当前位置: 仪器信息网 > 行业主题 > >

航空隔音隔热测试仪

仪器信息网航空隔音隔热测试仪专题为您提供2024年最新航空隔音隔热测试仪价格报价、厂家品牌的相关信息, 包括航空隔音隔热测试仪参数、型号等,不管是国产,还是进口品牌的航空隔音隔热测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合航空隔音隔热测试仪相关的耗材配件、试剂标物,还有航空隔音隔热测试仪相关的最新资讯、资料,以及航空隔音隔热测试仪相关的解决方案。

航空隔音隔热测试仪相关的资讯

  • 借助FLIR T640,意大利建筑团队成功分析和诊断外部隔热系统
    随着城市建设的高速发展,我国的建筑能耗逐年大幅度上升,建筑总能耗已达全国能源总消耗量的45%。其中空调、采暖造成的能耗约占60%~70%。因此,建筑外部隔热系统在施工领域变得日趋重要。为了检测新建或已有建筑上大面积外部隔热系统是否安装,以及评估这些隔热产品的热性能,由意大利隔热隔音协会(ANIT)在内的多家公司组成的团队,在FLIR红外热像仪的帮助下,开展了一个研究项目。ANIT与该组织的两个会员企业(即:Caparol与FLIR Systems)发起了一项关于辨识隔热系统与安装异常现象的研究。该研究由Tep srl进行统筹,该公司是一家专业从事建筑物无损能效测试的工程服务公司。01建立测试样本为了研究以外部隔热系统安装为特色的热现象,建立了一份测试样本,在样本三侧覆盖隔热面板(带有石墨添加剂的EPS)。在样本的顶部,墙体采用常见的错误铺设方法进行覆盖,而底部采用正确的铺设方法(有/无EPS合板钉)。涂层前的试样布局02主动热成像分析在太阳能蓄热与放热循环期间,对一面虚拟墙体进行监控与分析,定期记录并存储热图像。借助主动热成像技术,蓄热通过影响测试样本表面的太阳能辐射实现。在放热阶段,已聚集能量的结构在阴凉处开始释放能量时,对其进行监控。在该项测试中,ANIT选择了FLIR T640红外热像仪,经证明是最适用于本项目的工具。上图显示了在热负荷期间试样上部出现的温差,其中存在故意设置的安装错误03各种条件下的热传递为了正确分析由热成像分析突显的各种情况,掌握可能存在的铺设异常情况,需要了解不同条件下隔热表面热传递的基本知识。在不同条件下的热传递中(拥有不同的表面温度),每一种材料的热阻、传导率与厚度已不足以定义各隔热层的热性能。事实上,必须考虑材料的密度与比热。蓄热系数是一种表示不同条件下材料属性的参数,该系数与覆盖有外部隔热层结构的表面辐射率有关。呈现试样上部的温度图显示,存在热传导率低、比热容有限的隔热材料,以及热传导率高、比热容大的粘合剂和PVC合板钉。考虑到由于太阳辐射而储存的能量,保温层冷却得更快,因为储存的能量较小,即其体积比热容较小。热辐射率是衡量材料热能穿透力的一项参数:受太阳辐射影响的外部隔热层,其表面温度与材料表面向子层传导热量的方式有关,借助材料的比热来蓄热,进而得以升温。在这种条件下,热辐射率表示材料经过太阳辐射后,内部升温的容易程度:值越低,表示加热该材料需要的能量越小。测试样本包含拥有不同热发射率值(eff.)的多种材料:粘合剂(eff.=906),带有石墨添加剂的EPS(eff.=27),合板钉上的PVC(eff.=530)。04FLIR T640红外热像仪ANIT选择FLIR T640,是因为其可满足各种技术要求。样本研究需要检测温差在0.5℃的情形,在不同的时间段,能够自动记录和控制表面温度的变化。热像仪同样需要生成优质的视频图像,能够证实表面热性能的有效研究。利用平均太阳吸收系数对外墙表面放电时的热像图分析FLIR T640红外热像仪是一款性能优质的高质量产品。作为一款高性能的红外热像仪,其配备500万像素的可见光相机、可互换镜头选件、自动对焦功能,以及宽大的4.3英寸液晶触摸屏。本产品集卓越的人体工程设计以及优质成像功能于一身,提供高质量的图像清晰度与精确度,以及可扩展的通信可行性。检测完成后,使用FLIR T640还可以通过Wi-Fi连接至FLIR Tools Mobile进行图像分析和分享,或通过METERLiNK传输测试和测量数据至热像仪。05测试样本分析对材料的特性分析表明了由辐射引起的储能,以及在阴凉处进行后续放热的不同行为。对具有平均太阳吸收系数的外墙表面充电时的热成像分析热分析清楚地表明:存在两种截然不同的表面层,一类是具有低热传导率及有限比热容的隔热材料,一类是拥有较高热传导率及比热容的粘合剂和PVC合板钉。在进行热像图分析时,热像师必须清楚,哪些为表面异常现象:此外,还必须熟悉外部隔热系统,以及在合适环境条件下观测时,哪些现象可认为是存在缺陷。除此之外,FLIR T640还有助于您发现隐藏的电阻、机械磨损和其它热相关问题的迹象。FLIR T640拥有307,200(640×480)像素,提供MSX丰富细节和FLIR UltraMax增强分辨率,可达2000℃的温度校准,具有快速诊断问题和立即开始维修所需的出色图像质量和清晰度。
  • 中航工业沈阳发动机设计研究所采购航空燃油燃烧器
    中航工业沈阳发动机设计研究所(简称中航工业动力所,代号六O六所),始建于1961年8月,首任所长为刘苏少将,是国内大中型航空发动机设计研究中心,先后研制11种型号的涡喷、涡扇发动机。昆仑、太行两大发动机的成功研制,走出了一条中国自主创新研制航空发动机的道路,更实现了我国航空发动机研制历史上的伟大跨越。近年来所产品研制实现了历史性突破,改革调整进一步深化,研制能力和手段得到大幅提升,人才队伍建设进一步加强,职工工作生活条件持续改善,所的综合实力显著增强。在新的历史机遇期,中航工业沈阳发动机设计研究所确立了“突出主业,做大做强军机、民机、燃机‘三大主业’;拓展领域,围绕产品的全价值链发展,围绕主业的相关多元化发展,围绕核心技术的体系发展;提升能力,不断夯实设计能力、研保能力、人才支撑、管理创新‘四个平台’;和谐发展,全面建设一流科研队伍、一流产品服务、一流管理体系、一流研制手段、一流工作生活环境的‘五个一流’现代化和谐研究所,推动我国航空发动机产业又好又快发展”的总体发展思路。  今年,莫帝斯所提供的美国MarlinEngineering FAA NEXGEN燃油燃烧器,中标中航工业沈阳发动机设计研究所该类项目测试项目。美国MarlinEngineering FAA NEXGEN燃油燃烧器,是美国联邦航空管理局FAA认可的NexGen航空燃油燃烧器之一,可适用于众多航空材料燃油燃烧测试。由于FAA之前所认可的Park DPL 3400、Lennox Model OB-32, 以及Carlin Model 200 CRD 均已经停产,FAA发展了下一代航空燃油燃烧器NexGen燃烧器。NexGen燃烧器采用了上一代燃烧器的操作原理,同时可以精确的测量输入气体及燃油的试验参数,同时仪器可便于FAA未来的升级。通过配置不同的试验装置,可满足众多航空燃油燃烧测试标准,如座椅燃烧测试、隔热隔音材料耐烧穿试验、货舱衬板耐烧穿试验、软硬管组件、电动引擎装置及电气连接件的防火试验等。可满足的标准为FAR 25.853、FAR25.855、FAR25.855、FARs 25.863、FARs 25.867等,同时可满足国内MH/T 6086、HB 7263、MH/T 6041、GB/T 25352、HB 7044等测试方法。
  • 斯坦福热分析新概念 10原子厚隔热材料用于便携设备
    p  strong仪器信息网讯/strong 斯坦福大学教授Eric Pop发表在Science Advances上的最新研究,利用二维材料分层堆叠的方式制造出了10个原子厚的隔热材料,可在未来用于小型化电子设备的隔热设计问题。他们的实验已经证明了,仅用几个原子厚的材料,就可以达到比其厚 100 倍的玻璃可提供的相同隔热效果。/pp  对于这项研究的独特之处,Pop 说:“我们的研究团队正以一种全新的方式看待电子设备中的热量——将其看作声音。”电线中形成电流,是依靠电子在其中运动形成电子流。当这些电子运动时,就会与它们所经过材料中的原子相碰撞(比如电阻),每发生一次碰撞,就会引起材料中的一个原子振动。电流越大,碰撞也就越频繁,最终可能就会发展为电子像撞钟一样不断敲击原子,而这种“刺耳”的震动远高于人们的听力阈值,所以对于其产生的能量,我们的感觉是热。/pp  目前,如何更好地隔热是工程师们永恒的话题。如果参考录音室增加或增厚隔音玻璃,去增添隔热材料,那就会阻碍电子产品向着更轻薄的方向发展。所以斯坦福大学的研究人员借鉴了多层玻璃让室内更保暖的技巧(在不同厚度的玻璃之间填充一层空气),设计出一种多层结构的材料薄膜。由于纳米材料的异质结构能够集成各个结构基元的性质,可实现对原子和电子结构的调制,从而获得新的功能。研究团队通过将原子薄厚的二维材料分层堆叠的方式,开发出一种拥有超高隔热性能的超薄异质结构。他们成功地将单层石墨烯、MoS2 和 WSe2 堆叠在一起。在这个“三明治”结构中,石墨烯是单层的,而另外 3 种片状材料均为 3 个原子厚。这样就制成了只有 10 个原子厚的 4 层绝热体。该结构可以很好地抑制原子的热振动,当原子通过每一层时,都会损失大部分能量。这样形成的薄膜材料的热阻是 SiO2 的 100 倍,并且在室温条件下导热效率优于空气。/pp  对于智能手机、平板电脑等其他电子设备来说,它们是追求散热还是隔热的问题一直困扰着工程师。对于 SoC(System on Chip,系统级芯片)来说,单纯追求隔热,会导致机身内部温度过高,SoC 则需要降频 而如果只追求散热,就会导致机身“烫手”,影响用户的使用体验。而该新型隔热薄膜可能就是平衡上述问题的良方。/pp  负责人 Pop 对外表示:“作为工程师,我们已经学习了很多关于如何控制电力的知识,我们对光的掌握也变得越来越好。但是我们才刚刚开始了解如何控制在原子尺度上表现为‘热’的高频声音。”/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 183px " src="https://img1.17img.cn/17img/images/201909/uepic/8e7e24ba-ec78-45de-8e07-afab71dec595.jpg" title="拉曼激光.jpg" alt="拉曼激光.jpg" width="600" height="183" border="0" vspace="0"//pp style="text-align: center "a href="https://www.instrument.com.cn/zc/34.html" target="_self"入射拉曼激光探测下,Gr/MoSe2/MoS2/WSe2 结构的截面示意图 B ~ E. 在SiO2衬底上混合 4 层(B)和 3 层(C 到 E)异质结构的横截面截图,由于碳原子的原子数相对较低,在每个异质结构顶部的单层石墨烯很难被识别出来(图自 Science Advances)/a/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 466px " src="https://img1.17img.cn/17img/images/201909/uepic/964404f2-023e-4a50-9433-9655e8b8cc04.jpg" title="SThM 热图.jpg" alt="SThM 热图.jpg" width="600" height="466" border="0" vspace="0"//pp style="text-align: center "4 层结构的扫描热显微镜(SThM)热图,显示出通道内均匀的温度分布,证实了叠层中热层间耦合的均匀性(图自 Science Advances)/p
  • ​KLA科磊快速压痕技术对隔热涂层的测试
    KLA科磊快速压痕技术对隔热涂层的测试什么是隔热涂层?隔热涂层(TBC)是一种多层多组分材料,如下图所示,应用于各种结构性组件中提供隔热和抗氧化的保护功能1。TBC中不同的微观结构特征,如热喷涂涂层的薄膜边界、孔隙度、涂层间界面、裂纹等,通常会极大地增加测试的难度。图 1. (a)多层、多功能的隔热涂层的示意图《MRS Bulletin》(b)隔热涂层的横截面的扫描电镜图KLA Instruments的测试方法利用KLA发明的 NanoBlitz 3D 压痕技术对TBC 涂层进行测试,每个压痕点测试只需不到一秒,可在微米尺度上对涂层和热循环类的样品的粘结层、表层涂层和粘结层—表面涂层的界面区域等进行各种不同范围的Mapping成像,单张Mapping最多可达100000个压痕点。结果与分析粘结层—表面涂层的界面区域是 TBC研究的重点之一,其微观结构及相应力学性能的变化,会影响到TBC 的热循环寿命。该界面处最重要的考量就是热生长氧化 (TGO) 层的形成,TGO是在高温条件下,粘结层的β-NiAl的内部扩散铝与通过表层涂层渗透的氧发生反应而成,TGO 层可防止粘结层和下面的衬底进一步的氧化,但TGO超过一定的临界厚度,又会导致严重的应变不兼容和应力失配,从而使 TBC 逐渐损坏并最终产生剥离2、3。下图显示了典型的等离子喷涂涂层的变化过程,TGO 的厚度会随着热循环次数的增加而增大。对应的硬度和弹性模量Mapping结果也显示出类似的趋势,同时,从硬度mapping图中也可以观察到粘结层一侧的作为铝源的 β-NiAl 相随热循环次数的增加而逐渐耗尽。图 2. (a,第一列)涂层状态下的 TGO 生长状况的硬度和弹性模量 mapping 图;(b,第二列) 5 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;(c,第三列)10 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;以及(d,第四列)100 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图。TGO 生长引起的弹性模量差异会导致失配应力的发展,该失配应力又导致界面之上的表层涂层产生微裂纹,如上图(d,第四列)所示的mapping结果捕捉到了裂纹区域的硬度和弹性模量的降低现象。KLA的“Cluster”算法可以对不同物相的mapping数据反卷积处理并保留它的空间信息,即对相应的力学mapping图进行重构,如下图所示。图(c) 的Cluster的硬度mapping图清晰的展示出三组硬度明显不同的物相:(1)β-NiAl、(2)γ/γ‘-Ni 和(3)内部氧化产生的氧化物。图 3 .五次热循环后粘结层的(a)微结构图,(b)硬度mapping图(c) Cluster 后的结果。总结与结论KLA 的 NanoBlitz 3D 快速mapping技术可适用于隔热涂层的研究:TBC 不同膜层的界面区以及多孔的表面涂层的研究,甚至可以借助mapping技术获得的大量数据来预测 TBC 样品的剩余寿命。如想了解更多产品参数相关内容,欢迎通过仪器信息网和我们取得联系! 400-801-5101
  • 耐超高温隔热-承载一体化轻质碳基复合材料取得重要进展
