当前位置: 仪器信息网 > 行业主题 > >

红外溴化钾制样方法

仪器信息网红外溴化钾制样方法专题为您提供2024年最新红外溴化钾制样方法价格报价、厂家品牌的相关信息, 包括红外溴化钾制样方法参数、型号等,不管是国产,还是进口品牌的红外溴化钾制样方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外溴化钾制样方法相关的耗材配件、试剂标物,还有红外溴化钾制样方法相关的最新资讯、资料,以及红外溴化钾制样方法相关的解决方案。

红外溴化钾制样方法相关的资讯

  • KBr溴化钾人工晶体的概念是什么?
    傅里叶红外光谱仪测试样品时不可缺少的就是溴化钾光谱纯(碎晶/粉末),而在实验室做红外测样实验高消耗品之一的溴化钾光谱纯,再次恒创立达为各位大咖普及一下关于溴化钾KBr材料的相关知识。 KBr溴化钾人工晶体概念 我国晶体生长有着悠久的历史,早在春秋战国甚至更早的时期,就有煮海为盐、炼制丹药等晶体生长的时间活动,而同时,世界上随着炼金术的兴起与发展,人工晶体生长,特别是人工晶体气相生长在全世界都有发现。 进入二十世纪后,人工晶体生长才有飞跃式的发展,不仅体现在人工晶体生长理论、人工晶体生长技术上,而且,发现了一大批极有价值的新晶体,为科学进步和人类生活水平提高做出了巨大贡献。 人工晶体生长的水平主要表现在技艺和科学两个方面,其中,晶体生长技术在晶体的研究中占有极重要的地位。晶体是在物相转变的情况下形成的。 由于晶体可以从气相、液相和固相中生长,而不同的晶体材料又有不同的生长条件,加上应用对晶体的要求有时十分苛刻,这样就造成了晶体生长方法的多样性以及生长设备和技术的复杂性:从高真空到超高压,从低温到等离子体高温,从精密检测生长参数到微机自动监控生长过程,从高纯原料到超净环境......,晶体生长技术几乎动用了现代实验技术中一切重要手段,并长出了大量支撑现代科学技术发展的高品质晶体。 人工晶体生长,是物质在一定的热力学条件下相变成为晶体的过程。晶体生长多数是控制生长条件,使生长的原料从液态(熔体或溶液)转变为固态,成为单晶体。也有从气体状态生长晶体的方法。目前,已经发展出来诸如水溶液法、提拉法等许多不同的人工晶体生长方法和技术,用于不同性质的晶体的生长。 晶体生长是一个由小到大的过程,在一个合适的介质条件下,晶体生长有三个阶段:首先是介质达到过饱和,过冷却,或者融熔阶段,其次是成核,即晶核形成阶段,最终是晶体生长阶段。晶核是晶体的萌芽状态。下面是四溴化碳中添加红色燃料杂质后形成枝晶的过程。
  • KBr溴化钾人工晶体是如何生长的?
    据2020年6月19日本司动态新闻发布关于KBr溴化钾人工晶体的概念是什么?受到很多大咖的关注。借此要求我司会履行为大咖们续写关于溴化钾相关知识,为大咖们在选择仪器或者仪器耗材时做好准备。 今天恒创小编深入解读一下KBr溴化钾人工晶体生长过程是怎样的呢? 所谓生长,对于生物体而言,就是一个从小到大,从幼稚到成熟的过程。生物体生长需要养料,需要空气、阳光等环境。同样,对于“晶体的生长”,也是一个晶体从小到大的不断变化的过程,也需要养料(原料)和合适的环境,如生长炉、合适的温度等。 不同的生物体的生存环境、生长发育各不相同,同样,对于晶体而言,不同的晶体有不同的生长过程,需要不同的生长条件,有相应的不同的晶体生长技术和方法,其晶体生长的过程和要求也有所不同。 下面,我们将以提拉法晶体生长为例,介绍晶体生长的过程。 提拉法是一种从熔融原料中生长晶体的方法,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。提拉法生长晶体的过程大致分为多晶料烧结(含称料、混料、烧料、二次烧结等)、提拉晶体(含化料、下籽晶、放肩、生长等)以及晶体出炉几个步骤。对于上述晶体生长的概念和过程,您可以在后面的页面后找到详细的描述。
  • 能谱知识学堂:乙醇红外光谱图测试会用到哪些红外附件?
    天津能谱科技红外光谱仪部门培训近日专门对乙醇的测试方法进行了探讨研究,使用了各种窗片材料及膜层厚度在ican9傅立叶红外光谱仪上进行了反复多次红外测试,最终得出了一个极为满意的结果。具体的测试方法及膜层厚度数据都在密封池的使用说明书中有极为详细的叙述,保证您用这种标准密封池测试出你满意的图谱。2010版国家药典规定了乙醇必须用红外光谱仪绘制谱图,以鉴定其真伪及纯度。乙醇属于液体,一般是95%的酒精度,里面含有5%的及其他物质,在红外光谱仪上制图时样品膜层厚度要求尽量的薄,厚了是绘制不出峰来的。对于经常需要对乙醇进行测试的用户,可以使用天津能谱科技为你准备的长久使用的密封池,乙醇专用硒化锌密封池。其优点是:可以反复长久使用。缺点是:波长范围4000-440cm-1基本符合但稍短于药典规定的4000-400cm-1,透过率稍低,在70%左右。损失了红外光谱仪30%的能量,对于那些使用多年能量降低的仪器来说是致命的缺陷,会降低仪器的分辨能力而影响图谱质量。对于真正只想对乙醇进行测试结果,而不是为了上交图谱的用户,可以使用天津能谱科技为你准备的只看结果密封池乙醇专用氟化钙密封池。其优点是:可以反复长久使用,而且完全可以测试出乙醇的特征峰,因为乙醇的特征峰均在4000-1200cm-1而氟化钙可以在4000-1100cm-1,透过率高,在90%左右而不会损失仪器能量。缺点是:波长范,4000-1100cm-1不能符合药典规定4000-400cm-1,所以不能作为国家药典规定的标准图谱。对于正规的乙醇红外光谱图,国家药典要求在4000-400cm-1的波数范围内测试,那么必须使用天津能谱科技为你准备的低成本溴化钾密封液体池乙醇标准密封池。配备有4片溴化钾窗片。尤其是对于一般不是经常需要对乙醇进行测试的用户,一般是一两个月才需要测试一次的用户更是合适,其优点是:波长范围符合药典规定4000-400cm-1,透过率高,大于90%,不会损失仪器能量,图谱完全符合国家标准。缺点是:溴化钾窗片容易潮解,对密封防潮保管的要求较高。使用次数濒繁时透过率降低太快。只是经常使用会消耗较多的溴化钾窗片,增加了使用成本。延伸阅读:红外光谱仪测试样品送检要求?为了保护红外光谱仪仪器和保证样品红外谱图的质量,送本仪器分析的样品,必须做到:(1)样品必须预先纯化,以保证有足够的纯度 (2)样品须预先除水干燥,避免损坏仪器,同时避免水峰对样品谱图的干扰 (3)易潮解的样品,请用户自备干燥器放置 (4)对易挥发、升华、对热不稳定的样品,请用带密封盖或塞子的容器盛装并盖紧,同时必须在样品分析任务单上注明 (5)对于有毒性和腐蚀性的样品,用户必须用密封容器装好。送样时必须分别在样品瓶标签的明显位置和分析任务单上注明。 能谱科技作为国内先进的红外光谱仪制造商,生产的ican9傅立叶红外光谱仪具有先进的红外光源系统、稳定的光学系统、高性能的电子系统、人性化的操作系统、极强的防潮处理、丰富的扩展性等特点广泛应用于医药、化工、高校、环保等领域,得到了广大用户的好评。
  • 红外光谱仪的保养及压片小技巧
    1、实验室的温度应在15~30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。因要严格控制室内的相对湿度,因此红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。  2、为防止仪器受潮而影响使用寿命,红外实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是霉雨季节,最好是能每天开除湿机。  3、如所用的是单光朿型傅里叶红外分光光度计(目前应用最多),实验室里的CO2含量不能太高,因此实验室里的人数应尽量少,无关人员最好不要进入,还要注意适当通风换气。  4、红外光谱测定最常用的试样制备方法是溴化钾(KBr)压片法,因此为减少对测定的影响,所用KBr最好应为光学试剂级,至少也要分析纯级。使用前应适当研细(200目以下),并在120℃以上烘4小时以上后置干燥器中备用。如发现结块,则应重新干燥。制备好的空KBr片应透明,与空气相比,透光率应在75%以上。  5、如供试品为盐酸盐,因考虑到在压片过程中可能出现的离子交换现象,标准规定用氯化钾(也同溴化钾一样预处理后使用)代替溴化钾进行压片,但也可比较氯化钾压片和溴化钾压片后测得的光谱,如二者没有区别,则可使用溴化钾进行压片。  6、压片法时取用的供试品量一般为1~2mg,因不可能用天平称量后加入,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。一般要求所没得的光谱图中绝大多数吸收峰处于10%~80%透光率范围在内。最强吸收峰的透光率如太大(如大于30%),则说明取样量太少 相反,如最强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。  7、压片时KBr的取用量一般为200mg左右,应根据制片后的片子厚度来控制KBr的量,一般片子厚度应在0.5mm以下,厚度大于0.5mm时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。  8、压片时,应先取供试品研细后再加入KBr再次研细研匀,这样比较容易混匀。研磨所用的应为玛瑙研钵,因玻璃研钵内表面比较粗糙,易粘附样品。研磨时应按同一方向(顺时针或逆时针)均匀用力,如不按同一方向研磨,有可能在研磨过程中使供试品产生转晶,从而影响测定结果。研磨力度不用太大,研磨到试样中不再有肉眼可见的小粒子即可。试样研好后,应通过一小的漏斗倒入到压片模具中,并尽量把试样铺均匀,否则压片后试样少的地方的透明度要比试样多的地方的低,并因此对测定产生影响。另外,如压好的片子上出现不透明的小白点,则说明研好的试样中有未研细的小粒子,应重新压片。  9、测定用样品应干燥,否则应在研细后置红外灯下烘几分钟使干燥。试样研好并具在模具中装好后,应与真空泵相连后抽真空至少2分钟,以使试样中的水分进一步被抽走,然后再加压到0.8~1GPa(8~10T/cm2)后维持2~5min。不抽真空将影响片子的透明度。  10、压片用模具用后应立即把各部分擦干净,必要时用无水乙醇棉球擦洗干净,置干燥器中保存,以免污染、锈蚀。
  • iCAN9傅立叶红外光谱仪让饲料中的 “禁药”喹乙醇无处可藏
    由于喹乙醇有中度至明显的蓄积毒性,对众多数动物有明显的致畸作用,对人类也有潜在的三致性,即致畸形,致突变,致癌变。因此喹乙醇在美国及欧盟都被严禁用作饲料添加剂。代表药品名为倍育诺、快育灵。《中国兽药典》(2005版)也有明文规定,喹乙醇被禁止用于家禽及水产养殖领域。喹乙醇称喹酰胺醇,奥喹多司,为浅黄色结晶性粉末,无臭,味苦。溶于热水,微溶于冷水,在乙醇中几乎不溶。化学名为2--氨基甲酰-3-甲基-喹恶啉-1,4-二氧化物。 国家315晚会上报报导了一些饲料企业为了一己私利瞒天过海地在往饲料中非法添加 “禁药”——喹乙醇。 饲料违规添加此类禁药,能使饲养的动物傻吃酣睡猛长,但是抗生素在肉里边有残留,人吃了带抗生素的肉以后,或产生“耐药性”。长远地来说,它可能会让某种病菌、病毒产生耐药性,这样就会导致整个人类都无法再有效抵御疾病。 天津市能谱科技有限公司红外光谱仪应用分析工程师本着专业的态度和认真负责任的精神,立即行动起来,利用能谱科技自主研发的ican9傅里叶变换红外光谱仪设计制作出来完整的检测解决方案,供相关单位使用。检测设备: 主机:ican9傅立叶变换红外光谱仪 1台 附件:常规固体测试包(溴化钾kbr压片法) 1套检测步骤:(1)样品片制备:取供试品喹乙醇约1.0mg (预先在红外灯下烘1小时或在恒温105℃下干燥3小时,特殊供试品需用其它方法进行干燥),置玛瑙研钵中,加入干燥的溴化钾(溴化钾与供试品的比例应按照具体要求进行混合),充分研磨混匀(向同一方向研磨),移置于压模中,使分布均匀,把压模水平放置于压片机座上,加压至10t/cm2,保持3分钟,(压力大小与保持时间应根据实际需要进行调整),取出供试片,用目视检查应均匀,表面平滑,透光好。(2)溴化钾准备:每次做样取适量的kbr于称量瓶中,在红外灯下烘1小时或在恒温105℃下烘3小时,取出后置干燥器中待用。(3)在红外光谱仪软件工作站中设置扫描参数为分辨率4cm-1,扫描次数32次,依次将溴化钾空白片和喹乙醇样品片放入红外光谱仪主机样品仓中,得到样品的红外光谱图。
  • 中国药典《药品红外光谱集》标准谱图采集全攻略
    红外光谱仪是药物研究及生产必备的分析仪器之一,而粉末压片几乎是每个测试人员的必备技能。尽管压片工作看起来简单重复且没有太多的技术含量,但是想要采集到一张能够与药典标准红外谱图相媲美的谱图数据却并不是一件轻松的事情。2023 年 10 月,中国药典《药品红外光谱集》(2023 年版)正式发布。安捷伦技术人员经过多年的工作经验的积累,将通过红外谱图评价标准、红外实验室基本要求、仪器准备、粉末压片标准工作流程、粉末压片制样过程注意事项以及谱图常见问题解析等六个方面对标准红外谱图采集流程进行详细介绍。红外谱图评价标准高质量红外光谱图通常需要满足以下条件:基线平直且纵坐标在 85-100%T 之间最强吸收峰纵坐标在 5-15%T 之间在 2200-2400 cm-1 处没有 CO2 吸收峰干扰在 3400 cm-1 及 1600 cm-1 附近区域没有水峰干扰光谱信噪比好且谱线平滑下图为使用 Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图。图 1. Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图红外实验室基本要求使用红外光谱仪的用户实验室应具备以下条件:实验室温度控制在 25℃ 左右,湿度控制在 50% 以下,并保证日常恒温恒湿要求用于仪器波数准确度及光度精度验证的标准聚苯乙烯(PS)薄膜储备溴化钾、氯化钾及石蜡油等常规试剂,并放置在干燥皿内备用用于样品压片制备过程中的红外烘烤灯红外压片机、模具及配套的压片工具仪器准备安捷伦 Cary630 FTIR 光谱仪体积小巧、性能稳定,且满足《中国药典》对红外光谱仪的所有指标要求。仪器采用主机与附件分体式的设计,用户可根据测试需求及样品类型选择合适的附件。药物粉末压片测试时,可选择主机搭配透射样品仓附件实现 400-4000 cm-1 范围内红外谱图的采集。仪器软件为符合 21 CFR Part11 法规要求的 MicroLab PC 软件,为药物研发及药物质控实验室提供最安全的数据完整性保证。粉末压片时,测试条件如下:仪器分辨率:2 cm-1波长范围:400-4000 cm-1扫描次数:32 次药物粉末压片标准工作流程取 1-2 mg 样品与 100-200 mg 干燥后的溴化钾粉末(取决于药物红外吸收的强弱特性,二者比例可适当调整)放入玛瑙研钵中混合研磨,直至得到均匀、超细的颗粒。组装压片磨具,将底部压头光面朝上放入模具中。将样品缓慢加入模具中并使其均匀地散布在底面压头上。把上压头光面向下放入模具,压上压杆。将模具放入压片机中压制,压力调整到 20 MPa 左右,保持 1-2 min。转动卸压阀,缓慢卸掉压力并取出模具。用压头反向取出片子并检查片子的均匀程度和透明度。将样品放入样品支架并置于样品仓内进行测量。粉末压片制样过程注意事项为了能够获得效果良好的谱图,注意事项总结如下:1溴化钾及氯化钾粉末易吸水,日常应放置在干燥皿中保存。使用前须在 120℃(或 150℃)干燥箱中恒温干燥 2 小时以上。2为避免颗粒散射造成的基线倾斜问题,样品及试剂颗粒应进行充分研磨至 2.5um 以下,以研磨过程中粉末不再有颗粒感为宜。3如样品和试剂在研磨过程中发生离子交换,则需要更换试剂类型或改用糊法进行测试。4如果压出的片子易碎,请确认是否与加入粉末太少、压力过大或压力保持时间太长有关,可通过增加粉末体积或降低压力等方式来避免这种情况。5如果片子与模具粘合在一起、脱模困难,需要确认是否由样品易吸水或比较粘稠的特性引起。若是样品特性原因,可适当减少样品加入量;若是室内湿度过大或模具未清洗干净引起,可降低室内湿度或在红外烘烤灯下制备样品以及深度清洗模具等来优化。谱图常见问题解析获得红外谱图后,分析谱图可发现制样过程中存在的问题并优化制样过程。经常遇到的几种情况分别为:1加入样品量不合适谱图吸收峰的强弱,可判断加入的样品量的多少。如图 2 所示,光谱 1 中所有峰为尖峰,但吸收峰强度较弱,可判定为加入样品量不足;光谱 2 中多个峰平顶饱和,可判定为加入样品量过多。根据峰强度的强与弱,可通过减少或者增加样品加入量来优化。图 2. 光谱 1 中加入样品量太少,吸收较弱;光谱 2 中加入样品量太多,峰饱和2基线倾斜透过率光谱越高波数越向下倾斜,如图 3 所示。通常是样品与试剂研磨不充分,光在样品上发生散射造成的。图 3. 研磨不充分样品谱图对比如图 4 所示,分别制备不同颗粒粒度样品的溴化钾压片并采集红外谱图。从图中可以看出,随着颗粒粒径减小,透射谱图基线的倾斜问题得到明显改善。图 4. 不同颗粒粒度样品的溴化钾压片谱图3样品与试剂发生离子交换在样品压片过程中,试剂与样品可能发生离子交换。如一些有机盐,可选择更换试剂类型或者采用糊法的方式来避免。以盐酸氯酯醒为例,如使用 KBr 作为研磨试剂,则会发生离子交换导致谱图发生变化,此时可选用 KCl 为研磨试剂进行压片。如图 5 所示,可以看到分别使用两种试剂压片后的谱图差异。图 5. 分别使用 KBr 及 KCl 作为研磨试剂进行盐酸氯酯醒压片后采集的红外谱图4二氧化碳干扰峰影响用户经常会发现在 2200-2400 cm-1 处出现杂峰,这主要是因为空气中二氧化碳浓度变化引起的,如图 6 所示。从图中可见,此特征峰有时为正峰,有时候为倒峰,造成这种差异的原因是扫描背景谱图与扫描样品谱图时环境中二氧化碳的浓度发生了变化。所以在进行红外谱图采集的过程中,工作人员应尽量避免对着样品仓的位置呼气,同时要尽量降低背景与样品扫描的时间差。图 6. 二氧化碳对光谱影响示意图结 语以上经验总结,希望能够对日常工作中需要使用红外光谱仪的用户带来一些启发。通过对工作细节的优化,能够轻松获得一张可与药典中标准红外谱图相媲美的结果。如果您对安捷伦 Cary630 FTIR 红外光谱仪感兴趣的话,可通过点击以下链接获取相关资料。https://www.agilent.com/cs/library/technicaloverviews/public/te-cary630-material-id-5994-4992zh-cn-agilent.pdf
  • 食品防腐剂的检测方法,你知道几种?
