃去上层正己烷,重复此操作一次,下层乙腈溶液待用。将中性氧化铝净化柱安置在固相萃取装置上,准确移取10.0 mL已脱脂的样品提取液至中性氧化铝净化柱中,控制流速在1 mL /min~2 mL /min,用2 mL×2乙腈淋洗净化柱,收集全部流出液,流出液转移至吹氮管中,50 ℃下氮气吹至干,用1.00 mL乙腈溶解残渣,并置超声波水浴中超声振荡10 min,0.2 μm滤膜过滤,供液相色谱-串联质谱测定。 国标解读及注意事项1.标准物质用乙腈配成100 μg/mL的标准储备液,在零下18 ℃保存。2.本方法通过乙腈提取,正己烷脱脂,中性氧化铝柱净化的方式进行目标化合物的提取净化。3.本方法采用洗涤均质刀头,三次提取的方式,提高目标化合物的回收率。4.氧化铝柱净化过程中除了活化溶液,其余溶液(上样液和淋洗液)都要收集。为保证净化效果,过柱时需要控制流速,使溶液一滴一滴地流下。可用商品化的中性氧化铝固相萃取柱替代方法中手工填充的中性氧化铝净化柱。5.由于该类化合物没有对应的同位素内标用于回收率的校正,所以本方法使用空白样品提取液配制基质标准工作液,进行定量。 参考文献GB/T 22953-2008 河豚鱼、鳗鱼和烤鳗中伊维菌素、阿维菌素、多拉菌素和乙酰氨基阿维菌素残留量的测定 液相色谱-串联质谱法河豚鱼、鳗鱼中伊维菌素残留量测定的前处理流程图:
  • 利用超高效合相色谱系统分离氯菊酯非对映体异构体
    目的使用沃特世(Waters)ACQUITY UPC2&trade 系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2&trade )方法,用于四种氯菊酯异构体的基线分离。背景公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。与HPLC方法相比,UPC2&trade 实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。解决方案人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß -环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。总结利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
  • 如何使用ELSD克服制备色谱中的局限性
    距离Pure快速纯化系统发布已有一年有余(点此查看去年发布会)。在这一年里,我们的Pure系统进入了许多高校实验室纯化了多种有价值的天然产物,进入了国家级的研究所帮助分离了多糖和酯类化合物,进入了企业有效地提高了有机合成的效率。随着客户数量不断地提升,客户领域不断地扩大,我们发现一个有意思的现象——除了流速、压力、灵活性等等优点,客户对Pure系统印象最深的便是这个神奇的检测器:蒸发光散射检测器(Evaporative Light-scattering Detector),又称ELSD。在色谱纯化的过程中,我们常常因为技术原因而局限了方法的开发。随着时间的推进,当技术发展到足以克服其中一些局限时,我们可以使用许多原先无法用的方法,ELSD就是一个很好的例子。配备了ELSD的快速纯化系统能够检测到许多“困难”的样品,例如碳水化合物,脂质,精油,聚合物和天然产物。由于紫外检测器的局限性,这些样品不能有效地被检测和收集。从檀香提取物中分离α-檀香醇与β-檀香醇可以很好地说明这一点(点此查看檀香提取物应用)。在此应用中紫外无法检测到所有的化合物,而有了ELSD的加持,研究人员可以轻松分辨檀香中大部分的化合物。除此之外,ELSD更是由于检测原理的优势,可以还原混合样品的实际质量比,让我们来结合以下案例来看一下:图1:相同混合样品在UV和ELSD下的检测对比图图2:混合样品实际质量与UV/ELSD峰高的对比表可以看到,在方法与样品都完全一致时,ELSD不仅在峰面积上更加还原样品的实际质量比,在可见性上也适应于弱紫外吸收的样品(Peak 1/Peak 2)。而这一切的优势,都是源于其独特的检测原理。那么相比于单独的紫外检测器,ELSD如何在色谱运行中检测出更多类型的化合物并且还原出其实际质量比的呢?含有待测分析物的柱洗脱液与气流(氮气或空气)混合形成液滴分散液,从而被雾化。液滴分散液中的流动相在漂移管内被蒸发。分散液中残留的干燥分析物颗粒穿过检测器中的激光。激光被颗粒散射并且由光电二极管捕获。激光散射的量与目标化合物的质量有关。ELSD可检测任何不挥发的化合物,而与它的性质无关。因此与仅使用UV检测器相比,该检测器可以帮助您看到更多的物质。ELSD产生的响应高度几乎与目标化合物的质量相同,UV检测器响应在很大程度上取决于消光系数。在大多数情况下,这些系数不能反映样品中化合物的实际质量比。随着溶剂在ELSD检测器中蒸发,几乎不会产生梯度导致的基线漂移,进而我们可以使用紫外截止波长与设置的检测波长冲突的溶剂。ELSD简化了馏分收集,若您的化合物无紫外吸收,则不需要收集所有物质,并且在下游处理过程中需要处理的馏分更少。综上所述,即使在存在紫外线可见化合物的情况下,ELSD对于标准应用也是非常有益的。因为ELSD响应可以更好地反映样品中化合物的实际质量比。而对于存在非发色化合物且对紫外线仅产生轻微或没有响应的“困难”样品,ELSD尤其有用,其检测样品中所有非挥发性分子的工作原理可以有效克服制备过程中遇到的各种局限。那么ELSD就那么完美无缺了吗?其实不然,下一篇文章我们将会给大家介绍传统制备ELSD本身的局限性,以及步琦Pure是如何通过技术革新完善新一代的制备ELSD,使其趋向于完美。看到这里,不知道大家是否领略到了ELSD的魅力呢?如果感兴趣的话请点击此处了解更多关于内置ELSD型制备色谱的详情吧!