    中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACS Nano》在线发表了该项研究成果。 航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。 超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16g cm-3)、低热导率(0.03W m-1 K-1)和高压缩强度 (0.93MPa)等性能。相关工作在Carbon 2021,183上发表。 在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6g cm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32W m-1 K-1,其比压缩强度(133MPa g-1 cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线收缩率小于0.3%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACS Nano 2022,16上发表。 此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。 上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。 图1. 轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2. 高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫
  • 中国民用航空飞行学院选购我司快速导热系数测试仪
    中国民用航空飞行学院,简称“中飞院”,创建于1956年,是中国民用航空局直属的全日制普通高等学校,是中国民用航空局与四川省共建高校。学院作为中国民航培养高素质人才的主力高校,经过60多年的建设与发展,已成为全球民航职业飞行员培养规模在世界民航有着较高影响力的高等学府。中国民航70%以上的飞行员、80%以上的机长毕业于此,被称为“中国民航飞行员的摇篮”。中国民用航空飞行学院选购我司HS-DR-5快速导热系数测试仪,现已安装,调试完毕。HS-DR-5快速导热系数测试仪
  • 中国民航局第二研究所订购NEXGEN燃油燃烧器
    民航二所全称中国民航局第二研究所,是我国民航行业内专业从事高新技术应用开发的科研机构,其前身为中国民航总局科学研究所,1958年12月11日在北京成立,位于四川省成都市二环路南二段17号。中国民航局第二研究所主要从事民航信息管理系统、空中交通管理系统、机场弱电系统、航空物流系统、航空安全管理系统、航空化学产品、农林航空产品的设计、研究、开发及科技成果产业化推广,同时还承担了航化产品适航性能、飞机非金属材料阻燃性能、农林航空喷洒设备、空管自动化系统、空管雷达系统的技术测试及航油适航审定、民航节能减排监测等民航行业技术支持工作。中国民用航空局第二研究所(测试中心)防火实验室主要为局方和企业服务,检测飞机舱内材料的阻燃和防火性能是否符合适航要求。他们检测的涉及面十分广泛,烟密度毒性检测、隔热隔音材料热辐射检测、客舱内座椅垫的可燃性实验以及热释放实验等。近日民航二所从莫帝斯订购美国MarlinEngineering FAA NEXGEN 燃油燃烧器,用于提升该类项目测试能力。美国MarlinEngineering FAA NEXGEN燃油燃烧器,是美国联邦航空管理局FAA认可的NexGen航空燃油燃烧器之一,可适用于众多航空材料燃油燃烧测试。由于FAA之前所认可的Park DPL 3400、Lennox Model OB-32, 以及Carlin Model 200 CRD 均已经停产,FAA发展了下一代航空燃油燃烧器NexGen燃烧器。NexGen燃烧器采用了上一代燃烧器的操作原理,同时可以精确的测量输入气体及燃油的试验参数,同时仪器可便于FAA未来的升级。通过配置不同的试验装置,可满足众多航空燃油燃烧测试标准,如座椅燃烧测试、隔热隔音材料耐烧穿试验、货舱衬板耐烧穿试验、软硬管组件、电动引擎装置及电气连接件的防火试验等。可满足的标准为FAR 25.853、FAR25.855、FAR25.855、FARs 25.863、FARs 25.867等,同时可满足国内MH/T 6086、HB 7263、MH/T 6041、GB/T 25352、HB 7044等测试方法。
  • 新材料革命正在“引爆” 企业抢占“风口”
    p近日,一篇题为《石墨烯热控材料在华为5G产品中得到创新应用》的文章中提到,石墨烯是目前人类已知强度最高、韧性最好、质量最轻、导电性最佳的材料。作为行业领军者的华为,敢为行业先,再次加码石墨烯技术。一场新材料、新技术风暴或将就此开启。/ppbr//pp生活中,新材料无处不在,小到衣食住行,大到国计民生,新材料正影响和改变着人类的生活。在当下及未来的重点发展领域里,航空航天、电子信息、新能源、高端制造等都离不开新材料的鼎力支撑,新材料在新能源汽车、功能服装、智能家居等应用场景正呈现其优良性能。/ppbr//pp当前,我国新材料产业处于“黄金发展”前期。工信部预计,2020年底,我国新材料产业总产值将超过6万亿元;到2025 年产业总产值将达到10万亿元,并保持年均增长20%;到2035年,我国新材料产业总体实力将跃居全球前列,新材料产业发展体系基本建成,并能为本世纪中叶实现制造强国提供基础支持。/ppbr//pp企业纷纷抢占新材料风口/ppbr//pp“即使是疫情期间,都有项目找上门来。” 8月28日,重庆科华新材料公司副总经理胡高吉有点傲娇地说,“我们的单子都堆起了,忙不过来。”/ppbr//pp记者走进位于江津珞璜工业园内的重庆科华新材料厂房,一条全自动的生产线正在运作中… … 已经生产好的ALC板都整整齐齐堆放在厂房内的空地处,等待出货。/pp该公司研发的节能减耗、生态环保新材料ALC板,年产量超过250万平方米,是西南地区砂加气混凝土的头部供应商。据介绍,自ALC板投产以来,年销售增长额达到40%。/ppbr//pp受新冠肺炎疫情影响,部分制造企业面临需求放缓、产销下滑的压力。但作为一家新材料企业的重庆再升科技公司却一路上扬,上半年实现营业收入8.56亿元,同比增长39.04%,净利润达2.22亿元,同比增长125.37%。/ppbr//pp走进再升科技新产品体验厅,小到一片高性能滤纸、冰箱隔热芯材,大到航空隔音隔热毯、定制化空气净化机组,一应俱全。“今年,我们建造了专业声学实验室,加快航空级隔音隔热材料的深度研发,力争在更多应用领域打破国外技术垄断。”该公司董事长郭茂说。/ppbr//pp国中创投首席合伙人、首席执行官施安平表示,伴随着政策红利的到来,新材料有望再上风口,成为投资者关注的焦点。与此同时,资本领域也越来越青睐新材料产业,一系列投资在如火如荼地开展,国家和地方各级政府也纷纷成立多个专门基金投入新材料产业的研发。/ppbr//pp正如中国工程院院士、国家新材料产业发展专家咨询委员会主任干勇所言,有了新材料,火力发电的煤耗将“腰斩”,轴承齿轮将幻化于无形,坚硬的现实载体将无限柔软。/ppbr//pp有关人士预测,具有柔软、可印制和光电性能可调等特性的新材料,有望推动柔性显示、能源转换、仿生智能和健康监测等若干产业的快速发展,从而撬动数万亿元级规模的市场。/ppbr//pp石墨烯:最受期待的“神奇材料”/ppbr//pp如今,在政策引导和技术推进下,我国石墨烯产业已经到了从实验室走向产业化的关键时期,已经成为我国新材料产业乃至制造业实现弯道超车的突破口。/pp如果说此前石墨烯产业化项目是“只闻楼梯响,不见人下来”,那么全球首批量产石墨烯手机在重庆市推出,则为该产业从“原材料—组件—智能终端”的全产业链有机结合提供了范例。/ppbr//pp重庆石墨烯产业园是国家级重点发展的高新技术产业基地及推动自主创新发展的重要载体之一,占地1000亩,目前已经成为石墨烯技术原发地、专业人才聚集地、科技成果转移转化基地及企业成长地。/ppbr//pp重庆高新区相关负责人告诉记者,园区建立了石墨烯产业发展专项资金,在厂房租赁、能源保障、高层次人才引进等方面给予资金扶持。为吸引国内外高层次人才,高新区鼓励通过项目合作、技术入股、技术开发、科技咨询等方式柔性引进人才,为人才提供住房及安家补助费,实行科技人才股权激励政策,促进高端人才引进。/pp石墨烯可弯曲式手机、石墨烯电池、石墨烯电子纸、石墨烯透明键盘… … 作为近年来重庆大力发展的新材料产业,到2025年,石墨烯及相关产业规模有望达到1000亿元。/ppbr//pp“发达国家为抢占新材料科技的战略高地,纷纷制定出相关战略计划并投入巨资。”新材料在线联合创始人施发满坦言,“一旦石墨烯宏量制备技术和应用技术的瓶颈完全突破,其市场规模将达到万亿元级的产值。”/ppbr//pp赛瑞研究也预测,随着石墨烯成本的降低和下游应用渗透率的提高,2020~2025年石墨烯市场规模的复合年均增长率将达到37.05%。/ppbr//pp新材料产业发展前景十分广阔/ppbr//pp目前,新材料项目主要集中在先进高分子材料、高性能纤维及复合材料及金属材料。由于新材料在新能源、环保 、通信、航空航天、国防军工等领域广泛使用,市场需求比较大,因此上述领域成为新材料产业资本追逐的热门项目。/ppbr//pp赛瑞研究分析,受当地经济发展状况和创业环境影响,广东、江苏、上海成为新材料项目集聚区国内前三强,且新材料项目融资呈现出天使轮及A轮项目占绝大多数、融资规模较大等特点。/ppbr//pp2019年,化工巨头巴斯夫在湛江投资100亿美元兴建改性工程塑料生产装置;2018年11月,美国亨斯迈复合材料天津工厂奠基动工… … 除了跨国公司外,大量的产业资本纷纷进入新材料行业,融资项目保持快速增长。/ppbr//pp据企查查数据显示,仅在今年二季度,新材料企业注册量达43355家,存续企业超过56万家。截至目前,国内融资的新材料项目数近5000个。/ppbr//pp“随着全球制造业和高技术产业的飞速发展,新材料的市场需求日益增长,新材料产业发展前景十分广阔。”世纪证券研报表示。/ppbr//p
  • 官宣!GE拆分为三家公司 聚焦医疗/能源/航空
    GE医疗业务将命名为GE HealthCareGE能源业务将命名为GE Vernova,旗下涵盖:GE可再生能源、GE发电、GE数字集团和GE能源金融服务业务GE航空业务将命名为GE AerospaceGE今日发布了其计划通过分拆组建的三家全球领先的投资级上市公司的全新品牌标识。这三家公司将分别聚焦医疗、能源和航空三大增长型行业板块。GE医疗业务将启用新名称GE HealthCare。GE能源业务,包括可再生能源、发电、数字业务和能源金融服务,将合并且使用新名称GE Vernova。GE Aerospace将是GE航空业务的品牌名称。三家新公司将持续受益于GE约200亿美元的品牌价值和全球知名度*。此外,GE医疗业务在完成拆分后,将以“GEHC”为股票代码在纳斯达克全球精选市场上市。通过在纳斯达克股票交易所上市,GE HealthCare将受益于纳斯达克以创新、技术为主导的上市公司市场形象,特别是在医疗领域。GE HealthCareGE计划在2023年初完成对医疗业务的拆分。独立后的医疗业务将推动在精准医疗领域的创新,聚焦改善患者预后和疾病诊疗水平,应对患者和临床面临的严峻挑战。传承GE百余年的历史积淀,GE HealthCare这一新名称和品牌标识诠释了新公司对安全、品质、信任和创新的不懈坚持;而新的品牌色调“温情紫”象征着人性、温暖和关爱,以及公司对卓越的追求。GE HealthCare在全球拥有400万台装机量,每年对患者进行超过20亿次检查,未来将持续引领医疗行业的前沿创新,关爱生命重要时刻。GE Vernova按计划,GE将在2024年初执行对GE Vernova,即GE能源业务的拆分。目前,GE能源业务及用户提供了全球三分之一的电力,并将持续致力于提高能源的可靠性、可及性和可持续性。新的品牌标识融合了“ver”,源自“verde (绿色) ”和“verdant (青翠)”,代表地球的青山绿水;“nova”则来自拉丁语“novus”及“new (新)”,代表引领低碳能源新时代的承诺。GE Vernova的品牌色“寰宇翠”也诠释了这一内涵。目前,GE Vernova在全球拥有超7,000台燃气轮机与400吉瓦可再生能源设备的装机量,全新的品牌标识GE Vernova象征着公司坚守品质追求,珍视伙伴合作,引领行业创新的承诺。GE Aerospace在完成上述业务拆分后,GE将成为一家以航空为核心业务、名为GE Aerospace的公司。目前,GE Aerospace在全球拥有39,400台在役商用飞机发动机和26,200台在役军用飞机发动机。基于这一强大的业务基础,GE Aerospace将在航空业的历史性复苏进程中发挥关键作用,并致力于打造未来航空。与GE的字母组合,新的公司名GE Aerospace,以及全新的品牌色“浩瀚蓝”,寓意公司不断寻求突破,在传承航空领域深厚根基的基础上,提出一个面向未来的愿景——构建在航空航天和防务领域的竞争力、领导力。完成业务分拆之后,GE Aerospace将拥有GE品牌商标,并授予另外两家公司长期使用这一商标的许可。GE首席营销官Linda Boff表示:“在过去的六个月里,我们通过一系列以客户为导向的全方位调研,分析了计划独立的三家公司沿用GE品牌的重要性。基于大量的市场调研及数据分析,我们充分印证了GE这一品牌及其具有百年历史的字母组合,代表着创新的延续,象征着全球客户的信任、团队的荣誉,以及公司对未来人才的吸引力。为此,我们非常自豪,未来的三家公司将传承GE创新的DNA,驱动行业的未来。”三家独立公司均将受益于更为聚焦的业务运营、更定制化的资本配置和更灵活的发展战略,从而更有效地驱动长期的增长,以及品牌价值的实现**。
  • 2014中国(成都)电子展仪器仪表展区聚焦航空航天测试技术