    p style="text-indent: 2em "食品防腐剂是用于防止食品因微生物引起的变质,提高食品保存性能,延长食品保质期而使用的食品添加剂。由于防腐剂能延长食品保质期,我国《食品卫生法》规定,允许食品加入适量的防腐剂。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "防腐剂种类/span/strong/pp  常用食品防腐剂种类繁多,可以分为化学防腐剂和天然防腐剂两大类。化学防腐剂又分为无机防腐剂和有机防腐剂。/pp  有机化学防腐剂主要有strong苯甲酸(苯甲酸钠)、山梨酸(山梨酸钾)、对羟基苯甲酸脂类、脱氢醋酸、双乙酸钠、柠檬酸和乳酸/strong等 /pp  无机化学防腐剂主要包括strong亚硫酸(亚硫酸钠)、二氧化硫、硝酸盐及亚硝酸盐类、游离氯及次氯酸盐、磷酸盐/strong等。/pp  span style="color: rgb(192, 0, 0) "strong饮料中常见防腐剂/strong/span/pp  苯甲酸又名安息香酸,稍溶于水,溶于乙醇,酸性条件下对多种微生物(酵母、霉菌、细菌)有明显抑菌作用,对产酸菌作用较弱。在直接饮用的饮料内的最大使用量为0.2克/ 公斤。因为苯甲酸溶解度低,使用不便,实际生产中大多是使用其钠盐,其钠盐的抗菌作用是转化为苯甲酸后起作用的。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201812/uepic/716348b1-f099-4228-9e01-653a8a3ad914.jpg" title="1.jpg" alt="1.jpg" style="text-align: center width: 364px height: 313px " width="364" height="313"//pp  山梨酸,又名花楸酸,微溶于水,易溶于乙醇。对光、对热稳定,长期放置易被氧化着色。对霉菌、酵母菌和好气性细菌均有抑菌作用。山梨酸是酸性防腐剂,适用范围在pH 值5.5以下,而毒性为苯甲酸的1/4,所以从国外发展动向看,有逐步取代苯甲酸及其钠盐的趋势。最大使用量:0.6克/公斤。/pp  strongspan style="color: rgb(192, 0, 0) "食品防腐剂的检测方法/span/strong/pp  目前使用的大多数防腐剂对人体都有一定的毒性,一旦过量会对健康产生危害。因此,各个国家对防腐剂的用量和残留量都有严格的规定,防腐剂的准确检测对食品卫生安全具有重要意义。/pp  目前食品防腐剂的检测主要有高效液相色谱法、气相色谱法、紫外光分光光度法、薄层色谱法,滴定法等。其中气相色谱法、高效液相色谱法、紫外光分光光度法准确度高,分析快捷,是目前最常用的检测方法。/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong常用的检测方法/strong/span/pp  strongspan style="color: rgb(192, 0, 0) "1. /span/strongstrongspan style="color: rgb(192, 0, 0) "高效液相色谱法/span/strong/pp  strong原理/strong:/pp  配制苯甲酸钠、山梨酸钾和安赛蜜的标准溶液,以230nm为检测波长,绘制标准曲线 样品经超声波脱气、膜过滤后直接进样,按上述条件进行色谱测定,得到各种组分的回归方程及相关系数。/pp  strong评价/strong:/pp  高效液相色谱法具有分析速度快,分离效率高,测定结果准确等优点,是检测食品中苯甲酸钠的最常用的方法。现在通用的较佳方法是将样品用乙醚萃取, 再将萃取后的样液在水浴烘干,然后用甲醇定容, 滤膜过滤后进行HPLC检测。此试验种用超声萃取法,具有样品预处理简单,使操作简单、快速、准确,值得推广。/pp  但是此法仅限于某种食品 ,应用于多种食品时 ,常常出现防碍峰干扰。/pp  span style="color: rgb(192, 0, 0) "strong2. 紫外分光光度法/strong/span/pp  strongspan style="color: rgb(0, 0, 0) "原理/span/strong:/pp  利用苯甲酸钠和山梨酸钾的紫外吸收光谱差异, 采用多元线性回归紫外吸光光度法同时测定饮料中苯甲酸钠和山梨酸钾。其中样品无需预处理。/pp  strong评价/strong:/pp  样品无须预处理,操作简单,并且可同时测定多组分。加和性好, 准确度高。/pp  span style="color: rgb(192, 0, 0) "strong3. 气相色谱法/strong/span/pp  strong原理/strong:/pp  用分析天平准确称取试样并用盐酸酸化,将山梨酸、苯甲酸和对羟基苯甲酸脂类用乙醚提取浓缩,用具有氢火焰离子化检测器的气相色谱仪分离测定,与标准比较定量。/pp  strong评价/strong:/pp  比较简便和灵敏,但是设备投入成本高,存在违规操作,有易燃易爆的隐患。/pp  strongspan style="color: rgb(192, 0, 0) "4. 红外光谱法/span/strong/pp  strong原理/strong:/pp  以最佳定量准确性和速度,从溴化钾-苯甲酸钠红外谱图中减去溴化钾-奶粉(以奶粉为例)红外谱图,得到特征分析峰(1555cm),在该波数下测定浓度等梯度变化的标准固态溶液的吸光度,并以此吸光度数值为纵坐标,以相应的浓度为横坐标,绘制工作曲线,将待测样品的吸光度代入回归方程,从而计算苯甲酸钠的含量。/pp  其中样品预处理采用样品与溴化钾于研钵中研细,干燥,压制晶片的方法。/pp  strong评价/strong:/pp  此法操作简便、准确,同时可对多种样品进行含量测定,适用于工业生产,食品检测等工作。/pp  目前可以投入生产和检测的方法主要就是上述介绍的高效液相色谱法、气相色谱法和紫外分光光度法,而红外光谱法在国内外都少见报道,而荧光光谱法还处在实验阶段,尚未成熟和被广泛使用。由于成本比较低和方便等原因,高效液相色谱法在一定时期还会是使用最广泛的方法。/pp  食品中防腐剂的检测,事关食品安全问题,不容有错。你在食品的防腐剂检测过程中遇到过哪些问题,又有什么好的经验和总结,欢迎给小编留言,我们相互分享,共同进步。/p
  • 打破空白局面,KRS-5红外晶体实现国产
    红外光谱作为“分子的指纹”,可用于分子结构和物质化学组成的研究,被广泛应用在药品质量监测、油品鉴别、工业大气空间特性测定等领域,而绘出红外光谱的红外光谱仪也就成了科学家们的重点青睐对象。其中,红外光学窗片则是该仪器中必不可少的器件,其品质的好坏直接影响红外光谱仪的性能。现有的红外光学材料能同时应用于中红外、远红外两个波段的材料较少。目前应用最为广泛的红外窗片是溴化钾和氯化钠,但这两种材料均存在潮解问题,大大限制了其应用。表1所示为几种常用的傅立叶红外光谱仪窗片,与其他材料对比,KRS-5窗片因有相当宽的红外透射范围和不易潮解的特点脱颖而出。窗片名称性能透射波长KRS-5窗片不易潮解,耐高气压,强度高0.5~40μm氯化钠窗片容易潮解,适合测试无水样品0.2~15μm溴化钾窗片容易潮解,适合测试无水样品0.2~15μm氟化钙窗片不易潮解,耐一定温度200℃1~11μm石英窗片不易潮解,耐高压,耐高温190nm~4.5μm硫化锌窗片不易潮解,耐高压1~14μm表1 常见傅立叶红外光谱仪窗片材料对比KRS-5,又名溴碘化铊,是溴化铊和碘化铊的混合结晶体,呈橘红色,如图1所示,不易潮解,对红外线有较好的透过性,尤其在空气中能透过相当宽的红外线波段,在波长为0.6~40μm的区域内,其透过率可达70%以上,是一种性能优良的红外材料,可用于制作红外光学零件,窗片、透镜、组合物镜、棱镜等。图1 KRS-5晶体由于KRS-5晶体的生产工艺技术难度较高,该晶体的生产和应用主要集中在海外,且价格比较昂贵,此前国内一直处于空白状态。不过现在,这个空白已经被北京滨松光子技术股份有限公司(简称北京滨松)所填补。北京滨松一直致力于晶体的开发生产,并已完成多种闪烁晶体的研发并实现稳定生产。凭借多年的经验,近期成功研制出KRS-5晶体,性能与国外同类产品相当,且价格方面相比国外晶体具有很大的优势。图2 北京滨松公司KRS-5与国外同类产品透过率对比除可供应常规规格产品外,北京滨松还可根据用户具体需求提供定制服务,如加工各种薄片、方形棱镜、纽扣状晶体、锥形晶体等,同时也可以提供KRS-5窗片的研磨、抛光等处理。图3 北京滨松公司KRS-5样品北京滨松是滨松光子学株式会社(简称滨松公司)与北京核仪器厂于1988年共同投资兴建的,是国内著名的以光电探测为核心的高新技术企业。滨松公司在华的全资子公司——滨松光子学(商贸)中国有限公司(简称滨松中国)负责北京滨松产品在国内的商务活动。如希望对KRS-5有进一步了解,敬请联系我们。
  • 央视315 港东科技在行动
    央视315晚会上报报导了一些饲料企业为了一己私利瞒天过海地在往饲料中非法添加 “禁药”——喹乙醇。 饲料违规添加此类禁药,能使饲养的动物傻吃酣睡猛长,但是抗生素在肉里边有残留,人吃了带抗生素的肉以后,或产生“耐药性”。长远地来说,它可能会让某种病菌、病毒产生耐药性,这样就会导致整个人类都无法再有效抵御疾病。 喹乙醇称喹酰胺醇,奥喹多司,为浅黄色结晶性粉末,无臭,味苦。溶于热水,微溶于冷水,在乙醇中几乎不溶。化学名为2--氨基甲酰-3-甲基-喹恶啉-1,4-二氧化物。商品名为倍育诺、快育灵。由于喹乙醇有中度至明显的蓄积毒性,对大多数动物有明显的致畸作用,对人也有潜在的三致性,即致畸形,致突变,致癌。因此喹乙醇在美国和欧盟都被禁止用作饲料添加剂。《中国兽药典》(2005版)也有明确规定,喹乙醇被禁止用于家禽及水产养殖。 天津港东科技发展股份有限公司应用分析工程师本着专业的态度和认真负责任的精神,立即行动起来,利用港东科技自主研发的FTIR-650傅里叶变换红外光谱仪设计制作出来完整的检测解决方案,供相关单位使用。检测设备: 主机:FTIR-650 傅里叶变换红外光谱仪 1台 附件:常规固体测试包(溴化钾压片法) 1套检测步骤:(1)溴化钾准备:每次做样取适量的KBr于称量瓶中,在红外灯下烘1小时或在恒温105℃下烘3小时,取出后置干燥器中待用。(2)样品片制备:取供试品喹乙醇约1.0mg (预先在红外灯下烘1小时或在恒温105℃下干燥3小时,特殊供试品需用其它方法进行干燥),置玛瑙研钵中,加入干燥的溴化钾(溴化钾与供试品的比例应按照具体要求进行混合),充分研磨混匀(向同一方向研磨),移置于压模中,使分布均匀,把压模水平放置于压片机座上,加压至10t/cm2,保持3分钟,(压力大小与保持时间应根据实际需要进行调整),取出供试片,用目视检查应均匀,表面平滑,透光好。(3)在红外光谱仪软件工作站中设置扫描参数为分辨率4cm-1,扫描次数32次,依次将溴化钾空白片和喹乙醇样品片放入红外光谱仪主机样品仓中,得到样品的红外光谱图。
  • GB/T 603-2023《化学试剂 试验方法中所用制剂及制品的制备》等系列标准 ——将于2024年4月份实施
    GB/T 603-2023《化学试剂 试验方法中所用制剂及制品的制备》等系列标准——将于2024年4月份实施我们从全国标准信息公共服务平台查询发现,GB/T 603-2023《化学试剂 试验方法中所用制剂及制品的制备》于2023年8月6日经国家市场监督管理总局(国家标准化管理委员会)批准发布,代替GB/T 603-2002《化学试剂 试验方法中所用制剂及制品的制备》,自2024年3月1日起实施。除此之外,还有这些化学试剂标准将于2024年3月1日实施: GB/T 9722-2023 化学试剂 气相色谱法通则 GB/T 669-2023 化学试剂 硝酸锶 GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌) GB/T 684-2023 化学试剂 甲苯 GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备 GB/T 686-2023 化学试剂 丙酮 GB/T 678-2023 化学试剂 乙醇(无水乙醇) GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴) GB/T 649-2023 化学试剂 溴化钾本标准(以下代指GB/T 603-2023)规定了化学试剂试验方法中所用制剂及制品的制备方法。本标准适用于化学试剂分析中所需制剂及制品的制备,其他领域也可选用。本标准和其它另外三个标准号称实验室里化学分析的“四剑客”,分别为:GB/T 603-2023 《化学试剂 试验方法中所用制剂及制品的制备》 、GB/T 601-2016 《化学试剂 标准滴定溶液的制备》 、GB/T 602 -2002 《化学试剂 杂质测定用标准溶液的制备》 和GB/T 6682 《分析实验室用水规格和试验方法》 。
  • 恒创立达发布MATRIX-50 傅里叶红外光谱仪新品
    仪器简介MATRIX 50型傅立叶变换红外光谱仪产品是天津恒创立达科技发展有限公司的结合机械、电子、AI等技术研制出来的先进仪器。该产品采用众多创新技术使得仪器的光源能量传输效率、干涉仪的稳定性、接收器的灵敏度都达到业内的优质水平。可以满足教学、工业及研究等各种级别的应用。实验原理利用干涉仪干涉调频的工作原理,把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品,接收器接收到带有样品信息的干涉光,再由计算机软件经傅立叶变换即可获得样品的光谱图。卓越的光学系统设计 干涉仪采用DSP控制电磁驱动Michelson干涉仪,具有连续动态调整功能,自动优化系统能量,无需人工调整; SuperTect数字技术的电子系统。全数字化,输出数字信号。24 位、500KHz 的 A/D 转换,高速 USB接口,达到光谱数据实时采集,保证了数据的真实性和可靠性; 仪器内置工业级温湿度模块,显示屏直接数字化显示温湿度,并具有湿度报警装置,而且腔体整体密封,保证整个腔体密封干燥,提高了防潮效果,大大提高各部件的使用寿命; 专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。 可重复使用的304不锈钢盒装干燥剂,无需开盖即可更换干燥剂。 高频率稳定性He-Ne激光器和低功耗长寿命二极管激光器可选设计; 带电子稳压的24W碳化硅棒红外光源,采用数字供电技术,为光源提供稳定可靠的供电支持,并保证光源具有超长的使用寿命。 动态准直技术:激光采用四象限探测准直技术,可以消除干涉仪动镜运动过程中产生的机械偏差,可以消除环境变换(重力、温度变化等)造成的光学误差; 采用非正交设计的Michelson改良型干涉仪,大大提高了能量利用率; 分束器,探测器,窗片等核心部件均为进口且镀有特殊的防雾化涂层,具有超高的透过率,同时还能降低湿气对溴化钾的腐蚀,也可选择KRS-5、ZnSe等可靠的防潮材料; 光学镜面设计:光学反射镜采用整体SPDT切削工艺,保证镜面高反射效率及光学系统一致性。 扩展功能强大,可连接透射附件、衰减全反射附件(ATR附件)、漫反射附件、平面反射附件、外反射附件、红外显微镜等;功能强大智能操作软件设计 1. 带有操作指引的智能人机交互设计,界面直观简洁,简单易学;2. 丰富的谱图库,强大的自建库功能及高质量的谱图检索;3. 实时显示数据采集,可以连续显示数据采集过程和谱图预览模式;4. 操作软件包括基线校正,数据转换,多组分定量、曲线分峰拟合,H20/CO2自动补偿,吸光度透过率转换、 KK转换,标峰,四则运算,Y轴归一化功能,QC比较, 基础解析等功能;支持 CSV,SPA,DPT,TXT等等十几种格式;支持波数cm-1和波长um任意切换。 应用行业珠宝鉴定食品药品及其包装材料的测试塑料、橡胶、尼龙、树脂等高分子材料的鉴定沥青溯源及SBS含量测定脂肪酸甲酯含量测定矿物绝缘油、润滑油结构簇组成的测定车用汽油中典型非常规添加物的识别与测定硅晶体中碳氧含量的测量纺织纤维鉴别水晶Q值测定建筑玻璃参数测定… … 规格参数1. 光谱范围:7800~350 cm-12. 分辨率:优于0.8cm-1 3. 波数精度:≤0.01cm-14. 信噪比:40000:1 (P-P值,4cm-1,一分钟扫描)5. 分束器:KBr基片镀锗(进口)6. 光源:高能量、高效率、长寿命陶瓷光源(进口)7. 干涉仪:30度入射角Michelson干涉仪8. 接收器:带有防潮膜的高灵敏度DLATGS接收器(进口)9. 支持系统:Windows 系统创新点:1.专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。2.动态准直技术:激光采用四象限探测准直技术,可以消除干涉仪动镜运动过程中产生的机械偏差,可以消除环境变换(重力、温度变化等)造成的光学误差.3.可重复使用的304不锈钢盒装干燥剂,无需开盖即可更换干燥剂。MATRIX-50 傅里叶红外光谱仪
  • 恒创立达发布MATRIX-50 傅里叶红外光谱仪新品
    仪器简介MATRIX 50型傅立叶变换红外光谱仪产品是天津恒创立达科技发展有限公司的结合机械、电子、AI等技术研制出来的先进仪器。该产品采用众多创新技术使得仪器的光源能量传输效率、干涉仪的稳定性、接收器的灵敏度都达到业内的优质水平。可以满足教学、工业及研究等各种级别的应用。实验原理利用干涉仪干涉调频的工作原理,把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品,接收器接收到带有样品信息的干涉光,再由计算机软件经傅立叶变换即可获得样品的光谱图。卓越的光学系统设计 干涉仪采用DSP控制电磁驱动Michelson干涉仪,具有连续动态调整功能,自动优化系统能量,无需人工调整; SuperTect数字技术的电子系统。全数字化,输出数字信号。24 位、500KHz 的 A/D 转换,高速 USB接口,达到光谱数据实时采集,保证了数据的真实性和可靠性; 仪器内置工业级温湿度模块,显示屏直接数字化显示温湿度,并具有湿度报警装置,而且腔体整体密封,保证整个腔体密封干燥,提高了防潮效果,大大提高各部件的使用寿命; 专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。 可重复使用的304不锈钢盒装干燥剂,无需开盖即可更换干燥剂。 高频率稳定性He-Ne激光器和低功耗长寿命二极管激光器可选设计; 带电子稳压的24W碳化硅棒红外光源,采用数字供电技术,为光源提供稳定可靠的供电支持,并保证光源具有超长的使用寿命。 动态准直技术:激光采用四象限探测准直技术,可以消除干涉仪动镜运动过程中产生的机械偏差,可以消除环境变换(重力、温度变化等)造成的光学误差; 采用非正交设计的Michelson改良型干涉仪,大大提高了能量利用率; 分束器,探测器,窗片等核心部件均为进口且镀有特殊的防雾化涂层,具有超高的透过率,同时还能降低湿气对溴化钾的腐蚀,也可选择KRS-5、ZnSe等可靠的防潮材料; 光学镜面设计:光学反射镜采用整体SPDT切削工艺,保证镜面高反射效率及光学系统一致性。 扩展功能强大,可连接透射附件、衰减全反射附件(ATR附件)、漫反射附件、平面反射附件、外反射附件、红外显微镜等;功能强大智能操作软件设计 1. 带有操作指引的智能人机交互设计,界面直观简洁,简单易学;2. 丰富的谱图库,强大的自建库功能及高质量的谱图检索;3. 实时显示数据采集,可以连续显示数据采集过程和谱图预览模式;4. 操作软件包括基线校正,数据转换,多组分定量、曲线分峰拟合,H20/CO2自动补偿,吸光度透过率转换、 KK转换,标峰,四则运算,Y轴归一化功能,QC比较, 基础解析等功能;支持 CSV,SPA,DPT,TXT等等十几种格式;支持波数cm-1和波长um任意切换。 应用行业珠宝鉴定食品药品及其包装材料的测试塑料、橡胶、尼龙、树脂等高分子材料的鉴定沥青溯源及SBS含量测定脂肪酸甲酯含量测定矿物绝缘油、润滑油结构簇组成的测定车用汽油中典型非常规添加物的识别与测定硅晶体中碳氧含量的测量纺织纤维鉴别水晶Q值测定建筑玻璃参数测定… … 规格参数1. 光谱范围:7800~350 cm-12. 分辨率:优于0.8cm-1 3. 波数精度:≤0.01cm-14. 信噪比:40000:1 (P-P值,4cm-1,一分钟扫描)5. 分束器:KBr基片镀锗(进口)6. 光源:高能量、高效率、长寿命陶瓷光源(进口)7. 干涉仪:30度入射角Michelson干涉仪8. 接收器:带有防潮膜的高灵敏度DLATGS接收器(进口)9. 支持系统:Windows 系统创新点:1.可重复使用的304不锈钢盒装干燥剂,无需开盖即可更换干燥剂。2.带电子稳压的24W碳化硅棒红外光源,采用数字供电技术,为光源提供稳定可靠的供电支持,并保证光源具有超长的使用寿命.3.多种分束器可选:KBr、ZnSe,CaF2等可靠的防潮材料等MATRIX-50 傅里叶红外光谱仪
  • 恒创立达知识小课堂开播了,欢迎围观!
