当前位置: 仪器信息网 > 行业主题 > >

质谱测高分子分子量

仪器信息网质谱测高分子分子量专题为您提供2024年最新质谱测高分子分子量价格报价、厂家品牌的相关信息, 包括质谱测高分子分子量参数、型号等,不管是国产,还是进口品牌的质谱测高分子分子量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱测高分子分子量相关的耗材配件、试剂标物,还有质谱测高分子分子量相关的最新资讯、资料,以及质谱测高分子分子量相关的解决方案。

质谱测高分子分子量相关的资讯

  • “100家实验室”专题:访上海高分子材料研究开发中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。2010年11月初,仪器信息网工作人员参观访问了本次活动的第五十七站:上海高分子材料研究开发中心(以下简称:中心)。上海高分子材料研究开发中心  上海高分子材料研究开发中心成立于1999年7月,隶属上海市科学技术委员会。中心主要任务是面向社会,对高分子材料生产及相关应用企业、科研机构提供高分子材料领域的分析测试研究和检测等技术服务。  上海高分子材料研究开发中心在2005年、2007年分别取得了中国合格评定国家认可委员会实验室认可(CNAS)和计量认证(CMA)等资质。同时,其也是上海公共研发服务平台的成员单位,由资深专家免费为客户提供有关橡胶、塑料等高分子材料产品的质量评估保证及试验等方面的咨询服务。上海高分子材料研究开发中心资质证书  中心主要业务分四大类,包括:(1)各类高分子材料的样品(包括塑料、橡胶、纤维、涂料、催化剂、黏结剂、发泡剂等)的分析测试,包括相关检测样品的制作;(2)对样品的未知组成物及结构进行剖析;(3)为中小科技企业的研发提供配套服务,包括技术咨询、材料研发咨询、工艺制备咨询、整体解决方案的提供等;(4)在高分子材料(特别是新型材料)的应用领域(如汽车、造船、建材、纺织等)开展高分子材料的技术标准的研究和分析测试方法研究。  目前,中心拥有气相色谱一质谱联用仪、扫描电镜、能谱分析仪、元素分析仪、气相色谱仪、液相色谱仪、红外光谱仪、紫外可见分光光度仪、热分析仪、各类力学性能测试仪器等价值千万元的仪器,设备配套齐全。 NETZSCH 热机械分析仪TMA202、差示扫描量热仪DSC204、热失重分析仪TG209  TMA202:主要进行高分子材料线性膨胀系数、玻璃化转变温度的测定。  DSC204:主要进行材料的熔点,玻璃化转变温度、结晶度、熔融焓测定。  TG209:主要进行高分子材料热稳定性的评定,添加剂、共聚物和共混物、挥发物的分析,水分含量的测定,预测高分子材料使用寿命等。 INSTRON数显洛氏硬度计2000系列、摆锤式冲击机POE2000、电子万能试验机5567型  2000系列:测定洛氏硬度。  POE2000:主要进行塑料、陶瓷及复合材料试样的简支梁和悬臂梁冲击试验。  5567型:主要进行各种材料的拉伸、压缩、弯曲物理性能及其在不同温度下的试验,具体测定拉伸强度、压缩强度、弯曲强度、拉伸模量、压缩模量、弯曲模量等。 济南试验机厂磨损试验机、Haake转矩流变仪PolyLab  M200:进行塑料及复合材料的摩擦磨损试验,测定磨损量、摩擦系数。  PolyLab:测试聚合物粉末与液体添加剂的混合、复合、吸收性能、塑化性能;确定聚合物的流变参数,制备供分析测试用的聚合物样品,混合色母料,加入添加剂和排出挥发份,制备高分子合金和增强塑料,作为螺杆反应器制备超高分子量聚合物。 QUV耐侯试验机、日本电子JSM-5610高低真空扫描电镜(配能谱EDS)  耐侯试验机:UV紫外老化,可靠的老化测试数据可对产品的耐候(抗老化)性做出准确的相关性预测,并有助于材料及配方的筛选、优化 快速、真实地再现阳光、雨、露对材料的损害,只需要几天或几周时间,可以再现户外需要数月或数年才能产生的破坏,包括褪色、变色、亮度下降、粉化、龟裂、变模糊、脆化、强度下降及氧化。  JSM-5610:研究各种均相聚合物的结构及其断口形态特征与力学行为关系;研究多相复合体中各相的结构及其分布和相之间界面的状态;研究聚合物材料作为涂层、粘合剂、薄膜时,形成聚合物膜的结构及其粘结状态;研究纤维和织物的结构及其缺陷特征;一个检测器可以同时得到立体图像、构成图像、凹凸图像;对样品表面成分(元素)进行半定量、定量分析。 JC2000C1接触角测量仪、瑞士Metrohm库伦水分测定仪F-756型  JC2000C1:主要测量液体对固体的接触角,即液体对固体的浸润性,也可测量外相为液体的接触角,该仪器能测量各种液体对各种材料的接触角,例如块状材料、纤维材料、纺织材料等,粉末样品在压片后也可测量;同时此仪器可测量和计算表面/界面张力、CMC、液滴形状尺寸、表面自由能。  F-756:该仪器配有加热装置,可以将材料内部水分烘出,由载气带入滴定池,通过K-F试剂滴定,精确测定材料中水分含量。对材料中微量水分测定特别有效,可以用于塑料原料、成型材料及其它固体材料的水分检测。  此外,上海高分子材料研究开发中心于2008年12月在上海青浦建成材料耐火阻燃实验室,该实验室可以执行中国船级社MSC Circ.1006燃烧测试,MSC Circ.1006标准广泛应用于船舶上燃烧性能的检测,是船级社认可的标准。实验室拥有耐火试验设备、阻燃试验设备。  耐火试验设备:用丙烷等气体作为试验气体,可将火焰温度准确稳定地控制在1550~1600度,温度由两个精确的红外探头测定。本实验室的耐火试验设备可输出精确、直观的温度-时间曲线,数据可靠。  阻燃试验设备:采用国外先进的电火花点火装置,功率可达1万瓦,锥形辐射器完全按照ISO5660制造,辐射照度稳定在50KW。整个试验流程完全为电脑程序控制,可精确测出点火功率、电流大小点火时间等数据,严格按照MSC Circ.1006标准进行试验。  为发展上海和长江三角洲的高分子产业、发挥与高分子材料检测相关机构的联合技术服务优势,更好地为企业研发和生产服务。上海高分子材料研究开发中心与复旦大学 、交通大学、东华大学、 上海材料所、上海塑料所、上海橡胶所、上海涂料研究所等相关检测机构于2008年共同发起组建了“高分子材料检测服务联盟”。联盟秘书处筹备联络工作由上海高分子材料研究开发中心承担。  联盟成员之间,优势互补,同时每年定期进行1~2次的能力对比试验;资源共享(仪器和设备);相互提供检测标准的咨询、培训、讲座、现场技术指导等信息和技术支持;联合进行与检测技术与方法相关的课题、研发、剖析和检测等工作;联合争取国家与政府的政策与资金支持。  联盟为社会和企业提供专业检测服务,也提供与检测相关的新产品标准、检测技术咨询和技术交流等服务。  附录:上海高分子材料研究开发中心  http://www.polymercenter.org/
  • 高分子表征技术专题——荧光关联光谱在高分子单链研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20238《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304荧光关联光谱在高分子单链研究中的应用周超 1,2 ,杨京法 1,2 ,赵江 1,2 1.中国科学院化学研究所机构 北京 1001902.中国科学院大学机构 北京 100049作者简介: 赵江,男,1967年生. 分别于1989年、1992年在吉林大学物理系获得学士、硕士学位,1995年于中国科学院物理研究所获得博士学位,之后分别于北京大学化学与分子工程学院、日本产业综合研究所、美国伊利诺伊大学从事博士后研究,2004年起于中国科学院化学研究所任研究员,入选中国科学院“百人计划”,2009年获得国家杰出青年科学基金资助,2013年当选美国物理学会Fellow. 以单分子荧光显微与光谱方法开展关于高分子物理基础性研究,研究方向包括:多电荷大分子、聚合物表界面、高分子动力学、相变与玻璃化转变等 通讯作者: 赵江, E-mail: jzhao@iccas.ac.cn摘要: 荧光关联光谱(fluorescence correlation spectroscopy,FCS)是一项用于研究体系动力学性质的统计光谱技术,随着它被引入材料与化学研究领域,近年来取得了大量全新的研究成果. 该技术在高分子科学研究中也逐渐发挥出越来越大的作用,特别是在聚合物结构和动力学方面,这表明它在高分子领域的巨大潜力. 本文将从FCS的基本原理、实验技巧以及在一些具有挑战性体系中的应用等方面展开,着重介绍它在高分子溶液,如聚电解质溶液、高分子混致不溶现象,以及不同的表界面体系中取得的新成果,展示FCS区别于其他传统技术的特点和优势.关键词: 荧光关联光谱 / 高分子 / 聚电解质 / 表界面 / 混致不溶 目录1. 荧光关联光谱的基本原理2. 荧光关联光谱的实验技巧2.1 实验样品的标记和纯化2.2 激发体积的校准3. 荧光关联光谱在高分子单链研究中的应用3.1 FCS在聚电解质体系中的应用3.2 FCS在高分子混致不溶现象中的应用3.3 FCS在表界面体系中的应用3.4 FCS在有外场作用的体系中的应用4. 荧光关联光谱技术的发展和应用5. 结论参考文献高分子物理研究的目标之一是探究聚合物在不同尺度上的结构与动力学,及其对于高分子体系性质的决定性. 其中,聚合物构象是最为基础的研究内容. 高分子构象是指由于主链上单键内旋转而产生的分子链在空间的不同形态. 对于中性聚合物体系,由于分子链的结构自相似性,利用标度理论可以成功描述其在良溶剂、θ溶剂以及不良溶剂中分子链的尺寸. 散射技术是研究高分子链构象最成功的方法,如:光散射、X射线散射以及中子散射. 就动态光散射而言,它通过检测高分子溶液散射光强随时间涨落而得到其关联函数,从而获得单分子链的扩散速率信息,并获得分子链的流体力学半径信息[1,2]. 结合静态散射实验所获得的回转半径,可以确定聚合物在溶液中的形态[3,4]. 虽然光散射方法在具有短程相互作用的中性聚合物体系表征中非常成功,但是该项技术在一些条件或情形下却遇到了很大的困难,如:多电荷体系、多组分复合体系、表界面体系等. 在多电荷体系中,多重长程静电相互作用使得动态光散射信号中出现令人费解的“快慢模式”[5~7]. 用光散射法来考察高分子的混致不溶现象时,混合溶液中强烈的组分涨落导致强烈的光散射背景信号,严重影响了光散射对信息的提取[8]. 因此,采用新的技术和研究方法开展高分子表征无疑是重要的.荧光关联光谱(fluorescence correlation spectroscopy,FCS)是表征高分子的有效新方法之一. 它与动态光散射同属于光子相关光谱技术,通过分析光信号的涨落而得到分子链动力学信息. 然而,FCS具有很高的探测灵敏度,通过获取荧光涨落信号而得到单个分子的动力学信息. 荧光关联光谱技术是由Madge、Elson和Webb[9~11]在20世纪70年代发展起来的,20世纪90年代,随着Rigler等[12]将共聚焦技术引入,FCS得到快速发展. 采用共聚焦显微技术,FCS的激发-探测空间体积缩小至~10−15 L,激发-探测空间内的分子数目大大地降低,实验的信噪比也随之提高. 与此同时,具有很高灵敏度的单光子检测器的采用使得FCS实现了单分子水平的测量. 随着计算机技术的进步,数据采集卡能够实时地进行数据的采集和相关性计算,使得FCS技术得到了重要的突破,在科学研究中的应用也越来越广泛.近年来,FCS在高分子物理研究中逐渐表现出重要作用,相比于传统的散射技术,它有着独特的优势. 第一,FCS具有极高的灵敏度,可以在极稀薄条件下(~10−9 molL−1)进行测量,同时具有达到光学衍射极限空间分辨率(~200 nm)与出色的时间分辨率(10−6 s). 第二,FCS的信噪比与聚合物的分子量无关. 在实验中,聚合物链通过化学键合的方式实现一比一的荧光标记,因此,分子量不同的样品对于信号的贡献相同. 但是,对于光散射技术而言,散射光强与聚合物分子量具有依赖性,因而信噪比也随之改变,分子量偏小样品的实验难度较大. 第三,对样品的荧光标记同样带来了可选择性与识别性,实现了同一体系中不同组分的区分式研究. 例如,通过对不同组分使用不同的荧光分子进行标记,采用多色FCS对各组分间的运动及其关联进行分析;也可选择性地对多组分体系中的特定组分进行标记,实现复杂体系中特定组分的研究.伴随着FCS技术的发展以及与其他研究手段的联用,其应用越来越广泛,从最初的生物领域[13~15]到胶体[16,17]、聚合物[18,19],从溶液[20~23]到熔体[24~26]、凝胶[27~29]、表界面体系[30~32]等,都取得了许多原创性的成果. 值得指出的是,FCS在测量平动和转动扩散系数、反应速率常数、平衡结合常数、细胞内粒子浓度等方面有着突出的优势[33~35].1. 荧光关联光谱的基本原理当一个体系处于热力学平衡态时,分子的热运动会导致体系浓度、密度等发生局部涨落. 通过相关分析方法,计算这些局部涨落的关联函数,就可以从信号中提取出体系的热力学信息. 动态光散射技术正是运用了此方法,通过测量溶液的散射光强随时间涨落而获得其关联函数,从而获得样品的动力学信息. 荧光关联光谱测量共聚焦空间内样品荧光强度随时间的涨落,通过计算其关联函数而得到对涨落有贡献的热力学性质信息.在激发空间内在任一时刻荧光强度F(t),激发空间内荧光信号在t时刻的强度涨落δF(t)为:其中,⟨F(t)⟩=1/T∫0TF(t)dt,为从0到T 时间内的平均荧光强度.上述涨落的归一化自关联函数为G(τ):自关联函数包含了导致共聚焦空间内荧光信号强度涨落的所有信息,如:平动及转动扩散导致的荧光信号涨落、探针的光物理和化学变化(如:三重态)等导致的涨落等. 对于单光子激发体系,激发空间内的光强分布满足三维高斯分布,对在溶液中进行三维扩散的荧光分子而言,其浓度的涨落满足扩散方程,因而其关联函数的表达式为:其中,Veff=π1.5w02z0为激发空间的体积,特征时间τD=w02/4D为荧光分子通过激发空间所需的平均时间. G(0)=1/Veff⟨c⟩=1/N为激发空间内荧光分子平均数目的倒数,当样品的浓度越低时,G(0)值越大.从G(τ)的表达式可知,FCS的自关联函数有4个变量w0、z0、⟨c⟩、D,其中w0、z0属于仪器的参数,即共聚焦空间的横向半径与纵向半高度,而⟨c⟩、D分别是荧光分子的平均浓度和扩散系数. 因此,在准确标定仪器参数w0w0、z0z0的条件下,通过数值拟合将得到未知样品的浓度和扩散系数. 扩散分子的流体力学半径可以根据Stokes-Einstein方程得到:其中,kB为玻尔兹曼常数,T为温度,η为介质黏度.FCS仪器结构如图1所示,激光器的输出光经过准直扩束后由二向色镜反射进入物镜,并经物镜聚焦在样品中激发荧光. 产生的荧光由同一物镜收集,再次通过二向色镜以及滤镜将杂散的激光以及背景光过滤压制,最终由透镜聚焦并由针孔进行空间滤波进入到检测收集系统.图 1Figure 1. Schematic illustration of instrument structure of fluorescence correlation spectroscopy.由于单光子检测器可能出现接收一个光子产生多个电子的情况,为了消除这个过程带来的误差,可以将荧光信号分成等强度的两部分,然后对2个通道内的信号作交叉关联:2. 荧光关联光谱的实验技巧由于一般的聚合物不发光,因此FCS实验所采用的样品需要进行荧光标记. 另外,在实验操作方面,最需要注意对于激发体积的严格校准,以确保实验测量的准确性.2.1 实验样品的标记和纯化样品标记方法主要有以下2种:第一,在样品需要标记的位点预留反应的基团,如:氨基、羧基、叠氮基团等,再根据不同的基团及FCS实验的要求选择合适的活性荧光分子进行化学键合. 为了获得较高的标记效率,在标记过程中加入的荧光分子的量远大于聚合物,所以反应结束后有大量游离的自由荧光分子存在,需要通过体积排除色谱和超滤等方法进行分离提纯,直至滤液中不再检测到荧光信号.第二,在样品合成过程中加入适当比例的共聚合荧光单体进行共聚,例如,通过RAFT聚合制备聚异丙基丙烯酰胺(PNIPAM)时,可以加入适当比例的荧光单体来合成具有一定分子量范围、分子量分布较窄和荧光标记的样品[36]. 反应完成后同样也需要超滤、透析等方式进行分离提纯.2.2 激发体积的校准FCS实验之前,需要对仪器进行校正得到仪器激发体积的参数. 采用已知浓度和扩散系数的荧光分子样品来进行校正,例如Rhodamine 6G (Rh6G)分子,它在纯水中的扩散系数为414 μm2s−1 (25 °C),实验中一般将其配置成5×10−9 molL−1 (5 nmolL−1)的水溶液进行FCS测量,然后通过对测得的关联函数进行拟合即可得到激发空间的尺寸.另外,温度对于扩散系数的影响很大,不同温度下进行实验时,同样需要对扩散系数进行校正,校正的公式如下:如图2所示,以波长为488 nm的激光作为激发光,对FCS测量得到的Rhodamine 6G的自相关曲线进行拟合得到激发空间的尺寸为w0=0.224 μm,z0=1.608 μm.图 2Figure 2. A typical autocorrelation function curve and the fitting result of free Rhodamine 6G molecules in water.需要说明的是,FCS的测量会受到样品体系折射率不匹配的影响. 如图3所示,当样品溶液与物镜的折射率不匹配时,会导致表观的激发体积出现显著变化:第一,表观的w0值随折射率不匹配的增加而减小,这是折射率不匹配产生的像差导致;第二,随着物镜焦点位置从界面处愈加深入到样品溶液中时,折射率不匹配导致的表观w0值的变化愈明显[36].图 3Figure 3. (a) Representative normalized autocorrelation function curves of fluorescent nanoparticles diffusing in aqueous solution of glycerol at a small focal depth (25 μm) (b) Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the refractive index of the solution. The distance of the focal point in the sample medium away from the coverslip surface is displayed. (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).依据FCS的原理,w20=4DτDw02=4DτD,因此,即使微小w0变化也将显著影响探针分子拟合得到的扩散系数值. 因此,选择合适的溶液体系和物镜使得折射率尽可能匹配,对于FCS的测试准确性至关重要. 在折射率不匹配问题无法避免时,如图3(b)中,可以使用一个较低的焦点位置(25 μm)能有效地避免激发体积的畸变[36].此外,如图4所示,以厚度为0.16 mm的盖玻片为例,当实验使用物镜的校正环与样品池底部的盖玻片厚度不匹配时,激发体积的尺寸也会出现较大的偏差,所以在实验前还需注意物镜校正环与盖玻片厚度是否匹配[37].图 4Figure 4. Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the value of correcting collar (Reprinted with permission from Ref.[37] Copyright (2018) University of Chinese Academy of Sciences).因此,在FCS实验中,应该尽量选择合适的物镜类型以匹配样品的折射率,并调整镜头校正环数值与盖玻片厚度一致,如果折射率不匹配的情况不能避免,那就选择较低的、固定的焦点深度值以保证实验结果可靠可信.除了上述两点之外,在实验过程中还需要注意激光光强的选择,过强的入射光容易导致荧光探针发生光漂白而带来实验误差,因此应该降低进入物镜的激光光强进行实验.3. 荧光关联光谱在高分子单链研究中的应用FCS以其独特的优势在一些传统研究手段难以涉足的高分子体系中展现出独特的优势,例如:考察水溶液中聚电解质的单链动力学[38~44]、混致不溶现象中高分子链构象的变化[36]、表界面体系中高分子的扩散动力学[30~32,45~48]等等.3.1 FCS在聚电解质体系中的应用聚电解质是主链或者侧链上带有可离子化基团的聚合物,在极性溶剂中,聚电解质主链由于解离而带电,同时存在大量带有相反电荷的抗衡离子[49,50]. 正是聚电解质链间、链段间以及链与抗衡离子间多重长程静电相互作用,在赋予聚电解质丰富性质的同时,也给聚电解质的研究带来了很大的困难[51~53]. 例如,当采用动态光散射技术研究带电聚合物体系时,在低离子强度的聚电解质溶液中,存在“快与慢”的2种松弛模式. 为了探究聚电解质中的这种多级松弛模式的起源,研究人员进行了大量的实验并提出了多种可能的解释,但至今仍未有一个确切的回答[5,6,54~56].如果采用传统散射技术来研究低离子强度条件下带电聚合物体系的扩散运动,实验中遇到不少困难,而FCS实验中样品极稀浓度和极高选择性的优势就体现出来,依靠FCS技术,研究人员可以在极稀薄条件下进行实验研究,在聚电解质溶液体系获得全新的信息.Wang等[38]利用FCS在实验上第一次观察到了在无扰溶液中疏水聚电解质的一级构象转变. 如图5(a)所示,弱聚电解质聚(2-乙烯基吡啶) (P2VP)分子的构象随带电分数的变化而呈现出一级转变特征,即:随pH的升高由伸展的线团构象至坍缩的链球. 除了通过pH值改变聚电解质的带电分数,聚电解质的构象转变也可以由改变外加盐的浓度导致,即:抗衡离子吸附与静电屏蔽作用. 如图5(b)所示,P2VP的单分子链流体力学半径随着静电屏蔽长度的增加而连续增加.图 5Figure 5. (a) Diffusion coefficient of P2VP as a function of pH value of the solution. Inset: The hydrodynamic radius of P2VP as a function of pH value (b) The hydrodynamic radius of P2VP as a function of Debye length of the system (Reprinted with permission from Ref.[38] Copyright (2007) American Institute of Physics).Xu等[39]利用FCS技术在单分子水平上研究了强聚电解质的构象. 实验发现,在无外加盐的情况下,强聚电解质聚苯乙烯磺酸钠(NaPSS)和季胺化聚(4-乙烯基吡啶)(QP4VP)的流体力学半径和聚合度之间分别存在着0.7和0.9的标度关系,说明在低离子强度时,聚电解质链的构象比中性聚合物在良溶剂中溶胀的无规线团构象更加伸展. 如图6所示,采用棒状构象的分子模型得到了理想的拟合结果(其中QP4VP在高分子量部分出现偏离是高分子量聚电解质吸附更多的抗衡离子所导致的). 拟合结果显示分子链的直径分别为2.2和2.3 nm,这比理论假设的裸露水合聚电解链的直径0.8 nm要大很多,这也说明了聚电解质链的周围有抗衡离子云的存在.图 6Figure 6. Values of hydrodynamic radius of NaPSS and QP4VP plotted as a function of degree of polymerization. The solid lines denote the numerical fitting based on the theoretical model of diffusion of a rod-like molecule, and the dashed line denotes the fitting results using the diameter of a hydrated chain, i.e., d=0.8 nm. (Reprinted with permission from Ref.[39] Copyright (2016) American Institute of Physics).Xu等[40]进一步研究了在不同外加盐浓度情况下聚电解质链的构象. 如图7所示,聚电解质分子链构象具有分子量依赖性:在低盐浓度时,短链分子的聚电解质采取棒状构象,而长链分子采取无规线团构象;随着外加盐浓度的增加,所有的NaPSS和QP4VP均采取无规线团构象.图 7Figure 7. Diffusion coefficient of NaPSS (a) and QP4VP (b) as a function of degree of polymerization under salt concentrations of 10−4, 0.1, and 1.0 molL−1, respectively The solid lines represent the results of fitting using the relation of Rh∼N−v. (Reprinted with permission from Ref.[40] Copyright (2018) American Institute of Physics).Ren等[41]通过FCS技术研究了i-motif DNA的解折叠过程. 如图8所示,在不同盐浓度的条件下,随着pH值的升高,i-motif DNA均发生了从有序的四联体结构到无规线团的构象转变,并且这一转变对盐浓度有着依赖性:盐浓度越高,解折叠的起始pH值就越低. 这种盐浓度依赖性的主要原因是外加盐的引入导致更多的抗衡离子吸附在DNA链上而降低了链的电荷密度,降低了链周围的局部质子浓度,而后者是控制折叠形成的关键因素.图 8Figure 8. The values of hydrodynamic radius of a single i-motif DNA strand as a function of pH value in the solution Three conditions were chosen: solution without any salt addition (salt-free), and 50 mmolL−1 and 100 mmolL−1 NaCl solutions (physiological environment) The start and end points of the conformation transition are denoted by the arrows. (Reprinted with permission from Ref.[41] Copyright (2018) The Royal Society of Chemistry).如果将光子计数直方图(PCH)技术与FCS相结合,可以对聚电解质主链的电势、有效带电量、抗衡离子分布等方面进行深入研究. 例如,Luo等[42]将pH敏感的荧光探针标记于NaPSS链的不同位点,采用PCH技术测量分子链局部的pH值,发现聚电解质链附近的局部氢离子浓度比本体溶液中高2~3个数量级,而末端效应使得分子链中间的静电势高于末端的静电势. 同时,他们还发现氢离子浓度在径向呈现出e指数衰减的趋势,这证明了聚电解质链周围存在抗衡离子云的说法[43].Jia等[44]研究了抗衡离子分布与聚合物浓度的依赖关系,通过FCS测量NaPSS溶液中作为抗衡离子探针的带负电荧光分子的扩散系数,确定自由探针和吸附于主链的探针2个组分,发现与主链结合的抗衡离子组分随着聚合物浓度的增加而增加. Xu等[40]采用PCH测量NaPSS单分子链电位,发现其随着聚合度的增大而单调上升,且在聚合度大的区间达到饱和. 这说明主链的静电势与分子量不是线性关系,其有效带电分数以及有效电荷密度随着分子量的增加而减小. 上述实验结果说明聚电解质抗衡离子与主链的相互作用是吸附与脱附的动态平衡,而不是经典的Manning抗衡离子凝聚[57~60].3.2 FCS在高分子混致不溶现象中的应用高分子的混致不溶现象(cononsolvency)是一类回归型过程:2种高分子的良溶剂按一定比例混合后反而成为了不良溶剂[61,62]. 一个典型的例子是:常温下聚异丙基丙烯酰胺(PNIPAM)在水与一定比例的甲醇、乙醇、异丙醇、丙酮、四氢呋喃、DMSO等良溶剂的混合液中不再溶解,溶液的相分离温度显著改变,溶液黏度下降,PNIPAM凝胶溶胀率下降. 研究人员对这一现象的起源进行了大量的实验探究,至今未能达成共识[8,63~66].了解高分子链的构象对于理解混致不溶现象至关重要. 前人采用光散射方法研究了水和甲醇混合溶剂中PNIPAM链从线团到塌缩球再到线团的构象转变[64]. 需要特别说明的是,为了在极稀溶液中获得足够高的散射强度与信噪比,研究中采用了分子量高达107 gmol−1的样品. 当采用FCS技术研究该过程时,由于其超高的灵敏度以及与样品分子量无关的信噪比,可在混合溶剂环境下高分子单链的研究中提供独特的信息[67]. Wang等[36]利用FCS研究了PNIPAM在水-乙醇混合溶剂中的混致不溶过程. 如图9所示,PNIPAM具有非对称的回归型构象变化特征:随着乙醇浓度的增大,在一个很窄的乙醇浓度范围内PNIPAM链剧烈塌缩,然后在很宽的乙醇浓度范围内逐渐地再度伸展,说明这一构象转变不是先前文献中所认为的一级构象转变过程. 这表明乙醇分子比水分子更强烈地与PNIPAM链发生作用,这是由乙醇较强的疏水水合效应所致,暗示了Tanaka提出的模型中水合/失水的协同能力强于醇分子吸附/脱附的协同能力[65,66].图 9Figure 9. Normalized autocorrelation function curves of diffusing single chains of PNIPAM with five degrees of polymerizations in pure ethanol (a) and at xEtOHxEtOH of 0.25 (b) The solid line with each data set denotes the results of the numerical fitting using three-dimensional diffusion model Rh6G in (a) denotes the results of free fluorescent Rhodamine 6G, and its drastic difference from those of polymers indicates the successful labeling and sample purification (c) The values of hydrodynamic radius of PNIPAM single chains as a function of xEtOHxEtOH (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).如图10所示,不同乙醇浓度下得到PNIPAM单链的尺寸的标度率(Rh∼NυRh∼Nυ)表明,标度指数νν随着xEtOHxEtOH变化:随着乙醇的浓度的增加,ν从~0.57到0.5再到~1/3变化,说明在上述3个区域,PNIPAM高分子链分别采取了溶胀、无规线团、坍缩链球的构象,即:由纯水中的溶胀线团经无规线团构象而急剧转变为塌缩链球构象,进而又再度逐渐伸展,经过无规线团构象变化至溶胀线团构象. 从标度指数的变化也可以发现回归型链构象变化的高度非对称性,进一步印证了Tanaka提出的协同吸附-优先吸附模型[65,66].图 10Figure 10. Typical double-logarithmic plot of hydrodynamic radius of single PNIPAM chains as a function of degree of polymerization under different solvent compositions: (a)xEtOH=xEtOH=1.0, (b)xEtOH=xEtOH=0.28, (c)xEtOH=xEtOH=0.25 Solid lines are the least-squares linear fitting (d) The vv values as a function of xEtOHxEtOH The three dotted lines denote the theoretical values of the static scaling index for a random coil (0.588), an undisturbed coil (0.5), and a compact globule (1/3). (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).3.3 FCS在表界面体系中的应用受限高分子链,尤其是处于界面的高分子链结构及动力学性质,直接关系到表界面的机械性能、摩擦性能、流变性能等,这些性质与高分子材料在表界面上的应用息息相关,如涂料、润滑剂、胶黏剂等[68~71]. 但是对于高分子链在表界面处的动力学研究存在着不少技术难题,主要原因是表界面动力学带来的浓度涨落被局限于二维或准二维空间,探测难度极大,使得传统的散射方法难以应用. 近年来,得益于单分子技术的迅猛发展,空间和时间分辨能力分别有了显著的优化,极大提高了人们直接“观察”分子或粒子行为的能力,这为我们从分子水平认识聚合物在界面上的动力学性质打下了基础.荧光关联光谱因其极高的灵敏度与显微测量能力被成功地应用于表界面体系的研究中. 对于处于二维自由扩散的分子而言,其自关联函数为:其中,w0是二维FCS观察区域(即激发空间在界面等二维平面投影)的半径,⟨ρ⟩=⟨N⟩/A,即单位面积内荧光探针的平均数量,A是激发空间在界面等二维平面上投影的面积.Sukhishvili等[30]利用FCS研究了荧光染料标记的不同分子量的聚乙二醇(PEO)在固-液界面上的扩散. 从分子链界面扩散运动行为出发,分析出在极稀浓度的条件下聚合物分子在固-液界面上呈现出了紧密吸附的pancake构象,发现了界面扩散系数与分子量的-3/2的独特标度率. Zhao等[31,32]则利用FCS研究了PEO在固-液界面上扩散速率与界面吸附浓度的非线性关联性,即:随着聚合物浓度的增加,其扩散系数先增加并在某一浓度值达到极值,进而骤然大幅下降. 这是由于极低浓度分子链紧密吸附的pancake构象会随着吸附浓度的增加变成loop-tail-train构象,即:吸附使得分子链构象变得相对松散,其扩散速率由与基底接触的train部分占主导. 随着吸附浓度的增加,较为自由的loop-tail部分则增加了其运动能力,因此扩散系数增加;更高浓度时扩散系数出现骤降是因为体系中出现了jamming效应,即分子链间的作用增强,阻碍了分子链的扩散运动.Ye等[45]利用FCS研究了不同拓扑结构的聚合物链在石英-二氯甲烷界面上的扩散,如图11所示,线形聚苯乙烯(PS)扩散的标度率为D∼M−1.5,重现了reptation模型;而环形PS的标度率则为D∼M−1,展现为Rouse模型. 两者的差异是由于环形分子没有末端,无法像线形分子一样完成蛇行运动,而是由一系列链段受到热激发进行跳跃,跨过局部能垒的运动组成.图 11Figure 11. Double-logarithmic plots of center-of-mass diffusion coefficient against molecular weight for surface diffusion of cyclic (c-PS) and linear (l-PS) polystyrene chains on fused silica-DCM interface The solid lines with slopes of 1 and 3/2 are drawn as guides to the eye The dashed lines through the points representing the best fit of the data give power law slopes of 1.46 for linear chains and 1.00 for cyclic chains. (Reprinted with permission from Ref.[45] Copyright (2016) The Royal Society of Chemistry)Yang等[46]利用FCS研究了不同盐溶液作为液相时,NaPSS在疏水单层分子膜界面上的扩散行为. 如图12所示,吸附在疏水表面的聚电解质分子链的扩散受到液相中不同阴离子的影响,主要原因在于不同的阴离子效应改变了界面疏水相互作用强度,从而改变了界面与分子链之间摩擦力,造成扩散系数的显著改变.图 12Figure 12. Typical data of the lateral diffusion coefficient of a NaPSS single chain at the interface of a hydrophobic surface and an aqueous solution as a function of the salt concentration in the aqueous solution (Reprinted with permission from Ref.[46] Copyright (2011) American Chemical Society)Yang等[47]利用FCS技术研究了聚苯乙烯与聚异戊二烯(PI)的嵌段共聚物在二甲基甲酰胺(DMF)与PI聚合物构成的液体界面上的扩散运动. 如图13所示,在本体聚合物分子量跨越了2个数量级的变化,界面上PS-b-PI的扩散系数仅有轻微的下降. 这表明,在PI/DMF的体系中,存在很低黏度的界面层,该界面层的黏度与构成界面的本体聚合物的分子量不存在明显依赖性.图 13Figure 13. Interfacial diffusion coefficient of single PS-b-PI chain as a function of the molecular weight of bulk PI The dashed line is for the guide of eye Inset: illustration of the sample geometry (Reprinted with permission from Ref.[47] Copyright (2008) American Chemical Society).Li等[48]利用FCS探究了PEO分子在烷烃-水界面上的扩散行为. 研究发现,PEO在该界面上聚合物的横向扩散为正常扩散,与二维布朗运动模型相吻合. 如图14所示,液-液界面上的PEO的界面扩散系数与其聚合度之间存在D∼N−0.5的标度关系,这一新的标度关系表明其界面扩散运动遵循着新的运动机理.图 14Figure 14. The logarithm of interfacial diffusion coefficient of PEO as a function of the logarithm of molecular weight (Reprinted with permission from Ref.[48] Copyright (2020) The Royal Society of Chemistry).从单分子层面上研究界面扩散,有助于发现分子最真实和原始的扩散行为规律,这在传统的系综平均实验中往往会被忽略或者被多种因素耦合而产生的运动行为掩盖,这是上述FCS实验结果最大的优势之处. 此外,值得注意的是,在研究固-液界面上聚合物扩散机理时,不同研究团队利用FCS和单粒子追踪(single particle tracking, SPT)技术,得到了不同的结果及界面扩散机理,也因此导致了FCS和SPT 2种技术在界面分子动力学研究上存在多年的学术争论[30,31,72,73]. 我们基于这个问题也展开了实验对比,发现FCS和SPT都能够提供准确且可靠的实验结果,在条件满足时两者能够得到相互吻合相互匹配的实验结果,相关数据结果将在未来进行发表.3.4 FCS在有外场作用的体系中的应用对于聚合物而言,在其合成、分离、加工等过程中有可能会经历电场、流动场、剪切场等作用,尤其在生命体中更是常见. 因此,对于外场作用下的聚合物性质的研究也是极为重要的.当我们将荧光关联光谱应用于外场作用下的体系中时,除了分子热运动导致平动扩散引起的荧光信号涨落,还不得不考虑外场导致荧光分子定向运动通过激发体积带来的信号涨落. 带有定向运动的FCS,如果其运动的方向垂直于激光光束的方向,经过修正的模型拟合关联函数可以获得扩散系数与定向运动速率:其中,vf=w0/τf即为定向运动速率.Dong等[74]将FCS和毛细管电泳结合起来测定了量子点在极稀溶液中的表面电势. 利用FCS的自关联函数拟合得到荧光粒子的定向运动速度和扩散系数,在电泳实验中定向运动的特征时间τf和自扩散系特征时间τD之间满足:其中,Q为带电量,E为外加电场强度. 通过测定不同电场强度下定向运动和扩散的特征时间,通过线性拟合得到荧光粒子的表面电势. Wang等[75]利用FCS研究了P2VP在交变电场下的单链构象转变. 结果表明电场强度对于分子链构象的影响存在滞后转变. 这种滞后现象可以归因于单个疏水性聚电解质链的不对称双稳态能态,由于抗衡离子的解离、迁移和凝聚,其coil和globule构象之间的势垒可以通过交变电场诱导的偶极子降低到kBT以下.4. 荧光关联光谱技术的发展和应用随着FCS技术的发展,出现了双色荧光关联光谱(DC-FCCS)[76,77]、双焦点荧光关联光谱[78,79]、FCS与荧光共振能量转移(FRET)联用[80,81]、可连续改变共焦体积荧光关联光谱[82]等新技术. 这些新技术相较于传统的FCS,可以获取样品更多的热力学信息. 图15是DC-FCCS的简单示意图,采用2种波长的激光分别激发2种对应的荧光分子,然后选择性光学器件对不同波长的荧光进行分离,最后由2个APD检测器分别检测2种荧光信号,再对信号进行关联性分析. DC-FCCS的基本原理就不在此赘述,除了对2种荧光分子的荧光强度涨落进行各自的自关联分析之外,我们还可以对这2种荧光信号做交叉关联分析得到两者相互运动乃至相互作用的信息. 需要说明的是,选择的这2种荧光分子在光谱上必须分离得很好,否则会出现很大的串扰影响实验结果.图 15Figure 15. Schematic illustration of dual color fluorescence cross-correlation spectroscopyChen等[83]利用DC-FCCS和光散射相结合的方法深入研究了聚电解质溶液中单链运动之间的关联性,发现了聚电解质分子链间的运动耦合. 将DC-FCCS实验得到自关联函数的自由扩散部分转化为均方位移数据(MSD),发现其在长短2个时间尺度上分别存在具有不同扩散系数的正常扩散运动,表明链间的静电排斥相互作用带来的“笼子效应”导致了单个分子链的自扩散运动中同样存在一快一慢2种时间尺度上的扩散模式:短时间尺度上为“笼子”内的快扩散行为,长时间尺度上为跨越不同“笼子”的慢扩散行为(如图16所示). 这2种松弛模式均存在强烈的离子强度依赖性,随着外加盐浓度的增加,削弱了链间的排斥作用而弱化了“笼子效应”,导致了长短时间尺度上的动力学非均匀性减弱,甚至消失. 实验结果还表明,聚合物浓度的增加限制了聚电解质链的运动,从而削弱了链间运动的关联性(如图16(b)所示). 将其与光散射中“慢模式”对应的扩散系数对比发现,“慢模式”对应的扩散系数数值处于分子链自扩散长短时间尺度的扩散系数之间,这说明光散射观察到的“快慢模式”与长程静电相互作用引起“笼子效应”有着密切的联系,同时也说明聚电解质的多级松弛过程比我们预想的更加复杂.图 16Figure 16. (a) Values of the diffusion coefficient of the short-time diffusion (Dshort-timeDshort-time) and the long-time diffusion (Dlong-timeDlong-time) of NaPSS with three different molecular weights under different salt concentrations (b) Diffusion coefficient of single NaPSS chain with three different molecular weights at short- and long-time lag as a function of concentration Diffusion coefficients measured by DLS (the slow mode, DDLS,slowDDLS,slow) are displayed for comparison. (Reprinted with permission from Ref.[83] Copyright (2019) American Chemical Society).5. 结论荧光关联光谱技术作为一种高灵敏度的显微统计光谱方法,能够有效地在多种复杂条件下开展高分子动力学的研究,包括:极稀薄溶液、表界面等等. 这项技术出色的空间分辨能力以及由于荧光标记带来的分子识别性,赋予了更加丰富的应用能力与前景. 随着这项技术的不断发展和应用范围的进一步拓展,相信未来它会和传统的散射技术一样被越来越多的人了解和使用,在多个领域都能取得丰富且具创造性的成果.致 谢 感谢研究生及合作者的辛勤劳动与贡献.参考文献[1]Wu C, Zhou S. Phys Rev Lett, 1996, 77(14): 3053−3055 doi: 10.1103/PhysRevLett.77.3053[2]Gao J, Wu C. Macromolecules, 1997, 30(22): 6873−6876 doi: 10.1021/ma9703517[3]Liu X B, Luo S K, Ye J, Wu C. Macromolecules, 2012, 45(11): 4830−4838 doi: 10.1021/ma300629d[4]Morishima K, Ishiwari F, Matsumura S, Fukushima T, Shibayama M. Macromolecules, 2017, 50(15): 5940−5945 doi: 10.1021/acs.macromol.7b00883[5]Sedlak M, Amis E J. J Chem Phys, 1992, 96(1): 826−834 doi: 10.1063/1.462468[6]Muthukumar M. Macromolecules, 2017, 50(24): 9528−9560 doi: 10.1021/acs.macromol.7b01929[7]Zhou K, Li J, Lu Y, Zhang G, Xie Z, Wu C. Macromolecules, 2009, 42(18): 7146−7154 doi: 10.1021/ma900541x[8]Hao J, Cheng H, Butler P, Zhang L, Han C C. J Chem Phys, 2010, 132(15): 154902 doi: 10.1063/1.3381177[9]Magde D, Webb W W, Elson E. Phys Rev Lett, 1972, 29(11): 705−708 doi: 10.1103/PhysRevLett.29.705[10]Elson E L, Magde D. Biopolymers, 1974, 13(1): 1−27 doi: 10.1002/bip.1974.360130102[11]Magde D, Elson E L, Webb W W. Biopolymers, 1974, 13(1): 29−61 doi: 10.1002/bip.1974.360130103[12]Rigler R, Mets U, Widengren J, Kask P. Eur Biophys J Biophy, 1993, 22(3): 169−175[13]Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J. PLoS One, 2009, 4(4): e5041 doi: 10.1371/journal.pone.0005041[14]Mtze J, Ohrt T, Schwille P. Laser Photonics Rev, 2011, 5(1): 52−67 doi: 10.1002/lpor.200910041[15]Schwille P, Haupts U, Maiti S, Webb W W. Biophys J, 1999, 77(4): 2251−2265 doi: 10.1016/S0006-3495(99)77065-7[16]Xie J, Nakai K, Ohno S, Butt H J, Koynov K, Yusa S. Macromolecules, 2015, 48(19): 7237−7244 doi: 10.1021/acs.macromol.5b01435[17]Caruso F, Donath E, Mohwald H. J Phys Chem B, 1998, 102(11): 2011−2016 doi: 10.1021/jp980198y[18]Vagias A, Raccis R, Koynov K, Jonas U, Butt H J, Fytas G, Kosovan P, Lenz O, Holm C. Phys Rev Lett, 2013, 111(8): 088301 doi: 10.1103/PhysRevLett.111.088301[19]Lumma D, Keller S, Vilgis T, Radler J O. Phys Rev Lett, 2003, 90(21): 218301 doi: 10.1103/PhysRevLett.90.218301[20]Cherdhirankorn T, Best A, Koynov K, Peneva K, Muellen K, Fytas G. J Phys Chem B, 2009, 113(11): 3355−3359 doi: 10.1021/jp809707y[21]Schaeffel D, Yordanov S, Staff R H, Kreyes A, Zhao Y, Schmidt M, Landfester K, Hofkens J, Butt H J, Crespy D, Koynov K. ACS Macro Lett, 2015, 4(2): 171−176 doi: 10.1021/mz500638e[22]Jee A Y, Cho Y K, Granick S, Tlusty T. P Natl Acad Sci USA, 2018, 115(46): E10812 doi: 10.1073/pnas.1814180115[23]Jee A Y, Dutta S, Cho Y K, Tlusty T, Granick S. P Natl Acad Sci USA, 2018, 115(1): 14−18 doi: 10.1073/pnas.1717844115[24]Cherdhirankorn T, Floudas G, Butt H J, Koynov K. Macromolecules, 2009, 42(22): 9183−9189 doi: 10.1021/ma901439u[25]Cherdhirankorn T, Harmandaris V, Juhari A, Voudouris P, Fytas G, Kremer K, Koynov K. Macromolecules, 2009, 42(13): 4858−4866 doi: 10.1021/ma900605z[26]Doroshenko M, Gonzales M, Best A, Butt H J, Koynov K, Floudas G. Macromol Rapid Commun, 2012, 33(18): 1568−1573 doi: 10.1002/marc.201200322[27]Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F. Macromolecules, 2004, 37(26): 10212−10214 doi: 10.1021/ma048043d[28]Zustiak S P, Boukari H, Leach J B. Soft Matter, 2010, 6(15): 3609−3618 doi: 10.1039/c0sm00111b[29]Modesti G, Zimmermann B, Borsch M, Herrmann A, Saalwachter K. Macromolecules, 2009, 42(13): 4681−4689 doi: 10.1021/ma900614j[30]Sukhishvili S A, Chen Y, Muller J D, Gratton E, Schweizer K S, Granick S. Nature, 2000, 406(6792): 146 doi: 10.1038/35018166[31]Zhao J, Granick S. Macromolecules, 2007, 40(4): 1243−1247 doi: 10.1021/ma062104l[32]Zhao J, Granick S. J Am Chem Soc, 2004, 126(20): 6242−6243 doi: 10.1021/ja0493749[33]Ries J, Schwille P. Bioessays, 2012, 34(5): 361−368 doi: 10.1002/bies.201100111[34]Elson E L. Methods Enzymol, 2013, 518: 1−10 doi: 10.1016/B978-0-12-388422-0.00001-7[35]Papadakis C M, Kosovan P, Richtering W, Woll D. Colloid Polym Sci, 2014, 292(10): 2399−2411 doi: 10.1007/s00396-014-3374-x[36]Wang F, Shi Y, Luo S J, Chen Y M, Zhao J. Macromolecules, 2012, 45(22): 9196−9204 doi: 10.1021/ma301780f[37]Zheng Kaikai(郑锴锴). Dynamics of a Single Polymer Chain under Shear(剪切场下聚合物分子单链动力学行为研究). Doctoral Dissertation of University of Chinese Acdemy of Sciences((中国科学院大学博士学位论文), 2018.