当前位置: 仪器信息网 > 行业主题 > >

色谱纸抗体固定方法

仪器信息网色谱纸抗体固定方法专题为您提供2024年最新色谱纸抗体固定方法价格报价、厂家品牌的相关信息, 包括色谱纸抗体固定方法参数、型号等,不管是国产,还是进口品牌的色谱纸抗体固定方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱纸抗体固定方法相关的耗材配件、试剂标物,还有色谱纸抗体固定方法相关的最新资讯、资料,以及色谱纸抗体固定方法相关的解决方案。

色谱纸抗体固定方法相关的资讯

  • 赛分科技推出抗体分析液相色谱方法包
    抗体是免疫系统中一类重要的蛋白质,它们通过特异性方式来结合抗原。这一特性使之在诊断、治疗、基础研究等方面具有巨大的价值。抗体由四条多肽链构成,两条重链和两条轻链,通过二硫键连接而成。它们通常被糖基化,其中羧基端区域高度保守,而氨基端区域在氨基酸序列上可变,从而产生抗体的特异性和多样性。 在一系列的酶切和化学处理下,抗体分子被裂解为各种片段,通过HPLC分离,结合电泳和质谱等手段,抗体的结构可被了解和鉴定。近日,赛分科技的科学家通过体积排阻色谱、离子交换色谱和反相色谱等多种技术实现抗体异构体、各种抗体碎片的高效分离,可对抗体结构进行可靠的鉴定和验证。此外,为抗体药物的质量控制也提供了有效的监控手段。一、结构研究体积排阻色谱法(Zenix&trade SEC) 抗体片段重链和轻链的分离抗体片段Fc和Fab的分离离子交换色谱法(Antibodix&trade WCX) 抗体片段Fc和Fab的离子交换色谱法分离反相色谱法(Bio-C8) Column: Bio-C8 4.6 x 100 (3 &mu m, 300 Å , 4.6 x 100 mm) Mobile Phase A: 0.11% TFA in water Mobile Phase B: 0.09% TFA in ACN Flow: 0.5 mL/min Temperature: 75 oC Detection: UV 280 nm抗体片段重链和轻链的反相色谱法分离二、抗体异构体分析 Column: Antibodix&trade WCX NP5 4.6 x 250 mm Mobile phases: A: 20 mM sodium acetate, pH 5.15, B: A + 1 M LiCl Flow rate: 0.8 mL/min Detection: UV 280 nm.单克隆抗体的稳定性分析 更多信息请参考:http://www.sepax-tech.com.cn/training/Antibody Solution Kit.pdf关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展  第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状  气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。  首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。  一.早期使用的气相色谱固定液  气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。  马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。  后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。  1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。  为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。  在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。表1 McReynolds 固定液表  说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶  McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。  McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。  后来Hawkes推荐的较常用的气液色谱固定液有下列一些:  (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)  (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 ( 含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。  他还推荐了最常用的 6 种气相色谱固定液如下表2。表2 最常用的6种气相色谱固定液  自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。  有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。  二、硅氧烷是现时气相色谱固定液的主体  尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。  (一)热稳定性好的固定液  目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。  (1)耐高温聚二甲基硅氧烷  有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。  前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。  (2)使用交联的聚硅氧烷固定液提高其热稳定性  在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。  (a)引入乙烯基  早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。  (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合  1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。  (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性  在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1:图1 硅氧烷/硅亚芳基共聚物结构  其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据  (4) 在聚硅氧烷链中引入硼烷提高热稳定性  在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。  Dexsil有三个品种及其结构和极性如下表4:表4 三个品种Dexsil的结构及极性  HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2:图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图  色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m  载气:氦,18 mL/min, 在 35下测定  拄温:30-430 ℃,程序升温,10℃/min  检测器温度:FID 450 ℃  三、极性固定液  小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。图3 使用DB-17ms分析22种杀虫剂的色谱图  另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱)图4 DB-1701 分离22种杀虫剂的色谱图  各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。表5 五类典型气相色谱固定液的使用情况  四、选择性固定液  选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。  第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。表6 ASTEK公司的9种环糊精衍生物毛细管商品柱  五、近年商品柱所使用的新固定液  近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。  室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。表7 几种商品离子液体固定相的极性(Supelco公司)  *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性  小结:  气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)  (作者:北京理工大学傅若农教授)
  • mAbs | 使用在线亲和色谱-质谱对影响抗体-FcγRIIIa V158 (CD16a)结合的属性进行非靶向表征
    大家好,本栏目供稿来自于中山大学李惠琳课题组,以后将定期为大家带来质谱新技术、新方法领域的前沿文献与工作交流,欢迎评论互动。本周为大家分享一篇发表在mAbs上的文章,Non-targeted characterization of attributes affecting antibody-FcγRIIIa V158 (CD16a) binding via online affinity chromatography-mass spectrometry1,通讯作者是美国加利福尼亚州Amgen公司的Pavel V. Bondarenko。Fcγ受体(FcγR)是免疫球蛋白(Ig)超家族的膜结合糖蛋白,存在于免疫系统的许多造血细胞表面。这些受体可以结合IgG免疫复合物,在免疫反应的调节中发挥重要作用。FcγRIIIa(CD16a)是一种低亲和力Fc受体,与抗体依赖性细胞介导的细胞毒性(ADCC)有关。研究表明FcγRIIIa结合亲和力与治疗性单克隆抗体(mAb)的ADCC效力之间存在良好的相关性,测量这种相互作用的亲和力是体外评估单克隆抗体疗法ADCC效力的一个重要部分。Fc上保守N糖基化位点(N297)的聚糖组成对CH2结构域的构象动力学和灵活性有显著的影响,并进一步关系到该结构域与Fcγ受体的亲和力,这种亲和力的差异为区分单克隆抗体糖型提供了一种独特的方法。在文章中,作者描述了一种使用固定化FcγRIIIa受体的亲和层析方法,通过在线质谱(MS)和离线馏分收集,在单个非靶向大规模实验中研究影响FcγRIIIa亲和性的因素。一、基于Fcγ受体亲和层析的抗体糖型鉴别图1显示了利妥昔单抗的糖型分离。从个体保留时间来看,半乳糖基化在与受体的结合亲和力中起着重要作用,更高水平的半乳糖导致亲和力增加(图1b)。几种糖型在提取质谱图(XMC)中含有多个峰(图1c),例如G1F/G1F。这是因为可能存在质量相同的位置异构体(例如G1F/G1F和G0F/G2F含有相同数量的糖,但排列方式不同)。此外,一次只有一个Fc-聚糖与Fc-γRIIIa相互作用,因此不对称糖基化单抗的一侧比另一侧具有更高的亲和力,这可以表现为两个不同的亲和力峰。此外还检测到两种无核心岩藻糖基化物种(M5/M5和G0F/G0)。据报道,这些物种的亲和力和ADCC效价显著增加,但这似乎并未反映在本实验中的保留时间上。最值得注意的是,据报道,M5/M5糖型对FcγRIIIa的亲和力增加了4-6倍,但在所有糖型中洗脱时间最早。仅观察到相对于岩藻糖基化G0F/G0F,无岩藻糖基化G0F/G0糖型的亲和力略有增加,保留时间偏移的幅度与G1F/G1F糖型相当,而不是文献中报道的增加10-50倍。作者推测,与大多数已发表的结合研究中使用的糖基化FcγRs相比,这种偏离预期保留行为的现象可能源于柱上的FcγRIIIa受体是无糖基化的。观察到具有唾液酸化的抗体分子的洗脱时间比其无唾液酸化的对应物稍早。例如,在图1c中,糖型G0F/S1G1F的洗脱时间与G1F/G1F相同。G0F/S1G1F的结构类似于G0F/G2F,在一个半乳糖上带有末端唾液酸,但其洗脱时间更早(类似于G1F)。这表明唾液酸残基可能阻止或抑制第二半乳糖与FcγRIIIa的相互作用,使其更类似于G1F聚糖。图1 利妥昔单抗的FcγRIIIa亲和LC-UV-MS表征。(a) 整个样品的去卷积质谱;(b) 280 nm紫外检测的LC色谱图。星号表示A1G0F的洗脱。(c) 提取的质谱图(XMC)用于检测含有M5/M5、G0F/G0F、G0F/G1F、G1F/G1F、G1F/G2F和G2F/G2F聚糖的单个完整抗体分子。二、亲和层析结果与AlphaLISA结合分析结果的相关性 图2显示了根据平均加权保留时间(根据峰面积加权)排列的四种治疗蛋白质的亲和色谱图。图2b和c显示了平均保留时间与AlphaLISA结合试验的相对亲和力百分比之间的线性相关性。这两种试验报告了类似的趋势,其中糖基化Fc融合蛋白显示无结合,mAb3(IgG2)显示非常弱的结合,与mAb1相比,mAb2(具有高水平半乳糖基化的IgG1)的结合增加。这为使用FcγRIIIa亲和层析方法表征影响结合的产品属性的影响提供了验证。图2 (a) 四种具有代表性的治疗蛋白模式的FcγRIIIa亲和色谱图:无糖基化Fc融合蛋白(紫色)、IgG2单抗(红色)和两种具有不同糖基化模式的IgG1单抗(蓝色和绿色)。(b) 相关图显示了相对结合亲和力与平均加权保留时间之间的关系,去除了异常样本。(c) 相对结合亲和力与加权保留时间的相关图,包括异常样本。三、受体亲和力的差异导致IgG亚类效应器功能的变化IgG亚类(IgG1、IgG2、IgG3和IgG4)的Fc区域具有高度的序列同源性,但在几个关键残基上有所不同,这决定了它们与各种Fc受体的亲和力。为了探究不同Fc结构域的角色,作者对具有相同Fab结构域,但Fc结构域分别来自IgG1、IgG2和IgG4的mAb2变体,以及一种工程化稳定效应器无功能变体(SEFL2)进行亲和分离(图3b)。SEFL2变体是一种无糖基化IgG1变体(N297G),带有额外的工程铰链二硫键,设计为不具有ADCC功能。保留时间数据表明,工程SEFL2-IgG1模式的亲和力最低,其次是IgG2、IgG4,然后是IgG1,这些样品的整体洗脱顺序与已有文献报道的结果一致。然而,IgG4变体的洗脱时间似乎高估了结合亲和力,洗脱时间仅略早于IgG1变体。这种增加的表观亲和力或许与柱上受体的糖基化性质有关,不应用于评估FcγRIIIa对IgG4亚类单克隆抗体的亲和力。图3 (a) 人类IgG重链CH2区域的对齐序列(EU编号)。参与FcγRIIIa结合的IgG Fc残基以绿色突出显示(本研究中通过实验测量),蓝色和红色突出显示(文献报道),二硫键以黄色突出显示。与IgG1序列不同的残基以粗体显示。(b) 具有相同Fab区和不同Fc区的四种mAb2变体的紫外色谱图(λ=280 nm),对应于IgG1(蓝色)、IgG2(品红)、IgG4(褐红色)和带有N297G突变的IgG1 SEFL2(黑色)。插图显示了AlphaLISA测量的相对FcγRIIIa结合亲和力值。亲和力是相对于mAb2参考标准物质的IgG1变体测量的。四、二硫化物异构体对IgG2单抗中FcγRIIIa结合的影响鉴于IgG2亲和色谱图的异质性,作者选择具有二硫化物变体的IgG2(mAb3)进行进一步表征。该IgG2单抗存在几种天然的二硫键结构异构体,它们可以影响疗效和Fc受体结合行为。对二硫化物异构体的反相和FcγRIIIa亲和分离的并排比较(图4)。有趣的是,亲和分离方法中使用的类天然条件仍然能够区分这些结构异构体,这表明这些异构体对Fc和FcγRIIIa的结合亲和力也存在一定影响。图4 (a) 在280 nm处进行紫外检测的反相色谱图,显示天然产生的IgG2二硫化物变体和富集IgG2-a和IgG2-B的纯化样品的混合物分离。(B)相同样品的FcγRIIIa亲和紫外色谱图,显示IgG2二硫化物亚型的部分分辨率。六、在应力条件下识别对FcγRIIIa结合产生负面影响的修饰对受体结合位点或其附近的残基进行化学修饰可影响抗体-受体相互作用的亲和力,从而导致ADCC和疗效的变化。这种修饰可以在各种应激条件下诱导。本研究使用热应激利妥昔单抗样品(40°C,持续6周),通过LC-MS/MS肽图谱检测到200多个修饰。对比具有温度应力的样品和保持在4℃的对照样品的亲和色谱图,每个样品的主峰收集为四个组分(F1–F4)。40°C下的应力导致FcγRIIIa结合的最低亲和组分F1的峰面积略有增加(2%~4%)。对每个收集的组分进行肽图谱绘制,以确定组分中修饰相对百分比的趋势(图5)。馏分被分别赋值为0.1、0.2、0.3、0.4,以便斜率与R2进行比较,并且斜率的R2与绝对值之和可用作评分。具有正斜率的修饰(如半乳糖基化和唾液酸化)表明对受体结合有有利影响,而具有负斜率的修饰(如去酰胺化)表明对结合有不利影响。应激后,组分中的化学修饰斜率(N329脱酰胺)更高(图5b、d、f),而应激前后糖类的斜率(图5c、e、g)保持相似,表明斜率主要由聚糖对受体亲和力的影响以及组分中存在的糖类来定义。图5 (a)亲和色谱图突出显示了在40°C下热应激6周后,相对于4°C对照样品,mAb1峰值强度的变化。(b–g)FcγRIII亲和组分F1、F2、F3和F4中所选修饰的相对丰度变化。(h,i)R2与4°C组分中PTMs的百分比变化斜率的关系。R2与斜率的关系由组分中所有检测到的PTMs的线性回归确定。在所有面板中,红色表示热应力样本(40°C,6周),黑色表示4°C对照样本。所有统计分析中确定的关键属性汇总如表1所示。选择六个指标来评估数据的显著性,以确定修饰是否对FcγRIIIa结合至关重要。评估显示,利妥昔单抗P231(EU P227)、N301(EU N297)和N329(EU N325)三个残基上的11个修饰对结合的影响具有统计学意义。作者进一步分析了这些残基的空间分布,结果显示每个已鉴定的残基都与IgG1到FcγRIIIa的结合域非常接近,为确认这些属性对结合有重要影响提供了额外的信心。表1 确定关键性属性的统计分析总结撰稿:夏淑君编辑:李惠琳文章引用:1 Daniel W. Woodall, Thomas M. Dillon, Kevin Kalenian, et al. Non-targeted characterization of attributes affecting antibody-FcγRIIIa V158 (CD16a) binding via online affinity chromatography-mass spectrometry. mAbs, 2022, 14(1): 2004982.