    2014年中国(成都)电子展(www.icef.com.cn/summer )将于7月10-12日在成都世纪城新国际会展中心召开。本届展会由中国电子器材总公司、成都市经济和信息化委员会、成都市博览局共同承办。展会展示电子元器件、电源/电池、集成电路、嵌入式系统、电子材料、电子制造设备、电子工具、电子测量仪器及工控自动化系统、安全与电磁兼容测试仪器及系统、防静电产品、物联网、消费电子等产品。展览面积达25000平方米,可谓西部电子第一大展。  其中,中国(成都)电子展--仪器仪表展区,今年依然秉承了优势展区的传统,定位在高端电子及通信测量仪器、电工仪器、光学仪器这三类,EMC、防静电检测和环境实验仪器也随着西部市场的强大需求而涌现。本届仪器仪表展区仪器仪表展商近100家。电子仪器界的领军企业纷至沓来,如德国罗德与施瓦茨公司、日本横河、台湾固纬、泛华测控、北京信测、普源精电、艾德克斯电子、成都天大仪器设备有限公司、成都前锋电子仪器、常州市同惠、苏州泰思特、优利德科技等,他们都带着各自的最新产品,准备抢占新一轮西部市场大开发的制高点。  &ldquo 第二十届国际电子测试与测量专业研讨会&mdash &mdash 聚焦航空航天测控技术新发展&rdquo 是今年成都电子展的一大亮点。从航空电子设备到通用航空飞行器,从神舟系列载人航天工程到嫦娥系列探月工程,中国的航空航天事业在不断的探索中前进,取得了许多令人瞩目的成就。&ldquo 十二五&rdquo 规划中,列出了需要着力推动实施的一批关键领域重点项目,包括航空发动机、航空电子系统、卫星通信应用、卫星导航等领域,对航空航天测试技术的发展带来了挑战。本次研讨会由中国电子学会电子测量与仪器分会和中国电子展组委会联合主办,在航空航天测控领域拥有独一无二的影响力,届时将邀请来自国内外企业、研究院所的工程技术人员、航空航天类院校的专家、学者进行技术交流,分享航空航天测试经典案例,共同探讨航空航天最新测试技术、测试方法,以及边界扫描在航空航天测试中的最新应用等等。  (更多咨询:010-51662329-56/73 13811460483 官方微博:中国电子展仪器展区 )  名企赏鉴:  罗德与施瓦茨公司作为一家独立的国际性电子公司,是测试与测量,广播电视,安全通信,以及无线电监测与定位领域的领先解决方案提供商。  日本横河主要产品涵盖YOKOGAWA示波器、示波记录仪、数字功率计、光通讯类、记录类及现场在线类测试仪表,是多方位综合通用仪器销售公司和全方位科技公司。  泛华致力于发展专业测控技术,为各行业用户提供高品质的测试测量解决方案和成套的检测设备。2011年公司再次通过了ISO9001:2008质量体系认证,并且具有国家级高新技术企业、航空航天产业联盟单位、保密资格认证委员会三级保密资格认证。  固纬电子产品包括数字及模拟示波器、频谱分析仪、信号源、电源系列及电子负载、基本量测仪器、环境试验设备、电池测试系统、自动测试系统(ATE)等300多种 经过近40年不断创新,固纬电子已成为全球专业仪器生产商之一。  北京信测是专业电磁兼容测试测量设备供应商,提供完善的电磁兼容测试测量解决方案,测试满足民用及军用标准,应用涵盖信息通信、工业、科学、医疗设备、家用电器电动工具、电气照明、电力、电能表、汽车电子、车辆、船舶、航空航天等。  艾德克斯电子( ITECH ) 为美国第四大仪器公司B K-Precision 集团成员, 拥有独立研发机构和巨大的技术优势,一流的制造工厂以及与国际知名公司的紧密的技术交流合作,公司致力于电源及电源测试领域的研究, 研究出一系列高性能自动测试系统,电源和电子负载等大功率电子测试仪器,广泛应用于各个领域。  普源精电是从事测试测量仪器研发、生产和服务的国家级高新技术企业。目前已有专利400余件,其中70%以上是发明专利。RIGOL坚持自主创新,现已研发并生产了8大系列、数十种产品。包括数字示波器、频谱分析仪、射频信号源、函数/任意波形发生器、数字万用表、可编程线性直流电源、高效液相分析仪系统和紫外-可见分光光度计。公司拥有所有产品的全部核心知识产权,以自主品牌行销全球超过60多个国家和地区。  常州同惠集研发、制造、市场营销于一体的民营高科技企业,&ldquo 同惠&rdquo 已成为国内电子仪器行业的知名品牌。主要产品有:数字存储示波器、台式数字万用表、电子元件参数测试仪器 变压器、电机测试仪器 线材测试仪 直流电阻类测试仪器 高、低频毫伏表 电声响器件测试仪器等。  附:关于2014中国(成都)电子展(CEF)  时间:2014年7月10-12日  地点:成都世纪城新国际会展中心  主题:展示面向工业和军工应用的电子技术解决方案  了解更多:立即登陆www.iCEF.com.cn  展区设置:  电子元器件:元器件、测试测量、工具、电子制造设备、印刷线路板、元器件分销、半导体集成电路  电子信息技术应用:物联网、车联网、云计算、汽车电子、智能家居、智慧城市、北斗系统及应用  信息消费:智能终端产品、通讯产品、IT类产品、电子游戏、网络游戏、动漫  同期活动:  第二十届国际电子测试与测量专业研讨会  第十八届电路保护与电磁兼容技术研讨会  印制电路技术交流会  雷达与火控、电子线路学术报告会  雷电防护与电磁脉冲技术交流会  SMT工艺技术巡回研讨会  2014中国(成都)国际物联网峰会  中国手机游戏高峰年会  第八届军工行业工艺技术研讨会  &ldquo 汽车电路测试趋势和未来发展方向&rdquo 专题研讨会
  • Envirosuite 入选加入美国NASA X-59静音超音速航空测试项目
    5月7日星期五,美国国家航空航天局(NASA)宣布,包括Envirosuite (当时以EMS Brüel & Kjær竞标)在内的联合体供应商被选中,在全美范围内提供一系列大规模的社区测试,以推进商业超音速航空旅行的引入。该项目总价值为2900万美元,其中200万美元用于EVS项目,为期8年,这是一个具有重要战略意义和引人注目的项目,它使EVS处于航空业的前沿。PART-1静音超音速航空测试是一个什么项目?• 美国国家航空航天局(Nasa)正在建造一架名为X-59的测试飞机(上图为实物),该飞机的设计目的是产生超静音的超音速音爆。解决了协和式超音速飞机之前的一个关键限制,协和式超音速飞机在巡航时会产生巨大的音爆(高达110分贝,类似于军用飞机起飞时的音爆),世界上几乎所有国家的政府都禁止它在陆地上飞行。 • 航空工程学的进步意味着可以减小引起音爆的冲击波的大小,在接近60dB的地方产生更多的“声波撞击”,类似于商用喷气机或车门关闭。 • 通过该测试计划,NASA试图在全美范围内进行的多达6次试飞活动中,测试社区对这些音爆的反应,这些试飞活动在美国各地不同的气候和城市环境中进行,包括旧金山湾等主要城市地区。 • 测试项目的结果将与国际监管机构和政府组织共享,以通过一项有关静音超音速音爆的国际联合标准,推进静音超音速飞机的认证和商业推广PART-2Envirosuite 在这个项目中参与哪些工作?• Envirosuite是整个项目的核心,为HMMH和主要联合体合作伙伴提供基于云的计算、分析和数据展示工具集。这包括管理一系列部署的噪声(音爆)监测终端、地面和大气天气传感器、社区响应数据以及所有结果分析。 • 虽然听起来很复杂,但EVS正在利用工具集,我们已经由NASA资助进行了必要的修改。这项工作集中在初始准备和测试阶段,之后我们将过渡到社区测试阶段的SaaS-plus支持模型。PART-3项目的时间进度如何安排?• 我们的最初工作着眼于为2022年中期做准备,届时我们将使用位于爱德华兹空军基地的NASA尼尔阿姆斯特朗飞行研究中心(AFRC)进行的X-59飞机在莫哈韦沙漠进行首次测试飞行. • 如果测试成功,则该项目将启动6项大型社区测试的计划,每年进行2项社区测试,总体计划于2029年结束。PART-4我们为何参与其中,这对我们意味着什么?• 我们是由美国航空航天局(NASA)联系的HMMH邀请参加的,因为之前的联合体供应商在上一轮加仑斯顿(Galveston)用改进的F-18快速喷气机进行声波击测试时遇到了一些问题。NASA对创新解决方案也很感兴趣,HMMH介绍我们和其他联盟供应商一起提供这种创新方法。 • 对于Envirosuite来说,虽然这个机会并不严格符合公司的战略,但它是一个引人注目的活动,对未来的商用超音速航空具有重要的战略意义。为我们提供了一个进行长期发展的机会,为将这些飞机引入我们已经服务的机场做准备,并提供比我们的竞争对手更先进的技术能力。 • 跨洲竞标团队他们通过Covid-19封锁和居家命令协作,找到了以不同方式利用我们工具集的机会,将我们连接到美国政府采购系统,同时浏览联邦采购立法。所有那些不辞辛劳的努力都得到了回报。1如何获得更多的信息?INTRODUCE• Envirosuite的EIS团队将领导Envirosuite和area项目,并与HMMH合作,在联合体合作伙伴中开始项目规划和启动。此外,还组织了一次内部简报会,随后将举行启动仪式。• 如果您想了解更多信息:可通过Envirosuite官网联系的Matt Mills-Brookes & Simon Heath• 或者,如果你对超音速飞机感兴趣,那么看看这个youtube视频(Supersonic Planes are Coming Back),它提供了更多关于超音速运输的信息,协和飞机为什么停止飞行。你永远不会知道,在未来10-20年内,你可能会以超音速飞行。• 或者,如果你想知道什么是X-59,可以查看美国宇航局NASA官网。但简而言之,它的定制飞机是由洛克希德马丁臭鼬工厂制造的,同样的人给你带来了一些世界上最先进的飞机,包括SR-71黑鸟、F-117夜鹰和F35照明II。END关于EnvirosuiteEnviroSuite Limited (ASX: EVS) 是一家从事环境咨询和科技服务公司。该公司专注提供从大洋洲到美洲和欧洲的环境咨询,监测,预测管理和自动化报告解决方案。该公司的EnviroSuite环境管理系统将实时监测和预测模型与高分辨率天气预报和自动化数据分析相结合。EnviroSuite将多个来源的实时数据收集至云端,提供显示,即时分析,自动报告和警报。该公司提供的服务包括:空气质量,环境和无组织排放监测审计服务和炭排放管理,水监测和评估,声学咨询,气味评估。关于爱唯施 北京爱唯施环境科技有限公司,是澳大利亚Envirosuite公司(股票代码:EVS )的全资子公司。有30多年的环境咨询管理经验,擅长数据分析和建模,以自主开发的软件为服务平台将实时数据收集至云端,提供显示,即时分析,自动报告和警报, 爱唯施区域大气质量管理平台是爱唯施旗下针对大气环境开发的综合性的、集实时监测、逆向溯源、源点解析和正向预测等一系列实用可靠的功能模块于一体的管理平台。 在世界各地积累了丰富的大气质量和水质监管成功案例。2020年2月收购了著名的环境噪声管控公司EMS Brüel & Kjær,EMSBK专门从事环境噪声和振动监测,是一家提供连续无人值守及移动式环境监测解决方案的全球供应商,是全球解决机场噪声公认的市场领导者。收购后 EVS成为横跨空气质量、水质监管和环境噪声监测三大领域的公司。
  • 四部门联合印发《通用航空装备创新应用实施方案》,预计2030年形成万亿级市场!
    工业和信息化部、科学技术部、财政部、中国民用航空局等四部门近日联合印发《通用航空装备创新应用实施方案(2024—2030年)》。提出到2027年,我国通用航空装备供给能力、产业创新能力显著提升,现代化通用航空基础支撑体系基本建立,高效融合产业生态初步形成,通用航空公共服务装备体系基本完善,以无人化、电动化、智能化为技术特征的新型通用航空装备在城市空运、物流配送、应急救援等领域实现商业应用。创新能力显著提升。绿色化、智能化、新构型通用航空器研制创新居世界先进水平,形成一批通用航空领域产学研用联合实验室、科技创新中心及科技创新服务平台。通用航空法规标准体系和安全验证体系基本建立。示范应用成效明显。航空应急救援、物流配送实现规模化应用,城市空中交通实现商业运行,形成20个以上可复制、可推广的典型应用示范,打造一批低空经济应用示范基地,形成一批品牌产品。产业链现代化水平大幅提升。打造10家以上具有生态主导力的通用航空产业链龙头企业,培育一批专精特新“小巨人”和制造业单项冠军企业,通用航空动力实现系列化发展,机载、任务系统及配套设备模块化、标准化产业配套能力显著增强。到2030年,以高端化、智能化、绿色化为特征的通用航空产业发展新模式基本建立,支撑和保障“短途运输+电动垂直起降”客运网络、“干-支-末”无人机配送网络、满足工农作业需求的低空生产作业网络安全高效运行,通用航空装备全面融入人民生产生活各领域,成为低空经济增长的强大推动力,形成万亿级市场规模。关于印发《通用航空装备创新应用实施方案(2024—2030年)》的通知工信部联重装〔2024〕52号各省、自治区、直辖市及新疆生产建设兵团航空工业主管部门、科技厅(委、局)、财政厅(局)、民航各地区管理局,有关中央企业,各有关单位:  现将《通用航空装备创新应用实施方案(2024—2030年)》印发给你们,请结合实际,认真贯彻实施。工业和信息化部科学技术部财政部中国民用航空局2024年3月27日通用航空装备创新应用实施方案(2024—2030年)  发展通用航空制造业,加快通用航空装备创新应用,是塑造航空工业发展新动能新优势、推动低空经济发展的重要举措,是加快制造强国、交通强国建设的必然要求。为贯彻落实党中央、国务院决策部署,推动航空制造业新型工业化探索和实践,制定本方案。一、总体要求  以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,认真落实中央经济工作会议精神和全国新型工业化推进大会部署,完整、准确、全面贯彻新发展理念,统筹高质量发展和高水平安全,坚持创新驱动、开放融合、示范引领、安全发展,以智能化、绿色化、融合化为导向,以应用场景创新和大规模示范应用为牵引,加快通用航空技术和装备迭代升级,建设现代化通用航空先进制造业集群,打造中国特色通用航空产业发展新模式,为培育低空经济新增长极提供有力支撑。二、主要目标到2027年,我国通用航空装备供给能力、产业创新能力显著提升,现代化通用航空基础支撑体系基本建立,高效融合产业生态初步形成,通用航空公共服务装备体系基本完善,以无人化、电动化、智能化为技术特征的新型通用航空装备在城市空运、物流配送、应急救援等领域实现商业应用。  ——创新能力显著提升。绿色化、智能化、新构型通用航空器研制创新居世界先进水平,形成一批通用航空领域产学研用联合实验室、科技创新中心及科技创新服务平台。通用航空法规标准体系和安全验证体系基本建立。  ——示范应用成效明显。航空应急救援、物流配送实现规模化应用,城市空中交通实现商业运行,形成20个以上可复制、可推广的典型应用示范,打造一批低空经济应用示范基地,形成一批品牌产品。  ——产业链现代化水平大幅提升。打造10家以上具有生态主导力的通用航空产业链龙头企业,培育一批专精特新“小巨人”和制造业单项冠军企业,通用航空动力实现系列化发展,机载、任务系统及配套设备模块化、标准化产业配套能力显著增强。  到2030年,以高端化、智能化、绿色化为特征的通用航空产业发展新模式基本建立,支撑和保障“短途运输+电动垂直起降”客运网络、“干-支-末”无人机配送网络、满足工农作业需求的低空生产作业网络安全高效运行,通用航空装备全面融入人民生产生活各领域,成为低空经济增长的强大推动力,形成万亿级市场规模。三、重点任务(一)增强产业技术创新能力  1.加快关键核心技术突破。加强总体、系统、软件、元器件、材料等领域关键技术攻关。瞄准无人化、智能化方向,攻克精准定位、感知避障、自主飞行、智能集群作业等核心技术。以电动化为主攻方向,兼顾混合动力、氢动力、可持续燃料动力等技术路线,加快航空电推进技术突破和升级,开展高效储能、能量控制与管理、减排降噪等关键技术攻关。强化装备安全技术攻关,重点突破电池失效管理、坠落安全、数据链安全等技术,提升空域保持能力和可靠被监视能力。  2.完善通用航空装备产品谱系。加快提升通用航空装备技术水平,提高通用航空装备可靠性、经济性及先进性。推进大中型固定翼飞机、高原型直升机,以及无人机等适航取证并投入运营,实现全域应急救援能力覆盖。支持加快支线物流、末端配送无人机研制生产并投入运营。支持智慧空中出行(SAM)装备发展,推进电动垂直起降航空器(eVTOL)等一批新型消费通用航空装备适航取证。鼓励飞行汽车技术研发、产品验证及商业化应用场景探索。针对农林作业、工业生产等应用需求,不断提升产品竞争力和市场适应性。  3.搭建产业协同创新平台。围绕技术攻关、创新应用、安全管理等,发挥通用航空产业创新联盟等平台作用,促进产学研用协同创新。加强区域通用航空科技创新服务平台建设。面向新装备、新技术、新领域,支持建立未来空中交通装备创新研究中心,打造绿色智能安全技术创新联合体。