    恒创立达知识小讲堂KBr溴化钾单晶生长方法是什么? 由于广大客户及专业人士对于专业知识获取的要求,恒创立达准备在仪器信息网资讯栏目中开始不定期更新恒创立达知识小讲堂栏目。今天为大家奉上更劲爆专业知识,深化关于溴化钾碎晶/粉末生产方法,让大咖们更深入的了解傅里叶红外光谱仪相关耗材的生长方法。了解到我们恒创立达对耗材专业度,从细小出发,从专业深化,从质量取胜的宗旨服务好每位用户。 小恒今天就带大家了解一下制备溴化钾的方法之一,提拉法。提拉法,是1917年由丘克拉斯基(Czochralski)发明的一种合成晶体的方法,所以也称“丘克拉斯基法”,是一种从熔融状态的原料生长晶体的方法。设备和装置主要有:坩埚、高频加热线圈、提拉杆等。 提拉法的原理是利用温场控制来使得熔融的原料生长成晶体。用于晶体生长的的原料放在坩埚中加热成为熔体,控制生长炉内的温度分布(温场),使得熔体和籽晶/晶体的温度有一定的温度梯度,这时,籽晶杆上的籽晶与熔体接触后表面发生熔融,提拉并转动籽晶杆,处于过冷状态的熔体就会结晶于籽晶上,并随着提拉和旋转过程,籽晶和熔体的交界面上不断进行原子或分子的重新排列,逐渐凝固而生长出单晶体。 具体操作方法如下:将预先合成好的多晶原料装在一个坩埚中,并被加热到原料的熔点以上,原料熔化为熔体。在坩埚上方有一个可以旋转和升降的提拉杆,杆的下端带有一个夹头,其上装有籽晶,降低提拉杆,将籽晶插入熔体中,只要温度合适,籽晶既不熔掉也不长大,然后缓慢地向上提拉和转动晶杆。同时,缓慢地降低加热功率,籽晶就逐渐长粗,小心地调节加热功率,就能得到所需直径的晶体。 提拉法可以在很短的时间,比如几天,或者一到两周内快速地生长出一块足够进行研究的晶体,因此,提拉法在新晶体探索和物性研究上应用十分广泛。如果能够设计、研究出一套适合的生长控制条件,提拉法也很容易在实验室环境或者工厂化的环境中快速生长出优质的、大尺寸的单晶。 今天恒创立达小课堂给大家介绍了提拉法,针对溴化钾单晶具体的制备方法与合成条件,我们下节课再进行了解和讲解,我们下节课再见。
  • 水质检测-水体中有机物质分析方法
    水体中的污染物质除无机化合物外,还含有大量的有机物质,它们是以毒性和使水体溶解氧减少的形式对生态系统产生影响。已经查明,绝大多数致癌物质是有毒的有机物质,所以有机物污染指标是水质十分重要的指标。水中所含有机物种类繁多,难以一一分别测定各种组分的定量数值,目前多测定与水中有机物相当的需氧量来间接表征有机物的含量(如CoD、BOD等),或者某一类有机污染物(如酚类、油类、苯系物、有机磷农药等)。但是,上述指标并不能确切反映许多痕量危害性大的有机物污染状况和危害,因此,随着环境科学研究和分析测试技术的发展,必将大大加强对有毒有机物污染的监测和防治。一、化学需氧量(COD)化学需氧量是指水样在一定条件下,氧化1升水样中还原性物质所消耗的氧化剂的量,以氧的m8从表示。水中还原性物质包括有机物和亚硝酸盐、硫化物、亚铁盐等无机物。化学需氧量反映了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之一。对废水化学需氧量的测定,我国规定用重铬酸钾法,也可以用与其测定结果一致的库仑滴定法。(一)重铬酸钾法(CODcI)在强酸性溶液中,用重铬酸钾氧化水样中的还原性物质,过量的重铬酸钾以试铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据其用量计算水样中还原性物质消耗氧的量。反应式如下:测定过程见图2&mdash 35。水样20mL(原样或经稀释)于锥形瓶中&darr &larr H8S0&lsquo 0.48(消除口&mdash 干扰)混匀&larr 0.25m01/L(1/6K2Cr20?)100mL&darr &larr 沸石数粒混匀,接上回流装置&darr &larr 自冷凝管上口加入A82S04&mdash H2S0&lsquo 溶液30mL(催化剂)混匀&darr 回流加热2h&darr 冷却&darr &larr 自冷凝管上口加入80mL水于反应液中取下锥形瓶&darr &larr 加试铁灵指示剂3摘用0.1m01从(N氏久Fe(S04)2标液滴定,终点由蓝绿色变成红棕色。图2&mdash 35 CoDcr测定过程重铬酸钾氧化性很强,可将大部分有机物氧化,但吡啶不被氧化,芳香族有机物不易被氧化;挥发性直链脂肪组化合物、苯等存在于蒸气相;不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸钾氧化,并与硫酸银作用生成沉淀;可加入适量硫酸汞缀合之。测定结果按下式计算:式中:V。&mdash &mdash 滴定空白时消耗硫酸亚扶铵标准溶液体积(mL)5&mdash Vl&mdash &mdash 滴定水样消耗硫酸亚铁铵标准溶液体积(mL);V&mdash &mdash 水样体积(mL); &lsquo c&mdash &mdash 硫酸亚铁铵标准溶液浓度(m01儿)t38&mdash &mdash 氧(1/20)的摩尔质量(8/m01)。用o.25m01几的重铬酸钾溶液可测定大于50m8从的COD值;用0.025m01儿重铬酸钾溶液可测定5&mdash 50m8/L的COD值,但准确度较差。(二)恒电流库仑滴定法恒电流库仑滴定法是一种建立在电解基础上的分析方法。其原理为在试液中加入适当物质,以一定强度的恒定电流进行电解,使之在工作电极(阳极或阴极)上电解产生一种试剂(称滴定剂),该试剂与被测物质进行定量反应,反应终点可通过电化学等方法指示。依据电解消耗的电量和法拉第电解定律可计算被测物质的含量。法拉第电解定律的数学表达式为:式中:W&mdash &mdash 电极反应物的质量(8);I&mdash &mdash 电解电流(A);t&mdash &mdash 电解时间(s);96500&mdash &mdash 法拉第常数(C);M&mdash &mdash 电极反应物的摩尔质量(8);n&mdash &mdash 每克分子反应物的电子转移数。库仑式COD测定仪的工作原理示于图2&mdash 36。由库仑滴定池、电路系统和电磁搅拌器等组成。库仑池由工作电极对、指示电极对及电解液组成,其中,工作电极对为双铂片工作阴极和铂丝辅助阳极(置于充3m01几H2SOd,底部具有液络部的玻璃管内),用于电解产生滴定剂;指示电极底部具有液络部的玻璃管中),以其电位的变化指示库仑滴定终点。电解液为10.2m01/L硫酸、重铬酸钾和硫酸铁混合液。电路系统由终点微分电路、电解电流变换电路、频率变换积分电路、数字显示逻辑运算电路等组成,用于控制库仑滴定终点,变换和显示电解电流,将电解电流进行频率转换、积分,并根据电解定律进行逻辑运算,直接显示水样的COD值。使用库仑式COD测定仪测定水样COD值的要点是:在空白溶液(蒸馏水加硫酸)和样品溶液(水样加硫酸)中加入同量的重铬酸钾溶液,分别进行回流消解15分钟,冷却后各加入等量的、硫酸铁溶液,于搅拌状态下进行库仑电解滴定,即Fe&rdquo 在工作阴极上还原为Fe&rdquo (滴定剂)去滴定(还原)CrzOv2&mdash 。库仑滴定空白溶液中CrzOv&rdquo 得到的结果为加入重铬酸钾的总氧化量(以O 2计);库仑滴定样品溶液中CrzO v&rdquo 得到的结果为剩余重铬酸钾的氧化量(以02计)。设前者需电解时间为&lsquo o,后者需&lsquo ,则据法拉第电解定律可得:式中:1r&mdash &mdash 被测物质的重量,即水样消耗的重铬酸钾相当于氧的克数;I=&mdash 电解电流;M&mdash &mdash 氧的分子量(32);n&mdash &mdash 氧的得失电子数(4);96500&mdash &mdash 法拉第常数。设水样coD值为c5(mg儿);水样体积为v(mL),则1y· c2,代入上式,经整理后得:本方法简便、快速、试剂用量少,不需标定滴定溶液,尤其适合于工业废水的控制分析。当用3mI&lsquo o.05mol儿重铬酸钾溶液进行标定值测定时,最低检出浓度为3m8入;测定上限为100m8/L。但是,只有严格控制消解条件一致和注意经常清洗电极,防止沾污,才能获得较好的重现性。二、高锰酸盐指数,以高锰酸钾溶液为氧化剂测得的化学耗氧量,以前称为锰法化学耗氧量。我国新的环境水质标准中,已把该值改称高锰酸盐指数,而仅将酸性重铬酸钾法测得的值称为化学需氧晕。国际标准化组织(1SO)建议高锰酸钾法仅限于测定地表水、饮用水和生活污水。按测定溶液的介质不同,分为酸性高锰酸钾法和碱性高锰酸钾法。因为在碱性条件下高锰酸钾的氧化能力比酸性条件下稍弱,此时不能氧化水中的氯离子,故常用于测定含氯离子浓度较高的水样。酸性高锰酸钾法适用于氯离子含量不超过300m8儿的水样。当高锰酸盐指数超过5mg从时,应少取水样并经稀释后再测定。其测定过程如图2&mdash 37所示。取水样100mL(原样或经稀释)于锥形瓶中&darr &larr (1十3)H:SO&lsquo 5mL &lsquo 混匀&darr &larr o.olmoI儿高锰玻钾标液(十KMn04)10.omL沸水浴30min&darr &larr o.olo omot儿草酸钠标液(专Nasc20&lsquo )lo.oomL退色 &lsquo &darr &larr o.01m01儿高锗酸钾标液回滴终点微红色 :图2&mdash 37 高锗酸盐指数测定过程测定结果按下式计算:1.水样不经稀释高锰酸盐指数式中:Vl&mdash &mdash 滴定水样消耗高锰酸钾标液量(mL);K&mdash &mdash 校正系数(每毫升高锰酸钾标液相当于草酸钠标液的毫升数);M&mdash &mdash 草酸钠标液(1/.2Na2C20d)浓度(nt01从);8&mdash &mdash 氧(1/20)的摩尔质量(8/m01);100&mdash &mdash 取水样体积(mL)。2.水样经稀释高锰酸盐指数式中2V。&mdash &mdash 空白试验中高锰酸钾标液消耗量(mL)Vz&mdash &mdash 分取水样体积(mL);f&mdash &mdash 稀释水样中含稀释水的比值(如10.omL水样稀释至100mL.,Ng/=0.90)l其他项同水样不经稀释计算式。化学需氧量(CODcr)和高锰酸盐指数是采用不同的氧化剂在各自的氧化条件下测定的,难以找出明显的相关关系。一般来说,重铬酸钾法的氧化率可达90%,而高锰酸钾法的氧化率为50%左右,1两者均未达完全氧化,因而都只是一个相对参考数据。三、生化需氧量(BOD)生化需氧量是指在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。同时亦包括如硫化物、亚铁等还原性无机物质氧化所消耗的氧量,但这部分通常占很小比例。有机物在微生物作用下好氧分解大体上分两个阶段。第一阶段称为含破物质氧化阶段,主要是含碳有机物氧化为二氧化碳和水;第二阶段称为硝化阶段,主要是含氮有机化合物在硝化菌的作用下分解为亚硝酸盐和硝酸盐。然而这两个阶段并非截然分开,而是各有主次。对生活污水及性质与其接近的工业废水,硝化阶段大约在5&mdash 7日,甚至10日以后才显著进行,故目前国内外广泛采用的20℃五天培养法(BODs法)测定BOD值一般不包括硝化阶段。BOD是反映水体被有机物污染程度的综合指标,也是研究废水的可生化降解性和生化处理效果,以及生化处理废水工艺设计和动力学研究中的重要参数。(一)五天培养法(20℃)也苏标准稀释法。其测定原理是水样经稀释后,在29土1℃条件下培养5天,求出培养前后水样中溶解氧含量,二者的差值为BOD5。如果水样五日生化需氧量未超过7m8/L,则不必进行稀释,可直接测定。很多较清洁的河水就属于这一类水。对于不合或少含微生物的工业废水,如酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BODs时应进行接种,以引入能降解废水中有机物的微生物。当废水中存在着难被一般生活污水中的微生物以正常速度降解的有机物或有剧毒物质时,应将驯化后的微生物引入水样中进行接种。1.稀释水对于污染的地面水和大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以保证在培养过程中有充足的溶解氧。其稀释程度应使培养中所消耗的溶解氧大于2血8凡,而剩余溶解氧在1m8儿以上。稀释水一般用蒸馏水配制,.先通入经活性炭吸附及水洗处理的空气,曝气2&mdash 8h,使水中溶解氧接近饱和,然后再在20℃下放置数小时。临用前加入少量氯化钙、氯化铁、硫酸镁等营养盐溶液及磷酸盐缓冲溶液,混匀备用。稀释水的pH值应为7.2,BOD5应小于0.2血8儿。高锰酸盐指数 (mg/L)系 数< 55 &mdash 1010 &mdash 20> 200 . 2 、 0 . 30 . 4 、 0 . 60 . 5 、 0 . 7 、1 . 0如水样中无微生物,则应于稀释水中接种微生物,即在每升稀释水中加入生活污水上层清液1&mdash 10mL,或表层土壤浸出液20&mdash 30mL,或河水、湖水10&mdash 100mL。这种水称为接种稀释水。为检查稀释水相接种液的质量,以及化验人员的操作水平,将每升含葡萄糖和谷氨酸各150m8的标准溶液以1:50稀释比稀释后,与水样同步测定BODs,测得值应在180&mdash 230m8儿之间,否则,应检查原因,予以纠正。2.水样稀释倍数水样稀释倍数应根据实践经验进行估算。表2&mdash 13列出地面水稀释倍数估算方法。工业废水的稀释倍数由CODcr值分别乘以系数0.075、o.15、0.25获得。通常同时作三个稀释比的水样。表2&mdash 13 由高锰酸盐指数估算稀释倍数乘以的系数3.测定结果计算对不经稀释直接培养的水样:式中Icl&mdash &mdash 水样在培养前溶解氧的浓度(m8儿);&lsquo :&mdash &mdash 水样经5天培养后,剩余溶解氧浓度(m8儿)。对稀释后培养的水样:式中:Bl&mdash &mdash 稀释水(或接种稀释水)在培养前的溶解氧的浓度(m8儿);Bz&mdash &mdash 稀释水(或接种稀释水)在培养后的溶解氧的浓度(m8儿);f1&mdash &mdash 稀释水(或接种稀释水)在培养液中所占比例;f2&mdash &mdash 水样在培养液中所占比例。水样含有铜、铅、锌、镉、铬、砷、氰等有毒物质时,对微生物活性有抑制,可使用经驯化微生物接种的稀释水,或提高稀释倍数,以减小毒物的影响。如含少量氯,一般放置1&mdash 2h可自行消失;对游离氯短时间不能消散的水样,可加入亚硫酸钠除去之,加入量由实验确定。本方法适用于测定BOD5大于或等于2m8儿,最大不超过6000m8儿的水样;大于6000m8儿,会围稀释带来更大误差。(二)其他方法1.检压库仑式BOD测定仪检压库仑式肋D测定仪的原理示于图2&mdash 38。装在培养瓶中的水样用电磁搅拌器进行搅拌。当水样中的溶解氧因微生物降解有机物被消耗时,则培养瓶内空间中的氧溶解进入水样,生成的二氧化碳从水中选出被置于瓶内的吸附剂吸收,使瓶内的氧分压和总气压下降、用电极式压力计检出下降量,并转换成电信号,经放大送入继电器电路接通恒流电源及同步电机,电解瓶内(装有中性硫酸铜溶液和电解电极)便自动电解产生氧气供给培养瓶,待瓶内气压回升至原压力时,继电器断开,电解电极和同步电机停止工作。此过程反复进行使培养瓶内空间始终保持恒压状态。根据法拉第定律;由恒电流电解所消耗的电量便可计算耗氧量。仪器能自动显示测定结果,记录生化需氧量曲线。2.测压法在密闭培养瓶中,水样中溶解氧由于微生物降解有机物而被消耗,产生与耗氧量相当的COz被吸收后,使密闭系统的压力降低,用压力计测出此压降,即可求出水样的BOD值。在实际测定中,先以标准葡萄糖&mdash 谷氨酸溶液的BOD值和相应的压差作关系曲线,然后以此曲线校准仪器刻度,便可直接读出水样的BOD值。3.微生物电极法微生物电极是一种将微生物技术与电化学检测技术相结合的传感器,其结构如图2&mdash 39所示。主要由溶解氧电极和紧贴其透气膜表面的固定化微生物膜组成。响应BOD物质的原理是当将其插入恒温、溶解氧浓度一定的不含BOD物质的底液时,由于微生物的呼吸活性一定,底液中的溶解氧分子通过微生物膜扩散进入氧电极的速率一定,微生物电极输出一稳态电流;如果将BOD物质加入底液中,则该物质的分子与氧分子一起扩散进入微生物膜,因为膜中的微生物对BOD物质发生同化作用而耗氧,导致进入氧电极的氧分子减少,即扩散进入的速率降低,使电极输出电流减少,并在几分钟内降至新的稳态值。在适宜的BOD物质浓度范围内,电极输出电流降低值与BOD物质浓度之间呈线性关系,而BOD物质浓度又和BOn值之间有定量关系。微生物膜电极BOD测定仪的工作原理示于图2&mdash 40。该测定仪由测量池(装有微生物膜电极、鼓气管及被测水样)、恒温水浴、恒电压源、控温器、鼓气泵及信号转换和测量系统组成。恒电压源输出o.72V电压,加于Ag&mdash A8C1电极(正极)和黄金电极(负极)上。黄金电极因被测溶液BOD物质浓度不周产生的极化电流变化送至阻抗转换和微电流放大电路,经放大的微电流再送至A&mdash D转换电路,改A&mdash V转换电路,转换后的信号进行数字显示或记录仪记录。仪器经用标准BOD物质溶液校准后,可直接显示被测溶液的BOD值,并在20min内完成一个水样的测定①。该仪器适用于多种易降解废水的&rsquo BOD监测。除上述测定方法外,还有活性污泥法、相关估算法等。四、总有机碳(TOC)总有机碳是以碳的含量表示水体中有机物质总量的综合指标。由于TOC的测定采用燃烧法,因此能将有机物全部氧化,它比如Ds或COD更能反映有机物的总量。目前广泛应用的测定TOC的方法是燃烧氧化J4F色散红外吸收法。其测定原理是:将一定量水样注入高温炉内的石英管,在900一950℃温度下,以铂和三氧化钻或三氧化二铬为催化剂,使有机物燃烧裂解转化为二氧化碳,然后用红外线气体分析仪测定C02含量,从而确定水样中碳的含量。因为在高温下,水样中的碳酸盐也分解产生二氧化碳,故上面测得的为水样中的总碳(TC)。。为获得有机碳含量,可采用两种方法:一是将水样预先酸化,通入氮气曝气,驱除各种碳酸盐分解生成的二氧化碳后再注入仪器测定。另一种方法是使用高温炉和低温炉皆有的TOC测定仪。将同一等量水样分别注入高温炉(900℃)和低温炉(150℃),则水样中的有机碳和无机碳均转化为COz,而低温炉的石英管中装有磷酸浸渍的玻璃棉,能使无机碳酸盐在150℃分解为C02,有机物却不能被分解氧化。将高、低温炉中生成的CO:&lsquo 依次导入非色散红外气体分析仪,分别测得总碳(TC)和无机碳(IC),二者之差即为总有机碳(TOC)。测定流程见图2&mdash 41。该方法最低检出浓度为o.5mg/I。五、总需氧量(TOD)总需氧量是指水中能被氧化的物质,主要是有机物质在燃烧中变成稳定的氧化物时所需要的氧量,结果以02的m8儿表示。用TOD测定仪测定ToD的原理是将一定量水样注入装有铂催化剂的石英燃烧管,通入含已知氧浓度的载气(氮气)作为原料气,则水样中的还原性物质在900℃下被瞬间燃烧氧化。测定燃烧前后原料气中氧浓度的减少量,便可求得水样的总需氧量值。TOD值能反映几乎全部有机物质经燃烧后变成C02、H20、N0、S02&hellip 所需要的氧量。它比BoD、CoD和高锰酸盐指数更接近于理论需氧量值。但它们之间也没有固定的相关关系。有的研究者指出,BODs/TOD=0.1&mdash 0,6;CoD/TOD=0.5&mdash 0.9,具体比值取决于废水的性质。TOD和TOC的比例关系可粗略判断有机物的种类。对于含碳化合物,因为一个碳原子消耗注⑦ 参阅孙裕生等,《分析仪器》,(1),1992年两个氧原子,即Oz/C=2.67,因此从理论上说,TOD=2.67TOC。若某水样的TOD/TOC为2.67左右,可认为主要是含碳有机物j若TOD/TOC>4.o,则应考虑水中有较大量含S、P的有机物存在;若TOD/TOC<2.6,就应考虑水样中硝酸盐和亚硝酸盐可能含量较大,它们在高温和催化条件下分解放出氧,使TOD测定呈现负误差。六、挥发酚类根据酚类能否与水蒸气一起蒸出,分为挥发酚与不挥发酚。通常认为沸点在230℃以下的为挥发酚(屑一元酚);而沸点在2助℃以上的为不挥发酚。酚屑高毒物质,人体摄入一定量会出现急性中毒症状;长期饮用被酚污染的水,可引起头昏、骚痒、贫血及神经系统障碍。当水中含酚大于5m8/L时,就会使鱼中毒死亡。酚的主要污染源是炼油、焦化、煤气发生站,木材防腐及某些化工(如酚醛树脂>等工业废水。酚的主要分析方法有容量法、分光光度法、色谱法等。目前各国普遍采用的是4&mdash 氨基安替吡林分光光度法;高浓度含酚废水可采用溴化容量法。无论溴化容量法还是分光光度法,当水样中存在氧化剂、还原剂、油类及某些金属离子时,均应设法消除并进行预蒸馏。如对游离氯加入硫酸亚铁还原;对硫化物加入硫酸铜使之沉淀,或者在酸性条件下使其以硫化氢形式逸出;对油类用有机溶剂萃取除去等。蒸馏的作用有二,一是分离出挥发酚,二是消除颜色、浑浊和金属离子等的干扰。(一)4&mdash 氨基安替比林分光光度法酚类化合物于pHl0.0土o.2的介质中,在铁氰化钾的存在下,与4&mdash 氨基安替比林(4&mdash AAP)反应,生成橙红色的p5l噪酚安替比林染料,在510nm波长处有最大吸收,用比色法定量。