当前位置: 仪器信息网 > 行业主题 > >

激光诱导荧光检测器

仪器信息网激光诱导荧光检测器专题为您提供2024年最新激光诱导荧光检测器价格报价、厂家品牌的相关信息, 包括激光诱导荧光检测器参数、型号等,不管是国产,还是进口品牌的激光诱导荧光检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光诱导荧光检测器相关的耗材配件、试剂标物,还有激光诱导荧光检测器相关的最新资讯、资料,以及激光诱导荧光检测器相关的解决方案。

激光诱导荧光检测器相关的资讯

  • 大连化物所关亚风、耿旭辉团队研制出高灵敏近红外激光诱导荧光检测器用于甲状旁腺探测
    近日,中科院大连化物所微型分析仪器研究组(105组)耿旭辉研究员、关亚风研究员团队与大连医科大学附属第二医院田晓峰教授、张宁副教授团队,大连海事大学理学院王桂秋教授团队合作,在高灵敏近红外激光诱导荧光检测器(LIF)研制及其在甲状旁腺探测中的应用方面取得新进展。  甲状旁腺(PG)主要调控人体钙磷平衡,大小约为3至8mm,术中辨认非常困难。因此,PG在颈部手术中有误切或漏切的风险。目前,术中PG辨识主要依靠外科医生经验结合病理诊断。近年来,研究表明近红外自荧光探测技术可无创、准确地辨识PG,具有较高的特异性和灵敏度。然而,目前临床应用的探测仪因体积较大、自荧光发光机制不明等原因并未得到广泛应用。  本工作中,合作团队研制了高灵敏近红外光纤式LIF并应用于PG探测。该团队设计了20°夹角光纤探头,减少了探测“盲区”和反射光的收集,相比于共线式集束探头,灵敏度提高了53.4%,短期波动和长期漂移分别降低了61.1%和58.3%;在发射光路中增设二向色镜模块,基线和噪音分别降低了96.7%和92.1%,信噪比提高约9倍。该LIF对CF790染料的检测下限为5.1×10-14mol/L,比已报道的光纤式LIF低数百倍;将研制的LIF原理样机应用于离体病变的PG样本探测,准确率高于文献报道平均水平。目前,合作团队已研制出手持式PG探测器,未来将应用于术中原位PG探测辨别。本研究对推动光纤式LIF技术的发展和PG探测辨别具有重要意义。  耿旭辉、关亚风团队长期从事高灵敏小型LIF及应用研究,采用小型、廉价的激光二极管替代激光器为光源、自主研制的硅基弱光探测器替代进口光电倍增管(PMT)探测荧光,研制出紧凑式共聚焦LIF,对荧光素检测下限为3×10-12M,功耗和开机平衡时间优于进口仪器(Talanta,2018);用高亮度、长斯托克位移荧光探针标记的抗体进行免疫荧光标记,首次定量分析了单个白血病细胞中的active caspase3蛋白,检测下限为7个分子(91pL检测体积内)(Analytical Chemistry,2019);设计了球面二向色反光镜,将检测池放置在球心而非常规的反光镜的焦点上,对荧光素钠检测下限为1.5×10-13M或8.9个荧光素钠分子(98 pL检测体积内)(Analytical Chemistry,2020)。  研究成果以“A Highly Sensitive Optical Fiber Based Near-infrared Laser Induced Fluorescence Detector (LIF) for Parathyroid Gland Detection”为题,发表在《传感器和执行器B-化学》(Sensors and Actuators B: Chemical)上。该工作的第一作者是我所105组联合培养硕士研究生段逸。以上工作得到了辽宁省“兴辽英才计划”青年拔尖人才、中国科学院青年创新促进会、国家自然科学基金等项目的资助。(文/段逸 图/王传亮)  文章链接:https://doi.org/10.1016/j.snb.2022.131879
  • 上海光机所在基于激光诱导击穿光谱的中药重金属检测方面取得进展