  • 《固定污染源废气VOCs的测定气相色谱-质谱法》地标发布(附全文)
    p  日前,重庆市环保局发布《固定污染源废气VOCs的测定气相色谱-质谱法》。全文如下:/pp style="text-align: center "img title="1.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/06055e9a-e5bd-4f16-84eb-3264f8978689.jpg"//pp style="text-align: center "img title="2.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/6fe66004-5e87-46b1-9ae6-d4f3281d295e.jpg"//pp  前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律、法规,保护和改善生活环境、生态环境,保障人体健康,规范固定污染源废气中挥发性有机污染物的监测方法,制定本标准。/pp  本标准规定了固定污染源废气中挥发性有机物的气相色谱-质谱测定法。本标准为首次发布。本标准由重庆市环境保护局提出并归口。/pp  本标准起草单位:重庆市环境监测中心。/pp  本标准主要起草人:邓力,罗财红,邹家素,朱明吉,郭志顺,龚玲,余轶松。/pp  本标准于2016年7月20日发布,自2016年10月1日起实施。/pp style="text-align: center "strong固定污染源废气VOCs的测定气相色谱-质谱法/strong/pp  警告:本方法所使用的部分化学药品对人体健康有害,操作时应按规定要求佩带防护器具,避免接触皮肤和衣服。所有药品均应完全密封独立储放,并放置于低温阴凉处,以免外漏污染。/pp  1 适用范围/pp  本标准规定了固定污染源有组织和无组织排放废气中19种挥发性有机物的气相色谱-质谱法。本方法适用于固定污染源有组织和无组织排放废气中19种挥发性有机物的测定,包括苯,甲苯,乙苯,间-二甲苯,对-二甲苯,邻-二甲苯,1,2,4-三甲苯,1,3,5-三甲苯,1,2,3-三甲苯,苯乙烯,丙酮,丁酮,环己酮,乙酸乙酯,乙酸丁酯,正丁醇,异丁醇,甲基异丁酮,乙酸异丁酯。其他污染源排放的挥发性有机物通过验证也适用于本标准。本方法在进样量为100.0ml时,19种物质其检出限范围为0.0008mg/m3~0.03mg/m3,测定下限为0.0032mg/m3~0.12mg/m3。详见附录A。/pp  2 规范性引用文件/pp  本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T37/pp  3 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T397固定源废气监测技术规范HJ/T55大气污染物无组织排放检测技术导则3方法原理废气中的挥发性有机物由惰性化处理过的不锈钢罐直接采样,经过进样预浓缩系统浓缩后进入气相色谱-质谱联用仪分析,采用保留时间和定性离子定性,内标法定量。/pp  4 试剂和材料4.1VOC标准气体:浓度为100.0mg/m3。高压钢瓶保存。可根据实际工作需要,购买有证标准气体或在有资质单位定制合适的混合标准气体。/pp  4.2内标标准气体:组分为1,4-二氟苯、氯苯-d5。各组分浓度为100.0mg/m3。/pp  4.3 4-溴氟苯(BFB):浓度为50μg/ml。用于GC-MS性能检验。取适量色谱纯的4-溴氟苯(BFB)配制于一定体积的甲醇(4.7)中。/pp  4.4 高纯氦气( 99.999%)。/pp  4.5 高纯氮气( 99.999%)。/pp  4.6 液氮。/pp  4.7 甲醇:农残级或者等效级。/pp  5 仪器和设备/pp  5.1 气相色谱-质谱联用仪:气相部分具有电子流量控制器,柱温箱具有程序升温功能,可配备柱温箱冷却装置。质谱部分具有70eV电子轰击(EI)离子源,有全扫描/选择离子(SIM)扫描、自动/手动调谐、谱库检索等功能。/pp  5.2 毛细管色谱柱:60m× 0.25mm,1.4μm膜厚(6%腈丙基苯基-94%二甲基聚硅氧烷固定液),或其他等效毛细管色谱柱。/pp  5.3 气体冷阱浓缩仪:具有自动定量取样及自动添加标准气体、内标的功能。至少具有二级冷阱:其中第一级冷阱能冷却到-180℃,第二级冷阱能冷却到-50℃:若具有冷冻聚焦功能的第三级冷阱(能冷却到-180℃),效果更好。气体浓缩仪与气相色谱-质谱联用仪连接管路均使用惰性化材质,并能在50℃~150℃范围加热。/pp  5.4 浓缩仪自动进样器:可实现采样罐样品自动进样。/pp  5.5 罐清洗装置:能将采样罐抽至真空( 10Pa),具有加温、加湿、加压清洗功能。/pp  5.6 气体稀释装置:最大稀释倍数可达1000倍。/pp  5.7 采样罐:内壁惰性化处理的不锈钢采样罐,容积3.2L、6L等规格。耐压值 241kPa。/pp  5.8 液氮罐:不锈钢材质,容积为100L~200L。/pp  5.9 流量控制器:与采样罐配套使用,使用前用标准流量计校准。/pp  5.10 校准流量计:在0.5ml/min~10.0ml/min或10ml/min~500ml/min范围精确测定流量。/pp  5.11 真空压力表:精确要求≤7kPa(1psi),压力范围:-101kPa~202kPa。/pp  5.12 抽气泵:双通道无油采样泵,双通道能独立调节流量。/pp  5.13 采样管:足够长度的聚四氟乙烯管。5.14过滤器或玻璃棉过滤头:过滤器孔径≤10μm,或直接将实验用玻璃棉加装在采样管前端,过滤排气中颗粒物。/pp  6 样品/pp  6.1 采样前准备罐清洗:使用罐清洗装置对采样罐进行清洗,清洗过程可按罐清洗装置说明书进行操作。清洗过程中可对采样罐进行加湿,降低罐体活性吸附。必要时可对采样罐在50℃~80℃进行加温清洗。清洗完毕后,将采样罐抽至真空( 10Pa),待用。每清洗20只采样罐,应至少取一只清洗后的罐注入高纯氮气,分析氮气样品,以确定清洗后的采样罐是否清洁。每个采集高浓度样品的真空罐在使用后应标识,清洗后放置1天以上,使用前进行本底污染的分析,确认无污染残留后使用。/pp  6.2 预调查在测试固定污染源废气中挥发性有机物排气前,需事先调查污染源相关信息,包括企业生产使用的有机溶剂名称及用量、生产负荷、生产工艺、废气治理工艺等情况。/pp  6.3 采样/pp  6.3.1 有组织采样按照GB/T16157、HJ/T373、HJ/T397的相关规定和采样要求,确定采样位置、采样频次和采样时间,进行样品采集。/pp  6.3.1.1 采样管路连接。如图1管路连接。洗涤瓶和吸附剂用于排放废气的吸收处理。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f0a97bce-a009-40e9-af91-b8898aa8989a.jpg"//pp /pp   系统漏气检查:关上采样管出口三通阀,打开抽气泵抽气,使真空压力表负压上升到13kPa,关闭抽气泵一侧阀门,如压力计压力在1min内下降不超过0.15kPa,则视为系统不漏气。如发现漏气,要重新检查、安装,再次检漏,确认系统不漏气后方可采样。当排放口排气压力为正压或常压时,可直接用聚四氟乙烯采样管连接不锈钢罐进行采样,在采样管前端加塞玻璃棉过滤头。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。当排放口排气压力为负压时,应按照图1所示不锈钢罐采样系统连接。在聚四氟乙烯采样管后连接一个三通阀门,分别连接不锈钢罐和抽气泵。采样前,开启连接抽气泵一侧的阀门,以1L/min流量抽气约5min,置换采样系统的空气。然后切换至不锈钢罐的气路,开启阀门使气体进入不锈钢罐。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。流量控制器采样流量对应的采样时间见表1。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1ed36cb3-6d07-41e9-828a-e6574e1f5699.jpg"/ /pp /pp  6.3.1.2 同步测定并记录排气管道内废气温度、流量和含湿量等参数。/pp  6.3.1.3 由于质控等特殊要求,需要采集平行样品时,可将三通阀更换为四通阀,将负压相同的两个不锈钢罐并联,同时开启,同步采集。/pp  6.3.2 无组织采样按照HJ/T55的相关规定和采样要求,确定采样点位、采样频次和采样时间,进行样品采集。/pp  6.3.2.1 开启不锈钢罐控制阀门。当采集瞬时样品时,只需开启不锈钢罐阀门,使无组织气体被吸入不锈钢罐内,达到压力平衡后关闭不锈钢罐。当需要采集累积时段样品时,不锈钢罐安装流量控制器,根据无组织中VOCs含量大小调整持续采样时间。不同恒定流量对应的采样时间见表1。/pp  6.3.2.2 同步测定并记录大气压力、风速风向、环境温度等气象参数。/pp  6.4 全程序空白采样将高纯氮气(4.5)注入预先清洗好并抽至真空的采样罐(5.7)带至采样现场,与同批次采集样品后的采样罐一起送回实验室分析。/pp  6.5 样品保存不锈钢罐采样后,立即将阀门拧紧密封。样品在常温下保存,采样后尽快分析,14天内分析完毕。/pp  7 分析/pp  7.1 仪器参考条件/pp  7.1.1 预浓缩仪进样装置条件一级冷阱:捕集温度:-150℃ 解析温度:10℃ 阀温:100℃ 烘烤温度:150℃ 烘烤时间:5min 二级冷阱:捕集温度:-30℃ 解析温度:180℃ 烘烤温度:180℃ 烘烤时间:2.5min 三级聚焦:聚焦温度:-160℃ 解析时间:2.5min。7.1.2气相色谱仪参考条件柱温:50℃(5min)??℃/min?℃(2min)??℃/min?℃(1min) 载气流量:1.0ml/min 进样口温度:140℃ 溶剂延迟时间:2min 载气流量:1.0ml/min 分流比:10:1。/pp  7.1.3 质谱仪参考条件扫描方式:全扫描或选择离子扫描,选择离子扫描参数参考表2 扫描范围:30aum~200aum 离子化能量:70eV。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/0633fc24-82db-45f5-bb5e-47e0f33318a1.jpg"//pp  7.2 仪器性能检查在分析样品前,需要检查GC/MS仪器性能。将4-溴氟苯(BFB)(4.3)1μL(50ng)进样,得到的BFB关键离子丰度必须符合表3中的标准。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f81001d2-5d95-49dc-8f72-4288bf0ac3ae.jpg"/  /pp  7.3 校准/pp  7.3.1 标准系列配制将VOC标准气体(4.1)的钢瓶和高纯氮气(4.5)钢瓶与气体稀释装置(5.6)连接,设定稀释倍数,打开钢瓶阀门调节两种气体的流速,待流速稳定后取预先清洗好并抽至真空的采样罐(5.7)连在气体稀释装置(5.6)上,打开采样罐阀门开始配气。配制1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3(可根据实际样品情况调整)的标准系列。/pp  7.3.2 内标使用气体配制内标使用气体浓度为5.0mg/m3。将内标标准气体(4.2)按7.3.1步骤配制而成。/pp  7.3.2 校准曲线绘制通过浓缩仪自动进样器(5.4)分别抽取1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3标准系列气体400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件,依次从低浓度到高浓度进行测定。根据目标化合物/内标化合物质量比和目标化合物/内标化合物特征质量离子峰面积比,用相对响应因子(RRF)绘制校准曲线。按照公式(1)计算目标化合物的相对响应因子(RRF)。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/467c1605-df2c-47d8-857f-366254063acf.jpg"/  /pp /pp  7.3.3 标准色谱图目标化合物参考色谱图见图2。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/e33d0bdb-4eb7-4761-a50d-fb5b6548ce04.jpg"/  /pp  7.3.4 目标化合物出峰时间详见附录B,附表B-1。7.4样品测定通过浓缩仪自动进样器(5.4)抽取样品400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件进行测定。/pp  7.5 全程序空白样品测定按照与样品测定相同的操作步骤进行全程序空白样品的测定。/pp  8 结果计算与表示/pp  8.1 定性以全扫描方式进行测定,根据样品中目标化合物的相对保留时间、定量离子和辅助定性离子间的丰度比与标准中目标化合物对比来定性。样品中目标化合物的相对保留时间(RRT)与校准系列中该化合物的相对保留时间的偏差应在?3.0%内。校准系列目标化合物的相对离子丰度高于10%以上的所有离子在样品中要存在。标准和样品谱图之间上述特定离子的相对强度要在20%之内。按照公式(2)计算相对保留时间。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1dcedb09-0915-4232-ade5-fa45c4d8f3ad.jpg"/  /pp  8.2 定量/pp  8.2.1 目标化合物的浓度计算采用平均相对响应因子(RRF)进行定量计算,平均相对响应因子按照公式(3)计算,样品中目标化合物的浓度按照公式(4)进行计算。/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/96c92845-3949-481d-8186-22de4ae11916.jpg"/  /pp   8.2.2 总挥发性有机化合物(TVOC)的浓度计算/pp   空气样品中TVOC的浓度按公式(5)进行计算。??/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/8d14fb5b-e6c7-4d7d-b302-8122c6649f01.jpg"/  /pp  8.3 结果表示列出所有目标化合物的浓度。当目标化合物的浓度小于1mg/m3时,分析结果保留至小数点后3位,当目标化合物的浓度大于等于1mg/m3时,保留3位有效数字。/pp  9 精密度和准确度配制挥发性有机物含量为5.0mg/m3标准样品,连续进样5次,精密度由相对标准偏差表示,结果小于10% 准确度由相对误差表示,结果小于15%。结果详见附录C。/pp  10 质量保证和质量控制/pp  10.1 全程序空白每批样品应至少做一个全程序空白样品,目标化合物浓度均应低于方法测定下限。否则应查找原因,并采取相应措施,消除干扰或污染。/pp  10.2 空白加标每批样品应至少做一个空白加标,回收率应在80%~120%。/pp  10.3 平行样品分析每10个样品或每批样品(少于10个)采样采集平行样品,平行样品分析相对偏差小于30%。10.4每批样品应分析一个校准曲线中间浓度点的样品,其相对误差要在20%以内。若超出允许范围,应重新配制中间浓度点,若还不能满足要求,应重新绘制校准曲线。10.5系统处理要求试验中用到的不锈钢罐及其配气系统、清洗系统和预浓缩进样系统,管路内壁都需要硅烷化处理,减少对目标化合物的吸附。/pp  11 注意事项/pp  11.1 采样时,应根据实际情况注意温度、湿度及颗粒物等因素对采样效率的影响。/pp  11.2 实验室环境应远离有机溶剂,降低、消除有机溶剂和其它挥发性有机物的本底干扰。/pp  11.3 进样系统、冷阱浓缩系统中气路连接材料挥发出的挥发性有机物会对分析造成干扰。适当升高、延长烘烤时间,将干扰降至最低。/pp  11.4 所有样品经过的管路和接头均需进行惰性化处理,并保温以消除样品吸附、冷凝和交叉污染。/pp  11.5 易挥发性有机物在运输保存过程中可能会经阀门等部件扩散进入采样罐中污染样品。样品采集结束后,须确认阀门完全关闭,并用密封帽密封采样罐采样口,隔绝外界气体,可有效降低此类干扰。/pp  11.6 分析高浓度样品后,须增加空白分析,如发现分析系统有残留,可启用气体冷阱浓缩仪的烘烤程序,去除残留。/pp style="text-align: center "img title="12.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/e7de60aa-8ae0-4901-9782-72e6e2947b07.jpg"//pp style="text-align: center "img title="13.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/a9853489-4702-497f-bcf4-5e103b8aa972.jpg"//pp style="text-align: center "img title="14.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/721fae4c-d91f-4ef5-ba55-962ea8c9682d.jpg"//pp/p
  • 沃特世推出专门用于单克隆抗体分析的色谱耗材
    p style="line-height: 1.5em text-align: justify "  strong仪器信息网讯 /strong沃特世宣布推出一种新的阳离子交换色谱柱产品线,该种专门的消耗品可以简化和改进单克隆抗体(mAb)疗法的表征和检测。新的BioResolve SCX mAb色谱柱和Vanguard FIT管状柱技术,连同一套补充消耗品,使基于世界卫生组织、美国食品药品监督管理局和人用药物注册技术要求国际协调会(ICH)要求的、确认生物制剂和生物仿制药在发现、开发和制造应用中的有效性和安全性过程中的mAb电荷变异分析成为可能。/pp style="line-height: 1.5em text-align: justify "  “随着这些产品的推出,我们正在采取一种全面的方法来进行单克隆抗体分析,并将其向前推进了一大步。科学家们现在有了一套完整的工具来分析单克隆抗体的电荷变化,这将使他们对单克隆抗体以及单克隆抗体的结构和功能之间的关系有一个更完整和详细的了解,”沃特世公司化学品副总裁Erin Chambers博士说。“我们的目标是帮助简化分析流程,加快候选药物的开发,以便更快地为患者提供所需的治疗方法。”/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/032f7e7c-e24f-4ee5-bf7a-eece881b559c.jpg" title="BioResolve_SCX_Family.jpg" alt="BioResolve_SCX_Family.jpg"//pp style="line-height: 1.5em text-align: justify "  BioResolve SCX MAB色谱柱包含一种创新的强阳离子交换剂,该交换剂基于一种新的聚合物成分、亲水性涂层和多组分表面化学试剂,所有这些都是在沃特世的化学工厂合成的。基础材料由三微米无孔颗粒组成,以实现最佳扩散动力学、耐高压能力和与HPLC、UHPLC和UPLC 方法的兼容性。/pp style="line-height: 1.5em text-align: justify "  这些色谱柱还配备了首创的Vanguard全集成技术(FIT),可防止微粒和其他污染物被带到色谱柱上,从而延长其使用寿命并降低每次分析成本,同时不会影响分离的质量。 BioResolve SCX mAb色谱柱和Vanguard FIT管状柱的每批材料都经过了专门的质量控制测试,采用了一种新的市售单克隆抗体电荷变体标准,该标准来自美国国家科学技术研究院参考材料8671(即人源化IgG1κ),以帮助确保新产品的批次间一致性。/pp style="line-height: 1.5em text-align: justify "  当与配备Auto?Blend PLUS技术的沃特世液相色谱系统配合使用时,科学家们可以利用预先配置的Empower 软件方法,自动混合多达四种溶剂的任意组合或比例,并编程确定pH和离子强度。这将显着减少了人为错误,并消除了手动准备缓冲流动相的任务。 沃特世还专门为那些寻找mAb电荷变异分析整体解决方案的科学家配制了新的BioResolve SCX pH缓冲浓缩液,并推荐了梯度分离条件。/pp style="line-height: 1.5em text-align: justify "  新型BioResolve SCX单克隆抗体色谱柱和消耗品的引入,以及最近推出的BioAccord 系统,加强了沃特世对创新的承诺,并满足了生物制药行业不断变化的需求。/ppbr//p
  • 抢先体验全新色谱柱产品----3款抗体分析SEC色谱柱优惠促销
    随着治疗性抗体等蛋白药物在临床上的广泛应用及质量管理新要求的提出,TOSOH公司采用最新的填料表面修饰及优化技术,对抗体分析用的&ldquo 金标准&rdquo -SW色谱柱进行了全新的改进,正式推出了新一代单抗分析用SW色谱柱系列&mdash &mdash TSKgel SuperSW mAb HR、TSKgel SuperSW mAb HTP及TSKgel UltraSW Aggregate。新SW色谱柱在分析抗体的单体、二体和多聚体上的分离性能都有了显著的提高。 活动内容初次订购新一代SW色谱柱的客户,可与G3000SWXL或者SuperSW3000相同的价格购买。(仅限一次,数量不限)活动时间 即日起至2014年3月31日 *活动详情请致电我司销售人员或各大代理商
  • Fab区限制性酶切-nSMOL技术助力抗体药物血药浓度监测
    导读抗体药物在临床上主要用于癌症、自身免疫、代谢和传染病等疾病的治疗。与小分子药物相比,抗体药物在体内的吸收、分布、代谢及排泄具有独特的药代动力学特征。2020版《抗肿瘤生物类似药治疗药物监测药学专家共识》中多数专家强烈推荐对其进行监测,以实施个体化治疗策略。纳米表面分子导向限制性酶解- nSMOL(nano-Surface and Molecular Orientation Limited Proteolysis)技术是岛津开发的革新性技术,可以选择性酶解Fab 区域特征肽段,克服了全酶解技术及ELISA法诸多缺点,具有更好的选择性和重现性,是复杂基质中抗体药物定量的新利器。突破传统方案,nSMOL技术 – 抗体药物定量新视野以往对抗体药物的检测主要是采用ELISA试剂盒完成,但ELISA方法存在开发时间长、准确性一般、假阳性率高、线性范围窄等问题。而LC-MS/MS方法可以很好地弥补ELISA法的不足,但是如果前处理方法不够成熟,面对复杂的基质组分,常导致选择性和重现性不佳、检测耗时或灵敏度不理想的情况。01 技术原理nSMOL技术同时弥补了ELISA法及传统全酶解LC-MS/MS法的不足,技术原理如图1所示,其利用胰酶纳米颗粒与固化树脂之间孔径的差异,限制胰蛋白酶与抗体药物的接触区域,可以选择性酶解Fab 区域特征肽段。图1. nSMOL技术选择性酶解原理摘自Iwamoto N. et. al.Analyst, 2014, 139, 576-58002 技术优势nSMOL技术能确保获得靶标蛋白特异性肽段,降低样品的复杂程度,克服了传统溶液全酶解技术中存在的酶解产物复杂、酶解效率低、酶解重现性差,内源性干扰严重等问题,从而表现出良好的选择性和重现性。与ELISA法相比(见表1),其开发周期更短,定量特性更适合高灵敏、高特异性、多种抗体药物的高通量测定。03 应用广阔nSMOL技术开启了抗体药物定量分析的新视野,经过岛津与客户的不断研究探索,该技术已在不同治疗用途抗体药物的研发、质控、临床治疗药物监测中得到成熟应用。图2展示了国内外相关应用成果。截至目前,全球已上市100余种抗体类药物,nSMOL技术应用前景十分广阔。图2. 国内外相关应用创新临床应用,nSMOL技术实现多种炎症治疗性抗体药物同时监测临床上多种抗体药物均可用于炎症性免疫疾病的治疗,因此同时定量监测人血液中多种抗体药物浓度的分析方法,具有迫切的临床需求。01 nSMOL临床应用nSMOL技术发明人 - 岛津生命科学研究中心Takashi Shimada博士及其科研团队,2019年在《Journal of Immunological Methods》期刊上发表文章,使用nSMOL技术开发了9种抗体和Fc-融合蛋白(英夫利昔单抗、阿达木单抗、尤特克单抗、戈利木单抗、依库珠单抗、依那西普和阿巴西普、托珠单抗和美泊利单抗)的LC-MS生物分析方法,通过临床试验进一步论证了该技术在多种抗体药物浓度同时监测应用中的巨大价值。该文章中样品的处理方式采用了改进的nSMOL反应条件, 如图3所示。图3. 9种抗体和Fc-融合蛋白的nSMOL样本处理流程首先样品在缓冲液中与结合有Protein A的树脂混合,样品中的抗体被亲和富集。第二步,富集后的树脂与含固定化胰酶纳米颗粒混合,其表面固化的胰蛋白酶可以与树脂所富集抗体的Fab区域进行充分接触,特别是Fab区域中的CDR相关特征肽段被选择性酶解下来,洗脱后进行LC-MS/MS定量。为提高低敏抗体托珠单抗和美泊利反应效率,采用了250 mM TCEP-HCl水溶液的酸化还原加速条件进行处理,得到了良好的结果。9种抗体和Fc-融合蛋白通过特征肽段的LC-MS/MS检测,获得了其典型MRM色谱图(图4a,图4b),9种药物具有良好的灵敏度、色谱保留及峰形。图4. 9种抗体和Fc-融合蛋白药物典型MRM色谱图根据日本厚生劳动省药品和食品安全局评估和许可司发布的《药物开发中生物分析方法验证指南》进行了详细验证。验证结果显示该方案的定量灵敏度、线性范围、重复性、准确性等指标均满足该类抗体治疗药物监测需求。02 临床研究2017年11月至2019年1月,京都大学医院招募了45名患有类风湿关节炎(RA)或炎症性肠病(IBD)的日本患者参加这项研究。作者使用临床患者样本对比分析了9种药物同时监测与单个监测方法所得结果的相关性。部分结果见图5。图5. 两种方法定量结果相关性分析线性回归拟合Pearson相关分析表明,两种监测方法所得结果之间具有良好的相关性,且对照组各数据在95%置信区间内具有较高的重现性和较低的变异。作者经过严苛的方法学验证及临床实验,证明了基于nSMOL技术的LC-MS/MS法可以同时定量人血清中多种抗体及Fc-融合蛋白药物,并应用于治疗药物监测,助力患者个体化精准用药。结语nSMOL技术结合岛津三重四极杆质谱仪能够较好地解决单克隆抗体药物在定量分析中的难题,是抗体药物血药浓度监测不可或缺的高效工具。该方案为治疗性抗体药物的治疗药物监测(TDM)提供了更加简便高效、准确稳定的检测方法,期待其临床应用能够助力个体化治疗策略的探索与实践。撰稿人:任彪文中推荐技术方法方案仅用于医学专业人士技术交流,不作为临床诊断依据。如需深入了解更多细节,欢迎联系津博士sshqll@shimadzu.com.cn