反应式如下:显色反应受酚环上取代基的种类、位置、数目等影响,如对位被烷基、芳香基、酯、硝基、苯酰、亚硝基或醛基取代,而邻位未被取代的酚类,与4&mdash 氨基安替比林不产生显色反应。这是因为上述基团阻止酚类氧化成醌型结构所致,但对位被卤素、磺酸、羟基或甲氧基所取代的酚类与4&mdash 氨基安替比林发生显色反应。邻位硝基酚和间位硝基酚与4&mdash 氨基安替比林发生的反应又不相同,前者反应无色,后者反应有点颜色。所以本法测定的酚类不是总酚,而仅仅是与4&mdash 氨基安替比林显色的酚,并以苯酚为标准,结果以苯酚计算含量。用20m2d比色皿测定,方法最低检出浓度为o.12n8/L。如果显色后用三氯甲烷萃取,于460n2n波长处测定,其最低检出浓度可达o.o02m8/L;测定上限为0.12m8从。此外,在直接光度法中,有色络合物不够稳定,应立即测定;氯仿萃取法有色络合物可稳定3小时。(二)溴化滴定法在含过量溴(由溴酸钾和溴化钾产生)的溶液中,酚与镇反应生成三溴酚,并进一步生成溴代三溴酚。剩余的溴与碘化钾作用释放出游离碘,与此同时溴代三溴酚也与碘化钾反应置换出游离碘。用硫代硫酸钠标准溶液涵定释出的游离碘,并根据其消耗计算出以苯酚计曲捅发酚含量。反应式如下:结果按下式计算:挥发酚式中:认&mdash &mdash 空白(以蒸馏水代替水样加D同体积溴酸钾&mdash 溴化钾溶液)试验滴定时硫代硫酸钠标、&mdash 液用量(mL)6y2&mdash &mdash 水样滴定时硫代硫酸钠标液用量(mL);&mdash c&mdash &mdash 硫代硫酸钠标液的浓度(tpol儿)一V&mdash &mdash 水样体积(mL);15.68&mdash &mdash 苯酚(1/6C eHsOH)摩尔质量(8/m01)。七、矿物油.水中的矿物油来自工业废水和生活污水;工业废水中石油类(各种烃类的混合物)污染物主要来自原油开采、加工及各种炼制油的使用部门。矿物油漂浮在水体表面,影响空气与水体界面间的氧交换;分散于水中的油可被微生物氧化分解,消耗水中的溶解氧,使水质恶化。矿物油中还含有毒性大的芳烃类。测定矿物油的方法有重量法、非色散红外法、紫外分光光度法、荧光法、比浊法等。(一)重量法重量法是常用的方法,它不受油品种的限制,但操作繁琐,灵敏度低,只适用于测定10m8儿以上的含油水样。方法测定原理是以硫酸酸化水样,用石油醚萃取矿物油,然后蒸发除去石油醚,称量残渣重,计算矿物油含量。该法是指水中可被石油醚萃取的物质总量,可能含有较重的石油成分不能被萃取。蒸发除去溶剂时,也会造成轻质油的损失。(二)非色散红外法本法系利用石油类物质的甲基(&mdash CH:)、亚甲基(&mdash 吧Hz一)在近红外区(3.4f4m)有特征吸收,作为测定水样中油含量的基础。标准油可采用受污染地点水中石油醚萃取物。根据我国原油组分特点,也可采用混合石油烃作为标准油;其组成为:十六烷:异辛烷:苯z 65:25:10(y/y)。测定时,先用硫酸将水样酸化,加氯化钠破乳化,再用三氯三氟乙烷萃取,萃取液经无水硫酸钠层过滤、定容,注入红外分析仪测其含量。所有含甲基、亚甲基的有机物质都将产生干扰。如水样中有动、植物性油脂以及脂肪酸物质应预先将其分离。此外,石油中有些较重的组分不镕于三氯三氟乙烷,致使测定结果偏低(三)紫外分光光度法石油及其产品在紫外光区有特征吸收。带有苯环的芳香族化合物的主要吸收波长为250一260nm;带有共扼双键的化合物主要吸收波长为215&mdash 230ngl。一般原油的两个吸收峰波长为225nm和254nm;轻质油及炼油厂的油品可选225nm。水样用硫酸酸化,加氯化纳破乳化,然后用石油醚萃取,脱水,定容后测定。标准油用受污染地点水样石油醚萃取物。 不同油品特征吸收峰不同,如难以确定测定波长时,可用标准油样在波长215&mdash 300nm之间的吸收光谱,采用其最大吸收峰的位置。一般在220一225nm之间。八、其他有机污染物质根据水体污染的不同情况,常常还需要测定阴离子洗涤剂、有机磷农药、有机氯农药、苯系物、氯苯类化合物、苯并(a)花、多环芳烃、甲醛、三氯乙醛、苯胺类、硝基苯类等。· 这些物质除阴离子洗涤剂外。其他均为主要环境优先污染物,其监测方法多用气相色谱法和分光光度法。对于大分子量的多环芳烃、苯并(a)芘等要用液相色谱法或荧光分光光度法。其详细内容参阅本教材后附的有关水质分析方面的文献。
  • 中药制造领域近红外光谱技术的专利技术进展和趋势
    中药制药工业是我国医药行业中拥有自主知识产权的民族产业。我国中药制药水平整体不高,难以满足现代化生产对质量控制提出的要求,一定程度上影响了中药产业现代化进程和国际化脚步[1]。《中药现代化发展纲要》《中医药发展战略规划纲要(2016—2030年)》《中国制造2025》等指出要推进中药工业数字化、网络化、智能化建设,提高质量在线监测、在线控制。实现中药制造的数字化、智能化是走向“制药强国”的必经之路。中药制剂过程控制是国家战略需求的重要组成部分。然而,现阶段我国中药生产制造领域工艺较粗糙,2018年智造中药高峰论坛上,张伯礼院士指出:“我国中药现代化战略实施20多年来,中药工业总产值从不到300亿元增长到9000余亿元… … 我国中医药现代化还处于初级阶段,中药产业普遍存在生产工艺粗放、科技基础薄弱、质控水平低、质量有待升级等问题”[2]。近红外光谱技术因其快速、无损等优势,近年来被国内诸多研究团队引入中药制造的原料检测、过程控制和成品质量快速无损检测等中药制造过程的多个环节,其应用特点主要在于不破坏样品的情况下快速测定其中的有效成分,便于实现在线分析,是制造过程质量控制的关键技术之一[3]。浙江大学程翼宇教授和瞿海斌教授团队以近红外光谱为技术工具,分别对提取(水提、醇提和渗漉)、浓缩、醇沉、精制纯化(硅胶柱色谱和大孔树脂纯化)、混合和包衣等关键工艺过程和制剂成品进行了快速分析,主要完成了复方苦参注射液、痰热清注射液和丹参注射液等生产过程的快速质量评价[4-5]。罗国安教授团队应用近红外光谱技术,开展了提取、混合、柱色谱等生产过程在线质量分析,完成了安神口服液、丹参多酚酸盐、清开灵注射液等生产过程快速质量控制体系[6-7]。北京中医药大学乔延江教授和吴志生教授智能制造创新团队在国内较早提出基于光谱技术及信息技术的中药生产过程分析技术研究思路,完成了安宫牛黄丸、清开灵注射液和乳块消片近红外光谱快速质量评价和过程控制体系[8-9]。近20年,国内学者采用近红外光谱技术,建立了系列中药制造质量控制方法,为中药制造数字化、智能化发展提供了关键技术支撑。本文对中药制造领域近红外技术相关的专利进展进行分析,并进一步对近红外光谱技术在中药制造领域的发展趋势进行展望,为中药近红外光谱技术发展提供重要数据支撑。1 研究方法本文采用Incopat科技创新情报平台和patentics系统,对涉及近红外光谱技术在中药制造应用中的发明专利申请(截至2020年12月)进行检索,经人工浏览,手动筛选,对数据进行归纳整理。2 专利技术申请概况2.1 近红外光谱技术在中药制造领域的发明专利趋势2002年至今,近红外光谱技术在中药制造领域发明专利的变化趋势如图1所示,最早的一件申请是2002年浙江大学提出的,涉及将近红外光谱技术用于中药生产工艺中产品质量指标的在线检测。之后的近10年这一领域的专利申请数量相对较少,每年平均申请量基本在5件左右。至2011年,申请数量相比之前增长2倍以上,随后的10年,每年平均申请数量较前10年增长2倍以上。就申请国家而言,公开专利申请绝大部分来自中国,其他国家的申请较少,这也符合中药制造领域的研究现状,大都集中在中国。虽然日本和韩国在中药制造行业也有一些较为成熟的技术,但涉及近红外光谱技术的应用领域并未以专利形式进入中国。2.2 近红外光谱技术在中药制造领域的发明专利申请人2.2.1 申请人及其类型 如图2所示,相关专利的申请人以企业和大专院校为主,企业占57%,大专院校占34%,科研单位占5%,个人占4%。其中大专院校中申请数量排名前3的分别是浙江大学、中山大学和北京中医药大学。可以看出,企业和高校是该领域最主要的创新主体,其根据需要收购了个人或企业的有关专利权。其中,浙江大学的程翼宇教授、刘雪松教授深耕中药制造过程控制多年,也成功将近红外光谱技术引入中药生产过程质量控制当中。中山大学的葛发欢教授团队与广州中大南沙科技创新产业园有限公司合作,共同申请5项专利,将近红外光谱技术应用于凉茶和娑罗子中七叶皂苷的在线监测。北京中医药大学乔延江教授、吴志生教授团队也针对中药生产过程质量控制进行了多年的研究。企业申请人排名前3的分别是江西汇仁药业有限公司、广州中大南沙科技创新产业园有限公司和天津天士力现代中药资源有限公司。就数量而言,排名前3的制药公司和大专院校,申请数量相当,这表明近红外光谱技术作为一个应用型技术,其研究正不断实现从实验室走向生产过程的应用,广泛分布在企业当中,这也充分体现了其因快速、无损的特点适用于中药制造过程质量检测的优势。2.2.2 申请人申请趋势 图3显示的是2002年至今排名前几位的申请人的申请数量。包括申请数量排名前3的江西汇仁药业有限公司、天津天士力现代中药资源有限公司等企业的申请时间主要集中在某个时间段,说明近红外光谱技术在企业中的应用范围较为单一,没有技术上的突破和创新,仅是一种成熟技术应用于不同中药的制造过程。而大专院校相对企业而言,申请分布的时间更长,如北京中医药大学在2014、2016、2018、2019年都有申请,相对更有连续性。这说明近红外光谱技术尚存在很大发展空间,其作为一门过程分析技术,在中药制造中的应用整体呈上升趋势。2.3 发明专利申请的当前法律状态及转让情况如图4所示,相关专利授权42件,授权率为47.7%,驳回27件,驳回率为30.7%,撤回19件,撤回率为21.6%。失效专利数量为51件,有效专利数量为42件,即超过50%的专利申请已失效。申请人江西汇仁药业有限公司、浙江大学、上海市中药研究所、上海雷允上科技发展有限公司的专利权转让基本都发生在相同申请人内部,江西汇仁药业有限公司将7件专利都变更为与其旗下公司上海中创医药科技有限公司共有。除此之外,还存在其他转让情况,见表1。3 近红外光谱技术发明专利申请的技术内容3.1 中药原料制造过程质量评价的近红外光谱技术现状分析中药原料是中药制造的首关环节,直接影响中药的产品质量和药效。如何快速、准确地评价药材质量是中药制造需解决的首要问题。传统的鉴定方法耗时较长、样品处理繁琐,存在不同程度的局限性。将近红外光谱技术与计算机软硬件、化学计量方法等结合,可作为快速准确鉴别中药材的新方法[10]。涉及中药原料近红外光谱技术的发明情况如图5所示。中药制造原料质量评价包括真伪优劣、道地性、产地、加工炮制、种属等。将近红外光谱与聚类分析等方法相结合,建立假冒伪劣中药材鉴别系统,能有效提升假药的鉴别能力和速度。3.1.1 中药原料的真伪鉴别 在真伪鉴别方面有7件申请,分别涉及药材三七、丹参、山参、麻黄、皂角刺和甘草,如申请人天津天士力现代中药资源有限公司的2件申请CN101961360A、CN101961379A均通过主成分分析法在降低维数的同时充分提取光谱图中的有效信息,再采用马氏距离法判别样本的类别归属,以鉴别三七和丹参的真伪。其他4件也与此类似,创新之处主要在于近红外光谱数据的不同建模方法在中药制造原料质量评价中的应用。3.1.2 中药原料的道地性鉴别 在中药制造原料道地性鉴别方面,药材因在疗效、产量、贮藏、生长环境、采摘时节等方面所体现出来的综合特性优于同种内其他非道地药材,不同产地的气候环境直接影响中草药的化学成分、药用价值和治疗效果,因此中药材产地鉴定是中药疗效和用药安全的重要保障。针对道地性、产地鉴别的申请涉及的药材有陈皮(CN103033486A)、淫羊藿(CN104089921A)、三叶青(CN107607485A)和忧遁草(CN111595802A)。对不同基原以及不同产地的中药材进行鉴别,无需对样品进行复杂处理,操作简单、快速,结果稳定可靠。3.1.3 中药原料的炮制鉴别 炮制是中药制造原料的重要工艺之一。中药材加工炮制鉴定主要是针对加工后的药材进行检验,了解其是否具备原有的药材成分与药效。中药材在经过了炮制加工后,均会产生一定的化学性质变化,而这种变化便可以利用近红外光谱技术加以验证。硫磺熏蒸是一种传统的药材加工方法,可使药材快速干燥,解决药材颜色发黄和生虫等问题,保存时间长、卖相好,但硫磺熏蒸会导致药材中二氧化硫残留,影响人体的健康,已被国家明令禁止。如何区别中药是否被硫磺熏蒸过已成为人们关注的一项内容[11]。2件专利申请涉及白芷硫磺熏蒸与否的鉴定研究,1件专利(CN107449754A)采用近红外光谱分析方法对栀子炮制品的品质进行定性鉴别,为市场栀子炮制品的质量监管提供科学依据。3.1.4 中药原料的综合评价 另外,还有11件申请涉及中药材种属、真伪、优劣、产地、道地性等综合质量评价。CN144711A涉及中药药材红外光谱非分离提取多级宏观指纹鉴定方法,CN103076300A涉及专属性模式识别模型判别分析中药材资源指纹信息的方法,都是使用指纹鉴定的方法。CN104345045A和CN107782695A是相似药材、合格与否的鉴别,其他几件申请涉及大黄、人参、党参、甘草、三七、丹参和麻花艽的鉴别。水分是中药制造原料的关键质量属性之一。涉及含水量检测的申请,如鲜人参含水量的检测(CN108709869A)、中药水分测量方法及系统(CN110702631A)。3.2 中药制剂制造过程在线控制的近红外光谱专利技术现状分析在线检测的应用为中药制剂生产过程的动态监控和工艺优化提供了依据,改变了传统检验滞后的模式,真正实现了药品质量的在线控制。检测前,对预先采集的数据进行处理,建立模型,无需进行样品处理,可同时测定样品中的多个分子结构,液体、固体等均可直接检测,减少了样品处理时间,缩短了检测时间,提高了检测效率,为中药制剂生产过程控制提供数据支持。中药制剂制造工艺较为复杂,最终产品的品质稳定性与生产过程多项工艺参数息息相关。因此,中药制剂生产的过程监控非常重要。近红外光谱在线检测技术可以全面监控中药生产过程中的微生物、含水量、水不溶物、混合过程中药物分布的均匀性等,同时对多项参数进行有效控制,可在很大程度上提高制药工艺的自动化水平及药物自身的稳定性与均一性。3.2.1 近红外光谱技术应用的中药制剂剂型 发明专利申请中有78件涉及中药制剂在线检测和过程质量控制,近红外光谱技术在中药制剂领域的应用最为广泛。涉及中药制剂的剂型有药酒、胶囊、口服液、浓缩丸、合剂、颗粒和注射剂,如枣仁安神胶囊、肾宝合剂、贞芪扶正颗粒、金玄痔科熏洗散、一清颗粒、复方杜仲胶囊、增健口服液。3.2.2 近红外光谱技术应用的中药制剂主要成分和辅料 在发明专利申请中,涉及的单一成分或单类物质有丹酚酸B、丹参素钠、鞣质、芍药苷、总蛋白、柚皮苷、新橙皮苷、总黄酮、马兜铃酸I、枯矾、绿原酸、栀子苷、七叶皂苷A~D、苯丙素类、生物碱类或萜类化合物;涉及的多种成分或多类物质为总黄酮和总皂苷、药材浸出物(天花粉和葛根)、娑罗子提取物、淫羊藿提取物、苦黄注射剂等。有2件申请涉及中药注射剂(CN1432803A)和中药颗粒(CN1447109A),申请人均是清华大学,主要方法都是脱去溶剂的试样(注射剂)用溴化钾压片制样,测定粉末样品压片试样的普通红外光谱(注射剂)或中红外光谱(颗粒)、漫反射近红外、漫反射中红外光谱、反射光谱及衰减全反射光谱,求出并绘出相应光谱图的二阶导数光谱图,测定试样的二维相关红外光谱,分级对比相应图谱,测定主料和辅料的相对含量。3.2.3 近红外光谱技术应用的中药制剂生产环节 近红外光谱检测手段被应用于中药制剂生产的提取、浓缩、混合[12]、纯化、干燥[13]等多个环节。对于提取环节,申请中所涉及的药材或制剂有丹参、白芍、杏香兔耳风、娑罗子、大黄、栀子、淫羊藿、葛根、天花粉、龙血竭、川红活血胶囊、女金胶囊、肾宝合剂渗漉液、动物提取液。如CN102252992A涉及一种对中药提取过程进行近红外光谱在线检测的方法,实现了对中药各指标成分和含固量的实时监测以及提取过程终点的快速判断。CN102106888A公开了一种杏香兔耳风提取过程的质量控制方法,应用近红外光谱技术对杏香兔耳风提取液指标成分进行连续取样和现场分析,建立了在线应用的提取液指标成分的近红外模型,用于杏香兔耳风提取过程质量控制。对于浓缩环节,申请中涉及的有六味地黄丸、女金胶囊、淫羊藿提取物、丹参提取液,如CN102106939A提供了一种六味地黄丸浓缩丸提取浓缩液质量控制方法,能测定六味地黄丸浓缩丸提取浓缩液比重及马钱苷、丹皮酚含量,可对六味地黄丸浓缩丸提取浓缩液指标成分进行连续取样和现场分析。混合是中药制造的关键环节之一。对于混合均匀度的测定,如控制中药药粉二维混合的均匀度(CN101832921A)、正天丸混合过程终点的测定方法(CN105092520A)。对于纯化步骤,CN103808665A公开了一种测定娑罗子提取物纯化过程中多指标成分含量的方法,CN108362663A涉及丹参提取液纯化过程中的质量控制方法。针对干燥过程质量控制,CN108592527A涉及石斛冻干加工系统及其控制方法,采用近红外光谱仪对冻干加工过程中的石斛的水分含量进行检测,并根据检测结果自动调节冻干控制数据,不仅节约能源,还能确保冻干石斛的品质。CN110632016A涉及中药饮片在干燥环节中水分浓度的精准控制。贵州景峰注射剂有限公司在中药制剂制造过程控制领域进行了较为全面的保护,其申请内容涵盖了提取过程(CN108760676A)、浓缩过程(CN108398401A)、纯化过程(CN108362663A)和大孔树脂吸附分离过程(CN108693138A)的终点判断方法。3.3 中药制造近红外光谱技术一体化装备专利技术现状分析在所有发明专利申请中,涉及近红外检测装置的共有8件,3件涉及中药在线监测的提取装置,2件(CN111175247A、CN102507491A)涉及中药品质的检测装置,2件涉及中药成分的检测,1件(CN105092517A)为颗粒沸腾干燥过程的在线质量控制装置。4 存在问题及建议4.1 存在问题中医药发展“十三五”规划要求发挥中医药特色优势,利用现代科学技术,推进中医药现代化与国际发展,引领中医药自主创新国际主导权。而近红外光谱技术在中药制造业中的应用,可解决中药真伪鉴别、分类和分级靠人工经验的落后面貌,同时可实现中药制造过程在线质量监控,该技术的推广应用对我国中药提升产品质量产生了巨大影响。通过对近红外光谱技术在中药制造领域的专利技术分析,发现如下问题。4.1.1 申请数量少,后劲不足 近红外光谱技术在中药制造应用领域的专利总量还较少,从2002年至今发展较为缓慢,申请量最多的一年也仅有17件,申请量最大的申请人也仅有7件申请,申请时间主要集中在某个时间段,没有针对某项技术的持续性改进,技术方向重点有所转移。4.1.2 专利申请涉及的适用范围有限 重点申请人的申请基本都是涉及提取过程的质量控制,申请方向较为单一。在产业实践中,近红外光谱技术被广泛应用于药品检测,基本涵盖了从原材料供应到生产全过程乃至上市后的监督检验,但是在专利申请中还未见有药品非法添加的相关检测,对假劣药品的鉴别也非常少。相关专利中近红外光谱技术局限于药材的鉴定,且进行综合评价的药材基本都是根、茎和根茎类药材,其中参类药材较多,药材品种少而分散。4.1.3 专利质量有待调高,布局有待改善 该领域专利许可数量为0,技术转让寥寥无几,从侧面反映了其专利的质量不够高、应用性不够强。所有申请中也没有针对某个核心专利的后续改进及专利布局。国内申请中,仅有深圳市药品检验研究院2018年申请的一件涉及皂角刺真伪化学模式识别的方法(WO2019192433A1)提出了国际申请,其是以国内专利CN108509997A为优先权,其仍然处于国际阶段,说明该领域研究在国外的布局起步很晚,且数量非常少,保护主题单一,大部分国内申请人尚未建立国际化的专利布局意识。这也反映出对于专利应用价值和成果转化预期的不确定。4.2 建议基于以上问题,笔者提出以下建议。4.2.1 开展广泛的产学研一体化合作 在中药制造业创新发展的过程中,高校、科研机构、中药制造企业应当充分利用近红外光谱技术和中药的优势,发挥各自的特点和特长,走产学研一体化的创新之路,对该领域的专利信息数据进行跟踪,有针对性地进行改进创新,推动近红外光谱技术在中药制造领域的产业化发展,进一步提高专利技术的实际应用价值。4.2.2 拓展适用范围 近红外光谱技术可以应用于中药原料和中药制剂的质量控制,涉及中药的种属、真伪、优劣、产地、道地性、非法添加等,生产过程中微生物、含水量、水不溶物等多种指标,炮制、提取、浓缩、混合、纯化、干燥等多个环节,中药品种成千上万,药用部位包括花、果实、种子、根及根茎等,除了植物药,还包括动物药、矿物药,申请人可以针对某种或某类药材或制剂从多个角度拓展应用,或联合其他检测技术以增强或改善检测结果或效果。4.2.3 提升专利质量,扩展海外布局,加强专利运营 “十四五”规划纲要的指标中专门为知识产权设置了一项关键性指标,即每万人高价值发明专利拥有量达到12件。国家知识产权局出台了一系列知识产权政策,显示了政府努力提高专利质量的决心,专利质量的提升是未来参与全球竞争的关键所在。申请人在研究和申请前应充分了解相关领域的现有技术和在线申请情况,围绕核心专利进行全面、持续性改进研究并进行海外专利布局。重视高价值专利的运营,加强校企合作,强化市场意识和应用导向,提高专利的转化率,实现专利价值的最大化。利益冲突 所有作者均声明不存在利益冲突参考文献(略) 来 源:刘南岑,耿立冬,马丽娟,吴志生.中药制造领域近红外光谱技术的专利技术进展和趋势 [J]. 中草药, 2021, 52(21): 6768-6774 .