  • 月旭科技-专家讲座系列之制备色谱的特征
    月旭科技的专家系列讲座已经连续开展三期了,因为其突出的专业性和实用性,受到了广大用户的关注和喜爱。我们第四期的专家讲座,再次邀请到了大家呼声很高的张维冰教授。4月7日(下周四),张维冰教授将与大家分享主题为《制备色谱的特征》的相关内容。本次专家讲座共分为三个环节:1. 《制备色谱的特征》主题讲座;2. 线上征集内容解答;3. 在线提问互动答疑环节。为解决大家的实际问题,提高大家的参与度,本次讲座还开启了答疑问题内容征集。在文末,通过留言的形式,将您有关制备或制备实验中的相关问题,写下来。对于大家普遍关注或具有典型性的问题,张维冰教授将会在第四期的专家讲座中,为大家详细解答。01主讲人简介现为华东理工大学特聘教授,南昌大学、齐齐哈尔大学讲座教授。月旭科技分离纯化技术中心总工。主要从事包括色谱、毛细管电泳的理论与实践研究工作。张维冰教授师承张玉奎院士,于1999年在中国科学院大连化学物理研究所获理学博士学位,并在台湾中兴大学进行博士后研究工作,后赴德国Max Planck Institute for Dynamics of Complex Technical Systems作访问学者。已发表学术论文600余篇,著作七部,申请及授权专利百余项。负责或参加完成国家自然科学基金 、“973”、“863”及国家“攻关”、“支撑计划”等项目多项。02讲座主题《制备色谱的特征》内容摘要1.制备色谱的简介;2.制备LC与分析LC比较;3.制备色谱分类;4.制备LC的上样。03讲座时间2022年4月7日(下周四)14:00
  • 色谱检测方法新标准来啦(十一)——GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法
    近年来,消费者对功效化妆品的需求与日俱增,庞大的需求吸引着越来越多的企业布局相关领域。但是,随之而来的夸大功效等乱象,严重侵害了消费者权益。为规范和指导化妆品功效宣称评价工作,2021年4月9日国家药监局网站发布了《化妆品功效宣称评价规范》,中国化妆品行业正式迈入功效评价时代。按照要求:2021年5月1日-2021年12月31日期间注册备案的化妆品,应当于2022年5月1日前按照《化妆品功效宣称评价规范》要求,上传产品功效宣称依据的摘要。 同时,《化妆品标签管理办法》也将正式施行,对标签的要求做了更进一步的释义和规范。按照要求,自2022年5月1日起,申请注册备案的化妆品,必须符合《化妆品标签管理办法》的规定和要求。此前申请注册备案的化妆品,未按照本《办法》规定进行标签标识的,应在2023年5月1日前完成产品标签的更新。中国化妆品标签监管也将迈入新台阶。 壬二酸结构 壬二酸(Azelaic acid,CAS 123-99-9),又名杜鹃花酸,是一种天然存在的直链饱和二羧酸,分子式为C9H16O4。壬二酸在医学临床上常用来治疗玫瑰痤疮及寻常型痤疮,同时可以用于美白类和祛痘类化妆品,能有效抑制皮肤上的痤疮杆菌和租房阻断脂肪酸的生成,防止黑色素的形成,可预防斑点形成,减少黑色素沉着。近年来由于其疗效显著以及相对安全性,壬二酸在皮肤保护和皮肤病治疗类化妆品中得到越来越多的使用。科学的检测方法对于目前市场上化妆品标签准确标注壬二酸成分的含量具有非常重要的意义。为此,国家市场监督管理总局和中国国家标准化管理委员会正式发布了《GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法》。 检测方法 方法原理试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离检测,根据保留时间定性,外标法定量。 气相色谱法仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.25mm x 0.25um 方法参数初始温度60℃(保持2min),以10℃/min升到150℃(保持1min),以5℃/min升温至165℃(保持2min),以25℃/min升温至250℃;SPL进样口温度:260℃;FID检测器温度:280℃;分流比:5:1;进样量:1微升;标准曲线浓度:10mg/L,20mg/L,50mg/L,100mg/L,200mg/L,500mg/L,1000mg/L 壬二酸衍生物气相色谱图(壬二酸二乙酯) 灵敏度要求:本方法检出限15mg/KG,定量限50mg/kg。 