  • 仅限2周!视频回顾药企大咖讲抗体药物开发策略与质控方法
    p style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "9月12日,由仪器信息网主办的“抗体药物开发与质量控制”网络研讨会成功召开。9位来自国内外知名生物制药企业、仪器公司的企业高管、技术大咖及仪器应用专家为我们奉上了一场抗体药物开发策略及质量控制技术方法的知识盛宴!/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "本次会议,首次将国内外多位知名药企的技术大咖们聚集在直播间进行线上报告,会议当日吸引了众多抗体药物相关听众听取报告。为给未能参加会议直播的用户提供学习相关知识的机会,仪器信息网特将本次会议报告视频剪辑整理,以飨网友。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "strong另外,应报告专家要求,本次会议部分视频仅能在本平台播放span style="color: rgb(255, 0, 0) "2个星期/span,请各位网友注意及时观看学习。/strong/pp style="text-align: center "img width="580" height="489" title="aaa.png" style="width: 580px height: 489px max-height: 100% max-width: 100% " alt="aaa.png" src="https://img1.17img.cn/17img/images/201909/uepic/ca7a31fb-69d4-4bc8-9c63-f1fa105f960c.jpg" border="0" vspace="0"//pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "span style="color: rgb(255, 0, 0) "strong从人工智能技术到免疫原性分析,“抗体药物开发”专场回顾/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "北京天成新脉生物技术有限公司总经理孙乐博士通过实际案例分享,详细讲解了DKK2“Me-first”抗体药创新和I/O靶点”Me-too”抗体药研发策略。a href="https://www.instrument.com.cn//webinar/video_105693.html" target="_self"span style="color: rgb(0, 112, 192) "strong《人工智能助力抗体药研发》点击观看/strong/span/a/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "当前,色谱、质谱的检测技术越来越精进,有很高的准确性和灵敏度。但是数据重现性常常不令人满意,限制了利用分析数据做重要决定的能力,这其中主要原因在于前处理环节,目前多肽、蛋白质尤其是抗体药物的分析需求通量不断增多,这一问题也越来越受到重视。针对此问题,安捷伦开发和提供了一套自动化系统,使得前处理过程更加精确,提升整体实验室质量。 a href="https://www.instrument.com.cn//webinar/video_105696.html" target="_self"span style="color: rgb(0, 112, 192) "strong《自动化解决方案助力高效高质样品前处理》点击观看/strong/span/a/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "在FDA指南中,生物仿制药被定义为生物制药。尽管在临床活性成分方面存在微小差异,但它与已经获得许可的生物制品高度相似,并且在纯度、效价和安全性方面没有临床意义的差异。这两种产品中,生物仿制药的发展过程复杂,具有一定的挑战性。本报告重点介绍美国食品及药品监督管理局(FDA)对生物仿制药开发指南的解释。《a href="https://www.instrument.com.cn//webinar/video_105690.html" target="_self"span style="color: rgb(0, 112, 192) "strongFDA guidance overview related to biosimilar development》点击观看/strong/span/a。strongspan style="color: rgb(255, 0, 0) "本视频观看时间仅限2星期!/span/strong/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "随着细胞工程技术的日益成熟,2014年以后,单抗药物以没你那7个左右的数量日益增加,截至2017年FDA已经通过了70个治疗性抗体药物,并有超过500个处于临床阶段的抗体药物,全球单克隆抗体药物的市场规模已经达到1061亿美元。相比于小分子药物,作为大分子药物,抗体药物具有特异性高、要午间干扰少等优点,邢春博士从抗体库的筛选,细胞株的建立以及抗体功能鉴定三个方面介绍了单克隆抗体药物高通量筛选方案。a href="https://www.instrument.com.cn//webinar/video_105692.html" target="_self"span style="color: rgb(0, 112, 192) "strong《单克隆抗体药物高通量筛选方案》点击观看/strong/span/a/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "因为不需要的免疫原性相关问题会为药物安全及有效性带来风险,所以免疫原性评估在生物治疗药物的开发中至关重要。然而,免疫原性数据以及数据的解释很容易受到许多因素的影响,这些因素包括但不限于对免疫原性分析、临床研究设计和异质性疾病群体的各种干扰。本报告将讨论免疫原性评估中的挑战和解决方案,特别是解决与免疫原性分析相关的问题,以便在临床试验期间提供有临床意义的数据。a href="https://www.instrument.com.cn/webinar/video_105694.html" target="_self"span style="color: rgb(0, 112, 192) "strong《生物大分子的免疫原性分析的策略,挑战和解决方案》点击观看/strong/span/a/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "span style="color: rgb(255, 0, 0) "strong知名药企真实案例分享,“抗体药物质量控制”专场回顾/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "连续多年,单抗和融合蛋白生物药占据全世界上市销售前10名的绝对多数,而生物类似药是提升广大病患对高质量抗体药物可及性的重要途径。我国是发展中的人口大国,最近10年对创新单抗和生物类似药的开发均取得重大进展并开始惠及肿瘤病人。要加速发展和缩小与美国等先进国家在生物药上的差距,采用QbD等先进抗体药物开发理念极为重要。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "基于QbD的质量研究和风险评估是是确定抗体生物药关键质量属性的有效途径。我们通过对抗体类似药和原创药的开发和申报要求的各自特点,比较对其质量研究的策略和分析方法。原创药开发中,从分析,非临床到临床研究比重逐步增加,而生物类似药的开发采用逐步递进和全面相似的原则,分析相似性至关重要, 除蛋白氨基酸序列要一致外,需用一系列先进灵敏的分析方法来证明生物类似药和原创药从结构、纯度、杂质和异构体、到活性与功能高度相似。对关键质量属性,需用先进正交的方法从不同角度证明生物类似药和原研药的相似性。复宏汉霖谢红伟博士报告a href="https://www.instrument.com.cn//webinar/video_105701.html" target="_self"span style="color: rgb(0, 112, 192) "strong《抗体药物的质量研究与控制》点击观看/strong/span/a/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "近二十年来大分子生物制品(尤其是单克隆抗体)发展十分迅猛,其市场份额逐年提升,针对热门药物的类似药研究也火热异常,各国纷纷出台相关指导原则以规范相关研究,本报告结合实例剖析了典型抗体类生物类似药的质量研究。乔怀耀老师a href="https://www.instrument.com.cn/webinar/video_105700.html" target="_self"strongspan style="color: rgb(0, 112, 192) "《单克隆抗体及其类似药研究》点击观看/span/strong/a/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "生物治疗药物是生物制剂和生物仿制药,通常时候蛋白质比如疫苗 和单克隆抗体等。而生物药物的构象聚集稳定性和糖基化等修饰是影响药物疗效的关键因素。他们的高阶结构和动力学与其功能直接相关,生物治疗药物通常是由活细胞生产的,这使得其质量控制变得更加重要和困难。2018年,大约有30%的临床药物是生物制剂或生物仿制药,这意味着生物药物的研发和生产逐年增长。核磁共振波谱一在解析结构方面有独特优势,具有极高的重现性,这种重现能力,能够额外提供更多复杂样品的统计学信息。a href="https://www.instrument.com.cn//webinar/video_105691.html" target="_self"span style="color: rgb(0, 112, 192) "strong《NMR在生物治疗药物质量控制中的应用》点击观看/strong/span/a/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "易继祖博士由浅入深,从抗体简介、抗体结构与功能的关系、表征研究、完整分子质谱、序列确定、PTMs 转录后修蚀: glycosylation, oxidation, deamidation 等产品相关的杂质研究,系统完整的诠释了生物制药中抗体的质谱表征研究a href="https://www.instrument.com.cn//webinar/video_105699.html" target="_self"strongspan style="color: rgb(0, 112, 192) "。《生物制药中抗体的质谱表征研究》点击观看。/span/strong/astrongspan style="color: rgb(255, 0, 0) "本视频观看时间仅限2星期!/span/strong/pp /pp /pp style="text-align: center "img width="470" height="468" title="图片1.png" style="width: 209px height: 204px max-height: 100% max-width: 100% " alt="图片1.png" src="https://img1.17img.cn/17img/images/201909/uepic/23a23ecd-d184-4d94-89f0-d68d3c458c78.jpg"//pp style="text-align: center "添加微信,加入“抗体药物交流群”/pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/201909/uepic/f164cca3-8c16-46df-8e57-1ea4a14f0978.jpg" title="微信尾缀二维码01.png"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/201909/uepic/1370ecda-4b41-4493-a163-3f54ffb0b999.jpg" title="微信尾缀二维码02.png"//pp /p
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 安捷伦:抗体药分析项目众多 单项检测中快而灵敏的方法受欢迎
    p style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(0, 32, 96) font-family: 楷体,楷体_GB2312, SimKai "全球抗体药物市场增长强劲,被业内认为是生物制药产业中最为活跃的组成部分。与小分子化学药相比,抗体药进入体内靶向相关细胞,特异性好,副作用低,已成为未来生物医药领域发展的“潜力股”。 随着国家医药生物产业规划升级的推动,中国的抗体药将迎来新的发展机遇期。但是,因抗体药分子量较大,结构复杂,存在多种翻译修饰,生产工艺复杂,使得其研发与质控难度增大,建立抗体表征结构鉴定的一系列方法已成为首要的任务。/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(0, 32, 96) font-family: 楷体,楷体_GB2312, SimKai "为帮助抗体药相关研究人员及企业用户梳理抗体药物分析检测的仪器耗材、技术方法及相关进展,仪器信息网特别策划“抗体药分析检测技术”专题,并邀请安捷伦公司生物制药行业产品专员张曼玉分享了自己的观点。span style="color: rgb(0, 32, 96) font-family: 楷体,楷体_GB2312, SimKai "br//span/span/pp style="text-align: center "img width="380" height="374" title="张曼玉.png" style="width: 380px height: 374px max-height: 100% max-width: 100% " alt="张曼玉.png" src="https://img1.17img.cn/17img/images/202004/uepic/8b9f8269-bd0a-499b-a4af-ae45e455aa66.jpg" border="0" vspace="0"//pp style="text-align: center "张曼玉 安捷伦公司/pp style="text-align: center line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(0, 32, 96) font-family: 楷体,楷体_GB2312, SimKai "/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(255, 0, 0) "strong仪器信息网:请您介绍一下抗体药物分析的相关情况以及行业现状?/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(79, 129, 189) "strong张曼玉:/strong/span治疗性抗体药物根据结构可分为单克隆抗体、双特异性抗体、抗体药物偶联物和抗体片段等,单抗是获批最多的抗体类型。从分析表征的角度来看,单抗是由四条多肽链通过二硫键连接形成的“Y”字型构象的蛋白质,同时具有生物学活性。单抗的分子量约为150 KDa,属于生物大分子,通常采用基因工程技术进行序列构建、通过细胞培养来进行生产。单抗生产过程中发生的翻译后修饰、聚集等化学物理变化使其具有高度的异质性,如大小异质性、电荷异质性、序列异质性以及结构异质性,生产和纯化的工艺影响着终产品的质量。分析检测和表征手段被用于其关键质量属性的监测,保障其安全性和有效性。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(255, 0, 0) "strong仪器信息网:目前抗体药物及相关分析检测、表征手段有哪些?相关前沿进展及发展趋势如何?/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(79, 129, 189) "strong张曼玉:/strong/span单抗药物的分析表征项目包括滴度分析、聚集体分析、电荷异质性、分子量检测、肽图、糖型、氨基酸组成分析、活性检测、以及宿主蛋白/DNA残留等,分别用于监控抗体的浓度、聚集体含量和酸碱峰比例;确认其氨基酸序列的正确表达,鉴定翻译后修饰并计算其相对含量;检测其生物学活性,及杂质含量。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "考虑到单抗的异质性,为了更好的对其进行监控,相关分析方法涵盖了不同的检测机理和不同的分子大小层面,检测项目相对较多。从色谱分离的角度来看,滴度分析属于亲和色谱,聚集体检测采用尺寸排阻色谱,电荷异质性分析采用离子交换色谱或毛细管等电聚焦,分子量和肽图检测采用反相色谱分离,而糖型分析则用到亲水作用色谱。活性检测包含基于细胞和转基因细胞的活性检测,以及表面等离子共振、均相时间分辨荧光、Alpha技术和荧光染料标记法等新技术的检测方法*。宿主细胞蛋白残留采用ELISA方法,DNA残留检测以实时荧光定量聚合酶链式反应(qPCR)为最优。从分子大小层面,包括完整分子、聚体、亚基、肽图和游离糖。针对抗体的单项检测,更快更灵敏的分析方法受到关注和欢迎,如快速的聚集体分析和游离糖分析方案;同时,业内也在探讨采用单一检测方法替代多个检测方法的可行性,以加快抗体检测的进度。(* 王兰,徐冈,等. 抗体类生物治疗药物活性测定方法. 中国生物工程杂志,2015,35(6):101—108)/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(255, 0, 0) "strong仪器信息网:请介绍贵公司在抗体药物分析检测方面有哪些仪器产品或产品组合?相比于同类产品,贵公司产品有哪些优势?/strong/span/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "span style="color: rgb(79, 129, 189) "strong张曼玉:/strong/span 安捷伦作为实验室解决方案供应商,致力于提供平台化的完整解决方案,提供高效液相色谱(HPLC)、生物惰性液相色谱(Bioinert LC)、超高效液相色谱(UHPLC)、毛细管电泳仪(CE)及液相-飞行时间联用质谱(LC/QTOF)用于抗体的分析检测。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "液相色谱用于抗体的滴度分析、聚集体检测、电荷异质性、肽图和糖型分析,贯穿药物的研发和质控。安捷伦1260液相色谱是生物制药实验室的经典液相,性能稳定、皮实耐用;1290 UHPLC高效混合和耐压高的特点保障肽图和糖型分析的分离度和结果的重现性。采用四元泵系统搭配Buffer adviser软件能实现聚集体检测-尺寸排阻色谱方法和电荷异质性-离子交换色谱方法的快速开发。操作者只需配置3瓶母液,即可通过软件自动调配出不同pH值和盐浓度的梯度进行方法优化,得出最佳的分离条件,省去大量的缓冲盐配制工作,显著提高工作效率。/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "尺寸排阻色谱和离子交换色谱都是在高盐体系下对非变性抗体进行的检测,分析系统与样品之前无特异性吸附,对提高分离效果、降低系统残留至关重要。安捷伦 1260 Infinity II 生物惰性液相色谱在样品流路中采用了无金属部件及溶剂输送无铁、无钢的设计,耐酸耐碱耐高盐,最大限度减少了不必要的表面相互作用,提高色谱分离度,适合高盐体系下生物大分子的分析。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C252818.htm" target="_blank"img title="1260infinity.jpg" style="max-height: 100% max-width: 100% " alt="1260infinity.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/3e38a6bc-98fd-4e1f-ba81-81f324b3f778.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C252818.htm" target="_blank"Agilent 1260 Infinity II 液相色谱系统 /a/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "毛细管电泳仪用于抗体研发质控中大小异质性、等电点和电荷异质性的检测,分别采用CE-SDS和CIEF等电聚焦模式。在大小异质性的检测中,安捷伦7100 CE具备高分辨和高速两种采样模式,分别满足高分离度和快速的需求。采用CE进行电荷异质性分析具有分析速度快、条件统一和分析方法开发简单的优点,与液相色谱基于表面电荷进行分离的离子交换方法互为补充。/pp style="text-align: center line-height: 1.5em text-indent: 0em margin-top: 10px margin-bottom: 10px " /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C99540.htm" target="_blank"img title="安捷伦毛细管电泳.jpg" style="max-height: 100% max-width: 100% " alt="安捷伦毛细管电泳.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/049220ba-7a1f-40ff-8869-fc592eced7a8.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C99540.htm" target="_blank"Agilent 7100 毛细管电泳系统/a/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "液相-飞行时间联用质谱用于抗体药物研发过程中的分子量测定、氨基酸序列确定、翻译后修饰鉴定及二级结构分析。Agilent 6545XT AdvanceBio LC/QTOF 针对生物大分子而设计,通过改善高真空度提升了单抗的谱图质量和灵敏度;特色的一键式SWARM粒子群调技术进一步提升了抗体检测的灵敏度,并实现了氨基酸等小分子检测灵敏度的兼顾。优异的灵敏度使其得以进行完整蛋白层面的药物代谢的分析,以及与毛细管电泳联机用于电荷异质性分析。/pp style="text-align: center line-height: 1.5em text-indent: 0em margin-top: 10px margin-bottom: 10px " /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/SH100320/C242488.htm" target="_blank"/a/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C265348.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/ceafa485-6375-45d1-8bf6-aa2374aeb4ce.jpg" title="tx.jpg" alt="tx.jpg"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265348.htm" target="_blank"Agilent 6545XT Q-TOF 液质联用系统/a/pp style="text-indent: 2em "了解更多请点击a href="https://www.instrument.com.cn/zt/ktywjc" target="_blank"span style="color: rgb(255, 0, 0) "strong“抗体药物分析检测技术”/strong/span/a专题。/pp style="text-align: center "br//pp style="text-align: center "a href="https://www.instrument.com.cn/zt/ktywjc" target="_blank"img width="550" height="138" title="抗体.png" style="width: 550px height: 138px max-height: 100% max-width: 100% " alt="抗体.png" src="https://img1.17img.cn/17img/images/202004/uepic/514512f4-a753-43ca-883c-f8744112e0d2.jpg" border="0" vspace="0"//a/pp style="text-align: center line-height: 1.5em text-indent: 0em margin-top: 10px margin-bottom: 10px " /p