聚焦无缝通信与监视、数字导航、智能化空域管理等,发挥低空智联网技术联盟作用,配合推动低空智联网体系布局。  (二)提升产业链供应链竞争力  4.加速通用航空动力产品系列化发展。加快200kW级、1000kW级涡轴,1000kW级涡桨等发动机研制;持续推动100-200马力活塞发动机批量交付,实现市场规模应用。加快布局新能源通用航空动力技术和装备,推动400Wh/kg级航空锂电池产品投入量产,实现500Wh/kg级航空锂电池产品应用验证;开展400kW以下混合推进系统研制;推进250kW及以下航空电机及驱动系统规模化量产,以及500kW级产品应用验证。  5.推进机载、任务系统和配套设备标准化模块化发展。结合航空应急救援、传统作业、物流配送等领域装备需求,加快推进统标统型,发展模块化和标准化任务系统,提升产品互换性和市场兼容性。不断完善满足适航要求的货架化通用航空配套产品谱系,加快发展低成本小型航电系统,推动配套设备与飞机平台协调发展。  6.培育优质多元的企业主体。鼓励龙头企业整合资源,强化对产业链、供应链和创新链的引领和组织协同,不断提高企业竞争力,完善售后服务保障能力,增强产业链韧性和安全水平。支持电池、电机等优势企业加大研发投入,提升产品性能,培育一批知名品牌产品。引导通用航空装备任务系统、配套企业提升竞争力,打造一批专精特新“小巨人”和制造业单项冠军企业。  7.建设一批先进制造业集群。立足发展基础和资源优势,对接国家区域重大战略,在长三角、粤港澳、成渝、江西、湖南、陕西等重点地区,建设从技术开发、产品研制、示范验证到应用推广的一体化创新发展产业生态,打造大中小微企业融通、创新要素集聚、网络协作高效的新型通用航空装备先进制造业集群,实现通用航空与地方经济深度融合。  (三)深化重点领域示范应用  8.扩大航空应急救援示范应用。重点围绕航空灭火、航空救援、公共卫生服务、应急通信/指挥四大领域,在京津冀、长三角、东北、中西部、边疆等重点地区,扩大航空应急救援装备示范应用。创新航空应急救援装备体系化应用模式,强化实战实训,推动构建有人无人、高低搭配、布局合理、功能互补的航空应急救援装备体系。加快无人机在应急救援领域示范应用。  9.深化航空物流配送示范应用。聚焦“干-支-末”物流配送需求,在长三角、粤港澳、川渝、内蒙古、陕西、新疆等重点地区,鼓励开展无人机城际运输及末端配送应用示范,形成量大面广的航空物流配送装备体系。支持研究低空物流解决方案,探索智慧物流新模式,推动大型无人机支线物流连线组网,以及城市、乡村、山区、海岛等新兴场景无人机配送大规模应用落地,推动构建航空物流配送网络。  10.加速城市空中交通示范应用。适应未来城市空中交通需要,支持依托长三角、粤港澳等重点区域,以eVTOL为重点开展应用示范,支持举办相关赛事活动。支持一批SAM装备加快市场应用,鼓励探索构建立体交通低空航线网络,着力培育商务出行、空中摆渡、私人包机等载人空中交通新业态。  11.拓展新型通用航空消费示范应用。面向低空旅游、航空运动、私人飞行和公务航空消费市场,在山西、内蒙古、上海、河南、湖南、海南、新疆等重点地区,开展“通用航空+”应用示范。鼓励有条件的地区开发多样化低空旅游产品,推进“通用航空+旅游”应用示范。支持开展飞行体验、航空跳伞等消费飞行活动,大力推广轻型运动飞机、特技飞行器,推进“通用航空+运动”应用示范。  12.促进传统通用航空业务规模化运行。鼓励围绕航空培训、短途运输、农林植保、物探巡检等传统通用航空业务领域,在川渝、内蒙古、黑龙江、新疆等重点地区开展规模化、常态化运行示范。推进短途客运通用航空装备批量交付运营。鼓励拓宽无人机在电力巡线、生态监测、航拍航测、航空物探等场景的商业化应用。  (四)推动基础支撑体系建设  13.推动智能高效新型运行服务体系建设。加快5G、卫星互联网等融合应用,支持空天地设施互联、信息互通的低空智联网技术和标准探索。推进通用航空器北斗标配应用。推动试点地区政府与企业在低空监管服务基础设施、网络规划建设等方面协同,促进三维高精地图、气象数据、通信导航等公共信息开放。推动构建目视航线网络,支持完善运行规则,健全航空信息资料保障机制,提升飞行服务保障能力。鼓励企业建设智能调度、动态监测、实时情报服务等为一体的飞行服务系统。  14.推动新型基础配套设施体系建设。鼓励地方政府将低空基础设施纳入城市建设规划,加强与城市运输系统连接。支持探索推进楼顶、地面、水上等场景起降点建设试点,完善导航定位、通信、气象、充电等功能服务,形成多场景、多主体、多层次的起降点网络。充分利用好现有航空基础设施,推动建设一批智能化、集成型、多用途的通用航空基础设施。鼓励新建住宅与商业楼宇预留低空基础设施。充分结合通用航空业发展特性,研究设定适用于通用航空业发展的机场建设标准。  15.完善法规标准体系。坚持通用航空标准化与技术创新、应用示范一体化推进,实现国家标准、行业标准、团体标准协同发展。鼓励龙头企业带动上下游企业共同开展标准研究,加快建立涵盖多种应用场景、各类装备的标准体系。加强工业方与适航审定方协作,协调推动工业标准与适航体系衔接。协调推动完善国家航空器管理体系,明确应用场景监管要求。  16.建立安全验证体系。充分利用现有航空工业基础,加快试验验证资源共建共享,鼓励推动建立通用航空适航技术服务与符合性验证,无人机第三方检测、试验等能力,支持飞行测试、应用测试等基地建设。构建无人机质量保障及安全验证体系,加强针对工业级无人机及eVTOL的安全性可靠性评估验证,推动形成一批支撑适航审定的工业标准。  17.夯实人才队伍基础。支持高校加强通用航空相关学科专业建设,建设一批特色学院。围绕通用航空前沿新兴交叉领域,深化产教融合,推进高校、科研机构与企业联合精准育才。开展eVTOL驾驶员、操纵员等专业人才培训,推动在新兴航空装备一致性驾驶操纵、飞行员技术培训等领域形成规范。鼓励地方出台通用航空产业人才支持政策。  (五)构建高效融合产业生态  18.促进通用航空装备制造与服务业高效融合。在无人物流、城市空中交通等新兴应用领域,鼓励龙头企业探索形成产品研制、场景构建、示范运行一体化的商业模式。在航空应急救援领域,鼓励经验丰富、实力雄厚、保障能力突出的通用航空运营企业与装备制造企业高效协同,发展专业化航空应急救援装备运营平台。  19.深化通用航空装备国内外交流与合作。依托政府间合作机制,推进电动飞机等领域国内外交流合作。鼓励通用航空企业在海外开展研发设计、飞行验证和适航取证,积极开拓国际市场。加强与国际组织对接交流,推进双边多边合作,支持国内企业参与无人机、电动飞机等领域国际规则制定和标准制修订。  20.探索通用航空装备产业科技金融合作新模式。充分发挥科技创新再贷款的政策优势,针对符合政策要求的通用航空制造企业,鼓励金融机构加大支持力度。实施“科技产业金融一体化”专项,发挥国家产融合作平台作用,充分利用风险投资等金融手段,加强通用航空装备产业技术研发融资支持。推动组建多元化股权的通用航空装备租赁公司,鼓励保险公司为通用航空装备“研产销用”全产业链创新产品和服务。鼓励有条件的地区精准引导技术、资本、人才等各类要素资源向通用航空制造企业有效集聚。四、组织保障(一)加强统筹联动。加强部门协同,强化央地联动,有序推进通用航空产业建设和资源保障力度。充分发挥地方优势,结合当地基础条件和潜在需求,在通用航空装备应用示范、产业集群建设、产业生态培育、产业政策制定等方面积极探索。组建通用航空产业创新发展专家委员会,加强通用航空产业发展战略研究、决策支持和咨询服务。  (二)加大政策支持。充分发挥首台(套)重大技术装备保险补偿政策作用,支持通用航空装备推广应用。发挥政府采购作用,加大对通用航空装备和服务采购力度。落实国务院关于航空项目投资核准有关要求,规范通用航空项目投资核准程序。根据需要研究扩展城市空中交通等应用领域的无人机无线电频率供给和规范使用。  (三)营造良好氛围。发挥行业组织作用,加强国内外、行业内外合作交流,促进产业链上下游发展对接,加强法规标准宣传,强化行业自律。引导各方力量,规范开展高水平通用航空会展、论坛、赛事活动,定期组织召开供需对接会。发展航空科普教育,大力培育通用航空消费文化。
  • 我国隐身技术航空科技重点实验室揭牌
    隐身技术航空科技重点实验室揭牌  日前,隐身技术航空科技重点实验室在中航工业沈阳所通过中航工业评审验收并揭牌。该实验室成为中航工业依照国家重点实验室标准在隐身技术专业领域建立的第一个航空科技重点实验室。  隐身技术航空科技重点实验室聘请国内20多位资深专家组成学术委员会,不断强化实验室的学术水平和研究能力,积极开展对外交流合作,将全力打造为隐身设计/测试行业领域内具有国际先进、国内领先水平的开放式研究平台,国内一流的研究基地和学术中心。  一直以来,沈阳所始终瞄准航空科技和国家航空隐身装备发展的前沿需求,围绕航空隐身技术的战略发展目标和武器装备的隐身技术发展趋势,加强科研环境建设,依托强大的科研实力,不断展开关键技术研究,使我国航空装备隐身特性及生存力研究实力大幅提升。
  • GE航空凭借利用HPO高效完成叶盘检测,获得塑造智慧变革大奖
    海克斯康制造智能客户GE航空在海克斯康塑造智慧变革大奖项目中成为获奖贵宾,以鼓励客户在有远见的实践、全球领导者、合作和创新领域的卓越成就。本年度的奖项在阿纳海姆HxGN LIVE 2016大会的Innovation 360活动中揭晓,在超过3,000名与会者的见证下。 塑造智慧变革大奖的获奖者的认可标准在于在其所在领域表现卓越,并推动创新的边界。GE航空,作为全球领先的航空发动机制造商和服务供应商,在利用高效率非接触测量方案完成航空发动机叶盘流道检测领域形成影响力。 “海克斯康制造智能与GE的团队在去年进行了非常艰苦的工作,将叶盘检测时间缩短为原来的一半,” Eric Hogarth,GE航空的检测经理这样说。“我给海克斯康一个挑战,应用HP-O光学传感器高效完成叶盘检测,他们完成了承诺。我们给海克斯康设定的方向、风险分析和完整的任务,为我们提供完善的测量方案,并提供调整反馈。” 基于GE航空的要求,海克斯康的方案显著缩短叶片翼形的检测周期。 “GE航空是一家要求样儿的客户,通过这个项目,他们推动我们利用我们的技术和专长开发出突破性的系统,” Angus Taylor,海克斯康制造智能北美总裁这样说。“我们为他们的远见所激励,我们非常荣幸的将他们认定为2016塑造智慧变革大奖获奖者。” 图片:Eric Hogarth代表GE航空接受来自Hexagon总裁兼CEO Ola Rollén的颁奖 关于海克斯康制造智能海克斯康制造智能协助工业制造企业开发当今颠覆性的技术和改变未来的产品。作为领先的计量与制造方案专家,我们专长于感知、解析和行动 – 实现测量数据的采集、分析和有效利用 - 为客户提供实现生产速度和生产力加速的自信,并提升产品品质。 通过遍及五大洲的本地化的服务中心、生产设施和商务运营机构,我们在制造领域塑造智慧变革,实现品质驱动生产力。了解更多信息,请访问HexagonMI.com。 海克斯康制造智能隶属于海克斯康 (Nasdaq Stockholm: HEXA B hexagon.com),海克斯康是全球领先的信息技术提供商,在地理信息和工业企业应用领域为品质和生产力提供驱动力。
  • “破垄断”教授:研发测试仪器助力航天事业
    p style="text-indent: 2em "span style="text-indent: 2em "在我国陶瓷制作工艺中,软软的陶泥在高温烧制之后,就会变成硬度较高的精美陶瓷;在日常生活中,如果用塑料勺炒菜,遇到高温塑料会慢慢变软。这可能是我们对温度会影响材料力学性征最朴素的认知,但是什么类型的材料在什么温度和强度下,会发生怎么样的变化我们似乎还一知半解。/span/pp style="text-indent: 2em "在重庆大学航天航空学院教授李卫国眼里,这些材料力学行为随温度的演化都可以用理论模型进行预测。他的最新研究成果是,在明确温度这一单一变量的状况之下,就可以预测出相关材料的力学行为和强度性能,其成果被国内外学者认为是该领域的重大突破,为进一步促进我国航空航天、能源及核工业等高新技术领域发展作出了贡献。/pp style="text-indent: 2em "strong创造性提出无拟合参数的“温度相关性理论模型”/strong/pp style="text-indent: 2em "随着现代科技的快速发展,拓展服役条件的需求愈发强烈,材料在超常条件下的性能成为研究的热点和难点。拿航空航天领域来讲,飞行器在高速运行时温度可达3000摄氏度以上,那么在这样的高温条件下,什么样的材料才能满足这么苛刻的使役需求,以及其力学行为会发生怎样的变化?这些问题都一直困扰着科研工作者,也制约着我国相关领域的发展。/pp style="text-indent: 2em "李卫国自2005年在清华大学做博士后研究工作起,便开始从事超高温极端条件下固体力学行为与强度理论的研究。“那时候,我国还没有建立起材料性能和相关温度之间的定量关系,要测试一个材料在什么温度下会发生断裂或者变形,只能靠实验。”李卫国说,实验不仅耗时耗力,最为关键的是成本太高。之后,建立基于物理机理的高温强度理论预测模型成了李卫国最大的课题。/pp style="text-indent: 2em "为了攻克这一难题,李卫国搜集整理了各类实验数据,夜以继日地对数据进行归类分析。经过不懈努力,创造性地提出了材料性能温度相关性建模思想,突破了温度对现有强度理论模型的禁锢,并首次针对超高温陶瓷材料建立了不包含任何拟合参数的温度相关性断裂强度理论表征模型。/pp style="text-indent: 2em "无拟合参数意味着什么?诺贝尔物理学奖获得者列夫· 达维多维奇· 朗道说过:“一个模型的价值随它包含的拟合参数的数目成指数级下降”。李卫国教授提出的模型,不需要任何拟合参数,突破了原有高温理论模型对于拟合参数的需求,大大降低了研究高温力学行为的实验难度,同时提高了实验结果的准确度。/pp style="text-indent: 2em "strong自主研发测试仪器打破欧美技术垄断/strong/pp style="text-indent: 2em "说起全世界的航天事业,总是不能忽略伟大而悲怆的哥伦比亚号航天飞机。1981年首次发射,揭开了世界航天史上新的一页。2003年2月1日,哥伦比亚号航天飞机在经过大气层时产生了高达1400摄氏度的热空气,致使机翼出现裂隙,超高温气体进入机体,最终在空中爆炸解体,7名宇航员全部遇难。而哥伦比亚号航天飞机使用的热防护材料正是由陶瓷材料构成的。/pp style="text-indent: 2em "近年来我国对飞行器热防护材料强度的研究从未间断过,但仍然存在很多亟待解决的难题。“特别是欧美等国家的技术垄断,让我们更加迫切希望在这一领域拥有属于自己的技术。”为此,李卫国开始了漫漫“取经路”。/pp style="text-indent: 2em "在诸如航空航天、能源勘测等领域,材料所经受的超长环境是复杂多变的,可能是高温状态,也可能是极寒温度,可能氧气富足,也可能氧气稀薄。鉴于此,在之前提出的“温度相关性强度模型”的基础上,李卫国研制了一种测试仪器,通过建立三个不同的环境模块,让试件在不同的环境模块间切换,以此来模拟复杂热冲环境对材料的影响。/pp style="text-indent: 2em "现在,在李卫国团队的努力下,测试版仪器已经完成。“接下来,我们将通过实验对设备进行完善改进,希望研制出能够测试各种复杂环境的仪器,助力我国航天事业的发展。”李卫国表示,这一设备的研制,将会广泛应用于对热障材料、环境障涂层的性能检测,相当于为高温材料应用又增加了一道保障。“真金不怕火炼”,经过这样高标准的测试检测能保持原有性能的高温材料,才能经得住现实复杂冲击环境的考验,为国家航空航天等关键领域提供安全保障。/pp style="text-indent: 2em "strong经常为了一个问题和学生讨论到深夜/strong/pp style="text-indent: 2em "李卫国不仅仅是一名在高温固体力学领域优秀的研究者,同时也是重庆大学航空航天学院的博士生导师,在平时指导教育学生时,言传身教,用自己对待科研严谨的态度影响着自己的学生。/pp style="text-indent: 2em " “李老师以身作则对待科研的严谨态度,让我们受益匪浅。在学术研究上,李老师总是要求我们在保质保量完成学业的基础上,成为这一领域的全国优秀人才。”2017级在读博士邓勇说,李教授对待科研工作满腔热忱,经常为了一个问题和学生讨论到深夜,这种执着的精神也影响着学生们,全身心地跟随导师投身科研工作。/pp style="text-indent: 2em "除了培养高等教育人才,李卫国还参与了重庆市青少年创新人才“雏鹰计划”,积极启发培养高中生的科研创新能力。据了解,李卫国已经指导了四期来自南开中学“雏鹰计划”学员,正在准备申报下一期的志愿者导师,在所教授的高中生学员中,有5人参与发表了SCI论文,申请发明专利6项。/pp style="text-indent: 2em "作为一名科研工作者,李卫国认真严谨,开拓创新,攻克一个又一个科研难题;作为一名教育工作者,李卫国甘为人梯,传道、授业、解惑,为我国科研创新培养人才。他说,自己将一直坚守在科研、教学的第一线,用创造性的思维和严谨求实的态度迎接下一项科研挑战。/p