岛津推荐仪器 气相色谱仪: GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息 气相色谱仪: Nexis GC-2030 / AOC-30系列Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 扫码了解更多信息参考资料:1、GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法2、https://pubchem.ncbi.nlm.nih.gov/compound/Azelaic-acid3、国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年 第50号) 本文内容非商业广告,仅供专业人士参考。
  • 干货分享~卡巴氧、喹乙醇及代谢物前处理方法
    喹噁啉类药物的危害及检测目的喹噁啉类药物是一类化学合成类的抗菌促生长剂,它们的基本结构是喹噁啉-1,4-二氧化物,即喹噁啉环。主要包括喹乙醇、卡巴氧、喹喔啉、喹赛多、喹多辛、西诺喹多、德那资多(肼多司)、乙酰甲喹和喹烯酮等药物。研究表明,喹噁啉类药物对DNA致突变、致损伤,破坏细胞抗氧化作用系统,可以引起细胞自由基的产生,导致细胞DNA发生氧化性损伤,还会引起细胞周期阻滞和细胞凋亡。传统喹噁啉类药物喹乙醇和卡巴氧,由于其对人体危害最/大,世界各国和国际组织对这两种兽药制定了严格的残留限量规定。欧盟1998年发文禁止喹乙醇和卡巴氧在食品动物生产中作为促生长添加剂使用。2020年我国生效实施的GB 31650-2019《食品安全国家标准食品中兽药zui/大残留限量》中规定了猪肌肉和猪肝脏组织中喹乙醇残留标志物的zui/大残留限量。同年我国农业农村部公告第250号规定卡巴氧及其盐、酯为食品动物中禁止使用的药品。但是,这些药物在生产实践中被大量地非法使用或滥用,其残留对消费者健康造成了巨大的潜在威胁。喹乙醇和卡巴氧进入动物体内后,能够在短时间内代谢成十多种产物,研究表明,3-甲基-喹噁啉-2-羧酸(MQCA)是喹乙醇在动物体内代谢后的主要产物,喹噁啉-2-羧酸(QCA)是卡巴氧在动物体内代谢后的主要产物,且该产物在动物体内滞留时间较长,因其含量与总残留关系稳定,所以将MQCA定为喹乙醇在动物体内代谢的残留标示物,将QCA定为卡巴氧在动物体内代谢的残留标示物。本文阐述了如何将卡巴氧、喹乙醇及代谢物从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据国标GB/T 20746-2006,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡巴氧、脱氧卡巴氧、喹噁啉-2-羧酸(QCA)、3-甲基-喹噁啉-2-羧酸(MQCA)应用范围:牛、猪肝脏和肌肉液相色谱-串联质谱法方法原理:卡巴氧:用乙腈+乙酸乙酯(1+1)溶液提取肌肉和肝脏组织中的卡巴氧,提取液经正己烷脱脂后,旋转蒸发至干,残渣用甲酸(0.1 %)+甲醇(19+1)溶液溶解。样液供液质测定,内标法定量。脱氧卡巴氧、QCA、MQCA:用甲酸溶液消化试样,使组织中天然存在的酶失活,然后加入蛋白酶水解,盐酸酸化,离心过滤后,过Oasis MAX固相萃取柱或相当者净化。先用二氯甲烷洗脱脱氧卡巴氧,再用2 %甲酸乙酸乙酯溶液洗脱QCA和MQCA,氮气吹干洗脱液,残渣用甲酸+甲醇(19+1)溶液溶解,样液供液质测定,内标法定量。 前处理仪器:固相萃取装置;氮气浓缩仪;液体混匀器;分析天平(感量0.1 mg和0.01 g);真空泵;均质器;移液器(10 μL~100 μL和100 μL~1000 μL);聚丙烯离心管(50 mL具塞);pH计(测量精度±0.02 pH单位);低温离心机(可制冷到4 ℃);玻璃离心管(15 mL)。