  • 一种膜渗透的、固定化金属亲和色谱富集的交联试剂用于推进体内交联质谱分析
    大家好,本周为大家分享一篇发表在Angew. Chem. Int. Ed.上的文章,A Membrane-Permeable and Immobilized Metal Affinity Chromatography (IMAC) - Enrichable Cross-Linking Reagent to Advance In Vivo Cross-Linking Mass Spectrometry,该文章的通讯作者是德国莱布尼茨分子药理学研究所的Fan Liu教授。交联质谱 (XL-MS) 已被用于在全蛋白质组范围内表征蛋白质的结构和蛋白间相互作用。目前,由于能够穿透完整细胞的交联试剂和富集交联肽的策略的缺乏,体内交联质谱研究的深度远远落后于细胞裂解液的现有应用。为了解决以上限制,本文开发了一种含膦酸盐的交联剂-tBu PhoX,它能够有效地渗透各种生物膜,并且可以通过常规的固定化金属离子亲和色谱 (IMAC) 进行稳定富集。 文章建立了一个基于 tBu-PhoX 的体内 XL-MS 分析流程,在完整的人类细胞中实现了较高的交联识别数目,并大大缩短了分析时间。总的来说,本文开发的交联剂和 XL-MS 分析流程为生命系统的全面交联质谱表征铺平了道路。细胞蛋白质组通过广泛的非共价相互作用网络进行组织,表征蛋白质-蛋白质相互作用 (PPIs) 对于了解细胞的调节机制至关重要。交联质谱 (XL-MS) 是系统研究细胞 PPIs 的一种强有力的方法,在 XL-MS 中,天然蛋白质接触通过交联剂共价捕获,交联剂是一种由间隔臂和两个对特定氨基酸侧链具有反应性的官能团组成的有机小分子,交联样品经过蛋白酶水解后,可以通过基于质谱的肽测序来定位氨基酸之间的交联。由于交联剂具有确定的最大长度,检测到的交联揭示了蛋白质内部或蛋白质之间的氨基酸的最大距离。以上这些信息提供了对蛋白质构象、结构和相互作用网络的见解。虽然最初仅限于纯化的蛋白质组装,但如今 XL-MS 已经可以应用于复杂的生物系统——这是通过开发先进的交联搜索引擎、样品制备策略和交联剂设计而实现的。特别是,已进行的几项全蛋白质组范围的 XL-MS 研究表明,可以通过使用可富集的交联剂来改进交联产物的鉴定,例如,通过添加生物素或叠氮化物/炔烃标记,使得消化混合物中的交联肽段能够基于亲和纯化或点击化学富集。最近,一种基于膦酸的交联剂 PhoX 被引入作为现有生物素或叠氮化物/炔烃标记试剂的高效和特异性替代品。PhoX 可通过固定化金属离子亲和色谱 (IMAC) 实现交联富集,这是一种非常快速和稳健的富集策略。 然而,尽管 PhoX 已被证明可用于从细胞裂解液中进行交联鉴定,但它无法渗透细胞膜,因此不适合体内的 XL-MS检测。基于以上讨论,本文开发了交联剂 tBu-PhoX ,其中,膦酸羟基被叔丁基保护以掩盖负电荷(图 1)。为了检测 tBu-PhoX 的膜通透性,文章交联了各种膜封闭的生物系统,包括人 HEK293T 细胞、从小鼠心脏分离的线粒体和革兰氏阳性枯草芽孢杆菌,并在 SDS-PAGE 上监测了蛋白质条带的变化(图 2)。在SDS-PAGE中,观察到在交联剂浓度为0.5和1.0mM时,蛋白质向更高分子量的浓度依赖性迁移,这表明了有效的膜渗透和交联。相比之下,将 PhoX 应用于完整的 HEK293T 细胞将产生与非交联对照相同的条带模式。图1 tBu-PhoX交联剂图2 PhoX或tBu-PhoX交联HEK293T细胞的SDS-PAGE在证明了 tBu-PhoX 可渗透各种生物膜系统后,文章接下来开发了一种基于 tBu-PhoX 的体内 XL-MS 工作流程,相比于之前的全蛋白质组 XL-MS 策略,该工作流程提高了样品处理和交联富集的速度和效率(图 3)。首先,按照标准蛋白质消化方案将交联蛋白质消化成肽;其次,使用 IMAC 珠对消化混合物进行预清除步骤以去除内源性修饰(特别是磷酸化);第三,预清除的消化混合物(从 IMAC 流出)在稀释三氟乙酸 (TFA) 溶液中孵育以去除叔丁基并暴露膦酸基团以进行二次 IMAC 富集。第四,使用标准 IMAC 程序丰富交联产物,最后通过 LC-MS 分析以进行交联产物鉴定。图3 与tBu-PhoX进行体内交联和后续样品处理的工作流程接下来,文章优化了体内 XL-MS 工作流程的几个分析参数,以最大限度地提高交联检测的效率。首先,通过使用 IMAC 珠预清除评估了去除磷酸肽的效率;之后,使用 tBu-PhoX 交联完整的 HEK293T 细胞,经酶切成肽后,并应用预清除 IMAC 步骤去除内源性磷酸肽。在去保护步骤之后,利用 IMAC 富集交联,并通过单次 120 min LC-MS 运行测量富集的样品。通过测量 IMAC 洗脱液中磷酸肽和交联产物的数量,发现第二个 IMAC 中只有数百条磷酸肽,而预清除 IMAC 中有 4,128 条磷酸肽,这突出了通过预清除 IMAC 步骤去除磷酸肽的效率。此外,与单阶段 IMAC 结果相比,使用预清除 IMAC 的工作流程鉴定了 22% 以上的交联(1165 对 952 交联),证明了该两阶段工作流程去除干扰修饰肽的好处(图 4A)。其次,文章在肽水平上研究了膦酸盐去保护的功效。使用 tBu-PhoX 制备了体内交联的 HEK293T 样品,并分析了在不同的酸度(TFA 浓度)和孵育时间下,去保护后交联的数量如何变化。结果显示,不同浓度的 TFA 下获得了相似数量的交联。为简化处理(即在接下来的IMAC富集步骤中保持相对较低的样品体积),选择 0.5% TFA 的去保护条件,持续两个小时(图 4B,C)。第三,文章测试了 Orbitrap Tribrid 质谱仪的不同采集参数如何影响交联识别,即在高场非对称波形离子迁移率质谱法 (FAIMS) 中应用的电荷态选择和补偿电压 (CVs)。当考虑电荷状态 +3 和更高时,确定了最多数量的 tBu-PhoX 交联肽(图 4D)。图4 样品处理和LC-MS参数的优化文章将优化参数后的体内 XL-MS 工作流程应用于完整的 HEK293T 细胞。使用 180 min的 LC 梯度和优化后的分析参数,文章从体内 tBu-PhoX 交联的 HEK293T 细胞中获得了 9,547 个交联(图 5A)。基因本体分析表明,交联蛋白参与了广泛的分子功能、生物过程和细胞成分,表明 tBu-PhoX 可以揭示所有细胞区域的 PPIs(图 5A)。另外,文章还考察了完整细胞的体内 XL-MS 是否捕获了与细胞裂解液的 XL-MS 不同的 PPIs。为了验证这一点,从 HEK293T 细胞中制备 tBu-PhoX 交联裂解液,并使用与体内 XL-MS 实验相同的工作流程处理样品。 结果显示,从五个 SEC 部分中确定了 9,393 个交联。这表明 tBu-PhoX 允许以类似的效率进行裂解和体内 XL-MS。比较本文的体内和裂解数据表明,在体内 XL-MS 实验中,蛋白质间交联的数量更高,从而产生了更加相互关联的 PPI 网络(图 5B,C)。这种效应可以通过细胞环境的拥挤来解释,其中蛋白质紧密堆积并参与多种相互作用,这些相互作用被细胞裂解和稀释部分破坏。文章在 8 种选定蛋白质复合物的已知 3D 结构上可视化了 145 个体内检测到的交联(图 5C),另外,还观察到 96.6% 的交联在 35 Å 的最大距离限制内(图 5D),表明此 XL-MS 工作流程对内源性蛋白质复合物的体内结构分析的适用性。最后,文章比较了 tBu-PhoX 与 PhoX 在表征细胞裂解液的 PPI 网络方面的性能。使用与上述 tBu-PhoX 裂解液交联实验相同的交联条件从 HEK293T 细胞制备 PhoX 交联裂解液。为了去除内源性磷酸肽,在单阶段 IMAC 富集之前,用碱性磷酸酶处理消化的肽两小时。使用与 tBu-PhoX 相同的 LC-MS 方法进行 LC-MS 分析。该实验产生了 2,117 个交联,与使用 tBu-PhoX 识别的交联数量(1,942 个交联)相比略高。然而,基于 PhoX 的 XL-MS 流程需要更长的样品制备时间,因为需要进行碱性磷酸酶再处理和之后的额外脱盐步骤。行体内交联综上所述,本文开发并应用了一种新型的、可富集的、用于体内 XL-MS 的膜渗透交联剂 tBu-PhoX。在广泛使用的交联条件下(交联剂浓度为 1-5 mM),tBu-PhoX能够有效地穿透各种生物膜,为完整的细胞器和活细胞提供交联的机会。tBu-PhoX上的叔丁基基团使得高效的两阶段IMAC样品制备方案成为可能;首先,使交联剂对 IMAC 呈惰性,以促进基于 IMAC 快速而彻底地提取不需要的磷酸化肽,然后,通过去除叔丁基暴露膦酸基团,从而有效地二次 IMAC 富集交联剂修饰的肽。通过随后的 SEC 分馏,可以进一步富集交联肽段以进行 LC-MS 分析。XL-MS 在表征生命系统中的蛋白质结构和相互作用方面发挥着越来越重要的作用。为了促进这一发展,迫切需要有效的体内 XL-MS 方法。文章报告的体内 XL-MS 工作流程满足了这一需求,提供了与之前基于裂解液的 XL-MS 研究类似的交联识别能力,但需要的测量时间不到之前报告的十分之一。这一结果突出表明,本文开发并应用的 tBu-PhoX 交联剂和集成样品制备流程为推进体内相互作用组学和结构生物学提供了一种非常有前景的化学方法。
  • 网络讲座:TSKgel色谱柱在抗体分析与表征中的新应用
    2018年9月11日-14日,仪器信息网将举办“第三届色谱网络会议”,东曹(上海)生物科技将在13日下午做技术报告《TSKgel 色谱柱在抗体分析与表征中的最新应用》。报告内容将介绍各种分离模式的TSKgel 色谱柱在抗体、ADC、抗体片段、抗体聚糖及抗体定量分析方面的具体应用、实验条件优化。报 告 人:张琳,东曹技术中心应用开发部 部长报告时间:2018年9月13日(周四),下午15:00-15:30您可通过如下链接报名参加此次色谱网络会议:https://www.instrument.com.cn/webinar/meetings/iCC2018/
  • 【安捷伦】“拎包入住”式应用解决方案 | 轻松解决固定污染源中的苯系物检测/升级改造您的气相色谱仪
    “拎包入住”式应用解决方案轻松解决固定污染源中的苯系物检测/升级改造您的安捷伦气相色谱仪苯系物包括全部芳香族化合物,狭义上的特指包括BTEX在内的在人类生产生活环境中有一定分布并对人体造成危害的含苯环化合物。由于生产及生活污染,苯系物可在人类居住和生存环境中广泛检出,并对人体的血液、神经、生殖系统具有较强危害。因此很多国家把大气中苯系物的浓度作为大气环境常规监测的内容之一,并规定了严格的室内外空气质量标准和污染源排放标准。2022年7月14日我国首次发布了《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),并即将于2023年1月15日全面实施。标准采用直接进样结合毛细管色谱柱,用于固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的测定,支撑《大气污染物综合排放标准》(GB16297-1996)等13项污染物排放标准实施。安捷伦自成立以来一直致力于可持续发展和环境保护,为环境检测提供了大气、水污染、土壤等众多应用解决方案,为环境监测单位和环境检测企业提供硬件设备、技术培训、应用支持和一站式应用解决方案服务。针对《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),安捷伦结合用户实际需求,定制专属的固定污染源废气中苯系物的测定应用解决方案,不论您是购买全新安捷伦8890/60系列气相色谱仪,还是基于原有安捷伦气相色谱仪进行升级改造+工厂级别的深度维护或翻新(原有仪器焕然一新),亦或单独进行升级改造,均能实现最快速的达到标准方法的检测要求。无论您原有的气相色谱是6890、7890、7820、8890、8860系列均可升级改造,并完全适用HJ1261-2022标准方法检测要求。(图二)标准色谱图安捷伦阀气体进样技术,拥有极好的准确性和重复性,并支持多种进样方式,无论是气体采样袋手动进样,还是气体自动进样器进样和在线监测连续进样,均能轻松实现。结合安捷伦专利技术聚乙二醇毛细管色谱柱,提供良好的乙苯、间对二甲苯分离效果和较好的保留时间重复性。工程师现场对方法调试、验证,并针对方法进行系统的操作培训,让您轻松应对全新标准。(图三)用户气体进样装置改造实例联系我们即可定制您的专属应用解决方案我们也提供专属GC升级改造方案进行PAMS和VOCs、温室气体、非甲烷总烃、CO2还原气分析、N2检测等各种应用升级改造检测方案关注安捷伦微信公众号,获取更多市场资讯
  • AB与Dalton合作开发抗体药物共轭物的质谱分析方法
    AB Sciex和Dalton Pharma Services8月26号表示,他们已经达成合作,将协作开发抗体药物共轭物的分析方法。合作重点是发展共轭分子化学结构的质谱分析工作流程。  &ldquo 成功开发抗体药物共轭物面临的一个关键挑战是理解最终分子的结构和有效负载,&rdquo Dalton化学经理Tan Quach在一份声明中说。&ldquo 确定药物在特定抗体分子上的结合位置,以及结合的分子数量是新的ADC药物可能成功的一个重要指标。&rdquo   &ldquo 质谱的最新进展为理解生物基质中ADC药物开发和工作机制等挑战问题提供了解决方案,&rdquo AB Sciex 公司LC / MS业务副总裁Chris Radloff说,&ldquo 利用这些分子很困难,通过形成这种合作,ADC开发者可以减少并发症,获得准确的结果,最终行成更安全、更有效的治疗方法。&rdquo   这项研究将使用AB Sciex 的TripleTOF 5600 + Selexion技术和TripleTOF 6600平台。  Dalton Pharma Services  Dalton is a contract pharmaceutical manufacturer which provides completely integrated chemistry, development, and manufacturing to biotechnology and pharmaceutical clients around the world. In its 42,000 sq. ft. facility, Dalton operates cGMP manufacturing of Active Pharmaceutical Ingredients (APIs), sterile injectables, finished drug products in vials or syringes, as well as solid oral dosage forms. APIs can be produced in gram to kilogram quantities, including sterile APIs. Dalton contract capabilities can support you at any stage of the regulatory process (Phase I, II, III, or commercial). Development services include chemistry and process development, medicinal chemistry, custom drug conjugation, targeted drug delivery systems, analytical method development and validation, ICH stability testing, formulation, and polymorphism screening. Dalton also supports the industry' s pharmaceutical research programs with a catalog of 1400+ reference standards, building blocks, metabolites, and impurities with its Dalton Research Molecules business.
  • 双特异性抗体解析新方法:离子迁移质谱结合碰撞诱导去折叠
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics1,文章的通讯作者是密歇根大学的Brandon副教授。  双特异性抗体(bispecific antibodies, bsAbs)是一类重要的新兴疗法,能够同时靶向两种不同的抗原,已被开发作为对某些单克隆抗体疗效有限疾病的治疗手段。尽管bsAbs具有独特的优势,但它的结构较为复杂,需要特殊的制备工艺,“knobs-into-holes”(KiH)是其中一种可以用于制备bsAbs的技术,这种技术通过将knob链CH3结构域表面的特定氨基酸突变为较大氨基酸,将hole链上的突变为较小氨基酸,从而实现“knobs-into-holes”的配对形式,提高不同轻重链在配对时的正确配对率,产生正确的bsAbs。然而,由于抗体治疗药物分子量较大,通常比传统的小分子药物表现出更大的结构复杂性和异质性,对KiH bsAb 高级结构的完整表征对定义bsAb的结构功能关系,以及确保最终治疗的稳定性、有效性和安全性都至关重要。目前已开发的分析方法有很多,但是普遍存在样品消耗量大、数据采集和解析时间较长等缺点。近年来,非变性离子迁移质谱(ion mobility-mass spectrometry, IM-MS)和碰撞诱导去折叠(collision-induced unfolding,CIU)逐渐被证实是用于分析单克隆抗体高级结构的有效方法,能够从存在结构异质性和杂质的几微克样品中表征单抗治疗药物的高级结构。IM可以根据气相蛋白离子的电荷和旋转平均碰撞截面(collision cross sections,CCSs)在毫秒时间尺度上对蛋白进行分离。当与质谱耦合时,可以很容易地将质荷比相同但CCS不同的离子区分开来,而CIU可以使IM-MS同步提供蛋白质结构和构象稳定性信息。CIU根据二硫键、糖基化水平、结构域交换特性等信息来区分差异。  在这篇文章中,作者描述了定量CIU在bsAbs中的首次应用,扩展了非变性IM-MS和CIU的能力,用于稳定表征KiH bsAb及其亲本knob和hole同型二聚体单抗的高级结构。  图1 Native、未修饰的knob(蓝色)和hole(橙色)同型二聚体,以及KiH bsAb异型二聚体(绿色)的CIU实验。(A)24+电荷态(左)及其相应重复RMSD基线(右)的平均CIU指纹图谱(n=3)。所有的指纹图谱都显示了白色虚线框所示的三个主要特征。在(B) 5 V、(C) 65 V、(D) 110 V时的标准化TWCCSN2分布。在较低的激活电位下,所有抗体均具有相似的CCS,在较高的加速电位下则存在显著差异。(E)两两的RMSD分析显示,与重复的RMSD基线(虚线)相比,抗体之间的整体高级结构差异。(F)CIU50分析说明了KiH bsAb模型的稳定性如何保持在knob和hole的同型二聚体之间。  如图1所示,bsAb的稳定性似乎与本文研究的KiH模型的两个亲本同型二聚体单克隆抗体相关。在电压为65V时,KiH bsAb的TWCCSN2分布与亲本knob同型二聚体单抗的分布相似 而在110V时,则与亲本hole同型二聚体单抗的分布相似。并且KiH bsAb的稳定性介于两种亲本同型二聚体单抗的稳定性之间。与指纹图谱中记录的第一次CIU转换相对应的是CIU50-1值,第二次的则是CIU50-2值,从3组样本的数据分析推测,CIU50-1和CIU50-2很可能代表了KiH bsAb和mAb结构中不同结构域的局部稳定性。  图2 knob和hole的半体CIU数据。(A)16+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,半体之间的高级结构存在显著差异。(C)CIU50分析显示,蛋白质稳定性存在显著差异。  为了更好地展示KiH bsAb不同结构域的CIU特征,作者记录了同型二聚体单抗IM-MS光谱中16+电荷态的knob和hole半体的CIU数据。从图2A的指纹图谱可以看出,每种结构都包含4种主要的CIU特征,但是图2B的RMSD分析显示两种半体的高级结构之间存在显著差异。CIU50分析进一步表明,在观察到的两次展开过渡中,knob半体明显比hole半体更稳定。作者推测造成这种CIU主要差距的原因可能是Fab结构域的差异。  图3 Fab和Fc片段的CIU数据。(A)13+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,knob和hole的Fab片段之间存在显著差异。(C)CIU50分析显示,不同片段之间稳定性存在显著差异。  为了进一步将CIU特征联系到KiH bsAb的结构域当中,作者对木瓜蛋白酶消化后产生的Fab和Fc片段进行了CIU分析。从图3A可以看出,knob和hole的Fab片段都具有3种CIU特征,但是嵌合的Fc片段则具有4种CIU特征。尽管knob和hole的Fab片段具有相似的CIU指纹图谱,但是RMSD分析显示它们之间的高级结构仍然存在较大差异,并且knob的Fab片段稳定性明显高于hole的。至于Fc片段的稳定性则远高于两种Fab片段,可能的原因是重链CH3结构域的强非共价作用以及knobs-into-holes配对的影响。  图4 去糖基化后的knob、hole同型二聚体和KiH bsAb异型二聚体24+离子(n=3)。(A)比较对照组和去糖基化抗体的RMSD分析显示,高级结构有显著差异。CIU50-1(B)和CIU50-2(C)分析显示抗体去糖基化后表现出显著的不稳定性。(D)对照组和去糖基化抗体之间的CIU50值差异图。  先前的研究已经证明,CIU对不同水平的单抗糖基化很敏感,其中去糖基化会导致单抗高级结构的不稳定。作者利用高分辨率非变性轨道阱质谱分辨添加PNGaseF前后同型二聚体mAb和KiH bsAb糖型的变化。实验结果显示,KiH bsAb表现出高度糖异质性,包含至少12种不同的糖型。这很可能归因于组装的KiH bsAb中每个独立的knob和hole重链上存在独特的糖基化,进一步增加了其复杂性。  总而言之,这篇文章展示了IM-MS结合CIU用于建立KiH bsAb及其亲本同型二聚体之间高级结构联系的能力。单独的CCS不足以解决此研究中抗体之间细微的高级结构差异。相比之下,CIU指纹图谱则可以分辨和区分每一个等截面的抗体。这一解释bsAb CIU细节的能力,加上对KiH bsAb稳定性的更深入理解,有可能提供支持KiH bsAb发现和发展的关键信息。  撰稿:梁梓欣  编辑:李惠琳  文章引用:Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Villafuerte-Vega, R. C., Li, H. W., Slaney, T. R., Chennamsetty, N., Chen, G., Tao, L., & Ruotolo, B. T. (2023). Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Analytical Chemistry.
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)-北京博赛德
    在 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)我们介绍了气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的前期准备:配件和预制校准曲线工作事项。今天我们继续介绍样品的采集与稀释、空白测试以及样品分析工作过程。2.样品采集和稀释2.1样品采集使用气袋法采样系统进行样品采集,参考HJ732。图1 气袋采样系统 2.2样品稀释样品稀释步骤如下:(1)使用气袋采样系统进行样品采集;(2)使用玻璃注射器取体积为 Vn的氮气,注入干净的气袋中;(3)使用玻璃注射器取体积为 Vs 的样品气,注入同一气袋中;(4)使样品气与氮气充分混合均匀,并尽快分析。稀释倍数按公式(1)计算: f=Vs+Vn/Vs 公式(1)式中:f ——稀释倍数;Vs——样品气体积,ml;Vn ——氮气或洁净空气体积,ml。注:若条件允许,使用气体稀释装置进行稀释。3.空白测试将高纯氮气冲入气袋并连接BCT仪器,做空白测试。4.样品分析4.1预调查和预检测预调查:在测试前,应事先调查污染源情况,如行业排放标准所列的常见挥发性有机污染物等。预检测:开启SURVEY速查方法,运行20~30s空白作基线;将装有样品的气袋连接BCT仪器,响应值上升,并稳定下来(约持续10~20s即可)后,移走样品;再运行10~20s使响应值回归到基线。通过TIC响应值来预估样品浓度,并衡量稀释倍数。 图2 Survey实时谱图 4.2样品测试根据预调查和预检测,按照2中的方法进行样品采集和稀释后选合适的方法进行测试。按以下两种情况进行:速查结果谱图的TIC_MAX≥500万,选择高浓度系列方法;TIC_MAX<500万,选择低浓度系列方法。 未完待续
  • 关于气相色谱柱的固定相,你真正了解吗?