  • 波音与中科院建航空生物燃料联合研究实验室
    2010年5月25日——波音和中国科学院青岛生物能源与过程研究所(简称“青岛生物能源所”)宣布将组建一个联合实验室,以加快微藻生物燃料的研究并促进航空业可持续生物燃料的产业化进程。  该实验室命名为“可持续航空生物燃料联合研究实验室”,将由波音与青岛生物能源所共同出资和管理,后者是中科院下属的研究机构。  联合实验室是2009年10月波音与中科院签订的合作谅解备忘录的成果,该合作备忘录旨在为开发互惠互利的技术展开合作。  波音中国研发与技术副总裁艾博恩(Al Bryant)表示:“与单方面的努力相比,我们坚信,合作能更高效、更及时地为生物燃料原料以及新加工技术的研发提供支持。我们将在中国和全世界范围寻求能加快生物燃料应用和扩大航空生物燃料生产规模的技术。”  青岛生物能源所副所长彭辉谈到:“我们很高兴与波音公司合作推动微藻航空生物燃料的研发。结合青岛生物能源与过程研究所的科技优势和波音在航空界的影响力,毫无疑问,我们将一起开发出高质量的航空燃料和优势技术。”  波音一直处在可持续航空生物燃料研发的前沿,目前正积极地与多家研究机构合作,为满足全球的需求寻找地区性解决方案。波音迄今已帮助美国、澳大利亚、欧洲、中东、印度和中国的高校及研究所为生物燃料的研究立项。  波音的目标是藻类及其它可再生资源生产的可持续生物燃料,这些原料不与粮食作物竞争土地或水资源。可持续生物燃料能在整个生命周期内减少温室气体排放,同时可减轻航空业对化石燃料的依赖程度。  波音研发与技术部是波音公司先进的,负责研究、技术与创新的重要机构。该部与波音的业务部门以及全球范围的客户、供应商、高校和其它研发机构开展合作,为当前和未来的航空系统及服务提供范围广泛的、创新而经济的技术。  波音中国研发中心致力于与中国顶尖的研究人员合作,确定并发展具有前景的新技术,这些新技术将惠及波音的客户和中国人民。  青岛生物能源与过程研究所于2006年由中国科学院和山东省政府、青岛市政府共同建立,是目前国内专门从事可再生能源与绿色材料领域研究的国立科研机构。研究所的研究领域主要是开发生物基能源、生物基材料的资源、技术、产品和过程。
  • 商飞/成飞/航材院/中科院/中国飞机强度研究所等航空大咖确认赴蓉出席2021航空计量检测国际论坛
    Date:2021.11.11-122021航空计量检测国际论坛International Aviation Measurement & Test Summit 20212021年11月11-12日November 11-12, 2021四川,成都Chengdu, Sichuan, China联合主办单位:士研咨询士研民航研究院《航空工程进展》支持单位:成都市航空航天产业联盟士研民航研究院,《航空工程进展》联合成都市航空航天产业联盟将于2021年11月11-12日在成都召开2021航空计量检测国际论坛。关于本次航空计量检测国际论坛的参会事宜/商务合作/展台赞助/奖项申请,请联系组委会(86 21) 6095 7203,邢先生。【组委会】【已确认发言嘉宾】谭久彬,院士,中国工程院王建华,副总工程师兼ARJ21型号总工艺师,中国商飞上海飞机制造有限公司郭广平,副总工程师,中国航发北京航空材料研究院周维虎,研究员、博导、光电技术研发中心主任,中国科学院微电子所李正强,试验验证中心主任,中国商飞上海飞机设计研究院吴敬涛,副总师,中国飞机强度研究所吴英建,总工程师,航空工业上海航空测控技术研究所杨扬,无损检测技术高级工程师,研究员,航空工业集团质量工程技术专家,航空工业成都飞机工业(集团)有限责任公司张定华,航空宇航制造工程国家重点学科负责人,西北工业大学李国龙,科技质量部副部长兼计量校准实验室副主任 ,北京航空工业精密机械研究所更多发言嘉宾持续更新中.....【发言嘉宾简介】嘉宾简介PROFILE谭久彬院士中国工程院演讲主题:关于航空发动机智能装配测量的现状与发展趋势● 谭久彬,1955年生于哈尔滨,中国工程院院士,哈尔滨工业大学精密仪器工程研究院院长,兼任国家计量战略专家咨询委员会副主任,中国仪器仪表学会副理事长,国际测量与仪器委员会(ICMI)常务委员等。他一直致力于高端装备制造中的超精密测量技术与仪器工程研究;突破超精密测量仪器设计方法、超精密运动基准技术、甚多轴位置和运动精度快速超精密测量技术、高性能光学/超声显微测量技术、超精密快速驱动控制技术等系列核心技术;研制成功4种国家级计量标准装置和21种大型超精密测量仪器与超大型超精密专用测试仪器,形成系统的超精密测量技术体系,精度水平处于国际前列;解决了我国战略武器装备、航空发动机、高性能卫星相机等36个重大型号高端装备研制生产中的超精密测量难题,推动了该类装备性能的提升;建成国内第一个超精密仪器研发基地和产业化基地,推动了我国超精密仪器技术与产业的发展;以第一获奖人获国家技术发明奖一等奖1项、二等奖2项。嘉宾简介PROFILE王建华副总工程师兼ARJ21型号总工艺师中国商飞上海飞机制造有限公司演讲主题:飞机总装中的燃油密封测试技术● 1982年7月本科毕业于南京航空学院飞机制造专业,获学士学位。1982年8月份进入西安飞机制造公司工作,历任车间工艺员、转包生产项目经理、型架分厂技术厂长、技术装备总厂总工程师、西飞公司副总工艺师。1999年,被评聘为研究员级高级工程师。1993年4月至1996年3月在北京航空航天大学读工业外贸专业研究生,获硕士学位。2003年9月至2008年8月,在上海航空特种车辆有限责任公司任总工程师、总工艺师。2008年9月至今,中国商飞上海飞机制造有限公司工作,历任工装部部长、型号总工艺师、公司副总工程师兼ARJ21型号总工艺师。具有40多年的飞机制造事业生涯,从实践中积累了丰富的飞机整机制造经验,其中具有军机制造20年的经验,民机制造20年的经验,对飞机制造已经达到心领神会、融会贯通的境界,成为国内不可多得的知名的飞机制造方面的专家。嘉宾简介PROFILE郭广平副总工程师中国航发北京航空材料研究院演讲主题:完善航空无损检测标准体系,保障航空安全● 郭广平,博士,研究员。中国航发北京航空材料研究院副总工程师。中国机械工程学会无损检测分会副主任委员,全国无损检测标准化技术委员会副主任委员。工作领域包括航空材料与结构的无损检测、航空材料力学性能测试与表征等,围绕航空用精密复杂铸件、复合材料制件等对象,在超声C扫描、激光散斑、红外热像、工业CT、中子照相等无损检测技术方面均有较深入研究工作。机械工业出版社《无损检测手册》(第二版,2012)副主编,《无损检测》、《材料工程》和《实验力学》等杂志编委。发表学术论文60余篇,获得集团及省部级科技奖励6项。嘉宾简介PROFILE周维虎研究员、博导、光电技术研发中心主任中国科学院微电子所演讲主题:精密测量仪器及服务助力先进飞机研制● 周维虎,中国科学院微电子研究所,光电中心主任,研究员,博士生导师。1983年本科毕业于合肥工业大学精密仪器系;2000年于合肥工业大学精密仪器系获工学博士学位;2001年-2003年,在美国Wisconsin- Milwaukee大学做博士后,2003年-2004年美国Oakland 大学做博士后,2001年-2004年担任美国Automated Precision Inc.(Maryland,USA)公司高级研究员。主持完成50余项课题研究,获得省部级科技奖励7项,发表论文150余篇,申请专利40余项,编写教材1部,起草国家计量检定规程和规范4部。主要研究方向为光电精密测量技术与仪器、集成电路光学检测技术与装备、飞秒激光测量技术、大尺寸几何量计量测试技术、先进制造激光在线测量等。近年来获得国务院特殊津贴、中国机械工业科学技术发明特等奖、中科院朱李月华优秀教师奖等。目前担任科技部重大仪器专项总体组专家、科技部制造基础与关件部件专项总体组专家、装备发展部强基工程指南编写组专家、全国光电测量标准化技术委员会副主任委员、中国计量测试学会计量仪器专业委员会副主任委员、中国仪器仪表学会光谱仪器专业委员会副主任委员。华中科技大学等十余所高校兼职教授和博士生导师,《Optical Engineering》等十余份国外期刊审稿人,多次在国际会议做特邀报告,担任国际会议分会场主席。嘉宾简介PROFILE李正强试验验证中心主任中国商飞上海飞机设计研究院演讲主题:民用飞机地面试验测试技术发展● 2006年西北工业大学与柏林工业大学联合培养博士毕业,专业研究方向为飞行器控制工程和系统工程,其后进入西北工业大学博士后工作站,主要研究方向是综合技术与控制工程;2013年进入民用飞机模拟飞行国家重点实验室,主要从事国家重点实验室建设工作;2018年任职上海飞机设计研究科技发展部部长,现担任上海飞机设计研究院试验验证中心主任。嘉宾简介PROFILE吴敬涛副总师中国飞机强度研究所演讲主题:航空结构强度试验的发展及新模式● 吴敬涛,高级工程师,航空工业强度研究所综合强度与气候适应性专业副总师,飞机气候环境适应性研究室主任。他带领团队攻克了全机气候环境实验室设计建设和气候环境试验技术的多项难题,凝练20余项国内首创关键技术。建立了全机气候试验质量管理体系和气候试验标准体系,并在两型飞机的气候试验中得到应用验证,填补了我国整机实验室气候环境试验领域的空白。先后主持和参与民机专项科研、两机专项、航空科学基金、集团创新基金、空装专用技术等多项研究课题,攻克了大尺寸多环境因素气流组织分析、内外场环境的等效性分析等关键技术。发表学术论文20余篇,参与编写专著3本,申请国家发明专利10余项。先后获得国防科技进步奖二等奖2项、中航工业集团科学技术进步奖多项。荣获航空工业研究院“新锐青年”、陕西国防科技工业“十大创新标兵”等荣誉称号。嘉宾简介PROFILE杨扬无损检测技术高级工程师,研究员,航空工业集团质量工程技术专家航空工业成都飞机工业(集团)有限责任公司演讲主题:无损检测新技术在航空制造领域中的应用及展望● 杨扬,成都飞机工业(集团)有限责任公司无损检测技术高级工程师师,研究员,航空工业集团质量工程技术专家,中国航空材料工程分会委员,中国材料与试验团体标准委员会委员,全国无损检测综合技术标准委员会委员,航空/航发无损检测人员资格鉴定委员会委员,无损检测RT/CT/DR3级,主编/参编多项国标、行标及集团标准。嘉宾简介PROFILE张定华航空宇航制造工程国家重点学科负责人西北工业大学演讲主题:涡轮叶片无损检测与质量评估精铸全流程● 张定华,男,汉族,生于1958年11月,四川成都人,教授,博士生导师,首批“新世纪百千万人才工程国家级人选,陕西省三秦学者,西北工业大学航空宇航制造工程国家重点学科负责人。现任航空发动机及燃气轮机重大科技专项基础研究委员会制造工艺专业组副组长,中国航空发动机集团公司科技委委员,西安三航动力科技有限公司董事长。工作经历:1981年获得西北工业大学工学学士学位,1984年获得西北工业大学工学硕士学位,1989年毕业于西北工业大学航空宇航制造工程系,获航空宇航制造工程博士学位,1991年由讲师破格晋升教授,1996-1999年先后在美国Cornell大学和Rochester大学做高级访问学者,2001年在法国国立理工大学做访问学者。2000-2002年担任西北工业大学飞行器制造工程系系主任,2000-2019年担任现代设计与集成制造技术教育部重点实验室主任。2002-2011年任西北工业大学机电学院院长。【会议议程】1.11月11日 上午航空计量检测技术标准和应用发展2.11月11日 下午计量检测赋能飞机研发设计3.11月12日计量检测助力飞机制造维修【关键议题】计量测试技术在航空制造业的应用和发展方向完善航空无损检测标准体系,保障航空安全精密测量仪器及服务助力先进飞机研制未来飞机设计测试系统及技术航空发动机研制过程中的若干计量测试问题航空机载设备测试及先进技术微小几何量检测技术及在飞机制造中的应用发展飞机装配数字化测量系统的若干问题航空测试仿真赋能飞机制造创新飞机复合材料修理超声相控阵无损检测技术研究解决航空制造瓶颈问题,发力先进航空检测实验室建设
  • 《Vantage Pro2 气象站》应用于大连金普航空护林站。
    2016年7月13日,国家林业局北方航空护林总站副总站长张宝柱等在辽宁省林业厅党组成员、省森林防火指挥部专职副总指挥兼省森林公安局局长陈杰等陪同下,对金普新区森林航空护林工作进行指导。    张宝柱等到金石滩街道考察了直升机起降点和调度中心,听取了航线汇报,并要求:一是以点带面,以金普新区航空护林带动辽宁航空护林工作的开展;二是临时起降点要为秋季大演练做准备;三是直升机公司协调各个空管部门做好飞机保障工作;四是要继续落实细节工作,北航总站将派有经验的调度员、观察员对航站人员进行系统的培训。    陈杰要求加强建设森林航空的巡护工作,完善通讯系统、指挥系统,强化地面保障,建立观测站,确保长期安保工作,确保9月中下旬在大连举行的森林防火综合应急演练圆满成功。 2016年10月,我公司于大连金普航空护林站航空护林站成功签约! 2016年的10月份,我公司向 大连金普航空护林站航空护林站提供一套美国Davis公司生产的Vantage Pro2 小型无线气象站,通过我公司的工程师何工在现场的安装、调试和培训,用户很快掌握气象站的使用技巧,用户针对现场的风向、风速和气压要求非常严格,气象站的气压与直升机的气压进行比对,通过海拔的校正,Vantage Pro2 小型气象站气压与直升机的气压数据相差0.5hpa,这个测量结果是客户非常满意,也得到客户的认可。 我公司作为美国Davis公司在华技术服务商,向广大客户表示感谢! 祝:广大客户圣诞快乐!