[38]Wang S, Zhao J. J Chem Phys, 2007, 126(9): 091104 doi: 10.1063/1.2711804[39]Xu G, Luo S, Yang Q, Yang J, Zhao J. J Chem Phys, 2016, 145(14): 144903 doi: 10.1063/1.4964649[40]Xu G, Yang J, Zhao J. J Chem Phys, 2018, 149(16): 163329 doi: 10.1063/1.5035458[41]Ren W, Zheng K, Liao C, Yang J, Zhao J. Phys Chem Chem Phys, 2018, 20(2): 916−924 doi: 10.1039/C7CP06235D[42]Luo S J, Jiang X B, Zou L, Wang F, Yang J F, Chen Y M, Zhao J. Macromolecules, 2013, 46(8): 3132−3136 doi: 10.1021/ma302276b[43]Luo Shuangjiang(罗双江), Gao Peiyuan(高培源), Guo Hongxia(郭洪霞), Yang Jingfa(杨京法), Zhao Jiang(赵江). Acta Polymerica Sinica(高分子学报), 2017, (9): 1479−1487 doi: 10.11777/j.issn1000-3304.2017.17065[44]Jia P, Yang Q, Gong Y, Zhao J. J Chem Phys, 2012, 136(8): 084904 doi: 10.1063/1.3688082[45]Ye S, Tang Q, Yang J, Zhang K, Zhao J. Soft Matter, 2016, 12(47): 9520−9526 doi: 10.1039/C6SM02103D[46]Yang Q, Zhao J. Langmuir, 2011, 27(19): 11757−11760 doi: 10.1021/la202510d[47]Yang J F, Zhao J, Han C C. Macromolecules, 2008, 41(20): 7284−7286 doi: 10.1021/ma8015135[48]Li Z, Yang J F, Hollingsworth J V, Zhao J. RSC Adv, 2020, 10(28): 16565−16569 doi: 10.1039/D0RA02630A[49]Oosawa F. Polyelectrolytes. New York: Marcel Dekker, 1971[50]Dobrynin A V, Rubinstein M. Prog Polym Sci, 2005, 30(11): 1049−1118 doi: 10.1016/j.progpolymsci.2005.07.006[51]Forster S, Schmidt M, Antonietti M. Polymer, 1990, 31(5): 781−792 doi: 10.1016/0032-3861(90)90036-X[52]Fuoss R M. J Polym Sci, 1948, 3(4): 603−604 doi: 10.1002/pol.1948.120030414[53]Muthukumar M. J Chem Phys, 2004, 120(19): 9343−9350 doi: 10.1063/1.1701839[54]Mattoussi H, Karasz F E, Langley K H. J Chem Phys, 1990, 93(5): 3593−3603 doi: 10.1063/1.458791[55]Reed W F, Ghosh S, Medjahdi G, Francois J. Macromolecules, 1991, 24(23): 6189−6198 doi: 10.1021/ma00023a021[56]Li J, Li W, Huo H, Luo S, Wu C. Macromolecules, 2008, 41(3): 901−911 doi: 10.1021/ma071284b[57]Manning G S. J Chem Phys, 1969, 51(3): 924−933 doi: 10.1063/1.1672157[58]Manning G S. J Chem Phys, 1969, 51(3): 934−938 doi: 10.1063/1.1672158[59]Manning G S. J Chem Phys, 1969, 51(8): 3249−3252 doi: 10.1063/1.1672502[60]Manning G S. Biophys Chem, 1977, 7(2): 95−102 doi: 10.1016/0301-4622(77)80002-1[61]Schild H G, Muthukumar M, Tirrell D A. Macromolecules, 1991, 24(4): 948−952 doi: 10.1021/ma00004a022[62]Winnik F M, Ringsdorf H, Venzmer J. Macromolecules, 1990, 23(8): 2415−2416 doi: 10.1021/ma00210a048[63]Chee C K, Hunt B J, Rimmer S, Soutar I, Swanson L. Soft Matter, 2011, 7(3): 1176−1184 doi: 10.1039/C0SM00836B[64]Zhang G Z, Wu C. J Am Chem Soc, 2001, 123(7): 1376−1380 doi: 10.1021/ja003889s[65]Tanaka F, Koga T, Kojima H, Xue N, Winnik F M. Macromolecules, 2011, 44(8): 2978−2989 doi: 10.1021/ma102695n[66]Kojima H, Tanaka F. Soft Matter, 2012, 8(10): 3010−3020 doi: 10.1039/c2sm06883d[67]Grabowski C A, Mukhopadhyay A. Phys Rev Lett, 2007, 98(20): 207801 doi: 10.1103/PhysRevLett.98.207801[68]Fleer G J. Adv Colloid Interface Sci, 2010, 159(2): 99−116 doi: 10.1016/j.cis.2010.04.004[69]Granick S, Bae S C. J Polym Sci, Part B: Polym Phys, 2006, 44(24): 3434−3435 doi: 10.1002/polb.21004[70]Granick S, Kumar S K, Amis E J, Antonietti M, Balazs A C, Chakraborty A K, Grest G S, Hwaker C J, Janmey P, Kramer E J, Nuzzo R, Russell T P, Safinya C R. J Polym Sci, Part B: Polym Phys, 2003, 41(22): 2755−2793 doi: 10.1002/polb.10669[71]Guo Z Y, Cao X L, Guo L L, Zhao Z Y, Ma B D, Zhang L, Zhang L, Zhao S. J Dispersion Sci Technol, 2020, Doi:10.1080/01932691.2020.1725543 doi: 10.1080/01932691.2020.1725543[72]Skaug M J, Mabry J N, Schwartz D K. J Am Chem Soc, 2014, 136(4): 1327−1332 doi: 10.1021/ja407396v[73]Walder R, Nelson N, Schwartz D K. Phys Rev Lett, 2011, 107(15): 156102 doi: 10.1103/PhysRevLett.107.156102[74]Dong C, Ren J. Electrophoresis, 2014, 35(16): 2267−2278 doi: 10.1002/elps.201300648[75]Wang S Q, Chang H C, Zhu Y X. Macromolecules, 2010, 43(18): 7402−7405 doi: 10.1021/ma101571s[76]Schwille P, Meyer-Almes F J, Rigler R. Biophys J, 1997, 72(4): 1878−1886 doi: 10.1016/S0006-3495(97)78833-7[77]Schaeffel D, Staff R H, Butt H J, Landfester K, Crespy D, Koynov K. Nano Lett, 2012, 12(11): 6012−6017 doi: 10.1021/nl303581q[78]Goossens K, Prior M, Pacheco V, Willbold D, Mullen K, Enderlein J, Hofkens J, Gregor I. ACS Nano, 2015, 9(7): 7360−7373 doi: 10.1021/acsnano.5b02371[79]Muller C B, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J. Epl, 2008, 83(4): 46001[80]Price E S, Aleksiejew M, Johnson C K. J Phys Chem B, 2011, 115(29): 9320−9326 doi: 10.1021/jp203743m[81]Torres T, Levitus M. J Phys Chem B, 2007, 111(25): 7392−7400 doi: 10.1021/jp070659s[82]Masuda A, Ushida K, Okamoto T. J Photoch Photobio A, 2006, 183(3): 304−308 doi: 10.1016/j.jphotochem.2006.06.040[83]Chen K, Zheng K K, Xu G F, Yang J F, Zhao J. Macromolecules, 2019, 52(10): 3925−3934 doi: 10.1021/acs.macromol.9b00025
  • 全自动乌氏粘度计在超高分子量聚乙烯(UHMWPE)中的应用
    超高分子量聚乙烯英文名ultra high molecular weight polyethylene简称为UHMWPE,是一种线性结构的具有优异综合性能的热塑性工程塑料。普通高密度聚乙烯的分子量约为2-30万,而超高分子量聚乙烯则具有至少150万的分子量,因此它具有一般工程塑料难以比拟的一些优异性质,例如超高的耐磨性、抗低温冲击性、耐环境应力开裂性以及自润滑性,它在高性能纤维市场上,包括从海上油田的系泊绳到高性能轻质复合材料方面均显示出极大的优势,在现代化军工和航空、航天、海域防御装备等领域发挥着举足轻重的作用。超高分子量聚乙烯(UHMWPE)材料的分子量是其核心指标,分子量的高低影响材料的强度、韧性和耐磨度。在超高分子量聚乙烯(UHMWPE)材料的生产和研发中,乌氏毛细管法因简单、方便、快捷且经济成为首选测定方法,其中ASTM D4020-2011及GB/T1632.3-2010标准中也对乌氏毛细管法测聚乙烯的黏均分子量作出了相关规定。乌氏毛细管法实验操作简便、效率高、数据精准,在大多数高分子材料检测及相关质量控制中都起到关键作用,尤其是目前在很多行业中使用的自动乌式黏度计,以自动化的精确高效替代人工及数据误差,节省人力的同时进一步提高了实验数据的准确性。以杭州卓祥科技有限公司的IV3000X系列超高温全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV3000X系列超高温全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可到毫秒级,控温精度可达±0.001℃,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000X系列全自动超高温乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器可自动排废液,自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000X系列全自动超高温乌式黏度计可实现自动测试、自动排废液、自动清洗,自动干燥,告别了粘度管是耗材的时代。
  • GISAXS用于监测超高分子量嵌段共聚物快速自组装过程的结构演变
    超高分子量嵌段共聚物自组装的挑战 嵌段共聚物(BCPs)是一种特殊材料,具有两个或以上化学上不同的单体单元形成不连续的高分子嵌段,转而又以共价键连接在一起。在融化相,这些材料组成嵌段之间的热力学不相容造成微相分离。这导致了周期性纳米材料(四种常见结构见图1)的形成,它们的形态可以通过改变分子组成来控制,而它们的尺寸和周期性则由分子量的变化来决定。它们的结构和组成多样性提供了获得多种表面纳米结构的可能性,这些表面纳米结构可用于大量应用,例如纳米电子学、抗反射涂层、光学活性表面化学传感器或药物输送。图1. 四种基本共聚物结构。 对于使用可见光的光电应用,需要具有横向周期性大于150nm的BCPs。因此,出现了一种子类材料,叫做超高分子量(UHMW)嵌段共聚物。长链聚合物的高度缠结特性形成了这些BCPs,但是却引起了自组装过程的其他问题。尤其是相分离的缓慢开始使得近乎所有过程都不适合工业应用。近期,一组来自都柏林大学、波尔多大学和谢菲尔德大学的研究人员提出了UHMW BCPs(800kg/mol)的超快自组装的方法,在气相溶剂退火法(SVA)阶段利用可控的溶胀动力学,从而退火时间与平常数小时或数天相比将缩短到分钟。在他们的研究工作中,证明了通过快速并控制使膜膨胀到非常高的溶剂浓度,有可能在10分钟内诱导UHMW poly(styrene)-b-poly-2-vinylpyridine (PS-b-P2VP)系统的相分离。为了得到这个结果,大量研究了干膜厚度、聚合物膜内溶剂浓度、溶胀时间和速率对BCP膜的形态和结构演化的影响。GISAXS测试揭示了溶剂浓度对UHMW嵌段共聚物结构的影响 具有高分子量体系的长聚合物链在干膜中显示有较高的链缠结。已知UHMW BCP的聚合物流动性是高度依赖于溶胀比的,那在SVA过程中通过向BCP膜中加入相对中性的溶剂是有可能解决这一问题的。这样溶剂的分子将在两个嵌段之间产生屏蔽作用,从而减少聚合物之间的相互作用。在上述研究中,选用了氯仿和四氢呋喃(THF)的混合物作为退火溶剂。 随后用掠入射小角X射线散射(GISAXS)研究166nm的BCP膜在宏观区域上随溶剂浓度变化的形态演变。与透射模式下的SAXS实验相比,掠入射模式(X射线光束在样品表面反射)转变成了表面敏感探测技术,在大表面区域上分析材料的结构且无需额外的样品制备。如图1所观察到的,通过GISAXS测试随着溶剂浓度的增加,内部结构发生了明显的变化。铸膜样品只出现微弱的散射点,表明表面主要是无序的胶束结构。随着溶剂浓度的增加,从GISAXS散射图谱上明显看出,ϕs~0.80以下,BCP链仍处于缠结状态而无法自组装成界限清晰的微区。只有在浓度等于或高于0.8时,有序垂直层状形态才开始逐步形成。使用散射峰的位置,计算结构在ϕs = 0.83和ϕs = 0.86的平面域间距分别是(~ 184 nm)和(~ 191 nm),而一旦溶剂浓度的值达到0.88结构会失序。图2.(a-h)二维GISAXS散射数据。8个图中显示PS-B-P2VP膜的形态随退火溶剂浓度ϕs的变化而变化。(i)在每个样品的Yoneda位置的1DGISAXS图像。强度分布显示为一阶散射峰,二阶散射峰分别用红色和蓝色表示为1和2。 铸膜(在没有溶剂的情况下测试)出现一个弱散射峰,用绿色表示为m。 通过AFM分析对这些值进行了进一步的证实,并且典型的FIB/SEM实验结果证明层状结构在整个膜上的延伸。为了证明BPC结构的传输能力,自组装膜也被用作模板制备金属氧化物纳米结构。这些材料也被进一步用作硬膜,来生产统一的高宽比硅纳米壁结构(高500nm,间距190nm)。 这一研究工作为超高分子量嵌段共聚物在工业适用的时间内通过高精度气相退火进行自组装的可行性奠定了基础。在大约10分钟的时间内实现了相分离,产生了间距超过190nm的层状特征。在整个过程中,GISAXS测量与其他探测技术共同用于控制过程的效率并评估不同参数的影响。
  • 高分子科学走向国际前沿 凝胶色谱仪等仪器推广功不可没
    1983年,化学所高物实验室,钱人元先生(右二)和中科院化学所高分子物理实验室的同事们讨论聚丙烯丙纶纺丝的工作PI 薄膜复合膜生产线  从上世纪50年代到今天,中国高分子科学从无到有、从弱到强,这与中科院化学所的贡献密不可分。  化学所是国内最早开展高分子科学与材料研究的科研单位之一。早在建所之初,高分子科学就成为化学所的主要学科方向之一。六十年来,化学所重视基础研究,不断拓展研究领域,按照国民经济和国防科技需求,在高分子化学、高分子物理和高分子材料等重要学科前沿和应用领域开展了系统的创新性研究,有力地促进了高分子学科的发展。  高分子科学“从无到有”  上世纪50年代,新中国成立之初,我国高分子工业刚刚起步。1956年,中科院化学所成立,时任上海有机化学研究所副所长的王葆仁带领多名研究人员迁入化学所,成立了高分子研究室。这便是如今高分子物理与化学国家重点实验室的前身。  中科院化学所副所长王笃金告诉《中国科学报》记者说:“研究人员围绕当时国家最迫切的需要开展科技创新,完成了我国高分子学科从无到有的过程。”  在高分子物理方面,研究人员建立并推广了测定高分子最基本的结构参数—分子量和分子量分布的方法,逐渐延伸到高分子溶液性质、高分子链结构与表征等方向。高分子化学方面,聚甲基丙烯酸甲酯、聚己内酰胺、离子交换树脂等成为主要研究方向之一。此外,常温/高温凝胶色谱仪、气相渗透仪、沸点升高仪、裂解色谱仪等科研仪器,也逐步实现了批量生产并推广到许多科研机构,对提升我国高分子科学整体水平发挥了引领作用。凝胶色谱仪(来自互联网)热裂解-色谱/质谱联用仪(来自互联网)  助力国家重大任务  化学所的高分子科学研究从成立起,就重点服务于国家重大任务。为国家“两弹一星”的研制,化学所老一辈科学家开展了酚醛树脂、环氧树脂以及推进剂、黏结剂的研制。上世纪60年代,在“任务带学科”的思想指导下,开展了“复合材料”与“感光材料”两大领域的研究。  2001年,为了满足国家高新技术产业,尤其是航天、航空、空间、微电子等发展的需要,高技术材料实验室在化学所组建。  高性能有机硅材料是航空、航天、电子等高技术领域必不可少的关键材料之一。化学所先后在国内率先研究并开发了甲基乙烯基和苯基硅橡胶、耐油硅橡胶、高强度硅橡胶等重要高性能有机硅材料。自主研制的系列耐高温硅橡胶、系列空间级硅橡胶也达到国际先进水平,为我国“载人航天”等重大工程作出了贡献。  据了解,该实验室还在耐高温聚酰亚胺、耐烧蚀防热酚醛树脂、特种环氧树脂等高分子材料领域取得了具有重要影响的研究成果,形成了近百种系列化货架产品,支撑着我国高新技术领域中许多重要工程型号的研制与发展。  与世界科学前沿并行  60年来,高分子科学在中科院化学所生根发芽,在多个领域已实现与世界科学前沿并行。  最近,高分子科学方向得到持续稳定的发展。高分子化学作为化学所的主要研究方向之一,已在共轭高分子的设计、合成和光电性能研究,有机聚合物电子学和光子学等研究方面在国际上产生重要影响。高分子物理研究主要集中在高分子单链结构、动态性质以及与界面相互作用、各种散射技术在高分子中的应用等领域。高分子理论与模拟研究则集中在聚合物结晶动力学、软凝聚态物理理论等方面。  此外,研究人员在聚合物太阳能电池、高分子仿生材料等方面也取得了诸多新进展。基于坚实的科学基础,化学所在高分子材料领域开展了丰富的成果转化工作,为国民经济作出了贡献。例如,在辽宁营口向阳化工厂实现了聚丙烯催化剂的产业化,同时,科研人员开发出具有我国自主知识产权的三代聚丙烯纤维制造技术,使我国衣着用化纤新品种丙纶的开发处于国际前列,创造了巨大的经济效益和社会效益。  展望未来,化学所的高分子科学将继续坚持高分子化学、高分子物理和高分子材料等研究领域的创新性研究,继续为化学科学的发展做出不懈努力,继续为国家经济建设和国防建设所作出卓越贡献。
  • 一流的高分子材料不止于一流的仪器——五位专家评价高分子材料表征现状及新趋势
    p  高分子材料表征对于高分子材料性能的研究至关重要,仪器信息网采访了五位高分子领域不同方向的专家,共同探讨对于高分子表征仪器现状和未来发展趋势的看法。/pp  strong张荣纯(华南理工大学 副研究员)/strong:/pp  高分子材料宏观性质往往取决于微观分子结构和链段动力学,而当前对于高分子新材料的表征往往更多侧重于宏观性能的表征,比如力学性能、流变、溶胀等,但对于高分子新材料微观结构和链段动力学分子水平的表征却往往较少。/pp  一方面,分子水平的表征需要更高精尖的仪器设备和方法;另一方面,需要对分子水平结构和动力学的相关理论有足够认识才能准确地建立起微观与宏观之间的定量关系。同时,高分子新材料的发展往往伴随着高分子化学的新进展,比如新的化学合成方法,新的化学反应机理等,而阐明这些机理也需要更多原位的分子水平表征技术和分析仪器。因此,随着高分子材料的发展,对高精尖分子水平的分析和表征仪器和手段方法的要求也会越来越高,包括分辨率,灵敏度,精确度等。/pp  strong扶晖(北京大学 高级工程师)/strong:/pp  对于高分子材料,尤其是具有特殊性能的新型材料的发展或者制造,我国的现状是很多配方组成都是经验式进行。但是这种靠着经验来进行的话,有时候你并不了解你是如何获得了性能好的材料。如果要再进一步提升其性能,你必须知道分子内部的情况,所以就需要各种各样的分析仪器的帮助。/pp  对于固体核磁来说,因为固体核磁是一种能够在多种微观尺度上了解高分子材料分子内部组成、结构、相互作用和动力学性质的一种比较简便的分析方法,而且固体核磁对样品是无损的。在一定的情况下,它也能实现在线的、直观的研究,比如材料随外界环境的变化(温度、光照等)的影响。这些外界条件的改变导致的材料性能的转变,也就用这种在线的方式来进行研究。/pp  现在材料研究的发展的不但是对人员背景素质要求比较高,而且对仪器本身配置要求也比较高。就我自己的经验来看,很多来做测试的人员,可能他研究这个体系非常好,但他并不知道他应该要用什么方法来体现出这个材料的独特的地方,有时候就只做一些非常简单的核磁表征,结果文章发表出来,质量可能就不会高。第二,他没有把它真正的这个他这个研究体系里的这个亮点给挖掘出来。/pp  此外,核磁这种仪器,场强越高,呈现的结果就越好,现在还有新型的带DNP的这种核磁。这种带DNP的核磁,仪器本身比较昂贵,但是它能够提供特别好的信噪比,所以它就可能可以在信号上捕捉到一些以前没有捕捉到的信号,然后可以更进一步的探索材料分子内部的一些情况。/pp  strong乔娟(中国科学院化学研究所 副研究员):/strong/pp  高分子材料及聚合物的飞速发展使其成为众多领域的基础,其成品的性能与高分子结构的化学、物理性能等密切相关,结构决定性能。为了更好地表征高分子材料的性能与组成、结构的联系,多种分析测试手段必不可少也决定了我们对于高分子材料理解的深度和广度。/pp  结合刺激-响应荧光聚合物材料的制备及应用,我们的期望是:/pp  (1)新型的分析测试手段能更加直观地表征聚合物在刺激变化时的内部分子、电子及原子层次的变化 /pp  (2)通过成像等手段将传递于聚合物和荧光分子之间的时间-空间的变化信息更加直观及高效地呈现出来。/pp  总之,就是提高分析方法的速率、分辨率及可视化。/pp strong 杜振霞(北京化工大学 教授):/strong/pp  终端市场对材料的性能要求越来越高,高分子材料本身细微的差异(结构差异、分子量分布差异和添加剂差异)就可能造成物性的巨大改变,所以未来对于高分子材料的表征,一定是物理表征和化学表征双管齐下,不仅需要通过一些物理和应用参数证明材料的性能,还需要从分子层面对于材料的研究将会更科学地诠释材料的构效关系。/pp  对高分子材料细微差异的研究需要分辨率高、灵敏度高的表征手段,才可以捕捉到材料间细小的差异变化。高分子材料细微差异有时跟聚合机理和预聚体的结构紧密相关,因此研究聚合机理或预聚体的精细结构很重要。对于某些预聚体成分和结构可以用ESI—MS或APCI-MS,或MALDI-TOF进行精细表征,但考虑到电离竞争效应,分子量大的难于电离,甚至没有电离,不能看到其全貌,需要进一步结合凝胶渗透色谱。 Waters公司推出的APC相对常规GPC来说具有效率高、分离度高的特点,如果能跟ESI-TOF或APCI-TOF联用,将来在材料表征应该是利器。/pp  材料的化学成像(质谱成像)技术越来越普遍,用以研究材料在不同工艺或者使用环境下的表面化学成分差异。配合电镜等手段,可以更全面地了解材料。/ppbr/script src="https://p.bokecc.com/player?vid=0E3AA5129BA0FD249C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: center "strong生物基橡胶改性剂——杜仲树脂的表征及应用性能的研究(视频节选自2020年先进高分子材料网络会议)/strong/pp  strong黄潇楠(首都师范大学化学系 副教授):/strong/pp  作为溶液态高分子,在溶剂中的微观状态现在主要可以通过光散射,辅助其他表征仪器进行检测。但是,光散射的测量现在只适用于纳米尺度的测量,更小尺度的测量编的很不准确。而高分子结构在溶剂中的溶剂化作用,目前还没有特别好的手段能够测量和表征,这一作用在智能响应高分子中新的尤为重要,因为随着智能响应高分子在材料领域的应用越来越多,需要设计具有适应于生物体环境的高分子,生物体环境变化小,例如温差,pH值,要设计此类高分子的基础是对于智能高分子的智能响应性机理具有很透彻的研究,而其智能响应性的根本激励目前根据推测是溶剂分子尤其是水分子和高分子分子链之间的作用导致,但是目前尚未有能够直接测定溶液中溶剂和溶质分子将作用的检测方法,因此,发展更为微观尺度的检测方法是一个研究方向。/ppbr/script src="https://p.bokecc.com/player?vid=D521B0919035869E9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: center "strong激光光散射在高分子药物载体中的应用(视频节选自2020年先进高分子材料网络会议)/strong/ppbr//p
  • 直播预告!先进高分子材料主题网络会议之高分子表征测试技术专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。高分子表征测试技术专场报告嘉宾简介:南京大学教授 胡文兵 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系,随后留校任讲师。1998-2003年 先后留学德国、美国和荷兰从事博士后研究,2004年任南京大学化学化工学院高分子系教授。主要从事高分子结晶相关的分子理论模拟和超快热分析研究。2005年入选教育部新世纪优秀人才培养计划,2008年获得国家自然科学基金委员会杰出青年科学基金资助,2020年获美国物理学会会士荣誉称号。目前担任Springer Nature 出版集团“软物质和生物物质”系列丛书高级编辑,《高分子学报》副主编,《功能高分子学报》、Chinese Journal of Polymer Science、Polymer Crystallization、Polymer International 和Molecular Simulation 期刊编委。本报告介绍最新发展起来的高速扫描量热技术及其Flash DSC设备,利用高速热流的准直性和样品的小尺度,根据傅里叶热导定律,可较为准确地测量微米厚度高分子薄膜的跨膜热导率。该方法具有材质普适性好和微尺度表征等优点,适应当前热管理系统微型化对高分子材料热导率表征的技术需求。报告题目:Flash DSC表征高分子薄膜材料热导率青岛科技大学教授 闫寿科1985年毕业于曲阜师范学院获学士学位,同年考入中国科学院长春应用化学研究所攻读硕士学位,1988年获理学硕士学位后在中国科学院长春应用化学研究所从事研究工作。1993-1996年在德国多特蒙德大学(Dortmund University)攻读中科院长春应用化学研究所和德国多特蒙德大学联合培养博士学位,获得博士学位后在德国多特蒙德大学化工系以固定研究人员身份从事研究工作。2000年获中国科学院百人计划,于2001年回中国科学院化学研究所工作任研究员、博士生导师。现在北京化工大学材料科学与工程学院/青岛科技大学高分子科学与工程学院从事教学和科研工作,任教授、博士生导师。主要研究方向是聚合物不同层次结构与性能。作为项目负责人承担和完成国家自然科学基金重大仪器、重点、面上、杰出青年以及山东省重大基础等科学基金项目。在Nat. Rev. Mater., Prog. Mater. Sci., Angew. Chem. Int. Ed., J. Am. Chem. Soc., Adv. Mater., Adv. Funct. Mater., Adv. Sci, Nano Energy, Macromolecules 等学术期刊发表论文400余篇、出版专论3章,申请发明专利10项。曾获山东省自然科学二等奖(2016)和云南省科技进步二等奖(2015)。准确揭示调控聚合物不同层次结构形成机制与精准调控技术具有重要学术价值和实际意义,得到广泛关注。透射电镜在聚合物不同层次结构研究发挥了重要作用,本文在简要介绍工作原理的基础上,以科研实例详细介绍其在聚合物晶体结构、形态结构等不同层次结构研究中的应用。报告题目:透射电镜在聚合物不同层次结构研究中的应用吉林大学教授 张文科吉林大学超分子结构与材料国家重点实验室、化学学院教授。分别于1997年和2002年在吉林大学化学学院获学士和博士学位。2001年4月至2002年3月,在德国慕尼黑大学应用物理系博士联合培养。2003年3月至2007年5月先后在英国诺丁汉大学药学院及化学学院从事博士后研究。2007年6月加入吉林大学超分子结构与材料国家重点实验室,并被聘为教授。2015年获得国家杰出青年科学基金资助,2018年入选国家万人计划领军人才。目前主要研究方向为:1)单分子力谱方法学;2)高分子结晶与形变;3)超分子及共价键力化学;4)纳米药物递送。担任中国化学会生物物理化学专业委员会委员。担任Giant, Chinese Journal of Polymer Science, Langmuir及 ACS Macro Letters杂志编委。本次报告将介绍我们研究组近年来在利用基于原子力显微镜技术的单分子力谱以及单分子磁镊方法研究聚合物纳米尺度力学性质以及聚合物高级结构动态演化方面的进展。报告题目:聚合物链的单分子操纵 - 从纳米力学性质到动态结构演变 赛默飞世尔科技(中国)有限公司高级应用工程师 邝江濛邝江濛,博士毕业于英国University of Birmingham地理地质及环境科学系,主要研究方向为利用质谱技术分析环境中的痕量污染物。本科及硕士毕业于清华大学环境学院。2021年加入赛默飞世尔科技(中国)有限公司,负责环境化工领域液相色谱质谱仪的应用支持工作,于质谱分析特别是高分辨质谱分析有着丰富的经验。化工材料, 尤其是高分子聚合材料由于其复杂的分子组成给其表征带来了很大的困难。赛默飞Orbitrap静电场轨道阱超高分辨质谱仪拥有超高的分辨率、准确的质量测定和稳定的质量轴,使得复杂材料的元素组成信息纤毫毕见,是材料表征的有力工具。本报告将简要介绍Orbitrap质谱仪的独特优势及其在材料分析领域的应用。报告题目:赛默飞Orbitrap静电场轨道阱超高分辨质谱在材料分析中的应用 中国科学院长春应用化学研究所研究员 门永锋门永锋,中国科学院长春应用化学研究所研究员,博士生导师。1995年7月毕业于东南大学,获学士学位 1998年7月毕业于中国科学院长春应用化学研究所,获硕士学位;2001年10月毕业于德国弗赖堡大学,获博士学位。2001年10月至2002年3月在弗莱堡大学物理系做研究助理,2002年4月至2004年3月在德国BASF公司做博士后,2004年4月起任职BASF公司Physicist。2005年3月起在长春应用化学研究所工作,现任高分子物理与化学国家重点实验室主任,高分子结构物理课题组组长,主要应用散射(X射线及中子)技术从事高分子结构演化及其与性能关系领域的研究,在高分子结晶机理、晶型选择及转变、力学形变破坏机理等方面取得系列成果。作为课题负责人先后承担了国家自然科学基金重点、杰青、面上等项目、国家重点研发计划项目、企业委托项目多项。发表论文140多篇,申请专利8项,其中授权6项。专业方向为“高分子物理”。曾任Macromolecules及Polymer Crystallization杂志顾问编委、现任Polymer Science杂志编委,中国晶体学会小角散射专业委员会主任、IUPAC Polymer Division Titular Member及其商用聚合物结构与性能委员会主席、中国化学会应用化学学科委员会委员。2014年入选科技部中青年科技创新领军人才,2015年获得国家自然科学杰出青年基金及英国皇家学会牛顿高级学者基金,2016年入选第二批万人计划科技创新领军人才,享受2018年度国务院政府特殊津贴。快速扫描芯片量热仪(FSC)是近年来发展起来的热分析技术,其快速的扫描速率可有效抑制材料升降温过程中的结晶、焓松弛、冷结晶、重结晶等行为,为动力学研究带来极大便利。本报告介绍应用FSC研究热塑性聚氨酯在不同温度下丰富的相分离、结晶及焓松弛等行为。报告题目:热塑性聚氨酯的快速扫描芯片量热仪研究 中国科学技术大学教授级高级工程师 丁延伟丁延伟,博士、中国科学技术大学教授级高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国材料与试验团体标准委员会科学试验领域委员会委员等。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项。以第一作者或唯一作者身份出版《热分析基础》、《热分析实验方案设计与曲线解析概论》、《热重分析 —方法、实验方案设计与曲线解析》等热分析相关著作5部。热分析技术是高分子表征的常规手段之一,作为热分析中最常用的一种分析技术,热重分析技术在与高分子相关的热稳定性、组成分析、热力学和动力学性质研究中发挥着十分重要的作用。在实际应用中,完美的实验方案和科学、规范、准确、合理、全面的曲线解析是决定热重实验成败的关键因素。本报告结合报告人从事热分析的工作经历,对于如何充分发挥热重分析技术在材料分析表征中的作用、拓宽应用范围和数据质量等方面提出了一些建议。报告题目:热重分析技术在高分子科学中应用的常见问题分析西南大学教授 郭鸣明郭鸣明,教授,博士生导师,国家特聘专家,俄罗斯自然科学院美籍院士,南京大学化学系获学士(1982),硕士学位(1985)。复旦大学材料系获博士学位(1987)。先后在德国汉堡大学高分子科学研究所(洪堡学者。1990-1992)、美国纽约大学(1992-1994)从事高分子研究工作,曾任美国阿克伦大学高分子科学和工程学院核磁共振中心主任(1994-2013),中石化北京化工研究院首席专家,中石化高级专家(2013-2018)。现任西南大学化学化工学院教授,博士生导师,(2018至今), 俄罗斯自然科学院院士(2021至今)。发表专利20篇.在国内外学术刊物上发表SCI收录论文140篇, 包括论著章节6篇,综述 7篇。研究方向:高分子化学,高分子物理,核磁共振,碳量子点,新型水溶性非共轭发光聚合物,金属纳米材料,碳纳米材料。新型石墨烯高分子纳米复合物。报告题目:原位核磁共振研究单体和高分子反应动力学和机理 清华大学副系主任/副教授 徐军徐军,博士,长聘副教授,博士生导师。1997 年清华大学化工系本科毕业,2002 年清华大学化工系博士毕业。2002 年毕业后留在清华大学化工系工作,聘为助理研究员。2006 年晋升为副教授。2011年到德国弗莱堡大学物理系Günter Reiter教授研究组进行洪堡学者访问研究。主要研究兴趣包括高分子结晶、生物降解高分子、动态共价高分子等。2011年入选洪堡学者,2012年入选教育部“新世纪优秀人才”,同年获得冯新德高分子奖(Polymer 刊物年度中国最佳文章提名)。理论和实验相结合,揭示了环带球晶的形成机理,测得了几种高分子结晶的次级临界核尺寸。生物降解聚二元酸二元醇酯研究成果在企业实现了万吨级产业化和广泛应用。本报告将介绍普通偏光显微镜、拥有可变偏振方向的PolScope系统以及Müller矩阵显微镜的基本工作原理。并结合具体案例,针对手性高分子环带球晶的形成机理问题,采用几种光学显微镜和原子力显微镜,确证了片晶连续扭转的微观机理。运用Müller矩阵显微镜,揭示了片晶扭转对固体薄膜旋光手性的影响。报告题目:运用先进光学方法研究高分子环带球晶的形成机理 北京大学教授 梁德海1994年获南开大学环境科学系学士学位,同年进入南开大学化学系攻读硕士。2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后。2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年提升为教授。2011年得到教育部新世纪优秀人才计划的支持,2015年Elsevier第九届冯新德高分子奖最佳文章奖获得者。主要研究方向包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究;体内自调控的肺靶向siRNA传递载体研究。光散射技术是高分子领域中重要的表征手段之一,能够测得重均分子量、回转半径、第二维里系数、流体力学半径等重要的物理量。除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为。本报告重点介绍光散射的基本理论、实验技巧以及应用中要注意的事项。报告题目:光散射在高分子溶液表征中的应用 郑州大学教授 张彬张彬,郑州大学材料学院教授,博士生导师。2004年本科毕业于郑州大学计算机信息管理专业,2010年于郑州大学获得材料加工工程专业硕士学位,2014年在德国弗莱堡大学化学系获得博士学位 (施陶丁格大分子研究所荣誉毕业)。2015年3月入职郑州大学,2020年6月受聘为郑州大学学科特聘教授。主要研究方向为高分子薄膜结晶,高分子成型加工中的物理问题,高分子相转变的微观机制。近年来,发表第一作者或通讯作者论文三十余篇(包括13篇Macromolecules,7篇Polymer,1篇高分子学报特约专论和1篇高分子学报特约综述)。原子力显微镜是一种在纳米尺度表征材料相变过程、微观形貌结构与性能的有效工具,在高分子科学领域具有广泛应用。超薄膜中单层片晶可为研究高分子结晶提供合适的模型体系,与原子力显微镜相结合,不但可以在原位、实空间、高分辨的研究高分子成核与片晶生长过程,还有利于研究多晶型高分子复杂的结晶与熔融行为。报告题目:原子力显微镜研究高分子超薄膜结晶会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • 从墨水到光刻胶,瞄准“卡脖子”问题——访苏州大学高分子材料与工程专业负责人朱健教授
    高分子合成材料以其优异的性能、丰富的原料和低廉的成本,已经成功地成为当今生产生活中不可缺少的基础材料。随着社会的快速发展,人们越来越希望能够根据自身的不同需求,简单方便的设计合成各种各样性能优异的高分子材料。因此,研究人员们一直努力寻找简单而高效的活性聚合方法实现人类社会对高分子材料的高需求及高性能要求。近期,苏州大学高分子材料与工程部发表多篇活性聚合相关高水平论文,引起业内高度关注。仪器信息网也特别采访了苏州大学材料与化学化工学部高分子材料与工程专业负责人朱健教授,深入了解朱健及其团队在高分子合成领域所做的工作,并就其近期研究成果以及高分子合成未来发展方向等进行了深入的交流。科研之路:从“活性”自由基聚合到功能性材料从1995年开始,朱健便开始了高分子合成研究之路,刚开始主要研究方向是“活性”自由基聚合。传统的自由基聚合不能控制聚合物分子的结构和分子量大小,通常聚合物分子量分布宽;活性聚合反应条件比较苛刻,分子结构的可设计性较小。 活性自由基聚合可以方便的实施单体的自由基聚合又可摒弃两者缺点实现聚合物合成设计。朱健表示,刚开始对 “活性”自由基聚合的研究主要是对催化体系的开发,建立探索一些新的催化体系,例如对乙烯基单体的可控聚合,也将这一方法沿用到高分子聚合物的拓扑结构和分子量控制。随着对“活性”自由基聚合深入研究,朱健团队也将原来的合成方法向活性阴阳离子自由基聚合和结构调控方向进行拓展。“在合成方法建立以后,我们开始考虑方法的实用性,所以开始了功能材料合成的研究。”朱健介绍到。含硒化合物由于其特殊的光电响应行为和生理活性,近些年在在功能材料方面以及医药行业得到了很大发展。然而,有机硒的化学行为较为独特,国内关于含硒聚合物的研究十分稀少。朱健围绕含硒聚合物开展了含硒聚合物的设计与合成及其性能研究,建立了有机硒化合物调控的活性自由基聚合体系。通过此项研究,大大提升了活性自由基聚合方法的操作便利性,简化复杂聚合物合成步骤,为聚合物合成方法提供新途径。近几年,3D打印成为材料领域的研究热点,但已有技术打印体量较小,限制了其实际应用。朱健将光引发聚合与3D打印相结合,制备出新颖的“活性”材料。该方法所制备材料中聚合物链含有活性末端,可进一步进行材料后修饰及功能化,在制备刺激响应性、自修复等各种功能材料领域体现出重大潜在应用。同时将催化体系和单体的比例进行优化调整,对网格结构进行调整,这样3D打印出的物体机械性能也要优于普通材料。“在不同的应用领域,对于高分子材料的性能也有不同的要求,我们要通过功能推测出结构,将结构作为合成的目标,运用合适的聚合反应,合成目标结构,最后体现材料功能。”朱健谈到,“看似简单的研究过程,实则每一步都充满挑战性。”GPC:高分子合成过程的“观察者”高分子合成是分子层面的反应,人们肉眼是无法看到分子的变化,也无法去跟踪反应过程。而各种各样的分析仪器可以帮助人们去剖析和观察“看不到”的化学变化。朱健表示,在高分子合成研究过程中用到的科学仪器种类比较多,可简单划分为物理分析和化学分析两大类,常用仪器包括凝胶渗透色谱仪(GPC)、核磁共振波谱仪、气相色谱仪、荧光光谱仪、红外光谱仪、紫外光谱仪,以及各种质谱仪等。其中,GPC是一种表征聚合物分子量和分子量分布等特征的物理化学方法,由于仪器的不断改进,比如高效填料的使用、多种检测器的联用及与计算机的联用、仪器操作和数据处理的自动化等,使其在高分子合成领域中的应用范围不断扩大。“分子量是高分子结构参数中最基本、最重要的参数,目前,最高效便捷测定分子量的方法便是GPC。”朱健提到他团队便有多台GPC,其中有三台来自于东曹,三台GPC几乎是24小时“运转”。近年来,其他课题组也陆续购买了多台东曹的GPC。朱健认为,一台好的GPC最重要的一点便是高稳定性和高重复性,东曹的GPC所有的管路系统都在一个恒温的体系中,使溶剂流量不受溶剂类型和环境温度波动的影响,提高了检测的稳定性和重复性;其次是性价比高,能够高效缩短分析时间做到低溶剂消耗,同时保证实验的即时有效性;最后是操作简单,实验人员能够非常方便地进行仪器控制,数据采集、分析和管理等相关操作。不过,朱健也提到,目前GPC在检测器的性能方面仍有提升空间,多种检测器联用时,稳定性有待于进一步提升。从墨水到光刻胶,瞄准“卡脖子”问题从最简单的生活用品,到工业涂料、光刻胶,甚至航空、航天、军事领域都离不开高分子材料。朱健认为“如何将高分子合成研究,转化为实际能让人们受益的东西,是我们研究的关键。”在很多人的眼中,与超导体材料、半导体、超材料等研究比起来,一个“小小”的墨水研究算不上什么“高大上”的研究。李克强总理曾在采访中提出“小小的圆珠笔,中国造不出来吗?”的疑问。圆珠笔的核心就是笔尖和墨水,然而我国90%的笔尖、80%的墨水都需要进口,整个行业处于“替人打工、受制于人”的不利局面。为了解决这一问题,国家在 “十三五”中设置了《制笔新型环保材料》的国家重点研发计划。科研无大小,学术有深浅,遵循这一人生信条,朱健团队积极展开相关工作,切实解决“墨水”这样的民生问题。朱健团队也积极的承接了《制笔新型环保材料》项目。他们从墨水基础材料层面着手,根据高分子结构设计方法,利用大分子乳化剂,实现高稳定性、环保性乳化墨水的研发及产业化应用;该乳化墨水相对于传统墨水具有书写细腻流畅、粘度低、触变性优异及储存稳定性高等特点。他们也与文具公司合作成功研发了超顺滑中性笔,给数百亿支笔装上“中国墨水”。也许,您正在使用的中性笔便包含了朱健团队所研发的成果。当然,朱健团队的研究工作中也不乏“光刻胶”这样关系国家产业发展的大问题。目前,中国光刻胶国产化率较低,重点技术水平与国际先进技术有较大的差距。随着半导体行业、LED及平板显示行业的快速发展,对于光刻胶的需求越发旺盛,国内光刻胶产品未来市场空间巨大。朱健从光刻胶的应用场景及使用过程中性能要求出发,设计所需的聚合物的结构。往往光刻胶涉及到多组分单体,在合成的过程中,单体的双键含量和位置都需要严格设计,才能最终得到一个性能优异的高分子。朱健表示,目前光刻胶前期开发的工作已经完成,也有部分材料处于放大生产阶段,相信在不久的将来,国内光刻胶难题也将解决。在中国许多行业都存在“圆珠笔”、“光刻胶”等问题,朱健希望能够发挥团队在关键技术攻关中强有力的科研优势,集各家资源,力争我国在关键核心技术方面早日取得新的突破,解决关键领域“卡脖子”问题,实现科技自立自强。朱健,教授,博士,博士生导师,苏州大学材料与化学化工学部副主任,高分子材料与工程专业负责人。分别于1995,1998和2004年在苏州大学获学士、硕士和博士学位。1998年留校任教。2006-2007和2009-2010在新加坡国立大学和宾夕法尼亚州立大学从事博士后工作。主持国家十三五重大专项子课题一项,国家自然科学基金项目三项,江苏省自然科学基金和教育厅重点项目各一项。积极与企业合作,共同开发各类产品,累计到账横向课题经费907万元。获苏州大学苏鑫科研奖(2008,独立),江苏省科技进步二等奖(2009,第三)和教育部科技进步二等奖(2009,第三)。先后发表研究论文180多篇,获美国发明专利授权2项,澳大利亚发明专利授权2项,中国发明专利授权18项。
  • 东曹将参展2023全国高分子学术论文报告会
    全国高分子学术论文报告会始于1954年,每两年召开一次,是国内高分子学界最为重要、规模最大、最具影响力的学术会议。2023年全国高分子学术论文报告会将于10月13-17日在武汉举行,由中国化学会高分子学科委员会和华中科技大学共同主办。本次会议以高分子科技在新时代国民经济社会中的重要作用为切入点,集中展示我国高分子科学与材料领域近年来的研究成果和发展趋势,为从事该领域研究和开发工作的科技、教育、产业工作者和广大青年学子提供更多样化的学术与技术交流平台。会议信息会议时间2023年10月13-17日(13日报到)会议地点中国光谷科技会展中心(武汉市东湖新技术开发区高新大道787号)东曹展位展馆一层A2厅 C12号展位产品展示HLC-8420GPC是东曹第八代专用凝胶渗透色谱系统。新仪器对输液泵、脱气机腔体、柱温箱等单元进行了新设计与改进,使分子量测定的稳定性及测试结果的重现性得到进一步提升。东曹LenS3多角度光散射检测器结合了目前主流MALS和LALS检测器的所有优点,测定分子量无需角度外推。全新的角不对称作图法,大大拓展了Rg测定范围。
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • β-内酰胺类抗生素高分子杂质的检测
    &beta -内酰胺类抗生素中的高分子杂质是引发速发型过敏反应的过敏原,是药物质量控制过程中的重点检测项目。目前药典中关于&beta -内酰胺类抗生素中高分子杂质的测定多采用葡聚糖凝胶Sephadex G-10自填装玻璃管柱,存在柱效低、分离时间长、分离度差、批间重现性差、操作不便等缺点,为了解决这些问题,采用小粒径、高分辨率的体积排阻色谱成品柱已成为&beta -内酰胺类抗生素中高分子杂质检测的必然趋势。 赛分科技体积排阻色谱柱SRT(5 &mu m)、 Zenix&trade (3 &mu m)&mdash &mdash 水溶性体积排阻色谱柱 SRT和Zenix色谱柱固定相采用专利的表面修饰技术(专利US 7,247,387B1和US 7,303,821B1),通过在高纯度具有良好机械稳定性的硅胶基质上,键合一层均匀的纳米厚度中性亲水薄膜而制备得到。 ● 采用可控的化学修饰技术,能确保柱与柱之间有着可靠的重现性;● 精心设计的大孔体积可保证高的分离容量以及优异的分辨率;● 表面亲水涂层覆盖完全,使之具有优异的色谱柱稳定性,延长色谱柱寿命;● 低盐浓度洗脱,适合LC-MS分析;● 专利的表面修饰层,确保对样品的最大回收率;● 广泛适用于生物分子及水溶性聚合物的分离和检测。 SRT和Zenix色谱柱对于水溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。Mono GPC &mdash &mdash 油溶性体积排阻色谱柱 Mono GPC以具有极窄粒径和孔径分布的高交联度聚苯乙烯/二乙烯苯(PS/DVB)颗粒为基质,孔径分布均一,使分析中保留时间与分子量具有准确的线性关系。高交联度的多孔颗粒具有优异的化学和物理稳定性,因此在更换有机溶剂时可以使分子量校正曲线的形状及色谱柱的柱效几乎保持不变。Mono GPC填料具有大的孔体积,可确保对聚合物分离有着高的分辨率。 Mono GPC对于脂溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。Zenix-150对头孢地嗪钠高分子杂质的检测注:分离度按照2010版《中国药典》附录VH计算。&mdash &mdash 样品来源于某制药公司良好的批间重现性&mdash &mdash 色谱条件同上 Zenix SEC-150 材料 表面键合亲水薄膜的硅胶颗粒大小 3 &mu m孔径 (Å )~ 150蛋白分子量范围 500 - 150,000水溶性聚合物分子量范围 500 - 25,000pH 稳定性 2 &ndash 8.5,短时可耐pH 8.5-9.5反压 (7.8x300 mm)~ 1,500 psi最大耐受压力 (psi)~ 4,500盐浓度范围 20 mM - 2.0 M最高使用温度 (oC)~ 80流动相的兼容性 常规水相及有机相溶剂应用实例头孢地嗪钠头孢西丁头孢米诺钠头孢拉定头孢呋辛酯头孢地尼头孢泊肟酯美洛西林钠磺苄西林钠头孢尼西头孢噻肟钠头孢噻吩钠比阿培南阿莫西林头孢噻利头孢丙烯泰比培南酯磺苄西林钠破坏物盐酸头孢替安头孢硫脒头孢特仑新戊酯头孢哌酮钠 注:点击链接可见图谱。 优质服务● 提供免费的产品试用● 提供实际样品的色谱柱筛选和方法确认促销公告即日起至8月30日,凡购买一支体积排阻色谱柱,第二支体积排阻色谱柱享受五折优惠或赠送一支高端C18柱。注:第二支体积排阻色谱柱市场价不得高于第一支。订货信息产品名称粒度孔径规格订货号 SRT SEC-1005 &mu m100 Å 7.8x300 mm215100-7830 SRT SEC-1505 &mu m150 Å 7.8x300 mm215150-7830Zenix SEC-1003 &mu m100 Å 7.8x300 mm213100-7830Zenix SEC-1503 &mu m150 Å 7.8x300 mm213150-7830Mono GPC-1005 &mu m100 Å 7.8x300 mm230100-7830关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站: www.sepax-tech.com.cn www.sepax-tech.com
  • 东曹诚邀您参加2017年全国高分子学术论文报告会
    由中国化学会高分子学科委员会主办、四川大学承办的2017年全国高分子学术论文报告会将于2017年10月10-14日在成都举办。本次会议将以高分子材料为切入点,集中展示中国高分子科学与材料领域近年来的研究成果和发展趋势,为从事该领域研究和开发工作的科研、教育、产业工作者和广大青年学子提供学术与技术交流平台。会议时间:2017年10月10-14日会议地点:成都世纪城国际会议中心作为凝胶渗透色谱仪器的专业厂商,东曹公司将参加学术论文报告会同期举办的展会活动,向参会人员展示用于快速准确测定高分子分子量的凝胶渗透色谱仪器及GPC分析技术。展位号:五楼A-28