    嗨,大家好,小编又和大家见面了。在前期的内容中,小编为大家分享了气相色谱柱的一些基本小知识,主要包括毛细管柱的分类,固定相的种类,色谱柱的柱长、内径、液膜厚度参数,以及色谱柱的使用温度限。今天呢,我们就针对其固定相,来一探究竟!不管是气相色谱,还是液相色谱,待测样品组分的吸附保留主要取决于固定相。其基本分离原理主要是通过样品分子与固定相之间作用力类型以及作用强度的不同,进而实现组分的分离。不同的结构的固定相,其极性和与分子间的作用力也不相同。关于气相色谱,目前使用最多的是气-液分配模式,气-液色谱固定相在常规分析温度下也呈现液态,所以常被称为固定液,常见的固定液主要有以下几种:01甲基聚硅氧烷类固定液甲基聚硅氧烷固定液的结构图如下:从其结构图可以看出,是由多个硅氧烷聚合而成,骨架上的每个硅原子可以与两个官能团相连接。当其官能团均为甲基时,即是我们所说的百分之一百二甲基聚硅氧烷;“二”代表着硅原子上连接两个特定取代基团,当取代基团完全相同时,也可以省略这种叫法,即百分之一百二甲基聚硅氧烷也称为百分之一百甲基聚硅氧烷。在结构图中,聚合度n值的不同,所形成的固定液在形态上也会有所区别。当聚合度n值较小,固定液分子量较小时,称之为二甲基硅油,呈黏稠状的液态,如美国OhioValley(OV公司)研制的OV-101固定相;分子量比较大时,可以称为二甲基硅脂及橡胶,如美国GeneralElectric(通用电气)生产的SE-30。甲基聚硅氧烷类固定液属于非极性固定相,具有很宽的沸点范围,适用于分析烃类以及含有其他官能团的化合物,非常适合对于未知样品的分析。02其他不同基团取代的聚硅氧烷类固定液硅氧烷骨架硅原子上取代基团的数量和种类不同,影响着固定相的极性和热稳定性。一般而言,极性取代基团的含量越高,固定液极性越强,所耐受的温度限也越低。常见的取代基团如下图:关于取代基团含量的描述通常是以百分含量表示,下图为5%二苯基95%二甲基聚硅氧烷和50%三氟丙基50%甲基聚硅氧烷(或称之为百分之一百三氟丙基甲基聚硅氧烷)的结构图。对于不同基团取代的百分含量表述,在这以14%氰丙基苯基86%二甲基聚硅氧烷为例,代表着其含有7%的氰丙基、7%的苯基、86%的甲基,因为硅原子上同时连接氰丙基和苯基,14%是一种加和的表示方法(如下图)。不同取代基团的作用:● 在甲基聚硅氧烷中引入苯基,由于结构相似性,可以增强对芳香烃类化合物的吸附保留。● 氰基的引入可使固定液具有中等极性或强极性,此类固定相对含芳基、烯基的化合物具有较强的保留作用,适用于分离不饱和烃、芳烃,以及不饱和脂肪酸。● 三氟丙基具有较强的给质子能力,适合吸附保留羰基化合物。● 在聚硅氧烷骨架中引入亚芳基,可以增强固定相的热稳定性,降低柱流失。03聚乙二醇类固定液这是一种强极性的固定相,主要是以形成氢键为主,对醇、酸、酚、伯/仲胺等有较强的保留。在使用这类固定液的色谱柱时,需要注意分析温度、载气纯度等相关问题,因为聚乙二醇极性较强,所能承受的温度限较低,高温条件下载气中的氧、水等都会引起固定相的分解。常规聚乙二醇类固定液结构如下图:聚乙二醇简称PEG,聚合度n值不同,其分子量也不相同;目前使用最多的是分子量20000左右的聚乙二醇,常见的名称为PEG-20M、INOWAX等。为了分析不同类型的化合物,可以通过对色谱柱表层和固定液进行改性来实现不同性质化合物的分离。主要包括以下几种:● 碱改性聚乙二醇固定液:在制药行业中,药物分析通常以偏碱性为主,在分析这些物质时,经常出现馒头峰或者峰拖尾等现象。为了改善对这类化合物的峰形问题,可以采用KOH将色谱柱表层处理成碱性表面,然后再涂渍聚乙二醇类固定液,来实现对偏碱性化合物的分析。● 酸改性聚乙二醇固定液:是由聚乙二醇与不同酸反应而成的酯类固定液,使用最多的是FFAP(硝基对苯二甲酸改性的聚乙二醇),主要用于分析小分子的有机酸、挥发性脂肪酸和酚类化合物等。
  • 共价标记质谱分析抗体药物高阶结构的细微变化
    单克隆抗体(mAb)是制药行业增长最快的治疗方法之一,mAb的高阶结构(HOS)影响药物与靶标的结合特异性,从而影响治疗效果和副作用。若储存而导致HOS发生变化,例如蛋白质错误折叠和聚集,会导致稳定性降低、功效丧失或可能的免疫原性。因此,监测HOS对保证mAb疗法的有效性和安全性至关重要。X射线晶体学和核磁共振(NMR)光谱可以提供原子级分辨率,但存在费时费样品的缺点;生物物理技术,如差示扫描量热法(DSC)、动态光散射(DLS)、荧光光谱、红外(IR)光谱和圆二色(CD)光谱只能提供低分辨率的整体构象。焦碳酸二乙酯(DEPC)作为亲电子试剂能够修饰溶剂可接近的亲核侧链(Cys、His、Lys、Thr、Tyr、Ser)和蛋白质的N末端,这些残基产生的羧基化产物具有+72.021Da的质量转移,经过蛋白水解消化、液相色谱分离和串联质谱分析后,可以识别和半定量特定的蛋白质修饰位点。将一种条件(例如天然)与另一种条件(例如加热)进行比较时,特定残基处共价标记程度的变化可用于探测蛋白质的HOS变化(图1)。在这篇文章中,作者使用DEPC共价标记联用质谱,以利妥昔单抗作为单抗药物的模型,以期在远低于mAb治疗药物熔点的温度下能够特异性检测细微HOS变化,并通过活性测定进行验证。图1. DEPC 标记与质谱联用分析单抗药物结构的流程在通过共价标记研究热应力(heat stressed)利妥昔单抗之前,作者使用CD光谱、荧光光谱和动态光散射(DLS)来识别加热对蛋白质结构的干扰。发现当在低于其熔点的温度下加热利妥昔单抗4小时时,这三种技术在45°C或55°C时无法检测到显著的结构变化,而在65°C时仅显示出轻微的变化。随后作者团队使用DEPC CL-MS探测利妥昔单抗的细微结构变化。在45°C压力下的利妥昔单抗样品中发现DEPC标记水平的变化较少,大多数变化是由于蛋白质受热去折叠导致的标记增加(图2),且可变区的变化远少于恒定区。超过70%的标记变化发生在Tyr、Ser和Thr残基处,而发生在His和Lys残基处的标记变化始终小于20%。标记变化表明,45°C时的结构变化主要是局部微环境的变化,而非溶剂可及性差异显著的大结构变化,也就是说修饰位点分散在整个蛋白质结构中,而不是集中在蛋白质的某些区域。图2. 45°C 热应力 4 h 后 DEPC修饰程度的变化。饼图表示在利妥昔单抗的每个结构域内标记变化显著的修饰残基比例。红色代表标记增加,而蓝色代表减少。条形图表示共价标记变化程度低 (L)、中 (M) 和高 (H)的残基数量。活性测定能反映一定程度的结构变化对利妥昔单抗活性的影响,从而验证DEPC标记结果。桥接ELISA的结果表明,在预热至45°C后,利妥昔单抗的Fc结合活性没有显著变化(图3a),Fc区域的CDC活性估计在45°C热应激后保持不变(图3b),利妥昔单抗的Fab结合活性估计与对照样品没有差异(图3c)。活性测定结果表明蛋白质在45°C时没有发生显著的结构变化。在Fab和Fc区域中标记变化的残基数量相对较少,主要标记对局部微环境变化更敏感的Tyr、Ser和Thr残基。修饰位点分散在整个蛋白质中,对Fab和Fc区域的构象几乎没有影响,与共价标记质谱联用的测定结果相吻合。图3.使用单抗活性测定验证CL-MS实验揭示的结构变化。Fc区的结构完整性通过(a)测量Fc与捕获抗体结合的利妥昔单抗桥接ELISA和(b)测量补体依赖性细胞毒性的Alamarblue测定来评估。Fab区域的结构完整性通过(c)Raji细胞下拉试验评估,测量Fab与B细胞CD20抗原的结合。55°C加热4h后利妥昔单抗所有结构域的残基修饰程度都发生了显著的变化,尤其是Fab区域的VH和VL结构域。(图4)加热至55°C时,His和Lys残基处发生的标记变化几乎是45°C的两倍,表明蛋白质在这些区域展开;Fab区域标记水平发生显著变化,特别是在VH、VL和CL域。这表明利妥昔单抗的Fab区域存在局部结构变化,据报道这也是IgG1分子中对热应激最敏感的区域。Fc区域中没有观察到类似的发生标记变化的残基聚集,Tyr、Ser和Thr处的大多数标记变化为中度或高度变化,这些结果表明蛋白质拓扑结构可能发生变化。图4. 55°C 热应力 4 h 后 DEPC修饰程度的变化。饼图表示在利妥昔单抗的每个结构域内标记变化显著的修饰残基比例。红色代表标记增加,而蓝色代表减少。条形图表示共价标记变化程度低 (L)、中 (M) 和高 (H)的残基数量。尺寸排阻色谱(SEC)测量表明在65°C加热条件下存在高分子量物质。将DEPC CL-MS方法应用于65°C热应力的利妥昔单抗后,发现所有利妥昔单抗结构域的标记发生显著变化(图5),主要体现为标记的减少,这可能是因为蛋白质聚集。利妥昔单抗的Fab和Fc区均发现标记减少的残基簇,活性测定结果显示Fc结合和CDC活性的降低(图3),说明了Fc区特别是CH3结构域的标记变化,与DEPC标记结果一致。图5. 65°C 热应力 4 h 后 DEPC修饰程度的变化。饼图表示在利妥昔单抗的每个结构域内标记变化显著的修饰残基比例。红色代表标记增加,而蓝色代表减少。条形图表示共价标记变化程度低 (L)、中 (M) 和高 (H)的残基数量。总结DEPC标记技术的结构分辨率和灵敏度足以探测细微的蛋白质构象变化,该技术与质谱联用可在低于Tm的温度下揭示利妥昔单抗中的细微HOS变化,与经典的生物物理技术互补。总体而言,鉴于CL-MS简便、灵敏的特点,该方法将适用其他抗体药物的结构研究。
  • 抗体药物质量和成本遇瓶颈:下游分离纯化技术明显滞后
    漫谈离子交换层析之生物大分子分离纯化应用——江必旺博士全球生物制药产业发展迅猛,根据Frost&Sullivan市场调研,2018年全球生物制药市场规模约为2642亿美元。单抗类药物由于特异性好,靶向性高,副作用小,疗效显著,成为发展最快的一类生物药。单抗药物在2020年市场已达到1550亿美金。生物药的生产可分为上游发酵过程和下游纯化分离过程,上游工艺主要包括细胞复苏、传代、发酵生产。而下游工艺主要包括膜过滤及多步层析分离纯化。过去十多年来,基因工程获得突飞猛进的进步,细胞培养的表达量从原来的不到0.5 g/L 到现在普遍达到5g/L,有的甚至超过10g/L。这些进步是由细胞表达载体的开发,单克隆筛选以及细胞培养基优化等技术创新所驱动的。由于发酵产率的大幅度提升,使得上游细胞培养成本大幅度降低。与上游十多倍生产效率提升相比,下游分离纯化技术进步明显滞后,导致下游工序成为生产瓶颈,抗体主要生产成本也转移到下游。下游纯化在整个生物药生产中占据主要生产成本,也被认为是最需要改进的技术领域。下游工艺先进性决定了药品的质量,及药品生产效率和成本。生物药生产的技术瓶颈:实现高效、经济的分离纯化生物制药下游生产工艺目的就是把目标药物分子从复杂发酵液体系中分离出来以满足药品纯度及质量的需求。一方面监管部门对生物药的纯度和质量要求越来越高,另一方面用于治疗用的生物分子种类越来越多,结构越来越复杂,且生物分子对外部条件敏感,稳定性差,杂质多,使得生物制药分离纯化的挑战更大。比如说治疗用抗体不仅对其含量有严格的要求,还必须去除工艺相关杂质如HCP, DNA,Endotoxin, 聚集体及降解片段等(表2)。 因此如何经济、高效的从发酵的复杂组分中浓缩、分离和纯化目标生物分子已成为全球生物药生产的技术瓶颈。在蛋白类生物药生产过程中,分离成本可占总生产成本的50~80%,分离纯化技术还对生物药的分子形态、收率、质量和成本具有关键作用。色谱或层析技术对复杂生物分子具有极高的分离纯化效率, 且条件温和, 在分离纯化过程中容易保持目标生物分子的活性,因此层析技术是目前生物药分离纯化最重要的手段,甚至是唯一的手段,几乎所有生物分离纯化都离不开层析技术。离子交换层析技术的优势生物分子的分离可以根据其尺寸大小、表面电荷、疏水性能、及与配基的亲和作用性能的差异分别采用分子筛,离子交换,疏水,亲和等层析分离模式。由于蛋白类生物分子是由氨基酸组成,几乎都带有电荷,因此蛋白分子在不同pH 条件下其带电状况不同,当pH等于蛋白的等电点时,蛋白处于电中性,当pH 小于等电点时,蛋白带正电荷,当pH 大于等电点时,蛋白带负电。不同生物分子带的表面电荷正负性质及表面电荷数量不同而且会随着流动相的pH改变而改变,使得不同组份的生物分子在离子固定相的电荷作用力有较大差异,因此绝大多数生物分子可以通过离子交换进行分离纯化。离子交换层析在生物分离纯化具有较多优点:第一,载量高,离子交换对蛋白的吸附量可超过100 mg/ml, 有利于提高批处理量及大规模纯化效率;第二,离子交换分离纯化选择条件比较多,既可选择不同的离子强度,也可选择不同的pH值作为分离条件。而且色谱出峰顺序可根据蛋白质的等电点进行预测。第三,离子交换层析操作简单,流动相便宜,蛋白质活性回收率高,综合成本低。第四,离子交换在蛋白的纯化过程中可同时实现产品的浓缩,有利于低浓度蛋白样品的分离纯化。减少后续浓缩工艺。总之,离子交换具有交换载量高,适用性广,且容易保持生物分子的活性而使得离子交换成为生物大分子分离纯化最常用的分离模式,根据Markets and Markets 市场报告离子交换介质用量已超过所有其它层析介质(包括SEC,亲和,疏水、复合模式及其它)用量总和。离子交换层析介质的种类离子交换色谱(IEC)是利用带有不同电荷的样品组分与固定相的离子功能基团形成电荷作用力而吸附在固定相上, 然后通过增加流动相的盐的浓度或改变pH来以降低样品组分与固定相的电荷作用力从而达到洗脱分离的目的。因此离子交换过程是低盐上样,高盐洗脱的过程。按所使用的离子交换介质所带基团的不同,可分为强碱性阴离子型(含季胺基,Q型)、弱碱性阴离子型(含伯、仲胺基,DEAE型)、强酸性阳离子型(含磺酸基,SP型)和弱酸性阳离子型(含羧酸基,CM型)等四种类型。为了增加离子交换的选择性,同时含有离子和疏水功能基团的混合模式离子交换介质也已问世,由于混合模式离子交换层析可以同时提供疏水作用力和静电作用力,因此其具有独特的选择性在分离纯化上具有广泛的应用。另外由于有疏水作用力混合模式离子交换介质耐盐性好,生物样品可以在高盐条件上样。离子交换基团要发挥离子交换作用,必需在溶液中解离成离子。季胺盐(Q)强阴离子交换介质和磺酸型(SP)的强阳离子交换介质离解的pH范围很大,在水溶液中几乎百分之百离解。而羧甲基(CM)型弱阳离子型交换介质和二乙胺乙基(DEAE)型弱阴离子交换介质离解的pH范围小得多。羧甲基(CM)弱阳离子型交换介质在pH 变大后逐渐离解成羧基负离子,pH大到一定程度就可完全离解;二乙胺乙基(DEAE)弱阴离子交换介质在pH 变小后氮原子上逐渐结合质子,pH小到一定程度就可完全让氮原子都结合上质子,达到完全离解。离解度越大,对应的柱子吸附量也大,不离解的弱离子交换介质是无吸附能力的。当然,吸附量还与目标蛋白质在此pH下的电荷情况有关。从羧甲基(CM)弱阳离子型交换介质在pH 变大后离解度逐渐变大看,pH值大有利于弱阳离子型交换介质使用。但是此时蛋白质带的正电荷减少,不利于蛋白质的吸附。当pH值大到一定程度,蛋白质可能带负电荷,就不被弱阳离子型交换介质吸附。从二乙胺乙基(DEAE)弱阴离子型交换介质在pH 变小后离解度逐渐变大看,pH值小有利弱阴离子型交换介质使用,但是此时蛋白质带的负电荷减少,不利于蛋白质的吸附。当pH值小到一定程度,蛋白质可能带正电荷,就不被弱阴离子型交换介质吸附。很多情况下,只要介质在使用pH范围,也就是在离子状态,蛋白质的带电性质和电荷多少是影响蛋白质吸附量的决定因素。另外,蛋白质样品一般要求在分离后保留生物活性,而保留蛋白质活性需要一个合适的pH值。所以选择离子交换分离纯化生物分子时,要综合考虑样品组分的等电点、蛋白质稳定的pH 范围和交换基团离解范围选择交换基团类型。常规四种离子交换结构图基质组成对离子交换层析介质的影响目前市场上用于生物分离层析介质主要由两大类材料组成:第一类是以琼脂糖,葡聚糖为代表的天然高分子层析介质;第二类是以聚苯乙烯和聚丙烯酸酯为代表的合成高分子层析介质。其中天然多糖高分子改性介质由于具有亲水强,生物兼容性好,能减少对生物分子的非特异性吸附等特点,因此在分离过程中容易保持生物分子的生物活性。另外交联天然多糖介质在溶胀状态下其多糖分子链可以舒展开来形成网状孔道结构,因此多糖介质表面积大,容易做成高载量的介质。但如果软胶在干燥状态下脱去水孔道结构容易塌陷,因此,软胶填充的层析柱一般不能干,否则介质容易孔道结构容易塌陷从而失去分离性能。软胶是生物大分子分离纯化应用历史最悠久,应用最广泛的层析介质。但天然多糖改性高分子介质因其基质柔软而被称为软胶,其主要缺陷是机械强度差、压缩比大、柱床不稳定、操作困难、流速慢、生产效率低等。相反,合成多孔高分子层析介质微球具有机械强度高,化学稳定性好等特点,因此可以耐受更大的压力、更快的流速,从而提高分离效率,其市场应用增速最快。另外合成高分子微球粒径大小,粒径均匀性更容易控制,使得合成高分子介质更容易装柱,柱效和分辨率也更高。同时聚合物介质孔道结构是通过无数高度交联的纳米粒子堆积而成。这些纳米粒子不溶胀,分子进不去,因此其表面积比琼脂糖基质的小,但孔径通透性更好,因此分子传质速度快,在高流速下载量可以保持的更好。但合成高分子层析介质的缺点是其疏水往往比软胶大,导致非特异性吸附大,容易使生物分子失去活性。因此聚合物微球表面需要进行亲水化改性以降低其非特异性吸附才能满足层析分离的需求。无论是以交联琼脂糖为基质的离子交换介质还是以表面亲水化改性的聚合物为基质的离子交换介质都有各自的优缺点,但它们的目标都是一致的,都是往高载量、高机械强度、高分辨率、高回收率方向发展。因此为了生产更理想的层析介质,交联琼脂糖层析介质要解决的问题是在保持它亲水性优势下如何提高其机械强度,而聚合物介质问题是在保持其机械强度优势条件下如何解决亲水化问题并降低非特异性吸附。未来离子交换层析介质的发展方向就是融合软硬胶的优点,做成载量高,机械强度大的介质。介质孔径大小及孔隙率对生物分离的影响除了粒径大小和分布会影响层析介质分离性能外,孔径大小、比表面积及孔隙率也是生物分离纯化介质最重要参数之一。层析分离模式主要是分子与介质表面功能基团作用的结果,层析介质可及比表面积是影响其吸附载量的主要因素之一,可及比表面积是分子可到达的内孔表面积加上介质外表面积。由于内孔表面积占据整个比表面积的90%以上,而内孔表面积主要由孔径大小,孔隙率来决定。孔径越小比表面积越大,但如果孔径太小,目标生物分子进不去,这样的小孔及其表面积对分离是没有作用的。孔径太大,比表面积也会降低,因此对于不同分子量大小的生物分子,有个最优的孔径大小,其可及表面积最大,分离效果最好。比如说用于抗生素这类分子量小的生物分子,孔径一般选择小于30纳米以下,而对于抗体蛋白分离纯化的介质一般选择孔径在100纳米左右,而对于病毒这种大尺寸的生物,需要400纳米以上超大孔的介质。另外孔隙率越大,比表面积越大,载量也会越大,同时机械强度越差,因此选择孔隙率也需要平衡机械强度和载量的要求。不同孔径大小的单分散聚合物色谱填料图层析介质粒径大小及均匀性对生物分离的影响单分散与多分散层析介质分离性能对比示意图层析介质粒径大小和分布是影响其分离性能最重要的参数之一。粒径越小,分布越均匀,柱效越高,分辨率越高。因此制备精确的粒径大小及高度的粒径均一性单分散层析介质一直是业界追求的目标。纳微成功开发出单分散大孔聚合物层析介质可以用于高效分离生物大分子。另外粒径均匀,填充的柱床稳定,重复性好,不容易堵塞筛板,而且可以使用更大孔径的筛板以降低反压。