    近期,中国科学院上海光学精密机械研究所信息光学与光电技术实验室在基于激光诱导击穿光谱的中药重金属定量检测方面取得进展,研究团队利用纳米金增强和稀有气体吹扫相结合的方法提高了中药重金属汞元素定量检测灵敏度。相关研究成果以“High-sensitivity analysis of mercury in medicinal herbs using nanoparticle-enhanced laser-induced breakdown spectroscopy combined with argon purging”为题,发表于Journal of Analytical Atomic Spectrometry。激光诱导击穿光谱技术(Laser-induced breakdown spectroscopy, LIBS)是一种原子光谱分析技术,具有样品制备简单、可实时检测、检测速度快、多元素同时检测等优点,被称为元素分析领域的“未来巨星”。当采用LIBS检测中药残留重金属元素时,激光诱导等离子中汞原子的复合速率远高于其他原子,且空气中的氧气会引起汞特征谱线Hg Ⅰ 253.65nm上能级的猝灭,导致汞元素检测灵敏度远低于其他重金属元素。图1 纳米金增强LIBS结合稀有气体吹扫检测过程示意图图2 滴加在中药表面的纳米金液滴 (a)表面未处理,干燥前;(b)表面未处理,干燥后;(c)超疏水处理,干燥前;(d)超疏水处理,干燥后研究团队利用激光与纳米金颗粒作用过程中纳米金内部传导电子震荡和表面等离子激元共振特性,通过在中药样品表面沉积一层纳米金颗粒,提高了激光诱导等离子辐射光谱强度;通过对中药表面进行超疏水处理,优化了纳米金沉积过程,抑制了“咖啡环效应”,提高了光谱信号稳定性;在此基础上采用氩气吹扫样品表面,为等离子演化过程创造无氧环境,进一步提高了等离子辐射光谱强度。实验结果表明,采用纳米金增强结合氩气吹扫后,汞元素特征谱线强度提高6.19倍,检测灵敏度提高9.73倍。图3 纳米金增强结合稀有气体吹扫前后中药样品在253.0-254.0 nm范围内的激光诱导击穿光谱(扣除背景光谱)图4 中药汞元素定量分析校准曲线 (a)LIBS (b)纳米金增强LIBS结合氩气吹扫
  • 激光诱导击穿-拉曼光谱分析仪
    成果名称 激光诱导击穿-拉曼光谱分析仪(LIBRAS) 单位名称 四川大学生命学院分析仪器研究中心 联系人 林庆宇 联系邮箱 lqy_523@163.com 成果成熟度 □研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 □合作开发 &radic 其他 成果简介: 台式LIBS(左)、便携式LIBS(右) 手持式LIBS 技术背景 作为一种激光光谱分析技术,同其他光谱分析技术相比较而言,激光诱导击穿光谱(简称,LIBS)技术具有诸得天独厚的优势,特别是分析速度快,无需样品前处理,多元素同时分析以及所有元素都可测定等优势,这些优势都已经使LIBS技术逐渐成为一种非常流行的元素分析手段,在冶金地质、航空航天等众多应用领域也逐渐得到尝试性的使用。基于上述技术优点,本中心开发了激光诱导击穿光谱系列仪器,包括:台式LIBS系统,便携式LIBS仪器以及手持式LIBS分析仪,相关仪器的样机已展开多次的优化升级,实现了LIBS仪器的国产化突破。但是,虽然LIBS技术有上述众多优点,但是该技术本身却只是一种原子发射光谱技术,利用该技术也只能对被分析样品进行元素分析,获取被分析物质单一的元素构成信息,不能得到相关组成元素的结构信息,因此,利用单一的LIBS技术无法对样品进行全面系统的检测分析。而在地质勘探、石油录井等实际应用需求中,往往不仅仅要求对组成样品的元素进行分析,更重要的是要获取被分析物的结构信息,特别是关于地层岩石的岩性、结构以及矿物种类的综合信息,在这一点上,单纯靠LIBS技术肯定是无法实现的。因此,开发出一种即可实现元素分析,又同时可实现结构鉴定的快速原位光谱分析技术就显得十分重要。 Raman光谱作为一种非破坏性的光谱分析技术,是很具吸引力的。该技术利用低能量激光作用于样品表面,通过接收物质所产生的散射光谱,知道物质的振动转动能级情况,从而可以鉴别物质结构、分析物质的性质。Raman光谱技术可以提供快速、简单、可重复、且无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头测量,一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。