检测仪器:HPLC-MS/MS+ESI源试样制备与保存将牛、猪肝脏和肌肉组织样品充分搅碎,均质,分出0.5 kg作为试样,置于清洁样品容器中,密封,并做上标记。将制备好的试样于-18 ℃以下保存。前处理方法1. 卡巴氧的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入5 g中性氧化铝,加入25 mL乙腈+乙酸乙酯(1+1)溶液,于液体混匀器上充分混合5 min,以5000 r/min离心5 min,将上清液移取至另一干净的50 mL离心管,加入10 mL正己烷到管中,振荡2 min,以5000 r/min离心5 min,弃去上层正己烷,将下层清液转移至150 mL鸡心瓶中。加入25 mL乙腈+乙酸乙酯(1+1)溶液,重复提取一次,正己烷除脂后合并两次提取液于同一鸡心瓶中,加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,40 ℃水浴减压旋转蒸发至干。准确加入1.0 mL 0.1 %甲酸-甲醇(19+1)溶液溶解残渣,过0.2 μm滤膜后,供液质测定。2. 脱氧卡巴氧、喹噁啉-2-羧酸、3-甲基-喹噁啉-2-羧酸的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入10 mL 0.6 %甲酸溶液,混匀后,置于(47±3)℃振荡水浴中振摇1 h;先加入3 mL1.0 mol/L Tris溶液混匀,再加入0.3 mL 0.01 g/mL蛋白酶水溶液,充分混匀后,置于(47±3)℃振荡水浴中酶解16 h~18 h。加入20 mL 0.3 mol/L盐酸溶液,振荡5 min,在10 ℃以5000 r/min离心15 min,上清液过滤。将滤液移入Oasis MAX固相萃取柱(3 mL甲醇和3 mL水活化)中,待样液全部流出后,用30 mL 0.05 mol/L乙酸钠-甲醇(19+1)溶液淋洗固相萃取柱,真空抽干15 min。在一支干净的玻璃管内加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,再用4×3 mL二氯甲烷将脱氧卡巴氧洗脱至管内,在45 ℃用氮气浓缩仪吹干。固相萃取柱再用3×3 mL甲醇、3 mL水、3×3 mL 0.1 mol/L盐酸溶液和2×3 mL甲醇-水(1+4)溶液分别淋洗,真空抽干15 min,然后用2 mL乙酸乙酯再淋洗固相萃取柱,弃去全部淋出液,最后用3 mL 2 %甲酸乙酸乙酯溶液洗脱喹噁啉-2-羧酸(QCA)和3-甲基-喹噁啉-2-羧酸(MQCA)到上述吹干的试管中,在45 ℃用氮气浓缩仪吹干。准确加入1.0 mL 0.1 %甲酸-甲醇(19+1)溶液溶解残渣,过0.2 μm滤膜后,供液质测定。注意事项1.标准物质分别用甲醇配制成100 mg/L的标准储备液,其中卡巴氧用二甲基甲酰胺配成100 mg/L的标准储备液,在-18 ℃保存,可使用1年。2.本方法使用了喹噁啉-2-羧酸-d4(QCA-d4)同位素内标进行回收率的校正,也可以配合使用各个化合物相对应的同位素内标。3.本方法各个化合物的提取净化方法不同,原药用乙腈+乙酸乙酯直接提取,代谢物需要酶解后过SPE小柱净化,根据检测需要选择方法,具体方法见流程图。4.MAX固相萃取柱用于酸性化合物的净化,过程是“碱上样、酸洗脱”。淋洗后一定抽干小柱,防止水相进入洗脱液。5.氮气浓缩过程中,吹至近干潮湿状态,定容后采取涡旋加超声的方式复溶,可以提高回收率。6.该方法化合物检出限为0.5 μg/kg,内标添加量为2.0 μg/kg。参考文献GB/T 20746-2006 牛、猪肝脏和肌肉中卡巴氧、喹乙醇及代谢物残留量的测定 液相色谱―串联质谱法图1 卡巴氧残留量测定的前处理流程图图2 脱氧卡巴氧残留量测定的前处理流程图图3 QCA和MQCA残留量测定的前处理流程图坛墨质检标准品推荐喹噁啉类药物信息表(标准溶液)坛墨质检标准品推荐喹噁啉类药物信息表(纯品)本文版权归坛墨质检-标准物质中心所有
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制