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) John Wiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备在QCM-D表征高分子的研究过程中,需要在石英振子表面制备高分子膜,所制备高分子膜的质量对相关实验测量有重要影响. 下面以在石英振子表面制备化学接枝高分子刷和物理涂覆高分子膜为例,介绍相关高分子膜的制备:3.1 在振子表面制备化学接枝高分子刷高分子刷可以通过“grafting to”或“grafting from”方法接枝于石英振子表面. 一般情况下,前者的接枝密度较低,而后者的接枝密度相对较高. 对于金涂层的石英振子而言,巯基和金表面可以生成硫金键,在基于“grafting to”技术制备高分子刷时,可以将含有巯基末端的高分子溶液添加至自制的QCM反应器中. 在该自制的反应器中,石英振子正面接触溶液,利用橡胶圈对石英振子的背面加以密封. 在接枝反应充分完成后,取出振子,利用大量溶剂冲洗振子表面,随后使用氮气吹干振子,即可完成相关高分子刷的制备. 此外,也可以在QCM检测模块中完成利用“grafting to”策略制备高分子刷,此时可实时监测高分子接枝过程中的频率以及耗散因子变化[22 ,23 ].在利用“grafting from”策略在振子表面制备高分子刷时,可采用活性自由基聚合等方法加以实现. 以表面引发原子转移自由基聚合(SI-ATRP)制备高分子刷为例,首先利用自制的反应器将引发剂接枝于振子表面,然后将振子放置于相应的包括单体的溶液中,并通过SI-ATRP方法在振子表面引发单体聚合,制备高分子刷. 在采用SI-ATRP方法在振子表面制备高分子刷的过程中,除去溶液中溶解的氧气这一步骤非常关键,需要加以特别注意,否则可能会导致制备高分子刷失败. 在反应结束后,需要采取相应的程序进一步纯化振子表面制备的高分子刷. 类似于“grafting to”策略,利用“grafting from”策略在振子表面制备高分子刷也可以在QCM检测模块中完成[24 ~26 ].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28 ]. 在利用旋涂法制备高分子膜时,溶剂的选择、高分子溶液的浓度以及环境的湿度等都会对振子表面的成膜情况产生影响,需要加以注意.4. 石英晶体微天平在高分子研究中的应用QCM在高分子薄膜研究中得到了广泛应用,已有一些国内外学者对相关方面的研究进展进行了总结. 例如,Du等总结了QCM在聚合物水凝胶薄膜等研究中的应用[29 ];He等总结了QCM在表面引发聚合反应动力学等研究方面的进展[30 ];Sun等总结了QCM在生物医用高分子材料中的应用[31 ];Marx总结了QCM在生物高分子薄膜等研究方面的进展[32 ]. 另一方面,在高分子研究中,QCM-D的测量结果不但与其振子表面的高分子薄膜密切相关,也与QCM-D检测模块中高分子溶液的非牛顿流体行为有关,例如,Munro和Frank研究了聚丙烯酰胺分子量及溶液浓度对其在QCM-D振子表面吸附的影响[33 ];为了阐明大分子溶液非牛顿流体行为对QCM-D振子表面与大分子间相互作用的影响,Choi等研究了QCM-D特征参数S2对聚乙二醇溶液浓度的依赖性[34 ];更多相关方面的研究可参阅有关文献,在此不作详细讨论. 本文将以作者的相关高分子研究工作为例,介绍QCM-D在界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料研究中的应用,进一步展示QCM-D在高分子研究中的广阔应用前景.4.1 界面接枝高分子构象行为众所周知,界面接枝高分子的构象行为对界面性质至关重要[35 ]. 然而,对界面接枝高分子的构象行为进行实时原位表征一直面临许多挑战. 研究界面接枝高分子的构象行为,首先需要理解高分子在界面接枝过程中的构象变化. 在低接枝密度下,由于链间距离大于链本身的尺寸,链间不发生交叠,此时,根据高分子链节与界面间相互作用的强弱,高分子会形成“煎饼”状构象(pancake)或“蘑菇”状构象(mushroom)[36 ]. 具体而言,如果高分子链节与固体表面间相互作用强时,接枝高分子会形成“煎饼”状构象;若高分子链节与固体表面间无明显相互作用时,接枝高分子则形成“蘑菇”状构象[36 ]. 随着接枝密度增加,当接枝高分子链间距离小于其本身尺寸时,由于链间排斥作用,接枝高分子链会形成“刷”(brush)状构象[36 ]. 因此,随着接枝密度增加,接枝高分子将展现出pancake-to-brush或mushroom-to-brush转变. 利用QCM-D研究相关高分子接枝过程中的构象变化,对于理解高分子刷的形成机理十分重要.图2(a) 为巯基末端聚(N-异丙基丙烯酰胺) (HS-PNIPAM)在金涂层石英振子表面接枝所引起的频率变化情况[23 ]. 很明显,接枝过程经历了3个不同的动力学阶段. 在区域Ι阶段,Δf 快速下降,表明HS-PNIPAM链快速接枝到振子表面. 在区域ΙΙ阶段,Δf 缓慢下降,说明已接枝高分子链阻碍HS-PNIPAM链的进一步接枝,因而接枝速率变慢. 在区域ΙΙΙ阶段,Δf 再次出现相对快速的下降,表明已接枝的HS-PNIPAM链进行构象调整,从而使得后续的HS-PNIPAM链能够继续进行接枝反应. 对于HS-PNIPAM接枝过程中的耗散因子变化情况而言(图2(b) )[23 ],在区域Ι阶段,ΔD快速上升;在区域ΙΙ阶段,ΔD缓慢增加;在区域ΙΙΙ阶段,ΔD相对快速增加. 显然,ΔD与Δf 变化的快慢趋势相一致,反映类似的HS-PNIPAM链在振子表面的接枝过程.图 2Figure 2. (a) Frequency shift (Δf) and (b) dissipation shift (ΔD) of the gold-coated quartz resonator immersed in a HS-PNIPAM solution as a function of time (c) ΔD versus −Δf relation for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[23 ] Copyright (2005) American Chemical Society) (d) Schematic illustration of the pancake-to-brush transition for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[37 ] Copyright (2015) Science Press).然而,HS-PNIPAM链在振子表面接枝过程中Δf 与ΔD间的关系只包含2个不同的过程(图2(c) )[23 ]. 在区域Ι和ΙΙ阶段,随着−Δf 的增加,ΔD缓慢增加,−Δf与ΔD间关系相似,表明在这两个阶段中接枝HS-PNIPAM链的构象接近,即,由于HS-PNIPAM链节与金表面间有较强的吸引作用,HS-PNIPAM链在区域I阶段形成“煎饼”状构象;随着接枝密度增加,其在区域II阶段转变成“蘑菇”状构象. 在区域ΙΙΙ阶段,ΔD随着−Δf 的增加快速增加,说明接枝HS-PNIPAM链变得越来越伸展,即形成了高分子刷构象. 图2(d) 展示了从区域I到区域III阶段,接枝HS-PNIPAM链的构象转变过程[37 ]. 同样,如果高分子链节与固体表面间无明显吸引作用时,随着接枝密度的增加,接枝高分子链将展现从无规“蘑菇”状构象到有序“蘑菇”状构象,再到“刷”状构象的转变[22 ].另一方面,PNIPAM为典型的热敏型高分子,其在水中具有最低临界溶解温度(LCST,约为32 °C). 在温度低于LCST时,溶液中自由的PNIPAM链呈无规线团状(coil),但当温度高于LCST时,PNIPAM链塌缩成小球状(globule),且coil到globule转变是不连续的. 与溶液中自由的PNIPAM链相比,由于空间受限效应,界面接枝PNIPAM链将展现出不同的热敏性构象行为. Zhang和Liu利用QCM-D研究了界面接枝PNIPAM随温度的变化情况[38 ,39 ]. 如上所述,PNIPAM链可以通过“grafting to”或“grafting from”策略接枝到振子表面,前者可以形成接枝密度较低的“蘑菇”状构象,而后者则可以形成接枝密度较高的“刷”状构象.图3(a) 为利用“grafting to”策略将PNIPAM链接枝到振子表面形成“蘑菇”状构象后,频率随温度的变化情况[38 ]. 在加热过程中,−Δf 随着温度增加逐渐降低,表明接枝PNIPAM链发生了去水化. 在降温过程中,−Δf 随着温度降低逐渐增加,表明接枝PNIPAM链的水化程度再次增加. 最终,−Δf 能够回到原点,说明降低温度可以使得接枝PNIPAM链从高温时的弱水化状态回到低温时的强水化状态. 图3(b) 为振子表面接枝PNIPAM链形成“蘑菇”状构象后,耗散因子随温度的变化情况[38 ]. 在升温过程中,ΔD随着温度增加而减小,表明升温导致接枝PNIPAM塌缩成更加致密刚性的薄膜. 在降温过程中,ΔD随着温度降低而增大,表明降温使得塌缩的PNIPAM逐渐溶胀成更加蓬松柔性的薄膜. 另一方面,在图3(c) 中,Δf与ΔD成线性关系,表明随着温度变化,接枝PNIPAM链的伸展/塌缩与其水化/去水化间的协同性强[40 ].图 3Figure 3. Temperature dependence of the shifts in frequency (Δf) (a) and dissipation (ΔD) (b) of the PNIPAM mushroom. (Reprinted with permission from Ref.[38 ] Copyright (2004) American Chemical Society) (c) ΔD versus −Δf relation of the PNIPAM mushroom (Reprinted with permission from Ref.[40 ] Copyright (2009) John Wiley & Sons, Inc.) Temperature dependence of the shifts in frequency (Δf) (d) and dissipation (ΔD) (e) of the PNIPAM brush (f) ΔD versus −Δf relation of the PNIPAM brush (Reprinted with permission from Ref.[39 ] Copyright (2005) American Chemical Society).利用“grafting from”策略将PNIPAM链接枝到振子表面形成“刷”状构象后,其频率和耗散因子随温度的变化情况示于图3(d) ~ 3(f) 中[39 ]. 在图3(d) 中,−Δf 随着温度增加而降低,表明PNIPAM刷在升温过程中发生了去水化;−Δf 随着温度降低而增加,表明PNIPAM刷的水化程度在降温过程中再次增加. 在图3(e) 中,ΔD随着升温而减小,表明加热使得PNIPAM刷塌缩成更加致密刚性的结构;在降温过程中,ΔD逐渐增加,表明降温使得塌缩的PNIPAM刷溶胀为更加蓬松柔性的结构. 与图3(b) 不同的是,在图3(e) 中,降温过程中的ΔD比升温过程中同一温度下的值要大,这是降温过程中在PNIPAM刷外围形成“尾”(tail)状结构造成的[39 ]. 另外,在图3(f) 中,Δf与ΔD的关系也与图3(c) 中的不同,PNIPAM刷在升温过程中展现出3个过程,从A到B,ΔD随着−Δf 的减小而降低,表明在此过程中PNIPAM刷的塌缩和去水化协同性较强;从B到C,ΔD随着−Δf 的减小而轻微地降低,表明在此过程中立体位阻效应使得PNIPAM刷在去水化的同时只有轻微塌缩发生,即PNIPAM刷的塌缩和去水化协同性较差;从C到D,ΔD随着−Δf 的减小而再次降低,表明在此过程中PNIPAM刷克服立体位阻,在去水化的同时伴随进一步塌缩. 在降温过程中,可以观察到2个过程,从D到E,ΔD随着−Δf的增加而显著增大,表明PNIPAM刷开始溶胀时在其外围形成了蓬松的“尾”状构象;从E到F,ΔD随着−Δf的增加而逐渐增大,表明降温导致PNIPAM刷的进一步水化和溶胀. 此外,QCM-D还可应用于表征界面接枝带电高分子的响应性构象行为,如pH响应性[41 ]、盐浓度响应性[42 ]等.4.2 高分子的离子效应高分子的离子效应是理解高分子物理化学基本原理的重要基础,并在生物、环境以及能源等领域中扮演着重要角色. 然而,经典德拜-休克尔理论中所运用的一些假设,例如,仅考虑离子的静电相互作用,忽略离子-溶剂间相互作用,以及认为正负离子间的静电吸引能小于其热运动能量等,使得该理论难以全面正确理解高分子体系中除离子强度效应以外的其他离子效应. 相比于一些传统的研究高分子溶液的表征技术(如激光光散射等),利用QCM-D研究界面高分子体系中的离子效应,可以有效避免如带电高分子相分离等不利因素,从而可以更加全面清晰地解析高分子的离子效应. 此外,将QCM-D与其他界面表征技术联用,可以从不同角度表征高分子的离子效应,加深对相关离子效应作用机理的理解. 在本节中,我们将以离子特异性效应、离子氢键效应以及离子亲/疏水效应为例,介绍如何基于QCM-D/SE联用技术研究高分子的离子效应.4.2.1 高分子的离子特异性效应由于离子普遍存在于不同体系之中,自1888年捷克科学家Hofmeister首次发现离子特异性效应以来[43 ],其已引起了包括高分子在内的不同领域科学家的广泛兴趣[44 ~50 ]. 为了阐明离子特异性效应的相关机理,Collins基于离子水化程度不同,提出了经验性的离子水化匹配模型,即阴阳离子水化程度相近时可以形成紧密离子对,反之,则难以形成紧密离子对[51 ]. 相对于离子水化匹配模型主要用于理解水溶液中带电体系的离子特异性效应,Ninham等提出的离子色散力理论则可以用于理解几乎所有体系的离子特异性效应,即离子尺寸不同,极化能力各异,导致特异性的离子色散相互作用[52 ].对于高分子体系而言,阐明离子特异性作用机理,是理解高分子体系离子特异性效应的关键所在. Kou等以阳离子型聚(甲基丙烯酰氧乙基三甲基氯化铵)(PMETAC)刷为模型体系,利用QCM-D/SE联用技术研究了强聚电解质刷的离子特异性效应(图4 )[53 ]. 在图4(a) 中,对于同一盐浓度而言,Δf 的变化呈现“V”型的阴离子序列SO42−HPO42−CH3COO−Cl−Br−NO3−I−SCN−,这与经典的Hofmeister离子序列不一致. 在“V”型序列的右边主要为“结构破坏型”阴离子,从CH3COO−变化至SCN−,Δf 依次增加,说明PMETAC刷的水化程度依次降低. 一方面,阳离子型季铵基团为弱水化基团[54 ~56 ];另一方面,从CH3COO−变化至SCN−,阴离子的水化程度依次降低[54 ~56 ]. 依据水化匹配模型[51 ],季铵基团与阴离子间的“离子对”相互作用强度从CH3COO−到SCN−依次增强,导致PMETAC刷的水化程度依次降低. 同样,基于离子色散力理论[52 ],也可以得到类似的结论. 因此,上述研究结果表明,对于“结构破坏型”阴离子而言,PMETAC刷的离子特异性效应由直接的“离子对”相互作用主导. 在“V”型序列的左边为“结构构造型”阴离子,从CH3COO−变化至SO42−,Δf 依次增加,同样说明PMETAC刷的水化程度依次降低. 然而,阴离子的水化程度从CH3COO−到SO42−依次增强. 显然,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应无法基于水化匹配模型加以理解. 实际上,Δf 随离子种类的变化情况表明,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应由阴离子对强聚电解质刷水化层中水分子的争夺作用主导. 类似地,ΔD (图4(b) )和湿态厚度(图4(c) )随离子种类的变化情况再次从不同角度说明了“结构破坏型”和“结构构造型”阴离子分别以不同方式与PMETAC刷进行特异性相互作用. PMETAC刷的离子特异性效应作用机理展示在图4(d) 中. 基于同样原理,QCM-D/SE联用技术还可应用于研究弱聚电解质刷[57 ]以及聚两性离子刷体系的离子特异性效应[58 ].图 4Figure 4. (a) Salt concentration dependence of (a) the frequency shift (Δf), (b) the dissipation shift (ΔD), (c) the wet thickness of the PMETAC brush in the presence of different types of anions with Na+ as the common cation. In parts (a), (b), and (c), salt concentration: 0.001 mol/L (open symbol), 0.01 mol/L (half up-filled symbol), 0.1 mol/L (half right-filled symbol), and 0.5 mol/L (filled symbol) (d) Schematic illustration of the specific interactions between the PMETAC brush and the different types of anions (Reprinted with permission from Ref.[53 ] Copyright (2015) American Chemical Society).4.2.2 高分子的离子氢键效应在带电高分子体系,当抗衡离子具有氢键供体或受体时,其既可以与高分子链上的电荷基团产生静电吸引作用,也可以与高分子链上的氢键受体或供体发生氢键相互作用,从而对带电高分子的性质产生重要影响,此种由带电高分子体系抗衡离子产生的氢键效应被定义为高分子的离子氢键效应[59 ]. 以强聚电解质刷为例,由于强聚电解质的电离度与pH无关,因此,传统观念上认为强聚电解刷无pH响应性. 但如果从离子氢键效应的角度出发,氢氧根离子(OH−)和水合氢离子(H3O+)不但可以通过“抗衡离子凝聚”吸附到接枝强聚电解质链上[60 ],同时也可以和接枝强聚电解质链发生氢键作用. 当溶液pH发生改变时,在保持溶液离子总浓度不变的情况下,OH−和H3O+的浓度会发生变化,导致抗衡离子与强聚电解质刷的氢键相互作用发生改变,从而使得强聚电解质刷产生pH响应性[61 ,62 ].如图5(a) 所示,PMETAC刷的Δf 随着pH的增大而增加,反之亦然. 同时,PMETAC刷的ΔD随着pH的增大而减小,反之亦然. 因此,PMETAC刷的水化程度和刚性对pH有明显的依赖性. 但是,图5(b) 表明PMETAC刷的表面电荷密度(σ)以及湿态厚度(dwet)与pH无关,因此,pH引起的PMETAC刷的水化程度和刚性变化并非由强聚电解质刷的电离度变化或塌缩/溶胀引起的. 事实上,PMETAC刷的pH响应性是由OH−产生的抗衡离子氢键效应导致的(图5(c) ). 具体而言,随着pH增大,更多的OH−离子通过“抗衡离子凝聚”方式吸附在接枝PMETAC链上,并与接枝链上的羰基产生氢键作用,从而削弱了PMETAC刷与其周围水分子间的作用,降低其水化程度,导致Δf 增加. 同时,随着pH增大,接枝链间的氢键作用使得PMETAC刷产生物理交联,即其结构变得更加刚性,导致ΔD减小. 与阳离子型PMETAC刷类似,H3O+产生的抗衡离子氢键效应使得阴离子型聚(3-(甲基丙烯酰氧基)丙磺酸钾)刷具有pH响应性[61 ].图 5Figure 5. (a) Shifts in frequency (Δf) and dissipation (ΔD) of the PMETAC brush as a function of pH (b) Changes in surface charge density (σ) and wet thickness (dwet) of the PMETAC brush as a function of pH (c) Schematic illustration of the pH response of the PMETAC brush induced by the hydrogen bond effect generated by the hydroxide counterions (Reprinted with permission from Ref.[61 ] Copyright (2016) American Association for the Advancement of Science).为了验证带电高分子体系中抗衡离子氢键效应具有普适性,Zhang等将研究体系拓展至弱聚电解质刷以及OH−和H3O+以外的其他种类离子[63 ]. 从图6(a) 可知,CH3SO3−无法和PMETAC发生氢键作用,但是HOCH2SO3−上的羟基却可以和PMETAC链上的羰基形成氢键. 类似地,在图6(b) 中,Na+无法与聚甲基丙烯酸钠(PMANa)发生氢键作用,但是胍离子(Gdm+)上的胺基却可以和PMANa链上的羰基形成氢键. 在图6(c) 中,随着CH3SO3−-HOCH2SO3−混合抗衡离子中HOCH2SO3−摩尔分数(x)的增加,Δf 逐渐增大而ΔD逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷发生去水化,且PMETAC刷的结构变得更加刚性. 在图6(d) 中,随着x的增加,PMETAC刷的dwet逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷逐渐塌缩.图 6Figure 6. (a) The HOCH2SO3− counter anions with the hydroxide group can form hydrogen bonds with PMETAC, whereas no hydrogen bonds can be formed between the CH3SO3− counter anions and PMETAC (b) The guanidinium+ counter cations with the amino groups can form hydrogen bonds with PMANa, whereas no hydrogen bonds can be formed between the Na+ counter cations and PMANa (c) Shifts in Δf (filled symbol) and ΔD (open symbol), and (d) shift in dwet of the PMETAC brush as a function of x of the counterion mixtures of CH3SO3− and HOCH2SO3− at a concentration of 0.05 mol/L with Na+ as the common cation (e) Shifts in Δf (filled symbol) and ΔD (open symbol), and (f) shift in dwet of the PMANa brush as a function of pH in the presence of 0.05 mol/L Na+ or guanidinium+ with Cl− as the common anion (Adapted with permission from Ref.[63 ] Copyright (2020) The Royal Society of Chemistry).与强聚电解质刷类似,抗衡离子氢键效应同样存在于弱聚电解质刷体系中. 图6(e) 和6(f) 中,在0.05 mol/L NaCl存在下,PMANa刷的Δf、ΔD以及dwet随pH的变化情况与传统弱聚电解质刷的pH响应性完全一致,即此时PMANa刷的pH响应性由接枝链的电离度随pH变化决定的. 然而,在0.05 mol/L GdmCl存在下,PMANa刷所表现出的pH响应性与0.05 mol/L NaCl存在下的情况截然不同. 当pH从2.0增加到4.5,PMANa刷的Δf 和ΔD分别增加和减小,同时,PMANa刷的dwet逐渐减小,表明PMANa刷的水化程度逐渐降低,其结构变得更加刚性,并伴随着塌缩发生. 显然,这与0.05 mol/L NaCl存在下在该pH区间中PMANa刷的变化情况完全相反. 然而,这可以基于离子氢键效应加以理解. 当pH从2.0增加至4.5时,接枝PMANa链的电离度增加,导致更多的Gdm+离子通过“抗衡离子凝聚”吸附于带负电荷的羧酸根基团上,从而在PMANa刷中形成更多的抗衡离子氢键,削弱了PMANa刷与周围水分子间的相互作用,使PMANa刷变得更加刚性,并导致其塌缩. 在pH 4.5至10.0区间中,0.05 mol/L GdmCl存在下PMANa刷的pH响应性与0.05 mol/L NaCl存在下的情况类似.4.2.3 高分子的离子亲/疏水效应当电荷基团与具有不同亲/疏水性质的有机基团相连接时,形成的有机离子具有不同的亲/疏水性质. 将这些离子引入聚电解质体系作为抗衡离子,可实现利用抗衡离子控制聚电解质的亲/疏水性质,从而调控其温敏性[64 ]. 然而,与聚电解质稀溶液相比,聚电解质刷内部环境较为拥挤. 因此,聚电解质刷的温敏性不但依赖于其抗衡离子的亲/疏水性,而且与抗衡离子的尺寸大小有关. 为了澄清抗衡离子的亲/疏水性质和尺寸大小与聚电解质刷温敏性间的关系,Cai等以聚苯乙烯磺酸钠(PSSNa)为基础,基于离子交换策略制备了具有不同抗衡离子的聚电解质刷(图7(a) ),并利用QCM-D/SE联用技术研究了不同聚电解质刷的温度响应性(图7(b) ~7(g) )[65 ].图 7Figure 7. (a) Schematic illustration of the preparation of PSSP444m brushes from the PSSNa brush through a counterion exchange strategy, where P444m+ represents the hydrophobic tetraalkylphosphonium counterion (b) Shift in frequency (Δf ), (c) shift in dissipation (ΔD) and (d) change in wet thickness (Δdwet) for both the PSSNa and the PSSP444m brushes as a function of temperature (e) Temperature dependence of ∆f of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (f) Temperature dependence of ∆D of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (g) Change in wet thickness (∆dwet) of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (Adapted with permission from Ref.[65 ] Copyright (2019) American Chemical Society).在图7(b) 和7(c) 中,随着温度增加,PSSNa刷的Δf和ΔD基本保持不变,表明PSSNa刷无明显温度响应性,这是PSSNa的强亲水性导致的. 当Na+被P4442+取代后,P4442+的疏水性仍不足以使PSSP4442刷表现出明显的温敏性. 当使用更加疏水的P4444+取代Na+时,PSSP4444刷仅表现出较弱的温敏性. 进一步增加抗衡离子的疏水性制备得到的PSSP4446刷表现出明显的温敏性,即随着温度增加,Δf 和ΔD分别明显地增加和减小,说明升温可以导致PSSP4446刷去水化以及变得更加刚性. 此外,PSSP4446刷的温敏性具有较好的可逆性. 然而,继续增加抗衡离子的疏水性,制备得到的PSSP4448刷再次失去温敏性,这是P4448+过度疏水造成的. 另一方面,在图7(d) 中,包括PSSP4446刷在内的所有聚电解质刷的Δdwet都没有明显的温度依赖性. 对于PSSP4446刷而言,其水化和刚性表现出明显的温度依赖性,但由于其抗衡离子尺寸较大,在聚电解质刷内部产生的位阻效应较大,阻碍了PSSP4446刷随温度升高而塌缩. 这不利于温敏型聚电解质刷的应用,如“纳米阀门”[66 ]. 考虑到大尺寸的P4448+抗衡离子可以将强疏水性引入强聚电解质刷,而小尺寸的Na+抗衡离子可以使强聚电解质刷内部产生一定的自由空间,Cai等利用Na+和P4448+混合抗衡离子制备PSSNa/P4448刷,并在P4448+摩尔分数(x)为 ~72%时,实现了强聚电解质刷水化、刚性以及湿态厚度明显的温度响应性(图7(e) ~7(g) )[65 ].4.3 高分子海洋防污材料海洋微生物、动植物在海洋设施表面的黏附、生长形成海洋生物污损,给海洋工业和海洋开发带来严重影响. 由于海洋环境的复杂性和污损生物的多样性,海洋防污是一个全球性的难题. 如何快速、高通量筛选防污材料对解决这一问题十分关键. QCM-D技术可被用于快速筛选和评价防污材料的降解、抗蛋白吸附、自更新性能以及服役与失效行为. Ma等制备了具有优异力学性能的含聚乙二醇(PEG)和两性离子聚合物侧链的聚氨酯材料,利用QCM-D检测其抗蛋白吸附能力,从而在较短的时间尺度内(数小时)快速评价污损生物在涂层表面的吸附和相互作用[67 ]. QCM-D检测表明,该材料虽然具有优异的室内抗污性能,但在实海中浸泡12周后失去防污能力. 原因是涂层表面吸附海泥等物质导致其表面性能发生根本性变化,从原来的抗污变为亲污.基于上述认识,Ma等提出了“动态表面防污”的概念,设计了在海洋环境下能够降解的聚甲基丙烯酸甲酯-聚碳酸乙烯酯(PMMA-PEOC)材料(图8(a) )[68 ]. QCM-D测试表明,随着时间增加,Δf 增大而ΔD不断减小,说明涂层的质量或厚度减小,即涂层在海水作用下不断降解(图8(b) ). 对于4种涂层,其降解均为线性,即涂层厚度随时间均匀下降. 另外,随着PEOC含量增加,Δf 和ΔD变化加快,即降解速率变大. 实海挂板实验表明(图8(c) ),该材料(未加任何防污剂)涂覆的挂板3个月内未有任何海洋生物黏附,即材料具有优异的防污性能. 显然,随着降解速率增加,防污性能提高. 这证明了动态表面防污概念的可行性,即涂料通过表面的不断更新,使海洋微生物无法着陆、黏附,从而达到防污的目的. 因此,QCM技术和海洋实验的评估周期虽然不同,但结论基本一致.图 8Figure 8. Structural formula of PMMA-co-PEOCA (a), time dependence of the shifts in frequency (Δf) and dissipation (ΔD) for the hydrolytic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with P(MMA-co-PEOCA63) in marine field test (c) (Reprinted with permission from Ref.[68 ] Copyright (2012) Springer Nature).Ma等制备了软段为乙交酯(GA)和己内酯(CL)共聚物的聚氨酯(图9(a) )[69 ],其力学性能优异. 利用QCM-D对其短时间降解行为的研究表明,随着时间增加,涂层的Δf 变大,说明涂层在酶的作用下发生降解(图9(b) ). 该材料的短期(几个小时内)降解是非线性的,且随着可降解链段的含量增大,降解速率变大,即涂层的表面更新速率变大. 另一方面,质量损失法也表明,该材料的降解在初期呈非线性,在更大时间尺度上(10天以上)降解是线性的. 2种方法都表明,适度引入GA可提高降解速率. 实际上2种评价方法所得的结果是一致的,只是观察其服役与失效的时间尺度不同. 实海挂板实验表明(图9(c) ),随着降解速率的提高,海洋微生物的黏附越来越少. 即随着降解速率的增加,防污性能提高. 当材料中加入适量有机防污剂(PCL-PU/DCOIT)后,效果达到最佳. 总之,实海实验结果与QCM-D的结果吻合.图 9Figure 9. Structural formula of P(CL-GA) polyurethane (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane in marine field test (c) (Reprinted with permission from Ref.[69 ] Copyright (2013) The Royal Society of Chemistry).Xu等研制了主链降解-侧基水解型聚氨酯,即其主链含聚己内酯(PCL)而侧基中含有可水解的丙烯酸三异丙基硅烷酯(TIPSA)(图10(a) )[27 ]. QCM-D的研究结果表明,在短时间内(依照样品不同,从1 h到2天不等),涂层在海水中的降解近似线性,且随TIPSA含量增加降解速率增加(图10(b) ). 实海挂板实验表明(图10(c) ),以该材料涂覆的挂板,随着降解速率增加(由PU-S0至PU-S40),海洋生物黏附越来越少,即防污性能越来越好. 可见,QCM-D结果与实海实验结果一致. 以上几个研究表明,对于多数材料而言,通过QCM-D对防污材料在实验室进行初步筛选的结果,与较长时间(3个月)的质量损失测试和更长时间(1年以上)的海洋挂板实验结果基本一致,这为利用QCM-D快速筛选高分子海洋防污材料提供了依据.图 10Figure 10. Structural formula of polyurethane with degradable main chain and hydrolyzable side chains (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane after 3 months of immersion in seawater (c) (Reprinted with permission from Ref.[27 ] Copyright (2014) American Chemical Society).5. 结语本文介绍了QCM的发展简史、基本原理、实验样品制备以及其在高分子研究中的应用. QCM技术经历了六十余年的发展,从最初仅应用于真空或空气中薄膜微观质量的测量,逐步发展到应用于溶液中的测量. 上世纪末,QCM-D被成功研制,进一步促进了QCM技术在相关领域中的应用. 进入新世纪后,QCM-D技术与其他表征技术的联用得到了较快的发展,这些联用表征技术极大地拓展了QCM-D的研究领域,丰富了表征信息,加深了对相关科学问题的认知. 对于高分子研究而言,毋庸置疑,QCM-D是一个非常有力的表征工具. 当然,QCM-D在高分子研究中的应用不仅仅局限于本文讨论的几个方面,作者希望本文能起到抛砖引玉的作用,使得这一表征技术能够为解决高分子领域中的问题发挥更大作用.参考文献[1]Curie J, Curie P. Bull Soc Min Fr, 1880, 3(4): 90−93[2]Cady W G. Proc IRE, 1922, 10(2): 83−114 doi: 10.1109/JRPROC.1922.219800 [3]Lack F R, Willard G W, Fair I E. Bell Syst Technol J, 1934, 13(3): 453−463 doi: 10.1002/j.1538-7305.1934.tb00674.x [4]Sauerbrey G Z. Z Phys, 1959, 155: 206−222 doi: 10.1007/BF01337937 [5]Lu C, Czanderna A W. Applications of Piezoelectric Quartz Crystal Microbalances. New York: Elsevier. 2012[6]Nomura T, Okuhara M. Anal Chim Acta, 1982, 142: 281−284 doi: 10.1016/S0003-2670(01)95290-0 [7]Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B. Rev Sci Instrum, 1995, 66(7): 3924−3930 doi: 10.1063/1.1145396 [8]Ramos J J I, Moya S E. Macromol Rapid Commun, 2011, 32(24): 1972−1978 doi: 10.1002/marc.201100455 [9]Wang S Y, Li F, Easley A D, Lutkenhaus J L. Nat Mater, 2019, 18(1): 69−75 doi: 10.1038/s41563-018-0215-1 [10]Jiang C, Cao T Y, Wu W J, Song J L, Jin Y C. ACS Sustain Chem Eng, 2017, 5(5): 3837−3844 doi: 10.1021/acssuschemeng.6b02884 [11]Akanbi M O, Hernandez L M, Mobarok M H, Veinot J G C, Tufenkji N. Environ Sci: Nano, 2018, 5(9): 2172−2183 doi: 10.1039/C8EN00508G [12]Tarnapolsky A, Freger V. Anal Chem, 2018, 90(23): 13960−13968 doi: 10.1021/acs.analchem.8b03411 [13]Dai G X, Xie Q Y, Ai X Q, Ma C F, Zhang G Z. ACS Appl Mater Interfaces, 2019, 11(44): 41750−41757 doi: 10.1021/acsami.9b16775 [14]Swiatek S, Komorek P, Jachimska B. Food Hydrocolloids, 2019, 91: 48−56 doi: 10.1016/j.foodhyd.2019.01.007 [15]Bottom V E. Introduction to Quartz Crystal Unit Design. New York: Van Nostrand Reinhold. 1982[16]Janshoff A, Galla H J, Steinem C. Angew Chem Int Ed, 2000, 39(22): 4004−4032 doi: 10.1002/1521-3773(20001117)39:224004::aid-anie40043.0.CO 2-2 [17]Liu G M, Zhang G Z. QCM-D Studies on Polymer Behavior at Interfaces. New York: Springer, 2013. 1−8[18]Kanazawa K K, Gordon J G. Anal Chem, 1985, 57(8): 1770−1771 doi: 10.1021/ac00285a062 [19]Rodahl M, Kasemo B. Sens Actuators A, 1996, 54(1-3): 448−456[20]Voinova M V, Rodahl M, Jonson M, Kasemo B. Phys Scr, 1999, 59(5): 391−396 doi: 10.1238/Physica.Regular.059a00391 [21]Steinem C, Janshoff A. Piezoelectric Sensors. Berlin: Springer, 2007. 425−447[22]Liu G M, Yan L F, Chen X, Zhang G Z. Polymer, 2006, 47(9): 3157−3163 doi: 10.1016/j.polymer.2006.02.091 [23]Liu G M, Cheng H, Yan L F, Zhang G Z. J Phys Chem B, 2005, 109(47): 22603−22607 doi: 10.1021/jp0538417 [24]He J N, Wu Y Z, Wu J, Mao X, Fu L, Qian T C, Fang J, Xiong C Y, Xie J L, Ma H W. Macromolecules, 2007, 40(9): 3090−3096 doi: 10.1021/ma062613n [25]Fu L, Chen X A, He J N, Xiong C Y, Ma H W. Langmuir, 2008, 24(12): 6100−6106 doi: 10.1021/la703661z [26]Mandal J, Simic R, Spencer N D. Polym Chem, 2019, 10(29): 3933−3942 doi: 10.1039/C9PY00587K [27]Xu W T, Ma C F, Ma J L, Gan T S, Zhang G Z. ACS Appl Mater Interfaces, 2014, 6(6): 4017−4024 doi: 10.1021/am4054578 [28]Zhu J, Pan J S, Ma C F, Zhang G Z, Liu G M. Langmuir, 2019, 35(34): 11157−11166 doi: 10.1021/acs.langmuir.9b01740 [29]Du Binyang(杜滨阳), Fan Xiao(范潇), Cao Zheng(曹峥), Guo Xiaolei(郭小磊). Chinese Journal of Analytical Chemistry(分析化学), 2010, 38(5): 752−759[30]He J A, Fu L, Huang M, Lu Y D, Lv B E, Zhu Z Q, Fang J J, Ma H W. Sci Sin Chim, 2011, 41(11): 1679−1698 doi: 10.1360/032011-381 [31]Sun Bin(孙彬), Lv Jianhua(吕建华), Jin Jing(金晶), Zhao Guiyan(赵桂艳). Chinese Journal of Applied Chemistry(应用化学), 2020, 37(10): 1127−1136 doi: 10.11944/j.issn.1000-0518.2020.10.200078 [32]Marx K A. Biomacromolecules, 2003, 4(5): 1099−1120 doi: 10.1021/bm020116i [33]Munro J C, Frank C W. Macromolecules, 2004, 37(3): 925−938 doi: 10.1021/ma030297w [34]Choi J H, Kanazawa K K, Cho N J. J Sens, 2014, 2014: 373528[35]Bhat R R, Tomlinson M R, Wu T, Genzer J. Adv Polym Sci, 2006, 198: 51−124[36]Fleer G J, Stuart M A C, Scheutjens J M H M, Cosgrove T, Vincent B. Polymers at Interfaces. London: Chapman & Hall 1993. 372−395[37]Zhang Guangzhao(张广照), Liu Guangming(刘光明). Quartz Crystal Microbalance: Principles and Applications(石英晶体微天平: 原理与应用). Beijing(北京): Science Press(科学出版社), 2015. 63−77[38]Zhang G Z. Macromolecules, 2004, 37(17): 6553−6557 doi: 10.1021/ma035937+ [39]Liu G M, Zhang G Z. J Phys Chem B, 2005, 109(2): 743−747 doi: 10.1021/jp046903m [40]Zhang G Z, Wu C. Macromol Rapid Commun, 2009, 30(4−5): 328−335[41]Liu G M, Zhang G Z. J Phys Chem B, 2008, 112(33): 10137−10141 doi: 10.1021/jp801533r [42]Hou Y, Liu G M, Wu Y, Zhang G Z. Phys Chem Chem Phys, 2011, 13(7): 2880−2886 doi: 10.1039/C0CP01994A [43]Hofmeister F. Arch Exp Pathol Pharmakol, 1888, 24(4): 247−260[44]Tobias D J, Hemminger J C. Science, 2008, 319(5867): 1197−1198 doi: 10.1126/science.1152799 [45]Tielrooij K J, Garcia-Araez N, Bonn M, Bakker H J. Science, 2010, 328(5981): 1006−1009 doi: 10.1126/science.1183512 [46]Pegram L M, Wendorff T, Erdmann R, Shkel I, Bellissimo D, Felitsky D J, Record M T. Proc Natl Acad Sci, 2010, 107(17): 7716−7721 doi: 10.1073/pnas.0913376107 [47]Paschek D, Ludwig R. Angew Chem Int Ed, 2011, 50(2): 352−353 doi: 10.1002/anie.201004501 [48]Rembert K B, Paterová J, Heyda J, Hilty C, Jungwirth P, Cremer P S. J Am Chem Soc, 2012, 134(24): 10039−10046 doi: 10.1021/ja301297g [49]Dickson V K, Pedi L, Long S B. Nature, 2014, 516(7530): 213−218 doi: 10.1038/nature13913 [50]Nihonyanagi S, Yamaguchi S, Tahara T. J Am Chem Soc, 2014, 136(17): 6155−6158 doi: 10.1021/ja412952y [51]Collins K D. Methods, 2004, 34(3): 300−311 doi: 10.1016/j.ymeth.2004.03.021 [52]Salis A, Ninham B W. Chem Soc Rev, 2014, 43(21): 7358−7377 doi: 10.1039/C4CS00144C [53]Kou R, Zhang J, Wang T, Liu G M. Langmuir, 2015, 31(38): 10461−10468 doi: 10.1021/acs.langmuir.5b02698 [54]Kunz W. Curr Opin Colloid Interface Sci, 2010, 15(1-2): 34−39 doi: 10.1016/j.cocis.2009.11.008 [55]Parsons D F, Boström M, Nostro P L, Ninham B W. Phys Chem Chem Phys, 2011, 13(27): 12352−12367 doi: 10.1039/c1cp20538b [56]Liu L D, Kou R, Liu G M. Soft Matter, 2017, 13(1): 68−80 doi: 10.1039/C6SM01773H [57]Zhang J, Cai H T, Tang L, Liu G M. Langmuir, 2018, 34(41): 12419−12427 doi: 10.1021/acs.langmuir.8b02776 [58]Wang T, Wang X W, Long Y C, Liu G M, Zhang G Z. Langmuir, 2013, 29(22): 6588−6596 doi: 10.1021/la401069y [59]Yuan H Y, Liu G M. Soft Matter, 2020, 16(17): 4087−4104 doi: 10.1039/D0SM00199F [60]Manning G S. Acc Chem Res, 1979, 12(12): 443−449 doi: 10.1021/ar50144a004 [61]Wu B, Wang X W, Yang J, Hua Z, Tian K Z, Kou R, Zhang J, Ye S J, Luo Y, Craig V S J, Liu G M. Sci Adv, 2016, 2(8): e1600579 doi: 10.1126/sciadv.1600579 [62]Zhang J, Kou R, Liu G M. Langmuir, 2017, 33(27): 6838−6845 doi: 10.1021/acs.langmuir.7b01395 [63]Zhang J, Xu S Y, Jin H G, Liu G M. Chem Commun, 2020, 56(74): 10930−10933 doi: 10.1039/D0CC03763J [64]Kohno Y, Saita S, Men Y J, Yuan J Y, Ohno H. Polym Chem, 2015, 6(12): 2163−2178 doi: 10.1039/C4PY01665C [65]Cai H, Kou R, Liu G. Langmuir, 2019, 35(51): 16862−16868 doi: 10.1021/acs.langmuir.9b02982 [66]Adiga S P, Brenner D W. J Funct Biomater, 2012, 3(2): 239−256 doi: 10.3390/jfb3020239 [67]Ma C F, Hou Y, Liu S, Zhang G Z. Langmuir, 2009, 25(16): 9467−9472 doi: 10.1021/la900669p [68]Ma C F, Yang H J, Zhang G Z. Chinese J Polym Sci, 2012, 30(3): 337−342 doi: 10.1007/s10118-012-1158-7 [69]Ma C F, Xu L G, Xu W T, Zhang G Z. J Mater Chem B, 2013, 1(24): 3099−3106 doi: 10.1039/c3tb20454e
  • 高分子表征技术专题——光散射技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!光散射技术在高分子表征研究中的应用Laser Light Scattering and Its Applications in Polymer Characterization作者:郑萃,刘芷君,梁德海 作者机构:中国石化北京化工研究院,北京,100013 北京大学化学与分子工程学院,北京,100871作者简介:梁德海,男,1971年生. 1994年获南开大学环境科学系理学学士,同年进入南开大学化学系攻读硕士. 2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后. 2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年任教授. 2011年得到教育部新世纪优秀人才计划的支持,2015获得Elsevier第九届冯新德高分子奖最佳文章奖. 研究方向为高分子溶液物理,主要项目包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究.摘要光散射技术是高分子领域中重要的表征手段之一. 静态光散射和动态光散射的结合能够获得丰富的关于高分子的信息,如重均分子量、回转半径、第二维里系数、流体力学半径、尺寸分布、分子链构象等. 除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为. 本综述重点介绍稀溶液中静态光散射和动态光散射的历史、基本理论和实验技巧. 对于浓溶液适用的交叉相关技术和扩散波谱技术以及固体光散射也做简要介绍. 为了帮助初学者更好地理解并掌握光散射技术,综述的最后介绍了4个应用实例:动、静态光散射相结合跟踪研究线团到密实球的转变过程,光散射确定超支化分子的标度关系,时间可分辨的光散射来剖析聚合诱导胶束化的机理,以及去偏振动态光散射研究纳米粒子在生物介质中的聚集行为.AbstractLaser light scattering (LLS), which includes static light scattering (SLS) and dynamic light scattering (DLS), has been widely applied in characterization of polymer samples in dilute solutions. SLS measures the angular dependence of the excess scattered intensity, from which the weight average molecular weight, radius of gyration, and second viral coefficient are obtained. DLS measures the intensity-intensity time correlation functions, from which the hydrodynamic radius and size distribution are obtained. The combination of SLS and DLS enables information on chain conformation. Beside synthetic polymers, LLS is also suitable for the solutions and suspensions of biopolymers, microbial, colloids, nanoparticles, virus, and vesicles. The history, theory, and experimental techniques of SLS and DLS specific for dilute solutions are summarized. In recent years, the cross-correlation techniques, diffusing wave spectroscopy, and other related techniques have been developed to expand LLS to study samples in semi-dilute and even concentrated solutions. These techniques, as well as solid light scattering, are also briefly introduced in this review. In the last, we provide four typical examples of light scattering experiments: the coil-to-globule transition as studied by the combination of SLS and DLS, the scaling of hyperbranched polymers as determined by LLS, the polymerization-induced micellization process as monitored by time-resolved LLS, and the aggregation of nanoparticles in biological media as investigated by depolarized DLS.关键词光散射  高分子表征  分子量  回转半径  相关函数KeywordsLaser light scattering  Polymer characterization  Molecular weight  Radius of gyration  Correlation function 1光散射技术的发展简史人们对光散射的认识最早可以追溯到1869年著名的丁达尔(Tyndall)凝胶散射实验. 1871年,瑞利对空气中的光散射现象进行了理论研究[1],推导出了球形粒子的散射公式,解释了晴空蓝和夕阳红的成因[2]. 之后,德拜(Debye)和甘(Gans)分别把瑞利的散射理论拓展到了非球形粒子[3] 和大尺寸的粒子[4],完善了气体中粒子的光散射理论.在液体等凝聚相(condensed phase)中,散射强度的实测值通常比瑞利理论的预测值小一个数量级以上,这是由散射波的相消干涉造成的. 针对这种现象,斯莫鲁霍夫斯基(Smoluchowski)和爱因斯坦(Einstein)[5]从密度涨落的角度出发,提出了光散射的涨落理论(fluctuation theory of light scattering),极大地拓展了光散射的应用范围. 1940年前后,德拜和齐姆(Zimm)将涨落理论与溶液中的高分子表征相结合,实现了光散射对高分子的分子量、分子尺寸、分子形状和分子间相互作用的测量[6].静态光散射(static light scattering, SLS)也称为弹性光散射,是指不考虑散射波长(或能量)变化的光散射. 1914年,布里渊(Brillouin)预测固体中热声波的散射光频率会出现双峰分布,后被实验所证实,从而开启了人们对准弹性光散射,即动态光散射(dynamic light scattering, DLS)的研究. 由于对光源单色性的苛求,动态光散射技术直到1960年前后激光光源趋于成熟之后,才得到了较好的发展. 1964年,佩科拉(Pecora)[7]利用高分子溶液中散射光的频率变化,计算出了高分子的扩散系数,并得到了高分子的流体力学半径、链柔顺性等信息.当溶液中粒子的浓度增加到一定程度时,就会发生多重散射,即散射光再次或多次与粒子发生作用. 这种浓度下溶液的光散射理论较为复杂. 近年来,科学家们针对这类体系设计了许多特殊的方法或仪器,如折射率匹配法(1991年)[8],微样品池法(1998年)[9,10]、光纤准弹性散射法(fiber optical quasi elastic light scattering, FOQELS,1991年)[11,12]、时间交叉相关法(1981年)[13]、3D交叉相关法(1999年)[14]、互相关法(1997年)[15]等. 2006年,得益于电荷耦合器件(charge coupled device,CCD)以及计算机的发展,基于光斑(speckles)的互相关法得到了实质性发展[16],得以对亚浓溶液或浓溶液进行较为深入的研究. 当溶液体系达到浑浊状态时,极其严重的多重散射使得光在体系中的行进可以按扩散过程来处理,扩散波谱(diffusing wave spectroscopy, DWS)理论应运而生[17],基于该理论的技术可适用于多种不同的浑浊体系.固体介质中也存在光散射现象,但在原理和应用等方面与溶液中的光散射都有很大差别. 固体中很容易产生严重的多重散射,且固体表界面的强烈散射常会对内部的散射造成严重干扰,这些都使得固体的光散射结果难以解读. 早在1922年,布里渊[18]就用光散射对固体振动进行了研究,但这不是严格意义的弹性光散射. 1960年斯坦因(Stein)[19]优化了垂直偏振光散射方法,极大地简化了散射结果,使得固体光散射在测定聚合物的链取向和晶体结构的研究中得到广泛应用[20,21].2光散射原理2.1气体光散射光的本质是电磁波,含有周期变化的电场E. 