  • 1.0026亿元 天大光纤力热复合测试仪器专项获批
    10月31日,国家科技部正式下发文件(国科发财[2013]636号),支持66个国家重大科学仪器设备开发专项项目立项。由天津大学作为项目牵头单位,精密仪器与光电子工程学院刘铁根教授作为项目负责人的&ldquo 光纤力热复合测试仪开发和应用&rdquo 获得正式立项批复。该项目开发周期为4年,项目总经费预算为1.0026亿元,其中国家科学仪器设备开发专项经费资助5288万元。  2011年7月,国家科技部会同国家财政部正式启动并组织实施《国家重大科学仪器设备开发专项》,旨在贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,支持重大科学仪器设备开发,提高我国科学仪器设备的自主创新能力和自我装备水平,支撑科技创新,服务经济建设和社会发展。  本项目在以刘铁根教授为首席科学家的国家973计划项目&ldquo 新一代光纤智能传感网与关键器件基础研究&rdquo 成果基础上,将着力开展光纤力热复合测试仪的工程化开发和产业化推广。通过系统集成、软件开发和应用开发,丰富仪器功能,优化技术方案,形成具有自主知识产权、功能健全、质量稳定可靠的光纤力热复合测试仪产品,为我国航空航天等工程提供测试技术支撑。项目共有23家参研单位,除天津大学一家高校外,其余均为企业、科研院所,为仪器的工程化和产业化奠定了良好基础。该项目的立项,标志着天津大学光纤传感领域研究水平再攀新高,显示天津大学在仪器仪表领域内的雄厚实力,同时也将为天津大学产学研合作探索出一条新路。  项目负责人刘铁根教授,是天津大学光学工程国家重点学科学术带头人,国家973 计划项目首席科学家,2012 年度全国优秀科技工作者,2010年度天津市劳动模范,享受国务院政府特殊津贴。长期从事光纤技术和光电检测等领域的研究和教学工作,以第一完成人获得天津市技术发明一等奖、中国仪器仪表学会科学技术奖一等奖和教育部科学技术进步奖一等奖。发表论文210 余篇,其中SCI、EI 检索近115 篇。申请国家发明专利40 余项,其中授权15 项。以起草组组长身份主持制定国家军用标准《光纤气体传感器测试方法》。此外,刘铁根教授还是光电信息技术教育部重点实验室(天津大学)主任,全国仪器仪表学会光机电集成分会理事长和中国光学学会光电技术专业委员会副主任。
  • 2023第三届航空计量测试与检验检测发展论坛圆满落幕!
    由中国计量测试学会指导,上海士研管理咨询为主办单位,西安阎良国家航空高技术产业基地和航空工业庆安集团有限公司为协办单位,并由中国航空学会结构与强度分会、中国航空学会预测与健康管理分会、四川省航空宇航学会为支持单位,航空工程进展作为学术媒体支持的“2023第三届航空计量测试与检验检测发展论坛”于2023年12月14日在西安成功召开,并于12月15日圆满落幕。本届会议以“数智发展,开源创新”为主题,邀请300位来自全球飞机制造商、航空公司、航空发动机制造商、系统供应商、零部件供应商、材料供应商、第三方检测单位、计量检测设备供应商,科研院校实验室的行业同仁共同参与,促进产学研交流。12月14日上午西安阎良国家航空高技术产业基地管理委员会招商二局副局长张吉晔就“航空城检测行业未来发展展望”做重要发言。随后大会正式开始,首先陕西省计量科学研究院力学与工程计量研究所副所长王喜阳分享了“极值力学计量技术在航空领域的应用”; 中航西安飞机工业集团股份有限公司副所长唐珊珊结合具体案例和实践演讲了“航空复合材料制件制造准确度的评价方法”; 航空工业综合所航空工业特级专家、副总师及检测部部长王俊涛围绕“数字射线成像检测缺陷自动识别技术”分析其特点和应用;短暂茶歇过后,中国航天科技集团有限公司第五研究院第五一四研究所静电防护领域总师袁亚飞介绍了“飞机沉积静电测量传感器研制及部署策略研究”; 赛峰航空测试台公司区域销售高级经理胡小草以“航空发动机测试及绿色科技”展开相关演讲。下午大会围绕“科技引领计量检测技术的智能化和数字化”主题展开。中国飞机强度研究所副总工程师、航空工业集团公司健康管理专业一级技术专家杨宇(李嘉欣代)向我们介绍并分析了“面向典型航空结构的机器视觉损伤检测技术”; Polyworks Shanghai西部销售负责人刘甲梁结合公司产品技术分享了“用于数字驱动决策的数字化连接3D测量”; 中国航发商用航空发动机有限责任公司理化计量部副部长李洪美(吴欣欣代)分析“民用航空发动机测试计量关键技术”; 雷尼绍(上海)贸易有限公司计量产品业务拓展经理张勇以“测量技术创新,推进航空智能制造”展开精彩演讲;Creaform形创中国区战略客户经理何其彧就“便携式及自动化3D扫描在航空航天领域的创新应用”展开演讲分享;新拓三维技术(深圳)有限公司副总经理陈军介绍了“系列光学测量技术在航空航天领域的应用”;中国商飞上海飞机设计研究院试验验证中心先进测控室副主任、研究员齐晓燕从民用飞机的角度介绍了“民用飞机测试技术应用及要求”。大会第二天围绕“创新计量检测技术赋能飞机制造全流程效率提升”展开讨论。中国机械工程学会无损检测分会副理事长、北京航空航天大学机械工程及自动化学院长聘教授周正干介绍了“复杂形面航空复合材料大部件超声检测技术及装备”; 上海麦睿菱测量技术有限公司总经理黄圣斌围绕“相对测量技术及其应用”; 中国航空工业集团公司第一飞机设计研究院疲劳研究室主任张彦军围绕“飞机结构疲劳单机跟踪分析方法研究”展开分享;中国航空工业集团公司西安飞行自动控制研究所主任设计师、研究员董林渊分享了“民机伺服作动系统动刚度测试”; 中航工业北京航空精密机械研究所精密测量技术方向技术专家、研究员胡成海围绕“基于机器视觉的航空发动机叶片检测技术与应用”展开演讲;西北工业大学教授刘贞报介绍了“飞行控制系统状态监测与故障诊断技术”; 龙兴(杭州)航空电子有限公司副总裁张越梅(李义代)详细阐述了“民用航空器系统型号检查核准书(TIA)的颁发和管理”; 沃特拜试验装备研发(江苏)有限公司中国区总经理邢立侠(张瀚代)结合案例分享了“先进疲劳测试技术在航空领域的应用”; 中国科学院微电子研究所助理研究员李洋以“国产激光跟踪测量仪技术与应用”为演讲主题;深圳技术大学先进材料测试技术研究中心特聘教授、原中国工程物理研究院一所副总师李泽仁介绍了“太赫兹无损检测技术及其在航空领域的应用”。本次大会同期进行了颁奖盛典,以嘉奖为航空计量检验检测作出贡献的企业,祝贺以下公司:北京东方计量测试研究所——2023年度最佳第三方检测机构奖海克斯康制造智能技术(青岛)有限公司——年度杰出贡献奖苏州长菱测试技术有限公司——航空航天可靠性第三方检测机构杰出贡献奖邦盟泓稻计量检测有限公司——年度最具影响力计量测试中心看见数字科技(苏州)有限公司——年度最佳全自动三维测量创新奖中国航空工业集团公司北京航空精密机械研究所——2023年度最佳测量服务商奖至此,2023第三届航空计量测试与检验检测发展论坛圆满落下帷幕,再次特别鸣谢以下合作伙伴对本次峰会的大力支持,感谢我们各界的媒体的关心和支持!
  • 福建省计量院大力值测试服务助力航空工业高质量发展
    大力值测试服务近日,福建省计量院智测所科研团队自主研发了一套适用于拉向力校准的通用装置,配合该院自主研发的60MN叠加式力标准机、2MN静重式力标准机等系列科研成果应用,圆满完成了对中国飞机强度研究所的一批次(1MN、2MN、10MN)拉压双向力传感器的校准技术服务,为保障飞机材料强度测量准确性、提升研发飞机的安全性能提供了强有力计量支撑。拉压双向力传感器校准拉压双向力传感器主要用于飞机材料强度测试,如果测量不准确,不仅关系飞机的研发、设计、制造等环节,而且直接影响飞机使用的可靠性和安全性。 例如,大型飞机起落架的承受载荷要达到400吨,如果因为测试传感器失准,造成设计的起落架承载能力不足,研发的飞机使用时起落架会断裂,将造成安全事故。助力航空工业质量提升中国飞机强度研究所,是我国唯一的飞机强度研究、验证与鉴定中心,具有代表国家对新研及改型飞机强度进行验证、并给出鉴定结论的职能。由于其自身检测和校准能力无法满足大力值传感器拉压双向力校准需求,之前的相关设备需送往国外测试,导致大力值传感器量值准确无法得到保障。福建省计量院智测所技术团队接到该项技术服务委托后,针对其测试的特殊性以及工作不间断等技术要求,团队人员分工协作,通过优化工作程序,提高工作效率,加班加点、保质保量完成了该项工作,确保了该单位委托批次传感器的力值准确、可靠,为飞机材料强度测试提供了强有力的技术支撑,为保障国防和公共安全、助力航空工业高质量发展发挥了积极作用。赋能高质量发展近年来,福建省计量院以服务国家战略需求为导向,加强高水平科研平台建设,突出科技成果转化、推广应用。目前该院以加快建设国家市场监管重点实验室(力值计量测试)为契机,搭建优秀科技创新平台,赋能高质量发展。该实验室的大力值系列科研成果,已推广应用于冶金、化工、桥梁、建筑、国防等多个行业的几百家企业。为中国航天科技集团公司的标准测力仪进行校准,确保我国长征系列火箭研制中力值测量的准确可靠,对服务和支撑运载火箭产业发展发挥了重要作用。为国防科技工业大扭矩计量站的力值测量设备提供精确校准,确保我国水面水下舰船动力参数测量的真实可靠,保障我国国防重点型号工程顺利实施。为鞍钢、宝钢等钢铁企业的上百台超大力值轧制力传感器提供校准服务。为大型船舶、特别是国产航空母舰的建造提供良好的技术保障。为福平高铁、京台高速等国家重点工程中的大承载力建筑构件提供检测服务,有效保障工程质量。计量助力中国式现代化
  • 庆贺香记航空公司选购冠亚食品水分测定仪
    珠海香记航空食品有限公司是由珠海香记食品有限公司全资投资成立的一家航空配餐公司。珠海香记食品有限公司有着悠久的历史,香记食品创始于1969年,在澳门开办了“港澳家”香记鲜烤肉干,随着港澳游的开放,香记肉干成为国内游客的,为满足不断增长的需求,香记食品移师珠海,特选址风景优美、空气清新的珠海市园艺研究所大院内,成立了珠海香记食品有限公司。目前,公司凭借风味独特、物美价廉的特产休闲系列食品,以及**特色的经营方式得到各地消费者的广泛支持和喜爱,香记在全国范围内设200多家经销商,目前已覆盖广东、上海、江苏、浙江、广西、江西、甘肃、山东、河南、湖南、哈尔滨的市场区域,逐渐成为行业内颇具知名度的企业。 凭借着多年食品经营的经验和扎实的基础,今年香记全资投资成立了珠海香记航空食品有限公司,该公司为珠海机场指定的两家航空配餐供应商之一,主要为航空公司提供中西糕点、定型包装食品、饮料、盒饭、航空餐食等有关的食品、服务. 近日香记航空公司选购冠亚食品水分测定仪为航空配餐检测食品、肉类、糕点等航空食品水分含量。为出行旅客提供安全放心营养的航空食品。 冠亚食品水分测定仪是由深圳市冠亚公司研发并生产,该仪器具有温度设定、微调温度补偿及自动控制等功能,采用目前国际通用的热解原理研制而成的新一代快速水分测定仪器。引进进口自动称重显示系统,人性化系统操作,无需特珠培训,自动校准功能、自动测试模式,取样、干燥、测定一机化操作。应变式混合气体加热器,短时间内达到加热功率,在高温下样品快速被干燥,测定精度高、时间短、无耗材、操作简便,不受环境、时漂、温漂因素影响,无需辅助设备等优点。液体,膏体,乳液,浓稠状等一机操作,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法,一般样品只需几分钟即可完成测定。数据采用中文显示,测量结果直观准确。即时打印功能一键操作,标准232接口及软件可实现联机操作,实时对数据进行采集、分析、储存、打印。 冠亚食品水分测定仪可用于:检测机构、食品加工生产企业,对蛋糕、面包、调味品、休闲食品、肉制品、农副产品、副食品等水分含量的监控和检测中。
  • 国家航空动力装置维修产业计量测试中心获批筹建
    为提升航空动力装置维修产业核心竞争力,更好地发挥计量对航空动力装置维修产业的技术支撑和保障作用,近日,市场监管总局批准依托襄阳航泰动力机器厂筹建国家航空动力装置维修产业计量测试中心。   航空动力装置维修是保持航空动力装置良好技术状态,使其有效遂行作战任务,充分发挥作战效能的重要手段。计量作为保障航空动力装置性能指标稳定可靠的技术基础和质量保障,贯穿于航空动力装置维修全寿命周期。无论是数字设计、精密制造还是过程维修,都需要计量技术的支撑,它就像一把“万能标尺”,丈量着航空动力装置各项技术指标,确保战机飞行安全。可以说,航空计量技术水平的高低,直接决定着航空动力装置的维修质量。   襄阳航泰动力机器厂隶属于空军装备部,是军队装备保障性企业。该工厂以航空发动机修理为主业,是空军现役航空发动机主要修理基地之一。依托襄阳航泰动力机器厂筹建国家航空动力装置维修产业计量测试中心,加快航空动力装置领域计量科技创新,加强产业关键领域计量测试技术的研究和应用,为航空装备产业提供系统解决方案和增值服务,将有利于提升航空动力装置维修的质量水平和航空兵部队战斗力,对于推动强军兴军战略有效落实具有重要意义。