表面亲水改性对离子交换性能的影响大分子分离纯化介质的一个共性要求就是介质表面亲水性要好,以达到降低蛋白的非特异性吸附并保持生物分子的活性的要求。因此商业化的聚合物层析介质一般有两种合成方法:第一种就是选择具有足够亲水的单体直接合成亲水聚合物多孔微球,然后通过表面键合不同功能基团以制备离子、疏水、分子筛及亲和层析介质。比如说日本Tosoh 和美国 Biorad公司都是采用亲水较强的带多羟基丙烯酸酯或丙烯酰胺单体,这类介质与糖基组成的软胶类似不需要进行表面亲水化处理就可以直接键合功能基团做成离子交换层析介质。第二种方法是用疏水性较强的单体如苯乙烯,丙烯酸酯合成疏水聚合物多孔微球。这种微球由于疏水性较强不能直接用于蛋白分离纯化的层析介质,而是要先经过表面亲水化改性,才可以键合功能基团制备生物大分子分离纯化用层析介质。Thermofisher 生产的POROS 离子交换层析介质就是在疏水的聚苯乙烯微球表面通过亲水化改性后再键合不同功能基团制成离子交换层析介质。多孔聚苯乙烯微球表面亲水化改性是由Purdue 大学 Regnier教授研究组发明的专利技术( US Patent No. 5503933)。因此Thermofisher利用该技术成功地开发出用于蛋白药物如抗体分离纯化的亲水化聚苯乙烯层析介质,该介质目前已被广泛地用于抗体及疫苗的纯化,在去除抗体多聚体等杂质方面具有明显优势。显然,第二种方法制备聚合物层析介质步骤多、工艺复杂、技术门槛高、成本高,但其制备的介质具有更高的机械强度,更小的压缩系数和更低的溶胀系数,可耐受更高的压力和流速,而且具有传质速度快、寿命长等优势。间隔臂对离子交换层析介质的影响除了介质基质材料组成,表面亲水性能及功能基团种类及密度会影响离子交换层析介质分离效果外,其功能基团与基球表面之间的间隔臂长短以及接方式也很重要。尤其是对于生物大分子的分离纯化,由于生物分子体积大,相比于小分子,其表面电荷的可及性差,因此间隔臂越长,越有利用介质表面离子功能基团与生物大分子带电功能基团起作用。对于小分子的分离纯化,由于空阻比较小,离子交换载量与离子功能基团的密度基本成正比,与基团与介质表面之间手臂长短关系不大。因此用于小分子分离纯化的离子交换介质,其离子功能基团可以直接连接到介质表面,中间不需要长间隔臂。但对于大分子分离纯化的离子交换介质,间隔臂对载量和分离效果都有较大影响。 德国默克开发出触角型的离子交换介质就是把离子功能基团通过高分子链从微球表面延伸出来,这种触角型的离子交换介质更容易与生物大分子有效结合,同时也有利于孔道空间的利用,解决了聚合物由于表面积比软胶小从而导致聚合物离子交换介质载量低的问题。触角型离子交换不仅载量高,而且传质速度快,分辨率高。单分散离子交换层析介质的最新进展为了高效率把目标生物分子从复杂样品里分离出来,并保持其生物活性,用于分离纯化的层析介质材料必须满足苛刻的要求如介质材料组成、形貌、粒径大小、粒径分布、孔径大小和分布、功能基团、及表面亲水性能等。粒径分布均匀,形貌规整的球形填料填充柱床的紧密程度一致性好,流动相在柱床中的流速均匀,流动相经过柱床的路径长短一致,从而有效降低涡流扩散系数,使色谱峰宽变窄,理论塔板数升高。粒径分布与流速特征关系图另外粒径大小一致,可以保持分子在填料微球的扩散迁移路径基本保持一致,相应的保留时间也一致,减少分子扩散系数,从而获得更高的柱效。因此高度粒径均一的单分散色谱填料既可以降低涡流扩散系数又可以减少分子扩散系数,从而提高柱效。另外粒径越精确、分布越窄、其柱床越稳定、反压越低、批间稳定性好。纳微生产的单分散色谱填料不仅完全可以替代SOURCE 系列产品,而且粒径,孔径及材质的选择都远远超过SOURCE产品种类和规格。纳微单分散聚合物层析介质包括聚苯乙烯和聚丙烯酸酯系列。聚苯乙烯表面改性层析介质系列可以替代POROS用于抗体和蛋白的分离纯化,而聚丙烯酸酯系列可以替代Tosoh, Merck, Biorad等生产的聚丙烯酸酯或聚丙烯酰胺层析介质。层析介质关系到药品生产的成本和质量。不同厂家生产的离子交换层析介质都有各自的特点,没有最好的,只有选择最合适的。但层析介质的国产化无疑对中国生物制药产业链安全供应至关重要。越来越多像纳微这样的中国公司已经具备生产一流的层析介质的能力,这些国产化的层析介质也得到越来越多的药企认可。后记在问及江必旺博士对该技术的期望时,他表示:“色谱和层析是药物分离和分析最重要手段,尤其是生物制药领域,层析几乎是生物制药分离纯化的唯一方法。中国生物制药快速崛起会带动中国色谱和层析介质的发展,同时色谱和层析技术的进步及国产化会降低中国生物药的成本,提高药品的纯度和质量。因此中国的色谱和层析技术遇到千载难逢的发展机遇, 相信一定会得到迅猛的发展。”作者简介苏州纳微科技董事长 江必旺博士 江必旺博士,国家特聘专家,获北京大学化学系学士, State University of New York at Binghamton博士学位,在University of California at Berkeley 从事博士后研究。 回国后创建了北京大学深圳研究生院纳微米材料研究中心并任该中心主任。于2007年,江必旺博士创建了苏州纳微科技股份有限公司,专门从事高性能微球材料的研发及产业化。江博士带领团队突破了单分散硅胶色谱填料精确制备技术难题,成为全球唯一一家可以大规模生产单分散硅胶色谱填料的公司。江博士团队还开发出世界领先的单分散聚合物层析介质、如离子交换、亲和,疏水及分子筛等系列亲和层析介质,打破国长期垄断。江博士创建的纳微科技成为色谱领域第一家在科创板上市公司。【专家约稿招募】若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿邮箱:liuld@instrument.com.cn微信/电话:13683372576扫码关注【3i生仪社】,解锁生命科学行业资讯!Webinar预告(点击报名)
  • 重组蛋白和单克隆抗体药物研发及生产讲座
    重组蛋白和单克隆抗体药物研发讲座由利穗科技(苏州)有限公司于2015年4月24日在上海张江高科技园区主办。届时将邀请100余名国内外生物医药领域的著名专家学者前来参观交流。 本次讲座特邀主讲嘉宾,Joachim K.Walter 博士是著名的生物制品行业的科学家和顾问,有26年 哺乳动物细胞培养的蛋白生产和研发经验 ,拥有17年在德国的勃林格殷格制药企业的工作经验。演讲就蛋白药物市场及研发、单克隆抗体生产为主题,共同探讨蛋白分离纯化方法。 利穗科技一直专注于药物研发和生产领域内新型仪器/设备的研发与制造。产品的定位是基于色谱分离技术的全自动分离纯化系统,公司产品分离纯化设备用于生物医药研发和生产过程中的分离纯化,是分离工艺和分离介质的运行设备,广泛应用于中草药、天然产物、多肽、单克隆抗体、重组蛋白、疫苗和血液制品等生物制药医药领域的分离纯化过程,是生物医药领域的关键技术和设备。 在此,利穗科技诚挚邀请您参加重组蛋白和单克隆抗体药物研发及生产讲座,进行产品技术交流。 主题:重组蛋白和单克隆抗体药物研发及生产讲座主办单位:利穗科技(苏州)有限公司会议时间:2015年4月24日(9:00-17:00)地点:上海张江高科技园蔡伦路781号上海张江医药谷人数:100人 会议日程安排如下:上午 9.00 — — 12 :001.导言? 市场概述及行业趋势介绍 2. 生物技术及蛋白药物基础介绍? 蛋白质的化学特性简述? 药物蛋白介绍 3. 蛋白药物研发和生产策略介绍? 工艺开发的复杂特性? 工艺技术的概述-上游 & 下游生产? 工艺设计? 工艺开发与生产的策略? 蛋白质分离纯化方法 — — 过滤和色谱法? 工艺开发的管理 4. 生物制药工艺设备解决方案 午餐: 12.00-13:00 下午 13:00 — — 16:005.单克隆抗体生产? 亲和层析的不同操作模式? 蛋白质降解路线? 蛋白酶解? 蛋白质结构的稳定性? 缓冲液的选择? 稳定性添加剂? 制剂缓冲液 6.生物仿制药的监管? 风险管理? 质量源于设计? PAT过程分析技术? 产品生命周期验证 7.一次性技术 技术咨询:16.00 — — 17:00? 15 分钟每个人或公司 (限于 4 组)。请提前预约并提交讨论问题。 演讲人简介: Dr. Joachim K. Walter, PhD Walter Biotech Consultancy公司创始人兼首席执行官目前为利穗科技(苏州)有限公司咨询顾问 生物制药行业知名学者,咨询顾问。具有超过27年生物药研发及生产经验。曾担任勃林格.英格翰公司新药研发及生产总监,参与75个不同规模的抗体及重组蛋白药物的工艺开发和放大,最大放大规模达12500L。曾担任GE Healthcare 膜过滤事业部全球副总裁,指导多个膜过滤产品及应用的开发。曾经在超过30个国际主流期刊上发表文章,作为Speaker被邀参加国际会议超过40个。目前主要致力于为制药企业进行工艺开发、放大,工艺验证及生产管理的咨询。客户包括华兰生物,Affimed AG, Medac GmbH, Innobiologics Sdn Bhd, Graffinity GmbH,等。 报名方式:姓名: 单位: 职务:手机:请将个人单位、姓名、职务、手机信息发送到市场部邮箱:caixin@lisui.net ,或可以直接电话报名:0512-69369998备注:本讲座免费(含午餐),人数有限,会议室99个固定座位,先到先得,交通住宿自理 会议联系人:蔡新 0512-69561800-8066 /18914086625 caixin@lisui.net 吴婷婷 0512-69369998 /18362618085 wutingting@lisui.net
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis,CE)具有分离效率高、分析速度快、操作简单和样品消耗少以及可与多种检测手段联用等优点,在酶分析研究中越来越受到关注[39-41]。近年来,固定化酶微反应器与生物活性靶向技术相结合已应用于中药酶抑制剂的筛选[42]。该方法将酶固定在经过修饰的石英毛细管内,捕获抑制剂后,洗涤未结合组分,进而通过蛋白质变性洗脱活性结合配体,允许直接并可重复注射生物样品到高效液相色谱上进行检测,筛选和分离一步完成,大大缩短了操作时间。但该方法制备过程中是比较复杂繁琐的[43-44],而且载体的孔隙率[45]、孔径[46]和表面化学[47-48]等因素也很容易影响固定化酶的性能。Wu等[49-50]用PDA对石英毛细管进行表面改性,并与氧化石墨烯共聚形成聚多巴胺/氧化石墨烯涂层,增加了固定化酶的结合率,并将该方法成功用于凝血酶和凝血因子Xa以及黄嘌呤氧化酶抑制剂的筛选。有研究者用3-氨基丙基三乙氧基硅烷对石英毛细管进行表面改性,采用戊二醛交联法进行酶的固定,并成功用于酶制剂的筛选。Rodrigues等[51]将此修饰方法用于黄嘌呤氧化酶(xanthine oxidase,XOD)抑制剂的筛选,成功地从不同天然产物中筛选出30个潜在的XOD抑制剂。Zhang等[52]将此修饰方法用于组织蛋白酶B抑制剂筛选,并从中药中发现了17个具有抑菌潜力的活性成分,发现山柰酚等5种天然产物有潜在的抑制作用,并以分子对接进行验证。Tang等[53]将此修饰方法用于脂肪酶抑制剂的在线筛选,结果发现6种天然产物对脂肪酶活性均有抑制作用。Zhao等[54]将此修饰方法用于神经氨酸酶抑制剂的筛选,发现了6种天然产物为潜在抑制剂。进一步测定了这6种化合物对神经氨酸酶潜在的抑制活性,由大到小分别为:甲基补骨脂黄酮A>补骨脂甲素>黄芩素>黄芩苷>白杨素和牡荆素。此外,还有研究者采用单片毛细管固定化酶反应器与液相色谱-串联质谱联用技术,成功用于酶抑制剂的筛选[55-56]。毛细管的高表面体积比有利于足够高浓度的酶用于酶促反应[57-58]。此外,由于注入的底物溶液直接与固定化酶分子接触,使传统的采样、反应、分离和检测多步操作简化为一步操作,因此该分析变得更简单,不需要额外的混合程序。与磁性载体相比,该技术将筛选和分离集成为一步,大大缩短了操作时间。该技术适用于复杂混合物中酶抑制剂的快速筛选,而且样品消耗量少,节省了试剂成本,可以实现酶抑制剂的快速分离。2.1.2 硅酸铝纳米管 硅酸铝纳米管(halloysite nanotubes,HNTs)是一种天然存在的硅酸盐纳米管,由于其优异的物理特性,引起了人们越来越多的兴趣。HNTs的内径为20~30 nm,外径为30~50 nm,长度为1~2 µm,为药物、酶和杀菌剂的储存提供了理想的纳米级包埋系统。更重要的是,HNTs的外表面主要由O-Si-O基团组成,内表面由Al2O3组成,为酶提供了更多的选择性结合位点,从而减少了配体在HNTs上的非特异性吸附[59]。因此,有研究者将HNTs作为一种新的酶固定载体材料用于酶抑制剂的筛选。Wang等[59]通过静电吸附作用将脂肪酶固定到羟基纳米管上用于厚朴中脂肪酶抑制剂的筛选,发现厚朴三酚和厚朴醛B 2种化合物对脂肪酶抑制活性较好。HNTs的内外表面为酶提供了更多的选择性结合位点,降低了非特异性吸附,但其合成较为复杂,收率较低,因此应用有限。2.1.3 多孔二氧化硅 多孔二氧化硅材料具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,同时还具有耐高温和低温、电气绝缘、耐氧化稳定性、耐候性、难燃、耐腐蚀、无毒无味以及生理惰性等特性[60]。Hou等[61]首先将α-Glu结合到脂质体囊泡中,然后采用反蒸发法将其负载到多孔二氧化硅表面,制备成受体脂质体生物膜色谱柱,用于五味子提取物的α-Glu抑制剂筛选,并通过体外实验进一步证实了五味子苷的降糖作用。2.2 有机载体材料2.2.1 中空纤维 中空纤维是一种具有孔径和内腔的有机聚合物,具有比表面积大、生物材料和有机溶剂消耗低,且设备便宜、用于中空纤维制备的材料来源丰富,是酶、细胞、脂质体等生物材料的理想载体,已被应用于酶固定化中。首先,对中空纤维进行活化。然后,将酶与已活化的中空纤维孵育使酶被吸附在中空纤维上。最后,将待测物与中空纤维固定化酶孵育,筛选待测物中潜在酶抑制剂。Zhao等[62]提出了一种基于吸附中空纤维固定化酪氨酸酶(tyrosinase,TYR)的方法,从葛根提取物中筛选潜在的TYR抑制剂。通过液相色谱-质谱分析,成功地检测出了7种潜在活性化合物,并进一步结合体外实验,发现葛根素、葛根素-6-O-木糖苷、葛根素和阿片苷具有良好的TYR抑制活性。中空纤维因其具有孔径、内腔及比表面积大等优点,为酶提供了充分的附着空间,但由于其清洗较为困难,导致重复利用率低。2.2.2 生物传感器 生物传感器是一种对生物物质敏感并可将其浓度转换为电信号进行检测的仪器。丝网印刷电极因其具有批量生产、低成本、高重现性、小尺寸等特点而被广泛应用于分析领域。所谓酶生物传感器法,是将酶固定在经过修饰的丝网印刷电极上,当与抑制剂接触时会发生电信号变化,通过检测电信号的变化,达到分析检测的目的。Elharrad等[63]为筛选药用植物中潜在的XOD抑制剂,研制了一种简便、灵敏的安培生物传感器,并用于测定多种药用植物对黄嘌呤氧化酶的抑制率,发现留兰香和马齿苋2种植物对黄嘌呤氧化酶抑制活性较高。以普鲁士蓝修饰丝网印刷电极表面,极大降低了生物传感器的检测电位,使该装置具有较高的选择性。该传感器具有结构简单、选择性好、成本低、稳定性好、结果快速等优点。2.2.3 纸 自2007年Whiteside研究小组首次提出微流体装置概念以来,纸作为一种新的载体材料,以其良好的生物相容性、大的比表面积、易于修饰、价格低廉等优点,在环境监测、化学检测、生物医学诊断等领域具有广阔的应用前景[64]。(1)滤纸:三维打印技术是利用一种纸分析仪器将纸张制作成为一种特殊的微流体装置,该装置成本低,具有较高的比表面积,易于结合分子吸附蛋白质。使用过的纸张设备可以很容易地通过燃烧来处理,可减少实验消耗品造成的污染。Guo等[65]将三维打印技术用于酶抑制剂的筛选,首先,用3D印刷的聚己内酯对滤纸进行改性,形成疏水区。然后,对滤纸进行准确切割,得到既具有亲水性又具有疏水性的改性纸。接下来,用壳聚糖对亲水区进行改性。最后,将α-Glu固定在亲水区,制备出具有独特微流体结构的三维打印技术微装置,并成功地将该方法用于筛选植物提取物中具有α-Glu抑制活性的物质,发现绿原酸、槲皮素-3-O-葡萄糖醛酸、异槲皮素和槲皮素4种化合物对α-Glu的抑制活性较好。该方法结合一些便携式探测器,如手机和照相机,可以获得定性和定量的结果。因此,很容易判断酶在纸上的固定化效果。(2)纤维素滤纸:纤维素滤纸(cellulose filter paper,CFP)具有成本低、来源广、表面积大、生物相容性好、表面羟基含量高等优点,被选为新型酶固定化载体,而且CFP可以快速从酶反应混合物中分离并终止反应,从而缩短了操作时间,简化了其他载体(如纳米材料和磁性纳米颗粒)所需的分离过程。Li等[66]以纤维素滤纸为载体,对α-Glu进行固定化。利用多巴胺的自聚-粘附行为,通过希夫碱反应和迈克尔加成反应,将聚多巴胺复合层包覆α-Glu与改性后的CFP共价结合形成固定化酶(CFP/DOPA/α-Glu)。用CFP/DOPA/α-Glu筛选11种中药中的α-Glu抑制剂,发现诃子对α-Glu的抑制作用最强。Zhao等[67]以CFP为载体,以壳聚糖为物理包覆剂引入氨基基团,然后以戊二醛为交联剂,通过希夫碱反应,将AchE与氨基功能化的CFP共价键合进行固定化酶。最后,将CFP固定化AchE应用于17种中药的抑制剂筛选。2.2.4 金属-有机骨架 金属-有机骨架(metal- organic framework,MOFs)为一种杂化多孔材料,由有机连接体和金属节点通过强的化学键组装而成。MOFs具有可调节孔径、大比表面积和热稳定性等优点。有研究表明,酶被固定在MOFs上后,其在可重用性、催化活性和稳定性方面的性能都有了很大的提高。Chen等[68]首先将ZrCl4和氨基对苯二甲酸溶于N,N-二甲基甲酰胺溶液中进行超声,然后分别加入HCl和HAc,得到混合物。随后,将混合物转移到不锈钢聚四氟乙烯内衬的高压釜中密封加热,反应混合物在空气中冷却至室温,然后离心。沉淀物用新鲜N,N-二甲基甲酰胺和无水乙醇洗净,后减压干燥,合成了金属有机骨架UiO-66-NH2。UiO-66-NH2通过沉淀交联固定化猪胰脂肪酶(porcine pancreatic lipase,PPL),得到的PPL@MOF具有较高的PPL载量和相对活力恢复率,并将PPL@MOF复合物用于筛选夏枯草脂肪酶抑制剂,发现了13种潜在的脂肪酶抑制剂。与磁珠、纳米粒子相比,MOFs材料酶固定量大、相对活力恢复率高。2.2.5 酶微柱 有研究者采用酶微柱法用于酶抑制剂的筛选,该方法属于固相萃取技术,操作简单,可与高效液相色谱耦合,实现了在线筛选,提高了酶抑制剂的筛选和分析效率。首先将硅胶分散在乙醇中,加入3-氨基丙基三乙氧基硅烷形成氨基功能化硅胶,然后将氨基功能化的硅胶与酶液混合,使酶固定在硅胶表面,洗去未结合酶,最后将酶固定化硅胶填入不锈钢微柱中形成酶微柱。Peng等[69]运用该方法成功的从金银花中筛选和鉴定XOD抑制剂。该方法与高效液相色谱的在线耦合提高了筛选和分析效率。与传统的与二维色谱耦合相比,该方法为直接与HPLC耦合,缩短了分析检测时间。3 总结与展望中药含有的化学成分复杂、种类繁多、作用机制比较复杂,一直是获取活性成分或者先导化合物的重要来源。以酶为靶标进行药物筛选是发现和寻找新药的重要环节之一。随着固定化酶技术的发展,研究者将固定化酶技术与中药酶抑制剂的筛选相结合,并通过高效液相色谱-质谱联用技术进行鉴定,筛选得到很多具有酶抑制活性的化合物,在一定程度上明确了中药发挥作用的活性成分及其作用机制。本文以不同载体材料为分类,综述了固定化酶技术在中药酶抑制剂筛选中的应用。磁珠是最常用的磁性载体材料,该类材料利用磁力吸引可使固定化酶配体配合物快速从体系中分离,且固定化方法简单,而且使用后的磁珠可以回收利用,能有效减少人力物力的投入。非磁性载体材料主要以石英毛细管应用最为广泛。此外,还有中空纤维、纳米管、生物传感器等材料用于筛选中药中的酶抑制剂,丰富了固定酶的载体材料。固定化酶技术在酶抑制剂筛选上的应用前景十分广泛,不仅节省了人力物力而且提高了新药研发的效率。目前,固定化酶技术仍然存在一些问题,如酶与载体材料的结合率较低、固定化酶的活力也会有所下降等。但相信随着科学技术的不断发展及酶抑制剂研究的不断深入,固定化酶技术会成为酶抑制剂筛选最有前景的方法之一。利益冲突 所有作者均声明不存在利益冲突