原子或分子在电场作用下会发生极化,强度与极化率α相关. 原子在周期性变化的电场中会被周期性地极化,从而转变为一个次级光源,向周围发射同频率的电磁波,即散射光(图1).Fig. 1Scattered light generated by a scatterer as it is induced to be an oscillating dipole in the incident beam. θ is the scattering angle, and the inset shows the angular dependence of the scattered light from small particles, such as atoms or molecules. The polarization of incident beam is not considered.单原子产生的散射光强Is由原子的极化率α和入射光波长λ决定. 另外,在空间某点测定的散射光强还与观测点到散射点的距离r有关. 1871年,瑞利推导出如下的散射公式:其中I0为入射光强度. 单个原子、分子和粒子在空气中的散射光强都可以用公式(1)描述. 对于多粒子体系,可表示为体积V中存在N个散射粒子,如果粒子尺寸小(半径小于入射光波长的1/20),且数目较少,粒子之间的散射光不发生干涉,散射光强可表示为:公式(2)表明,散射光强度与波长的4次方成反比,波长短的蓝色光的散射明显强于波长更长的红色光,因此天空在阳光的照耀下显示为蓝色.2.2溶液光散射光散射技术在溶液体系中具有非常广泛的应用. 在稀溶液中,利用静态光散射技术能够测定散射粒子的绝对分子量M、回转半径Rg、第二维里(Virial)系数A2等信息;利用动态光散射技术能够测定散射粒子的流体力学半径Rh及其分布等信息. 光散射技术在亚浓溶液或浓溶液中也发挥了重要作用,但该类体系中的多重散射使得散射理论变得十分复杂. 本文重点介绍稀溶液中的光散射理论,对非稀溶液体系的散射理论只做简要介绍.2.2.1稀溶液中的静态光散射在稀溶液中,根据Clausius-Mossoti公式,可将难以测量的极化率α转化容易测量的折光指数n:其中n0是纯溶剂的折光指数,M为粒子的绝对分子量,NA为阿伏伽德罗(Avogadro)常数,c (=MN/VNA)为质量浓度. 值得一提的是dn/dc, 即溶液折光指数n对溶液质量浓度c的导数,称为折光指数增量,可以用专有仪器测定,或是从相关手册[22]中查到. 当dn/dc = 0时,预示体系中测不到反映溶质结构信息的光散射信号.对于dn/dc ≠0的单组分体系,将公式(3)代入(2)中,可得到瑞利散射公式:其中H称为光学常数,R为瑞利比.忽略由溶剂自身密度涨落引起的散射. 根据涨落理论,散射光强I仅与光学常数H、质量浓度c和渗透压π相关,并遵循如下的关系式:根据van’t Hoff关系式:其中,M为溶液中粒子的绝对分子质量,A2为第二维里系数,用来定量描述溶剂-溶质之间的相互作用. 将公式(6)代入(5)中,可以得到:式(7)中只有2个未知数M和A2. 理论上只要测量2个不同浓度溶液的散射光强I,就可以计算得到粒子的绝对分子量M和第二维里系数A2. 但是,由于每一台光散射仪的探测器面积和探测器到样品的距离都可能不同,激光束的粗细和样品池的大小也可能存在差异,因此对于同一个样品,每台光散射仪得到的信号都可能是不同的. 仪器测得的光强,必须要转化为绝对散射光强,才可以进行下一步的计算. 在实际操作中,常用瑞利比R代替I,并考虑以下这些影响因素:第一步,偏振校正. 取决于样品的性质,散射光的偏振方向会发生变化,且会影响散射光强的大小. 偏振的校正较复杂[23]. 目前绝大多数光散射仪均使用了VV偏振散射设计,即入射光与观测的散射光都是垂直(vertical)偏振的,相应的散射光强标记为Rvv.第二步,散射体积校正. 常见的散射仪器一般用小孔和狭缝来限制检测器接收的散射光. 激光束中被小孔或狭缝截留的光路在空间中所占的体积称为散射体积(图2). 对于同一个体系,散射体积越大,测得的散射光越强. 在激光光束和小孔或狭缝固定的情况下,散射体积与散射角θ (入射光矢量与散射光矢量的夹角)存在sinθ的定量关系. 因此在静态光散射实验中,在θ角测定的散射光强需要进行sinθ的校正.Fig. 2Geometry of a typical laser light scattering setup (top view).第三步,净剩光强校正. 公式(7)中的光强是散射粒子自身的光强,在溶液中又称净剩光强,即溶液的散射光强Isolution减去溶剂的散射光强Isolvent.在实验中,以瑞利比Rvv已知的标准溶剂为参照,在同一台散射仪器上进行样品的测量是最常用的做法. 例如温度为T时,样品在θ角的瑞利比RTθ 通过以下公式得到:其中ITθ、RTθ、nT为样品在温度T下的净剩光强、瑞利比和折光指数,I25θ,standard、R25θ,standard和n25standard分别为标准溶剂在25 oC的散射光强、瑞利比和折光指数,也可以选用其他温度的配套数值. 当样品溶液和标准试剂的折光指数不同时,也需要进行校正. 狭缝和小孔所对应的指数分别为1和2. 甲苯是目前最常用的标准试剂,25 °C和632.8 nm波长下的瑞利比为8.70×10-6 cm-1. 甲苯与苯在不同波长和温度下的瑞利比可以从参考文献中查阅[24,25].将散射光强用瑞利比表示后,公式(7)可改写为:公式(9)适用于描述小粒子(尺寸小于波长的1/20)在溶液中的散射行为. 通常测量多个浓度下的Rvv值,将Hc/Rvv对c作图,从拟合直线的截距和斜率中分别求得M和A2值.当高分子的尺寸较大时,同一高分子内部不同重复单元的散射光会发生干涉现象,从而导致散射光强出现了散射角度的依赖性(图3). 从光强角度依赖性数据可以反推粒子的尺寸和形状. 具体做法是在公式(9)的基础上,引入与散射角度相关的形状因子(form factor)P,其中包含了粒子的尺寸和结构信息.Fig. 3Interference pattern of light scattered from two segments in a large particle or polymer chain. The inset shows the angular dependence of the scattered light.在光散射中,习惯上使用散射矢量q表示散射角. 散射矢量q定义为散射光波矢量与入射光波矢量的差. q与散射角度θ之间的数值关系为[24]:由式(10)可知,散射矢量q的单位为长度的倒数. 在波长和溶液体系固定的前提下,q是由散射角θ决定的变量,此时形状因子可相应地记为P(q). 经P(q)修正后的散射光强公式为[23]:对于小粒子而言,P(q) = 1,与散射角度无关.用回转半径Rg来描述高分子的尺寸,当qRg 1时:将公式(12)代入公式(11)中,并做近似处理,可得到:公式(13)是经典的静态光散射方程. 通过配置若干不同浓度的样品,测定每个样品的散射光强随角度的变化,利用公式(13)就可以得到样品的分子量M,回转半径Rg以及第二维里系数A2. 需要强调的是,对于具有一定多分散度的高分子样品,静态光散射测定的是绝对“重均”分子量和“z均”回转半径. 因此对于关联分子量和回转半径的研究,如确定二者的标度关系,必须采用分布尽可能窄的样品,测得的光散射数据才有分析处理的意义.对于浓度较高或分子量较大的样品,公式(13)有时并不能给出令人满意的结果. 在这种情况下,可以尝试利用改进的公式来进行数据处理:其中k为和第二维里系数相关的常数. 根据公式(14)绘制的图称为Berry Plot,同样可以得到重均分子量和回转半径.当qRg 1时,不同形状粒子的P(q)存在较大差别[23,26].回转半径为Rg的无规高分子线团:半径为R的均匀实心球:半径为R的空心薄球壳:半径为R的薄圆盘:其中J1为一阶贝塞尔函数.长度为L的细圆柱:其中Si(x)为sinus积分函数:通过测定待研究体系的形状因子P(q),并与标准体系进行对比,就能够判断粒子的构象并确定其特征尺寸参数. 当体系浓度足够小,2A2c一项相对于1/MP(q)可以忽略时,公式(11)可转化为:即:在公式(22)中,M/Hc是与散射角θ或散射矢量q无关的量. 因此,测定各个散射角度下的Rvv,用零角度的数值归一化,再对q作图就得到了P(q)曲线. 为了提高用P(q)确定体系构象的准确性,尽量选用窄分布的样品,并在测定时覆盖尽可能宽的散射角度.利用静态光散射来测定共聚物比均聚物要复杂很多. 由公式(4)可知,决定体系散射性能及强度的内在因素是dn/dc. 共聚物等体系包含有2种或2种以上的组分. 当这些组分的(dn/dc)不同时,散射方程将急剧地复杂化. 以AB两嵌段共聚物为例,体系总的(dn/dc)AB = wA(dn/dc)A + wB(dn/dc)B,wA和wB分别为A和B嵌段的质量分数. 按照均聚物的测定方式,利用公式(13)能够得到共聚物的表观分子量Mapp[27]:其中:由公式(23)和(24)可以得到如下结论:(1) Mapp由两嵌段的(dn/dc)决定. 当所选溶剂的(dn/dc)AB接近0时,Mapp趋于无穷大.(2) 公式中有3个独立的未知数Mw,A,Mw,B和wA,因此需要在3种不同折光指数的溶剂中测定样品的Mapp,然后解方程得到两嵌段共聚物的真实分子量Mw [27]. 对大多数嵌段共聚物体系,找到3种可单分散溶解共聚物的溶剂并不容易. 吴奇等人在1994年报道了只用2种溶剂就可利用静态光散射测定共聚物分子量的方法[28],但数据处理稍显繁琐.(3) 当在选用的溶剂中A嵌段的(dn/dc)A= 0时,直接测定的是B嵌段的分子量,反之亦然. 利用这种掩盖法,只需要2种溶剂就能精确测定A嵌段、B嵌段以及共聚物总的分子量.公式(23)还可以改写为:[28]其中P和Q是与嵌段共聚物组分非均匀分布相关的常数.由上式可知,当A和B两嵌段的dn/dc相等或接近时,所测定的表观分子量与真实值一致. 同理,也只有在这种情况下,才能够利用公式(13)来测定共聚物的回转半径Rg. 如果A和B两嵌段的dn/dc相差较大,特别是当(dn/dc)AB接近0时,Hc/Rvv在小角度会出现负斜率,导致外推得到的Rg为负值.利用静态光散射还可以测定粒子的分形维数. 一般来讲,若物体的维数是d,则其质量M和尺寸R应满足如下的标度关系:例如:三维的实心物体,质量M 与 R3成正比,而二维的实心物体,M与R2成正比. 维数d在一定程度上反应了粒子的结构和形状. 而高分子线团、空心粒子或具有不规则形状的物体,其维数通常不是整数. 静态光散射是测定粒子分形维数的有效工具. 对于尺寸为R的粒子,当满足qR 1 (一般大于3)时,绝对散射光强Rvv和散射矢量q之间的标度将满足[23]:Rvv和q的双对数图是一条直线,直线斜率的相反数就是该粒子的分形维数d. 该方法的准确度与q有效的数据范围有关,一般需要跨越数量级. 因此,不是所有体系都适用这种方法. 表1列出了常见拓扑结构的分形维数.2.2.2稀溶液中的动态光散射散射体积一般是固定的,其中往往包含有多个散射粒子. 由于布朗运动,散射体积内粒子的数目和位置都在发生变化,这导致在固定检测位置测定的散射光强会随时间发生涨落. 图4所示是2个高分子相对位置发生改变引起的光强涨落. 看似无规的涨落信号中埋藏了粒子扩散的信息. 挖掘扩散信息的途径是从随时间变化的I ~ t曲线得到光强-光强的时间相关函数.Fig. 4Time dependence of the interference pattern. The inset shows the change of scattered intensity with time at fixed scattering angle.首先介绍相关函数的概念. 在I-t 曲线中,t和t + τ时刻分别对应着光强It和It+τ,τ称为延迟时间. 当τ→0时,总有It = It+τ,而当τ→∞时,It和It+τ则是围绕平均光强It的2个随机值,无任何相关性. 用符号表示对其中的物理量作统计平均. It⋅It+τ是以τ为变量的光强-光强时间相关函数,即It和It+τ乘积的统计平均随延迟时间τ的变化. 当τ=0时,It⋅It+τ有最大值I2t;当τ趋近于∞时,It⋅It+τ有最小值It2:令:g2(τ)称为归一化的光强-光强时间相关函数[29].将动态光散射中的g2(τ)对τ作图,得到如图5中所示的曲线. 如果体系中只包含一种散射体A,则g2(τ)随τ呈现单一的快速衰减,衰减最快处对应的时间τA反映了体系的特征性质.Fig. 5Intensity-intensity correlation function.在现代的光散射仪中,光强的测定和g2(τ)的计算都是由硬件直接完成. 测定光强常用的仪器是雪崩光电二极管探测器(avalanche photodiode detector, APD);从光强到g2(τ)是由相关器来完成的[24].从g2(τ)到粒子扩散的信息,还需要经过以下步骤:第一步,求解电场-电场时间相关函数g1(τ). g2(τ)是光强的相关函数,需要将其转换为电场的相关函数g1(τ),才能和扩散过程直接相关联. 在光的波动理论中,光强是电场的平方. 而g2(τ)和g1(τ)的关系比简单的平方关系要复杂,称为西格特关系式(Siegert relation)[30]:其中β是和测量光路相关的系数. 当检测器前的狭缝或小孔合适,只测到单光斑(speckle)时,β=1.第二步,求解粒子自扩散系数Ds. 这个求解的过程是动态光散射理论的核心. 这里只简单介绍基于van Hove自相关函数Gs(r, τ) 的推导过程. 假定某个粒子在时间t的位置为0, Gs(r, τ)就是在时间t+τ时在位置r处发现该粒子的概率. 由于g1(τ)是随散射矢量q而变化的,可写成g1(q, τ). g1(q, τ)和Gs(r, τ)符合傅里叶变换(Fourier trans-formation)的关系:对于单分散、各向同性粒子的扩散运动(布朗运动或无规行走),Gs(r, τ)仅依赖于距离r = | r |,且符合高斯方程:从Gs(r, τ)的半峰宽可以解出散射粒子的均方位移ΔR(τ)2. 在布朗运动中,ΔR(τ)2与粒子的自扩散系数D0的关系为:求解方程(31)可得:其中Γ=q2D0,称为线宽. 据公式(34),将ln(g1(τ))对τ作图,从直线的斜率直接得到D0.第三步,求解流体力学半径Rh. 利用Stokes-Einstein方程:其中k为玻尔兹曼(Boltzmann)常数(1.38×10-23 J/K),T为绝对温度,η为溶剂黏度,可从扩散系数直接得到流体力学半径. 对于有一定分散度的样品而言,DLS测定的流体力学半径和扩散系数都是z均值.由于粒子各向异性等因素的影响,在不同散射角度测定的扩散系数存在差异,因此在固定角度测定的是表观扩散系数Ds,app. 另外,光散射直接测定的是粒子的互扩散系数(mutual diffusion coefficient),只有在零浓度时才与自扩散系数一致[23,31,32]. 因此,利用动态光散射求算扩散系数的公式包含了散射角度和浓度的依赖性:其中k1和k2是2个常数. k1和样品的分散度以及拓扑形状有关,k2和样品与溶剂的相互作用有关. 公式(36)与静态光散射公式(13)在形式上是类似的. 在实验中,同样需要对不同浓度的样品在不同的散射角进行测量,然后按照公式(36),通过角度和浓度的外推,得到粒子扩散系数D0.以上介绍的是单分散粒子的动态光散射理论. 当样品呈多分散时,扩散系数D0或线宽Γ会出现相应的分布,一般用G(Γ)表示. 由公式(34)可得:g1(τ)是由G(Γ)经拉普拉斯变换得到的,而实际过程中是通过测定g1(τ)来反推样品的分布G(Γ),因此是反拉普拉斯变换. 针对动态光散射实验开发的反拉普拉斯变换的方法有许多,如累积矩(cumulant)法、双指数(double-exponential, DE)法、直方图(histogram)法,离散变换(discrete inversion)法、熵最大化(maximum entropy method, MEM)法、非负值最小二乘法(nonnegatively least squares, NNLS)法、指数抽样(exponential sampling, ES)法和CONTIN法等. 关于各算法的优劣,可参考具体文献[33~36]. 在这些方法中,CONTIN是使用较为广泛且适用大多数多分散体系的算法.2.2.3稀溶液中静态光散射和动态光散射的结合应用不难看出,静态光散射和动态光散射是对同一个样品的浓度系列进行了2种不同方式的测量. 2种测量方式的有机结合,能够得到关于样品更多或更深入的信息.首先,对于单分散样品,比值Rg/Rh反应了粒子的拓扑结构. 表2列出了一些常见粒子的Rg/Rh的理论值.其次,对于双分布或多分布样品,静态光散射只能得到样品Rg和Mw的平均值. 而如果动态光散射能够在不同的散射角对多分布,特别是双分布,进行明确区分,就可以把在该角度的散射总光强按照峰的比例进行分配,从而得到各个组分的光强角度依赖性,再利用静态光散射理论,得到不同组分的Rg和Mw[37~39].最后,结合静态散射理论,能够把动态光散射测到的线宽分布G(Γ)转换为分子量的分布G(M),前提是需要知道样品分子量和扩散系数的标度关系[40~42].2.2.4非稀溶液中的动态光散射非稀溶液体系中的动态光散射研究近年来取得了较多进展,已有不少成功应用的例子,并可以预期它在未来的科研中将发挥更重要的作用. 非稀溶液动态光散射主要面临2个共性问题:多重散射和非遍历(non-ergodicity). 扩散波谱也是一种特别且重要的非稀溶液动态光散射技术. 下面将分别进行介绍.非稀溶液中的多重散射可以通过设计特殊的仪器设备来进行削弱或抑制. 例如:扁平池光散射仪[43]就是采用光程非常小的扁平样品池(厚度可小至10 μm),并辅以相应的散射体积校正,从而大幅减少多重散射,使得测量体系浓度可以比通用光散射仪大1000倍左右.光纤准弹性光散射仪(FOQELS)[11,12]是利用背散射来消除多重散射的影响. 入射光通过光纤导入到待测溶液中,该光纤同时也是信号接收器,接收(180±3)°范围内的散射光,背散射光和主光束用单模光纤定向耦合器进行区分. 浓度高达40 wt%的浑浊乳胶样品中也能利用该仪器进行DLS研究,且无需除尘.利用2束激光进行交叉相关是抑制多重散射的有效方式[14,44]. 双色交叉相关仪采用2束不同波长的激光同时照射样品;3D交叉相关仪则采用2束同波长但分别略高和略低于散射平面的激光同时照射样品. 这2种仪器大致上是利用非相干光的相关性为0,来消除有限次多重散射对相关函数的影响,从而得以对高浓体系进行光散射的测量. 这类仪器的测量角度也是大幅度可变的,在这一点上比FOQELS具有明显的优势. 双色交叉相关仪对光路准直的要求非常高,甚至0.01 oC的温度涨落所导致的光路波动都有可能破坏仪器的准直性. 相对而言,3D交叉相关仪对此的要求低得多.在非稀溶液中,由于粒子运动过慢或粒子过大等因素,导致实际的测量结果不是对样品所有可能状态的综合,这就是非遍历问题. 非遍历测量的直接后果就是数据不具有统计性,导致测得的g2(τ)数据无法解出样品真实的g1(τ).解决非遍历问题的首要思路是如何尽可能多地得到g2(τ)的信息. 可采用的方法包括对同一个体系用不同的方法测得g2(τ),如用CCD面探测器测得多个光斑的变化然后进行互相关,对不同位置的测量结果取平均,或是用串联的双样品池进行目标样品和参考溶液的相关等.如何从g2(τ)中解出接近真实的g1(τ)也是解决非遍历问题的必经步骤. 目前常用的方法是对西格特关系式(公式(30))进行变换,如其中f(g1(τ))是与实验装置相关的函数,具体的装置设计和对应的算法可参考文献[45]. 根据公式(37)可在非遍历条件下求得较准确的g1(τ).扩散波谱是针对极浓溶液的一种特殊的动态光散射方法,基本思路和常规的动态光散射法相同:仪器测定g2(τ),算出g1(τ),通过变换得到扩散系数Ds,从而算出Rh. 所不同的是,从g1(τ)到Ds涉及了特殊的理论,具体的推导过程可参考文献[17,45,46]. 对于单分散样品,g1(τ)和Ds的关系式可表示为:将ln(g1(τ))对τ−−√作图,数据将呈现一条直线,从斜率即可求出Ds. 可以看出,对于极浓溶液,g1(τ)和q或散射角无关,这也是合理的.更重要的是,扩散波谱能够测定介质的储能模量G' 和损耗模量G' ' 的频率依赖性,也就是介质的黏弹性[47~49],这类似于流变仪扫频实验得到的数据. 由Stokes-Einstein方程(公式(35))可知,扩散系数D与ηR的乘积呈反比关系,这3个参数可以知二求一. 对于常规的动态光散射而言,溶剂黏度η已知,可求出Rh. 在极浓溶液中放入给定尺寸Rh的小球,根据小球的D(τ)能够得到η*(ω),即溶液复合黏度随频率的变化曲线. 由该曲线可计算求得G' (ω)和G' ' (ω).2.3固体光散射固体光散射在高分子球晶的研究中发挥了重要作用,可得到球晶分布、取向和尺寸信息. 虽然球晶也可用偏光显微镜(POM)和原子力显微镜(AFM)进行观测,但偏光显微镜有光学分辨极限,对尺寸小于5 μm的球晶几乎无法观测,而原子力显微镜对样品制备有着较为严格的要求,也无法观测固体内部的球晶形态. 因此,在球晶研究方面,固体光散射有着不可替代的优势. 球晶固体光散射的理论比较复杂[19~21], 本节仅简单介绍球晶呈现的四叶草瓣形状的散射图样和球晶尺寸的求算.2.3.1球晶的VH散射四叶草瓣图样光穿过具有取向的结构后,沿非取向方向偏振的光将被抑制或滤去(图6(a)),这也是许多偏振片的工作原理. 常用的VH固体光散射的光路设计是在样品的前后分别放置偏振片,偏振方向相互垂直(图6(b)). 这样的实验设计滤去了偏振不变的散射光,只有改变了偏振方向的那部分散射光才能被检测到. 对于许多结晶高分子而言,球晶的散射信号是唯一偏振有变化的散射信号.Fig. 6Spherulite studied by solid light scattering.球晶内部的取向结构是中心对称的(图6(c)). 经过第一个V偏振片的入射光,在球晶的V方向和H方向上遇到的球晶内部的取向结构均是垂直或平行于V方向的,光将直接通过或是被完全滤去,方向不发生偏转. 因此,在这2个方向上的散射光在第二块H偏振片后面,完全不会被检测到. 而除了V方向和H方向,散射光均和球晶内部的取向结构有一定夹角,光将偏转方向,得以被最终检测到. 因此,散射图样常出现黑十字消光现象(图6(d)),呈现四叶草瓣形状. 消光十字的方向分别平行于2个偏振片的取向方向. 图6(d)还表明散射图样不是连续的,而是由多个分散的斑点所构成,其中每一个亮斑都是之前动态光散射理论中所说的斑点(speckle). 这不是因为检测器的精度不够造成的.2.3.2球晶的尺寸计算球晶属于大粒子,其固体散射也存在形状因子P(θ). 在VH光路下[19],其中:R' 为球晶半径.对于无取向的球晶时,理论和实验均表明,在花瓣散射光强最亮点处,近似有U=4.0[19]. 因此:其中θm即最亮点处的散射角. 公式(42)即广泛使用的无取向球晶的尺寸计算公式. 对于有取向的球晶,最亮点处的U值有时会发生变化. [21]3实验技巧在上面介绍的光散射技术中,稀溶液体系的光散射应用目前最为广泛,所得到的信息也最丰富,但相应的样品制备和实验过程也比较复杂. 本节将简要介绍稀溶液光散射的实验技巧和数据处理方式.3.1样品溶解首先是要选择合适的溶剂来溶解样品. 重点考虑光散射衬度,即(dn/dc)的大小. 若(dn/dc) = 0,将得不到任何散射信号. 在保证溶解性能的前提下,通常选择折射率和溶质差别较大的溶剂. 对于共聚物体系而言,需要根据体系的性质和实验的需求来选择溶剂. 例如:在测定有机共聚物的精确分子量时,则应当选择多种良溶剂或共溶剂进行实验.其次是要选择合适的样品浓度来进行测量. 一方面浓度要足够稀,使得分子间的相互作用可以忽略. 高分子的临界交叠浓度(overlap concen-tration) c*是浓度上限的参考点. 另一方面,浓度越稀,散射信号也越弱,测量将变得困难. 对于未知且不易估算c*的高分子体系,0.1 mg/mL可以作为初始的浓度进行尝试.最后需要溶解样品,形成均一体系. 高分子的溶解过程耗时较长,通常需要2~24 h. 搅拌仅能有限地加速溶解过程. 升温会使得高分子体系氧化,应尽量避免. 超声也是不推荐的.3.2除尘由于散射光强与粒子尺寸的4~6次方成正比,直径在微米级的灰尘粒子会对高分子样品的散射实验造成毁灭性的破坏,因此要尽量避免样品溶液中掺杂有灰尘粒子. 灰尘是极性的. 水溶液体系的除尘往往比有机溶液体系要困难. 除尘操作包括样品瓶除尘和溶液样品除尘.光散射样品瓶的除尘通常采用类似于索式提取的装置,利用蒸发后再冷凝的丙酮间歇性地对倒置样品瓶的内部进行多次冲刷. 除尽灰尘的样品瓶要封口并倒置保存.样品的除尘通常有过滤法和离心法. 过滤法更易操作,需要在空气尽量净化的环境中,使用孔径在样品尺寸之上,且在灰尘粒径之下的滤膜,用注射器将待测样品过滤后注入到除尘后的样品瓶中. 可供选择的商业化滤膜有很多,可选用的孔径在200~600 nm之间. 过滤时滤膜上的压力不宜过大,因此过滤需缓慢进行. 如果所测体系较为复杂,没有合适的滤膜可选,则可考虑离心法.3.3仪器准直仪器的准直性是光散射实验的前提. 溶剂分子(一般选甲苯)的散射光强在校正散射体积后是没有角度依赖性的(图1),可用来验证仪器的准直程度. 对除尘后的甲苯样品进行角度扫描,角度范围一般在20°~150°. 如果每个角度的散射光强都围绕某一平均值波动,且波动不超过2%,则可认为仪器的准直是良好的. 若该条件不满足,则需要对仪器的准直进行校准.3.4实验过程静态光散射实验中散射角度的选择很重要. 原则上,只有在qRg 1的情况下才能用公式(13)准确测定粒子的回转半径. 对于尺寸较大的样品,需要在小的散射角度或q范围内测量多个数据点(减小角度间隔),以保障角度外推的可靠性. 另外,在小角度时,灰尘的影响会变得更加明显,这对样品特别是水溶液中的样品的除尘提出了更高的要求. 大尺寸样品的光强角度依赖性很强,小角度的光强比大角度会高出有4~5个数量级,因此要注意检测器的线性响应范围,必要时可用非偏振类滤光片调节入射光的强度.动态光散射数据的根源是g2(τ). 在样品除尘合格的前提下,选择合适的延迟时间τ范围,并累积足够长的时间是获得可靠g2(τ)的前提.检测器前端的小孔(pinhole)或狭缝是可调的. 对于静态光散射,通常需要选择较大尺寸(如1 μm)以测得具有统计性的散射光强. 对于动态光散射,通常需要选择较小的尺寸(如200 nm),以保证只测到单一光斑,从而使得西格特关系式中的β值趋近于1.对于碳纳米管、石墨烯、金纳米颗粒、荧光分子等具有光吸收能力的样品,静态光散射和动态光散射的校准方式也是不同的. 静态光散射需要通过测定光吸收系数,通过朗伯比尔定律来校正不同角度的净剩散射光强;而动态光散射则需要测定在不同入射光强下的样品扩散系数,通过外推到零入射光强的方式来消除光吸收对扩散的影响. 如果样品的吸光性太强,引入的误差增加,不提倡用光散射进行测量.3.5数据处理绘制Zimm图是静态光散射最常用的数据处理方法. 这是一个初学者经常会出错的处理过程,其中最关键的是各物理量单位的转化. 简单的处理方式是采用非国际单位:q以nm作为长度单位,其他所有物理量的长度单位均转化为cm. 光学常数H和质量浓度的单位则分别为cm2⋅g-2⋅mol和g⋅cm-3. 在绘制Zimm图时,如果数据点偏离了线性,可以从样品是否多分散、是否聚集以及是否满足qRg 1等方面进行分析.尺寸小于激光波长1/20的粒子通常不会出现散射角度的光强依赖性,不需要做角度扫描. 为了尽量降低灰尘对散射实验的影响,一般选择90°进行各浓度溶液的测量,然后直接运用公式(9)计算M和A2.如果实验中只关注回转半径,且要求的准确度不高,可选择一个较低的样品浓度进行角度扫描,不需要dn/dc的测量. 具体处理如下:取x列为散射角度θ,y列为光强值I原始数据,将x列转换为q2,单位为nm-2,将y值转换为(I - Isolvent)⋅sinθ(即只做净剩光强校正与散射体积校正),单位任意;(2)将x和1/y作图,线性拟合,取3倍截取/斜率,并开平方,即得到回转半径Rg,单位为nm.对于多组分体系的动态光散射,尺寸相差2倍以上的粒子才有可能被分辨为2个组分. 如果体系中组分的数量大于3,或得到的Rh分布图的峰数量大于3,则需要对结果的准确性持较谨慎的态度,需要从原理上判断结果是否合理,或通过其他手段适当进行辅证.3.6(dn/dc)测量(dn/dc)通常需要专用的仪器进行测量. 折光指数和原子极化率相关,极大地受原子序数的影响. 相对于C和H元素而言,Na和K等元素的原子序数要大得多,因此溶剂中的微量溶盐将极大地影响(dn/dc)的测量准确性. 为了确保对未知体系的准确测量,最好使用同一批溶剂,分别进行(dn/dc)的测量以及所有的光散射实验.4典型应用光散射技术在高分子表征中的应用非常广泛. 感兴趣的人士可以查阅相关书籍、专著和文献. 从掌握光散射基本理论和实验技巧、了解光散射技术发展趋势的角度出发,结合实验体系的代表性, 我们选取了4个经典的应用案例,来具体说明动、静态光散射的使用技巧,二者相结合的必要性,时间可分辨光散射技术的优势,以及如何开发光散射技术在复杂溶液体系中的应用.4.1动、静态光散射相结合表征溶液中高分子行为动、静态光散射技术相结合能够对溶液中的高分子进行深入、系统的表征. 跟踪高分子链从线团到球的转变(coil-to-globule transition)过程是该技术最典型的应用之一. 在不良溶剂中,高分子链会发生塌陷,同时会伴随着高分子链之间的聚集. 如果观测单个高分子链在不良溶剂中的构象转变,要考虑多方面的因素[50,51],一般采用尽可能高的分子量、尽量窄的分布、并在尽可能稀的溶液中来进行. 一方面可以避免分子链之间的聚集,另外也可以保持较高的净剩散射光强. 吴奇课题组结合分级和过滤得到了分子量极高、多分散度窄的水溶性聚N-异丙基丙烯酰胺(PNIPAM)样品(Mw=1.3×107 g/mol,Mw/Mn 1.05),并配制了10-7 g/mL级别的极稀水溶液,用光散射首次观测到了高分子单链塌缩的构象转变.PNIPAM的低临界溶液温度(lower critical solution temperature,LCST)约为32 °C. 图7对比了6.7×10-7 g/mL PNIPAM在相变前后的动、静态光散射结果. 在35.9 °C时,水是PNIPAM的不良溶剂,Rg从30.1 oC的127 nm减小到17.9 nm,Rh也发生了类似变化. Rg/Rh在2个温度的数值分别为1.5和0.72,表明PNIPAM在30.1 oC时为线团构象,而升温到35.9 °C时则转变为密实球的构象.Fig. 7Typical angular dependence of Hc/Rvv of PNIPAM in water at two different temperatures, where the polymer concentration is 6.7×10-7 g/mL. The inset shows the corresponding hydrodynamic radius distributions f(Rh) of the PNIPAM chains respectively in the coil and the globule states. (Reprinted with permission from Ref.[50] Copyright (1998) American Chemistry Society).在连续的升温和随后的降温过程中,Rg/Rh随温度并不是单调变化的. 如图8(a)所示,在升温过程至30.6 °C之前,Rg/Rh基本保持在1.5左右,表明PNIPAM为无规线团构象;在30.6~31.6 °C 温度区间,Rg/Rh 从1.5快速降低到1.0,此时的链构象可归结为褶皱的线团(crumpled coil);继续升温到32.4 °C时,Rg/Rh骤降到0.56,所对应的是熔融球构象(molten globule),即表面密度低、内部密度高的球体;在随后的升温过程中,Rg/Rh逐渐增加到0.775, 所对应的是常规的球体. 图8(b)对比了不同温度时PNIPAM的链构象示意图及相应的链密度分布. 在随后的降温过程中,Rg/Rh的变化过程出现了明显的滞后,这可能是在球体状态下形成了某种链内结构所造成的.Fig. 8(a) Temperature dependence of Rg/Rh of PNIPAM chains during coil-to-globule (heating) and globule-to-coil (cooling) transitions. (b) Schematically showing the four thermodynamically stable states and their corresponding chain density distributions (W(r)) along the radius during coil-to-globule transitions. (Reprinted with permission from Ref.[50] Copyright (1998) American Chemistry Society).4.2光散射测定超支化分子的标度关系除线性高分子外,光散射在测定具有复杂构型的高分子样品中也具有独到的优势. 以支化高分子为例,李连伟课题组制备得到了支化点间长度等同的“完美”支化高分子,并利用光散射技术确定了支化高分子尺寸和聚合度之前的标度关系[52].对于满足支化随机、支化点间长度等同的单分散高分子样品,其回转半径Rg与支化分子总的单体数Nt以及临界支化点间的单体数Ns之间存在如下的标度关系:其中b是库恩长度. 对于在θ溶剂中ν值的大小,不同理论有着不同的认识. 平均场理论认为 ν=0.25,而Flory理论则预测ν=0.44. 由于理想的支化高分子难以得到,在此之前尚无实验数据进行验证.李连伟课题组合成了不同分子量的支化聚苯乙烯(h-PS),并用静态光散射测定了重均分子量. 对于高分子量样品,qRg 1,采用Berry plot(参见公式(14))进行数据处理. 低温下,环戊烷是h-PS的不良溶剂,而高温下是良溶剂. 通过测量多个温度下体系的第二维里系数A2,找到其由正值转变为负值的临界点,即可得到θ温度,其值为304~307 K.通过对静态光散射数据进行处理得到了形状因子Rvv(q)/Rvv(0) (图9(a)). 线性拟合qRg 3的数据,利用公式(27)得到支化分子的分形维数为2.4,并进一步求得ν约为0.42. 另外,ν值还可以从支化样品的Rg~Mw 的双对数关系中直接得到. 如图9(b)所示,h-PS在环戊烷溶剂中302.1 K的ν约为0.47. 2种方法得到的结果是吻合的,均支持Flory理论的预测.Fig. 9(a) qRg dependence of the normalized excess Rayleigh ratio [RVV(q)/RVV (q=0)] for h-PS and (b) weight-average molar mass (Mw) dependence of chain size (R) for different h-PS in cyclopentane at 302.1 K (Reprinted with permission from Ref.‍[52] Copyright (2020) American Chemistry Society).4.3用时间分辨光散射表征体系的动态变化前文中介绍的光散射理论都是针对平衡态体系的. 如果体系发生变化所需的时间远超过光散射的采样时间,就能够在保证准确度的情况下,利用光散射技术原位、在线跟踪聚合、组装、解离、降解等过程,获得分子量、尺寸等随时间变化的信息,并以此来剖析机理,也就是常说的时间分辨的光散射技术. 这里以聚合诱导的胶束化过程为例来说明该技术的特点和优势[53]. 类似的经典案例还有利用GPC-LLS联用技术监测高分子的降解过程[54],监测支化高分子的聚集与解散[55],以及监测噬菌体喷射DNA的过程[56]等.氯仿是聚氧乙烯(PEO)的良溶剂, 苯乙烯(S)和马来酸酐(MAn)交替共聚物的不良溶剂. 运用可逆加成断裂转移(RAFT)活性聚合技术,让含有PEO(聚合度114)的大分子链转移剂在氯仿中进行苯乙烯和马来酸酐的交替共聚,生成PEO-b-P(S-alt-MAn). 当P(S-alt-MAn)的聚合度达到某临界值时,就会发生胶束化. 取决于浓度、温度、链长等因素,该过程的时间跨度可达10 h,因此适合用时间可分辨的光散射技术进行表征.聚合反应的各种试剂和溶剂经滤除尘后,收集于无尘的光散射样品瓶中,并用高纯氮吹扫5 min以除去体系中的氧气. 把样品瓶放入恒温(55±0.01) °C散射仪中,计时开始,交替进行SLS和DLS测量. 取决于散射光强,DLS的采样时间从10 s到2 min不等. 图10 是PEO引发剂为1.38 mg/mL时,Rh分布随时间的变化情况. 在229 min时,体系中除了聚合物单分子外(Rh为2~3 nm),还出现Rh约100 nm聚集体(图10(A)),但散射光强弱,证明此类聚集体比较松散. 随时间推移,单分子含量减少,聚集体含量增加,尺寸分布也变窄(图10(B)). 在373 min时,体系中出现了Rh约20 nm的另外一种聚集体(图10(C)),并伴随着大分子单体和100 nm聚集体含量的减少(图10(D)),此时散射光强开始急剧增加,说明新聚集体的链密度较高. 最终体系中仅存在尺寸为20 nm的聚集体,即大分子胶束.Fig. 10Distribution of hydrodynamic radius during polymerization at different time at 30°. The concentration of PEO macro-CTA is 1.38 mg/mL. (Reprinted with permission from Ref.[53] Copyright (2008) American Chemistry Society).由于在373 min之前体系中存在多分布,用静态光散射测定分子量和Rg没有实际意义. 当体系中只存在20 nm的聚集体时,就可以用静态光散射测定Rg,并结合动态光散射的结果,对粒子构象进行分析. 由于光强随时间在发生变化,而Rg的测定需要同一时间的光强角度依赖性数据. 可行的做法是依次测量30°、45°、60°、75°、90°这5个角度下光强数据,并记录时间,直至反应结束. 这样就得到了5条不同角度的散射光强随时间的变化曲线. 使用MATLAB中的cubic spline平滑拟合并插值,可得到任意时间下的光强角度依赖性数据,从而分析得到Rg和分子量. 尽管胶束化过程与浓度相关,无法进行浓度外推,但从严格意义上来讲,这种单一浓度测定的胶束尺寸仍然是表观数据. 如图11所示,随着聚合反应的进行,Rh,app从380 min的23 nm单调增加至840 min的40 nm;而Rg,app在500 min之前快速减小,从53 nm减至20 nm,后基本保持不变. Rg,app/Rh,app则从~1.8降低至~0.5,说明了该聚集体的构象从松散的聚集体向密实球转变. 由于最终聚集体的核是P(S-alt-Man)形成的密实球,而外围的PEO链仍然处在良溶剂中,为线团构象,因此Rg,app/Rh,app可低至0.5左右,类似熔融球构象. 这些结果表明,当P(S-alt-MAn)的聚合度到达临界聚集值时,嵌段共聚物并不是一步组装成胶束结构,而是首先形成具有松散结构的聚集体,继而发育成胶束结构.Fig. 11Time dependence of Rg,app and Rh,app in the polymerization-induced self-assembly process. The inset shows the changes in Rg,app/Rh,app. The concentration of PEO macro-CTA is 1.38 mg/mL. (Reprinted with permission from Ref.‍[53] Copyright (2008) American Chemistry Society).4.4去偏振光散射表征生理介质中的纳米粒子随着现代生物医学技术的发展,纳米粒子在药物缓释、基因传递、生物传感和成像等领域得到了长足发展. 纳米粒子与生物介质的相互作用决定了纳米粒子的细胞中的归宿,包括吸附、分布、代谢和清除,因此原位、无扰跟踪纳米粒子在生物介质中的动态过程就显得尤为重要. 荧光标记是目前最常用的方法,但荧光基团毫无疑问会改变纳米粒子的表面性质.原位、无扰对体系进行检测是光散射技术的优势. 由于生物介质中高含量的蛋白质等物质会严重干扰纳米粒子的散射光,这使得常规的偏振光散射(VV)并不适于复杂生物体系的研究(图12(a)). 但由于多晶结构的存在,无机纳米粒子不会是完美的球形,总会存在非均质的内部结构,从而能够改变偏振光的方向. 因此采用去偏振动态光散射(depolarized DLS,DDLS),即入射光为V方向偏振,但收集H方向偏振的散射光,就能够有效滤除生物介质产生的背景散射光(图12(b))[57].Fig. 12Depiction of nanoparticles and the bio-matrix background as seen in standard polarized (a) and depolarized (b) dynamic light scattering experiments, respectively. (Reprinted with permission from Ref.[57] Copyright (2015) The Royal Society of Chemistry).Balog团队利用DDLS技术对比研究了柠檬酸稳定的金纳米颗粒以及不同端基聚乙二醇链包覆的金纳米颗粒在四种不同的生物介质(磷酸盐缓冲液PBS、牛血清白蛋白的PBS溶液、培养基DMEM以及添加了牛血清蛋白的DMEM)中的动态行为. 所使用的仪器是商业化的3D光散射仪. 激光光源为21 mW,632.8 nm的氦氖激光器,散射光信号由装有集成准直光学元件的单模光纤收集,并传递至2个高灵敏度的APD探测器进行分析. 结果表明,DDLS有效地屏蔽了背景散射光,从而能够跟踪金纳米颗粒在不同介质中的聚集过程. 如图13所示,金纳米颗粒形成的聚集体尺寸及其分布既与颗粒表面的涂层有关,更受介质组分的影响. 所得结果得与扫描电镜的结果一致,证明了DDLS原位、无扰跟踪研究复杂体系动力学过程的可靠性.Fig. 13Time-resolved DDLS study started promptly after incubating the Au NPs in the biological media. The dashed lines correspond to the Au NPs in PBS buffer. (Reprinted with permission from Ref.[57] Copyright (2015) The Royal Society of Chemistry).5结语与展望本文介绍了分别对应高分子稀溶液、浓溶液和固体的光散射技术. 其中针对高分子稀溶液的动、静态光散射技术和针对高分子球晶的固体散射技术都是比较成熟的手段,在高分子体系的研究中发挥着不可替代的作用. 光散射技术最显著的优势是能够对体系实现原位、无扰的表征. 伴随着生物医学、活性软物质等领域的发展,针对复杂体系的光散射技术将具有更广阔的应用前景.致谢感谢赛普瑞生的牛爱珍博士和布鲁克海文的王继军工程师提供商业化仪器的相关资料.参考文献1Rayleigh L. Phil Mag, 1871, 41: 107-1202Rayleigh L. Phil Mag, 1899, 47:566-572. doi:10.1080/147864499086212983Debye P. Ann Phys, 1915, 351: 809-823. doi:10.1002/andp.191535106064Gans R. Ann Phys, 1925, 381: 29-38. doi:10.1002/andp.192538101035Einstein A. Ann Phys, 1910, 338: 1275-1298. doi:10.1002/andp.191033816126Berne B J, Pecora R. Dynamic Light Scattering. With Applications to Chemistrys, Biology, and Physics. New York: Dover Publications, Inc., 2000. 57Pecora R. J Chem Phys, 1964, 40: 1604-1614. doi:10.1063/1.17253688MegenVan, Pusey P N. Phys Rev A, 1991, 43: 5429-5441. doi:10.1103/physreva.43.54299Urban C, Schurtenberger P. J Colloid Interface Sci, 1998, 207: 150-158. doi:10.1006/jcis.1998.576910Lehner D, Kellner G, Schnablegger H, Glatter O. J Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.532711Lilge D, Horn D. Colloid Polym Sci, 1991, 269: 704-712. doi:10.1007/bf0065740812Wiese H, Horn D. J Chem Phys, 1991, 84: 6429-6443. doi:10.1063/1.46027213Phillies G D J. J Chem Phys, 1981, 74: 260-262. doi:10.1063/1.44088414Pusey P N. Curr Opin Colloid Interface Sci, 1999, 4: 177-185. doi:10.1016/s1359-0294(99)00036-915Meyer W, Cannell D, Smart A, Taylor T, Tin P. Appl Opt, 1997, 36: 7551-7558. doi:10.1364/ao.36.00755116Zakharov P, Bhat S, Schurtenberger P, Scheffold F. Appl Opt, 2006, 45: 1756-1764. doi:10.1364/ao.45.00175617Maret G, Wolf P E Z. Phys B, 1987, 65: 409-413. doi:10.1007/bf0130376218Brillouin L. Ann Phys, 1922, 17: 88-122. doi:10.1051/anphys/19220917008819Stein R S, Rhodes M B. J Appl Phys, 1960, 31: 1873-1884. doi:10.1063/1.173546820Stein R S, Chu W. J Polym Sci, Part A: Polym Chem, 1970, 8: 1137-1157. doi:10.1002/pol.1970.16008070921Van Aartsen J J, Stein R S. J Polym Sci, Part B: Polym Phys, 1971, 9: 295-311. doi:10.1002/pol.1971.16009020622Huglin M B. Light Scattering from Polymer Solutions. London: Academic Press, 1972. 204-28923Wolfgang S. Light Scattering from Polymer Solutions and Nanoparticle Dispersions Series. Translated by Zheng Cui, Liang Dehai. Beijing: China Machine Press, 2012. 1-2524Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 19. doi:10.1016/b978-0-12-174551-6.50005-725Hua W. Chem Phys, 2010, 367: 44-47. doi:10.1016/j.chemphys.2009.10.01926Zhao Zeqing(赵择卿), Lu Danian(陆大年), Yang Dingchao(杨定超). Light Scattering Technology(光散射技术). Beijing(北京): China Textile&Appare lPress(纺织工业出版社), 1989. 28-3027Bushuk W, Benoit H. Can J Chem, 1958, 36: 1616-1626. doi:10.1139/v58-23528Wu C, Fai K, Luo W, Zhu X, Ma D. Macromolecules, 1994, 27: 6055-6060. doi:10.1021/ma00099a01829Teraoka I. Polymer Solutions: An Indroduction to Physical Properties. New York: John Wiley&Sons, Inc. 2002. 168-171. doi:10.1002/047144026430Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 84. doi:10.1016/b978-0-12-174551-6.50005-731Kanematsu T, Sato T, Imai Y, Ute K, Kitayama T. Polym J, 2005, 37: 65-73. doi:10.1295/polymj.37.6532Delaye M, Gromi Ec A. Biopolymers, 1983, 22: 1203-1221. doi:10.1002/bip.36022041333Vanhoudt J, Clauwaert J. Langmuir, 1999, 15: 44-57. doi:10.1021/la980747r34Gulari Esin, Gulari Erdogan, Tsunashima Y, Chu B. J Chem Phys, 1979, 70: 3965-3965. doi:10.1063/1.43795035Kim S H, Ramsay D J, Patterson G D, Selser J C. J Polym Sci, Part B: Polym Phys, 1990, 28: 2023-2056. doi:10.1002/polb.1990.09028111136Benmouna M, Vilgis T A, Hakem F. Macromolecules, 1992, 25: 1144-1152. doi:10.1021/ma00029a02237Buhler E, Rinaudo M. Macromolecules, 2000, 33: 2098-2106. doi:10.1021/ma991309+38Litmanovich E A, Ivleva E. M Polym Sci, 2010, 52: 671-678. doi:10.1134/s0965545x1006014339Corrotto J, Ortega F, Vázquez M, Freire J J. Macromolecules, 1996, 29: 5948-5954. doi:10.1021/ma950739740Murphy R M, Yarmush M L, Colton C K. Biopolymers, 2010, 31: 1289-129541Casassa Edward F. Polym J, 1972, 3: 517-525. doi:10.1295/polymj.3.51742Chi W. Polym Adv Technol, 2015, 8: 177-18343Lehner D, Kellner G, Schnablegger H, Glatter O J. Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.532744Stieber F, Richtering W. Langmuir, 1995, 11: 4724-4727. doi:10.1021/la00012a02445Zakharov P, Scheffold F. Light Scattering Reviews 4. Bremen: Berlin Heidelberg: Springer-Verlag, 2009. 433-467. doi:10.1007/978-3-540-74276-0_846Pine D J, Weitz D A, Chaikin P M, Herbolzheimer E. Phys Rev Lett, 1988, 60: 1134-1137. doi:10.1103/physrevlett.60.113447Mason T G, Gang H, Weitz D A. J Opt Soc Am A, 1997, 14: 139-149. doi:10.1364/josaa.14.00013948Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N. Am Inst Phys, 2008,1027: 1150-1152. doi:10.1021/la802323x49Morse D C. Macromolecules, 1998, 31: 7044-7067. doi:10.1021/ma980304u50Wang X, Qiu A X, Wu C. Macromolecules, 1998, 31: 2972-2976. doi:10.1021/ma971873p51Wu C, Zhou S. Macromolecules, 1995, 28: 8381-8387. doi:10.1021/ma00128a05652Zhu M, Yang J, Li L, Duan X, Li L. Macromolecules, 2020, 53: 7980-7987. doi:10.1021/acs.macromol.0c0140753Ji W, Yan J, Chen E, Li Z, Liang D. Macromolecules, 2008, 41: 4914-4919. doi:10.1021/ma800531254Yang J, Li Y, Hao N, Umair A, Liu A, Li L, Ye X. Macromolecules, 2019, 52: 1173-1187. doi:10.1021/acs.macromol.8b0178455Hao N, Duan X, Yang H, Umair A, Zhu M, Zaheer M, Yang J, Li L. Macromolecules, 2019, 52: 1065-1082. doi:10.1021/acs.macromol.8b0236456Löf D, Schillén K, Jönsson B, Evilevitch A. Phys Rev E, 2007, 76: 011914. doi:10.1103/physreve.76.01191457Balog S, Rodriguez-Lorenzo L, Monnier C A, Obiols-Rabasa M, Rothen-Rutishauser B, Schurtenberger P, Petri-Fink A. Nanoscale, 2015, 7: 5991-5997. doi:10.1039/c4nr06538g原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21184&lang=zhDOI:10.11777/j.issn1000-3304.2021.21184《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 高分子领域盛会!先进高分子材料(2022)主题网络研讨会全日程公布!