  • 分析仪器通用技术、色谱柱等381项标准将在5月份实施
    分析仪器通用技术、液相色谱柱等381项标准将在5月份实施我们通过国家标准信息平台查询到,在2022年5月份将要实施的科学仪器及检测相关的国家标准暴增,共有381项标准将要实施。其中有111项电子电器类标准将要实施位居榜首,机械类标准次之有72项,农林牧渔食品类与化工橡胶塑料类标准旗鼓相当分别有47项和46项标准。5月份将要实施标准类别图除此之外我们还发现有5项仪器仪表类标准,分别如下:GB/T 12519-2021 分析仪器通用技术条件本文件规定了分析仪器的术语和定义、仪器分类与命名、要求、试验方法、检验规则及标志、包装、运输和贮存。本文件适用于各种类型分析仪器。本文件也适用于与仪器配用或形成独立产品的样品处理、制备、信号处理传输和辅助分析的装置等。GB/T 30433-2021 液相色谱仪测试用标准色谱柱本文件规定了液相色谱仪测试用标准色谱柱的术语和定义.标准柱参数、要求、试验方法,检验规则,标志﹑包装、运输和贮存。本文件适用于液相色谱仪测试用标准色谱柱(以下简称“标准柱”)。GB/T 40023-2021 无损检测仪器 超声衍射声时检测仪 技术要求本标准规定了超声衍射声时检测仪的技术要求、检验规则、标志、包装、运输和贮存等内容。本标准适用于超声衍射声时检测仪。GB/T 40658-2021 溴化钾光学元件本文件规定了溴化钾光学元件(以下简称溴化钾)的技术要求、试验方法、检验规则及包装、标志、运输及贮存等要求。本文件适用于溴化钾光学元件的制造与验收。GB 19815-2021 离心机 安全要求(该标准划归为机械)本标准规定了各种具有金属转鼓的工业用离心机(以下简称离心机)在设计、制造、安装和使用中的安全要求,以及使用信息和安全性能的检验、判定方法。本标准适用于一切工业用途的离心机(包括工业脱水机)。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40850-2021 饲料中肠杆菌科的检验方法 GB/T 40848-2021 饲料原料 压片玉米 GB/T 40747-2021 饲料瘤胃可发酵有机物(FOM)测定方法 GB/T 21543-2021 饲料添加剂 调味剂 通用要求 GB/T 40830-2021 猪饲料真可消化氨基酸测定技术规程(简单T型瘘管法) GB/T 40837-2021 畜禽饲料安全评价 蛋鸡饲养试验技术规程 GB/T 40835-2021 畜禽饲料安全评价 反刍动物饲料瘤胃降解率测定 牛饲养试验技术规程 GB/T 23884-2021 动物源性饲料中生物胺的测定 高效液相色谱法 GB/T 23801-2021 中间馏分油中脂肪酸甲酯含量的测定 红外光谱法 GB/T 40834-2021 夏玉米苗情长势监测规范 GB/T 40833-2021 甘蔗皮渣中对香豆酸检测方法 高效液相色谱法 GB/T 40832-2021 芒果叶中芒果苷的测定 高效液相色谱法 GB/T 40772-2021 方便面 GB/T 40752-2021 沃柑产业扶贫项目运营管理规范 GB/T 40751-2021 花曲柳窄吉丁检疫鉴定方法 GB/T 40750-2021 农用沼液 GB/T 40749-2021 海水重力式网箱设计技术规范 GB/T 40748-2021 百香果质量分级 GB/T 40746-2021 淡水有核珍珠 GB/T 40745-2021 冷冻水产品包冰规范 GB/T 40744-2021 马铃薯茎叶及其加工制品中茄尼醇的含量测定 高效液相色谱-质谱法 GB/T 40743-2021 猕猴桃质量等级 GB/T 40644-2021 杜仲叶提取物中京尼平苷酸的检测 高效液相色谱法 GB/T 40642-2021 桑叶提取物中1-脱氧野尻霉素的检测 高效液相色谱法 GB/T 40643-2021 山楂叶提取物中金丝桃苷的检测 高效液相色谱法 GB/T 40641-2021 松针聚戊烯醇含量的测定 高效液相色谱法 GB/T 40636-2021 挂面 GB/T 40635-2021 银耳干品包装、标志、运输和贮存 GB/T 40632-2021 竹叶中多糖的检测方法 GB/T 40631-2021 阿月浑子(开心果)坚果质量等级 GB/T 40627-2021 油菜茎基溃疡病菌活性检测方法 GB/T 40626-2021 杨树细菌性溃疡病菌检疫鉴定方法 GB/T 40624-2021 黄瓜绢野螟检疫鉴定方法 GB/T 40622-2021 牡丹籽油 GB/T 29379-2021 马铃薯脱毒种薯贮藏、运输技术规程 GB/T 23347-2021 橄榄油、油橄榄果渣油 GB/T 20452-2021 仁用杏杏仁质量等级 GB/T 20412-2021 钙镁磷肥 GB/T 20398-2021 核桃坚果质量等级 GB/T 19164-2021 饲料原料 鱼粉 GB/T 15628.1-2021 中国动物分类代码 第1部分:脊椎动物 GB/T 1536-2021 菜籽油 GB/T 14467-2021 中国植物分类与代码GB/T 11761-2021 芝麻 GB/T 10457-2021 食品用塑料自粘保鲜膜质量通则 GB/T 10395.21-2021 农林机械 安全 第21部分:旋转式摊晒机和搂草机 GB/T 10395.20-2021 农林机械 安全 第20部分:捡拾打捆机 冶金标准(21个)GB/T 40854-2021 镧铈金属 GB/T 40798-2021 离子型稀土原矿化学分析方法 稀土总量的测定 电感耦合等离子体质谱法 GB/T 40796-2021 金属和合金的腐蚀 腐蚀数据分析应用统计学指南 GB/T 40795.2-2021 镧铈金属及其化合物化学分析方法 第2部分:稀土量的测定 GB/T 40795.1-2021 镧铈金属及其化合物化学分析方法 第1部分:铈量的测定 硫酸亚铁铵滴定法 GB/T 40794-2021 稀土永磁材料高温磁通不可逆损失检测方法 GB/T 40793-2021 烧结钕铁硼表面涂层 GB/T 40792-2021 烧结钕铁硼永磁体失重试验方法 GB/T 40791-2021 钢管无损检测 焊接钢管焊缝缺欠的射线检测 GB/T 40790-2021 烧结铈及富铈永磁材料 GB/T 40566-2021 流化床法颗粒硅 氢含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 40561-2021 光伏硅材料 氧含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 28504.3-2021 掺稀土光纤 第3部分:双包层铒镱共掺光纤特性 GB/T 28504.2-2021 掺稀土光纤 第2部分:双包层掺铥光纤特性 GB/T 18996-2021 银合金首饰 银含量的测定 氯化钠或氯化钾容量法(电位滴定法) GB/T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法) GB/T 18115.4-2021 稀土金属及其氧化物中稀土杂质化学分析方法 第4部分:钕中镧、铈、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 14949.6-2021 锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法 GB/T 12690.7-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第7部分:硅量的测定GB/T 12690.4-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第4部分:氧、氮量的测定 脉冲-红外吸收法和脉冲-热导法GB/T 11888-2021 首饰 指环尺寸 定义、测量和命名 环境标准(2个)GB/Z 40824-2021 环境管理 生命周期评价在电子电气产品领域应用指南 GB/T 40662-2021 废铅蓄电池再生处理技术规范医疗卫生生物标准(4个)GB/T 40660-2021 信息安全技术 生物特征识别信息保护基本要求 GB/T 40423-2021 健康信息学 健康体检基本内容与格式规范 GB/T 40419-2021 健康信息学 基因组序列变异置标语言(GSVML) GB/T 25915.12-2021 洁净室及相关受控环境 第12部分:监测空气中纳米粒子浓度的技术要求 化工橡胶塑料标准(46个)GB/T 9766.6-2021 轮胎气门嘴试验方法 第6部分: 气门芯试验方法 GB/T 9578-2021 工业参比炭黑4# GB/T 8290-2021 胶乳 取样 GB/T 40872-2021 塑料 聚乙烯泡沫试验方法 GB/T 40871-2021 塑料薄膜热覆合钢板及钢带 GB/T 40870-2021 气体分析 混合气体组成数据的换算 GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法 GB/T 40844-2021 化妆品中人工合成麝香的测定 气相色谱-质谱法 GB/T 40639-2021 化妆品中禁用物质三氯乙酸的测定 GB/T 40797-2021 硫化橡胶或热塑性橡胶 耐磨性能的测定 垂直驱动磨盘法 GB/T 40789-2021 气体分析 一氧化碳含量、二氧化碳含量和氧气含量在线自动测量系统 性能特征的确定 GB/T 40726-2021 橡胶或塑料涂覆织物 汽车内饰材料雾化性能的测定 GB/T 40725-2021 浸胶帘线与橡胶粘合剥离性能试验方法 GB/T 40723-2021 橡胶 总硫、总氮含量的测定 自动分析仪法 GB/T 40722.2-2021 苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法 GB/T 40721-2021 橡胶 摩擦性能的测定 GB/T 40720-2021 硫化橡胶 绝缘电阻的测定 GB/T 40719-2021 硫化橡胶或热塑性橡胶 体积和/或表面电阻率的测定 GB/T 40718-2021 绿色产品评价 轮胎 GB/T 40717-2021 阻燃轮胎 GB/T 40716-2021 汽车轮胎气密性试验方法 GB/T 40640.5-2021 化学品管理信息化 第5部分:化学品数据中心 GB/T 40640.4-2021 化学品管理信息化 第4部分:化学品定位系统通用规范 GB/T 40640.2-2021 化学品管理信息化 第2部分:信息安全 GB/T 40640.1-2021 化学品管理信息化 第1部分:数据交换 GB/T 40006.9-2021 塑料 再生塑料 第9部分:聚对苯二甲酸乙二醇酯(PET)材料 GB/T 40006.8-2021 塑料 再生塑料 第8部分:聚酰胺(PA)材料 GB/T 40006.7-2021 塑料 再生塑料 第7部分:聚碳酸酯(PC)材料 GB/T 40006.6-2021 塑料 再生塑料 第6部分:聚苯乙烯(PS)和抗冲击聚苯乙烯(PS-I)材料 GB/T 40006.5-2021 塑料 再生塑料 第5部分:丙烯腈-丁二烯-苯乙烯(ABS)材料 GB/T 3778-2021 橡胶用炭黑 GB/T 30314-2021 橡胶或塑料涂覆织物 耐磨性的测定 泰伯法 GB/T 29614-2021 硫化橡胶 多环芳烃含量的测定 GB/T 26277-2021 轮胎电阻测量方法 GB/T 23938-2021 高纯二氧化碳 GB/T 22930.2-2021 皮革和毛皮 金属含量的化学测定 第2部分:金属总量 GB/T 22930.1-2021 皮革和毛皮 金属含量的化学测定 第1部分:可萃取金属 GB/T 22271.1-2021 塑料 聚甲醛(POM)模塑和挤出材料 第1部分:命名系统和分类基础 GB/T 21537-2021 锥型橡胶护舷 GB/T 21287-2021 电子特气 三氟化氮 GB/T 17874-2021 电子特气 三氯化硼 GB/T 18426-2021 橡胶或塑料涂覆织物 低温弯曲试验 GB/T 18012-2021 胶乳 pH值的测定 GB/T 1687.4-2021 硫化橡胶 在屈挠试验中温升和耐疲劳性能的测定 第4部分:恒应力屈挠试验 GB/T 1232.3-2021 未硫化橡胶 用圆盘剪切黏度计进行测定 第3部分:无填料的充油乳液聚合型苯乙烯-丁二烯橡胶Delta门尼值的测定GB 18382-2021 肥料标识 内容和要求 石油地质矿产标准(16个)GB/T 6683.1-2021 石油及相关产品 测量方法与结果精密度 第1部分:试验方法精密度数据的确定 GB/T 4985-2021 石油蜡针入度测定法 GB/T 4652-2021 地下矿用装岩机和装载机 试验方法 GB/T 40874-2021 原油和石油产品 散装货物输转 管线充满指南 GB/T 40873-2021 大洋富钴结壳资源勘查规程 GB/T 40736-2021 矿用移动式货运索道 安全规范 GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法 GB/T 40702-2021 油气管道地质灾害防护技术规范 GB/T 40697-2021 第三方煤炭检测管理规范 GB/T 386-2021 柴油十六烷值测定法 GB/T 261-2021 闪点的测定 宾斯基-马丁闭口杯法 GB/T 23799-2021 车用甲醇汽油(M85) GB/T 17144-2021 石油产品 残炭的测定 微量法 GB/T 11060.10-2021 天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化 合物 GB 40881-2021 煤矿低浓度瓦斯管道输送安全保障系统设计规范 GB 40880-2021 煤矿瓦斯等级鉴定规范 玻璃陶瓷建材标准(11个)GB/Z 2640-2021 模制注射剂瓶 GB/T 5990-2021 耐火材料 导热系数、比热容和热扩散系数试验方法(热线法) GB/T 40724-2021 碳纤维及其复合材料术语 GB/T 40715-2021 装配式混凝土幕墙板技术条件 GB/T 40714-2021 浮法玻璃生产成套装备通用技术要求 GB/T 40713-2021 建筑陶瓷生产成套装备通用技术要求 GB/T 40619-2021 基于雷电定位系统的雷电临近预警技术规范 GB/T 19322.1-2021 小艇 机动游艇空气噪声 第1部分:通过测量程序 GB/T 16399-2021 黏土化学分析方法 GB/T 16277-2021 道路施工与养护机械设备 沥青混凝土摊铺机 GB/T 17808-2021 道路施工与养护机械设备 沥青混合料搅拌设备 轻工标准(29个)GB/T 40971-2021 家具产品及其材料中禁限用物质测定方法 多环芳烃 GB/T 40908-2021 家具产品及其材料中禁限用物质测定方法 阻燃剂 GB/T 40907-2021 家具产品及其材料中禁限用物质测定方法 2,4-二氨基甲苯、4,4’-二氨基二苯甲烷 GB/T 40906-2021 家具产品及其材料中禁限用物质测定方法 邻苯二甲酸酯增塑剂 GB/T 40904-2021 家具产品及其材料中禁限用物质测定方法 偶氮染料 GB/T 40938-2021 皮革 物理和机械试验 水渗透压测定 GB/T 40936-2021 皮革 物理和机械试验 服装革防水性能的测定GB/T 40927-2021 皮革 物理和机械试验 漆皮耐热性能的测定 GB/T 40920-2021 皮革 色牢度试验 往复式摩擦色牢度 GB/T 40917-2021 纺织品 全氟己烷磺酸及其盐类的测定 GB/T 40912-2021 纺织品 定量化学分析 聚酰胺酯纤维与某些其他纤维的混合物 GB/T 40910-2021 纺织品 防水透湿性能的评定 GB/T 40909-2021 纺织品 甲基环硅氧烷残留量的测定 GB/T 40905.1-2021 纺织品 山羊绒、绵羊毛、其他特种动物纤维及其混合物定量分析 第1部分:光学显微镜法 GB/T 40903-2021 纺织品 DNA分析法鉴别某些特种动物纤维 山羊绒、绵羊毛、牦牛绒及其混合物 GB/T 29493.2-2021 纺织染整助剂中有害物质的测定 第2部分:全氟化合物(PFCs)的测定 GB/T 29493.1-2021 纺织染整助剂中有害物质的测定 第1部分:禁限用阻燃剂的测定 GB/T 40628-2021 籽棉衣分率试验方法 锯齿型试轧法 GB/T 3903.25-2021 鞋类 整鞋试验方法 鞋跟结合强度 GB/T 3903.14-2021 鞋类 外底试验方法 针撕破强度 GB/T 3903.12-2021 鞋类 外底试验方法 撕裂强度 GB/T 40828-2021 绵羊毛分级规程 GB/T 40826-2021 分梳山羊绒手排长度试验方法 图板电子扫描仪法 GB/T 40673-2021 计时仪器 辐射发光涂层检验条件 GB/T 3903.9-2021 鞋类 内底试验方法 跟部持钉力 GB/T 28004.1-2021 纸尿裤 第1部分:婴儿纸尿裤 GB/T 26703-2021 皮鞋跟面耐磨性能试验方法 GB/T 25036-2021 布面童胶鞋 GB/T 20096-2021 轮滑鞋 机械交通航空航天标准(72个)GB/T 8601-2021 铁路用辗钢整体车轮 GB/T 40861-2021 汽车信息安全通用技术要求 GB/T 40855-2021 电动汽车远程服务与管理系统信息安全技术要求及试验方法 GB/T 40822-2021 道路车辆 统一的诊断服务GB/T 40816.11-2021 工业炉及相关工艺设备 能量平衡测试及能效计算方法 第11部分:各种效率评估 GB/T 40810.2-2021 产品几何技术规范(GPS) 生产过程在线测量 第2部分:几何特征(形位)的在线检测与验证 GB/T 40810.1-2021 产品几何技术规范(GPS) 生产过程在线测量 第1部分:几何特征(尺寸、表面结构)的在线检测与验证 GB/T 40742.5-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第5部分:几何特征检测与验证中测量不确定度的评估 GB/T 40742.4-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第4部分:尺寸和几何误差评定、最小区域的判别模式 GB/T 40742.3-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第3部分:功能量规与夹具 应用最大实体要求和最小实体要求时的检测与验证 GB/T 40742.2-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第2部分:形状、方向、位置、跳动和轮廓度特征的检测与验证 GB/T 40742.1-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第1部分:基本概念和测量基础 符号、术语、测量条件和程序 GB/T 40809-2021 铸造铝合金 半固态流变压铸成形工艺规范 GB/T 40808.1-2021 机床环境评估 第1部分:机床节能设计方法 GB/T 40807-2021 微系统用生产设备 末端执行器与处理器的接口 GB/T 40806-2021 机床发射空气传播噪声 金属切削机床的操作条件 GB/T 40805-2021 铸钢件 交货验收通用技术条件 GB/T 40804-2021金属切削机床加工过程的短期能力评估GB/T 40803-2021 机械加工过程 能量效率评价方法 GB/T 40802-2021 通用铸造碳钢和低合金钢铸件 GB/T 40800-2021 铸钢件焊接工艺评定规范 GB/T 40799-2021 机械加工过程 能效基础数据检测方法 GB/T 40741-2021 焊后热处理质量要求 GB/T 40740-2021 堆焊工艺评定试验 GB/T 40738-2021 熔模铸造 硅溶胶快速制壳工艺规范 GB/T 40737-2021 再制造 激光熔覆层性能试验方法 GB/T 40735-2021 数控机床固有能量效率的评价方法 GB/T 40734-2021 焊缝无损检测 相控阵超声检测 验收等级GB/T 40733-2021 焊缝无损检测 超声检测 自动相控阵超声技术的应用GB/T 40732-2021 焊缝无损检测 超声检测 奥氏体钢和镍基合金焊缝检测 GB/T 40731-2021 精密减速器回差测试与评价方法 GB/T 40730-2021 无损检测 电磁超声脉冲回波式测厚方法 GB/T 40729-2021 精密齿轮传动装置疲劳寿命试验方法 GB/T 40728-2021 再制造 机械产品修复层质量检测方法 GB/T 40727-2021 再制造 机械产品装配技术规范 GB/T 40711.3-2021 乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调GB/T 40709-2021 耙吸挖泥船波浪补偿器技术要求 GB/T 40701-2021 动车组驱动齿轮箱润滑油 GB/T 40700-2021 上面级自主导航系统设计要求 GB/T 40698-2021 航天控制系统工程通用要求 GB/T 40578-2021 轻型汽车多工况行驶车外噪声测量方法GB/T 40574-2021 大型工业承压设备检测机器人通用技术条件 GB/T 40565.4-2021 液压传动连接 快换接头 第4部分:72 MPa螺纹连接型 GB/T 40565.3-2021 液压传动连接 快换接头 第3部分:螺纹连接通用型 GB/T 40565.2-2021 液压传动连接 快换接头 第2部分:20 MPa~31.5 MPa平面型 GB/T 40564-2021 电子封装用环氧塑封料测试方法 GB/T 40563-2021 氟化物红色荧光粉 GB/T 40562-2021 电子设备用电位器 第6部分:分规范 表面安装预调电位器 GB/T 39851.3-2021 道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求 GB/T 39560.8-2021 电子电气产品中某些物质的测定 