  • 一文知晓|流式、免疫组化、免疫荧光的抗体区别
    大家好,我是流式荧光崔工,一个旨在链接与流式荧光相关的朋友,一起赚钱、一起学习、一起工作、一起生活的靓仔。——流式荧光崔工上期回顾:《流式荧光技术检测与化学发光技术检测那些事儿》— 1 —前两天有位老师问崔工,流式抗体与免疫组化抗体有什么区别?崔工收集了网络上的一些回答,供参考:崔工收集了网络上的一些回答,供参考:回答1:两种抗体不一定通用,流式是用直接标记还是间接标记?如果是直接标记的话,那这个抗体一般不是FITC标记或者就是TRITC,PE之类的。如果恰好你的免疫组化,也是想用荧光素标记的抗体来直接标记,那就可以通用。如果你的免疫组化要用其它的标记的话,或者是间接标记的话,就有麻烦,因为荧光素的标记很可能会影响二抗和一抗的结合。回答2:流式抗体是用于流式细胞仪检测的抗体,与之相对应的有免疫组化抗体,免疫荧光抗体等等。回答3:免疫组化时抗体识别的是未经变性处理的抗原决定簇(又称表位),有些表位是线性的,而有的属于构象型;线性表位不受蛋白变性的影响,天然蛋白和煮后的蛋白都含有;构象型表位由于受蛋白空间结构限制,煮后变性会消失。如果所用的抗体识别的是蛋白上连续的几个氨基酸,也就是线性表位,那么这种抗体可同时用于免疫组化和WB,而如果抗体识别构象形表位,则只能用于免疫组化。崔工还请教了一位做抗体的朋友,他的回答是这样的:表位抗原有差异,免疫组化抗体要实现不同组织的定位,半定量特异性检测,流式是定量表达。— 2 —不同的实验对抗体有不同的要求崔工觉得首先可以从抗体的应用原理及特点从侧面来了解会更加清楚。抗体的应用一般来说除了做流式和免疫组化外,还可以做免疫荧光等其他实验。免疫组化是利用抗原与抗体的特异性结合原理和特殊的标记技术,通过化学的方法使标记抗体显色,对组织胞内的特异性抗原进行定位、定性、定量检测。免疫荧光是利用抗原与抗体的特异性结合原理和特殊的荧光标记技术,通过激光激发使荧光素发出荧光。在荧光显微镜下观察荧光的变化从而对细胞内的抗原进行分析的技术。流式荧光一样是利用抗原与抗体的特异性结合原理和特殊的荧光标记技术,过激光激发使荧光素发出荧光。不过检测是通过流式细胞仪来检测的。— 3 —再从WB,IP,IHC,IF,ChIP,FC对抗体需求有什么区别来看WB的蛋白经过加热变性之后都变成线性的结构。因此最好的抗体是采用非常特异序列的人工合成多肽的方法来做实验,结果也非常特异。IP/CHIP. 我们用抗体去结合生理状态下的蛋白质,因此IP的抗体最好使用纯化的天然蛋白制作的抗体来做,也可以用纯化的重组蛋白的抗体。最好不要用人工合成多肽制作的抗体,因为这种抗体识别的位点可能被深深地藏在了蛋白的内心深处。CHIP和IP没有太大的区别,唯一的问题在于,如果抗体识别的表位和该蛋白质与DNA结合的部位一致,则会导致CHIP实验的失败。 IF/IHC. 免疫荧光和免疫组化中需要进行固定一步,固定是为了尽量让细胞的形态结构维持和原有的一致。这种化学物质的固定使蛋白质变性凝固,与天然状态下的蛋白质有了一定的区别,但是又不同WB中加热变性变成了线性的结构。因此在做IF/IHC实验中,最合适的抗体可以是纯化的重组蛋白得到的抗体,也可以是人工合成多肽得到的抗体(多肽是在蛋白质的表面)。FC. 流式细胞中分为两种,一种是活细胞的流式,这种流式最好采用是天然蛋白或者重组蛋白的抗体来做,另外一种是经过固定之后的流式,和IF/IHC 所用抗体一致。在做流式细胞中,我们有直接标记和间接标记,间接标记不如直接标记真实准确。因此我们选择流式抗体要采用带有荧光标记的抗体;如果研究的蛋白没有直接标记的抗体,那么就采用间接标记抗体,需要添加荧光二抗。—————————————————————【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑(点击查看KOL主页)word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)-北京博赛德
    前言:大气污染治理重要的一环是控制污染源,通过对污染源废气的监测,分析废气的组成,为污染治理工作提供数据依据。和环境空气中挥发性有机物的分析不同,污染源中挥发性有机物的种类繁多,且浓度普遍偏高,对质谱定性能力和耐污染能力要求较高;污染源的现场环境条件复杂,高温、高湿和粉尘等会对挥发性有机物的分析产生巨大的影响。北京博赛德公司除提供完备的实验室分析方案,详见《真空瓶采样-热脱附气相色谱-质谱法测定固定污染源废气中挥发性有机物方案》,还推出现场分析检测方案。结合2020年3月25日生态环境部推出的《固定污染源废气 挥发性有机物的测定 便携式气相色谱-质谱法(征求意见稿)》,以及污染源废气高湿、高浓度等因素,推荐通过气袋(或真空瓶)采集固定污染源废气样品,稀释后使用HAPSITE便携式气质联用仪经吸附管富集、热脱附后分析检测。相比小体积定量环采样分析,此方案采样量更具代表性,且通过稀释,降低了样品浓度和湿度,从而减小对仪器的污染。本文将介绍气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的操作流程,分别从前期准备、样品采集与稀释、空白测试、样品分析、结果计算和附件来详细介绍。前期准备1.1配件(1)满电的内置电池或SuperPower便携式电池及连接线缆;(2)满瓶内置载气和内标气;(3)高纯氮气:纯度≥99.999%,用于空白测试、样品稀释;(4)无本底的干净气袋;(5)气袋采样系统:符合HJ732的相关规定;(6)注射器:用于样品稀释,玻璃材质;(7)标准气体:质控或现场单点校准。1.2预制校准曲线预先制作校准曲线,分别制作低浓度系列和高浓度系列校准曲线,参考如下:低浓度系列为 2.0 nmol/mol、5.0 nmol/mol、10.0 nmol/mol、25.0 nmol/mol、50.0 nmol/mol;高浓度系列为 50.0 nmol/mol、100 nmol/mol、200 nmol/mol、400 nmol/mol、600 nmol/mol。依次从低浓度到高浓度进行测定,绘制校准曲线。未完待续
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(下)-北京博赛德
    在固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)我们介绍样品的采集与稀释、空白测试以及样品分析工作过程,今天我们来介绍结果计算、设备附件以及该方案的优势。5、结果计算标准状态下目标化合物浓度按照公式(2)计算: ρ=ρx×M/22.4×f/1000 公式(2)式中:ρ——标准状态下样品中目标化合物的浓度,mg/m3;ρx——经校准曲线计算得到的目标化合物的浓度,nmol/mol;M——目标化合物的摩尔质量,g/mol;22.4——标准状态下(273.15 K,101.325 kPa)下气体的摩尔体积,L/mol;f——稀释倍数,无量纲。6.附件针对污染源VOCs采样、分析的种种难题,博赛德推出一套污染源采样稀释系统。采样杆自带加热功能,可以避免污染源废气样品冷凝而导致样品组分丢失;管路采用熔融硅涂覆,系统不易污染或残留,也大大增加了分析数据的真实性;高精度的数字稀释系统,稀释比例易于控制,稀释范围大,单次BCT大稀释倍数100倍,BCT大可稀释BCT500倍。 7.方案优势7.1 样品预调查和预检测时,样品直接进入质谱系统,不经过色谱柱,避免了色谱柱的污染,耐污染能力强。7.2 对于预调查浓度高的样品,采用样品稀释的方式,稀释方式相对于小体积进样,样品的代表性更强,可更有效的评估固定源的排放浓度。7.3 样品稀释过程可任意控制稀释比例,扩大了检测样品浓度范围。7.4结果定性采用国际标准和技术研究所(NIST)与(AMDIS)的质谱库,不采用自定义的其它普库,提高定性结果的准确性和可靠性。7.5 采样袋采样和真空瓶采样两种方式可选择,真空瓶采样方式,整个采样过程无工具连接,真空瓶材质惰性比采样袋更好,耐污染程度高。7.6 真空瓶可重复利用,使用成本低。7.7 真空瓶可提高样品的存储时间,可用于样品备份。BCT此,固定污染源废气中的挥发性有机物现场测试方案介绍完毕,更多精彩,请持续关注我们吧。
  • 聚焦色谱分离“心脏” iCC2022色谱填料及固定相研究新进展会场抢先看
    2022年,第七届网络色谱会议(iCC 2022)将于8月16-19日召开。本次iCC 2022由中国化学会色谱专委会指导,仪器信息网联合北美华人色谱学会、中国科学院兰州化学物理研究所、上海分析仪器产业技术创新战略联盟共同举办。点击图片报名参会会议共进行四天,将分设色谱研究新进展、色谱新技术、新方法(北美华人色谱专场)、色谱填料及固定相研究新进展、色谱在食品领域的应用新进展、色谱在制药领域的应用新进展、色谱在环境领域的应用新进展、色谱在能源领域的应用新进展、色谱实操、使用与经验分享专场等8个专场。将聚焦色谱技术最新成果,以及在制药、食品、环境、石化等最新研究进展,邀请业内知名专家学者做精彩报告,会议将在线上进行,免费向听众开放报名,欢迎报名参会!指导单位:中国化学会色谱专业委员会主办单位:仪器信息网北美华人色谱学会(CACA)中国科学院兰州化学物理研究所上海分析仪器产业技术创新战略联盟参会方式:网络在线报告 免费报名参会会议网址 :https://www.instrument.com.cn/webinar/meetings/icc2022/ 8月17日上午,将进行填料及固定相研究新进展相关讨论,本会场将由中国科学院兰州化学物理研究所邱洪灯研究员担任主持,江南大学严秀平教授、云南师范大学谢生明教授、河北大学乔晓强教授、中国科学院兰州化学物理研究所梁晓静研究员以及西南医科大学王路军副教授、珀金埃尔默高级应用技术工程师袁斌等6位专家带来精彩报告分享。会议日程如下:分会场三:色谱填料及固定相研究新进展主持人:中国科学院兰州化学物理研究所 邱洪灯9:00-9:30严秀平江南大学金属-有机骨架色谱固定相9:30-10:00谢生明云南师范大学手性核壳复合材料用于高效液相色谱拆分外消旋化合物10:00-10:30乔强河北大学磷脂色谱分离材料设计、制备及分离应用10:30-11:00袁斌珀金埃尔默苯基固定相的选择性特征及应用11:00-11:30梁晓静中科院兰州化物所MOF/水凝胶修饰硅胶新型混合模式色谱固定相研究11:30-12:00王路军西南医科大学手性色谱固定相研究及手性识别嘉宾简介及报告摘要中国科学院兰州化学物理研究所研究员 邱洪灯主持人个人简介:  邱洪灯,博士,研究员,博士生导师,《液相色谱实战宝典》特邀顾问。中科院“百人计划”(A类),国家优青,甘肃省杰青,甘肃省领军人才(第二层次),兰州化学物理研究所研究员,中科院西北特色植物资源化学重点实验室副主任,手性分离与微纳分析课题组组长。2003年南昌大学化学系本科,2008年兰州化学物理研究所博士,任助理研究员,2009年-2012年日本国立熊本大学博士后(JSPS Fellow)。2012年回国工作,研究方向为离子液体、碳纳米材料、骨架材料等新材料在药物分离、稀土分离及环境分析中的应用。正在主持或已完成的项目包括国家基金委优秀青年项目、面上项目和国际(地区)合作与交流项目,国家重点研发计划课题,中科院“十三五”重点培育、“十四五”重点部署项目、“百人计划”项目(A类)、西部之光交叉团队项目,甘肃省杰出青年基金和创新群体项目等。获甘肃省自然科学奖二等奖(排名1)、兰化所青年创新奖特别奖、兰州分院“优秀青年人才奖”、CCL优秀青年学者。发表论文190余篇,申请专利30多件,论著三章。现任《Chinese Chemical Letters》主编,《Chromatographia》、《Separation Science Plus》、《色谱》、《分析试验室》和《分析测试技术与仪器》编委,《化学进展》青年编委,中国化学会高级会员,中国分析测试协会青年学术委员会委员,甘肃省化学会色谱专委会秘书长,中国化工学会离子液体专委会委员。江南大学教授 严秀平《金属-有机骨架色谱固定相》个人简介:江南大学食品学院教授。从事环境和生物分析和食品安全研究。在原子吸收光谱原子化机理,毛细管电泳与原子光谱联用技术,基于多孔骨架材料的分离分析和长寿命发光纳米材料的免激发传感/成像及其在环境、生命和食品安全应用等领域取得了创新和系统的研究成果。两次应邀在Accounts of Chemical Research上发表系统研究工作。获授权发明专利28件,在Chem.、 Nat. Commun.、Acc. Chem. Res.、JACS、Angew. Chem.、Adv. Mater.、Anal. Chem.和ES&T等杂志上发表SCI论文310余篇,SCI他引12600余次,H指数81。2014-2019年连续6年入选Elsevier化学领域中国高被引学者,2020年入选Elsevier食品科学领域中国高被引学者。2000年获国家杰出青年科学基金资助,2002年入选国务院政府特殊津贴专家,2006年入选长江学者特聘教授、新世纪百千万人才工程国家级人选和首届天津市德业双馨十佳教师。2003年获国家自然科学奖二等奖(排名二),2006年获中国化学会梁树权分析化学基础研究奖,2007年获天津市自然科学一等奖,2008年获宝钢优秀教师奖特等奖提名奖,2013年获教育部自然科学奖一等奖,2015年入选英国皇家化学会会士(FRSC),2019年获中国分析测试协会科学技术奖特等奖,2020年获教育部自然科学奖二等奖。培养博士研究生60余名,其中2名博士生的论文分别获得2009年全国百篇优秀博士学位论文和2013年全国百篇优秀博士学位论文提名论文。曾任Analytical Methods副主编(2009-2018);现任中国化学会分析化学学科委员会副主任,Analytica Chimica Acta编辑、Talanta、Cancer Nanotechnology、Electrophoresis、Analytical Methods等国际期刊的编委。报告摘要:金属-有机骨架材料(Metal-Organic Frameworks,MOFs)MOFs是一类以金属离子或金属簇为配位中心,与含氧或氮的有机配体通过配位作用形成的多孔配位聚合物,具有比表面积大,种类和性质多样,孔和晶体尺寸可调和热稳定性好等优点。MOFs独特的结构特征和优异的性能,已在分析化学中显示出良好的应用潜力。本报告将介绍我们在MOFs多孔骨架材料应用于色谱固定相方面的研究工作。云南师范大学教授 谢生明《手性核壳复合材料用于高效液相色谱拆分外消旋化合物》个人简介谢生明,博士(华东师范大学)、教授、硕士生导师。现任云南师范大学化学化工学院副院长。2019年破格正教授,2017年入选云南省中青年学术和技术带头人后备人才,2018年入选云南省“万人计划”青年拔尖人才专项,云南省教育厅科技创新团队带头人。研究领域:新型手性功能材料的设计与合成、新型手性色谱柱(高效液相色谱手性柱、毛细管气相色谱手性柱、毛细管电色谱柱)的制备及其手性拆分性能的研究等。主持国家自然科学基金项目3项、云南省科技计划面上项目2项、云南师范大学“联大青年学者”项目;以第一作者或通讯作者在国际顶级或一流化学期刊发表包括J. Am. Chem. Soc.、Anal. Chem.、J. Membr. Sci.、ACS Appl. Mater. Interfaces、Anal. Chim. Acta、J. Chromatogr. A等在内的SCI源期刊论文50余篇,授权发明专利3项。报告摘要 主要介绍新型手性多孔材料,包括手性金属-有机骨架材料和手性共价有机骨架材料核壳复合材料的制备、表征及其在高效液相色谱手性拆分性能的研究。河北大学教授 乔晓强《磷脂色谱分离材料设计、制备及分离应用》个人简介博士/教授,博士生导师,现任河北大学药学院副院长,是河北省杰出青年基金获得者,河北省青年拔尖人才,河北省高校百名优秀创新人才,入选河北省三三三人才工程。2011年3月于中科院大连化学物理研究所获博士学位。2011年6月进入河北大学药学院工作。2016-2018年先后在美国德州大学阿灵顿分校和密西根州立大学进行博士后研究。迄今为止,在Analytical Chemistry、ACS Applied Materials & Interfaces、TrAC-Trends in Analytical Chemistry等权威期刊发表SCI论文50余篇,授权发明专利3项,在科学出版社出版《药学文献检索》1部。报告摘要定义和定量细胞膜上具有成千上万种独特结构的脂质分子对色谱技术的分离分辨能力提出了更高的要求。近年来,苯乙烯-马来酸(SMA)共聚物在细胞膜研究领域引起了广泛关注。SMA共聚物被证明是一种高效且温和的膜增溶试剂,对各种结构的磷脂分子具有很好的增溶作用,可开发为新型色谱固定相材料,提高复杂膜脂的分离分析能力。本文利用巯基-烯点击反应和酸酐-醇/胺之间的亲核开环反应制备了SiO2-SMA-十二醇色谱柱和SiO2-SMA-氨基酸色谱柱。采用傅里叶变换红外光谱仪和热重分析仪表征证明两种固定相材料均已成功制备。对保留机制、色谱分离性能进行考察,两种填充色谱柱均具有反相/亲水混合模式保留机制,可实现烷基苯类、多环芳烃类、苯酚类、苯胺类和酰胺类等多种物质的良好分离分析。将SiO2-SMA-十二醇色谱柱和SiO2-SMA-氨基酸色谱柱用于磷脂标准品的分离分析。SiO2-SMA-氨基酸色谱柱对磷脂分子类别和种类均显示了良好的分离效果,优于SiO2-SMA-十二醇色谱柱的分离效果。进一步将SiO2-SMA-氨基酸色谱柱用于胃癌细胞膜脂提取物的分离分析,SiO2-SMA-氨基酸色谱柱可在正相色谱和反相色谱模式下实现磷脂类别和磷脂酰胆碱分子种类的有效分离分析,显示了良好的应用潜能。中国科学院兰州化学物理研究所研究员 梁晓静《MOF/水凝胶修饰硅胶新型混合模式色谱固定相研究》个人简介梁晓静,研究员,博士生导师。2010年于中国科学院兰州化学物理研究所获分析化学博士学位,同年留所工作至今。2015年入选中科院青年创新促进会,2017年-2018年澳大利亚南澳大学访问学者,2020年入选“西部之光”A类学者。主要从事复杂体系色谱分析新材料新方法技术及应用研究。作为项目负责人先后承担了国家自然科学基金2项、中科院“西部之光”项目1项、大型企业委托项目10余项,作为主研人员参加了“十二五”、“十三五”国家科技重大专项子课题、研究所一三五培育项目等多项研究课题。