    高分子材料也称为聚合物材料,可分为塑料、橡胶、纤维、胶粘剂、涂料和高分子基复合材料等。仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。主办单位:仪器信息网&《高分子学报》会议报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/ 主题专场专场主题专场时间专场一:高分子材料研究11月10日上午专场二:大科学装置在高分子研究中的应用11月10日下午专场三:高分子表征测试技术(上)11月11日上午专场四:高分子表征测试技术(下)11月11日下午会议日程报告时间报告题目报告嘉宾工作单位职务/职称高分子材料研究(11月10日上午)09:00--09:30靶向肿瘤细胞膜上磷脂酰丝氨酸的抗肿瘤药物尤业字中国科学技术大学教授09:30--10:00多粒子示踪微流变仪观测凝胶化点近旁的动态不均匀性童真华南理工大学教授10:00--10:30高分子熔体非线性拉伸流变学进展陈全中国科学院长春应用化学研究所研究员10:30--11:00借助色谱质谱探寻聚合物分子构型和问题溯源 李欣蔚沃特世科技(上海)有限公司材料科学市场高级应用工程师11:00--11:30高分子材料的全生命周期降解行为及时空谱杨睿清华大学教授11:30-12:00类嵌段/接枝高分子的构筑及其对不相容共混物的增容研究李勇进杭州师范大学教授大科学装置在高分子研究中的应用(11月10日下午)14:00--14:30同步辐射先进光源——高分子产业创新的加速器李良彬中国科学技术大学教授14:30--15:00XPS表面分析技术在先进高分子材料中的应用 蔡斯琪岛津企业管理(中国)有限公司产品专员15:00--15:30中国散裂中子源微小角中子散射谱仪及其在高分子构象研究中的应用程贺散裂中子源科学中心研究员15:30--16:00同步辐射散射技术在高分子薄膜表征中的应用刘烽上海交通大学研究员高分子表征测试技术(上)(11月11日上午)09:00--09:30Flash DSC表征高分子薄膜材料热导率胡文兵南京大学教授09:30--10:00透射电镜在聚合物不同层次结构研究中的应用闫寿科青岛科技大学教授10:00--10:30聚合物链的单分子操纵-从纳米力学性质到动态结构演变张文科吉林大学教授10:30--11:00赛默飞Orbitrap静电场轨道阱超高分辨质谱在材料分析中的应用邝江濛赛默飞世尔科技(中国)有限公司高级应用工程师11:00-11:30热塑性聚氨酯的快速扫描芯片量热仪研究门永锋中国科学院长春应用化学研究所研究员11:30-12:00热重分析技术在高分子科学中应用的常见问题分析丁延伟中国科学技术大学教授级高级工程师高分子表征测试技术(下)(11月11日下午)14:00--14:30原位核磁共振研究单体和高分子反应动力学和机理郭鸣明西南大学教授14:30--15:00运用先进光学方法研究高分子环带球晶的形成机理徐军清华大学副系主任/副教授15:00--15:30光散射在高分子溶液表征中的应用梁德海北京大学教授15:30--16:00原子力显微镜研究高分子超薄膜结晶张彬郑州大学教授注:会议日程后续变动与调整以会议报名页面显示为准。会议报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/或扫描上方二维码报名会议联系1.会议内容管编辑:17862992005,guancg@instrument.com.cn2.会议赞助刘经理:15718850776,liuyw@instrument.com.cn
  • 直播预告!先进高分子材料主题网络会议之高分子材料研究专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。高分子材料研究专场报告嘉宾简介:中国科学技术大学教授 尤业字尤业字,中国科学技术大学化学与材料科学教授,博士生导师。1996年本科毕业于合肥工业大学化学工程学院,2000年获中国科学技术大学硕士学位, 2003年获得年中国科学技术大学博士学位,并获中科院院长奖学金。随后,2003年在日本东京工业大学资源化学研究所做访问研究员,2005年到美国美国韦恩州立大学药学院进行博士后研究。2007年12月回到中国科学技术大学高分子科学与工程系,任副教授;2012.12至今 中国科学技术大学高分子科学与工程系教授、博士生导师;2017.12合肥微尺度物质科学国家研究中心研究员。2007以来,主持或参与科技部重点研发、基金委重点项目、面上项目等。多年来一直从事高分子纳米材料在基因传递和癌症治疗领域的研究,在Nat Metab, Nat Commun, Adv Mater, JACS, Angew Chem, ACS Nano等国际学术期刊发表研究论文150余篇。2011获教育部新世纪优秀人才,2016年获得国家自然基金委杰出青年科学基金资助。大部分癌症患者死于化疗药物的耐药或者肿瘤转移,因此合成耐药倾向低且抑制肿瘤转移的药物是当前癌症治疗的关键。构建了对肿瘤细胞膜表面特有的磷脂酰丝氨酸有高度特异性结合作用的两亲性有机金属配合物的多功能纳米材料,能实现对癌细胞的精准靶向,在肿瘤组织的高效富集,高效抗肿瘤和肿瘤转移。报告题目:靶向肿瘤细胞膜上磷脂酰丝氨酸的抗肿瘤药物华南理工大学教授 童真童真,华南理工大学教授、博士生导师。研究方向为高分子材料结构与性能、功能高分子材料,近期主要从事聚电解质相互作用转变与凝聚态变化、超拉伸环境响应纳米复合水凝胶、高分子物理凝胶化及其微观结构的形成与演化等方面的研究工作,先后主持过国家和省部级项目32项,包括国家杰出青年科学基金、国家自然基金重点项目、国家重大科研仪器研制项目等。曾在J. Am. Chem. Soc.、Adv. Func. Mater.、Macromolecules等刊物发表学术论文308篇,被引用约10000次;获授权中国发明专利33件。曾获广东省自然科学一等奖和二等奖各1项,2000年获教育部“长江学者特聘教授”。搭建了多粒子示踪微流变平台,在凝胶化的高分子流体中加入微米直径的探针粒子,记录这些粒子在不同空间位置和不同时间热运动的轨迹,得到了体系在凝胶化点近旁的微观动态特性。对于6 wt%明胶溶液的凝胶化,记录不同时间探针粒子的均方位移(MSD),系综平均得到探针粒子位移的分布密度在凝胶化点偏离Gauss分布,而单粒子轨迹的非高斯参数(kurtosis)表明凝胶化点近旁单粒子位移符合Gauss分布。系综非高斯性是由扩散系数的分岔引起的,探针的非高斯动力学与介质的非高斯动力学并非直接等效,受到观测长度与体系相关长度耦合的影响。报告题目:多粒子示踪微流变仪观测凝胶化点近旁的动态不均匀性 中国科学院长春应用化学研究所研究员 陈全高分子的链结构和各种拓扑结构赋予其不同于小分子体系的熔体加工行为。在纺丝、吹膜和拉伸等加工过程中,拉伸流场是占主导的流场,因此研究拉伸流场下高分子熔体的链取向拉伸等行为和相应的非线性流变响应对于高分子加工具有重要的指导意义。本报告将聚焦高分子熔体特别是可逆凝胶体系的拉伸流变学研究的最新进展。报告题目:高分子熔体非线性拉伸流变学进展 沃特世科技(上海)有限公司材料科学市场高级应用工程师 李欣蔚李欣蔚,2011年加入Waters,有十几年的色谱、质谱行业经验,负责相关领域的色谱、质谱应用方案支持,帮助客户实现检测效率最大化;对接最新国际材料领域检测方案、推进全国化工行业高端客户合作、熟知细分行业材料分析思路;推动开发应对产业难题的解决方案,基于不同材料类型、不同应用领域、不同产业链需求制定定制化方案指导。聚合物科学取得的进展正迅速将应用扩展到生活的方方面面:努力开发可持续的聚合物材料,希望能减少污染和石油的使用;轻量、高强度材料的开发;以及各种先进材料改性研究,获取更优异性能。但聚合物包括从线性聚合物到三维立体结构的多种分子构型。由于这种分子复杂性,需要色谱和质谱来把控一级结构、混合物、同分异构体和分子结构。在本报告中将分享大量聚合物开发各个阶段的分析案例,为进一步构效关系研究给与更多的支持。报告题目:借助色谱质谱探寻聚合物分子构型和问题溯源 清华大学教授 杨睿杨睿,清华大学化学工程系教授,博士生导师。现任中国机械工程学会理事、高分子材料专委会秘书长;中国材料研究学会高分子材料与工程分会副秘书长;中国化工学会工程热化学专业委员会专家委员。担任老化领域国际权威期刊Polymer Degradation and Stability和Polymer Testing、Journal of Vinyl and Additive Technology、BMC Chemistry、《功能高分子学报》、《机械工程材料》和《塑料工业》等期刊编委。担任173计划重点项目技术首席专家。发表论文100余篇,授权专利19项。主编教材《聚合物近代仪器分析》及 Analytical Methods for Polymer Characterization,参编教材Polymer Science and Nanotechnology。获教育部自然科学二等奖和北京市科技进步二等奖各 1 项。高分子材料的使用寿命需和使用要求及使用条件相适应。在储存期和使用期,希望材料尽可能保持其使用性能;在废弃期,则希望材料尽快降解。同一种材料在不同地区和不同的气候条件下使用,其使用寿命也不同。报告以PBAT和PP为例,介绍高分子材料的全生命周期和在不同时空下的降解行为,以期对材料的研发和应用起到指导作用。报告题目:高分子材料的全生命周期降解行为及时空谱 杭州师范大学教授 李勇进李勇进,杭州师范大学材料与化学化工学院教授、博导。主要研究领域为多相多组分高分子材料界面调控、高分子材料反应性加工、高分子材料凝聚态物理及流变学等。已完成和承担国家重大研发计划课题、国家基金委重大项目课题以及国家自然科学基金区创联合重点项目等多个重要纵向研究课题。在Macromolecules, Polymer, ACS Macro Lett等国内外重要学术期刊上发表论文160余篇, SCI引用6300余次;获得授权的美国专利4项、日本专利22项、中国国家发明专利42项;编写英文专著6篇章。2010年5月获得第18届日本筑波化学生物奖, 2017年获得高分子加工“新锐创新奖”,2018年、2020年和2021年三次获得冯新德高分子奖提名奖,2019年获得国际高分子加工学会(PPS) Morand Lambla奖,2020年获得浙江省自然科学二等奖(排名第一)。目前担任Journal of Polymer Engineering 副主编,Composite Science and Technology, Functional Composite Materials等国际重要学术期刊编委。是浙江省塑料工程协会副理事长、中国力学学会流变学分会委员、中国复合材料学会纳米复合材料分会常务理事、中国化学会应用化学学科委员会委员。高分子材料的界面增强和调控是多相多组分高分子材料研究的核心科学问题。到目前为止,不相容共混物界面增容研究以共价键连接形成的增容剂分子为主要途径,增容体系的可设计性和普适性受限。本文基于聚乳酸立构复合作用探索建立界面“非共价增容”新模式。首先通过反应性加工技术,分别制备左旋聚乳酸(PLLA)接枝的聚甲基丙烯酸甲酯(PMMA)与右旋聚乳酸(PDLA)接枝的共聚物聚苯乙烯(PS),基于PLLA与PDLA间强相互作用,通过熔融加工一步构筑“类嵌段/接枝共聚物”;进一步研究“类嵌段/接枝共聚物”对不相容共混物(PS/PMMA)的增容影响。论文结果有助于建立多相多组分高分子“非共价增容”基本模型,有望为共混材料结构设计和界面调控提供新途径。报告题目:类嵌段/接枝高分子的构筑及其对不相容共混物的增容研究会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • 安东帕流变仪、折光仪亮相高分子学术论文报告会
    2013年10月13日至15日,安东帕公司将携旗下流变、光学、黏度、微波等产品线参加于上海世博中心举办的全国高分子学术论文报告会。该报告会由国家自然科学基金委员会支持,中国化学会高分子学科委员会主办,是中国高分子材料界地位最高的学术会议,也是我国高分子材料届学者、科研人员和企业研发人员两年一度的融学科未来展望、学术交流、科研成果发布、产学研用相结合的盛大聚会。 对高分子材料的深入研究也离不开流变测量技术的不断革新和拓展。作为流变测量技术的全球领先者,安东帕拥有80多年的精密机械和电子制造领域的历史和传统,也是当前市场上唯一一家由自己工厂生产流变仪的供应商。目前,安东帕已成为欧洲市场第一品牌,其流变仪产品的年销售量已位居全球第一。安东帕的Phycica旋转流变仪早在2006年就独家获得为美国国家标准技术协会提供整套非牛顿高分子材料流体的流变学测试方案,为美国国家标准技术协会的标准物质SRM2490进行认证,认证平台基于安东帕的Phycica旋转流变仪。 展会期间,安东帕还将集中展出微波消解仪、落球黏度计、全自动折光仪等诸多在业内享有盛誉的产品,并为您展示并提供应用于高分子科学与材料领域前期研发、生产过程、品质管理的一系列测量/检测解决方案。届时我们的产品专家将在现场为您提供全面的产品和技术支持,安东帕展位号:No. 58,诚邀您光临我们展台! 单模微波合成 Monowave 300Monowave 300是一款专门针对研发实验室中小型微波合成应用而设计的高性能微波反应器。现今,微波辐射不仅成功地部署用于有机合成领域,在无机合成、材料科学、高分子化学和其他学科中也可以成功实施该项技术。如果配合使用 MAS 24 自动取样器选件,还可以在无人值守的情况下连续处理 24 个实验。 Abbemat系列折光仪Abbemat系列折光仪测量准确度高,仪器性价比好。凭借其内置的测定方法和优化的设计,Abbemat几乎覆盖了所有行业,是一款真正的万能折光仪。无需专用的行业解决方案。Abbemat应用于制药,香精香料,化学品以及饮料、食品等行业,快速精确的测量样品的折光率或浓度。Abbemat折光仪可实现快速无损的折光率测量。折光仪出厂时均已遵照德国国家计量研究院(PTB,德国联邦物理技术研究院)的标准物质执行校准。折光率测量精度达到 ± 0.0001 nD。 Lovis 2000 M/MELovis 2000 M/ME 是根据霍普勒落球原理而设计用于测量滚球在透明和混浊液体中的滚动时间的滚球黏度计。测量只需 100 µ L 的样品。测量结果以相对黏度、运动黏度或动态黏度表示。Lovis 2000 M/ME 结构小巧,经济实用,可以大大节省实验室的空间。Lovis 2000 M/ME 微量黏度计是安东帕 AMVn 自动化微量黏度计的接替者。 更多产品信息,请登录:www.anton-paar.com 流变学测量流变学测量是观察高分子材料内部结构的窗口,通过高分子材料,诸如塑料、橡胶、树脂中不同尺度分子链的响应,可以表征高分子材料的分子量和分子量分布,能快速、简便、有效地进行原材料、中间产品和最终产品的质量检测和质量控制。流变测量在高聚物的分子量、分子量分布、支化度与加工性能之间构架了一座桥梁,所以它提供了一种直接的联系,帮助用户进行原料检验、加工工艺设计和预测产品性能。 关于安东帕(中国)奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p  曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。br//pp  作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。/pp  其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增!/pp  作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。/pp  其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。/pp  高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。/pp  为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 150px height: 206px " src="https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title="微信图片_20200331114509.jpg" alt="微信图片_20200331114509.jpg" width="150" height="206" border="0" vspace="0"//pp style="text-align: center "strong报告人:中科院物理所 刘玉龙研究员/strong/pp style="text-align: center "strong报告题目:拉曼散射原理与光谱分析应用/strong/pp  在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title="微信图片_20200331114518.png" alt="微信图片_20200331114518.png"//pp style="text-align: center "strong报告人:德国耶拿公司的拉曼产品经理王兰芬博士/strong/pp style="text-align: center "strong报告题目:在线拉曼光谱在高分子化学化工中的应用/strong/pp  王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。/p
  • 全日程公布!高分子材料表征技术主题网络研讨会将于8月1-2日举办
    仪器信息网讯 高分子材料也称为聚合物材料,可分为塑料、橡胶、纤维、胶粘剂、涂料和高分子基复合材料等。仪器信息网将于2023年8月1-2日举办“高分子材料表征技术”主题网络研讨会(2023),本届会议报告将聚焦于高分子材料研究与表征测试技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台。一、组织单位主办单位:仪器信息网支持单位:北京化工大学新材料校友会二、会议时间2023年8月1-2日三、会议日程及报告嘉宾:会议日程报告时间报告题目报告嘉宾8月1日上午 高分子材料研究(上)09:30--10:00胶体分子功能材料与器件复旦大学教授 聂志鸿10:00--10:30全柔性偶氮苯液晶弹性体紫外光探测材料与应用研究北京航空航天大学教授/系主任 陈爱华10:30--11:00新型聚合物质谱分析软件和表征手段的应用沃特世科技(上海)有限公司材料科学市场部高级应用工程师 李欣蔚11:00--11:30高分子过冷液体的热力学-动力学关系中国科学院长春应用化学研究所研究员 徐文生11:30--12:00光诱导活性聚合体系的构建及其在活性3D打印中的应用苏州大学教授 朱健8月1日下午 高分子材料研究(下)14:00--14:30可多次回收的热固性弹性高分子北京化工大学教授 曹鹏飞14:30--15:00基于分子滑轮的柔性材料南京大学副教授 张秋红15:00--15:30丝纳米材料上海科技大学PI/研究员 凌盛杰15:30--16:00复合质子交换膜的研发策略华南理工大学教授 殷盼超16:00--16:30塑料的增韧及增强改性原理及技术北京化工大学教授 汪晓东8月2日上午 高分子表征技术(上)09:30--10:00聚合物材料老化早期荧光检测及其服役寿命预测北京化工大学教授/博导 吕超10:00--10:30聚合物复合材料微观结构与性能的原子力显微镜研究北京化工大学教授 王东10:30--11:00水相体积排除色谱表征聚合物分子量及其分布武汉大学教授 蒋序林11:00--11:30光电高分子薄膜的力学性能表征与调控天津大学教授 叶龙8月2日下午 高分子表征技术(下)14:00--14:30X射线单晶衍射解析高分子单晶精准结构青岛科技大学教授 赵英杰14:30--15:00多孔高分子材料的固体核磁表征技术北京理工大学教授 黄木华15:00--15:30赛默飞Orbitrap静电场轨道阱超高分辨质谱在材料分析中的应用赛默飞世尔科技(中国)有限公司高级应用工程师 邝江濛15:30--16:00新型生物基呋喃聚酯的合成与热性能表征中国科学院宁波材料技术与工程研究所教授级高工 王静刚16:00--16:30高性能聚乙烯材料的合成与表征安徽大学教授 代胜瑜注:会议日程以及后续调整以会议页面显示为准扫码报名嘉宾介绍(按报告顺序排序):复旦大学教授 聂志鸿聂志鸿,复旦大学高分子科学系、聚合物分子工程国家重点实验室特聘教授;国家杰出青年基金获得者。2008年于加拿大多伦多大学获博士学位,2008-2010年于哈佛大学George M. Whiteside课题组进行NSERC博士后研究。2011年受聘为马里兰大学帕克分校助理教授,2017年获得终身教职,随后全职加入复旦大学。主要研究方向为聚合物与纳米粒子自组装、生物成像与药物释放、等离功能材料等。迄今在Science等期刊发表学术论文150余篇,论文被引用21000余次。担任Soft Matter期刊副主编,Theranostics、Giant、Supramolecular Materials等期刊编委。曾获美国国家科学基金会Career Award、英国皇家化学会会士、美国化学会石油研究基金青年教授奖、3M公司青年教授奖等荣誉。北京航空航天大学教授/系主任 陈爱华陈爱华,教授,博导,北京航空航天大学材料学院高分子及复合材料系主任。从事液晶高分子、柔性电子材料、智能高分子材料等研究工作,在Nat. Commun.、Adv. Mater.等期刊发表SCI论文50余篇,授权中国发明专利7项,日本发明专利1项,公开国际PCT专利1项。受邀在国内外期刊Adv. Sci.,《应用化学》等发表综述论文3篇;国内/国际学术会议邀请报告十余次。先后入选北京市科技新星、教育部“新世纪优秀人才”。沃特世科技(上海)有限公司材料科学市场部高级应用工程师 李欣蔚李欣蔚,2011年加入Waters,有十几年的色谱、质谱行业经验,负责相关领域的色谱、质谱应用方案支持,帮助客户实现检测效率最大化;对接最新国际材料领域检测方案、推进全国化工行业高端客户合作、熟知细分行业材料分析思路;推动开发应对产业难题的解决方案,基于不同材料类型、不同应用领域、不同产业链需求制定定制化方案指导。中国科学院长春应用化学研究所研究员 徐文生徐文生,博士,中国科学院长春应用化学研究所研究员、博士生导师,国家优青。2007年7月在天津大学获得学士学位,2012年7月在中国科学院长春应用化学研究所获得博士学位。2013年1月至2018年9月先后在美国芝加哥大学和美国橡树岭国家实验室从事博士后研究,合作导师分别为Karl F. Freed院士和Yangyang Wang研究员。2019年1月入职中国科学院长春应用化学研究所高分子物理与化学国家重点实验室任研究员。以项目负责人身份主持国家自然科学基金优秀青年科学基金项目、面上项目和中科院长春应化所启动基金等科研项目。已发表SCI学术论文58篇,以(共同)通讯/第一作者在Phys. Rev. Lett.(1篇),Macromolecules(18篇),ACS Macro Lett.(2篇),J. Chem. Phys. (12篇)等期刊上发表论文54篇。受邀在全国高分子学术论文报告会、中国化学会学术年会、国家自然科学基金委员会化学科学部化学理论与机制青年学者学术交流研讨会等会议上做学术报告交流。指导的博士后获国家自然科学基金青年科学基金项目、博士后国际交流计划引进项目、中国科学院特别研究助理资助项目、中国博士后科学基金面上项目等科研项目资助。苏州大学教授 朱健朱健,苏州大学材料与化学化工学部,教授,副主任。主要研究兴趣:高分子精密合成;含硒聚合物的设计与合成;功能性高分子材料的结构设计与合成等。主持国家十三五重大专项子课题两项,国家自然科学基金项目三项,江苏省自然科学基金和教育厅重点项目各一项。积极与企业合作,共同开发各类产品。获中国化工学会基础研究一等奖,江苏省科技进步二等奖和教育部科技进步二等奖,苏州大学教学成果一等奖各一项。先后发表研究论文200多篇,获美国发明专利授权3项,澳大利亚发明专利授权2项,中国发明专利授权21项。北京化工大学教授 曹鹏飞曹鹏飞,教授,博士生导师,教育部重点实验室副主任。任英国皇家化学会高分子材料顶刊RSC Applied Polymers 和国产高水平期刊Supramolecular Materials副主编,美国化学学会Macromolecules和美国材料学会MRS Communications编委。主要研究高性能弹性高分子材料的设计、合成、性能分析及其在能源领域的应用。分别于2008年和2010年取得天津大学学士及硕士学位,2015年取得美国凯斯西储大学博士学位。归国前在美国能源部橡树岭国家实验室担任正式研究员(独立PI, 永久研究岗位),曾获得2021年度R&D 100 Award(国际科研创新界“奥斯卡奖”之称),美国化学会2021年高分子杰出青年奖和2023年材料科学之星。 南京大学副教授 张秋红张秋红,南京大学化学化工学院副教授、博士生导师。2003年-2007年毕业于南京大学化学化工学院化学专业,2012年获得化学化工学院高分子化学与物理专业博士学位,2012年起任化学化工学院助理研究员,2015年起任化学化工学院副研究员,2017年斯坦福大学访问学者,2019年任化学化工学院副教授。2019年获教育部科技进步二等奖;2022年江苏省“333高层次人才工程”。目前以第一作者、通讯作者在 JACS, Angew. Chem, Adv. Mater., Adv. Funct. Mater., Macromolecules 等杂志发表40余篇论文,撰写专著章节一章,获得授权专利三项。目前主持国家自然科学基金、江苏省自然科学基金在内的多项项目。上海科技大学PI/研究员 凌盛杰凌盛杰,上海科技大学,物质科学与技术学院PI、研究员、博士生导师。先后在复旦大学(博士)、瑞士苏黎世联邦理工学院(联合培养博士研究生)、麻省理工学院及塔夫茨大学(博士后)学习和工作。长期致力于然高分子的基础性研究、应用开发和产业转化工作。作为第一/通讯作者在Nat. Rev. Mater.、Chem. Soc. Rev. 、Nat. Commun.、Sci. Adv.、Adv. Mater.等学术期刊发表论文100余篇。先后担任ACS Biomaterials Science & Engineering、Journal of Renewable Materials、《林业工程学报》、《防化研究》、Materials Futures、Nano-Micro Letters期刊青年编委。主编出版了关于纤维蛋白的专著一部。入选2022年“全球前2%顶尖科学家榜单年度科学影响力排行榜”,获上海市浦江人才、青年东方学者和青年拔尖人才等项目支持。华南理工大学教授 殷盼超殷盼超,华南理工大学软物质科学与技术高等研究院教授、特聘研究员,发光材料与器件国家重点实验室固定成员。殷盼超于2009年获得清华大学高分子材料与工程学士学位,之后于2013年获得美国里海大学化学博士学位,并在2015年在美国阿克伦大学高分子科学系完成博士后研究。在2015年荣获诺奖得主冠名的Clifford Shull Fellow职位加入美国橡树岭国家实验室开展独立研究。2017年加盟华南理工大学,并任中国物理学会中子散射专业委员会委员、中国散裂中子源用户委员会委员,主要从事聚合物基团簇杂化复合材料的制备-结构-性能相关性中的微观机制和理论基础研究,指导质子导体、气体分离膜以及防爆防冲击材料的研发。曾入选相关青年人才计划、“2017福布斯中国30位30岁以下精英榜”以及2021年度Arthur E. Martell Early Career Researcher Prize,目前共发表SCI论文100余篇,近五年以通讯作者身份在J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Nano Lett.、 Chem. Sci.、J. Phys. Chem. Lett.等杂志上发表论文40余篇。北京化工大学教授 汪晓东汪晓东,男,1967年出生,江苏苏州人,教授、博士生导师。1996年获北京化工大学高分子材料专业博士学位,同年赴韩国DOOSAN电子集团研究与开发中心做博士后研究,1998年回国在北京化工大学从事教学与科研工作,时任副教授,2002年晋升为教授,2003年被聘为博士生导师。后作为国家公派访问学者分别于2001年和2012年赴韩国KOLON工业集团中央研究院和法国巴黎第六大学从事科学研究各一年。自参加工作以来,主要从事塑料改性、先进复合材料加工、功能高分子设计及合成、相变储能材料设计制备等领域的研究工作。作为项目负责人主持了科技部国家“十一五”和“十二五”支撑计划项目、国家重点研发项目和国家自然科学基金等多个国家级课题的研究工作。其中研究成果分别获得国家科技进步三等奖、国防科工委科技进步二等奖和(原)化工部科技进步二等奖各一项。作为第一发明人取得授权国家发明专利20余项,作为第一作者或通讯作者,在国内外学术刊物上发表学术论文200余篇,其中在SCI收录的国外高水平英文期刊上发表学术论文180余篇。目前的社会兼职工作包括:中国石化联合会所属“全国石油和化工行业聚甲醛制备及加工应用工程实验室”副主任、深圳市化工学会副理事长、《中国塑料》期刊编委、江苏省连云港市东海县科技镇长等。北京化工大学教授/博导 吕超吕超,教育部“长江学者奖励计划”特聘教授。北京化工大学化工资源有效利用国家重点实验室、化学学院教授,博士生导师。主要研究领域为材料结构发光表征新方法。主持国家自然科学基金应急管理重点项目和国家973计划子课题等项目近10项,以通讯作者在Angew. Chem. Int. Ed.、Nat. Commun.、Sci. Adv.、ACS Cent. Sci.、Chem. Sci.、Anal. Chem.、Chem. Soc. Rev. 等期刊发表论文100余篇,申请中国发明专利11项,已授权7项,专利技术转化2项,申请国际发明专利1项。已获批中国石油和化学工业联合会团体标准1项和企业标准3项。获得2015年高等学校自然科学二等奖、2020年及2012年中国分析测试协会科学技术一等奖等。北京化工大学教授 王东王东,北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室,教授、 博士生导师。2008 年获清华大学工学博士学位,2008 年至 2015 年在日本东北大学先后 担任助手和助理教授,其间 2012 年至 2013 年在美国麻省大学 Amherst 分校进行访问学 者研究。2015 年回国加入北京化工大学。 主要从事发展及应用原子力显微镜表征聚合物微观结构与性能的研究。先后主持和参 与了国家自然科学基金、国家重点研发计划等项目。出版《原子力显微镜及聚合物微 观结构与性能》专著一部,参编英文专著 2 部,在 PNAS,JACS,Macromolecules 等期刊上发表学术论文 80 余篇 任 Polymer 编委。武汉大学教授 蒋序林 蒋序林,武汉大学化学院生物医用高分子材料教育部重点实验室,教授、博士生导师, 主要研究领域:生物医用高分子材料,药剂学,高分子分离与表征。2004年在荷兰阿姆斯特丹大学高分子分析组获博士学位,2006年回国以来主持国家自然科学基金项目8项和1项国家重点研发计划“政府间国际科技创新合作”重点专项。在国际专业期刊上发表SCI论文100余篇,多次受邀参加国际会议作邀请报告和分会场主席,获中国发明专利授权12项。获得南京市2015年度“领军型科技创业人才引进计划”人选,最新的研究项目是合成和准确表征了一系列温敏性改性可注射甲壳素水凝胶,并用于细胞载体、3D打印生物墨水和组织工程原位微创修复等研究。天津大学教授 叶龙叶龙,天津大学英才教授、博导。2015年在中科院化学所取得博士学位,2015-2019年先后作为博士后、研究助理教授在美国北卡罗来纳州立大学物理系工作,2019年10月入选北洋学者英才计划进入天津大学材料学院工作,2020年入选国家高层次青年人才计划。迄今,作为第一或通讯作者在Nature Mater., Joule, Adv. Mater., Mater. Today等国际学术期刊发表100余篇论文,为4本英文专著中撰写了章节。全部论文SCI引用超过18000次,H因子为68。作为负责人主持了国家重点研发计划课题以及北京光源、上海光源、澳大利亚光源、中国散裂中子源等多个大科学装置的18项课题(其中,上海光源重点课题1项)。先后荣获中国百篇最具影响国际学术论文、全球高被引科学家(2019-2022连续四年)、英国皇家化学会JMCA新锐科学家、Materials Today Energy青年科学家、RSC优秀导师等荣誉。青岛科技大学教授 赵英杰赵英杰,2011年博士毕业于中科院化学所,2011-2016年先后在瑞士日内瓦大学,苏黎世联邦理工学院从事博士后研究。2016年获海外高层次人才项目资助,目前为青岛科技大学教授,中国化学会青委会委员。主要研究方向为二维高分子材料。主要致力于晶态高共轭二维、三维高分子材料的设计合成和能源、催化方面的应用研究。通过动态共价化学、自组装等方式在溶液相、界面以及晶体相中实现高结晶性有机二维、三维材料的制备,探讨该种新材料在光、电催化、储能等领域的应用。作为第一作者或通讯作者在J. Am. Chem. Soc., Angew. Chem. Int. Ed., Nat. Syn., Nat. Commun.等国际学术期刊上发表文章100余篇。北京理工大学教授 黄木华黄木华,博士,北京理工大学长聘教授,博士生导师。2001年获北京师范大学化学系理学学士学位, 2006年获中科院化学所理学博士学位。2006-2011年,先后在瑞士苏黎世联邦理工学院(ETH-Zurich)和英国利物浦大学(University of Liverpool)进行博士后研究。2012年3月加入北京理工大学材料学院从事教学科研工作。为研究生讲授《新型含能材料》课程,为本科生开设《Designing Organic Synthesis》和《核磁共振波谱技术实践》课程。作为项目负责人承担国家自然科学基金、北京市自然科学基金、装发项目以及企业横向合作课题等多项,总经费超过4000万元。具体研究方向包括:(1)多孔高分子材料;(2) 退役含能材料的资源化利用技术;(3)核磁共振波谱技术。已在Nature Chemistry, Journal of Materials Chemistry A, Chemistry of Materials, Green Chemistry和Journal of Physical Chemistry Letters等杂志上发表研究论文40余篇,申请中国发明专利和中国国防发明专利30多项,已授权发明专利18项。赛默飞世尔科技(中国)有限公司高级应用工程师 邝江濛 邝江濛,博士毕业于英国University of Birmingham地理地质及环境科学系,主要研究方向为利用质谱技术分析环境中的痕量污染物。本科及硕士毕业于清华大学环境学院。2021年加入赛默飞世尔科技(中国)有限公司,负责环境化工领域液相色谱质谱仪的应用支持工作,于质谱分析特别是高分辨质谱分析有着丰富的经验。中国科学院宁波材料技术与工程研究所教授级高工 王静刚王静刚,中国科学院宁波材料技术与工程研究所教授级高工,博导,中国塑料加工协会专家委员会委员,浙江省万人计划青年拔尖人才,宁波市创新领军人才等,获得高分子材料与工程青年科技奖、宁波市科技进步奖等。主要从事生物基高性能聚酯的合成与应用研究,以可再生资源为主要原料,合成了系列生物基芳香单体并实现了高阻隔、高耐热、可降解等系列新型生物基聚酯产业化开发。先后主持了国家重点研发计划课题、国家自然科学基金面上项目、企业重大转移转化项目等21项,在Chemical Engineering Journal,ACS Sustainable Chemistry and Engineering等国际期刊上发表SCI研究论文76篇,申请及授权发明专利88项,主撰写《生物基呋喃聚酯》,《生物基高分子材料技术》副主编等。安徽大学教授 代胜瑜代胜瑜,安徽大学,副教授,硕士生导师,课题组长。在Angew. Chem. Int. Ed., ACS Catal. Macromolecules, J. Catal., Chem. Commun., Inorg. Chem. Polym. Chem., Organometallics等国际重要期刊发表论文 70 余篇,10 篇入选ESI高被引论文。论文总被引用3000余次,H因子为30。主持并完成中央高校基本科研业务费,博士后基金面上项目和国家自然科学基金青年基金各一项。现主持安徽省优秀青年基金20万,安徽大学高层次人才启动项目80万以及石化企业各类横向经费100多万元等。学术兼职:1,Current Organic Chemistry (Impact Factor: 2.226) Executive Guest Editor. 2,《合成化学》编辑部青年编委。3, Frontiers in Chemistry (Impact Factor: 5.545), Associate Editor. 4, Polymers (Impact Factor: 4.967), Guest Editor. 5, Polymer International (Impact Factor: 3.213), Guest Editor. 主要从事高分子材料合成与应用相关领域的工作,特别是金属有机催化的高分子合成。产业兼职:江苏省科技副总,中石化控股上市公司首席科学家。四、会议形式仪器信息网3i讲堂直播平台五、参会方式1.本次会议免费参会,详细会议日程及参会报名请点击:https://www.instrument.com.cn/webinar/meetings/polymer2023/或扫码二维码报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、会议联系会议内容:管编辑17862992005,guancg@instrument.com.cn会议赞助:刘经理15718850776,liuyw@instrument.com.cn
  • TSI公司发布新一代MacroIMS高分子离子迁移率谱仪
    世界精密测量仪器的生产商TSI公司宣布了其新一代MacroIMS高分子离子迁移率谱仪的上市。 MacroIMS高分子离子迁移率谱仪3982是一款全新的可快速测量高分子的分子量和粒径的仪器,并具有非常高的分辨率。MacroIMS高分子离子迁移率谱仪系统是由来自TSI公司的纳米颗粒分析核心技术中发展而来,经过验证,该系统可用于各种生化分析,包括抗体聚合、脂蛋白、病毒、疫苗、类病毒颗粒、聚合物以及纳米颗粒胶体等。 这款新一代的产品具有许多上一代产品所不具有的独特优势,例如通过直接与LC泵和自动取样器相连,新产品能够实现自动分析;并采用了软X射线电离技术,摆脱了为实现电荷中和需要使用放射源的缺陷;而且该设备可自动发现组分;它具有更快的扫描速度,并配备了基于色谱分析的具有扩展分析工具的软件。 TSI公司高级全球产品经理Erik Willis先生说,“这款MacroIMS高分子离子迁移率谱仪的优势就在于它能够分析那些对质谱仪来说粒径过大的高分子和纳米粒子,而且具有光散监测仪所无法达到的高测量精度和分辨率。这款MacroIMS高分子离子迁移率谱仪是对液态色谱分析、场流分析、AUC分离以及质谱分析的有力补充。” 如果您想了解更多信息或寄送样品至本公司进行分析,请点击http://www.tsi.com/Products/Macromolecule-Analyzers/Other/MacroIMS-Macroion-Mobility-Spectrometer-3982.aspx。
  • 高分子表征技术专题——拉曼光谱技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!拉曼光谱技术在高分子表征研究中的应用Application of Raman Spectroscopy in the Characterization of Polymers作者:袁媛,王梦梵,曲云菲,张泽军,张建明作者机构:青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029 北京航空航天大学化学学院,北京,100191作者简介:张建明,男,1973年生. 山东省泰山学者特聘教授,博士生导师. 2003年毕业于中科院化学所并取得博士学位,师从著名的光谱学家沈德言先生. 自2009年1月起在青岛科技大学工作. 研究方向为高分子凝聚态结构及其相变行为、生物质纳米材料制备及功能复合材料构筑,已发表SCI学术论文130余篇,所发论文被引6000余次,H-指数为38,获批中国发明专利20余件. 先后获日本JSPS博后奖、德国洪堡资深学者、山东省泰山学者、山东省杰出青年、山东省自然科学二等奖及中国石化联合会青年科技突出贡献奖等荣誉或奖励.摘要拉曼光谱作为一种强大的工具,被广泛应用于聚合物结构的表征. 随着共振拉曼光谱、扫描角度拉曼光谱、高分辨率拉曼成像、极化拉曼光谱、表面增强拉曼散射等拉曼技术的迅速发展,拉曼光谱的应用范围不断扩大. 本文首先介绍了拉曼光谱设备的基本原理和组成,总结了拉曼技术的实验技巧和数据处理中需要注意的问题,讨论了红外光谱和拉曼光谱的区别,在此基础上,综述了近十年来拉曼技术在聚合物结构表征领域的最新应用和研究进展. 其应用包括以下六个方面:高分子链的构象、聚合物的聚集状态、聚合物结晶度的计算、高分子链的取向、外场作用下的结构转化、高分子共混物化学或物理成分的识别. 最后,对拉曼光谱在聚合物研究中的发展进行了展望. 希望本文能够对试图从拉曼光谱中获取聚合物结构信息的学者有所帮助.AbstractAs a powerful tool, Raman spectroscopy is widely used in the characterization of polymer structures. Along with the rapid development of Raman technology such as resonance Raman spectroscopy, scanning angle Raman spectroscopy, high-resolution Raman imaging, polarized Raman spectroscopy, and surface-enhanced Raman scattering, the application range of Raman spectroscopy has been continuously extended. In this paper, we first introduced the basic principle and the composition of the Raman equipment, and then we summarized the experimental skills of Raman technology and the issues that need attention in data processing. The difference between the infrared spcectroscopy and the Raman spectroscopy was discussed. Afterwards, we reviewed the latest applications and research progress in the fields of polymer structure characterization by using Raman technology in recent decade. The applications include the following six aspects: the macromolecular chain conformation, the aggregation state of polymers, the calculation of the polymer crystallinity, the macromolecular chain orientation, the structural transformation under the external fields, and the identification of the chemical or physical composition in polymer blends. Last, the development of Raman spectroscopy in polymer research was prospected. It is hoped that this review could be helpful for the one who tried to obtain the information about the polymer structure from Raman spectroscopy.关键词拉曼光谱  结构表征  原理  应用KeywordsRaman spectroscopy  Structure characterization  Principle  Application 拉曼散射现象是由印度科学家Raman于1928首先发现并报道的,但拉曼散射信号只相当于瑞利散射百万分之一,在拉曼散射现象被发现之初由于没有足够功率的光源而并未被广泛的应用. 近半世纪以来随着激光光源以及显微技术在拉曼光谱仪中的应用,拉曼光谱迸发出了旺盛的生命力.拉曼光谱与红外光谱同属分子振动光谱,但其原理与红外光谱截然不同. 如今拉曼光谱在高分子领域中已经有广泛的应用,包括分子链构象、取向、结晶度等方面的研究等. 本文在结合拉曼基本原理及实验技巧的基础上,总结了近年来拉曼光谱在高分子表征中的最新研究进展.1基础原理1.1光的散射当光线遇到分子时,绝大部分的光子(多于99.999%)都会发生弹性散射(即瑞利散射),瑞利散射具有与入射光相同的波长. 然而,少部分的光子(少于0.001%)会发生能量(频率)偏离的非弹性散射(即拉曼散射). 光散射过程可以用量子力学进行描述,如图1所示,当一束光照射到某体系时,体系中粒子吸收光的能量而被激发,从而发生能级跃迁过程,同时辐射出散射波. 不同的跃迁方式决定了不同的散射类型,例如(拉曼)斯托克斯散射、瑞利散射、(拉曼)反斯托克斯散射(高分子样品测试中常用的拉曼散射范围)[1~7]. 在拉曼测试过程中,经常也会出现荧光信号,与拉曼散射不同,荧光过程中粒子被激发至能量更高的电子能级而非拉曼散射中的虚态. 因此短波长比长波长激光更易产生荧光效应.Fig. 1Quantum mechanics description of Rayleigh, Raman scattering and florescence.1.2拉曼散射与拉曼光谱1.2.1拉曼散射的基本原理假设一束频率为v0的光照射在一个分子上,分子中电子会被入射光的电场激发做受迫局域运动而出现极化现象,产生电偶极矩,假设入射光电场可以表示为:式中E0为光电场的振幅,则由于分子运动所产生的偶极矩可以表示为:式中α为极化率,极化率的变化是分子的核外电子云受外部电场诱导而产生的(通过平衡位置两边的)形变而导致的.如果分子的极化电场所释放出的光与入射光频率相同,则把这种散射过程称为瑞利散射. 而如果α被分子的振动所调制(modulated),则α可以展开为关于振动简正坐标q的级数:q由以下公式得出:则有:以上公式表明在当前情况下频率为(v0±vk)的(拉曼)散射会与频率为v0的瑞利散射同时出现. 某一分子振动为拉曼散射活性的前提条件为(∂α∂q)0的值不为0,也就是说分子的极化率随分子振动而改变[8,9].如图2所示,假设频率为v0电场(入射光)可以诱导分子的偶极矩P产生同频率(v0)的振动. 如果此时分子极化率具有随时间变化的极低频的振动vm,那么经过以上2种不同频率的振动调制后的散射光将包含3种不同频率的光,分别为v0(瑞利散射)、v0+vm(反斯托克斯散射)、v0-vm(斯托克斯散射). 反之如果分子的振动不能使极化率产生低频振动,则不会有调制的出现,进而不会出现拉曼散射效应[8,10].Fig. 2Schematic representing of Rayleigh and Raman scattering: (a) the incident radiation makes the induced dipole moment of the molecule oscillate at the photon frequency (v0) (b) the molecular vibration can induce the polarizability,α,to have a frequency ofvm the result as shown in (c) is an amplitude modulated dipole moment oscillation,and three components with steady amplitudes which can emit electromagnetic radiation can be achieved as:v0 (Rayleigh component), v0+vm (Raman anti-Stokes component), and v0+vm (Raman Stokes component), as shown in (d).由于诱导分子偶极矩P与电场E均为矢量,且一般情况下两者方向不同,因而连接这2个物理量的极化率α可以用一个二阶张量来表达,则P=αE可以表示为其中,x,y,z为分子在笛卡尔坐标系中的坐标. 极化率为对称的二阶张量矩阵,包含了6个独立的元素,αxx、αyy、αzz、αxy、αyz、αxz. 上式的意义为,例如沿x方向电场Ex诱导了沿y方向的偶极矩Py,则可表示为Py=αxyEx. 此式在通过偏振拉曼研究分子对称性时具有重要意义[9].1.2.2拉曼活性的判据如上所述,非弹性散射源于在平衡位置附近分子的极化率关于简正坐标q的导数不为0,这一关系为小分子的拉曼散射提供了“选择定律”的基础. 以对称双原子分子的对称伸缩振动(symmetric stretching vibration)为例,如图3(a)所示,当两原子的位置无限接近时,体系电子密度分布类似于单一原子的电子密度;而当两原子的位置无限远离时,体系电子密度分布近似于2个独立的单原子的电子密度. 因此对于双原子分子的对称振动,其极化率沿简正坐标方向成单调增长模式,因此其在平衡位置导数不为0,为拉曼活性振动. 而对于分子偶极矩,对称伸缩振动过程中其正负电荷中心并没有产生位移,所以偶极矩没有发生变化,因此为红外非活性振动. 例如氧气与氮气分子的对称伸缩振动只能使用拉曼光谱进行研究,因为在红外谱图中不会出现吸收峰.Fig. 3The derivatives of polarizability (red) and dipole moment (blue) are schematically depicted for the normal modes of a two (a) and a three (b) atomic molecule. Based on these intuitive considerations,conclusions on the IR and Raman activity of the modes can be drawn.线性三原子分子比双原子分子稍显复杂,例如二氧化碳分子. 对于其对称伸缩振动,如图3(a)所示,极化率的变化类似于双原子分子的对称伸缩振动,为拉曼光谱活性,红外光谱非活性. 对于非对称伸缩振动(antisymmetric stretching vibra-tion)以及变角振动(bending vibration) (图3(b)),极化率在平衡位置两边的变化虽不为0,但是其变化是关于平衡位置对称的. 因此极化率在平衡位置周围变化可以认为是简谐的,也就是说(∂α∂q)q0=0,因此非对称伸缩振动与变角振动均为拉曼非活性;而偶极矩在平衡位置两侧的方向是反转的,因此(∂μ∂q)q0≠0,表现为红外活性[11].2实验技巧为了得到更丰富的样品信息,我们希望拉曼光谱在准确的基础上具有尽可能高的信噪比(signal-noise ratio,SNR). 关于拉曼散射的强度IR一般有如下关系式:其中,v和I0为入射激光的频率及强度;N为参与散射过程的分子数量;(∂α∂q)2是与分子结构有关的参数.上式表明,使用短波长激光并增加激光能量密度的同时增加样品量可以增强拉曼散射信号(注:拉曼光谱位移不随入射波长的变化而改变). 但在实际的测试过程中,不同类型的样品需要根据其自身的特点选择与其匹配的波长的激光以及激光能量,不能为了增强拉曼信号就去用短波长激光去测试所有样品,很多高分子样品在短波长激光下可能没有拉曼信号或者拉曼散射被很强的荧光信号所淹没.2.1样品制备2.1.1固态样品相对于无机样品,有机高分子样品的拉曼信号相对较弱(一部分原因是由于高分子样品中存在大量的无序结构). 对于高分子粉末或膜样品,一般需要保证沿光的入射方向有一定的厚度并同时使其表面尽量平整,以便于显微镜的聚焦. 对于透明样品,可将其放置于铝箔上进行测试(因为金属一般都有增强拉曼信号的作用,用铁片作为基底同样有着很好的效果). 或者,由于拉曼接收的是散射光,太薄的透明样品极易被激光穿透从而打到基底上,因此为了得到更好的拉曼信号,制样时要尽可能增大薄膜厚度. 另外由于激光一般都是偏振的,因此对于取向样品,例如纤维,需首先确定入射光的偏振方向,之后再确定样品的(某一)取向轴与入射光偏振方向平行(或垂直),再开始测试,这样才能得到正确的结构信息.2.1.2液态样品由于拉曼可以聚焦到几十微米下检测一定深度的样品信号,无需担心盖玻片和毛细管对拉曼信号的影响,因此高分子液态样品的拉曼测试相对于红外测试比较便捷,可以直接进行测试. 一般可以使用凹面载玻片或者金属制液体样品槽承载液体样品. 测试时可先将激光聚焦于液体表面,然后将样品平台沿激光方向上抬,使激光聚焦于液体样品内部,这样可以得到较好的光谱. 如果液体易挥发,可以使用盖玻片将样品封闭于容器内或将液体封入毛细管内.2.2设备调试2.2.1拉曼装置的构成随着拉曼仪器的发展,如今在一般情况下,背散射模式,也就是入射激光与散射激光平行,已经足够应对大部分高分子样品的测试需求. 对于一些特殊情况,例如取向或单晶样品的偏振拉曼测试,需要使用到90°入射的模式,也就是入射光路方向与散射光路方向为90°,原因可以参考上节极化率的二阶张量公式.以雷尼绍(Renishaw,UK) inVia型拉曼光谱仪为例,如图4所示,拉曼装置一般包括入射激光光源、入射光路系统(包括扩束器)、显微镜及样品台系统、滤波器、衍射光栅及CCD检测器. 在实际测试过程中,我们需要选择合适的入射光波长及显微镜物镜.Fig. 4Schematic diagram of the Raman instrument.