  • SYSTESTER发布智能全自动薄膜阻隔性测试仪新品
    智能全自动薄膜阻隔性测试仪品牌:【SYSTESTER】济南思克测试技术有限公司适用范围:气体透过率测定仪主要用于包装材料气体透过量测定工作原理:压差法测试原理型号:气体透过率测试仪(又称:薄膜透气仪,透氧仪,气体渗透仪,压差法透气仪,等压法透气仪,氧气透过率测试仪等,气体透过量测定义,药用复合膜气体透过率测试仪,人工智能技术仪,氧气渗透仪,济南思克,OTR透氧仪)智能全自动薄膜阻隔性测试仪采用真空法测试原理,用于各种食品包装材料、包装材料、高阻隔材料、金属薄片等气体透过率、气体透过系数的测定。 可测试样:塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔复合膜、方便面包装、铝箔、输液袋、人造皮肤;(红外法)(电解法)水蒸气透过率测试仪气囊、生物降解膜、电池隔膜、分离膜、橡胶、轮胎、烟包铝箔纸、PP片材、PET片材、PVC片材、PVDC片材等。试验气体:氧气、二氧化碳、氮气、空气、氦气、氢气、丁烷、氨气等。 GTR系列 药用复合膜气体透过率测试仪,人工智能技术【济南思克】技术指标:测试范围:0.01~190,000 cm3/m2?24h/0.1MPa(标准配置)分 辨 率:0.001 cm3/m2/24h/0.1MPa试样件数:1~3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃ 控温精度:±0.1℃ 试样厚度:≤5mm 试样尺寸:150 mm × 94mm 测试面积:50 cm2试验气体:氧气、氮气、二氧化碳、氦气等气体(气源用户自备)试验压力范围:-0.1 MPa~+0.1 MPa(标准)接口尺寸:Ф8 mm 外形尺寸:730 mm(L)×510mm(B)×350 mm(H) 智能全自动薄膜阻隔性测试仪产品特点:真空法测试原理,完全符合国标、国际标准要求三腔独立测试,可出具独立、组合结果计算机控制,试验全自动,一键式操作高精度进口传感器,保证了结果精度、重复性进口管路系统,更适合极高阻隔材料测试进口控制器件,系统运行可靠,寿命更长进口温度、湿度传感器,准确指示试验条件一次试验可得到气体透过率、透过系数等参数宽范围三腔水浴控温技术,可满足不同条件试验系统内置24位精度Δ-Σ AD转换器,高速高精度数据采集,使结果精度高,范围宽嵌入式系统内核,系统长期稳定性好、重复性好嵌入式系统灵活、强大的扩展能力,可满足各种测试要求多种试验模式可选择,可满足各种标准、非标、快速测试试验过程曲线显示,直观、客观、清晰、透明支持真空度校准、标准膜校准等模式;方便快捷、使用成本极低廉标准通信接口,数据标准化传递可支持DSM实验室数据管理系统,能实现数据统一管理,方便数据共享 (选购) 标准配置:主机、高性能服务器、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气精密减压阀、取样器、取样刀、真空密封脂、真空泵(进口)、快速定量滤纸 执行标准:GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003 其他相关:系列一:透氧仪,透气仪, 透湿仪,透水仪,水蒸气透过率测试仪,药用复合膜气体透过率测试仪,人工智能技术,7001GTR透气仪系列二:包装拉力试验机、摩擦系数仪、动静摩擦系数仪、表面滑爽性测试仪、热封试验仪、热封强度测试仪、落镖冲击试验仪、密封试验仪、高精度薄膜测厚仪、扭矩仪、包装性能测试仪、卡式瓶滑动性测试仪、安瓿折断力测试仪、胶塞穿刺力测试仪、电化铝专用剥离试验仪、离型纸剥离仪、泄漏强度测试仪、薄膜穿刺测试仪、弹性模量测试仪、气相色谱仪、溶剂残留测试仪等优质包装性能测试仪!注:产品技术规格如有变更,恕不另行通知,SYSTESTER思克保留修改权与最终解释权!创新点:1.以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性;2.赋予仪器高度自动化、智能化;3.外观设计独到智能全自动薄膜阻隔性测试仪
  • 中航工业强度所:打造世界航空强度领域的第三极
    创建于1965年的中航工业强度所,是中国航空工业唯一从事飞机结构强度研究与地面强度鉴定和验证试验的专业研究机构,具有代表国家对新研、改进和改型飞机结构强度进行鉴定和试验验证职能,并负责开展飞机结构强度技术领域的预先研究 具有应用研究和试验紧密结合的优势,拥有先进、完善的飞机地面强度试验设施和一流的专业技术人员队伍,飞机地面结构强度试验综合能力国内第一 拥有亚洲最大的全尺寸飞机结构静力/疲劳强度航空科技重点实验室,可进行200吨级飞机全机静力/疲劳强度试验 拥有国内惟一的航空噪声与振动强度航空科技重点实验室,可承担各种机载设备及大型结构部件的噪声环境试验及声疲劳试验和民机适航噪声符合性验证试验在内的各种噪声测试工作。  强度所按照“拓展领域、形成体系、突出创新、强化应用”的指导思想,积极开展结构强度基础研究、预先研究和关键技术攻关。预研成果已得到广泛应用,多约束优化设计软件、结构分析系统、动力环境预计和颤振实时分析系统等计算机大型软件均享有较高声誉,已为国内多家用户采用。减振器、消声器、隔声吸声板、民用噪声环境治理、飞机结构外场损伤检测系统等相继开发成功并得到应用。为保持在强度领域的领先地位,强度所高度重视技术创新,先后自主研制了4096通道ST-18型数据采集系统、大吨位壁板拉—剪、压—剪复合加载试验装置、低刚度大位移多自由度空气弹簧系列、便携式裂纹扩展数字监视系统,采用了多通道试验协调加载控制技术和拉压垫载荷施加技术,在支持、加载、测量、检测和控制等方面全面提高了试验能力。  45年来,强度所安全、优质地完成了包括歼10飞机、飞豹、ARJ21-700、新舟系列飞机在内的我国几乎所有研制、改型和引进的军、民机的强度鉴定与验证试验,为我国航空工业作出了突出贡献 完成了全机静力试验23架次、全机疲劳试验13架次、全机地面共振试验105架次 完成了各种飞机起落架的落震、摆振试验以及飞机降噪与湿热环境下的全尺寸复合材料翼面等综合环境强度试验   先后完成了310余项行业重点预研课题,获得国家级科技成果40多项,获省部级科技成果200余项,荣获“高技术武器装备发展建设工程突出贡献奖”,2007年荣获中华全国总工会“五一劳动奖状”。  为了适应国家航空事业的快速发展,强度所在阎良国家航空产业基地新建了一系列新的现代化试验室,填补了我国在飞机结构适坠性研究等方面的空白,形成了国内领先、达到国外先进水平的落摆振和离散源撞击试验能力,提升了国内飞行器结构热强度试验能力,使强度所的整体试验能力及技术水平达到或接近国际先进水平,可满足我国未来军机、民机的研制需求。  而今,强度所已驶入改革发展的快车道,进入新的发展时期。新一届领导班子提出了强度所的使命、愿景、目标、发展思路和发展 “四步曲”——即2009强化执行年、2010精细管理年、2011创建品牌年和2012跨越发展年。一年多来,在所党委所务会的领导下,全所干部职工认真贯彻落实科学发展观,以强度所的改革、发展、创新、和谐为己任,按照“1234”的发展思路,锐意创新,强化执行,确保了各项科研任务的顺利完成、确保了总体规划一期建设项目的投入使用,确保了职工收入的稳步增长,确保了全所的和谐稳定与健康发展,全年总产值再创新高。  2010年是强度所发展史上至关重要的一年,各项重点型号试验任务和预先研究工作空前繁重,其背负着祖国的重托和民族的希望。强度所将在新一届所领导班子和所党委的带领下,全力拼搏,坚决打赢重点型号攻坚战 精细管理,全面提升强度所管理水平,为建设开放式、创新型和“国内领先、国际知名”的飞机强度研究中心,从而成为世界航空强度领域的“第三极”而努力奋斗,为国家航空工业的发展作出新的更大的贡献。
  • “地沟油”变“航空油”靠谱吗?
    打破砂锅  让中国消费者闻之色变的地沟油在别人眼里却可以“飞上天”。7月中旬左右,2000吨产自上海的废弃油将被荷兰航空的技术人员加工成航空生物煤油,开始它们的“飞天之旅”。请关注—  废弃油变身航空燃油上天的消息迅速引起网民关注,“地沟油”变“航空油”到底靠不靠谱?中国公司是否具有完整“变油”技术?废弃油“上天”能否阻击地沟油“上桌”?  废弃油“飞上天”可行吗?  上海市食品安全委员会办公室相关负责人介绍,废弃油中含有大量的动物油脂,这些油脂在经过提纯、化学反应等特殊处理后,可以加工成为0号生物柴油,这一工艺在上海中器、绿铭等企业均可完成 进一步处理后,可使其燃烧值等指标达到飞机燃料油的标准,生产成为航空生物煤油。  据悉,上海绿铭环保科技股份有限公司已与荷兰皇家航空签订战略合作协议。绿铭将为荷兰皇家航空提供由废弃油转化成的“0号生物柴油”1万多吨,不久后第一批油即将发货,经过荷兰公司的技术再处理后变为航空生物煤油,供飞机使用。  荷兰航空旗下的某生物燃油公司的董事、总经理德克先生在接受记者采访时介绍,从去年开始荷兰方面已经在中国积极寻找废弃油原材料的供应,且对来自中国很多样品进行了测试,测试结果非常满意。目前公司主要关注中国的大中型城市,这些城市的人口比较多、食用油消费量高,废弃油的产量也相对较多。除了中国,公司还从北美以及欧洲其他国家进口废弃油原材料。  而荷兰航空并不是唯一一家将废弃油“飞上天”的公司。公开资料显示,早在2008年,英国已有航空公司尝试了将动物油脂转化为航空燃油,并进行了试航 2011年,英国汤姆森航空公司也尝试将飞机其中一个引擎中的燃料,改变成废弃油处理成的燃料油,实现了试航成功 2012年6月,荷兰航空的“废弃油”航班也开始执飞洲际航线。  中国飞机为何不能“喝”“地沟飞机油”?  中国公司炼地沟油为何不“喂”中国飞机?中国地沟油只能通过出口“上天”吗?是否因为炼油成本过高公司不愿干?还是技术问题?一时间,网民质疑声四起。  记者采访后发现,没有实现大规模推广,主要和三个方面原因有关:  其一,技术成熟度不够。德克介绍,从“0号生物柴油”到航空生物煤油需经过特殊工艺处理,这一步工艺要求较高。记者发现,目前我国已有不少环保公司能将废弃油处理成“0号生物柴油”供船舶、汽车等作为燃料油使用,但将“0号生物柴油”升级为可供飞机直接使用的航空生物煤油,技术并不成熟。  其二,转化成本较高。目前来看废弃油“上天”尚处于试验阶段,因成本过高而没有大规模推广。德克介绍,航空生物煤油的燃烧值和普通燃油基本相同,但生产成本较高,此前一直为传统燃油的三倍左右 现如今公司进口大量的废弃油原料,和合作方共同努力降低成本,但成本也仍在传统燃油之上。  其三,原料不足。“有了纯熟的技术,也难以让废弃油大量‘上天’。”绿铭执行总裁张英文表示,在很多城市,与“无本万利”的收油“游击队”相比,生物柴油处置企业收购原料的价格不具备吸引力,因此一些小餐饮企业将废弃油纷纷倒卖给了“游击队”最终回流餐桌,正规企业反而“吃不饱”。  德克也表示,非法收购者收购地沟油的价格比合法的厨余垃圾回收公司高,所以生物质燃料公司的利润空间被严重压缩。“如果我们能保证稳定便宜的地沟油原料供应,那么生物燃料的价格就能大幅下降,并更具有竞争力。”  “上天”消灭“上桌”,能否实现?  网友纷纷说,如果废弃油都“上天”了,能实现大规模推广,岂不是地沟再无油可捞?到那时,地沟油就真的能消失无踪影。  专家认为,为了让废弃油“上天”而非“上桌”,政府和企业可以做的还有很多。最关键的就是从源头上管控,保障正规生物柴油转化企业的原料供应。近段时间以来,上海、北京等各地纷纷开始了新尝试。例如,对废弃油的产生和回收进行“全程监控”,在餐馆后厨安装摄像头,为储油桶装上GPS设备等,借以减少废弃油“入地沟”再“上桌”的可能性。  同时,网友说,应借鉴国外经验,出台更多的相关政策法规来打击地沟油的非法收购,让“游击队”不敢收油。此外,还可以给予生物质燃料企业更多的支持和补贴。企业能够降低成本,就能提高从餐饮单位收购废弃油的价格,与“游击队”打起价格战。  “如果废弃油都能‘上天’,既能使地沟油远离中国人的餐桌,也同时生产出清洁的生物燃料供给航空业,提升其环保性。这对中国的政府、老百姓、餐饮安全和航空业来说,都是共赢的。”德克说。  张英文表示,公司打算先与国际上相关企业合作,提供废弃油原料,进行利润分成 等到时机成熟时,就可以形成一个合资企业,将技术引进国内。“我们估计在今年国庆前后引进这样的技术,到时国内航空公司也能购买并直接使用我们的油了。”
  • 皮革测试仪器——皮革测试一般用到哪些仪器?