研究成果获甘肃省自然科学二等奖1项,甘肃省科技成果转化奖1项,在Anal. Chim., TRAC-Trend. Anal. Chem, Anal. Chim. Acta, Talanta, Microchim. Acta, J. Chromatogr. A等分析化学重要期刊发表SCI论文70余篇,编写中文著作一章,获授权20余项。报告摘要在MOF修饰硅胶新型混合模式色谱固定相方面,选择了高耐热性的金属有机骨架(MOF-235),通过溶剂热法和高温程序煅烧法将其分别和亲水性聚合物聚乙二醇(PEG)、聚乙烯吡络烷酮(PVP)共同修饰于硅胶表面,合成了两种具有亲/疏水性的混合模式色谱固定相,对多种亲/疏水化合物表现出良好的分离效果。在此基础上,进一步通过选择MOF和聚合物的种类,采用不同的方法制备了多种MOF/聚合物共修饰硅胶混合模式色谱固定相,对生物碱、核苷、抗生素、烷基苯等亲/疏水化合物均有较高的分离选择性。 在水凝胶修饰硅胶新型混合模式色谱固定相方面,采用两步交联聚合策略,将一种具有温度响应性的疏水缔合水凝胶修饰到硅胶表面,制备了一种亲/疏水混合模式色谱固定相,丰富了色谱分离模式,大幅提升了分离速度和分离效率。为进一步提升固定相的分离多样性,通过在水凝胶网络结构中引入一定比例的亲水和疏水单体,并将其协同键合到硅胶表面,制备了一种双亲性非共轭柔性三维网络结构水凝胶修饰硅胶混合模式色谱固定相,实现了多种不同极性分析物的高效分离。随后,在水凝胶柔性网络中引入具有刚性结构的多孔MOF纳米材料作为辅助添加剂,有效抑制了水凝胶修饰层的过渡溶胀,增加了分离过程的作用位点和通道,使得固定相的分离选择性得到近一步提升。西南医科大学副教授 王路军《手性色谱固定相研究及手性识别》个人简介捷克中欧技术院博士后,西南医科大学药学院副教授,硕士生导师,四川省科技青年联合会理事,西南医科大学青年科技人才特别支持计划项目获得者,中国分析测试协会青年委员会员,中国化学会会员,是Analytica Chimica Acta (SCI, IF=5.123)、Talanta (SCI, IF=2.073)、Journal of chromatography A (SCI, IF=3.716)等杂志的特约审稿专家,目前主要从事新型分离材料、手性药物分析以及智能响应材料等方面的科研工作,主持国家自然科学基金、四川省教育厅重点项目以及泸州市科技厅等项目多项,项目经费100余万元,在Trends in analytical chemistry 、Nanoscale、Analytica Chimica Acta、Journal of chromatography A等高水平杂志上发表SCI论文30余篇,授权和申请国家发明专利6项,获得全国药物分析优秀论文三等奖1项,泸州市药学会优秀论文二等奖多项。报告摘要1. 手性液相色谱柱的种类介绍 2. 智能响应手性色谱柱的研发及其应用 3. 混合模式手性色谱柱的研发及其应用 4. 3D打印电化学手性传感珀金埃尔默企业管理(上海)有限公司高级应用工程师 袁斌《苯基固定相的选择性特征及应用》个人简介从事液相色谱分析近20年,熟悉色谱理论和数学分析理论,有丰富的液相色谱方法开发和实验设计项目经验。就职于珀金埃尔默企业管理(上海)有限公司,担任色谱技术应用工程师,负责液相色谱产品技术支持和方法开发。报告摘要十八烷基固定相(ODS/C18)由于其应用广泛性,故在反相色谱法中为实验人员的首选工具。然而面对不同结构的化合物,实验人员需要在分离过程中寻求不同的分离选择性从而提高色谱分离的效率和准确度。苯基取代化学固定相中苯环的特殊理化性质给予了其在分离过程中可提供与C18不同的选择性从而提升色谱分离品质。因此了解苯基取代化学固定相的性质有助于在方法开发中基于特定的化学结构快速准确地筛选色谱柱。
  • 国家生态环境标准《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿发布
    为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范固定污染源废气中挥发性有机物的测定方法,生态环境部组织编制了国家生态环境标准《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿,现公开征求意见,并于2023年9月1日前将意见建议书面反馈至生态环境部,注明联系人及联系方式,电子文档请同时发送至联系人邮箱。此标准为首次发布,规定了测定固定污染源废气中70种挥发性有机物的容器采样/气相色谱-质谱法,附录A为规范性附录,附录B~附录D为资料性附录。此标准适用于采样温度低于150 ℃的固定污染源有组织排放废气中氯甲烷等70种挥发性有机物的容器采样和测定。进样体积为1.0 ml时,在全扫描(Scan)模式下,本方法70种目标化合物的方法检出限为0.07 mg/m3~1 mg/m3,测定下限为0.28 mg/m3~4 mg/m3。详见附录A此标准由生态环境部生态环境监测司、法规与标准司组织制订,主要起草单位为:黑龙江省生态环境监测中心,验证单位为:黑龙江省哈尔滨生态环境监测中心、黔西南生态环境监测中心、内蒙古自治区环境监测总站、内蒙古自治区环境监测总站呼和浩特分站、黑龙江省佳木斯生态环境监测中心和北京博赛泰克质量技术检测有限公司。附件:1.征求意见单位名单.pdf 2.固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿).pdf 3.《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿)》(编制说明).pdf
  • 专家教您如何选择液相色谱固定相
    pspan style="FONT-FAMILY: times new roman"  反相液相色谱可供选择的固定相种类繁多令人眼花缭乱,即使是某一种固定相(例如Csub18/sub)的可选择种类也是很多的。/span/ppspan style="FONT-FAMILY: times new roman"  老实说,我们的很多方法开发都是在尝试和错误中进行,这些都是基于我们喜爱的供应商提供的成熟的或者新兴的固定相。即使是先进的含有仔细考量的正交化及电脑优先洗脱设计的“筛选”平台,有时也不得不采取“色谱的本能”。/span/ppspan style="FONT-FAMILY: times new roman"  反相色谱中的保留是基于被分析物、流动相、键合相以及键合了配体的硅胶表面的活性和其可接触性之间的平衡。 想要搞清楚影响分离效果的保留机理,就要考虑并明确化学键合相、活性硅胶表面的处理、硅胶表面的可接触性等因素,这些都将影响色谱柱的原始选择性及方法开发的优化。/span/ppspan style="FONT-FAMILY: times new roman"  在大多数反相分离中色散作用是起主要作用的,尤其是那些使用未改性的烷基配体(Csub18/sub、Csub8/sub、Csub4/sub),其保留能力是与被分析物的疏水性成正比的。含有芳香基团或不饱和基团的固定相或被分析物进行分析时,电荷转移(或& #960 -& #960 )作用是起主要作用的。偶极-氢键相互作用对于极性化合物的保留是很重要的,含有“氰基”的固定相会增强对极性化合物的保留。被分析物的电离部分与硅胶表面之间存在静电作用力,这是由于硅胶表面有残留的可离子化的硅醇基。/span/ppspan style="FONT-FAMILY: times new roman"  当前有许多色谱柱分类系统存在,这些系统都是基于对已知化学探针物质的检测,从而/spanspan style="FONT-FAMILY: times new roman"来描述固定相的独特特性。一个非常有用的例子就是美国药典(USP)网站中的产品质量研究数据库(也就是PQRI系统),网址是:http://www.usp.org/app/USPNF/columnsDB.html。该数据库采用保留(1,2)的疏水减法模型来描述固定相的疏水性(H),判断疏水性类似而有不同形状或流体力学体积的被分析物的空间结构选择性参数(S),在pH值为7.0和2.8时的氢键(作为路易斯酸或路易斯碱)和静电作用参数(C)。pH值为7.0时硅醇基活性很强,pH为2.8时具有酸性的硅醇基将会与极性或可离子化的被分析物发生作用产生拖尾。独特的或正交的固定相一般会有较大的S、B和C(7.0)值。这些大型的数据库对于比较固定相的特点是很有用的,“雷达图”也是另一种比较固定相特点的有用方式。/span/ppspan style="FONT-FAMILY: times new roman"  表一总结了一些当前常用固定相的分类及其相关应用领域。/span/pp style="TEXT-ALIGN: center"span style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060"表一:一些主要固定相分类及其主要应用/span/strong/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="表1.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/540303f9-dcc8-49c2-b339-34be938e95ae.jpg"/ /span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman" img title="43d7b645-f3ad-4b00-aae0-cb2a4184812a_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/e6eb5d10-9666-4d69-9589-97922871dea7.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px"图一:一些常用的反相键合相的保留机理以及键合在硅胶表面的键合相的结构示意图/span/strong/span/ppspan style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px"   /span/strong/spanp style="TEXT-ALIGN: center"span style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px" img title="b4ba0ffd-2ab4-4076-b350-4d81d805f81b_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/79bc34f2-1396-4cd7-81c9-f95ab840db8e.jpg"//span/strong/span/pp style="TEXT-ALIGN: center"span style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px"  图二:左图是根据PQRI数据库中相似固定相制得的雷达图,右图是根据PQRI数据库中正交固定相制得的雷达图,也就是根据固定相的疏水性来预测其选择性的相似区域。/span/strong/span/ppspan style="FONT-FAMILY: times new roman"strong参考文献/strong/span/ppspan style="FONT-FAMILY: times new roman"  (1) L.R. Snyder, J.W. Dolan, and P.W. Carr, J. Chromatogr. A 1060, 77–116 (2004)./span/ppspan style="FONT-FAMILY: times new roman"  (2) L.R. Snyder, J.W. Dolan, and P.W. Carr, Anal. Chem. 79, 3255–3261 (2007)./span/pp /pp style="TEXT-ALIGN: right"strong原文作者:Tony Taylor /strong/pp style="TEXT-ALIGN: right"strong翻译/strongstrong稿件来源:LCGC战略合作伙伴——月旭科技/strong/pp /pp /pp /pp /pp/p/p
  • 月旭科技-专家讲座系列之色谱固定相的形貌与特征
    本期“月旭科技-专家讲座”的嘉宾是华东理工大学特聘教授,也是我们月旭科技分离纯化技术中心总工——张维冰教授。本周六上午,张维冰教授将与大家分享讨论“色谱固定相的形貌与特征”的相关内容。我们的讲座分为两大部分,zui后有互动答疑环节,来跟大家交流相关主题的内容,解决大家的实际问题,敬请关注!一、主讲人简介现为华东理工大学特聘教授,南昌大学、齐齐哈尔大学讲座教授。月旭科技分离纯化技术中心总工。主要从事包括色谱、毛细管电泳的理论与实践研究工作。张维冰教授师承张玉奎院士,于1999年在中国科学院大连化学物理研究所获理学博士学位,并在台湾中兴大学进行博士后研究工作,后赴德国Max Planck Institute for Dynamics of Complex Technical Systems作访问学者。已发表学术论文600余篇,著作七部,申请及授权专利百余项。负责或参加完成国家自然科学基金 、“973”、“863”及国家“攻关”、“支撑计划”等项目多项。二、讲座主题《色谱固定相的形貌与特征》内容摘要1、对色谱分离介质的基本要求;2、固定相的制备;3、月旭固定相基质的特征;4、创新固定相修饰技术;5、特殊固定相的应用。三、讲座时间2021年12月18日(周六) 10:00-11:00《色谱固定相的形貌与特征》主题讲座 11:00-12:00 专家互动答疑环节四、参与方式关注月旭科技视频号,点击卡片“预约”,届时进入月旭科技视频号直播间观看即可。
  • 岛津应用:nSMOL前处理技术结合Skyline软件加速抗体药物LCMS分析方法开发
    LCMS 技术分析蛋白药物或者蛋白标记物,通常需要经过胰酶酶解过程,获得的酶解混合物经过净化后再分析。复杂生物基质例如血浆、血清中目标抗体药物若采用传统酶解方式或 Pellet 酶解方式,获得的酶解产物均为多种肽段的混合物。结合 LCMS 分析的特点,在方法开发的过程中需要针对酶解的备选肽段进行 MRM 通道的筛选和优化,酶解产物越复杂在方法开发过程中所消耗的时间越长。随着技术的发展,我们发现通过纳米表面限制性和导向性酶解抗体药物实现 Fab 区域的选择性酶解技术(nSMOL)处理抗体,可以尽可能降低对非特异性区域例如保守区域的酶解,从而极大地减少了酶解肽段的数量,进一步的 LCMS 方法开发过程大为简化。 与传统的基于经验筛选蛋白特征肽段的过程不同,岛津公司将其超快速液相色谱-质谱联用平台和强大的 Skyline 定量蛋白质组学软件集成一体。Skyline 软件为蛋白质定量的研究工作提供了标准化的工作流程,使得方法开发工作不再过度依赖研究人员的经验,降低了肽段筛选和 MRM 通道分析条件优化的复杂程度。 本文利用nSMOL前处理试剂包结合Skyline软件,加速抗体药物LCMS方法开发过程,仅在一个工作日就可以完成单个抗体药物的 LC-MS/MS 方法的初步优化。在本实验中筛选阶段,贝伐珠单抗共有 9 个肽段具有典型色谱峰,其中 4 条肽段与贝伐珠单抗的 Fab 区域相关,而贝伐珠单抗具有代表性的特异性肽段集中于 Fab 区域,4 条 Fab 区域的肽段响应远高于其他肽段;曲妥珠单抗共有 10 个肽段典型色谱峰,其中 8 条肽段与贝伐珠单抗的 Fab 区域相关,80%的肽段与抗体 Fab 区域相关。与传统的 ELISA 方法需要制备特异性免疫试剂进行检测消耗的时间比,本方法极大地缩短了方法开发的过程,更灵活快速应对抗体药物和生物类似药临床前及临床研究等不同阶段生物分析的需求。 了解详情,敬请点击《nSMOL前处理技术结合Skyline软件加速抗体药物LCMS分析方法开发》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 生物药岛津说-利用岛津Q-TOF质谱进行贝伐单抗生物类似药抗体表征分析
    Bevacizumab是重组人源化人血管内皮生长因子(VEGF)单克隆抗体,作为美国第一个获得批准上市的抑制肿瘤血管生成的药,可用于转移性结直肠癌以及非鳞状非小细胞肺癌治疗等。在中国,超过10家贝伐珠单抗生物类似药在研发上市过程中,面对生物类似药分析,充满技术挑战,贝伐单抗生物类似药表征是质量控制关键点之一,分析过程中,抗体肽图分析方法尤为关键,今天我们就聊一聊贝伐单抗生物类似药肽图分析技术方法。 肽图分析(peptide mapping)是研究抗体药物结构组成的重要技术之一,抗体通过酶切处理后,利用色谱结合岛津高分辨Q-TOF质谱LCMS-9030分析,不仅可以对蛋白质氨基酸序列进行分析,同时可以对于相应肽段的翻译化修饰(PTM)进行分析。通过岛津反相HPLC方法分离不同性质的肽段,后续肽段通过高分辨质谱进行一级和二级扫描,通过监测的母离子和子离子匹配相应的肽段氨基酸序列以及存在的修饰。肽图分析是抗体蛋白药物质量控制的重要手段,岛津高分辨质谱可以完成相关所有的分析检测项目。 分析仪器及色谱柱方案 01分析仪器 LCMS-9030四极杆飞行时间质谱仪使高速度、高灵敏度的四极杆质谱与TOF技术的紧密结合。融合岛津先进工程技艺的DNA,打造出速度与出色性能兼备的全新一代高分辨质谱仪,以优异表现轻松胜任定性和定量分析挑战。 LCMS-9030 02液相色谱柱 ● 反相肽段分析专用色谱柱● 寿命长,耐压高,出峰稳定Shim-pack GISS-HP,3um,150*3.0 mm 应用实例 以bevacizumab 生物类似药为例,进行peptide mapping分析,将抗体蛋白通过胰酶酶切后,通过反相色谱质谱分离后进入高分辨Q-TOF质谱进行一级全扫描和二级扫描,高分辨数据提取分析匹配相应的肽段序列,完整流程如下图所示。 图. 利用岛津LCMS-9030抗体测序基本流程以及举例 岛津分析bevacizumab 生物类似药序列分析,通过Shim-pack GISS-HP色谱柱(3um,150*3.0 mm),可以高效分离酶切后的轻重链肽段,最后用LC-MS 9030 进行一级和二级扫描,最佳参数色谱质谱参数如下表所示。 图. 利用岛津LCMS-9030抗体测序详细参数 通过软件分析高分辨数据,进而匹配生物类似药的重链和轻链序列,完成整个抗体的肽图分析。因篇幅有限,以重链肽段序列部分数据进行展示,匹配覆盖率100%,可以说明岛津LCMS-9030 Q-TOF质谱在抗体肽段分析方面具有强大的实力。部分序列分析结果见下图所示。 图.bevacizumab 生物类似药重链测序结果展示(部分展示) 结合前述案例,岛津建立高分辨质谱LCMS-9030针对抗体药物进行肽图分析完整策略,此外对于分子量分析、翻译化修饰、二硫键分析、糖基化分析,LCMS-9030可以完成所有相关抗体药物关键质量属性检测,为用户节能增效,创造最大价值。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制