当今市场上主要的拉曼仪器根据应用的场景可分为手持型、便携型以及桌面型拉曼光谱仪. 手持型拉曼光谱仪集成性很高,小巧轻便,操作非常简单,几乎可以在各种需要的地点、时间对从原材料到成品进行鉴定分析. 便携型拉曼光谱仪集成性相对较高,并具有一定的扩展性,可作为小型移动实验室使用. 桌面型拉曼光谱仪体积较大且不可移动,如图4中示意图即为桌面型拉曼光谱仪,但这类光谱仪具有极强的扩展性,几乎可以变更从入射激光光源、入射光路、样品平台至光栅等所有组成部分,从而可以为不同样品以及不同条件的测试创造可能.2.2.2激光波长的选择激光波长与能量密度成反比,使用短波长激光可以得到较强的拉曼散射信号,例如532 nm要比785 nm激光的拉曼散射强度强. 但对于高分子样品来说使用532 nm激光产生荧光干扰的可能性也会增加. 所以在一些情况下可以选择785 nm的光源. 如前所述,样品产生的拉曼位移不会随激发光源的波长改变而改变,因此只要可以避开荧光效应可以自由选择激光波长. 需要注意,虽然拉曼位移不随激光波长而改变,但使用同一物镜下,不同波长可以到达的空间分辨率不同. 例如,物镜的数值孔径(NA)为0.9,532 nm激光的空间分辨率可达0.72 μm,而在同样条件下使用785 nm激光时,空间分辨率仅为1.1 μm.另一种情况,如果样品内的分子振动与入射激光可以产生共振效应,那么可以以此来选择入射激光波长,则可以得到较强的拉曼散射信号.2.2.3显微镜的选择通常显微镜的物镜上会标注2个参数,分别为放大倍数(5×、10×、20× 等)与数值孔径(numerical aperture,NA,是与镜头光通量有关的参数,一般为0.05~0.95). 一般放大倍数与数值孔径成正相关关系,而数值孔径决定空间分辨率,有如下公式 [12]:其中,R为最大空间分辨率. 在实际测试时需要注意激光能量会随光斑尺寸(空间分辨率)变化,更高的空间分辨率意味着激光密度会更大,此时需要注意样品可能会被激光热解. 对于高分子样品来说,一般要先从低激光功率测试开始尝试,如果此时拉曼散射信号很弱,则少量增加激光功率,但同时要注意观察样品是否被热解,如此反复尝试直到找到最适宜测试的激光强度.2.2.4Ne灯校准一般除用单晶硅对拉曼位移进行校准,另外使用内置的Ne灯也可以达到校准的效果. 一般在测试样品时与Ne灯同时使用,则所得到的拉曼谱图中同时包括样品与Ne灯的峰,由于Ne灯的拉曼峰位置已确定,因此可用于校正样品的峰位置.2.2.5测试参数设置在确定适宜样品的激光波长及显微镜倍数的前提下,为了提高信噪比,可以首先在不损伤样品的前提下尽量提高入射激光的强度,其次适当延长曝光时间(有效的提高散射信号强度),同时也可以增加循环(cycling)测试的次数(有效降低噪音的影响). 但需要注意曝光时间不宜过长,因为过长会导致检测器的饱和,例如当同时需要较强与较弱的拉曼散射峰时,较弱的散射峰由于信噪比较低而难以使用时,可以固定曝光时间并增加循环测试次数来降低最终谱图中噪音的干扰.2.3数据处理2.3.1高分子样品拉曼谱的初判在取得拉曼光谱后,首先需要对谱图的构成进行判断,因为其中可能同时包含样品以及非样品的拉曼信号. 如果可以排除样品不纯净的可能,那么非样品的拉曼信号可能来自于宇宙射线、自然光或照明光等所产生的干扰,另外如果样品透光性好,激光可能透过样品打到基底上,也可能产生部分非样品信号.宇宙射线所产生的特征峰强度高且十分尖锐,并且可能在任意波数出现. 而如果在测试时对照明光抑或显示器背光的屏蔽不彻底,则也会出现一些尖锐的谱峰,这些谱峰的位置与光的类型有关. 但同宇宙射线不同的是,这些峰不是随机出现,而是会在相同的位置重复出现.对于结晶性高分子样品来说,由于内部存在大量的晶格缺陷及非晶组分,通常即使是结晶特征峰也不会是非常尖锐的峰,这种情况类似于红外测试的结果. 一般来说,对于同一振动模式,相较于非晶峰,结晶峰的峰强较强,峰宽较窄. 对于未知的结晶性高分子样品,可以通过分别测试结晶与熔融状态下的样品来确定结晶与非晶的特征峰. 确定特征峰是进一步测试分析的基础.由于我们常规使用的拉曼散射的波束范围恰好与中红外测试波段相似(400~4000 cm-1),并且两者均为分子的基团振动光谱,所以兼具红外与拉曼活性的同一分子基团振动在两谱图中的频率相似,两者可以互为参考. 而在低波数范围(400 cm-1),也就是远红外区间(一般反应分子链主链的振动),由于空气中的水气对测试有极大的干扰,所以远红外测试需要对样品仓抽真空,这也极大地限制了远红外光谱的应用,因此在实际测试中远红外与中红外区不能同时测试. 而拉曼的测试范围可以直接覆盖远红外及中红外波束段,并且测试过程中无需进行硬件切换,这也为高分子的研究提供了极大的便利.2.3.2谱线的平滑与拟合在一些情况下,由于样品或仪器的原因,即使已经选择了最优的测试条件,所得的光谱仍可能存在信号起伏大,信噪低的情况. 此时为了便于数据分析,可以对光谱进行平滑或拟合处理. 但是由于平滑后光谱会发生微小的变化,例如肩峰可能会因此消失,所以在对样品光谱没有十足把握的情况下,进行平滑处理时要十分谨慎. 一般如果噪声水平在中整条光谱中都比较均一,可以对光谱进行平滑处理,在平滑时,尽量选用最少的数据点个数为平滑单位,不能以牺牲数据准确来换取谱线的平滑美观. 在其他情况下,例如存在非拉曼信号,则不能使用平滑处理来消除,而应改变测试条件来避免非拉曼信号的产生.当谱图中有2个或多个峰重叠时,为了便于分析数据,需要进行分峰拟合(通常使用高斯加洛伦兹函数拟合),要注意虽然拟合的目标是尽量还原原始光谱,但不能为了达到这个目标而任意增加分峰的个数而忽略了每个峰的物理意义,这样便失去了分峰的价值.总之,不论何时原始数据都是最重要的,任何数据处理方法都需要在遵从原始数据的基础上进行.3拉曼光谱应用举例2010年至今,拉曼光谱在高分子多层级结构解析中的应用主要涉及6个方面,分别是:分子链构象研究、分子聚集态研究、结晶度计算、分子链取向研究、外场作用下的结构转变研究、化学/物理组成研究. 应用到的拉曼光谱种类主要为:共振拉曼光谱(resonance Raman spectro-scopy)、扫描角度拉曼光谱(scanning angle Raman spectroscopy)、高分辨拉曼成像(high-resolution Raman imaging)、偏振拉曼光谱(polarized Raman spectroscopy)及表面增强拉曼光谱(surface-enhanced Raman scattering, SERS).3.1分子链构象研究Gao等[13]利用共振拉曼光谱识别了聚(2,5-双(3-十四烷基噻吩-2-基)噻吩[3,2-b]噻吩)(PBTTT)与电子受体[6,6]-苯基C61丁酸甲酯(PCBM)共混的体异质结太阳能电池中PBTTT的有序和无序构象. 作者提出PBTTT噻吩环C=C对称伸缩振动(νs(C=C))包括主链有序构象和无序构象2个组分的贡献:如图5所示,有序构象的特征峰位置在1489 cm-1,半峰宽约为15 cm-1;无序构象的特征峰位置在1500 cm-1,半峰宽约为25 cm-1. PBTTT不同构象的相对含量随PCBM含量、退火温度与拉曼激发能的改变而变化. 共振拉曼图像进一步证实有序的PBTTT链集中在富含PCBM的双分子晶体中. Martin 等[14]同样借助共振拉曼光谱结合光电流成像技术,考察了高分子-富勒烯共混物中依赖于构象变化的电荷沿主链的传输特性. 实验及理论计算的结果均证实当共轭高分子的主链呈现平面构象时,电荷传输率最高. 体系形貌表征的结果表明当高分子与富勒烯达到良好共混状态时,高分子主链构象更易于平面化.Fig. 5Simulated Raman spectra (a) of the BTTT-C2 monomer and structures (b) (Reprinted with permission from Ref.‍[13] Copyright (2014) American Chemical Society).原位共振拉曼表征被成功地应用于研究ps尺度上聚(3-己基噻吩)(P3HT)分子链在氯苯中的构象松弛过程[15]. 如图6(a)所示,基于激发态拉曼特征的时间依赖性及与其他高分子的拉曼光谱进行对比,作者归属了构象松弛过程中不同结构的拉曼特征峰. 通过绘制拉曼特征峰的强度变化对时间的关系曲线(见图6(b)),揭示了松弛过程中主链共轭长度的变化,据此提出了P3HT分子链在氯苯中的构象松弛动力学机理.Fig. 6(a) Valence-bond structures of the quinoidal excited state of P3HT and the time-resolved resonant-Raman spectra of P3HT in chlorobenzene photoexcited at 510 nm. (b,c) Time dependence of Raman band intensities in figure (a). Integrated intensities (b),black lines correspond to biexponential fits with constrained lifetimes of (9±1) and (220±20) ps. Relative change in feature intensities attributed to torsion-induced exciton conformational relaxation (c). (Reprinted with permission from Ref.[15] Copyright (2012) American Chemical Society).3.2分子聚集态研究Gao等[16]在对P3HT/PCBM共混薄膜分子聚集态的研究中区分了不同聚集态对P3HT主链C=C伸缩振动νs(C=C)的贡献. 对样品光谱的拟合结果(如图7(a)所示)表明,共混膜的(νs(C=C))峰来自于聚集分子链与非聚集分子链的双重贡献,前者的特征拉曼频率约为1450 cm-1,后者约为1470 cm-1. 聚集态与非聚集态峰强度的相对比值R(R = IC=Cagg/IC=Cun)在样品退火后增加(如图7(b)所示),R值与不同聚集态的相对密度相关. 如图7(c)所示,作者进一步应用共振拉曼成像来考察R值变化对共混形貌的依赖关系,通过R值对比,对退火的共混薄膜中4种聚集程度不同的P3HT分子链进行了识别与成像分析. 在此工作基础上,作者通过分析拉曼特征峰的强度变化,考察了P3HT聚集态对共混物体系中局部光电流产生效率[17]、激发态结构变化及初期振动动力学[18]的影响. 共振拉曼结合成像技术分析也被成功地应用于其他共轭聚合物结构与性能的对应关系研究中[19].Fig. 7(a, b) Raman spectra of as-cast (a, red) and annealed (b, blue) blend films excited with 488 nm light show theνs(C=C) band of P3HT represented by the shaded regions of the complete spectra shown as insets. The band is fitted with two Lorentzian functions (dashed traces), showing the relative contributions of both aggregated (IC=Cagg) and unaggregated (IC=Cun) components. (c1 and c2)IC=CaggandIC=Cuncenter frequency dispersion images for P3HT/PCBM as-cast films,and (c3) histograms of frequency components. (c4 and c5)IC=Cagg and IC=Cuncenter frequency images for P3HT/PCBM annealed films,and (c6) histograms of frequency components (Reprinted with permission from Ref.[16] Copyright (2012) American Chemical Society).拉曼光谱结合高空间分辨成像技术可用于高分子多晶型结构,例如针对聚己二酸丁烯酯(PBA)的环带球晶研究[20]. 在此工作中作者首先识别了2种晶型(α晶与β晶)及非晶结构的拉曼特征峰,选择能够反映不同聚集态相对含量的特征峰(C-peak),在此基础上通过拉曼成像考察了球晶内部多晶型晶体的分布及分子链取向. 通过对比球晶的偏光照片(图8(a))与拉曼成像照片(图8(b))可知,2种晶型的晶体在球晶中心、环带区域及外层非环带区域呈现非均匀分布,二者能够在相同的温度区间(31~33 ℃)成核和生长,然而环带区域α晶的相对含量会随结晶温度而提高. 2种晶型的拉曼成像数据结合Hermans取向函数分析(见图8(c))结果证实,环带区域的分子链沿球晶半径方向和基底平面取向,且沿环带球晶径向方向的取向呈周期性变化.Fig. 8(a) Optical micrographs of PBA31-33. (b) Raman imaging of C-peak position for the same area in (a). (c) Hermans orientation function image calculated by using the C-peak area of PBA32 measured with polarization parallel (0°) and perpendicular (90°‍) to the horizontal direction (Reprinted with permission from Ref.‍[20] Copyright (2017) American Chemical Society).拉曼成像技术作为一种强有力的表征手段,可以精确表征(分辨率最高可达0.1 μm)单片层石墨烯或氧化石墨烯在片层不同区域的氧化结构. Zhang等[21]通过拉曼成像技术对具有不同氧化结构的单片层氧化石墨烯进行了表征,通过D/G峰的比值差异分析了单片层在不同区域的氧化程度. 如图9所示,JGO纳米片与GO差异显著,后者呈现出统一的颜色(图9(a)和9(b)). 此外,从图9(c)和9(d)可以看出,在蓝色区域(低氧化区域),JGO的ID/IG比值较低(~0.72),而在红色区域(高氧化区域),ID/IG比值较高(~1.07),与GO的ID/IG比值存在显著差异(整个区域的ID/IG比值为~1.02). Badi等[22]同样借助拉曼成像技术,通过D峰与G峰的光谱解析,考察了石墨烯纳米片在聚苯胺(PANI)中的分散情况.Fig. 9(a-d) Raman mapping of a GO sheet (a) and JGO (c) using theID/IG ratio from the corresponding Raman spectra (b, d) (Reproduced with permission from Ref.[ 21] Copyright (2020) Elsevier).3.3结晶度计算包括拉曼光谱在内的波谱技术经常被用于计算高分子晶体的结晶度. Mannanov等[23]利用原位拉曼光谱直接表征了应用于太阳能电池的P3HT:‍富勒烯基受体活性层中、P3HT在50~150 ℃温区的结晶动力学,并考察了溶剂、富勒烯基受体种类与结晶温度对P3HT结晶度的影响[14]. 结晶度的计算在选择合适的结晶特征峰与非晶特征峰基础上,结合光谱分峰/拟合处理及选择合适的结晶模型实现. 例如:Agarwal等[24]利用2种光谱分析方法计算了纤维素I晶体的结晶度,一种方法称为“单变量方法(univariate method)”,借助结晶峰/非晶峰强度的比值计算;另一种方法称为“多变量方法(multivariate method)”,应用偏最小二乘回归模型(partial least squares regression model)计算. 通过与已知结晶度的参比样品对比证实,2种方法在评价结晶度处于0%~80.5%范围内的纤维素样品时结果可靠,且由单变量方法得到的结晶度数值比由WAXS表征得到的更理想. Wang等[25]应用针尖增强拉曼光谱技术结合随机生长结晶模型,估算了合成的二维聚合物单层的结晶度,据此揭示了二维聚合物单层生长的交联本质[26].3.4分子链取向由于激光本身具有偏振性,如果使用偏光片对入射激光以及散射光的偏振方向进行调制,则可以获得高分子链中分子基团的取向信息,进而解析高分子链的取向结构,这种方法称为偏振拉曼[26~28]. 例如Richard-Lacroix等[26]使用偏振拉曼手段对使用不同收丝方法所得的静电纺聚氧化乙烯(PEO)单根纤维中PEO分子链的取向情况进行了研究. 测试过程中对于每一根纤维均需测试4组不同偏振角度的入射光与散射光的组合拉曼光谱,例如假设平行纤维轴方向为Z轴,垂直于纤维轴方向为X轴(Y轴暂不考虑),那么4组拉曼光谱分别为(X(入射光偏振方向)X(散射光偏振方向))、(XZ)、(ZX)与(ZZ). 不同的偏振组合所得的拉曼光谱中峰的强度有较大差别,说明分子链有取向存在,利用这些数据再通过进一步的计算便可以得出分子链的取向分布方程(orientation distribution function). Richard-Lacroix等的研究结果表明,单根纤维中的分子链总具有较高的取向并且与收丝方法无关.近年来,新的偏振拉曼数据分析手段也在不断地涌现,例如Richard-Lacroix等[28]提出了最可几分布(most probable distribution, MPD)方法,用以更加精确地定量分析分子链取向. Papkov等[29]利用一种改进的偏振拉曼分析方法,对直径分布在140~1000 nm范围的单根聚丙烯腈电纺纳米纤维的分子链取向进行了定量研究. Svenningsson等[30]基于包绕洛伦兹函数(wrapped Lorentzian function),开发了一种新的偏振拉曼光谱分析方法,并应用于确定再生纤维素纤维的分子取向研究. 这种方法的优势在于消除了偏振拉曼测试时对偏振角度的限制,所得结果能够与广角X-射线衍射与固体核磁的数据直接比较. 测量散射光偏振度随偏光片旋转角度的变化可以提供取向分布函数形状的半定性信息,Park等[31]据此分析了聚乳酸(PLLA)薄膜内部特征振动散射强度的角度依赖性,对结构单元的取向性进行了量化.3.5外场作用下的结构转变研究借助原位拉曼表征技术,能够对诸如温度变化[32~34]、时间改变[35]、拉伸过程[36,37]等的高分子结构演变进行追踪. Jin等[32]利用变温拉曼考察了高密度聚乙烯(HDPE)多重熔融行为中的构象变化. 作者对与熔融相关的变温拉曼光谱进行了如图10(a, b)所示的二维相干光谱分析(least squares moving-window method, LSMW),通过整个熔融过程中构象变化的相似性结合与“熔融-再结晶”、“中间相预熔融”及“多层片晶熔融”模型的比对,提出了如图10(c)所示的HDPE熔融时晶相直接转变为非晶相的机理. Kasiouli等[33]研究了β-环糊精包封的聚(4,4' -二苯基乙烯基) (PDV.Li)构象随温度的变化. 特征拉曼振动的强度变化证实,包封前后PDV.Li的主链平面性没有变化. 更高温度下主链构象的改变归因于由热诱导聚集引发的相邻苯环之间的扭转角度降低.Fig. 10(a,b) Least squares moving-window (LSMW) analysis of the HDPE Raman spectra with the window size of 11 spectra (ΔT = 1 °C). (a) A contour map of the first order derivative (d I/dT) as a function of Tave of a moving window. (b) The dI/dT of six Raman peaks are plotted after numerically integrated over frequency ranges to cover the Raman peaks: 1415-1425, 1115-1136, and 1299-1325 cm -1. (c) The schematic of the multithickness lamellae model. (Reprinted with permission from Ref.[32] Copyright (2017) American Chemical Society).基于拉曼光谱的多技术联用能够实现拉伸过程中高分子结构变化的表征与分析. Lόpez-Barrόn等[36]利用原位偏振拉曼技术,考察了线性低密度聚乙烯(LLDPE)拉伸过程中的单链构象及分子链取向变化. 结果表明,反式构象随拉伸程度的增加呈线性增加,分子链的伸展分为3个阶段,即弹性伸展阶段、塑性伸展阶段与应变硬化阶段. 取向因子受分子量影响,低分子量部分取向因子小. Kida等[37]利用原位偏振拉曼光谱与原位拉伸测试联用,考察了分子量分布对单轴拉伸过程中高密度聚乙烯形貌及变形行为的影响. 结果表明,连接片晶的带分子(tie molecules)数量随分子量分布的增大而增加,而晶体结构不受分子量分布影响. 晶区分子链沿拉伸方向的取向程度及连续的反式构象链的形成均在高分子量分布的样品中得到提高.3.6化学/物理组成研究表面增强拉曼光谱是一种能够在高分子共混结构的组分研究中提供潜在选择性与垂直分辨的强大技术. Razzell-Hollis等[38]借助此光谱探索了P3HT:聚((9,9-二辛基芴)-2,7-二基-alt-[4,7-双(3-己基噻吩-5-基)-2,1,3-苯并噻唑]-2' ,2"-二基)(F8TBT)共混薄膜的界面组成与分子有序性. 作者首先分别表征了P3HT与F8TBT的光谱,识别了由于样品退火引起的、与本体/界面形貌相关的光谱变化. 随后为了确定共混薄膜的化学组成,表征了不同共混样品的光谱并对光谱进行了分峰处理,获得了代表P3HT含量的强度值α与代表F8TBT含量的强度值β,结果见图11. 光谱分析的结果表明热退火改变了共混体系的界面组成:预退火增加了低表面能P3HT的含量,而后退火增加了高表面能F8TBT的含量. 此外,表面增强拉曼光谱还成功地应用于对纳米厚度尺度上高分子薄膜表面与底面的化学组分识别[39].Fig. 11Raman (a) and SERS (b) spectra for an as-cast sample of quartz (quartz) Q/Ag/P3HT:F8TBT, fitted using RR-P3HT (as ordered fraction), RRa-P3HT (as disordered fraction) and F8TBT spectra to obtain relative contributions of P3HT (α) and F8TBT (β). Normalized Raman (c) and SERS (d) spectra for P3HT:F8TBT blends in five different sample configurations, with variation in the relative intensity of the F8TBT peak at 1356 cm-1 shown in each inset (Reprinted with permission from Ref.‍[38] Copyright (2016) American Chemical Society).共聚焦显微拉曼技术近几年被广泛地应用于高分子多组分体系的化学/物理组成研究. 化学组分识别的相关研究涉及药物输送体系中聚乳酸-羟基乙酸共聚物[40]、聚己内酯和聚环氧乙烷的复合电纺纤维[41]、聚二甲基丙烯酰胺-甲基丙烯酸二苯甲酮共聚物[42]等. 物理组分识别方面,Hu等[43]研究了左旋聚乳酸/右旋聚乳酸(PLLA/PDLA)共混物球晶的等温结晶行为. 在如图12(a)和12(b)所示的800~600 cm-1波数范围内分别选择736与754 cm-1峰作为均晶与立构复合晶的特征峰,通过对球晶内部与外部两峰强度的成像分析(见图12(c)和12(d),证实大球晶内部包含均晶与立构复合晶2种晶体,立构复合晶均匀地分散在非晶区与球晶区域.Fig. 12Peak fitting results in the 800-600 cm-1 region at the single point at the position of 1# and 2# (a) and the peak fitting spectra of PLA with different crystal forms (b) Imaging result with imaging parameter: band intensity at 754 cm -1 (c) band intensity at 736 cm -1 (d) (Reproduced with permission from Ref.[ 43] Copyright (2019) Elsevier).其他成像方式如共振拉曼光电流成像(resonance Raman-photocurrent imaging, RRPI)[44,45]、飞秒激发拉曼成像(femtosecond stimulated Raman microscopy, FSRM)[46]、针尖增强拉曼成像(tip-enhanced Raman mapping, TERM)[47]、宽带相干反斯托克斯拉曼散射(broadband coherent anti-stokes Raman scattering, CARS)显微镜[48]、反转显微拉曼光谱(inverse micro-Raman spectroscopy, IMRS)[49]、等离子体波导共振拉曼光谱(plasmon waveguide resonance Raman spectroscopy, PWRRS)[50]等也应用于高分子化学组成分析.扫描角度拉曼光谱适用于分子有序程度的研究,能够同时获取增强的拉曼信号、薄膜厚度及分子有序程度的信息,此外结合均方电场计算(MSEF)可以确定聚合物薄膜中是否产生拉曼散射[51,52]. Meyer等[51]利用此光谱(示意图见图13(a))研究了P3HT:PCBM共混物在蓝宝石、金和铟锡氧化物界面处的形貌,考察了P3HT结构有序程度对基底的依赖性. 选择性激光入射角度下薄膜在蓝宝石基底上的拉曼光谱如图13(a)所示. 扫描角度从35°增加到60°,P3HT膜的拉曼强度呈现下降趋势,而当扫描角度进一步增加时拉曼强度提高. 与之不同,共混薄膜的拉曼强度随扫描角度的增加而持续下降. MSEF计算(见图13(b))揭示了拉曼信号在z方向上的距离依赖性,用于拉曼光谱的辅助解析,预期的拉曼信号与整个聚合物厚度上的积分MSEF成正比,这与实验的拉曼光谱一致. 此外,研究表明噻吩环C=C伸缩振动峰的宽度对P3HT的分子有序程度敏感,据此作者考察了分子有序程度对基底的依赖性.Fig. 13(a) Schematic of the SA Raman interface used to collect the data shown in B and C (A). SA Raman spectra at the indicated incident angles for (B) P3HT and (C) 1:1 P3HT:PCBM deposited on a sapphire substrate. (b) Calculated MSEF as a function of distance and incident angle for the interface: 0-1000 nm sapphire/1000-1230 nm P3HT:PCBM/1230-6000 nm air (A), 0-1000 nm sapphire/1000 to 1300 nm P3HT/1300 to 6000 nm air (B). The MSEF in the sapphire layer (0-1000 nm) and the majority of the air layer (greater than 1500 nm) are omitted for clarity. The calculated plots show the expected distance dependence of the experimental Raman signal in theZ direction. (Reprinted with permission from Ref.[ 51] Copyright (2013) American Chemical Society).4拉曼光谱应用展望激光拉曼光谱虽与红外光谱同属于分子振动光谱,但其拥有诸多红外光谱不可比拟的优势,例如高的空间分辨率、高解析度、测试范围横跨远红外与近红外光谱波段并且可以直接对水体系进行测试等. 如今伴随着新型高分子材料的不断涌现与应用,诸如高分子水凝胶,高分子纳米或多层复合材料等,以及表面增强拉曼,针尖增强拉曼以及共聚焦拉曼成像等新技术的接连出现,必将会使拉曼光谱在高分子材料的研究领域中迸发出强大的活力.然而与此同时,仍有一些问题限制了拉曼光谱的应用,例如在拉曼成像中,样品表面的高空间分辨率可以实现,但是垂直于入射激光深度方向上的空间分辨率则不佳,虽有研究使用金属粒子包埋在高分子样品中,再借助表面增强拉曼技术以实现高深度方向分辨率,但是这种方法的普适性稍显不足. 另外,如今拉曼成像技术一般仍为逐点扫描(mapping)模式,而红外成像则已多采用阵列扫描(imaging)模式,这就意味着拉曼成像需要较长的时间,从而很难使用拉曼成像进行过程研究,这也严重影响了拉曼成像的应用. 现今高分子的研究中多设备同步协同测试是一个趋势,例如X射线散射、拉曼及红外光谱同步在线测试,这也对拉曼设备的小型化以及快速响应提出了更高的要求. 相信通过拉曼设备以及技术的不断升级,这些问题都会迎刃而解,彼时拉曼光谱技术将会在高分研究领域占有更加举足轻重的地位.参考文献1Zhang Shulin(张树霖).Raman Spectroscopy with Low Dimensional Nanometer Semiconductors(拉曼光谱学与低维纳米半导体).Beijing(北京):Science Press(科学出版社),2008.3-352Koenig J L.Spectroscopy of Polymers.Netherlands:Elsevier,1999.207-252.doi:10.1016/b978-044410031-3/50005-03Chalmers J,Griffiths P.Handbook of Vibrational Spectroscopy, 5 volumes set.New Jersey:John Wiley & Sons,2002.1-174Sasic S,Ozaki Y. Raman,Infrared, andNear-Infrared Chemical Imaging.New Jersey: John Wiley & Sons,2011.1-215Schrader B.Infrared and Raman Spectroscopy: Methods and Applications.New Jersey:John Wiley & Sons,2008.7-616McCreery R L.Raman Spectroscopy for Chemical Analysis.New Jersey:John Wiley & Sons,2000.15-30.doi:10.1002/04717216467Colthup N B,Daly L H,Wiberley S E.J Am Chem Soc,1965,87(5):1155-11568Wilson E B,Decius J C,Cross P C,Sundheim B R.J Electrochem Soc,1955,102(9):235C.doi:10.1149/1.24301349Tadokoro H.Structure of Crystalline Polymers.New Jersey:John Wiley & Sons,1979.179-322.doi:10.1002/macp.1979.02002197911010Larkin P.Infrared and Raman Spectroscopy.Netherlands:Elsevier,2011.7-25.doi:10.1016/b978-0-12-386984-5.10002-311Dieing T,Hollricher O,Toporski J.Confocal Raman Microscopy.Berlin:Springer,201112Gautam R,Samuel A,Sil S,Chaturvedi D,Dutta A,Ariese F,Umapathy S.Curr Sci,2015:341-356.doi:10.1140/epjti/s40485-015-0018-613Gao J,Thomas A K,Johnson R,Guo H,Grey J K.Chem Mater,2014,26(15):4395-4404.doi:10.1021/cm501252y14Martin E,Bérubé N,Provencher F,Côté M,Silva C,Doorn S,Grey J.J Mater Chem C,2015,3(23):6058-6066.doi:10.1039/c5tc00847f15Yu W,Zhou J,Bragg A E.J Phys Chem Lett,2012,3(10):1321-1328.doi:10.1021/jz300329816Gao Y,Grey J K.J Am Chem Soc,2009,131(28):9654-9662.doi:10.1021/ja900636z17Gao Y,Martin T P,Thomas A K,Grey J K.J Phys Chem Lett,2010,1(1):178-182.doi:10.1021/jz900038c18Gao J,Grey J K.J Chem Phys,2013,139(4):490319Gao J,Thomas A,Yang J,Aldaz C,Yang G,Qin Y,Grey J.J Phys Chem C,2015,119(16):8980-8990.doi:10.1021/acs.jpcc.5b0216620Wang M,Vantasin S,Wang J,Sato H,Zhang J,Ozaki Y.Macromolecules,2017,50(8):3377-3387.doi:10.1021/acs.macromol.7b0013921Zhang Z , Qin J , Diao H , Huang S,Yin J,Zhang H,Duan Y,Zhang J.Carbon,2020,161:316-322.doi:10.1016/j.carbon.2020.01.07822Badi N,Khasim S,Roy A S.J Mater Sci Mater Electron,2016,27(6):6249-6257.doi:10.1007/s10854-016-4556-823Mannanov A A,Bruevich V V,Feldman E V,Trukhanov V A,Pshenichnikov M S,Paraschuk D Y.J Phys Chem C,2018,122(34):19289-19297.doi:10.1021/acs.jpcc.8b0313624Agarwal U P,Reiner R S,Ralph S A.Cellulose,2010,17(4):721-733.doi:10.1007/s10570-010-9420-z25Wang W,Shao F,Kroger M,Zenobi R,Schluter A D.J Am Chem Soc,2019,141(25):9867-9871.doi:10.1021/jacs.9b0176526Richard-Lacroix M,Pellerin C.Vib Spectrosc,2017,91:92-98.doi:10.1016/j.vibspec.2016.09.00227Richard-Lacroix M,Pellerin C.Macromolecules,2012,45(4):1946-1953.doi:10.1021/ma202749d28Richard-Lacroix M,Pellerin C.Macromolecules,2013,46(14):5561-5569.doi:10.1021/ma400955u29Papkov D,Pellerin C,Dzenis Y A.Macromolecules,2018,51(21):8746-8751.doi:10.1021/acs.macromol.8b0186930Svenningsson L,Lin Y C,Karlsson M,Martinelli A,Nordstierna L.Macromolecules,2019,52(10):3918-3924.doi:10.1021/acs.macromol.9b0052031Park M,Wong Y S,Park J,Venkatraman S,Srinivasarao M.Macromolecules,2011,44(7):2120-2131.doi:10.1021/ma101553v32Jin Y,Kotula A P,Snyder C R,Hight Walker A R,Migler K B,Lee Y J.Macromolecules,2017,50(16):6174-6183.doi:10.1021/acs.macromol.7b0105533Kasiouli S,Di Stasio F,McDonnell S O,Constantinides C P,Anderson H L,Cacialli F,Hayes S C.J Phys Chem B,2013,117(18):5737-5747.doi:10.1021/jp400732h34Winfield J M,Donley C L,Friend R H,Kim J S.J Appl Phys,2010,107(2):1073.doi:10.1063/1.327625735Magnanelli T J,Bragg A E.J Phys Chem Lett,2015,6(3):438-445.doi:10.1021/jz502605j36López-Barrón C R,Zeng Y,Schaefer J J,Eberle A P R,Lodge T P,Bates F S.Macromolecules,2017,50(9):3627-3636.doi:10.1021/acs.macromol.7b0050437Kida T,Hiejima Y,Nitta K.Macromolecules,2019,52(12):4590-4600.doi:10.1021/acs.macromol.8b0274038Razzell-Hollis J,Thiburce Q,Tsoi W C,Kim J S.ACS Appl Mater Interfaces,2016,8(45):31469-31481.doi:10.1021/acsami.6b1212439Linde S,Carella A,Shikler R.Macromolecules,2012,45(3):1476-1482.doi:10.1021/ma201867e40McManamon C,Delaney P,Kavanagh C,Wang J J,Rasappa S,Morris M A.Langmuir,2013,29(19):5905-5910.doi:10.1021/la400402a41Kotzianova A,Rebicek J,Mojzes P,Pokorny M,Palacky J,Hrbac J.PolymerVelebny V,2014,55(20):5036-5042.doi:10.1016/j.polymer.2014.08.03242Janko M,Jocher M,Boehm A,Babel L,Bump S,Biesalski M,Meckel T,Stark R W.Biomacromolecules,2015,16(7):2179-2187.doi:10.1021/acs.biomac.5b0056543Hu J,Wang J,Wang M,Ozaki Y,Sato H,Zhang J.Polymer,2019,172:1-6.doi:10.1016/j.polymer.2019.03.04944Gao Y,Martin T P,Thomas A K,Grey J K.J Phys Chem Lett,2010,1(1):178-182.doi:10.1021/jz900038c45Grey J K.Acc Chem Res,2019,52(8):2221-2231.doi:10.1021/acs.accounts.9b0008846Nixdorf J,Di Florio G,Bröckers L,Borbeck C,Hermes H E,Egelhaaf S U,Gilch P.Macromolecules,2019,52(13):4997-5005.doi:10.1021/acs.macromol.9b0020547Xue L,Li W,Hoffmann G G,Goossens J G P,Loos J,de With G.Macromolecules,2011,44(8):2852-2858.doi:10.1021/ma101651r48Lee Y J,Snyder C R,Forster A M,Cicerone M T,Wu W L.ACS Macro Lett,2012,1(11):1347-1351.doi:10.1021/mz300546e49Raupp S M,Siebel D K,Kitz P G,Scharfer P,Schabel W.Macromolecules,2017,50(17):6819-6828.doi:10.1021/acs.macromol.7b0103750Meyer M,McKee K,Nguyen V H T,Smith E.J Phys Chem C,2012,116(47):24987-24992.doi:10.1021/jp308882w51Meyer M W,Larson K L,Mahadevapuram R C,Lesoine M D,Carr J A,Chaudhary S,Smith E A.ACS Appl Mater Interfaces,2013,5(17):8686-8693.doi:10.1021/am402322552James D T,Kjellander B K C,Smaal W T T,Gelinck G H,Combe C,McCulloch I,Wilson R,Burroughes J H,Bradley D D C,Kim J.ACS Nano,2011,5(12):9824-9835.doi:10.1021/nn203397m原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20251&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2020.20251
  • 先进高分子材料(2022)主题网络研讨会第二轮通知
    高分子材料也称为聚合物材料,可分为塑料、橡胶、纤维、胶粘剂、涂料和高分子基复合材料等。仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。主办单位:仪器信息网&《高分子学报》会议报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/ 主题专场专场主题专场时间专场一:高分子材料研究11月10日上午专场二:大科学装置在高分子研究中的应用11月10日下午专场三:高分子表征测试技术(上)11月11日上午专场四:高分子表征测试技术(下)11月11日下午会议日程报告时间报告题目报告嘉宾工作单位职务/职称专场一:高分子材料研究(11月10日上午)09:00-09:30靶向肿瘤细胞膜上磷脂酰丝氨酸的抗肿瘤药物尤业字中国科学技术大学教授09:30-10:00多粒子示踪微流变仪观测凝胶化点近旁的动态不均匀性童真华南理工大学教授10:00-10:30高分子熔体非线性拉伸流变学进展陈全中国科学院长春应用化学研究所研究员10:30-11:00借助色谱质谱探寻聚合物分子构型和问题溯源 李欣蔚沃特世科技(上海)有限公司材料科学市场高级应用工程师11:00-11:30高分子材料的全生命周期降解行为及时空谱杨睿清华大学教授11:30-12:00类嵌段/接枝高分子的构筑及其对不相容共混物的增容研究李勇进杭州师范大学教授专场二:大科学装置在高分子研究中的应用(11月10日下午)14:00-14:30同步辐射先进光源——高分子产业创新的加速器李良彬中国科学技术大学教授14:30-15:00XPS表面分析技术在先进高分子材料中的应用 蔡斯琪岛津企业管理(中国)有限公司产品专员15:00-15:30中国散裂中子源微小角中子散射谱仪及其在高分子构象研究中的应用程贺散裂中子源科学中心研究员15:30-16:00同步辐射散射技术在高分子薄膜表征中的应用刘烽上海交通大学研究员专场三:高分子表征测试技术(上)(11月11日上午)09:00-09:30Flash DSC表征高分子薄膜材料热导率胡文兵南京大学教授09:30-10:00透射电镜在聚合物不同层次结构研究中的应用闫寿科青岛科技大学教授10:00-10:30聚合物链的单分子操纵-从纳米力学性质到动态结构演变张文科吉林大学教授10:30-11:00待定赛默飞世尔科技11:00-11:30热塑性聚氨酯的快速扫描芯片量热仪研究门永锋中国科学院长春应用化学研究所研究员11:30-12:00热重分析技术在高分子科学中应用的常见问题分析丁延伟中国科学技术大学教授级高级工程师专场四:高分子表征测试技术(下)(11月11日下午)14:00-14:30原位核磁共振研究单体和高分子反应动力学和机理郭鸣明西南大学教授14:30-15:00光散射在高分子溶液表征中的应用梁德海北京大学教授15:00-15:30运用先进光学方法研究高分子环带球晶的形成机理徐军清华大学副系主任/副教授15:30-16:00原子力显微镜研究高分子超薄膜结晶张彬郑州大学教授注:会议日程后续变动与调整以会议报名页面显示为准。会议报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/或扫描上方二维码报名会议联系1.会议内容管编辑:17862992005,guancg@instrument.com.cn2.会议赞助刘经理:15718850776,liuyw@instrument.com.cn
  • 国家高分子材料质量检验检测中心(安徽)携手珀金埃尔默共建高分子材料检测分析联合实验室
    2022年2月23日,国家高分子材料质量检验检测中心(安徽)与珀金埃尔默合力共建的联合实验室——高分子材料检测分析联合实验室,揭牌仪式在质检中心隆重举行。联合实验室将依托合作双方在技术、仪器和方法开发上的优势,积极探索新的检验检测技术,以助力进一步提升高分子材料科研及检测技术水平。国家高分子材料质量检验检测中心(安徽)主任吴雄杰(左)、珀金埃尔默应用市场事业部中国区总经理刘继涛(右)出席签约仪式联合实验室揭牌仪式以塑料、橡胶、合成纤维等为代表的高分子材料是现代工业和高新技术产业的重要基石,已经成为国民经济的基础产业和国家安全不可或缺的重要保证。对高分子材料开展精准、高效的质量检测,对于促进行业快速、健康发展起着至关重要的作用。国家高分子材料质量检验检测中心(安徽),坐落在国家级桐城经济技术开发区,是华东地区唯一一家国家级的高分子材料质检中心。随着国家质检机构体制改革和机制创新,以及高分子材料行业蓬勃发展,质检中心正迎来新的发展机遇。相信和珀金埃尔默公司的深度合作,双方将能够在高分子材料分析检测相关仪器的功能化、新测试方法或重要的标准方法开发和验证方面取得新的突破。”国家高分子材料质量检验检测中心(安徽)主任吴雄杰表示国家高分子材料质量检验检测中心(安徽)主任吴雄杰、中心书记吴旺生、办公室主任乔胜、测试中心主任江小平和技术人员等,同珀金埃尔默应用市场事业部中国区总经理刘继涛、大区销售经理张亮、大区维修经理朱炜、大区技术支持经理华诚等人共同为实验室揭牌。珀金埃尔默PerkinElmer珀金埃尔默是全球最大的分析仪器生产及服务提供商之一,与国家高分子材料质量检验检测中心(安徽)有着多年的合作,为其提供了一系列先进的分析测试仪器:如QSight 220液相串质谱联用仪、NexION300X ICP-MS等离子体质谱仪、AAnalytst AAS原子吸收光谱仪、Lambda紫外/可见/近红外分光光度计以及TGA-FITR联用系统、DSC、DMA、TMA等,为高质量、高效率的元素分析提供坚实保障。双方共建的高分子材料检测分析联合实验室也将依托珀金埃尔默在国内和国外的技术中心和技术资源,共同开展相关实验,并探索新的检验检测技术和实验方法开发。希望通过共建联合实验室这种新的合作方式,助力国家高分子材料质量检验检测中心(安徽)提高技术应用水平,推进科研探索的进程,为中国高分子材料科学的基础与应用研究做出更大贡献。”珀金埃尔默应用市场业务部中国区总经理刘继涛表示
  • 直播预告!先进高分子材料主题网络会议之大科学装置在高分子研究中的应用专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。大科学装置在高分子研究中的应用专场报告嘉宾简介:中国科学技术大学教授 李良彬 李良彬,中国科学技术大学讲席教授,博士,博士生导师,国家杰出青年基金获得者,科技部“新型显示光学膜”创新团队负责人,国家“万人计划”领军人才。现任国家同步辐射实验室党委书记、副主任,合肥先进光源工作小组副组长。安徽省先进功能高分子薄膜工程实验室主任,中国科大-皖维PVA新材料、中国科大先研院-乐凯功能膜、中国科大先研院-国风集成电路与新型显示PI膜3个校企联合实验室主任。中科院“新型显示光学膜和离子交换膜等关键膜材料”建制化科研平台首席科学家,安徽皖维先进功能膜材料研究院有限公司首席科学家。美国化学学会Macromolecules杂志副主编。主要发展同步辐射先进技术和方法,研究高分子物理,开发先进高分子薄膜产品。近年主持国家自然科学基金委杰青、重大仪器、重点项目,科技部重点研发和中科院建制化平台等项目。通过校企联合实验室和横向项目等形式服务新型显示、新能源、新一代信息产业链薄膜企业40余家。获安徽省科技进步一等奖、教育自然科学二等各一项。同步辐射先进光源具有高亮度、波长连续可调、偏振和相干等特点,不仅是前沿基础研究不可或缺的平台,也是产业创新的利器。本报告以团队利用同步辐射开展高分子薄膜产品研发的工作,展示同步辐射在产业创新方面的潜力,希望能吸引更多企业利用同步辐射开展产品研发。报告题目:同步辐射先进光源——高分子产业创新的加速器散裂中子源科学中心研究员 程贺程贺,中国科技大学本硕博,美国国家标准与技术研究院访问学者。作为主要参与者建成我国第1台基于反应堆的小角中子散射谱仪,主持建设世界上第2台基于散裂源的微小角中子散射谱仪;公开发布我国第1套基于无序大分子中子全散射的数据分析软件(著作权2项),可重构无序大分子全原子最可几位置;发表60余篇论文,受邀在国内外会议上多次做分会邀请报告;主持了7项国家自然科学基金、1项国家重点研发项目子课题;现为中国化学会高分子材料分析技术与表征方法专业委员会、中国晶体学会小角散射专业委员会、中关村材料试验技术联盟科学试验标准化领域委员会委员;参与制定《无损检测中子小角散射检测方法》国家标准,正在主持制定相关团体标准。小角中子散射(SANS)是一种表征从纳米到微米尺寸物质特征结构的有力工具,配合中子的强穿透性和同位素辨识等特性,在高分子结构表征方面发挥着独特的作用。2019年11月,在广东省科技厅的资助下,微小角中子散射谱仪开始建设,将于今年底具备验收条件。为进一步发展用户,我们介绍了VSANS谱仪和机时申请方法,并分别介绍在高分子稀、浓溶液、熔体、玻璃态、晶态、复合物以及拉伸状态下测量其单链构象的实验方法。报告题目:中国散裂中子源微小角中子散射谱仪及其在高分子构象研究中的应用 上海交通大学研究员 刘烽刘烽,上海交通大学化学与化工学院教授,国家高层次人才入选者。2005年于华东理工大学取得本科学位;2008年于复旦大学取得硕士学位;2014年于麻省大学取得哲学博士学位,师从国际著名高分子科学家 Thomas Russell教授;随后在美国劳伦斯伯克利国家实验室(2014-2016)从事博士后研究。主要研究领域为有机薄膜光伏电池、同步辐射散射技术、质子膜燃料电池等。至今在包括Nature Materials, Nature Photonics, Nature Energy, Nature Communication, Adv. Mater., Adv. Energy Mater., Joule 等重要学术期刊上发表论文300余篇,引用超过24000次,科睿唯安高被引科学家。报告检验阐述同步辐射散射技术的基本知识,包括散射的基本原理、广角/小角硬光散射、共振散射、原位散射实验的相关内容,并且结合相关实际应用案例展示同步辐射散射技术的应用优势。报告题目:同步辐射散射技术在高分子薄膜表征中的应用 岛津企业管理(中国)有限公司产品专员 蔡斯琪蔡斯琪,岛津市场部X射线光电子能谱仪产品专员,负责XPS在各行业市场推广工作。X射线光电子能谱仪是表面分析领域中一种崭新的分析技术,通过测量固体样品表面约10nm左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量及价态分析。报告中主要介绍XPS原理、技术特点以及XPS在二维材料中的应用。报告题目:岛津XPS在二维材料表面分析中的应用研究会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • 2020先进高分子材料网络会议通知