第8部分:气相色谱-质谱法(GC-MS)与配有热裂解/热脱附的气相色谱-质谱法 (Py/TD-GC-MS)测定聚合物中的邻苯二甲酸酯 GB/T 39560.702-2021 电子电气产品中某些物质的测定 第7-2部分:六价铬 比色法测定聚合物和电子件中的六价铬[Cr(VI)] GB/T 39560.5-2021 电子电气产品中某些物质的测定 第5部分: AAS、AFS、ICP-OES和ICP-MS法测定聚合物和电子件中镉、铅、铬以及金属中镉、铅的含量 GB/T 39560.4-2021 电子电气产品中某些物质的测定 第4部分:CV-AAS、CV-AFS、ICP-OES和ICP-MS测定聚合物、金属和电子件中的汞 GB/T 27840-2021 重型商用车辆燃料消耗量测量方法 GB/T 26548.8-2021 手持便携式动力工具 振动试验方法 第8部分:往复式锯、抛光机和锉刀以及摆式或回转式锯 GB/T 26548.12-2021 手持便携式动力工具 振动试验方法 第12部分:模具砂轮机 GB/T 26548.11-2021 手持便携式动力工具 振动试验方法 第11部分:石锤 GB/T 26548.10-2021 手持便携式动力工具 振动试验方法 第10部分:冲击式凿岩机、锤和破碎器 GB/T 23931-2021 三轮汽车 试验方法 GB/T 20933-2021 热轧钢板桩 GB/T 19290.7-2021 发展中的电子设备构体机械结构模数序列 第2-5部分:分规范 25 mm设备构体的接口协调尺寸 各种设备用机柜接口尺寸 GB/T 1805-2021 弹簧 术语 GB/T 16895.33-2021 低压电气装置 第5-56部分:电气设备的选择和安装 安全设施 GB/T 16895.10-2021 低压电气装置 第4-44部分:安全防护 电压骚扰和电磁骚扰防护 GB/T 15055-2021 冲压件未注公差尺寸极限偏差 GB/T 12678-2021 汽车可靠性行驶试验方法 GB/T 12535-2021 汽车起动性能试验方法 GB/T 10919-2021 矩形花键量规 GB 40161-2021 过滤机 安全要求 GB 40160-2021 升降工作平台安全规则 GB 40159-2021 埋刮板输送机 安全规范 GB 17957-2021 凿岩机械与气动工具 安全要求 电子电器标准(111个)GB/Z 40825-2021 电器附件 总则协调 GB/Z 40776-2021 低压开关设备和控制设备 火灾风险分析和风险降低措施 GB/Z 40680-2021 直流系统用剩余电流动作保护电器的一般要求 GB/Z 17624.6-2021 电磁兼容 综述 第6部分 测量不确定度评定指南 GB/T 6346.24-2021 电子设备用固定电容器 第24部分:分规范 表面安装导电聚合物固体电解质钽固定电容器GB/T 5169.9-2021 电工电子产品着火危险试验 第9部分:着火危险评定导则 预选试验程序 总则 GB/T 5169.2-2021 电工电子产品着火危险试验 第2部分:着火危险评定导则 总则 GB/T 5169.20-2021 电工电子产品着火危险试验 第20部分:火焰表面蔓延 试验方法概要和相关性 GB/T 4942-2021 旋转电机整体结构的防护等级(IP代码) 分级 GB/T 40867-2021 统一潮流控制器技术规范 GB/T 40863-2021 生态设计产品评价技术规范 电动机产品 GB/T 40862-2021 输变电设施运行可靠性评价指标导则 GB/T 40823-2021 配电变电站用紧凑型成套设备(CEADS) GB/T 40819-2021 架空线缆微风振动疲劳试验方法GB/T 40815.4-2021 电气和电子设备机械结构 符合英制系列和公制系列机柜的热管理 第4部分:电子机柜中供水热交换器的冷却性能试验 GB/T 40815.2-2021 电气和电子设备机械结构 符合英制系列和公制系列机柜的热管理 第2部分:强迫风冷的确定方法 GB/T 40813-2021 信息安全技术 工业控制系统安全防护技术要求和测试评价方法 GB/T 40786.2-2021 信息技术 系统间远程通信和信息交换 低压电力线通信 第2部分:数据链路层规范 GB/T 40786.1-2021 信息技术 系统间远程通信和信息交换 低压电力线通信 第1部分:物理层规范 GB/T 40784.1-2021 信息技术 用于互操作和数据交换的生物特征识别轮廓 第1部分:生物特征识别系统概述和生物特征识别轮廓GB/T 40783.1-2021 信息技术 系统间远程通信和信息交换 磁域网 第1部分:空中接口GB/T 40777-2021 家用及类似用途断路器、RCCB、RCBO自动重合闸电器(ARD)的一般要求 GB/T 40775-2021 生态设计产品评价技术规范 灯具 GB/T 40774-2021 生态设计产品评价技术规范 办公设备系列产品 GB/T 40773-2021 变电站辅助设施监控系统技术规范 GB/T 40739-2021 燃气轮机 燃气轮机设备的数据采集和趋势监测系统要求 GB/T 40678-2021 PXI总线模块通用规范 GB/T 40676-2021 PXI Express总线模块通用规范 GB/T 40659-2021 智能制造 机器视觉在线检测系统 通用要求 GB/T 40654-2021 智能制造 虚拟工厂信息模型 GB/T 40649-2021 智能制造 制造对象标识解析系统应用指南 GB/T 40648-2021 智能制造 虚拟工厂参考架构 GB/T 40647-2021 智能制造 系统架构 GB/T 40617-2021 电气场所的安全生态构建指南 GB/T 40615-2021 电力系统电压稳定评价导则 GB/T 40613-2021 电力系统大面积停电恢复技术导则 GB/T 40610-2021 电力系统在线潮流数据二进制描述及交换规范 GB/T 40609-2021 电网运行安全校核技术规范 GB/T 40608-2021 电网设备模型参数和运行方式数据技术要求 GB/T 40606-2021 电网在线安全分析与控制辅助决策技术规范 GB/T 40602.2-2021 天线及接收系统的无线电干扰 第2部分:基础测量 高增益天线方向图室内平面近场测量方法GB/T 40602.1-2021 天线及接收系统的无线电干扰 第1部分:基础测量 天线方向图的室内远场测量方法 GB/T 40598-2021 电力系统安全稳定控制策略描述规则 GB/T 40594-2021 电力系统网源协调技术导则 GB/T 40593-2021 同步发电机调速系统参数实测及建模导则 GB/T 40592-2021 电力系统自动高频切除发电机组技术规定 GB/T 40591-2021 电力系统稳定器整定试验导则 GB/T 40589-2021 同步发电机励磁系统建模导则 GB/T 40588-2021 电力系统自动低压减负荷技术规定 GB/T 40587-2021 电力系统安全稳定控制系统技术规范 GB/T 40586-2021 并网电源涉网保护技术要求 GB/T 40585-2021 电网运行风险监测、评估及可视化技术规范 GB/T 40584-2021 继电保护整定计算软件及数据技术规范 GB/T 40581-2021 电力系统安全稳定计算规范 GB/T 40580-2021 高压直流输电系统机电暂态仿真建模技术导则 GB/T 40559-2021 平衡车用锂离子电池和电池组 安全要求 GB/T 40532-2021 电力系统站域失灵(死区)保护技术导则 GB/T 40427-2021 电力系统电压和无功电力技术导则 GB/T 40366-2021 电气设备用图形符号列入IEC出版物的导则 GB/T 38775.7-2021 电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端 GB/T 38775.6-2021 电动汽车无线充电系统 第6部分:互操作性要求及测试 地面端 GB/T 38659.2-2021 电磁兼容 风险评估 第2部分:电子电气系统 GB/T 38428.2-2021 数据中心和电信中心机房安装的信息和通信技术(ICT)设备用直流插头插座 第2部分:5.2 kW插头插座系统GB/T 3836.9-2021 爆炸性环境 第9部分:由浇封型“m”保护的设备 GB/T 3836.8-2021 爆炸性环境 第8部分:由“n”型保护的设备 GB/T 3836.5-2021 爆炸性环境 第5部分:由正压外壳“p”保护的设备 GB/T 3836.4-2021 爆炸性环境 第4部分:由本质安全型“i”保护的设备 GB/T 3836.35-2021 爆炸性环境 第35部分:爆炸性粉尘环境场所分类 GB/T 3836.34-2021 爆炸性环境 第34部分:成套设备 GB/T 3836.3-2021 爆炸性环境 第3部分:由增安型“e”保护的设备 GB/T 3836.31-2021 爆炸性环境 第31部分: 由防粉尘点燃外壳“t”保护的设备 GB/T 3836.29-2021 爆炸性环境 第29部分:爆炸性环境用非电气设备 结构安全型“c”、控制点燃源型“b”、液浸型“k” GB/T 3836.28-2021 爆炸性环境 第28部分:爆炸性环境用非电气设备 基本方法和要求 GB/T 3836.2-2021 爆炸性环境 第2部分:由隔爆外壳“d”保护的设备 GB/T 3836.13-2021 爆炸性环境 第13部分:设备的修理、检修、修复和改造 GB/T 3836.1-2021 爆炸性环境 第1部分:设备 通用要求 GB/T 36450.7-2021 信息技术 存储管理 第7部分:主机元素 GB/T 33598.3-2021 车用动力电池回收利用 再生利用 第3部分:放电规范 GB/T 33133.2-2021 信息安全技术 祖冲之序列密码算法 第2部分:保密性算法 GB/T 29618.5120-2021 现场设备工具(FDT)接口规范 第5120部分:通用对象模型的通信实现 IEC 61784 CPF 2 GB/T 29618.5110-2021 现场设备工具(FDT)接口规范 第5110部分:通用对象模型的通信实现 IEC 61784 CPF 1 GB/T 2900.104-2021 电工术语 微机电装置 GB/T 25285.2-2021 爆炸性环境 爆炸预防和防护 第2部分:矿山爆炸预防和防护的基本原则和方法 GB/T 25285.1-2021 爆炸性环境 爆炸预防和防护 第1部分:基本原则和方法 GB/T 24726-2021 交通信息采集 视频交通流检测器 GB/T 24621.1-2021 低压成套开关设备和控制设备的电气安全应用指南 第1部分:成套开关设备 GB/T 22712-2021 变频电机用G系列冷却风机技术规范 GB/T 22459.3-2021 耐火泥浆 第3部分:粘接时间试验方法 GB/T 20184-2021 拉曼光纤放大器 GB/T 21973-2021 YZR3系列起重及冶金用绕线转子三相异步电动机 技术条件 GB/T 19754-2021 重型混合动力电动汽车能量消耗量试验方法 GB/T 1971-2021 旋转电机 线端标志与旋转方向 GB/T 19334-2021 低压开关设备和控制设备的尺寸 在开关设备和控制设备及其附件中作机械支承的标准安装轨 GB/T 18910.61-2021 液晶显示器件 第6-1部分:液晶显示器件测试方法 光电参数 GB/T 18910.203-2021 液晶显示器件 第20-3部分:目检 有源矩阵彩色液晶显示模块 GB/T 18910.202-2021 液晶显示器件 第20-2部分:目检 单色矩阵液晶显示模块 GB/T 18910.201-2021 液晶显示器件 第20-1部分:目检 单色液晶显示屏 GB/T 18910.102-2021 液晶显示器件 第10-2部分:环境、耐久性和机械试验方法 环境和耐久性 GB/T 18910.101-2021 液晶显示器件 第10-1部分:环境、耐久性和机械试验方法 机械 GB/T 18898.1-2021 掺铒光纤放大器 第1部分:C波段掺铒光纤放大器 GB/T 18663.2-2021 电子设备机械结构 公制系列和英制系列的试验 第2部分:机柜和机架的地震试验 GB/T 18113-2021 铬酸镧高温电热元件 GB/T 17215.231-2021 电测量设备(交流) 通用要求、试验和试验条件 第31部分:产品安全要求和试验 GB/T 15972.49-2021 光纤试验方法规范 第49部分:传输特性的测量方法和试验程序 微分模时延 GB/T 14824-2021 高压交流发电机断路器 GB/T 13542.2-2021 电气绝缘用薄膜 第2部分:试验方法 GB/T 12668.7302-2021 调速电气传动系统 第7-302部分:电气传动系统的通用接口和使用规范 2型规范对应至网络技术 GB/T 12274.4-2021 有质量评定的石英晶体振荡器 第4部分:分规范 能力批准 GB/T 11019-2021 镀镍圆铜线 GB/T 10217-2021 电工控制设备造型设计导则 GB 40165-2021 固定式电子设备用锂离子电池和电池组 安全技术规范 能源标准(17个)GB/T 40866-2021 太阳能光热发电站调度命名规则 GB/T 40860-2021 压水堆核电厂设计扩展工况分析要求 GB/T 40858-2021 太阳能光热发电站集热管通用要求与测试方法 GB/T 40821-2021 太阳能热发电站换热系统检测规范 GB/T 40817.2-2021 核电主泵电机技术条件 第2部分:屏蔽泵异步电机 GB/T 40817.1-2021 核电主泵电机技术条件 第1部分:轴封泵异步电机 GB/T 40703-2021 太阳能中温工业热利用系统设计规范 GB/T 40677-2021 微型导热管 GB/T 40620-2021 核动力厂火灾危害性分析指南 GB/T 40618-2021 回旋加速器术语 GB/T 40616-2021 村镇光伏发电站集群控制系统仿真测试技术要求 GB/T 40614-2021 光热发电站性能评估技术要求 GB/T 40607-2021 调度侧风电或光伏功率预测系统技术要求 GB/T 40604-2021 新能源场站调度运行信息交换技术要求 GB/T 13697-2021 二氧化铀粉末和芯块中碳的测定 高频感应炉燃烧-红外检测法 GB/T 20115.1-2021 工业燃料加热装置基本技术条件 第1部分:通用部分 GB/T 11809-2021 压水堆燃料棒焊缝检验方法 金相检验和X射线照相检验其他标准(11个)GB/T 4857.23-2021 包装 运输包装件基本试验 第23部分:垂直随机振动试验方法 GB/T 40868-2021 纳米尺度科研生产受控环境规划与设计 GB/T 40753-2021 供应链安全管理体系 ISO 28000实施指南 GB/T 40681.6-2021 生产过程能力和性能监测统计方法 第6部分:多元正态过程能力分析 GB/T 40681.5-2021 生产过程能力和性能监测统计方法 第5部分:计数特性的过程能力和性能估计 GB/T 40681.4-2021 生产过程能力和性能监测统计方法 第4部分:过程能力估计和性能测量 GB/T 40621-2021 地闪密度分布图绘制方法 GB/T 19789-2021 包装材料 塑料薄膜和薄片氧气透过性试验 库仑计检测法 GB/T 13675-2021 航空派生型燃气轮机包装与运输 GB/T 15717-2021 真空金属镀层厚度测试方法 电阻法 GB 19268-2021 固体氰化物包装 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 上海交通大学与嘉鑫海达成长期合作
    2023年9月11日,上海交通大学贾博士联系单经理购买2吨粉末压片机,单经理将产品资料发给客户,客户收到信息,认为该压片机符合客户需求,贾博士也对我们的产品质量很放心,便立即付款,公司也立马备货,安排发货,2023年9月18日货物已送达交通大学,单经理也发给贾博士操作视频和操作书,经学习,贾博士也将压片机马上投入了使用。由于从天津嘉鑫海2022年次购买模具后,贾博士对我们公司产品质量,售后服务以及回复态度都很满意,至此我们便达成了长期合作,先后购买模具和压片机多台。此款压片机可以和钙铁分析仪、傅立叶红外光谱仪(IR)、X射线荧光光谱仪(XRF)等分析测试仪器配套制样使用;现已广泛应用于科研、教学、检测、催化、制药、化工以及新材料研发等各个领域;此外,通过特定的压片模具可将溴化钾(KBr)、氯化钠(NaCl)、硼酸(H3BO3)等各种粉末材料压制成型,并制作出各种各样的试片、柱体、异型体或其他形状进行实验;同时,油压机也适用于其他需要相应压力的工作场所,作为压力机使用,测试各种物体的耐压程度等等,应用非常广泛,可替代同类进口产品。上海交通大学(Shanghai Jiao Tong University)简称“上海交大" ,全国重点大学,位列“985工程"、“211工程",为九校联盟、中国大学校长联谊会、Universitas 21、环太平洋大学联盟、21世纪学术联盟、国际应用科技开发协作网、新工科教育国际联盟成员,入选“珠峰计划"、“强基计划"、“111计划"、“2011计划"、医生教育培养计划、法律人才教育培养计划、工程师教育培养计划、农林人才教育培养计划、国家建设高水平大学公派研究生项目、中国政府奖学金来华留学生接收院校、学位自主审核单位。交大创造了中国近现代诸多发展:内燃机、电机、中文打字机等 万吨轮、核潜艇、气垫船、水翼艇、自主设计的战斗机、运载火箭、人造卫星、心脏二尖瓣分离术、成功移植同种原位肝手术、成功抢救大面积烧伤病人手术,大学翻译出版机构,地方文献等,都凝聚着交大师生和校友的心血智慧。在与交大合作时,我们也希望我们的仪器能对实验科研发展有极大的作用。
  • 发布博君BJ-15数显粉末压片机新品
    BJ-15型 粉末压片机 作为红外分光光度计的附件,用于将溴化钾(KBr)、氯化钠(NaCl)等材料粉末压制成各种规格的试片,以便进行光谱分析,本压片机尤其适合于国外进口各种傅里叶红外光谱仪配套替代进口附件。同时它也适用于其它需要相应压力的工作场合。该机在结构紧凑、重量轻、生压快、操作简单、方便安全。BJ-15型 粉末压片机 主要特点:质量轻、外表美观、使用简单、升压快、不掉压BJ-15型 粉末压片机 主要参数:压力范围:0-15t活塞工作直径:65mm活塞工作行程:10mm工作台面:60mm最大工作空间:105mmBJ-15型 粉末压片机+数显压力表主要参数:压力表量程0-50MPa压力表最小分辨率:0.01mpa压片机最小分辨率:3.92公斤创新点:用数显压力表代替机械压力表,分辨率大大提高。博君BJ-15数显粉末压片机
  • 上海食药监所采购3300万仪器设备,含9套液相
    上海市机械设备成套(集团)有限公司受上海市食品药品检验所委托,在中国国际招标网对下列产品及服务进行国际公开竞争性招标发布公告,本次采购总金额为3000万元,共分为16个包,除色谱、光谱、质谱等常规分析仪器外,还有酶标仪、培养箱等多类生命科学相关仪器。详情如下:  1、招标条件  项目概况:2016年实验室仪器设备项目共16个包件,投标人须以包件为单位,对该包件中所有招标产品进行投标,不接受仅对其中部分产品进行投标  包件1:红外溴化钾压片机(项目预算:8万元人民币)、真空烘箱(项目预算:10万元人民币)、微粒仪(项目预算:8.5万元人民币)、紫外分光光度计(项目预算:11万元人民币)、氮吹仪(项目预算:18万元人民币)、微生物生化鉴定仪(项目预算:23万元人民币)  包件2:液相色谱仪-2(项目预算:40万元人民币)、高效液相色谱仪(项目预算:40万元人民币)、高效液相色谱仪(项目预算:40万元人民币)、超快速高效液相色谱系统(项目预算:70万元人民币)  包件3:全自动进样系统(项目预算:33万元人民币)、电位滴定仪(项目预算:40万元人民币)、超纯水仪(项目预算:12万元人民币)、超纯水机(项目预算:12万元人民币)、二氧化碳培养箱(项目预算:9万元人民币)、全自动计数粒径检测仪(项目预算:63万元人民币)  包件4:热能分析仪主机(项目预算:42万元人民币)、热裂解装置及真空系统(项目预算:42万元人民币)、氮气发生器(项目预算:10万元人民币)  包件5:全自动尿液分析仪项目预算:13万元人民币)、酶标仪(项目预算:45万元人民币)、酶标仪(项目预算:35万元人民币)、包埋机(项目预算:9万元人民币)、牛角膜浊度仪(项目预算:36万元人民币)  包件6:定氮仪消化炉(项目预算:11万元人民币)、定氮消化装置(项目预算:11万元人民币)、微波消解仪-2(项目预算:30万元人民币)、微波消解仪-1(项目预算:32万元人民币)、连续流动分析仪(项目预算:100万元人民币)  包件7:核酸序列测定仪(项目预算:130万元人民币)  包件9:三合一组合型轨道阱高分辨质谱仪(项目预算:700万元人民币)  包件10:气相色谱仪(项目预算:47.1万元人民币)、气相色谱-单四极杆质谱仪(项目预算:70万元人民币)、超快速高效液相色谱系统(项目预算:70万元人民币)、液相色谱仪-1(项目预算:49万元人民币)、荧光检测器及控制软件(项目预算:15万元人民币)、高效液相色谱仪(项目预算:80万元人民币)、液相色谱仪-2(项目预算:43.9万元人民币)、液相色谱仪-2(项目预算:40万元人民币)  包件11:TLC-MS薄层质谱接口(项目预算:22万元人民币)、全自动鼻喷触发器(项目预算:40万元人民币)  包件12:溶出度仪(项目预算:31万元人民币)、  包件13:傅里叶红外光谱仪(项目预算:33万元人民币)、离心机(项目预算:12万元人民币)  包件14:电位滴定仪(项目预算:40万元人民币)、显微镜(项目预算:9万元人民币)、旋转蒸发仪(项目预算:12万元人民币)  包件15:自动饮水系统(项目预算:310.01万元人民币)  包件16:自动洗笼机-1(项目预算:285万元人民币)、自动洗笼机-2(项目预算:350万元人民币)  包件18:隔离器尘埃粒子计数器(项目预算:11.5万元人民币)、渗透压仪(项目预算:40万元人民币)  资金到位或资金来源落实情况:财政拨款  项目已具备招标条件的说明:已具备招标条件  2、招标内容  招标项目编号:1639-164111320198/01  招标项目名称:上海市食品药品检验所红外溴化钾压片机等  项目实施地点:中国上海市  招标产品列表(主要设备):序号产品名称数量简要技术规格备注包件1红外溴化钾压片机、真空烘箱、微粒仪、紫外分光光度计、氮吹仪、微生物生化鉴定仪各一套最高工作压力可达15吨;真空泵:噪音低于52分贝,极限真空度低于7mbar,流速1.7m3/h;检测通道:16通道,粒径在1.2μ m~100μ m范围内可间隔0.1μ m任意设置;具不同波长同次测定值之间的简单计算功能;采用旋涡气流斜吹技术结合水浴加热的浓缩方式对样品进行快速浓缩,水浴温度为室温~99℃,加热均衡;转杆与溶出杯轴偏差:≤ 1.0mm;可鉴定链球菌(包括猪链球菌1型和2型)、芽胞杆菌、棒状杆菌、弯曲菌、乳酸杆菌及6种李斯特菌(包括单增李斯特菌)等菌种;包件2液相色谱仪-2、高效液相色谱仪、高效液相色谱仪、超快速高效液相色谱系统各一套最大操作压力: 不低于9500psi(全流速范围);泵体设计:串联双柱塞往复泵,双压力传感器,反馈回路,无脉动,可实现不随反压变化的梯度分析;集成式漏液管理:标配漏夜传感器,安全漏夜管理系统;流速精度:≤ 0.07 % RSD 或0.01 min SD包件3全自动进样系统、电位滴定仪、超纯水仪、超纯水机、二氧化碳培养箱、全自动计数粒径检测仪各一套自动进样系统 适用于12-159个(2-250mL)中等数量或大量的样品分析,一台主机可适用不同位数的滴定盘,只需要更换盘子,灵活性高,适应能力强。