    标准集团(香港)有限公司技术部专业为用户介绍,皮革测试一般用到哪些具体的仪器设备,从要测试的性能出发、为您详细介绍测试每个指标需要哪些具体的设备。  皮革测试用什么仪器?不少客户要测试皮革的某些项目,不太清晰应该用什么仪器来测试。更不用谈那个供应商的仪器品质好,进口的供应商与国产的供应商仪器在各方面有哪些区别了。以下,标准集团(香港)有限公司技术部为您介绍,皮革测试常用哪些仪器。  首先,要了解测试皮革的哪些属性。  皮革的测试一般要测试:  1、皮革的厚度,皮革的抗张强度,皮革的伸长率,皮革的撕裂强度(里面强度和伸展高度),皮革的伸展定型性,皮革的耐冲击性,皮革的耐折牢度,皮革的颜色坚牢度 其中颜色方面还包括耐干擦,湿擦,耐汗,耐热,耐水牢度,耐洗,耐沾色等等,  2、涂层粘着牢度,收缩温度,密度,吸水性能,透气性,透水汽性,动态防水性,软度,耐磨性,水平燃烧性,雾化性,气味,耐老化,耐黄变性等等。  3、汽车内饰皮革,主要以汽车坐垫为主,一般测皮革的抗磨强度,皮革的颜色耐擦牢度,皮革的耐折牢度,皮革的涂层粘着牢度等性能。  4、鞋类产品的皮革测试主要包括:标准照片、图谱等外观检测 还包括一些非强制性的测试:老化、色牢度、耐黄变测试、耐曲折、防滑、耐磨性。  其次,要了解测试某个性能的测试标准。以色牢度测试为主,皮革的色牢度测试标准主要包括:AATCC8/116,ASTMD1593,BS1006X12,BS1006UKLC,DIN53339,ISO105/11640QB /T1327/1873/2001/2307/2537,JIS0849,SATRATM8/TM167/PM173  再次,确定测试的仪器名称。常用的皮革测试仪器有:皮革柔软度试验机、皮革撕裂强度试验机、皮革耐挠性试验机、皮革染色耐磨试验机、 皮革耐破度仪  最后,根据厂家和价格,综合多种因素进行判断比较。  文章来源:http://www.standard-groups.com/News/203.html
  • 2023第三届航空计量测试与检验检测发展论坛将于12月14-15日在西安召开
    2023第三届航空计量测试与检验检测发展论坛将于2023年12月14-15日在航空重镇陕西西安召开。本次会议将聚集300位来自全球飞机制造商、航空公司、航空发动机制造商、系统供应商、零部件供应商、材料供应商、第三方检测单位、计量检测设备供应商,科研院校实验室的行业同仁共同参与,促进产学研交流。2023第三届航空计量测试与检验检测发展论坛时间:2023年12月14日-15日地点:中国西安主题:数智发展,开源创新【大会组委会】指导单位:中国计量测试学会主办单位:士研航空协办单位:西安阎良国家航空高技术产业基地管理委员会、航空工业庆安集团有限公司支持单位:中国航空学会结构与强度分会、中国航空学会预测与健康管理分会、四川省航空宇航学会学术媒体支持:《航空工程进展》【已确认发言嘉宾】• 航天科技集团五院514所,静电防护领域总师,袁亚飞• 航空工业综合所,副总师兼材料及检测部部长、航空工业特级专家,王俊涛• 中航西安飞机工业集团股份有限公司,副所长,唐珊珊• 赛峰航空测试台公司,区域销售高级经理,胡小草• 航空工业集团公司,健康管理专业一级技术专家、强度所副总工程师,杨宇• PolyWorks软件,西部销售负责人,刘甲梁• 中国航发商用航空发动机有限责任公司,理化计量部副部长,李洪美• 雷尼绍(上海)贸易有限公司,计量产品业务拓展经理,张勇• Creaform形创,中国区战略客户经理,何其彧• 新拓三维,副总经理,陈军• 中国商飞上海飞机设计研究院,试验中心副主任 ,齐晓燕• 北京航空航天大学,机械工程及自动化学院长聘教授、博士生导师;中国机械工程学会无损检测分会副理事长,周正干• 航空工业第一飞机设计研究院,疲劳研究室主任,张彦军• 航空工业西安飞行自动控制研究所,液压部研究员,董林渊• 中国科学院微电子所,光电技术研发中心主任,周维虎• 龙兴航电,副总裁,张越梅• 西北工业大学,航空学院教授,刘贞报• 西安交通大学,博士、副教授/副研究员、博导,陈禛怡• 发言人持续更新中......【部分确认参会企业名录】中航西安飞机工业集团股份有限公司、航空工业成都飞机工业(集团)有限责任公司、江西洪都航空工业集团有限责任公司、中国商飞上海飞机设计研究院、中国飞行试验研究院、中国飞机强度研究所、航空工业第一飞机设计研究院、航空工业西安飞行自动控制研究所、中国航发商用航空发动机有限责任公司、中国航发成都发动机有限公司、北京长城计量测试技术研究所、中国航空综合技术研究所、攀钢集团攀枝花钢铁研究院有限公司 、北京北摩高科摩擦材料股份有限公司 、北京飞机维修工程有限公司、华夏飞机维修工程有限公司、中国测试技术研究院 、四川新川航空仪器有限责任公司、国营四达机械制造公司、西北工业大学、西安交通大学、北京航空航天大学、南昌航空大学 、上海大学 、华东交通大学 ......【热点议题】• 数字化检测技术在复合材料飞机构件上的应用研究• 数字射线成像检测缺陷自动识别技术• 飞机沉积静电测量传感器研制及部署策略研究• 航空发动机测试方案• 面向典型航空结构的机器视觉损伤检测技术• 用于数字驱动决策的数字化连接3D测量• 民用航空发动机测试计量关键技术• 测量技术创新,推进航空智能制造• 便携式及自动化3D扫描在航空航天领域的创新应用• 民用飞机测试技术应用及发展• 航空复合材料大部件超声检测技术及装备• 飞机结构疲劳单机跟踪分析方法研究• 民机伺服作动机构动刚度测试• 精密检测仪器保障航空领域产品安全会议官网:http://www.shine-consultant.com/prod_view.aspx?TypeId=27&Id=397&FId=t3:27:3 扫码报名:【咨询参会/媒体合作/赞助合作】Jasmine Zhang 张女士M:156 5166 3975(微信同号)
  • 5G与百岁航空设备“新老”冲突?美媒:无线电测高仪或失灵
    一项在第二次世界大战期间帮助飞行员驾驶战斗机的技术创新如今正处于航空公司与美国电话电报公司和威瑞森电信公司因5G问题而发生的争执的核心。5G创新服务是为了加快移动装置的速度。冲突已存在多年,在近期发展到了关键时刻。继航空公司发出警告,称机场附近5G网络的潜在干扰可能导致飞机上一个关键设备失灵并迫使航空公司取消航班以来,美国电话电报公司和威瑞森电信公司同意采取限制措施。即使采取了机场限制措施,仍有一大批国际航空公司取消了飞往美国的航班,尽管其中部分航班已恢复。相关仪器就是无线电测高仪。这种仪器最早于20世纪20年代研发成功,如今仍在飞机上发挥重要作用,帮助飞行员确定飞机的飞行高度以及与其他物体之间的距离。在某些机型中,测高仪读数直接进入无需飞行员输入数据就能运行的自动系统。按照航空专家的描述,美国电话电报公司和威瑞森电信公司使用的5G网络与测高仪使用的系统有相似的频率。曾担任美国交通部负责研究新型技术的副部长戴安娜弗奇戈特-罗思说:“你不会希望搭乘降落时测高仪失灵的飞机。”她还说航空管理者提出有关5G的问题并采取适当的措施确保安全,这是正确之举。但是,电信专家说5G网络对测高仪几乎或完全不构成风险,而且航空业已经有好几年时间为所存在的微乎其微的风险做准备。曾经担任联邦通信委员会主席的汤姆惠勒11月份在写给布鲁金斯学会的一篇文章中写道:“科学定律是非常明确的——很难废除物理定律。”他指出联邦通信委员会的工程师们发现不存在真正令人担心的理由。航空安全专家所忧为何?测高仪的专利归劳埃德埃斯彭席德所有。这是一位多产的发明家,为美国电话电报公司著名的研究机构贝尔实验室工作了40多年。测高仪的工作原理是:发出无线电波,确定飞机相对于地面及其他物体的位置。前波音公司工程师彼得莱梅说,如果测高仪的电波因5G干扰而无法返回,或者无法与附近的电波区分,那么它就可能给出错误的读数,或彻底失灵。莱梅在公司工作了16年,负责依靠测高仪的安全系统的设计工作。比如,失灵的测高仪可能导致飞机的计算机向飞行员发出前方存在虚幻障碍物的警告,或是妨碍系统向飞行员发出真正的威胁警告。国际直升机协会就5G干扰问题召开了网上研讨会。小组成员之一是霍尼韦尔航空航天集团雷达系统工程师塞思弗里克。弗里克说霍尼韦尔航空航天集团为很多飞机生产测高仪,包括它自己制造的军用直升机。霍尼韦尔航空航天集团在公司测试5G干扰时发现了一系列错误,包括测高仪“噪音太大”和不显示读数。弗里克在研讨会上说:“我不清楚是否存在我们能说绝对没有干扰的情况。”一旦视线因故受限,比如大雾,飞行员往往要依靠测高仪。但是,大多数时候飞机降落是不用测高仪的,这也是一些无线通信专家驳斥航空业之忧的原因。此外,无线通信专家说大部分现代测高仪应该具备过滤干扰的能力。关注这个问题的无线通信产业顾问蒂姆法勒说:“我明白为何这是个大问题。但是,我仍然不相信会发现任何干扰。”失灵的测高仪可能导致其他问题吗?航空安全专家最担心的一个问题就是因为干扰而失灵的测高仪可能引发自动系统和飞行员的一系列错误。在波音737Max飞机两起致命事故中,这类失误起了重要作用。法勒说:“由于自动系统对737Max飞机造成的问题,大家会对某些问题更加谨慎——对高度自动化飞机的影响。”一些专家说他们最为担心5G网络对波音787机型的干扰,这是一款体积较大的飞机,一般用于长途国际航班。测高仪是787飞机降落系统的重要仪器,飞机降落时会打开放慢速度的反向推进器。莱梅说,波音有项专利说明这项功能是完全自动化的,意味着如果测高仪失灵,即使飞行员手动降落一架787飞机,也不可能逆转飞机推进器。787飞机的起落架刹车仍然会起作用。但是,莱梅说少了反向推进器会导致飞行员难以在飞机到达跑道尽头前停稳飞机。他说:“完全可能导致某些飞机滑出跑道。”波音公司对此未予置评。联邦航空局发布通知:发现了“反常现象”,“不论天气或方法如何”都可能导致5G网络干扰影响众多787飞机的自动系统。航空局说:“出现C频段5G干扰,可能导致降速性能减弱,增加降落距离和偏出跑道现象。”通知涉及美国137架787飞机和全球1010多架787飞机。为何不早点解决这些问题?美国电话电报公司和威瑞森公司决定暂时限制机场2英里以内安装新的5G网络。这个决定应当能够解决很多这类安全担忧,至少眼下如此。但是,5G网络已经使用多年,这就提出了相关问题:为何航空公司、联邦航空局、无线通信公司和联邦通信委员会没有早点解决这些问题。弗奇戈特-罗思女士说,航空专家之前的警告被忽视了。她说2020年12月,交通部曾致函国家电信和信息局,提醒它注意:允许5G网络在其拟使用频段运行将导致航班安全系统问题。她说那封信根本未送达联邦通信委员会和无线通信公司。相反,联邦通信委员会继续实施一项拍卖计划。2月,运营商将投标800多亿美元,将部分无线频谱用于5G网络。弗奇戈特-罗思女士说:“无线运营商有权期待投资回报。但是,联邦航空局采取强硬立场确保民众安全,你们应当非常满意。”尽管如此,无线通信专家,包括联邦通信委员会的官员,驳斥联邦航空局和航空公司的警告,认为5G干扰不会构成安全风险。现在是什么情况?在乔治华盛顿大学教授交通经济学的弗奇戈特-罗思女士认为,为了全面解决这个问题,各种机型必须经过测试。她说:“不能说比较新的机型就会正常运转,而比较老旧的机型就不行。有些情况下,情况恰恰相反。”联邦航空局说它已为美国62%的商业飞机发放了起降许可。航空产业一直在研究无线测高仪的新标准,解决5G干扰及其他问题。但是,那些标准要到10月份才会公布,而且仅适用新型测高仪。过去一周内,联邦航空局已批准5种兼容5G网络的测高仪型号,但是审批的依据是兼顾测高仪与飞机型号,787机型未获准使用测高仪。前波音公司工程师莱梅说:“最有可能的解决方案就是换掉测高仪。”他还说这可能需要数年时间。升级测高仪可能需要巨额开支。航空公司不想承担这笔费用,无线通信公司也不想承担。前联邦通信委员会主席惠勒在布鲁金斯学会发表的文章中提出了三种可能的经费来源:政府可将出售5G频道给无线通信公司所得的820亿美元收入中的一部分作为开支;无线通信产业可能被迫支付额外费用才能使用那些频道;或者,航空业被迫承担升级费用,因为它早就知道5G正在来临。一种比较直接的办法就是将美国电话电报公司和威瑞森公司对机场附近5G网络的暂时限制变成永久性限制。或者,这些公司可以减弱机场附近的5G信号强度,或是改变天线方向,限制或消除它们对飞机的影响。这些办法都可能降低5G网在那些地区的使用程度,居住在某些机场缓冲区的人可能无法使用5G网络。任何方案都必须经由航空公司和联邦航空局(作为一方)与无线通信公司和联邦通信委员会(作为另一方)谈判达成。但是,相关人士认为双方阵营对这个问题的看法不同,因此可能难以达成协议。
  • 4156万元预算!南京航空航天大学2022年4-10月仪器采购意向盘点
    南京航空航天大学近日在中国政府采购网发布2022年4-10月仪器采购意向,总采购预算金额约4156万元,采购仪器类型包括飞行器半物理仿真试验系统、集成电路信号发生及频谱分析系统、集成电路精密信号采集与通信分析平台、快速扫描探针显微镜、场发射高分辨透射电子显微镜、综合物性测量系统、相干反斯托克斯拉曼光谱测温系统、电液伺服疲劳实验机、旋转试验器、多能场复合加工构件材料高温性能形貌快速测试设备、微区光谱分析系统、彩色多普勒超声诊断系统、纳尺度深刻加工系统。多数仪器预计采购时间集中在4月,其次为6月、7月和10月。南京航空航天大学创建于1952年10月,是新中国自己创办的第一批航空高等院校之一。1978年被国务院确定为全国重点大学;1981年经国务院批准成为全国首批具有博士学位授予权的高校;1996年进入国家“211工程”建设;2000年经教育部批准设立研究生院;2011年,成为“985工程优势学科创新平台”重点建设高校;2017年,进入国家“双一流”建设序列,现有航空宇航科学与技术、力学、控制科学与工程三个学科入选第二轮“一流学科”建设名单。学校现隶属于工业和信息化部。2012年12月、2021年4月,工业和信息化部、中国民航局先后签署协议共建南京航空航天大学。2018年12月,工业和信息化部、教育部、江苏省共建南京航空航天大学。学校现设有18个学院和192个科研机构,建有国家(级)重点实验室3个、国防科技工业创新中心1个、省部共建协同创新中心1个、国家地方联合工程实验室1个、国家工科基础课程教学基地2个、国家基础学科拔尖学生培养基地1个、国家级实验教学示范中心4个。南京航空航天大学2022年4-10月仪器采购意向盘点序号采购项目名称采购品目采购需求概况预算金额(万元)预计采购日期1飞行器半物理仿真试验系统A030808-试验专用设备详见项目详情158.32022年4月2集成电路信号发生及频谱分析系统A02110205-集成电路参数测量仪详见项目详情3962022年4月3集成电路精密信号采集与通信分析平台A02110205-集成电路参数测量仪详见项目详情4982022年4月4快速扫描探针显微镜A02100301-显微镜详见项目详情2002022年4月5场发射高分辨透射电子显微镜A02100301-显微镜详见项目详情8202022年4月6综合物性测量系统A02100406-波谱仪详见项目详情4702022年4月7相干反斯托克斯拉曼光谱测温系统A02100304-光学测试仪器详见项目详情2862022年4月8电液伺服疲劳实验机A02100501-金属材料试验机详见项目详情1652022年4月9旋转试验器A02100501-金属材料试验机详见项目详情2642022年4月10多能场复合加工构件材料高温性能形貌快速测试设备A021004-分析仪器详见项目详情2752022年4月11微区光谱分析系统A02100304-光学测试仪器详见项目详情1102022年6月12彩色多普勒超声诊断系统A032005-医用超声波仪器及设备详见项目详情1902022年7月13纳尺度深刻加工系统A02050907-金属切割设备详见项目详情3242022年10月
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制