    p  高分子材料也称为聚合物材料,是以高分子化合物为基体,再配有其他添加剂(助剂)所构成的材料。高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。高分子材料的研究、应用与分析检测的研究对于高分子领域的发展具有重要意义,仪器信息网特此邀请到高分子领域的专家,于strong2020年11月10日带来“先进高分子材料”主题网络研讨会/strong,为广大高分子领域研究人员搭建沟通交流的平台,推动高分子领域的发展。/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"img style="max-width: 100% max-height: 100% width: 600px height: 131px " src="https://img1.17img.cn/17img/images/202011/uepic/3c657432-56d2-40b6-9171-43b06ac93044.jpg" title="1920_420_20201020.jpg" alt="1920_420_20201020.jpg" width="600" height="131" border="0" vspace="0"//a/pp  strong豪华专家阵容:/strong/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"img style="max-width: 100% max-height: 100% width: 600px height: 181px " src="https://img1.17img.cn/17img/images/202011/uepic/2aa4361e-a9ac-4a0e-b3ed-999b6928e1ff.jpg" title="豪华专家阵容.png" alt="豪华专家阵容.png" width="600" height="181" border="0" vspace="0"//a/pp  strong会议日程:/strong/ptable border="0" cellpadding="0" cellspacing="0" style="" align="center"colgroupcol width="115" style=" width:115px"/col width="432" style=" width:432px"/col width="499" style=" width:499px"//colgrouptbodytr height="60" style=" height:60px" class="firstRow"td colspan="3" height="60" width="587" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"strong11span style=""月/spanspan style=""10/spanspan style=""日/spanspan style="" /spanspan style=""先进高分子材料/span/strong/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"strongspan style=""报告时间/span/strong/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"strongspan style=""报告题目/span/strong/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"strongspan style=""报告嘉宾/span/strong/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"09:30--10:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""动态键的实时原位表征及其对聚合物多尺度链段动力学的影响/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""张荣纯(华南理工大学/span span style=""副研究员)/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"10:00--10:30 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"Flash DSCspan style=""在高分子行业的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""陈成鑫(梅特勒/spanspan style=""-/spanspan style=""托利多国际贸易(上海)有限公司/span span style=""技术专家)/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"10:30--11:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""超简单、实用场发射扫描电镜/spanspan style=""JSM-IT700HR/spanspan style=""介绍/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""朱明芬(捷欧路(北京)科贸有限公司/span span style=""应用工程师/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"11:00--11:30 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""核磁共振波谱法在高分子材料研究中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""扶晖/spanspan style=""(/spanspan style=""北京大学/span span style=""高级工程师/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"11:30--12:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""多功能聚合物制备及其在酶解代谢分析中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""乔/span span style=""娟/spanspan style=""(/spanspan style=""中国科学院化学研究所/span span style=""副研究员/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"14:00--14:30 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""生物基橡胶改性剂/spanspan style=""——/spanspan style=""杜仲树脂的表征及应用性能的研究/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""杜振霞/spanspan style=""(/spanspan style=""北京化工大学/span span style=""教授/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"14:30--15:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""以聚酰亚胺为例浅谈色谱、质谱技术在材料表征中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""李欣蔚/spanspan style=""(/spanspan style=""沃特世科技(上海)有限公司/span span style=""材料科学市场部高级应用工程师/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"15:00--15:30 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""激光光散射在高分子药物载体中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""黄潇楠/spanspan style=""(/spanspan style=""首都师范大学化学系/span span style=""副教授/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"15:30--16:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""布鲁克原子力显微镜在高分子材料中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""刘/span span style=""阳/spanspan style=""(/spanspan style=""布鲁克(北京)科技有限公司/span span style=""应用科学家/spanspan style="")/span/a/td/tr/tbody/tablep br//pp a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self" strong报名方式/strong:点击下方链接立刻免费报名/a/ppa href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"  https://www.instrument.com.cn/webinar/meetings/XJGFZ2020//a/ppa href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"  /a/ppbr//ppbr//p
  • 2023高分子新材料检测技术交流会圆满结束
    2023年6月15日2023高分子新材料检测技术交流会在深圳圆满举办。高分子新材料是化工新材料产业的主要门类之一,不仅本身是重要的战略性新兴产业,也对其它战略性新兴产业的发展和传统产业升级起到重要支撑作用。为推动和落实检验检测服务、促进行业高质量发展,分享和交流国内外高分子行业最新检验检测技术及分析仪器设备在高分子材料领域的应用,中国石油和化学工业联合会检测技术工作委员会联同岛津企业管理(中国) 有限公司决定召开“2023高分子新材料检测技术交流会”。会议现场中国石油和化学工业联合会副会长 周竹叶中国石油和化学工业联合会副会长周竹叶进行致辞,在致辞中,介绍了石化行业的基本情况,目前化工新材料的研究方向,此次会议分享行业的新标准、新方案及仪器设备应用,专业性强、内容丰富,希望可以更好服务产业发展,提高检测技术,全面提升行业技术水平。岛津分析计测事业部营业部副部长 朱精华岛津分析计测事业部营业部副部长朱精华进行致辞,在致辞中表示,岛津历来重视化工新材料行业发展,致力于新产品、新应用方案的创新,以成套的解决方案、完善的售前售后服务支持,得到化工市场用户的肯定和信赖。经过长期的沟通交流合作,岛津和石化联合会检测技术工作委员会今天共同举办此次会议,为行业搭建高效沟通平台,希望此次会议圆满成功。中国石油化工股份有限公司北京化工研究院、国家化学建材检测中心常务副主任 者东梅发表报告《合成树脂行业现状与展望及测试技术研究方向》国家石化有机原料合成树脂质量检验检测中心副主任 王超先发表报告《合成树脂检测实验室的设备配置、期间核查与校准》岛津分析计测事业部分析中心化工应用经理 彭树红发表报告《BDO化工项目中的应用解决方案》岛津分析计测事业部市场部光谱产品经理 郑伟发表报告《塑料老化降解的快速表征和检测》广东省科学院微生物研究所生态毒理与环境安全实验室副主任 梅承芳发表报告《高分子材料生物降解性能测试和评价关键技术》中国中化蓝星股份公司、中蓝晨光化工研究设计院有限公司组长 曹金鹏发表报告《“塑料透光率测定”、“塑料产品体积电阻率的测定”实验室比对结果分析》岛津分析计测事业部市场部质谱产品专员 王子君发表报告《质谱技术在高分子材料分析领域的应用》岛津分析计测事业部市场部X射线荧光产品专员 方瑛发表报告《X射线荧光技术在新材料领域的应用》嘉宾交流会后,与会嘉宾与发表专家就发表内容进行更加深入的交流,分享更多行业信息。本文内容非商业广告,仅供专业人士参考。
  • 钱义祥——高分子物理与聚合物热分析
    高分子物理与聚合物热分析热分析老人钱义祥2018-05-10  « 高分子物理» 、« 高分子物理的近代研究方法» 、« 新编高聚物的结构与性能» 、« 聚合物结构分析» 、« 聚合物量热测定» 、« 热分析与量热学» 手册、« 高聚物与复合材料的动态力学热分析» 等专著中,论述了高分子物理理论和近代研究方法。聚合物热分析是高分子物理的近代研究方法之一,高分子物理是高聚物热分析的理论基础,用高分子物理的概念解析热分析曲线,探索聚合物结构与性能的关系。  一、高分子物理与聚合物热分析  1.聚合物热分析  热分析是在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。热分析是研究物质变化和变化规律及调控变化的近代研究方法。聚合物热分析的研究对象是高聚物。聚合物热分析最常用的热分析方法是差示扫描量热仪DSC和动态热机械分析DMA。在特别情况下,也采用热机械分析(TMA)和热分析联用技术(TG/气体分析)。差示扫描量热仪DSC是在程序控温(和一定气氛)下,测量输入给试样和参比物之间的热流速率或加热功率(差)与温度或时间关系的技术。DSC在高聚物研究中的应用有:  研究结构及动态变化   表征玻璃化转变和熔融行为   分析多组分高聚物体系的组成   研究高聚物链缠结及化学交联   研究高聚物的结晶行为   表征高聚物的微相结构   研究高聚物共混相溶性   反映共混高聚物中组分间的相互作用   研究聚合物的热历史和处理条件对高聚物结构的影响。  动态热机械分析DMA是用来测量样品在周期交变应力作用下,其动态力学性能与时间、温度、频率等函数关系的一种仪器。动态力学热分析测定高分子材料(非晶高聚物、结晶聚合物、交联聚合物、共混高聚物)在一定条件(温度、频率、应力或应变水平、气氛和湿度)下的刚度与阻尼 测定材料的刚度与阻尼随温度、频率或时间的变化,得到高聚物的温度谱、频率谱和时间谱。用高分子物理理论解读DMA的温度谱、频率谱和时间谱,获得与材料的结构、分子运动、加工与应用有关的特征参数。  聚合物热分析是高分子物理的近代研究方法之一,是近几十年中热分析发展最活跃的领域。它已经应用到聚合物结构与性能研究的几乎所有领域。运用聚合物热分析研究(测试)聚合物的非晶态(玻璃化转变及ΔTg) 聚合物的结晶态(结晶-熔融过程、熔点和熔融晗ΔH、结晶温度和结晶晗、温度对结晶速度的影响、结晶温度对熔点的影响、、高分子的链结构对熔点的影响、共聚物的熔点、杂质对聚合物熔点的影响、结晶度测定) 聚合物液晶态 高分子共混物的相容性、嵌段共聚物的微相分离、聚合物的高弹性与黏弹性(聚合物的力学松弛-蠕变、应力松弛、滞后现象、力学损耗、黏弹性与时间、温度的关系-时温等效)、表征力学松弛和分子运动对温度和频率的依赖性等。上述热分析研究的问题都是高分子物理所关注的问题。  热分析是高分子物理的近代研究方法,它辅以其它近代研究方法,如光谱、波谱、色谱、激光光散射、X射线和电子显微技术等方法,运用高分子物理理论,弄清高聚物的一级、二级和聚集态结构,并研究结构与材料功能和性能之间的关系。由此合成具有预定性能的高分子材料,或根据需要通过物理和化学方法改性合成高聚物或天然高分子以创建新的材料。同时,研究高聚物结构对材料加工流动性的影响,确定材料加工成型工艺。研究高聚物分子运动,弄清材料的力学性能、流变性、电学性能。由此,在高分子物理指导下不断制备出预期的高分子材料。  热分析方法是在不断发展的。如示差扫描量热仪DSC技术,自20世纪60年代以来,DSC技术的快速发展使其成为高分子物理尤其是高分子结晶学相关问题研究的常规实验手段。然而随着对高分子结晶和熔融研究的进一步深入,研究者们对DSC的温度扫描速率提出了更高的要求。首先,对于结晶速率较快的半结晶高分子而言,在不够快的冷却速率条件下从熔体降温至较低温度的过程总是能够发生结晶成核,从而干扰了在较低温度区域对高分子结晶成核行为的研究。  其次,高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中发生结晶时的冷却速率均大于常规DSC所能提供的降温速率,因此很难利用常规DSC模拟研究高分子在实际加工过程中所经历的结晶环境。第三,大多数半结晶高分子折叠链片晶都处于亚稳状态。在常规DSC的升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而干扰最终的熔融实验结果,使得我们难以获得最初的高分子晶体内部聚集态结构相关信息。  近年来,出现了商业化的闪速示差扫描量热仪FlashDSC。推动了高分子结晶研究的进展。因为高分子结晶与熔融问题的研究不仅对高分子科学的发展至关重要,与高分子材料在生产生活中的实际应用也密切相关。随着对相关问题的深入研究,高分子结晶与熔融行为的表征对实验手段提出了新的、更高水平的要求。闪速示差扫描量热仪FlashDSC所具备的快速升降温能力、超高的时间分辨率、易于操作等特点,在高分子结晶与熔融问题的研究上已经得到了广泛的应用。  FlashDSC在高分子的结晶方面的应用有:FlashDSC可以实现对熔体降温过程中结晶成核和生长的精确控制,甚至可以得到大多数半结晶高分子的无定形态,从而为大过冷度下高分子等温结晶的研究创造了有利条件。同时,FlashDSC所具备的超快速降温能力可与加工过程中的冷却速率相匹配,这为加工过程中结晶行为的模拟研究提供了更多的可能。  FlashDSC研究高分子结晶问题的实例有:等温总结晶动力学 等温晶体成核动力学 非等温结晶峰比较 成核剂和填料对结晶行为的影响 共聚单元对高分子结晶的影响。  FlashDSC用于高分子晶体的熔融研究:快速升温可精确地判断高分子晶体的升温退火行为,并且时间窗口与分子模拟相互衔接,在一定程度上可了解亚稳态原生高分子晶体的信息。通过进一步的应用与拓展,诸如多尺度下高分子晶体的熔融行为和极性大分子热降解温度之上的熔融行为都可以得到有益的探讨。  FlashDSC研究高分子晶体熔融问题的实例有:升温扫描过程中多重熔融峰的鉴别 高分子片晶不可逆熔融 高分子片晶可逆熔融 极性大分子晶体的熔融。  总之,FlashDSC在高分子结晶和熔融行为相关问题的研究上有望发挥更加重要的作用,有助于推动高分子结晶学相关基础理论的进一步深化与完善。[1]  2.高分子物理  高分子物理物理学是探讨物质的结构和运动基本规律的学科。高分子物理属于物理学的一个分支。高分子物理从分子运动的观点阐明高分子的结构和性能的关系。通过分子运动揭示分子结构与材料性能之间的内在联系及基本规律。  高分子物理的内容主要由三个方面组成。第一方面是高分子的结构,包括单个分子的结构和凝聚态结构。结构对材料的性能有着决定性性的影响。第二方面是高分子材料的性能,其中主要是黏弹性,这是高分子材料最可贵之处,也是低分子材料所缺乏的性能。研究黏弹性可以借助于力学方法(DMA方法)。结构和性能之间又是通过什么内在因素而连接起来的呢?这就是分子运动。因为高分子是如此庞大,结构又如此复杂,它的运动形式千变万化,用经典力学研究高分子的运动有着难以克服的困难,只有用统计力学的方法才能描述高分子的运动。通过分子运动的规律,把微观的分子结构与宏观的物理性能联系起来。因此,分子运动的统计学是高分子物理的第三个方面。  高分子结构、高分子材料的性能和分子运动统计学三部分组成高分子物理。高分子物理涉及高聚物结构表征、分子运动、物理改性及理论研究。在高分子科学的发展历程中,高分子化学是基础。高分子化学研究高分子化合物的分子设计、合成及改性,它担负着高分子科学研究提供新化合物、新材料及合成方法的任务。高分子物理是高分子科学的理论基础,它指导着高分子化合物的分子设计和高聚物作为材料的合理使用。高分子物理涉及高分子及其凝聚态结构、性能、表征,以及结构与性能、结构与外场力的影响之间的相互关系。另一方面高分子工程研究涉及聚合反应工程、高分子成型工艺及聚合物作为塑料、纤维、橡胶、薄膜、涂料等材料使用时加工成型过程中的物理、化学变化及以此为基础而形成的高分子成型理论、成型新方法等内容。当前的高分子科学已形成高分子化学、高分子物理、高分子工程三个分支领域互相交融、互相促进的整体学科。[2]  高分子科学是一门新兴科学。它经历了漫长的历程才艰难诞生。高分子物理也就在这个过程产生,并且为高分子科学的诞生和发展起了重要作用。高分子科学领域诺贝尔奖获得者H.Staudinger(1953年),Ziegler和Natta(1963年)、P.J.Flory(1974年)、A.J.Heeger,GacDiarrnid及H.Shirakawa(2000年)的重大贡献主要是建立在可靠的高分子表征基础上。我国老一辈高分子科学家钱人元、唐敖庆、冯新德、钱保功、徐僖、程镕时等均具有坚实的高分子物理理论基础,他们为高分子科学与教育事业的发展做出了巨大贡献。[3]  3.高分子物理与聚合物热分析  高分子物理的基本理论、研究领域及研究方法是高分子物理的基本内容。聚合物热分析研究对象辖于高分子,是高分子物理的近代研究方法之一。聚合物热分析的研究领域和高分子物理的研究领域常常是相叠的,热分析研究的问题常常就是高分子物理所关注的问题。下面从四个方面讨论高分子物理与聚合物热分析的关系。  1)« 高分子物理» 关于高分子物理的研究方法的论述  何曼君编著的« 高分子物理» 一书的内容提要中,特别指出该书较为系统全面地介绍了高分子物理的基本理论及研究方法。表明高分子物理的基本理论及研究方法是高分子物理的基本内容。  « 高分子物理近代研究方法» 一书基于高分子物理基本原理和理论,介绍了如何测定和研究高聚物的近代研究方法。高分子物理近代研究方法很多,热分析是高分子物理近代研究方法之一。  2)高分子物理是一门理论和实验结合的精确科学  高分子物理是一门理论和实验结合的精确科学。为了有效地研究和开发高聚物新材料,常常运用高分子物理和近代研究方法(热分析)研究聚合物结构与性能和功能的关系。  3)高分子物理理论解析热分析曲线  热分析是高分子近代物理研究方法之一。热分析实验得到高聚物的热分析曲线,仅显示真理,却不证明真理。高分子物理是聚合物热分析的理论基础。只有用高分子物理理论对热分析曲线进行解析才能阐明高分子的性能与结构之间的关系。  用热分析方法研究新材料,通常步骤是:材料的热分析测试—用高分子物理理论解析热分析曲线—改进后的材料再进行热分析测试和热分析曲线解析。如此循环往复直至开发得到性能优异的新材料。当然,研发过程中辅以其它近代研究方法是必不可少的。  4)运用高分子物理和近代研究方法研发新材料  新材料的研发是建立在可靠的表征上。高分子物理在高分子科学中的地位体现在运用近代研究方法(热分析)表征高聚物的结构与性能,研究高分子结构与功能和性能之间的关系,在高分子物理指导下制备出预期的高分子材料。表征高聚物结构与性能和功能关系的近代研究方法有光谱、波谱、激光光散射、X射线、电子显微技术和热分析。热分析是表征高聚物结构、性能和功能的重要方法之一。运用高分子物理近代研究方法(热分析)研究高分子结构和性质的关系离不开高分子物理理论的指导。  由上表明:高分子物理的基本理论及研究方法是高分子物理的基本内容。高分子物理与聚合物热分析的关系是:热分析是高分子物理的近代研究方法,高分子物理是高聚物热分析的理论基础。运用高分子物理理论解析热分析曲线,关联转变与高聚物结构与性能的关系。高分子物理与热分析是相辅相佐的学科。许多学者进行两栖跨界研究。如中科院长春应化所刘振海长期从事高分子物理和热分析工作。编著了十八本热分析著作。他师从唐敖庆、冯之榴,在高分子物理方面也很有建树。1962年,在中科院长春应化所举办的全国高分子学术论文报告会上,发表的论文“聚丁二烯吸氧动力学”评为优秀论文 在上世纪60年代初,从苏联杂志“高分子化合物”翻译的译文,有关聚丁二烯结构与性能的文章发表在« 化学通报» 上,另外,还有多篇有关高分子物理的译文发表在四川主办的一份快报上。  在上世纪50年代末60年代初,常常是利用手头现有的设备亲自动手制备线膨胀仪、应力松弛仪等,为实现自动记录,迫切需要将变量转换成电信号,这其中的关键部件就是差动变压器。刘振海最先绕制了零点低、对称性好的差动变压器,这在当年的科学报上曾有过报道。北京航天航空大学过梅丽跨界高分子物理和热分析两个领域,既教授« 高分子物理» 课程,又从事热分析,特别是DMA的实验研究。她编著了« 高分子物理» 、« 高聚物与复合材料的动态力学热分析» 的著作。  南京大学胡文兵编著了« 高分子物理» ,参加翻译出版了斯特罗伯著的高分子物理教材。他的最新研究是高分子结晶和熔融行为的FlashDSC研究。在张建军教授承办的中国化学会第四届全国热分析动力学与热动力学学术会议上发表了FlashDSC研究聚丙烯的结晶和熔融行为的论文。陆立明:1985年就读华东理工大学获得聚合物材料工学硕士,后又前往德国柏林技术大学攻读高分子物理三年。在上海市合成树脂研究所工作期间,从事聚合物开发研究,运用热分析等近代研究方法表征高分子塑料合金的特性和特征。2009年,陆立明等人编译出版热分析应用手册丛书,这套丛书汇集梅特勒-托利多公司瑞士总部和梅特勒-托利多(中国)公司科技人员的智慧而潜心编著的。有热塑性聚合物、热固性树脂、弹性体、热重-逸出气体分析、食品和药物、无机物、化学品、认证等分册。其中塑性聚合物、热固性树脂、弹性体等分册通过大量实例深入地介绍和讨论了热分析在聚合物方面的应用,并用高分子物理解析聚合物的热分析曲线。  4.用高分子物理解析高聚物热分析曲线  论述« 热分析曲线解析» 的文章初见于2006年的热分析专业会议上。十多年过去了,热分析曲线解析的现状还是像« 热分析法与药物分析» 一书中所说的那样,至今还没有一本通用的专著可查考,也没有一套完整的解析方法可借鉴,各种物质的热分析表征散见于有关学术期刊与著作中。聚合物热分析曲线解析的现状亦如此。  下面说说用高分子物理解析高聚物热分析曲线的问题。在科学研究中,实验和解析是认知学中的两个元素。用高分子物理解析高聚物热分析曲线具有探索性和研讨性。热分析曲线是热变化时物理量变化的轨迹。解析热分析曲线就是循着物理量变化的轨迹逆向追溯热变化的物理-化学归属。用高分子物理理论解析高聚物的热分析曲线,探索结构与材料功能和性能之间的关系,是热分析曲线的价值体现。用实验的真实数据作图得到热分析曲线。物质变化的现象在热分析曲线上显现是对事物本质和规律反映的一种形象,是显性信息。显性信息显示真理,却不证明真理。简单地说出曲线的变化情况,即看图说话而缺乏深度分析,它是不能揭示变化规律的。唯有用高分子物理理论对高聚物的热分析曲线进行解析,曲线才具有价值。  用高分子物理理论对热分析曲线进行解析,进行分子运动-高聚物结构-性能与加工之间的关联 解析热分析曲线时,既要解析显性信息,还要解析隐性信息,如变化的规律性、与热变化同时发生的结构变化及蕴含在曲线内的曲线(如DMA曲线中隐藏的李萨如曲线),追问曲线的内涵,诠释曲线,揭示变化的本质和规律,对曲线进行深层次的探索和关联,这就是热分析曲线的解释学。用高分子物理理论解析热分析曲线完成了“存在→价值”的转换过程。热分析曲线是存在,当热分析曲线同你的研究(需要)发生联系时,曲线便产生了价值!愿你踏上解析热分析曲线的实践活动之旅,使热分析曲线由存在转变为价值的曲线。  为了要解析高聚物的热分析曲线,热分析工作者要通晓高分子物理,要像物理学家那样思考高分子物理问题。用高分子物理理论解析热分析曲线就是将高聚物的转变与高聚物结构-性能-加工进行关联的过程。关联是一种受经验、知识、理论支配的活动,不同的人由于其具备的经验、知识、理论的背景不同,关联的深度和宽度不尽相同。  下面列举一个用高分子物理解析典型非晶态聚合物的DMA曲线实例:高分子材料黏弹性是高分子物理研究的主要内容,通常选用动态热机械分析DMA来研究高分子材料黏弹性(动态模量和力学损耗)。典型非晶态聚合物的DMA曲线(温度谱)如图所示:典型非晶态聚合物的DMA曲线(温度谱)  由图可以看到,随温度升高,模量逐渐下降,并有若干段阶梯形转折,Tanδ在谱图上出现若干个突变的峰,模量跌落与Tanδ峰的温度范围基本对应。温度谱按模量和内耗峰可以分成几个区域,不同区域反映材料处于不同的分子运动状态。转折的区域称为转变,分主转变和次级转变。这些转变和较小的运动单元的运动状态有关,各种聚合物材料由于分子结构与聚集态结构不同,分子运动单元不同,因而各种转变所对应的温度不同。玻璃态与高弹态之间的转变为玻璃化转变,转变温度用Tg表示 高弹态与黏流态之间的转变为流动转变,转变温度用Tf表示。  玻璃化转变反映了聚合物中链段由冻结到自由运动的转变,这个转变称为主转变或α转变,这段模量急趋下降外,Tanδ急剧增大并出现极大值后再迅速下降。在玻璃态,虽然链段运动已被冻结,但是比链段小的运动单元(局部侧基、端基、极短的链节等)仍可能有一定程度的运动,并在一定的温度范围发生由冻结到相对自由的转变,所以在DMA温度谱的低温区,E’-T曲线上可能出现数个较小的台阶,同时在E”-T和Tanδ曲线上有数个较小的峰,这些转变称为次级转变,从高温到低温依次命名为β、γ、δ转变,对应的温度分别记为Tβ、Tγ、Tδ。每一种次级转变对应于哪一种运动单元,则随聚合物分子链的结构不同而不同,需根据具体情况进行分析。据文献报道,β转变常与杂链高分子中包含杂原子的部分(如聚碳酸脂主链上的-O-CO-0-、聚酰胺主链上的-CO-NH-、聚砜主链上的-SO2-)的局部运动,较大的侧基(如聚甲基丙烯酸甲酯上的侧酯基)的局部运动,主链上3个或4个以上亚甲基链的曲柄运动有关。γ转变往往与那些与主链相连体积较小的基团如α-甲基的局部内旋转有关。δ转变则与另一些侧基(如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中酯基内的甲基)的局部扭振运动有关。  当温度超过Tf时,非晶聚合物进入黏流态,储能模量和动态黏度急剧下降,Tanδ急剧上升,趋向于无穷大,熔体的动态黏度范围为10~106Pa.s。从DMA温度谱上得到的各种转变温度在聚合物材料的加工与使用中具有重要的实际意义:对非晶态热塑性塑料来说,Tg是它们的最高使用温度以及加工中模具温度的上限 Tf是它们以流动态加工成型(如注塑成型、挤出成型、吹塑成型等)时熔体稳定的下限 Tg~Tf是它们以高弹态成型(如真空吸塑成型)的温度范围。对于未硫化橡胶来说,Tf是它们与各种配合剂混合和加工成型的温度下限。此外,凡是具有强度较高或温度范围较宽的β转变的非晶态热塑性塑料,一般在Tβ~Tg的温度范围内能实现屈服冷拉,具有较好的冲击韧性,如聚碳酸脂、聚芳砜等。在Tβ以下,塑料变脆。因此,Tβ也是这类材料的韧-脆转变温度。另一方面,正是由于在Tβ~Tg温度范围内,高分子链段仍有一定程度的活动能力,所以能通过分子链段的重排而导致自由体积的进一步收缩,这正是所谓物理老化的本质。[4]  以上实例说明,动态力学热分析是研究材料黏弹性的重要手段,非晶态聚合物的玻璃化转变和次级转变准确地反映了聚合物分子运动的状态,每一特定的运动单元发生“冻结”?自由转变(α、β、γ、δ)时,均会在动态力学热分析的温度谱和频率谱上出现一个模量突变的台阶和内耗峰。高分子物理从分子运动的观点出发解析非晶态聚合物的DMA曲线,揭示材料结构与材料性能之间的内在联系及基本规律。  二.高分子物理著作  五十年代未,高分子物理学基本形成。自六十年代以来,高分子研究重点转移到高分子物理方面,并出版了很多高分子物理的著作。何平笙所著的« 新编高聚物的结构与性能» 书未的附录详细地介绍了有关高分子物理的教学参考书。本文特将此附录列于文后,供参考。并把其中几本高分子物理的著作做一简单的介绍。  1.胡文兵« 高分子物理» 英文版Amolecularviewonthefundamentalissuesinpolymerphysicsisprovidedwithanaimatstudentsinchemistry,chemicalengineering,condensedmatterphysicsandmaterialsciencecourses.Anupdatedtranslationbytheauthor,arenownedChinesechemist,ithasbeenproventobeaneffectivesourceoflearningformanyyears.Up-to-datedevelopmentsarereflectedthroughouttheworkinthisconcisepresentationofthetopic.Theauthoraimsatpresentingthesubjectinanefficientmanner,whichmakesthisparticularlysuitableforteachingpolymerphysicsinsettingswheretimeislimited,withouthavingtosacrificetheextensivescopethatthistopicdemands.  该书受欢迎程度继续位列2017斯普林格出版社电子图书的前四分之一。胡文兵教授的另一本高分子物理译作是:  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  胡文兵教授最新研究:高分子结晶和熔融行为的FlashDSC研究。  2.何平笙编著« 新编高聚物的结构与性能» 科学出版社2009前言  自中国科学技术大学1958年成立高分子化学和高分子物理系以来,由已故的钱人元院士开设的" 高聚物结构与性能" 课程已50余年了,根据钱先生讲课笔记整理出版的《高聚物的结构与性能》一书(科学出版引,1981年第二版)被许多高校选做教材。近10年来、编者不但在授课时添加了高分子物理的新成果、新发现,更重要的是对课程进行了深入的教学研究,加深了对已有体系、知识点的全新理解,深受学生好评,因而在2005年获得安徽省教学成果奖一等奖和国家级教学成果奖二等奖,“高聚物结构与性能”也被评为国家级精品课程。本书就是在上述教学研究的基础上新编而成的。  高分子科学由高分子化学、高分子物理和高分子加工三大部分组成。高分子化学主要是研究如何从小分子单体合成(聚合)得到高分子化合物——高聚物,高分子加工则是研究如何把高聚物制成实用的制品,而高分子物理则包含有以高聚为对象的全部物理内容。  作为大学本科生的课程,“高分子物理”实在难以承担这个“包含有以高聚物为对象的全部物理内容”的重任。这一方面是由于“高分子物理”目前还达不到通常物理学各分支的成熟程度,另一方面是由于仍隶属于化学大框架下的高分子专业学生也难以接受更多、更深的物理和数学知识。事实上,“高分子物理”目前还主要是讲述高聚物材料的结构与性能,以及它们之间的相互关系,因此,我们仍然采用“新编高聚物的结构与性能”作为书名。依据相对分子质量的大小,高分子化合物大致可分为低聚物和高聚物,但作为材料来使用的大多是相对分子质量很高的高聚物。低聚物主要用作黏合剂、高能燃料等,不包含在本书的范围之内。因此,全书仍然使用“高聚物”这个名称。  本课程的基本任务就是探求高聚物的结构与性能,揭示结构与性能之间的内在联系及其基本规律,以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。编者认为,高聚物结构与性能的关系有三个层次,即通过分子运动联系“分子结构与材料性能”关系、通过产品设计联系“凝聚态结构与制品性能”关系和通过凝聚态物理知识联系“电子态结构与材料功能”关系。由于历史的原因,无论是国内教材,还是国外教材大都只涉及上述的第一个结构层次,内容基本上只是“分子结构与材料性能”的关系,要详细理解第二和第三个结构层次,需要开设正规的“流变学”和“凝聚态物理”的专门课程,尽管这已经超出了本书的范围,但上述高聚物结构与性能关系三个层次的理念,已牢牢树立在编者心中,并力求在本书编写中体现出来。  值得指出的是,我国高分子物理学家以高分子链单元间的相互作用,特别是从链单元间的相互吸引在凝聚态形成过程中的作用这一国际上独创的观点出发,纵观高聚物的全部相态——高聚物溶液、非晶态、晶态和液晶态中存在的问题,开展了深入系统的研究工作、取得了若干国际前沿性的研究成果。在高分子物理领域提出了一些新概念,形成了有我国特色的高分子物理学派,还独创了全新的电磁振动塑化挤出加工方法等,编者都尽量在本书中反映这些成果。此外,本书还增添了高聚物宏观单晶体、可能的二维橡胶态等新内容,指出了不同结晶方式(先聚合、后结晶,还是先结晶、后聚合)会得到完全不同的高聚物晶体、重新考虑了Williams-Landel-Ferry(WLF)方程的意义,认为它是高聚物特有分子运动所服从的特殊温度依赖关系等,全面介绍了编者对已有体系和知识点的新理解。  如前辈所言,编书如造园,取他山之石,引他池之水,但一山一水如何排布却彰显造园者的构思。书中引用了众多国内外公开出版的教材和专著中的论述或研究成果,谨向所有作者致以深切的谢意,不及面询允肯,敬请海涵。感谢朱平平教授、杨海洋副教授对书稿所提的宝贵意见,感谢李春娥高工为本书打录和校订文稿 本书内容在中国科学技术大学高分子科学与工程系连年讲授,也在中国科学院长春应用化学研究所讲授过7次,校、所多届学生对课程内容和安排都提过不少好的建议,在此一并表示感谢。书后附录中列出了有关高分子物理详细的教材和参考书目录,以供读者查询和进一步阅读。附录中还列出了编者近十年来公开发表的三十余篇有关高分子物理教学研究论文的目录,读者可参考阅读并分享编者教学研究的心得。由于编者水平有限,书中难免存在缺漏和不足之处,敬请读者和专家不吝批评、斧正。  何平笙2009年4月内容简介  本书是国家级精品课程“高聚物的结构与性能”的新编教材,是2005年“全面提升高分子物理重点课程的教学质量”国家级教学成果奖二等奖内容的全面体现。全书系统讲述高聚物的近程、远程和凝聚态结构,以及高聚物的力学、电学、光学、磁学、热学、流变和溶液性能,通过分子运动揭示“分子结构与材料性能”之间的内在联系及基本规律,更进一步提出包括“凝聚态结构与制品性能”关系和“电子态结构与材料功能”关系在内的三个层次的结构与性能关系理念,以期对高聚物材料的合成、加工、测试、选材、使用和开发提供理论依据。全书还介绍了我国学者的研究成果及编者多年教学研究的心得和对已有体系、知识点的新理解、新认识。  本书可作为高等学校理科化学类、化工、轻工纺织、塑料、纤维、橡胶、复合材料等工科材料类本科学生的教材,也可作为有关专业研究生的参考教材、对从事高聚物材料工作的有关工程技术人员和科研人员也是一本有用的参考书。  3.何曼君张红东陈维孝等.« 高分子物理» 第三版复旦大学出版社2007  是国内有代表性的高分子物理教材,为多所高校所选用。序  本书自1983年出版以来,是国内高分子物理教学的首选用书,虽在1990年作了修订,到现在也达十多年了。为了反映高分子科学的飞速发展,需要更新。编者们结合多年来的教学经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新,将本书重新编写,使之更能符合当前教学和科研的需要。相信本书会得到广大教师和学生们的欢迎。当然,还会有不尽完善的地方,欢迎使用者对编者提出宝贵意见与建议。  于同隐  2006年10月1990年修订版序  高分子科学的发展,以20世纪30年代H.Staudinger建立高分子学说为开端。此后高分子的化学,特别是高分子的合成方面,有了飞跃的发展,现代的大型高分子合成材料工业,大都肇始于这一时期的研究。其中最突出的成就,是W.H.Carothers的缩合聚合,K.Ziegler和G.Natta的定向聚合,对理论和生产都是巨大的贡献。与此同时,高分子物理化学也有相应的发展,主要是研究高分子的溶液,为测定高分子的分子量莫定了基础。  60年代以来,研究重点转移到高分子物理方面,逐渐阐明了高分子结构和性质的关系,为高分子的理论和实际应用建立了新的桥梁。这一时期的著名代表是P.J.Flory,他对高分子物理化学和高分子物理都作出了很多贡献。Staudinger,Ziegler,Natta和Flory都因此获得诺贝尔化学奖金。  本书的内容主要从分子运动的观点,来阐明高分子的结构和性能,着重在力学性质和电学性质方面,同时也兼顾到物理化学和近代的研究方法,可以供大专学校作为教材,也可供有关的高分子工作者参考。  本书由何曼君、陈维孝、董西侠编写,于同隐校订。最初以油印讲义的形式,在复旦大学试用,得到南京大学、四川大学、中国科技大学、交通大学、兰州大学、厦门大学、黑龙江大学、南开大学、华南工学院等单位有关同志的鼓励,特别是顾振军、王源身、史观一等同志提出宝贵意见,在此表示衷心的感谢。复旦大学高分子教研室的许多同志和复旦大学出版社协助本书的出版,也一并表示感谢。  由于高分子物理正处在蓬勃发展的阶段,本书内容有很多值得商讨的地方 加上编者的水平和技术上的原因,本书还存在很多错误,望读者不吝指正。  于同隐第三版前言  本书是为高等学校理科高分子专业高年级本科生编写的,也适用于低年级研究生和其他与高分子相关专业的学生。本书的内容涉及面较宽,阐述深入浅出,便于自学,还附有习题和详细的参考资料,也可供广大科技工作者阅读和参考。  建国初期,我国高分子方面的工作起步较晚,由于钱人元等老一辈科学家纷纷回国,在国内开创了高分子的教学和科研事业,在他们的带领下,少数高校中建立了课题小组或科研组,开始培养高分子方面的人才,并为教育事业打下扎实的基础,一批批的优秀人才脱颖而出,其中有些人已晋升为院士。  随着时代的前进、科技的进步,尤其是改革开放以来、高等教育突飞猛进,大部分商校都设有高分子专业,有的已发展成为一个系甚至一个学院,并设立了很多相关的专业,它们大都把高分子物理作为必修的课程。1983年我和陈维孝、董西侠合编的《高分子物理》一书编印出版,并在1990年作了修订,该书在国内被广泛采用,当时满足了广大师生的需求,得到了好评。此书曾获得国家教委颁发的优秀教材奖。然而,高分子物理这门学科近年来有较大的进展,理论在发展,观念在更新,国内外新的专著也很多。自从我翻阅了2005年全国高分子学术年会的论文后,更加感觉到,我们需要将这些新的内容介绍给读者。为此,本人特邀请陈维孝和董西侠两位抽出时间来和我一起在1990版教材的基础上,重新编写此书,同时还邀请了复旦大学在第一线从事教学工作的张红东教授参加本书的编写。  首先,在本书内加入“第一章概论”。使初学者对高分子物理有一初步的认识,并将相对分子质量及其分布的内容也写入这一章内 在第二章中引入了Kuhn链段的概念,并在高分子构象中介绍了末端距的概率分布函数的另一种推导方法 在第三章的高分子溶液性质中增加了deGennes的标度概念、θ温度以下链的塌陷,以及溶液浓度和温度对高分子链尺寸的影响等 在新增加的第四章高分子多组分体系中,介绍共混聚合物和嵌段共聚物的相分离和界面 关于高分子的凝聚态分设为非晶态和晶态两章,在非晶态章中删去了与高分子成型加工课程中有重复的部分,并在其黏流态中介绍了高分子链运动的蛇行理论 原先聚合物的力学性质内容较多,现也分设为第七、第八两章,在第八章中增加了高弹性的分子理论 在第九章中除了介绍聚合物的电学性能外,还介绍了聚合物的光学性质、透气性以及高分子的表面和界面等 在本书的最后一章中,除原先介绍的近代研究方法和有关的一些仪器、它们的原理和应用实例外,还介绍了各种仪器的近代发展情况,如测相对分子质量及其分布的绝对方法——飞行时间质谱,小角中子散射、激光共聚焦显微镜、原子力显微镜等。  本书的分工是:第一章由董西侠编写,本人修改 第二章由张红东编写,本人修改 第三、四、九、十章由我和张红东合编 第五、六、七、八章由陈维孝编写,本人修改 全书由我主审并定稿。  在编写此书时,我总是怀念起老一辈科学家们对我的教导和指点,谨以此书表示对他们的敬意和怀念。在编写过程中还得到了不少专家和学生们的支持和帮助,在此表示感谢。  何曼君  2006平10月1日内容提要  本书于1983年首次出版,1990年出版了修订版,曾获得过国家教委颁发的“优秀教材奖”等奖项、二十多年来一直是国内高分子物理教学的首选用书。为了反映高分子科学的飞速发展,编者们结合了多年的教学与科研经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新、重新编写了本书,使之更能符合当前教学和科研的需要。  全书较为系统全面地介绍了高分子物理的基本理论及研究方法。共分十章,包括高分子的链结构,高分子的溶液性质,高分子的聚集态结构,高分子多组分体系,聚合物的结晶态、非晶态,聚合物的力学、电学、光学等性质,以及聚合物的分析与研究方法等等。从分子运动的观点出发,阐述高分子的性能与结构之间的关系。  本书内容涉及面较宽,阐述深入浅出,还附有详细的参考资料,适合作为高等学校高分子专业的教材某些较深入的内容可供教师参考和学有余力的学生阅读,也可供广大科技工作者和研究人员参考。  4.过梅丽赵得禄主编« 高分子物理» 北京航空航天大学2005序  处于知识爆炸时代,信息如原子裂变一样快速增长:处于改革年代,人们有更多的选择与机会。  与20世纪50年代我国高分子物理专业初创时期缺乏教材的情况不同,目前仅国内出版的《高分子物理》教材就已有多个版本。不论深浅,全都包括高聚物结构、分子运动及性能三大部分。但作为业基础课教材,各编者又自然而然地按所在专业后续课程的需要选择了具体内容,各具特色。  自我国改革开放以来,北京航空航天大学的高分子物理课程经历了较大的变更,1987年以前,与大多数工科院校一样,该课程定位为高分子材料专业的专业基础课,课堂教学约80学时,自1987年起,该校材料科学工程系在拓宽专业面的思想指导下,率先开设了全系公共专业基础课程——材料科学与工程导论。它以金属物理和高分子物理的部分内容为主,综述了金属、陶瓷和高分子材料在结构和性能上的共性与特性。与此同时,相应削减了高分子材料专业中高分子物理的教学时数。此后,随着教改的深人,不断调整教学计划。在2000年制定的教学计划中,高分子物理(54学时)与高分子化学、金属物理、电化学原理及近代测试技术等课程一起,被定位为材料科学与工程大类专业的公共基础课。  本教材就是在上述背景下,根据高分子物理在大类专业中的地位、作用和具体要求编写的。与国内大多数高分子物理教材相比,本教材的主要特点如下:  普及与提高相结合。全书由基础部分和提高部分(带*号)两大模块组成。在基础部分,主要通过与金属、陶瓷材料的对比,阐明高聚物在结构、分子运动和性能方面的基本特点、内在联系及基本研究方法 在提高部分,适度引进了理论推导、研究新方法与最新进展,为有兴趣深入高分子材料领域的学生提供必要的基础知识。  紧密结合高分子材料及成型加工的实践与应用,重点放在高聚物的凝聚态结构、力学状态、高弹性、粘弹性和熔体流变性方面 除结合热塑性高分子材料以外、较多地涉及热固性树脂体系与复合材料 除结合通用高分子材料以外,较多地涉及航空航天用高分子材料 此外,适当涉及功能材料的功能性。适当结合高分子科学发展史引入概念。简化已在其他课程中涉及的基础知识和基本研究方法,如晶体结构与研究方法、相图分析、波谱分析原理与方法及一般力学性能等。  本书所涉及量的名称和单位符合国标规定,但有下列例外:  聚合物的分子量:按照国标,应该用相对分子质量替换传统名称分子量。但由于聚合物的相对分子质量范围可以很宽,不像小分子物质那样有一个确定的值 对于一个具体的聚合物样品,其相对分子质量又具有多分散性,须用各种统计平均值表示,如数均相对分子质量、重均相对分子质量等 在聚合物-性能关系中,还涉及临界相对分子质量等。为简明起见,本书仍沿用分子量这一名称。  高分子溶液浓度按照国标,应该用溶液中溶质的摩尔分数表示。但在未知聚合物样品确切的平均分子量之前,无法从溶质质量计算其摩尔分数,因此,通常多以溶液中溶质的质量百分数表示浓度。本书也采用这一习惯表示法。  温度按照国标,T代表热力学温度,单位为K。但在本书引用的插图中,有相当一部分都以摄氏度为坐标,如果改为热力学温度,可能会改变曲线形状,为读者参考原文带来不便 如果用t代表摄氏温度,则又有悖于高分子物理中以T x表示各种特征温度的规则。为此,本书同时采用了T/K和T/℃这两种表示温度的方法。  本教材第2、9章由过梅丽和赵得禄(中国科学院化学研究所高分子物理和化学国家重点实验室研究员)合作编写。其他章由过梅丽编写。  在本教材编写过程中,还得到北京化工大学高分子材料系华幼卿教授的热情帮助,在此表示诚挚感谢。同时也非常感谢北京航空航天大学材料科学与工程学院高分子材料系杨继萍副教授在教材整理中的细致工作和良好建议。  编者希望本教材更适用于材料科学和工程大类专业。效果如何,尚待实践检验。诚请老前辈、同仁和学生们提出批评和建议。  编者  2005年3月14日内容简介  本书系统地介绍高分子物理的基本理论,即高聚物的结构、分子运动与性能和行为之间的关系,突出高聚物区别于金属、陶瓷和其他低分子物质的特点。内容涉及力、热、电及光学等性能,但从航空航天材料科学与工程的需要出发,以力学性能为主,兼顾其他性能。本书由基础和提高(带*号)两大部分构成,以适应不同层次专业对高分子物理的教学要求。基础部分重在基本概念、基本理论及基本研究方法 提高部分涉及一些理论推导。  本书可作材料科学和工程类专业的教材,也可供高分子材料科学与工程技术人员参考。  5.过梅丽« 高聚物与复合材料的动态力学热分析» 化工出版社2002,是一本很好的有关高聚物东台力学测试的著作。前言  著名高分子物理学家A.Tobolsky曾说过:“如果对一种聚合物样品只允许你做一次实验,那么所做的选择应该是一个固体试样在宽阔温度范围内的动态力学试验(Ifyouareallowedtorunonlyonetestonapolymersample,thechoiceshouldbeadynamicmechanicaltestofasolidsampleoverawidetemperaturerange)”。  材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下做出的响应。它不同于材料的静态力学行为,后者是指材料在恒定或单调递增应力(或应变)作用下的行为。材料的疲劳行为也属动态力学行为之一,但疲劳测试通常是在较高的应力水平(例如在材料断裂强度的5O%以上)下进行的,而本书所述的动态力学分析则一般在很低的应力水平(远低于材料的屈服强度)下进行,所得到的基本性能参数是材料的动态刚度与阻尼。  测定材料在一定温度范围内动态力学性能的变化就是所谓的动态力学热分析(dynamicmechanicalthermalanalysis}简称DM-TA)。动态力学热分析是研究材料粘弹性的重要手段。在20世纪50~60年代,由于缺乏商品仪器,大多数实验室都用自行研制的设备进行研究。70年代以来,商品仪器一一问世,迅速更新换代。仪器的功能、控制与测试的精度、数据采集与处理的速度不断提高,在材料研究特别在高聚物与复合材料的研究中应用越来越广泛。  推动动态力学热分析技术迅速发展的根本动力无疑是该项技术在材料科学与工程中的重要意义。具体地说,主要表现在以下几方面。  ①于任何材料,不论结构材料或功能材料,力学性能总是最基本的性能。对于在振动条件下使用的材料或制品,它们的动态力学性能比静态力学性能更能反映实际使用条件下的性能。  ②聚物及其复合材料是典型的粘弹性材料。动态力学试验能同时提供材料的弹性与粘性性能。  ③态力学热分析通常只需要用很小的试样就能在宽阔的温度和/或频率范围内进行连续测试,因而可以在较短的时间内获得材料的刚度与阻尼随温度、频率和/或时间的变化。这些信息对检验原材料的质量、确定材料的加工条件与使用条件、评价材料或构件的减振特性等都具有重要的实用价值。  ④态力学热分析在测定高分子材料的玻璃化转变和次级转变方面,灵敏度比传统的热分析技术如DTA、DSC之类的高得多,因而在评价材料的耐热性与耐寒性、共混高聚物的相容性与混溶性、树脂-固化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。  目前,先进的动态力学热分析仪已拓展到能兼测材料的静态粘弹性,如蠕变、应力松弛等。  但是,与静态力学测试技术和传统的热分析技术相比,动态力学热分析技术的发展历史毕竟较短,因而人们对它的原理与应用潜力还认识不足。虽然在国内已出版过一些有关动态力学分析的译著,但一方面,其中所涉及的数学与物理理论较深,另一方面,所涉及的仪器已明显跟不上动态力学热分析仪蓬勃发展的趋势。而在有关热分析的著作中,则对动态力学分析技术的介绍一般都相对单薄。  笔者所在的北京航空航天大学高分子物理实验室,于20世纪70年代学习、仿制并改进了振簧仪和悬线式动态粘弾谱仪,从此开始了动态力学热分析技术的应用研究。80年代引进了杜邦公司的DuPontDMA982/1090B,在多项研究工作的基础上,汇集了数十幅DMA温度谱,纳入《高分子材料热分析曲线集》,由科学出版社于1990年正式出版。同时,也开展了超声传播法测定各向异性复合材料动态刚度的研究。但是上述动态力学试验法均主要适用于刚性材料,且不便于测定材料的动态力学性能频率谱。为适应品种繁多、性能范围宽阔、试样形式多样和应用目标各异的高分子材料与复合材料的研究,本实验室于90年代引进了RheometricScientificDMTAⅣ,并在研究工作的基础上,编制了中华人民共和国航空工业标准《塑料与复合材料动态力学性能的强迫非共振型试验方法》(HB7655~1999)。在近30年的实践中,笔者对动态力学热分析技术及其应用有了一些体会,也获得了一些经验,遂萌生了总结一下的想法,以便与同行交流共勉。  动态力学热分析是一门理论性和应用性都很强的科学与技术。但对大多数同行而言,更侧重于应用。因此,本书撰写的指导思想是实用。目的是阐明几个普遍关注的问题。  动态力学热分析能提供哪些信息?  这些信息的物理意义是什么?  如何处理与应用这些信息了?  为此在撰文中坚持下列几项原则。避免过于深奥的理论与数学推导重点阐明物理概念。  在全面阐述自由衰减振动法、强迫共振法、强迫非共振法和声波传播法的基础上,介绍目前应用越来越广泛的强迫非共振法。紧密结合最新的ISO和ASTM标准讨论试验方法。结合典型实例(但无意作文献综述〉阐明动态力学热分析的应用性突出在新材料与新工艺中的应用。结合实践讨论动态力学热分析数据的相对性与绝对性。提供较多图谱,提高直观性与可读性。但不同于手册,不求全。原理部分,给出示意图谱实例部分,给出实测图谱。  