客户自定义任命任意位置为清洗位。自动识别可换式样品盘,带光学样品杯识别探头;加液方式:瓶顶式加液单元,干湿分离,四通阀设计,无死体积,自动一键排空,自动清洗;有气泡不影响实验分析,可轻松实现液体处理技术,防漏液设计;内置独立集成式TOC检测仪,包含0.5ml石英样品池、185/254nm双波长紫外灯、钛电极、电磁阀及温度补偿单元,检测范围: 1 - 999 ppb,符合USP(§ 643)TOC系统适应性测试对500ppb测试标准溶液的要求,投标文件需附原厂校验证书;流速:2 L/min,四种流速可调节;温度均一性: ± 0.3℃,空间温度测试点;为高浓度样品提供自动稀释,使样品稀释到适合检测的最佳浓度。包件4热能分析仪主机、热裂解装置及真空系统、氮气发生器各一套热能分析仪主机内置四个检测信号接收通道,分别为硝基模式、亚硝基模式、总亚硝胺模式和含氮模式;热裂解装置温控范围:100~900℃。温度区间不同,裂解产物的形式不同;零级空气:≥ 25L/min@110psi,碳氢化合物含量:<0.1ppm。包件5全自动尿液分析仪、酶标仪、酶标仪包埋机、牛角膜浊度仪各一套显示:触摸式彩色液晶显示屏;比色皿:可以做光吸收、荧光强度和化学发光检测,连续波长,直立式插槽;波长带宽: ≤ 4.0nm;热台温度范围:50℃-75℃,调节精度1℃;每层支持8只动物,能够进行堆叠扩展(×7层);光度计读数范围:1~3200lux,分辨率:1 lux包件6定氮仪消化炉、定氮消化装置、微波消解仪-2、微波消解仪-1、连续流动分析仪各一套可以同时使用配套的250ml和400ml的消化管;温度范围:室温~440℃;能够同批次处理不少于24个(罐内体积≥ 110ml、最高温度≥ 330℃、最高压力≥ 1500psi)样品的消解装置;能够同批次处理不少于24个(罐内体积≥ 110ml、最高温度≥ 300℃、最高压力≥ 1500psi)样品的消解装置;分析原理:采用稳态反应的气泡间隔流动分析技术(SFA);包件7核酸序列测定仪1套将序列生成、扩增、测序及数据分析整合于单台仪器,边合成边测序,单次测序反应。可以针对小基因组重测序、从头测序、小RNA 测序、文库质控、16S 宏基因组研究、以及靶向测序和定制捕获等应用;包件9三合一组合型轨道阱高分辨质谱仪1套喷针采用60度喷雾设计,并且在前后、左右、插入深浅XYZ三维方向可调;喷针正对废液出口雾化后废物直接进入废液出口,确保离子源腔体洁净包件10气相色谱仪、气相色谱-单四极杆质谱仪、超快速高效液相色谱系统、液相色谱仪-1、荧光检测器及控制软件、高效液相色谱仪、液相色谱仪-2、液相色谱仪-21套、1套、1套、1套、1套、2套、1套、1套标准升温速率:≥ 120℃/min,最大可选配≥ 1800℃/min;可编程电子参数设定压力、流速、分流比,电子流量控制隔垫吹扫,最大压力可到150psi;延迟体积:120μ L,不随反压变化而变化;泵体设计:两个双柱塞串联泵,齿轮传动,浮动活塞设计。采用可变冲程(20?L~100?L)设计,用户可自主设置溶剂压缩因子;光源:光源氙闪灯,普通模式(20 W),经济模式(5 W),寿命长达4000 小时;最高操作压力:不低于60MPa(600bar);内体积:左控温模块3?L,右控温模块 6?L;可选择不同的内体积对流动相进行柱前预热和柱后加热;交叉污染: 0.003 % (30 ppm)包件11TLC-MS薄层质谱接口、全自动鼻喷触发器各一套自动提取低至pg级的薄层区域带,激光定位,并且在线输液质系统,或者提取到瓶内用作核磁共振,傅立叶变换红外光谱仪,电子轰击质谱,激光解吸电离离子源质谱;触发器可以精确控制触发速度、触发时间参数,详细给出每次喷射的时间/位移,时间/压力以及位移/压力曲线包件12溶出度仪2套转速最高:25-250 rpm;精度:10-25 RPM 为± 2%;25 RPM 时为± 1%;包件13傅里叶红外光谱仪、离心机各一套干涉仪:永久准直,无需动态调整,稳定性好,可胜任实验室及室外检测任务;具备气密性离心功能,转子气密性经第三方认证包件14电位滴定仪、显微镜、旋转蒸发仪各一套滴定管参数:5种规格可选(2、5、10、20、50 mL)滴定管识别:仪器自动识别其体积,具有信息的芯片存储和自动读取功能,滴定管加液误差须满足(20mL)± 30μ L,0.15%;光学系统:C光F光 独立消色差,齐焦距离≥ 60MM;独特分体式水浴锅设计,水浴锅不带电源包件15自动饮水系统1套管道连接密封采用食品级硅橡胶材质,可耐121℃高温高压灭菌包件16自动洗笼机-1、自动洗笼机-2各一套清洗手臂及喷水嘴清洗特点:至少6个AISI304L 不锈钢材质的清洗手臂。清洗手臂摆动方式为120° 振荡摇摆式(不接受十字旋转手臂),左右清洗手臂可根据被清洗物品的摆放各自设定不同清洗时间,以确保最大化清洗覆盖面,保证清洗无死角。清洗水嘴漂洗水嘴采用同心管式设计,配备至少84个清洗喷嘴和48个漂洗喷头,清洗漂洗水路独立分开,不会产生交叉污染;标准循环耗时:≤ 4.5min,包括清洗、沥干、漂洗,排风包件18隔离器尘埃粒子计数器、渗透压仪各一套可同时监控6通道粒径:0.3,0.5, 1.0,5.0,10.0,25.0(μ m);液体处理系统:拥有具液位传感和碰撞检测功能的移液管,能自动检测试管中样品的位置,并准确传输100微升样品进行处理,系统每次抽样后自动清洗移液管,可通过软件控制系统的液体和废液的水位。
  • 大气降水氢氧稳定同位素测试方法
    一、研究背景与意义大气降水作为内陆水循环的重要水分输入项,其形成过程中,伴随着地表蒸发、植物蒸腾以及水汽凝结等平衡分馏或动力分馏过程,使降水中的氢氧稳定同位素组成有不同的特征。因此降水氢氧稳定同位素常被视为良好的示踪剂,被广泛应用于水汽源地示踪、古气候重建、蒸发量及局地水汽再循环的估算等研究。降水氢氧稳定同位素的研究始于上世纪五十年代,以国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素观测网(Global Network of Isotopes in Precipitation, GNIP)为标志,开始了全球性的降水氢氧稳定同位素的长期监测;随后研究者们在国家、区域或单站点尺度上也开展了大气降水氢氧稳定同位素的监测,这些观测数据促进了我们对于复杂水循环过程的认识。因此,高时间和空间分辨率的降水氢氧稳定同位素的监测是一项非常重要的工作。二、测量原理降水氢氧稳定同位素组成的测定采用的是基于光腔衰荡光谱(Cavity Ring-Down Spectrospecopy, CRDS)技术的Picarro高精度水同位素分析仪。同其它光谱技术相同,CRDS技术也是基于气态分子独特的红外吸收光谱来量化稳定同位素组成的方法,但不同于其它光谱技术基于吸收强度的测量,CRDS技术是基于时间的测量,其测量结果对激光源本身的变动不敏感,从而可以保证仪器的噪声更小,且精度更高。Picarro高精度水同位素分析仪的光腔采用三镜片小光腔(体积约35 ml,长度约为25 cm)的设计,可以保证更快的腔室内气体更新速率,使仪器的响应时间更快;同时小光腔的设计可以实现对光腔内温度和压强的控制(温度:± 0.005 ℃;压强:±0.0002 大气压),使仪器具有更好的漂移性能。光腔内采用高反射率镜面可以有效的减少由于激光透射所引起激光强度的减弱,从而可以使激光穿过的更大的气体厚度,即更大的有效长光程( 10公里),从而使仪器拥有更低的检测下限。三、仪器介绍基于CRDS技术的Picarro高精度水同位素分析仪可以用于液态水样品中稳定氢氧同位素比率(δ2H,δ17O和δ18O)的测量,如降水、河水、湖水、地下水、冰川水、土壤水和植物水等液态水。仪器的典型精度:δ2H: <0.1‰,δ17O: <0.025‰,δ18O: <0.025‰;测量速度:每9分钟可以完成一针测量,每天可以完成160针(即27个样品)的测量;测量范围:满足同位素标记的重氘样品测量,δ2H的测量上限≥50000‰(或≥8500ppm);取样温度:0-50 ℃;样品体积:<2 μL/针(可调)。四、取样方法根据国际原子能机构和世界气象组织的要求,采用标准雨量器进行降水样品的收集。如需测定月尺度上的降水氢氧稳定同位素组成,可在室内准备一个足够大的容器,每次降水后,将在室外通过雨量器收集到的降水倒入该容器,低温密封保存,每个月的最后一天取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。如需测定降水事件尺度上的降水稳定氢氧稳定同位素,则在每次降水后取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。各观测点收集的降水样品可寄送至北京松盛华嘉检测技术有限公司使用基于CRDS技术的Picarro高精度水同位素分析仪进行集中测试。五、公司介绍北京松盛华嘉检测技术有限公司,为北京理加联合科技有限公司的全资子公司,致力于为用户提供更高质量的稳定同位素样品测试服务。已先后为中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院西北生态环境资源研究院、中国林业科学研究院林业研究所、中国科学院植物研究所、中国科学院遗传与发育生物学研究所和中国水利水电科学研究院等近百家单位提供快速、精确的稳定同位素测试服务和技术咨询服务。北京松盛华嘉检测技术有限公司拥有专业的测试团队,提供快速、精确的测试服务,可以为您提供及时的数据测样服务,助力您科研成果的尽快发布。
  • 萃取富集-石墨炉原子吸收法测试工业废水中铊含量
    铊及铊化物都具有剧毒,铊对动植物的毒性远大于铅、镉、汞等其他重金属。《GB 31573-2015 无机化学工业污染物排放标准》中规定涉铊的无机化合物工业企业,其车间或生产设施废水排放口的铊总量限值为0.005 mg/L。现行水质中铊含量测定标准《HJ 748-2015 水质铊的测定石墨炉原子吸收分光光度法》中列出了两种测试方法:沉淀富集法和直接法。直接法对于基体复杂的废水样品而言,基体影响大,且灵敏度不足,准确性存疑;沉淀富集法则需要用到溴水(剧毒试剂)、离心机(额外的实验设备)等,对实验室管理体系要求较高,增加了企业的管理成本。珀金埃尔默开发了一种利用铁盐和溴化钾试剂对废水样品中的铊进行萃取富集处理的方法,有效去除碳酸锂生产企业排放废水中的复杂基质,并降低对石墨炉原子吸收光谱仪的灵敏度要求,大大简化了处理过程,节省企业的管理成本,结果准确可靠,是一种高性价比的企业内控检测方法。仪器和试剂本次实验使用的是PerkinElmer™ 900T型火焰-石墨炉一体式原子吸收光谱仪,配置铊元素无极放电灯(Tl-EDL)。样品处理用到的试剂有:硫酸、磷酸、盐酸、铁(III)盐(即硫酸铁或氯化铁)、溴化钾、甲基异丁基酮(MIBK),纯度要求在分析纯以上。前处理精确量取废水样品25mL于烧杯中,加入铁盐试剂,盐酸,混匀后置于150 ℃ 电热板上加热,待无气泡冒出后,提高加热温度使溶液近干。取下稍冷后,加入硫酸(1+4),加热数分钟,用水转移至50mL比色管中,加水定容至35mL,加入溴化钾试剂,摇匀。静置,加入磷酸,加水定容至50mL刻度,摇匀。向比色管中准确加入5 mL甲基异丁酮(MIBK),充分振摇数分钟,待静置分层后,取上层有机相测试。样品分析仪器测试参数石墨炉升温程序标准溶液与样品测试谱图如下图所示,峰型左右对称呈正态分布形状,出峰时间在1秒左右,表明石墨炉温度程序对样品合适。标准溶液和样品溶液Tl测试谱图标准曲线和样品测试结果见下图,萃取富集-石墨炉原子吸收法测试TI的结果与ICP-MS法一致,加标回收符合方法验证要求。通过萃取富集的处理方式,样品中低浓度Tl元素可以浓缩至有机相中,相应的限量指标也从原来0.005 mg /L转变为0.025 mg/L,同时原本干扰大的基体组分也去除干净,大大降低对仪器的灵敏度要求。萃取富集石墨炉法Tl标准曲线AAS和ICPMS测试结果想要了解更多测试细节,欢迎扫码下载应用报告。扫描上方二维码即可下载资料
  • 赫施曼助力石灰石及白云石中氧化钾和氧化钠含量的测定
    石灰石及白云石的质量指标对冶金工艺的质量有显著影响,如氧化钾、氧化钠对高炉中球团矿的膨胀裂化和焦炭的加速催化作用,因此其含量需要准确测定和控制。根据GB/T 3286.12-2023,测定灰石及白云石中氧化钾和氧化钠含量的方法是火焰原子吸收光谱法。其原理是:试样用盐酸、氢氟酸和高氯酸分解,蒸发至近干,用盐酸溶解盐类,稀释定容。在原子吸收光谱仪上,采用空气-乙炔火焰,分别在波长766.5nm和589.0nm处测量钾、钠的吸光度,采用校准曲线法分别计算钾、钠的质量分数。实验涉及试料的分解、标准曲线的配置:试料的分解:将试料(称取 0.50g试样,精确至 0.0001g)置于250mL聚四氟乙烯烧杯(容量250mL)中,用少量水润湿,用赫施曼瓶口分液器加入10 mL盐酸(1+1)。2 mL高氯酸(ρ=1.67g/mL),5mL氢氟酸(ρ=1.15g/mL),低温加热至冒高氯酸白烟,继续加热蒸发至近干,取下,稍冷。再用瓶口分液器加入5mL盐酸(1+1),20mL水,低温加热至盐类溶解,取下,冷却。移入100mL塑料容量瓶中,用水稀释至刻度,混匀。标准曲线的配置:采用20mL规格的opus电子瓶口分配器,stepper模式,设置2组分液体积,第一组1.00、2.00、4.00、6.00mL,第二组8.00、10.00mL,然后按分液键,将6个体积的钾标准溶液(30μg/mL)和钠标准溶液(30μg/mL)分别加入100mL塑料容量瓶中,另设一个不加的做空白对照;再向每个容量瓶中加入10mL底液(20mg/mL,以Ca计),用瓶口分液器加入5mL盐酸(1+1)用水稀释至刻度,混匀。此校准溶液钾、钠的含量范围为0~3.0μg/mL。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的酸(包括氢氟酸等强酸)、碱、有机试剂等的移取。赫施曼的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加和分液,大体积的型号可代替烧杯、玻璃棒、洗瓶,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 光致发光和可穿戴传感器研究获进展
    人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了关注。遗憾的是,这类交互设备多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是巨大的挑战。中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室研究员李清文与项目研究员张其冲等,提出了高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。科研人员利用这一策略,仅使用水作为溶剂便制备了盐壳金属卤化物固体(具有高效和狭窄的绿色排放,PLQY为87.3%)。其中,KBr盐提供了一个富溴的环境来钝化钙钛矿的表面缺陷,且作为基质来提高其稳定性。该绿色环保的制备策略可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。研究显示,运用简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙地引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,而且提升了产物光和热稳定性。得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并可以通过喷墨打印技术打印相关的图案。作为概念验证,研究还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。该研究为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关研究成果以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题,发表在Nano Energy上。研究工作得到中科院和江苏省青年基金项目的支持。该研究由苏州纳米所、华东理工大学、新加坡南洋理工大学、上海交通大学的科研人员合作完成。图1.固态盐壳金属卤化物的制备图2.固态金属卤化物的稳定性及其柔性应用图3.固态金属卤化物在传感领域的应用
  • 热烈祝贺与山东兖州市采购供应站达成合作共识
    2019年7月22日中午接到山东兖州市采购供应站的电话,咨询溴化钾窗片。客服人员将电话转给相应的区域经理进行商谈,客户非常认可恒创立达产品,对我司的评价极高。首次通电话就得到客户大力好评,对销售人员来讲那是莫大的欣喜,同时也能看出我司的企业文化和产品质量在广大商圈影响力极高。 客户对溴化钾窗片的规格和相应的要求进行阐述,需要100片25*4溴化钾窗片。区域经理耐心解答,沟通非常顺畅几分钟就达成协议。更让区域经理惊讶的是挂了电话不到半个小时,款已经到账。这样的客户要多多益善哦! “恒以致远.创事通达.敬天爱人”我们以企训为本,用心.做好产品,为客户提供高品质的科学服务。至今淳朴的真诚才是客户至上的法宝 。
  • 曝气池中氧含量测定方法之荧光法
    一、测定曝气池溶解氧的意义曝气池是按照微生物的特性所设计的生化反应器,有机污染质的降解程度主要取决于所设计的曝气反应条件,利用活性污泥法进行污水处理,池内提供一定污水停留时间,满足好氧微生物所需要的氧量以及污水与活性污泥充分接触的混合条件。曝气池内需要保持合适的溶解氧浓度来保证活性污泥的活性最|大化。若溶解氧浓度太低就不能满足细菌降解有机物的需氧量;若溶解氧浓度太高就会使细菌发生自身氧化,消耗细胞体本身的物质,从而导致活性污泥中毒。那么,如何测定曝气池的含氧量呢?下文将为读者一一展开。 二、溶解氧含量的测定方法溶解在水中的空气中的分子态氧称为溶解氧。目前测定溶解氧有碘量法、覆膜电极法、荧光电极法。详细对比请参照下表:方法碘量法覆膜电极法荧光电极法原理水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。覆膜溶解氧电极采用极谱式电极,阳电极为Ag/AgCl、阴电极为铂金(Pt)组成,两者之间充满特殊成份的电解液,由硅橡胶渗透膜包裹于电极四周。测量时,电极间加极化电压,氧渗透过隔膜在阴极消耗,同时等量的氧在阳极产生,这个动态过程进行到两边的氧分压相同时达到平衡.此时两电极间的电流与氧分压成正比,仪器检测到此电流,再经过一系列变换,得到氧浓度和氧含量.同时检测被测量液的温度,仪器采样后进行温度补偿,将氧浓度或氧含量折算成25℃时的值。荧光溶解氧电极基于荧光淬灭原理。蓝光照射到荧光物质上使荧光物质激发并发出红光,由于氧分子可以带走能量(猝灭效应),所以激发的红光的时间和强度与氧分子的浓度成反比。通过测量激发红光与参比光的相位差,并与内部标定值对比,从而可计算出氧分子的浓度。优点化学方法较为精|准。快速、简易、可就地测量,所需仪器设备不复杂。而且样品色度和浑浊度不影响测定。快速、简易、可就地测量,所需仪器设备不复杂。相对覆膜电极,不用更换膜片和电解液,减少了维护工作量,提高了工作可靠性,维护简单,适用范围更广。缺点操作复杂。当水中含有氧化性物质、还原性物质及有机物时,会干扰测定。每次使用前需要极化。测定时,水中氧气在阴极上反应而被消耗掉,所以电极周围的水样必须保持搅动,以补充氧气,如果静止测定,结果会偏低。不适用于气泡较多的样品。电极价格相对覆膜电极较高雷磁仪器ZD-1数字滴定器JPBJ-609L便携式荧光溶解氧仪JPBJ-611Y便携式荧光溶解氧仪 以上三种方法相比较,传统碘量法需要的试剂多、操作复杂、需要工作人员有一定的技术水平;覆膜电极法和荧光电极法测定溶解氧快速简单,但覆膜法电极在气泡较多的工作环境中无法正常工作,而荧光法可以用于气泡较多的工作环境。曝气池中由于曝气存在大量的气泡,十分容易影响覆膜电极的性能,因此使用荧光电极测量曝气池中溶解氧是最|优选择。 三、曝气池中溶解氧含量的快速测定1、仪器的准备荧光溶解氧仪1台(雷磁JPBJ-611Y便携式荧光溶解氧仪)荧光溶解氧电极(雷磁DO-962型溶解氧电极)2、溶液的准备:零氧水、溶解氧饱和水。 3、校准仪器(1)零氧标定:把溶解氧电极放入新鲜零氧水中,等待数据稳定后,确认零度标定结果。(2)满度标定:把溶解氧电极器放入溶解氧饱和水中,等待数据稳定后,确认满度标定结果。 3、测定样品溶解氧电极放入样品池中,待数值稳定后确认读数。 本次实验使用的雷磁JPBJ-611Y便携式荧光溶解氧仪配备先进的荧光溶解氧电极,操作简单快捷,可以在多种复杂的工作环境下使用,特别适用于污水处理领域恶劣的工况。电极配备沉降头和长达10米的防水电缆,用户可以直接把电极放入需要的水位进行测量。相关产品介绍点击链接:雷磁JPBJ-611Y便携式荧光溶解氧仪详情
  • 哪些方法可以测定柴油的氧化性?
    1、按SH/T0175方法进行测定  方法概要:将以过滤过的350mL试样,注入氧化管,通入氧气,速率为50 mL /min在93℃的温度下氧化16h。然后将氧化后的试样冷却到室温,过滤得到的可过滤的不溶物。用三合剂把粘附性不溶物从氧化管上洗下来,把三合剂蒸发除去,得到的粘附性不溶物。可过滤不溶物和粘附性不溶物的量之和为总不溶物量硫含量2、按GB/T 380方法进行测定  方法概要:将适量样品在灯中燃烧,用0.3%碳酸钠水溶液吸收燃烧生成的二氧化硫,并用0.05N的盐酸标准溶液滴定吸收液,用溴甲酚绿甲基红作滴定指示剂酸度3、按GB/T 258方法进行测定  方法概要:容量法,本方法系用沸腾的乙醇抽出轻柴油中的有机酸,然后趁热用0.05N氢氧化钾乙醇溶液滴定,中和100亳升石油产品所需氢氧化钾的毫升数称为酸度十六烷值4、按GB/T 386方法进行测定  十六烷值是指与柴油自燃性相当的标准燃料中所含正十六烷的体积百分数。标准燃料是用正十六烷与2-甲基萘按不同体积百分数配成的混合物。其中正十六烷自燃性好,设定其十六烷值为100,α-甲基萘(1-甲基萘)自燃性差,设定其十六烷值为0。也有以2、2、4、4、6、8、8-七甲基壬烷代替α-甲基萘(1-甲基萘),设定其十六烷值为15,十六烷值测定是在实验室标准的单缸柴油机上按规定条件进行的。十六烷值高的柴油容易起动,燃烧均匀,输出功率大;十六烷值低,则着火慢,工作不稳定,容易发生爆震。一般用于高速柴油机的轻柴油,其十六烷值以40-55为宜;中、低速柴油机用的重柴油的十六烷值可低到35以下。柴油十六烷值的高低与其化学组成有关,正构烷烃的十六烷值高,芳烃的十六烷值低,异构烷烃和环烷烃居中。当十六烷值高于50后,再继续提高对缩短柴油的滞燃期作用已不大;相反,当十六烷值高于65时,会由于滞燃期太短,燃料未及与空气均匀混合即着火自燃,以致燃烧不完全,部分烃类热分解而产生游离碳粒,随废气排出,造成发动机冒黑烟及油耗增大,功率下降。加添加剂可提高柴油的十六烷值,常用的添加剂有硝酸戊酯或已酯。
  • “万般信任 精通分析”瑞士万通客户关爱活动 ——走进国家金银制品质量监督检验中心
    国家金银制品质量监督检验中心(南京)于1995年由国家质检总局依法设置。中心拥有一大批具有国际先进水平的进口大型成套精密检验仪器设备,在同行中处于知名的地位,尤其是在贵金属材料及制品方面的检验能力已达国际先进水平,是上海黄金交易所铂金交易唯一指定质检机构和黄金交易指定质检机构。在检验项目上不断扩大,并对稀有金属,微量元素,痕量元素的分析上进行深入研究。目前开展等离子光谱法的杂质检验,火试金法、化学分析法等主含量检验及X荧光光谱法等无损检验,形成了较完整的检验体系。2000年通过了国家质检总局的计量认证(CMA)、质量认证和国家实验室认可。中心是全国首饰标准化技术委员会的成员单位,参与贵金属首饰标准的制(修)订工作,并与国家标准物质研究中心合作,研制铂首饰的标准样品。客户感言:我工作所使用的仪器是瑞士万通862 Compact Titrosampler型自动电位滴定仪。我们检验中心主要对金银等贵金属制品进行产品贵金属含量的质量检测, 862 Compact Titrosampler自动电位滴定仪主要用于银制品银含量的滴定检测,依照GB/T 17832-2008《银合金首饰 银含量的测定 溴化钾容量法(电位滴定法)》对银含量在800‰~999‰的银制品进行银含量滴定检测。瑞士万通862 Compact Titrosampler自动电位滴定仪的使用大大提高了我们的工作效率和工作质量,以前没有该仪器时只能依靠人工手动滴定来做检测,检测过程既漫长,而且测定结果受人的主观影响较大。2014年9月862 Compact Titrosampler自动电位滴定仪投入使用后大大提高了我们的工作效率和检测结果的准确性,几年来使用该仪器出具的委托检测报告和监督抽查报告均未被客户提出过异议,参加过的几次能力验证和比对试验结果也都顺利通过,而且该仪器的维护简单便捷,四年来从没出过任何故障,中心领导和同事对瑞士万通的产品都很满意! 862 Compact Titrosampler将电位滴定仪和自动进样器合为一体是一套完整的自动化滴定台,仅占用普通分析天平大小的空间。用于通过自动等当点识别以及终点设定滴定(SET)来自动进行动态等当点滴定(DET)和等量等当点滴定(MET)。可在总共 12 个样品位全自动进行不同滴定、清洁或存放电极。通过实时显示的大屏幕,可直接观察滴定曲线以及样品系列的当前状态。紧急样品可随时优先进行分析。
  • 国产非制冷红外探测器新型场景校正方法
    现有国产非制冷红外探测器多采用挡板校正进行非均匀性校正,影响了红外探测器的观测效果与目标搜跟。近期,湖北久之洋红外系统股份有限公司的科研团队在《光学与光电技术》期刊上发表了以“国产非制冷红外探测器新型场景校正方法”为主题的文章。该文章第一作者为刘品伟,主要从事红外技术方面的研究工作。本文提出了基于国产非制冷红外探测器的新型场景校正方法。该方法包含两部分:第一部分是基于高频非均匀性的场景校正;第二部分是基于低频非均匀性的场景校正。通过对不同频域非均匀性分别进行处理来去除探测器响应的非均匀性。国产非制冷红外探测器非均匀性分析国产非制冷红外探测器工作过程中,探测器的状态参数会产生缓变,从而导致图像非均匀性的变化。图1所示是以黑体为目标的具有较强非均匀性的非制冷红外图像。图1 具有较强非均匀性的非制冷红外图像非均匀性包括低频非均匀性与高频非均匀性两部分。低频非均匀性表现为全局灰度分布不均匀,在图像中表现为平缓的明暗变化,如图像四周与中心灰度值差别大,如图2所示。低频非均匀性主要是由探测器及镜头不同位置温度变化不均匀引起的。高频非均匀性表现为局部区域灰度值剧烈变化,在图像中表现为亮暗点或条纹。高频非均匀性主要是探测器的响应不均匀引起的,如图3所示。图2 低频非均匀性的三维显示图3 9×9邻域内高频非均匀性的三维显示传统的场景校正方式很少涉及对低频非均匀性的消除,而对高频非均匀性的消除容易产生“鬼影“等副作用,同时消除低频与高频非均匀性才能真正提高图像质量。因此,本文将针对高频与低频非均匀性,采用不同的场景校正方法处理。基于高频非均匀性的场景校正国产非制冷红外探测器在工作过程中,随着探测器整体温度的变化,由于探测器响应的不均匀性,会出现较强的高频非均匀性,具体在图像上表现为散粒及细条纹,如图4所示。图4 高频非均匀性的不同类型目前常用的场景校正算法有恒定统计法、时域高通滤波法、神经网络校正算法、基于图像配准的校正算法等。这些算法能够在一定程度上根据场景的信息自适应地补偿热像仪的增益和偏置的漂移,但是在实际使用过程中,这类算法存在各种各样的使用限制条件。以传统的神经网络场景校正算法为例,该算法要求场景信息不断变化,否则会造成图像退化或者模糊,并且如果图像中存在较强边缘信息,该算法容易导致图像出现“鬼影”现象,严重影响图像质量。对此,提出了一种基于神经网络的新型场景校正算法来消除图像退化和“鬼影”现象。首先分析图像退化与“鬼影”现象产生的原因。当原始图像中存在较强的边缘信息时,低通滤波会使边缘信息产生损失,预测图像会产生模糊失真现象。若场景保持静止不动,随着场景校正参数的不断更新,图像就会逐渐退化失真;若场景长期静止后开始运动,图像就会包含静止图像中损失的边缘信息,也就是“鬼影”现象,如图5所示。图5 传统场景校正算法产生的“鬼影”现象为了解决传统场景校正算法存在的问题,提出了一种基于中值滤波=2。同时采用时空联合阈值作为校正判断条件,选择更新系数与校正区域。时空联合阈值分为两个阈值条件:时域连续运动条件与空域邻域均匀性条件。针对高频非均匀性的场景校正算法流程图如图6所示。的自适应场景校正算法。由于高频非均匀性中包含大量的散粒非均匀性,同时为了更好地保留图像的边缘信息,该算法采用中值滤波作为滤波器,中值滤波半径r。图6 高频非均匀性场景校正算法流程图分别用此算法与传统神经网络场景校正算法对原始图像进行处理,比较两种算法是否具有“鬼影”现象。将热像仪静止工作500帧后,观察两种方法处理后的运动图像。可以看到,该算法基本没有“鬼影”现象,而传统算法“鬼影”现象严重。因此,该算法能够有效地抑制“鬼影”现象。图7 本文方法与传统神经网络“鬼影”现象比较基于低频非均匀性的场景校正高频非均匀性去除后,图像仍残留有大量的低频非均匀性。低频非均匀性在非制冷探测器开始工作时较弱,随着探测器及镜头温度的变化,图像的低频非均匀性会逐渐增加,在图像上表现为四角与中心灰度值差别较大。如图8所示,可以看到,图像灰度分布不均匀,四周有明显的光圈,影响图像观感与图像质量。图8 低频非均匀性对图像的影响这里提出了一种基于时空联合低频滤波的场景校正方法,通过在时域和空域同时进行低通滤波,分离出图像的固定低频非均匀性并进行去除。由于探测器输出图像的低频非均匀性在短时间内位置保持不变,当图像产生运动时,可以通过时域低频滤波对低频非均匀性进行分离去除,因此首先需要判断场景是否处于运动中。这里仍采用上节提到的连续运动条件来判断场景是否处于连续运动中。当场景处于连续运动时,采用基于自适应时间常数的时域低频滤波来筛选图像的低频信息。时域滤波结果包含低频非均匀性与部分边缘细节信息,因此还需要对在空域上进行低通滤波,以消除存在的边缘信息细节,达到获取低频非均匀性的目的。采用均值滤波进行空域的低通滤波。为了验证此场景校正算法的效果,对仅处理高频非均匀性的图像与高频低频非均匀性均处理的图像进行比较,如图9所示。可以看到,此算法对低频非均匀性有良好的处理效果,能够有效地减少图像四周与中央灰度差异较大的问题。图9 运动200帧后是否处理低频非均匀性图像对比为进一步验证此场景校正算法的效果,使用两台相同规格的红外机芯,第一台仅对高频非均匀性进行处理,第二台对高频低频非均匀性都进行处理,均在运动条件下连续工作1 h后,对同一温度黑体成像,计算其图像非均匀性。结果表明,仅处理高频非均匀性的图像非均匀性为2.3%,而对高频低频非均匀性都进行处理的图像非均匀性为0.5%,该算法有利于提高输出图像的均匀性。算法总体流程及效果图本文算法首先通过连续运动条件判断场景是否处于连续运动中,若处于运动过程则分别更新高频与低频非均匀性处理模块校正参数,然后进行非均匀性校正;否则直接进行非均匀性校正,整体流程如图10所示,最终效果如图11所示。图10 本文算法流程图图11 最终校正输出结果结论本文提出了一种基于非制冷红外探测器的新型场景校正方法。首先通过改进的神经网络场景校正方法滤除高频非均匀性,在此基础上通过时空联合的低频滤波去除低频非均匀性,得到最终校正结果。该方法具有良好的校正效果,并且能够有效地抑制“鬼影”现象,有利于非制冷红外探测器的推广应用。
  • 瑞士华嘉DKSH参加BCEIA 2009并举办物性技术研讨会
    瑞士华嘉DKSH公司携多款新品参加北京BCEIA分析测试仪器展会,展位号:12064,12063,12040,12039。27日同期举办美国鲁道夫2009物性分析技术研讨会,欢迎新老用户莅临指导。  北京分析测试学术报告会及展览会是经中华人民共和国科学技术部批准,由中国分析测试协会主办的专业性国际学术交流和分析测试仪器展览会,每两年举办一次,已经成功举办了十二届,在国内外享有较高的声誉。此次会议的主题为“分析测试创造更好、更安全的生活”,正好与赛默飞世尔一直致力的“帮助客户使世界更健康、更清洁、更安全”的宗旨不谋而合。赛默飞世尔科技将希望借助BCEIA这个专业平台,与更多的业界人士分享分析测试技术的杰出成果,共同探讨行业发展的新方向,为各行业的实验室分析提供更好更全面的产品及技术支持。  自此展会即将展出美国鲁道夫RUDOLPH全自动旋光、折光、密度分析仪。美国鲁道夫公司(Rudolph Research Analytical)是一家著名的物性测试仪器专业制造产家,早在1940年起就致力于旋光仪、折光仪的研发和制造。拥有全球化工、制药、制糖及香精香料等行业众多的用户,在中国已成功应用在国家药检所,上海药检所,浙江药检所等众多药检部门及各大制药厂,科研机构。2007年,鲁道夫公司经过不断创新改进,全球同步推出全自动密度计DDM 2911。  Rudolph鲁道夫公司系列产品可实现联机操作,密度计DDM 2911+折光仪J257+旋光仪Autopol V+自动进样器Autosample,一次进样可得到多个参数,在检测密度、糖度、旋光度等指标的基础上,还可检测纯度、色度等多种指标。广泛应用于石油、化工、饮料、烟草、制糖等多种行业。     美国Microtrac麦奇克激光粒度分析仪。30多年来,Microtrac 公司一直致力于激光散射技术在颗粒粒度分布中的应用。作为行业的先锋,早在1990年,纳米颗粒分析仪器,NPA首次引入由于颗粒在悬浮体系中的布朗运动而产生的能谱概念,利用  背散射(Back-scattered)和异相多谱勒频移(Heterodyne Doppler Frequency Shifts)技术  ,结合动态光散射理论和先进的数学处理模型,取代传统的光子相关光谱(PCS,Photon Correlation Spectroscopy)方法,将分析范围为延伸至0.003-6.5µ m。随着技术的发展,Microtrac 公司不断完善其麾下的专业颗粒分析仪器,快速分析高浓度的纳米颗粒,生化材料及胶体体系成为现实,成为众多行业纳米分析的参考仪器。     德国Kruss克吕士公司新一代的接触角测量仪包括了从全手动到全自动的所有配置。由于是模块式的设计,任何程度上的自动化都可以实现—甚至在您的仪器用过一段时间后也可以实现操作自动化的升级。不同的样品体积、不同的测量技术–双模块概念,KRÜ SS GmbH 所研究开发的具有革命性创新意义的接触角测量技术。使您无论在测量中遇到什么样的难题–DSA100都可以帮助您迎刃而解。总共30,000余种不同的配置,可以象堆积木一样简单的组合在一起,任何需要和在自动化控制上的要求都可瞬间实现。     英国Biochrom专用自动氨基酸分析系统产品。英国Biochrom公司是专业生产氨基酸分析系统的厂家,已有50年的历史,拥有50%全球的市场占有率。也是目前中国市场上唯一获美国FDA豁免验证,并符合联邦药物、食品和化妆品条款510 (k)的氨基酸分析系统,同时是现行欧盟饲料行业标准制定所使用的系统。其广泛应用于食品、饲料、医药质量监控、生化研究、临床检测等各个领域。     德国ZEUTEC优泰科公司近红外分析仪。SpectraAlyzer 近红外分析仪是由Zeutec Opto Elektronik GmbH公司在BRAN+LUEBBE生产InfraAlyzer的基础上设计研发的新一代产品,与InfraAlyzer完全兼容,两者的模型可直接转移使用。SpectraAlyzer具有标定快捷、操作简便、更新和扩展简洁。可广泛应用于食品,饲料,纺织和医药等行业的定性和定量检测。     瑞士华嘉公司(SiberHegner China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。华嘉公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。  华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。  瑞士华嘉(香港)有限公司全国独家代理,需了解详情,请接洽华嘉全国各办事处。  上海代表处 电话:021-5383 8811  北京代表处 电话:010-6561 3988  广州代表处 电话:020-8132 0662  成都代表处 电话:028-8676 1111  西安代表处 电话:029-8833 7412
  • 溶解氧的测量方法有两种
    溶解氧的测量方法有两种:一、碘量法:水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。二、溶解氧仪法:溶氧仪由传感器和显示仪表两个部分组成。溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化jia或氢氧化钾电解液组成,氧通过膜扩散进人电解液与金电极和银电极构成测量回路。目前溶解氧仪可分为便携式溶解氧,台式溶解氧分析仪,在线式监测水中溶解氧仪。传感器是采用荧光猝灭原理,通过自主研发的传感膜,计算出水中的溶解氧含量。实现了实验室、污水、养殖、湖泊、地表水等各领域的水质监测。荧光法的优势就在于不消耗氧气、不需要频繁校准、没有流速和搅动的要求、不受硫化物的干扰。对于国内紧缺的溶解氧传感膜,可以毫不夸张的说,蛙视具有相当的储备及量产的能力
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制