但是,囿于本实验室的仪器类型有限,笔者只可能主要围绕所使用过的仪器进行讨论,难免有挂一漏万之嫌。所幸者,目前国际上许多先进的商品动态力学热分析仪,尤其是强迫非共振仪,尽管在结构、外形上各具特色,规范、明细上略有差异,但它们的基本原理与功能正日趋一致。因此,相信“解剖麻雀”的哲学思想定会被同行所理解与接受。  在本实验室动态力学热分析技术的建设与发展中,刘士昕先生曾做出重要贡献,虽然他目前不再从事该项工作。在本书撰写过程中,得到了他的热忱支持,并获得他的同意,引用我们曾经的合作成果,在此谨表示诚挚的感谢。  在动态力学热分析技术的应用与推广中,笔者的研究生孙永明、刘贵春、阳芳、王志、范欣愉、汪少敏和董伟等做了许多实验工作,笔者深切地体会到师生合作、教学相长的愉悦。  在本书撰写过程中,美国RheometricScientific有限公司及其中国总代理北京瑞特恩科技公司在提供资料、联络同行专家、养护设备等方面都给予了大力支持,在此一并感谢。  在本书图谱绘制过程中,笔者的丈夫,陈寿祜先生,以惊人的毅力和耐心,帮助笔者完成了细致繁琐的工作,笔者的感激之情难于言表。鉴于笔者水平有限,书中难免有误,诚请读者批评指正。  内容提要  本书分三角部分。介绍了动态力学热分析的基本原理、试验方法及其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在式验方法中,结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与试验模式的选择原则、可能获得的信息及影响试验结果的因素。在应用部分,列举了大量研究实例,说明动态力学热分析技术在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。  6.朱诚身« 聚合物结构分析» 科学出版社2010该书用101页的篇幅介绍了热分析方法。第一版序  聚合物是重要的结构与功能材料。随着当代科学的发展,合成高分子材料在工农业生产、国防建设和日常生活的各个领域发挥着日益重要的作用,21世纪将成为高分子的世纪。以前那种仅停留在研究合成方法、测试其性能、改善加工技术、开发新用途的模式已远不能适应现代科学技术对聚合物材料发展的需要,而代之以通过研究合成反应与结构、结构与性能、性能与加工之间的各种关系,得出大量实验数据,从而找出内在规律,进而按照事先指定的性能进行材料设计,并提出所需的合成方法与加工条件。在此研究循环中,对聚合物结构分析提出了越来越高的要求,从而使之成为高分子科学各个领域中必不可少的研究手段。因此聚合物结构分析已成为高分子材料科学与工程学科的重要组成部分,熟练掌握高聚物结构分析技术不仅对学术研究至为重要,也将为生产实际提供必要的技术保证。  由华夏英才基金资助、郑州大学朱诚身教授主编的《聚合物结构分析》一书,正是为从事高分子材料科学与工程研究的学者、教师、学生、工程技术人员提供的一本有关聚合物分析方面的专著与参考书。本书主要内容是关于现代仪器分析技术在聚合物结构分析中的应用,以及结构分析中所涉及的理论、思维方式、实验方法等。有关材料来源于最新出版的学术专著、学术期刊中的有关论文,以及作者多年从事该领域研究的成果与经验。  与目前已出版的国内外同类著作相比,本书具有以下特点:①内容全面。本书是目前已出版著作中内容相对最完备,介绍方法最多的著作 ②操作与思维方法并重。本书一改同类著作中仅介绍方法原理与操作方法的传统,通过对各种方法发展历史、现状与展望,全面介绍其发展历程与趋势,在方法介绍的同时使读者学到系统的思维方法,使之从发展的角度掌握各种研究方法,指出了创新之路 ③应用性强。通过对各种应用实例,特别是作者亲自研究体会的介绍,使读者能更容易掌握各种结构分析方法的应用。因此本书是一本内容完整,体例新颖,富有特色的学术著作。  相信本书的出版,将对我国高分子材料科学与工程学科的发展做出积极的贡献。  程镕时  中国科学院院士第一版前言  随着高分子材料科学与工程的迅猛发展,对高聚物结构的认识愈加深人和全面的同时,对聚合物结构分析提出了更为繁重的任务,掌握现代分析技术,测定高分子各层次的结构,探讨结构与性能之间的关系,已成为每位从事高分子科学与工程工作、研究与学习的人士必备的基本功。本书正是为从事高分子物理、高分子化学、高分子材料、高分子合成、高分子加工等领域的学者、教师、学生、工程技术人员等提供的一本有关聚合物结构分析方面的专著与参考书。  本书是在作者多年来从事高分子科学研究,并吸取该领域最新研究成果的基础上集体完成的。其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由王红英、孙宏执笔 第三章核磁共振由孙宏、王红英执笔 第四章热分析由朱诚身、任志勇、何素芹执笔 第五章动态热力分析与介电分析由何索芹、朱诚身执笔 第六章气相色谱与凝胶色谱由汤克勇执笔 第七章裂解色谱与色质联用由汤克勇执笔 第八章透射电镜与扫描电镜由何家芹、朱诚身执笔 第九章广角X射线衍射和小角X射线散射由毛陆原、李铁生执笔 第十章液态与固态激光光散射由李铁生、毛陆原执笔。全书由朱诚身统稿。  本书的出版得到了华夏英才基金的资助,以及北京化工大学金日光教授、四川大学吴大诚教授的热情推荐。在此表示衷心的感谢。在编辑过程中,本书责任编辑、科学出版社杨震先生给予多方指导,杨向萍女士在立项过程中给予热情帮助 在撰写过程中郑州大学材料工程学院王经武教授、曹少魁教授对本书内容的确定提供了宝贵意见!郑州大学材料学专业硕士生陈红、张泉秋、刘京龙、历留柱在文字打印和插图绘制等方面作了许多具体工作,在此一并表示衷心地感谢。  特别要感谢中国科学院院士程镕时先生,百忙中为本书写序,给予热情推介。最后还要感谢作者的家人,在事业与写作方面给予的理解与支持。  由于作者学识、经验方面的局限,和学科方面的飞速发展,本书内容与行文方面难免存在欠妥之处,敬请读者不吝赐教。  朱诚身第二版前言  本书自2004年出版以来,受到读者的欢迎与支持,很快被第二次印刷、被许多学校选做教材和考研参考书,并在2007年获得河南省科技进步三等奖。由于近年来高分子科学的飞速发展,聚合物结构分析方面的研究对象日益增多,深度与广度越来越大,研究方法与手段日新月异,因此在本书库存几乎告罄之际,责任编辑杨震先生建议作者修订再版,就有了本书,即《聚合物结构分析》的第二版。  参加第一版撰写的作者,除王红英不幸英年早逝,任志勇、孙红因其他工作没有参加编写外,其余都参加了修订 刘文涛、申小清、郑学晶、周映霞、朱路也参加了修订工作。  与第一版相比,第二版主要删除了每种研究方法中一些较老、目前已不采用的研究内容与制样手段,补充了最新的研究成果和每种研究方法的最新发展趋势。每章参考文献删除了一些较早文献,补充了最新研究文献。  修订较大的章节有:  第四章热分析。删除了部分由仪器本身误差造成的影响,增加了近年来受关注的操作条件影响因素 增加了若干近年来出现的新型仪器,以及新近出现的各种仪器之间的联用技术。  第八章考虑到涉及的各种分析方法,将题目由。“透射电镜与扫描电镜”改为“显微分析” 删除了透射电镜制样技术,增加了电子能谱和扫描隧道显微镜的内容。  第十章在第一版中的体例与其他章有些不一致,第二版中第九、十两章作了较大的调整:第九章题目由“广角X射线衍射和小角X射线散射”改为“广角X射线衍射” 原来小角X射线散射的内容调到第十章,该章题目由“液态与固态激光光散射”改为“小角激光散射和小角X射线散射”。  全书由朱诚身策划,其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由刘文涛、申小清、周映霞执笔 第三章核磁共振与顺磁共振由毛陆原、申小清、郑学晶执笔 第四章热分析由申小清、刘文涛、朱诚身执笔 第五章动态热机械分析与介电分析由何素芹、申小清、刘文涛执笔 第六章气相色谱与凝胶色谱由汤克勇、郑学晶、朱诚身执笔 第七章裂解色谱与色质联用由郑学晶、汤克勇、周映霞执笔 第八章显微分析由何素芹、刘文涛、朱诚身执笔 第九章广角X射线衍射由毛陆原、朱路、李铁生执笔 第十章小角激光散射和小角X射线散射由李铁生、朱路、毛陆原执笔,全书由朱诚身统稿。  本书责任编辑科学出版社杨霞、周强先生在修订过程中给予多方指导,在此表示衷心地感谢。  鉴于学科方面的发展之迷,而作者见闻之携、本书桀误之处势所难免,尚请读者不吝赐教。  朱诚身  2009年7月16日内容简介  本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角X射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。  本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。  7.现代高分子物理学(上、下册)殷敬华莫志深主编科学出版社2001内容简介:  本书为中国科学院研究生教学丛书之一。本书全面介绍高分子物理的主要发展领域和现代高分子物理的主要研究方法和手段。全书共二十六章,分上、下两册出版,上册,主要介绍高分子物理的主要研究领域包括高分子链结构和聚集态结构、高分子的形态学、晶体结构和液晶态、高分子杂化材料、导电高分子和生物降解高分子结构特点和应用、高聚物共混体系的界面和增容及统计热力学、高聚物的物理和化学改性等。下册主要介绍现代高分子物理的主要研究方法和手段,包括原子力显微镜、X射线衍射、质谱学基础、电子显微镜、热分析、表面能谱、顺磁共振、电子自旋共振波谱、振动光谱和光学显微镜等的基本原理及其在高聚物中的应用。各章既有基础理论、基本原理深入浅出的介绍,也有翔实的应用实例。本书可作为高等院校和研究院所攻读高分子科学硕士和博士学位研究生的教学用书,也可供从事高分子科学研究和高分子材料生产的研究人员、工程技术人员参考。  8.张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003该书的第五章高聚物热分析和热-力分析,详细介绍了热分析在高聚物研究中的应用。DSC在高聚物研究中的应用研究结构及动态变化表征玻璃化转变和熔融行为分析多组分高聚物体系的组成研究高聚物链缠结及化学交联研究高聚物的结晶行为表征高聚物的微相结构研究高聚物共混相溶性反映共混高聚物中组分间的相互作用研究热历史和处理条件对高聚物结构的影响DMA动态力学分析在高聚物研究中的应用评价高聚物材料的使用性能研究材料结构与性能的关系表征高聚物材料的微相结构研究高聚物的相互作用表征高聚物的共混相容性研究高聚物的溶液-凝胶转变行为。  序言  高分子化学是一门迅速发展起来的基础和应用科学,并且高聚物材料及产品的迅速增长已经对世界经济产生了巨大影响。进入21世纪后高分子科学与技术将发生更大变革和突破,而且对人类生存、健康与发展起更大作用。为适应高分子科学的发展,要求在该领域的工作者对高分子物理的理论、实验方法和原理以及实际应用有足够的了解和认识。尤其对于很多高分子科学工作者而言,他们需要知道运用哪些高分子物理近代仪器和方法以及如何得到可靠的数据和信息采指导他们的科研。  同时,为了培养一大批从事高分子科学与技术的高级科技人才,必须全面提高研究生培养的质量。研究生教材建设是提高研究生培养质量的重要工作之一,为此武汉大学研究生院组织了国内一批在高分子物理前沿工作而且又具有丰富教学经验的教授和科学家以及该校青年教师编写《高分子物理近代研究方法》一书。环顾近年高分子化学与物理方面的教科书及专著,都力求包含最新成果,因而内容越来越广,深度越来越深,篇幅也越来越长。为此,这本书采用了创新的格式把研究生必修的内容用简明的语言和图表阐明,同时列举大量的最新研究成果作为实例帮助读者理解、记忆和正确运用高分子物理理论和方法。因此,这本书具有简单、明确、知识新和学习效率高的特点。我衷心祝愿新一代高分子学子能从书中受益,并为我国高分子科学发展作出重大贡献。  中国科学院院士  南京大学教授  2002年5月内容简介  本书基于高分子物理基本原理和理论,简要介绍了如何测定和研究高聚物的分子量及其分布、链构象、化学结构及其组成、结晶度及取向、熔点、玻璃化转变温度、分子运动及力学松弛、热性能、界面及表面、复合物粘接、力学性能、电学性能及生物降解性等方面的先进方法,以及光谱、波谱、色谱、激光光散射、X射线和电子显微技术。本书收集了大量具有创新思想和科学价值的实例,以指导读者更有效地应用先进仪器和方法从事高分子科学与技术的基础研究和应用开发。全书共收集约400篇参考文献,内容丰富、新颖、简明易懂,是一本较全面、深入的高分子物理教材,适合高分子化学和物理、橡胶、塑料及高聚物材料工程等方面的研究生、教师、科技人员及企业管理人员参考。  9.刘振海« 聚合物量热测定» 化工出版社2002前言  自1963年差示扫描最热法(differentialscanningcalorimetry,DSC)产生以来,在高分子材料的研究和表征中这种方法一直扮演着重要角色,虽然DSC仅是诸多热分析方法中的一种,可从近年高分子热分析的发展趋向来看,DSC这种方法构成了高分子热分析的主要组成部分。近年高分子科学出现了一系列以DSC为主或仅基于此种方法的学术著作,诸如《聚合物材料的热表征》(E.A.Turied.ThermalCharacterizationofPolymericMaterials.NewYork:AcademicPress,1981 2ndEdition,1997),该书由第1版的970页发展到第2版的2420页《热分析基础及其在聚合物科学中的应用》(T.Hatakeyama,F.X.Quin,ThermalAnalysisFundamentalsandApplicationstoPolymerScience,Chichester:JohnWiley&Sons,19942ndEdition,1999) 《高分子DSC》(V.A.Bershtein,V.M.Egorov.DifferentialScanningCalorimetryofPolymers.NewYork:EllisHorwood,1994) 国际刊物JournalofThermalAnalysisandCalorimetry于2000年第1期出版专辑AdvancesinThermalCharacterizationofpolymericMaterials。  尤应注意到,就在近年(1992年)在DSC的基础上推出一种更新的热分析方法——调制式差示扫描量热法(temperaturemodulateddifferentialscanningcalorimetry,TMDSC),这种方法一出现,就引起了人们的极大兴趣,就1998年的不完全统计已有300多篇论文发表,并很快出版了专辑【JThermAnal,1998,54(2)】。预计这种调制技术可用于各种热分析方法,将引起热分析技术一系列新变革。  作者长期从事高分子热分析科研、教学和学会工作,近年还各自主持了一段学术期刊工作,我们有着几乎完全相同的业务经历。我们合著有中、英文版《热分析手册》(中文版,北京化学工业出版社,1999 英文版,Chichester:JohnWiley&Sons,1998)。并分别出版了《热分析导论》(北京:化学工业出版社,1991)与" ThermalAnalysisFundamentalsandApplicationstoPolymerScience" (详见上述),主编《应用热分析》(东京:日刊工业新闻社,1996)。我们合著这本《聚合物量热测定》,连同上述著作,望能描绘出热分析一个较为完整的轮廓。  这本书系统介绍高分子DSC的基础(如热力学基础,DSC和MDSC的基本原理及其产生与发展,高分子的结晶、熔融和玻璃化转变等及由此而引申的各项应用,如相图、单体纯度的测定),及其在该领域在国内外取得的最新成就(如高分子合金的相容性、液晶的多重转变、水在聚合物中的存在形式及其相互作用、联用技术等)。热力学和量热学分别是热分析的理论与技术基础,Wunderlich教授所著由AcademicPress(NewYork)出版的学术专著:MacromolecularPhysicsVol3CrystalMelting(1980),ThermalAnalysis(1990)和ThermalCharacterizationofPolymericMaterials(2ndEdn,TuriEDed,1997)一书的第二章对热分析的热力学基础做了十分精辟和系统的论述 G.W.H.Hohne,W.Hemminger,H.J.Flammersheim所著DifferentialScanningCalorimetryAnIntroductionforPractitioners(Berlin:Springer,1996)堪称在阐述量热学(量热仪的传热过程)方面的佳作。作为国际热分析协会教育委员,我们愿将上述著作的有关内容介绍给国内的广大读者,本书基础部分——第一、三章和第二章的编写,分别参考了上述著作,以飨读者。  本书的第一、二、三章及附表由刘振海参考上述学术专著编写,第四、六、七、十章由畠山立子(T.Hatakeyama)编写,第五章由刘振海、陈学思、宋默编写,第八章由刘振海、陈学思编写,第九章由张利华编写。  借此机会,对于此书撰写和出版过程中给予我们鼎力相助的热分析与量热学杂志主编J.Simon教授、国际热分析协会教育委员会主席E.A.Turi教授、福井工业大学畠山兵衞教授、中科院长春应用化学研究所黄葆同院士、汪尔康院士、中科院长春分院黄长泉研究员、吉林大学陈欣方教授、中科院长春应用化学研究所王利祥研究员、唐涛研究员、化学工业出版社任惠敏编审、杜进祥编辑,以及对给予出版资助的国家科学技术学术著作出版基金委员会和精工电子有限公司一并表示衷心感谢。  受篇幅所限,本书侧重于原理的叙述,而对于浩如烟海的大量文献资料未能充分收入,日后如有机会出增订版,乐于做进一步的增补。也因时间仓促,本书定有许多疏漏,望读者不吝指正。  刘振海(长春)畠山立子(东京)2001年9月内容提要  本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章:第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量热法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 第4~9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。  本书资料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。  近年来,国内又出版了几本新的高分子物理著作,如马德柱主编« 聚合物结构与性能» (结构篇、性能篇)科学出版社2013。华幼卿金日光2013,« 高分子物理» ,第四版,北京:化学工业出版社  焦剑主编2015高分子物理西北工业大学出版社  本文编撰过程中,参阅了上述高分子物理著作并作为文献引用,在此表示感谢!  参考文献  [1]« 高分子结晶和熔融行为的FlashDSC研究进展» 李照磊1,2周东山1胡文兵1  [2]何曼君张红东陈维孝.« 高分子物理» 第三版复旦大学出版社2007  [3]张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003  [4]朱诚身« 聚合物结构分析» 科学出版社2010  [5]何平笙编著« 新编高聚物的结构与性能» 科学出版社2009  附录  有关高分子物理的教学参考书(按出版时代排列)  Alfrey.1948.MechanicalPropertiesofHighPolymers.NewYork:IntersciencePublishers  是早期有关高聚物力学性能的专著、至今仍有参考价值。  FloryPJ.1953.PrincipleofPolymerChemistry.Ithaca:CornellUniversityPress  是高分子科学的经典教材,被誉为高分子科学的”圣经”,一直到现在仍被美国众多大学选为教材,Flory也是高分子界获得诺贝尔化学奖的科学家。  钱人元,1958,高聚物的分子量测定,北京:科学出版社  是我国科学家自己的科研成果和撰写的有关专著,被翻译成英文和俄文出版,至今仍有现实的参考价值。  柯培可ⅡⅡ,1958,非晶态物质。钱人元,钱保功等译,北京:科学出版社  介绍原苏联学者的研究成果和观点,对我国有相当影响。  MasonP.WookeyN.1958.TheRheologyofElastomers.Paris:PergamonPress  是为数不多专门讲授弹性体力学性能的著作。  徐僖,1960,高分子物化学原理。北京:化学工业出版社  为国内高校工科院校早期的高分子专业教科书,有一定影响。  TobolskyAV.1960.PropertiesandStructureofPolymers.NewYork:JohnWiley&Sonslnc  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。其中有关化学应力松弛的内容仍然具有权威性。  TanfordC.1961.PhysicalChemistryofMacromolecules.NewYork:JohnWiley&SonsInc  是一本在高分子溶液方面写得较好的教材。  卡尔金,斯洛尼姆斯基,1962。聚合物物理化学概论、郝伯林等译。北京:科学出版牡  是前苏联学者的一本著作,对我国高分子物理起步有较大影响。  BuecheF.1962.PhysicalPropertiesofPolymers.NewYork:IntersciencePublishers  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。  NielsenL.E.1962.MechanicalPropertiesofPolymers.NewYork:ReinholdPublishingCorporation  也是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有较大的影响,有中文翻译本,即1965年冯之榴等译《高聚物的力学性能》,上海科学技术出版社。  VolkensteinMV.1963.ConfigutationalStatisticsofPolymericChains.NewYork:Interscience  是原苏联学者的专著,俄丈原书系1959年莫斯科苏联科学院出版社出版· 有很高价值,  卡尔金等,1964,高分子物理进展(论文集),钱人元等译,北京:科学出版社  是一本较全面介绍原苏联学者成果的书。  高分子学会,1965,レオロジーハンドブック(流变学手册),东京:丸善株式会社  有很多早期的实验教据图。  MandelkernL.1965.CrystallizationofPolymers.NewYork:McGraw-HillBookCompany  AndrewsE.H.1968.FractureinPolymers.Edinburgh:Oliver&Boyd  是有关高聚物断裂和强度的专著,因为是文革期同出的书,国内图书馆较少有收藏。  AlexanderLE.1970.X-rayDiffractionMethodsinPolymerScience.NewYork:JohnWiley&.SonsInc  和田八三久.1971.高分子的固体物性,东京:培风馆  日本学者撰写的内容比较深的高分子物理著作。国内没有流行。  BillmeyerFW.1971.TextbookofPolymerScience.NewYork,:WileyInierscienceInc  这是一本在西方影响很大的教材,但一直没有再版,  PeebolsJJH.1971.MolecularWeightDistributionsinPolymers.NewYork,:JohnWiley&SonsInc  有不少关于聚合反应动力学统计理论的内容,  TobolskyAV,MarkHF.1971.PolymerScienceandMaterials.NewYork,:WileyInterscience  有中文译本,即1977年托博尔斯基AV,马克HF编,聚合物科学与材料翻译译组译《聚合物科学与材料》,北京:科学出版社。  KakudoM.KasaiN.1972.X-rayDiffractionMethodsinPolymerScience.NewYork:WileyInterscience  JenkinsAD.1972.PolymerScience,Amaterialssciencehandbook,1and2.Amsterdam:North-HollandPublishingCompany  这是一本上下两册大部头著作,内容极为丰富。  TreloarLRG.1958.ThePhysicsofRubberElasticity.3rdEd.Oxford:UniversityPress  一本最详细介绍有关橡胶高弹性的专著。国内有中文译本,20世纪60年代的第一版就翻译成中文,第三版由王梦蛟,王培国,薛广智译,吴人洁校,北京:化学工业出版社,1982。  高分子学会,1972,高分子的分子设计3:分子设计和高分子材料的展望,东京:培风馆  论述通过分子设计来制备高分子材料的设想· 在当时有相当的影响。  小野木重治,1973,高分子材料科学,东京:诚文堂新光社  是来自日本的一本教材,也有一定影响,  KauschHH,HassellJA,JaffeeRI.1973.DeformationandFractureofHighPolymers,NewYork:PlenumPress  内容较专一。  HawardRN.1973.ThePhysicsofGlassyPolymers.London:AppliedSciencePublishersLtd  对玻璃态高聚物的力学性能有详细介绍,  晨光化工厂,1973,塑料测试,北京:燃料化学工业出版社  这是一本有管高聚物性能测试早期的著作,当时有相当的影响。  WunderlichB.1973.MacromolecularPhysics.Vol.Ⅰ,Ⅱ,Ⅲ.NewYork:AcademicPress  三卷的大著,专门讲述高聚物的结晶行为,很有参考价值。  SamuelsRJ.1974.StructuredPolymerProperties.NewYork:WileyInterscience  莫特N等.1975.材料——微观结构及物理性能的概述.中国科学技术大学《材料》翻译组译,  北京:科学出版社  该书有关“高聚物材料的本质" 和' ' 复合材料的本质”两章有很好的参考价值,其中Mark提出的提高高聚物性能的三角形原理有参考价值。  ArridgeRGC.1975.MechanicsofPolymers.Oxford:ClarendonPress  是一本从力学观点讲述的高聚物力学性能的专著。  TagerA.1978.PhysicalChemistryofPolymers.Moscow:MIPPublisher  是一本由原苏联学者撰写的高分子物理教材,用英文出版,从中可了解不少原苏联学者的科研成果。  AndrewsEH.1979.DevelopmentsinpolymerFracture-1.London:AppliedSciencePublishers  是Andrews又一本关于高聚物断裂和强度的编著,有相当参考价值。  TadokoroH.1979.StructureofCrystllinePolymers.NewYork:JohnWiley&.SonsInc  BlytheAR1979.ElectricalPropertiesofPolymers.Cambridge:CambridgeUniversityPress  是剑桥大学" CambridgeSolidStateScienceSeries" 系列中的一本书。  中国科学院上海有机化学研究所十二室,1980,压电高聚物,上海:上海科学技术文献出版社  CherryBW.1980.PolymerSurfaceCambridge:CambridgeUniversityPress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。  WilliamsJG.1980.StressAnalysisofPolymers.2ndEd.NewYork:JohnWiley&SonsInc  是一本从力学观点讲述的专著,书中数学内容较深。  FerryJD.1980.ViscoelasticPropertiesofPolymers.NewYork:JohnWiley&SonsInc  是一本高聚物黏弹性的专著,有很好的参考价值。  林尚安,陆耘,粱兆熙,1980,高分子化学,北京:科学出版社  由于全书既有高分子化学又有高分子物理内容,不便使用,影响不大。  施良和,1980,凝胶色谱法,北京:科学出版社  对普及凝胶色谱法有很好作用。  BaileyRT,NorthAM,PethrickRA.1981.MolecularMotioninHighpolymers.Oxford:Clar-  endonPress  YoungRJ.1981.IntroductiontoPolymers.London:ChapmanandHall  这是一本非常简明的高分子教材,其中有不少有关作者本人的研究成果,如聚双炔类宏观单晶体的结构与性能。英文也非常通顺易读。  BassettDC.]981.PrinciplesofPolymerMorphology,Cambridge:CambridgeUniversitypress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。有中文译本,即1987  年巴西特著,张国耀,梨书樨译《聚合物形态学原理》,北京:科学出版社。  潘鉴元,席世平,黄少慧.1981.高分子物理,广州:广东科技出版社  该书介绍的有关形变-温度曲线的论述仍有参考价值。  彼得· 赫得维格,1981,聚合物的介电谱,第一机械工业部桂林电器科学研究所译,北京:机械工业出版社  范克雷维伦DW.1981.聚合物的性质:性质的估算及其与化学结构的关系,许元泽,赵得禄,吴大诚译,北京:科学出版社  至今仍有参考价值。  尼尔生LE.1981,高分子和复合材料的力学性能.丁佳鼎译,北京:轻工业出版杜  赵华山,姜胶东,吴大诚等,1982,高分子物理学,北京:纺织工业出版社  是为化学纤维专业写的教材。  沈得言.1982、红外光谱法在高分子研究中的应用.北京科学出版社  是我国学者写的较早的有关高分子物理的专著。  SeanorDA.1982.ElectricalPropertiesofPolymers.NewYork:AcademicPress  WardIM.1982.DevelopmentsinOrientedPolymers.London:AppliedSciencePublishers  BohdaneckyM,Ková rJ.1982.ViscosityofPolymerSolutions.NewYork:ElsevierScientific  BurchardW,PattersonGD.1983.LightcatteringfromPolymers.NewYork:Springer-Verlag  尼尔生LE.1983,聚合物流变学。范庆荣,宋家琪译,北京:科学出版社。  WilliamsDJ.1983.NonlinearOpticalPropertiesofOrganicandPolymericMaterials.WashingtonD.C.:AmericanChemicalSociety  是一本以编著形式撰写的书。  WardIM1983.MechanicalPropertiesofSolidPolymers.2ndEd.NewYork:Wiley-Interscience  这是一本Ward写的英国研究生教材,国内曾前后两次把它的第一版和第二版翻译成中文出版,即1988年沃德著,徐懋,漆宗能等译校《固体高聚物的力学性能》,第二版,北京:科学出版社。仍有相当的参考价值。  斯坦RS.1983.散射和双折射方法在高聚物织态研究中的应用,徐懋等译.北京:科学出版社  KinlochAJ,YoungRJ.1983.FractureBehaviorofPolymers.London:AppliedSciencePublishers  内容比较全面的有关高聚物断裂的专著。  北京大学化学系高分子化学教研室,1983,高分子物理实验,北京:北京大学出版社  WilliamsJG.1984.FractureMechanicsofPolymers.NewYork:JohnWiley&Sonslnc  塞缪尔斯RJ.1984.结晶高聚物的性质,徐振森译。北京:科学出版社  EliasHG.1984.MacromoleculesI,structureandProperties.2ndEd.NewYork:PlenumPress  韩CD、1985.聚合物加工流变学、徐僖,吴大诚等译,北京:科学出版社  AklonisJ.MacKnightWJ.1972.MinchelShen,IntroductiontoPolymerViscoelasticity.NewYork:Wiley-Interscience  这是一本很好的有关高聚物黏弹性的入门书,1983年第二版,并由吴立衡翻译为中文,即吴立衡译,徐懋校《聚合物粘弹性引论》,北京:科学出版社,1986。可惜的是作者之一的华人科学家沈明琦英年早逝,没有能参加这第二版的写作。位沈明琦1979年在复旦大学讲课为后来出版的《高聚物的粘弹性》一书打下了基础,即于同隐,何曼君,卜海山,胡加聪,张炜编著《高聚物的粘弹牲》,上海:上海科学技术出版社,1986。  冯新德,唐敖庆,钱人元等,1984,高分子化学与物理专论,广东:中山大学出版社  其中钱人元和于同隐有关高分子凝聚态基本物理问题和玻璃化转变的章节很有参考价值。奥戈凯威斯RM.1986,热塑性塑料的性能和设计,何平笙等译,北京:科学出版社  是钱人无院士推荐翻译的有关材料性能与制品关系的专著,是高聚物结构与性能的进一步深入。  吴大诚,1985,高分子构象统计理论导引,成都:四川教育出版社  可供有关专业研究生阅读。  唐敖庆等,1985,高分子反应统计理论,北京:科学出版社  卓启疆,1986,聚合物自由体积,成郁:成都科技大学出版社  是一本专门讲述高聚物中自由体积的小册子。  钱保功,许观藩,余赋生等,1986,高聚物的转变与松弛,北京:科学出版社  是中国科学院长春应用化学研究所多年工作的总结,有大量的实验数据。  考夫曼HS,法尔西塔JJ.1986,聚合物科学与工艺学引论,吴景诚,钱文藻,杨淑兰译,北京:科学出版社  郑昌仁,1986,高聚物分子量及其分布,北京:化学工业出版社  DoiM,EdwardsSF.1986.TheTheoryofPolymerDynamics.Clarendon:OxfordUniversity  Press  有机玻璃疲劳和断口图谱编委会.1987,有机玻璃疲劳和断口图谱,北京:科学出版社  夏炎.1987.高分子科学简明教程,北京:科学出版社  是为师范生写的教材。  拉贝克JF.1987,高分子科学实验方法,物理原理与应用,吴世康,漆宗能等译,北京:化学工业出版社  提供大量的高分子实验,是一本高分子实验方面的权威性著作。  何家骏,1987,高分子溶液理论导论,兰州:兰州大学出版社  斯珀林LH.1987,互穿聚合物网络和有关材料,黄宏慈,欧玉春译,佟振合校、北京:科学出版社  吴大诚,1987~1989,现代高分子科学丛书,成都:四川教育出版社  共十本书,其中与高分子物理有关的是:  (1)孙鑫,《高聚物中的孤子和极化子》,1987。  (2)吕锡慈,《高分子材料的强度与破坏》,1988。  (3)吴大诚,谢新光,徐建军,《高分子液晶》,1988。  (4)许元泽,(高分子结构流变学》,1988。  (5)古大治。《高分子流体动力学》,1988。  (6)江明,《高分子合金的物理化学》,1988。  (7)赵得禄,吴大诚,《高分子科学中的MonteCarlo方法》,1988。  (8)吴大诚,HsuSL,《高分子的标度和蛇行理论》,1989。  日本纤维机械学会,纤维工学出版委员会,1988,纤维的形成、结构及性能、丁亦平译,北京:纺织工业出版社  朱永群,1988,高分子物理基本概念与问题,北京:科学出版社  是第一本有关高分子物理习题的书。  鲁丁JA.1988,聚合物科学与工程学原理,徐支祥译,北京:科学出版社  潘道成,鲍其鼎,于同隐,1988,高聚物及其共混物的力学性能,上海:上海科学技术出版社  朱善农等,1988,高分子材料的剖析,北京:科学出版社  穆腊亚马,1988,聚合物材料的动态力学分析,福特译,北京:轻工业出版社  李斌才,1989,高聚物的结构与物理性质,北京:科学出版社  周贵恩,1989,聚合物X射线衍射、合肥:中国科学技术大学出版社  CampbellD,WhiteJR1989.PolymerCharacterization:PhysicalTechniques.London:Chapman&Hall  国内少有人拥有此书。  王正熙,1989,聚合物红外光谱分析和鉴定,成都:四川大学出版社  林师沛,1989,塑料加工流变学,成都:成都科技大学出版社  雀部博之,1989,导电高分子材料,曹镛,叶成,朱道本译,北京:科学出版社  克里斯坦森RM.1990,粘弹性力学引论,郝松林,老亮译,北京:科学出版社  杨挺青,1990,粘弹性力学,武汉:华中理工大学出版社  胡徳,1990,高分子物理与机械性质(上、下册),台北:渤海堂文化公司  是我国台湾学者编写的高分子物理教材,内容偏重高聚物本体的性能,不涉及凝聚态以及溶液和相对分子质量等。  FujitaH.1990.PolymerSolutions.Amsterdam:Elsevier  SchmitzKS.1990.AnIntroductiontoDynamicLightScatteringbyMacromolecules.SanDiego,AcademicPress  弗洛里PJ.1990,链状分子的统计力学,吴大诚,高玉书,许元泽等译,吴大诚校,成都:四川科学技术出版社  是弗洛里又一本大著,是高分予理论最重要的经典著作之一。  朱锡雄,朱国瑞,1992,高分子材料强度学,杭州:浙江大学出版社  JoachimDE.1992,RelaxationandThermodynamicsinPolymersGlassTransition.Berlin:AkademieVerlag  郑武城,安连生,韩娅娟等,1993,光学塑料及其应用.北京:地质出版社  周其凤,王新久,1994,液晶高分子,北京:科学出版社  有不少作者自己的研究成果。  GrosbergAY,KhokhlovAR.1994.StatisticalPhysicsofMacromolecules.Woodbury:AIPPress  黄维垣,闻建勋,1994,高技术有机高分子材料进展,北京:化学工业出版社  是当年的一本进展性质的汇编。  左渠,1994,激光光散射原理及在高分子科学中的应用,郑州:河南科学技术出版社  谢缅诺维奇,赫拉莫娃,1995,聚合物物理化学手册,闫家宾,张玉昆译,北京:中国石化出版社  薛奇,1995,高分子结构研究中的光谱方法,北京:高等教育出版社  GeddeUW.1995.PolymerPhysics.London:Chapman&Hall  叶成,习斯J.1996,分子非线性光学的理论与实践,北京:化学工业出版社  大柳康,1996,实用高分子合金,吴忠文等译,长春:吉林科学技术出版社  周光泉,刘孝敏,1996,粘弹性理论,合肥:中国科学技术大学出版社  这是一本由力学专家写的书,对数学的推导有独特之处。  吴培熙,张留成,1996,聚合物共混改性,北京:中国轻工业出版社  朱善农等,1996,高分子链结构,北京:科学出版社  DoiM.1996.IntroductiontoPolymerPhysics.Clarendon:OxfordUniversityPress  复旦大学高分子科学系,高分子科学研究所,1996,高分子实验控术,修订版,上海:复旦大学出版社  已出第二版。  Hans-GeorgE.1997,AnIntroductiontoPolymerScience.NewYork:VCHPress  刘凤歧,汤心颐,1997,高分子物理,北京:高等教育出版社  2004年出了第二版。  何天白,胡汉杰,1997,海外高分子科学的新进展,北京:化学工业出版社  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  ShiLH,ZhuDB.1997.PolymersandOrganicSolids,Beijing:SciencePress  这是为纪念钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果,钱人元,1998,无规与有序——高分子凝聚态的基本物理问题研究,长沙:湖南科学技术出版社  是钱人元院士带领开展的国家攀登项目“高分子凝聚态的基本物理问题研究”的研究成果的通俗介绍,我国很多科学家对高分子物理的贡献都有深入浅出的论述。  蔡忠龙,冼杏娟,1997,超高模量聚乙烯纤维增强材料,北京:科学出版社  该书中有关聚乙烯热学性能的介绍很有参考价值。  邵毓芳,嵇根定,1998,高分子物理实验,南京:南京大学出版社  江明,府寿宽,1998,高分子科学的近代论题,上海:复旦大学出版社  是纪念于同隐教授和钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果。  吴人洁等,1998,高聚物的表面与界面,北京:科学出版社  吴培熙,张留成,1998,聚合物共混改性,北京:中国轻工业出版社  沈家瑞,贾德民,1999,聚合物共混物与合金,广州:华南理工大学出版社  托马斯EL.1999,聚合物的结构与性能,北京:科学出版社  是一本详细介绍高分子物理近年成果的专著,适合作为进一步深造的参考书。  朱道本,王佛松,1999,有机固体,上海:上海科学技术出版社  介绍导电高聚物的专著,有许多我国科学家的研究成果。  王国全,王秀芬等,2000,聚合物改性,北京:中国轻工业出版社  梁伯润,屈凤珍等,2000,高分子物理学,北京:中国纺织出版社  是为合成纤维专门化的学生写的教材。  顾国芳,浦鸿汀,2000,聚合物流变学基础,上海:同济大学出版社  金日光,华幼卿,2000,高分子物理,第二版,北京:化学工业出版社  工科院校所用教材,2007年已出第三版。  闻建勋,2001,诺贝尔百年鉴——奇妙的软物质,上海:上海科学教育出版社  是一本有关高分子学界诺贝尔奖获得者的通俗介绍,对了解高分子科学的发展轨迹有启发。  杨玉良,胡汉杰,2001,跨世纪的高分子科学丛书——高分子物理(分册),北京:化学工业出版社  何天白,胡汉杰,2001,功能高分子与新技术,北京:化学工业出版社  平郑骅,汪长春,2001,高分子世界,上海:复旦大学出版社  是一本有关高分子科学的高级通俗读本。  SperlingLH.2001.IntroductionofPhysicalPolymerScience.3rdEd.NewYork:Wiley  布里格,2001,聚合物表面分析,曹立礼,邓宗武译,北京:化学工业出版社  殷敬华,莫志深,2001,现代高分子物理学(上、下册),北京:科学出版社  名为研究生教材,实际上是一本很好的进展性专著。  韩哲文,张得震,杨全兴等,2001,高分子科学教程,上海:华东理工大学出版社  既有高分子化学内容也有高分子物理内容。  BowerDI.2002.AnIntroductiontoPolymerPhysics.Cambridge:CambridgeUniversityPress  化学工业出版社2004年以”国外名校名著”系列影印出版了该书。  刘振海,2002,聚合物量热测定,北京:化学工业出版社  杨小震,2002,分子模拟与高分子材料,北京:科学出版社  附有软件光盘,很实用,其软件可利用来开设高分子物理实验。  过梅丽,2002,高聚物与复合材料的动态力学热分析,北京:化学工业出版社  是一本很好的有关高聚物动态力学测试的著作。  吴其晔,巫静安,2002,高分子材料流变学、北京:高等教育出版社  是一本详细介绍聚合物流变学的研究生教材。内容详尽,很有参考价值。  QianRY(钱人元),2002.PerspectivesontheMacromolecularCondensedState.Singapore:WorldScientific  这是钱人元院士把自己在' ' 高分子凝聚态物理中若干基本问题”国家攀登项目中的成果介绍给世人的一本专著,包括很多我国科学家对高分子物理的贡献。  ColbyRB.2002.PolymerPhysics.Oxford:OxfordUniversityPress  TeraokaI.2002.PolymerSolutions:AnIntroductiontoPhysicalProperties.NewYork:John  Wiley&SonsInc  非常好的有关高分子溶液的专著,内容较深。  张祖德,朱平平等,2001,中国科学院一中国科学技术大学硕士研究生入学考试化学类科目考试纲要,合肥:中国科学技术大学出版社  是中国科学院各研究所和中国科大研究生必读参考书,2002第二版。  deGennes.1979.ScalingConceptsinPolymerPhysics.Ithaca:CornellUniversityPressGennes  Gennes是又一位高分子界获得诺贝尔奖的科学家,他把理论物理中的许多概念用在了高分子科学上,创立了高分子物理中著名的“标度理论“。该书已由吴大诚等翻译成中文、即德让  摘自« 新编高聚物的结构与性能» 何平笙编著科学出版社
  • 岛津赞助2010年全国高分子材料科学与工程研讨会
    2010年全国高分子材料科学与工程研讨会,于2010年10月27-29日在南昌隆重举行。这是全国高分子材料科学研究的一次盛会,中国科学院院士王佛松、徐僖任会议主席,来自全国高校和研究所的高分子材料合成和改性领域的450多人参加,会议报告近300个。报告内容涉及领域包括高分子材料的合成与反应,高分子材料凝聚结构和性能,功能高分子与高分子新材料、高分子材料的改性、复合及共混等。在这些研究领域,对材料的表征也是研究热点。 在这次学术盛会中,岛津公司积极参与,为大会提供了赞助。市场部吴国华博士和李正友分别作了题为&ldquo 岛津IG-1000在纳米材料粒径分析中的最新应用&rdquo 和&ldquo A novel method in copolymer analysis-GPC-AccuSpot-MALDI-TOFMS system&rdquo 的报告,介绍了岛津最新MALDI质谱仪器和粒度仪IG-1000的最新应用,得到了专家的好评。 作为有着135年悠久历史的分析仪器界最大供应商之一,岛津公司一直秉持着&ldquo 为人类做贡献&rdquo 的宗旨,积极服务于各行各业。在高分子材料表征等研究领域,红外、紫外、热分析、粒度等仪器应用较多,而岛津产品线完全覆盖这些仪器,为该领域的发展起到了巨大的作用。此外,岛津公司的《高分子分析完全解决方案》更是用户分析工作的重要参考资料。岛津公司将一如既往的为国内的用户提供高质量的仪器和服务。
  • 天津能谱科技应邀参加南开大学第19届中国化学高分子学术研讨会活动
    经中国化学会批准,《中国化学会第19 届反应性高分子学术研讨会》定于2018年8月24日~8月26日在南开大学召开。本次会议由南开大学化学学院,南开大学高分子化学研究所,功能高分子材料教育部重点实验室和《离子交换与吸附》编辑部共同承办。作为化学实验室及工业领域优秀的仪器供应厂商,天津能谱科技将参加并赞助此次研讨会。会议现场  本次研讨会首先以“缅怀中国离子交换之父何炳林院士为中国高分子化学研究做出的突出贡献”而后由国内高分子化学研究领域高端研究员做相关研究报告,来自国内各著名高校化学高分子行业的400多名与会者参加了会议,并在学术交流时间参观了我们的展台。 何炳林院士是我国著名的高分子化学家、教育家、中国科学院院士,中国离子交换树脂工业的开创者,被誉为“中国离子交换树脂之父”,为我国第一次核试验的成功和我国高分子学科的发展做出了巨大贡献,历任南开大学化学系系主任、高分子化学研究所所长,曾兼任青岛大学校长、中国化学会常务理事、中国化学会高分子化学委员会副主任等职务。  会场外交流研究报告展示能谱科技产品海报会场展示公司展台 会议期间,天津能谱科技展出了部分实验室设备,如红外光谱仪、红外测油仪、 lab press 15t 粉末压片机、电热压片模具、压片模具等通用实验室产品。  特别感谢组委会的亲切邀请和安排。 作为领先的科学仪器公司,希望天津能谱科技有限公司能为更多的化学高分子行业用户送去优质的科研仪器及解决方案。
  • 2013全国高分子学术会将在沪举行
    由中国化学会高分子学科委员会主办,东华大学、纤维材料改性国家重点实验室、材料科学与工程学院共同承办的&ldquo 2013年全国高分子学术论文报告会&rdquo 将于2013年10月12至16日在上海世博中心举行。会议期间将举办&ldquo 先进高分子材料、实验室设备与分析仪器展览会&rdquo ,充分展示国际国内最先进的科学仪器、实验室设备和装备,为企业搭建技术交流、产品展示与贸易洽淡的平台。为促进高分子领域产学研用结合,实现资源共享、互利双赢、共同发展,加快推动高分子学科建设与产业的发展,同时还将举办&ldquo 高分子产学研合作对接会&rdquo 。  届时将由来自中、美、德、日、瑞士等国家超过100家展商和10,000多名高分子科学与材料领域的产学研用的专业人士将前来参观展览会。仪器信息网作为支持媒体也将亮相展览现场,展位号为097,欢迎参观交流。  一、会议主题  主题A 高分子合成(A Program 0921 fixed.pdf)  主题B 高分子理论、计算与模拟(B program 1011 fixed.pdf)  主题C 高分子结构与性能(C program 0918 fixed.pdf)  主题D 高分子表征(D Program 0920 fixed.pdf)  主题E 分子组装与超分子聚合物(E Program 0923 fixed.pdf)  主题F 功能高分子(F Program 1011 fixed.pdf)  主题G 光电功能高分子(G Program 0920 fixed.pdf)  主题H 医用高分子(H Program 0923 fixed.pdf)  主题I 生物高分子与天然高分子(I Program 1011 fixed.pdf)  主题J 高分子复合体系(J Program 0923 fixed.pdf)  主题K 先进纤维(K program 0926 fixed.pdf)  主题L 高性能树脂(L program 1011 fixed.pdf)  主题M 阻燃高分子(M Program 0919 fixed.pdf)  主题N 高分子加工与成型(N Program 0923 fixed.pdf)  主题O 高分子与工业(O Program 0926 fixed.pdf)  主题P 高分子教育(P program 0920 fixed.pdf)  主题Q 中美高分子材料前沿论坛(The 3rd ACS-PMSE/CCS-PD Joint Symposium on Polymers)(Q Program 0922 fixed.pdf)  二、大会日程表日期时间内容地点 8:30-19:00报到绿厅(1F)*2013.10.1216:30-17:30组委会会议上海大华锦绣假日酒店 ** 锦园会议室3+4 厅 20:00-21:30高分子学科委员会会议上海大华锦绣假日酒店** 锦园会议室3+4 厅 8:30-9:30开幕式红厅(1F)* 9:30-12:10大会报告红厅(1F)*2013.10.1312:10-13:30午餐银厅(1F)* 13:30-17:30分会报告各分会场(4-6F)* 17:30-19:30晚餐银厅(1F)* 8:30-12:00分会报告各分会场(4-6F)* 12:00-13:00午餐银厅(1F)*2013.10.1413:00-15:00墙报展讲(单号)蓝厅外走廊(4F)* 15:00-17:30分会报告各分会场(4-6F)* 17:30-19:30晚餐银厅(1F)* 8:30-12:00分会报告各分会场(4-6F)* 12:00-13:00午餐银厅(1F)*2013.10.1513:00-15:00墙报展讲(双号)蓝厅外走廊(4F)* 15:00-17:30分会报告各分会场(4-6F)* 17:30-19:30晚餐银厅(1F)* 8:30-12:00分会报告各分会场(4-6F)*2013.10.1612:00-13:15午餐银厅(1F)*13:00-15:40大会报告蓝厅(4F)* 15:40-16:30闭幕式蓝厅(4F)*2013.10.13 2013.10.14 2013.10.158:30-18:00 8:30-17:00 8:30-15:302013 先进高分子材料、实验室设备与分析仪器展览会银厅(1F)*   *世博中心(上海市浦东新区世博大道1500 号)  **上海大华锦绣假日酒店(上海市浦东新区锦尊路399 号)  三、开闭幕式及大会报告详细日程 日期时间内容/编号报告人及单位报告题目主持人地点 8:30-9:30开幕式 朱美芳红厅(1F) 9:30-10:10PL1张希(清华大学)超分子聚合物研究的历史、现状与趋势蒋士成2013.10.1310:10-10:50PL2管治斌(University of California, Irvine, USA)Be strong, tough, adaptive and self-healing: Life lessons applied to polymer designs江明 10:50-11:30PL3李永舫(中国科学院化学研究所)聚合物太阳电池光伏材料和器件曹镛 11:30-12:10PL4丁建东(复旦大学)图案化表面与干细胞分化沈之荃 13:00-13:40PL5刘世勇(中国科学技术大学)响应性聚合物组装体的构筑和功能拓展颜德岳蓝厅(4F) 13:40-14:20PL6吕小兵(大连理工大学)二氧化碳共聚物化学结构的调控策略唐本忠2013.10.1614:20-15:00PL7朱美芳(东华大学)聚合物基功能杂化材料的构筑与应用张俐娜15:00-15:40PL8闫寿科(北京化工大学)异质表面聚合物薄膜的结构与性能郁铭芳15:40-16:30闭幕式 徐坚 附件:2013年全国高分子学术论文报告会程序册(点击下载).pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制