因此,Raman光谱技术和LIBS技术从仪器构成、光路设计到结果分析等方面都有着诸多相同或相似之处,将这两种技术结合在一起,开发出可同时得到原子光谱、分子光谱的激光光谱分析系统将有非常广阔的应用潜力。 仪器先进性 LIBRAS仪器可用于分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。 LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。 仪器关键技术研发 1. 独特的光学设计。采用一套光学系统,实现两种不同波长激发的两种不同类型信号的获取,光学系统内无任何移动镜片组件,结构稳,性能强。 2. 创造性的高能风冷脉冲激光系统。采用自主研发风冷脉冲激光器作为LIBS光源,单脉冲能量100 mJ,整机无需水冷,体积紧凑。 3. 创造性的实现高能激光器的低压低功耗供电。激光器可采用锂电池供电,使仪器的便携化成为可能。 性能指标 光斑尺寸:LIBS光路100 µ m;Raman光斑20 µ m;分析距离:40 mm LIBS部分:激光波长1064 nm;脉冲激光能量100 mJ;激光频率1 Hz(可联系激发);脉冲宽度8-10 ns;光谱接收范围:可全谱接收(200-800选配); Raman部分:激光波长532nm;能量 20 mW;光谱接收范围:540-750 nm(选配) 应用前景: LIBRAS技术是LIBS技术的提升和扩展。由于Raman光谱可以用来研究分子的振动和转动情况,提供物质内部的结构信息,各种简正振动频率及有关振动能级的情况,但在物质所含元素,尤其是次要元素和痕量元素的检测方面,能力及其有限。而在油气开采、地质勘探、冶金、电力生产、环境卫生和深空探测等领域,如果既要检测物质中的主要、微量和痕量元素,也要知晓物质中分子组份和结构信息,单独的Raman技术,以及其他的现有光谱检测技术(比如,电感耦合等离子体发射光谱法、X射线荧光光谱法、气相色谱分析法等)都不能完成任务,只有把LIBS技术和Raman技术有机结合起来才能满足此要求。 以油气开采为例:在录井现场完成分析,可以快速的做出解释评价,及时为勘探开发的的决策提供依据,减少了钻井现场等措施的时间,避免决策的失误。通过应用该技术,提高录井解释符合率上升10%以上,每年减少10%试油工作量,仅西南油气田每年可以节约勘探成本5-6亿元人民币。在国内外油气田推广应用,每年可以节约勘探开发成本50-60亿元人民币。降低油气勘探开发成本,扩大油气开发规模,为国民经济的持续发展做贡献。除此以外,例如在冶金、地质等领域,亦可以带来相当巨大的经济效益。 知识产权及项目获奖情况: 专利1:单脉冲激光源的双波长同轴激光诱导击穿-脉冲拉曼光谱联用系统及方法(发明专利,已提交); 专利2:激光诱导击穿光谱与拉曼光谱联用仪自动化测控系统(发明专利,已提交); 专利3:激光诱导击穿/拉曼光谱联用分析仪(外观专利,已提交); 其他:LIBRAS仪器入选&ldquo 2014中国科学仪器与分析测试行业十大新闻&rdquo 。
  • 赛默飞推出新型手持激光诱导击穿光谱分析仪,快速准确检测碳含量
    Thermo Scientific™ Niton Apollo手持式LIBS分析仪,全面提升材料分析效率与精度 2019年10月30日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出全新Thermo Scientific™ Niton Apollo手持激光诱导击穿光谱(LIBS)分析仪。该手持式分析仪采用了激光诱导击穿光谱这一新兴材料成分分析技术,为石油化工、机械制造、废料回收和质量控制等各类机构检测金属碳含量提供更加快速、精准、便捷的技术支持。 碳是自然界中最常见的元素之一,在矿业、金属冶炼、材料制造等各种环节中,碳元素都不可避免地会引入金属材料中,并对金属的力学性能以及制造工艺有着重要的影响,因此实现金属中碳元素含量的精准检测具有重要意义。Niton Apollo手持式LIBS分析仪弥补了传统X射线荧光技术无法进行碳元素分析的不足,可以有效进行例如碳钢牌号判定和元素含量分析,以及区分以碳元素作为区别元素的材料。 在传统分析手段难以运用的复杂现场环境中,Niton Apollo手持式LIBS分析仪采用先进分析技术,使得身处作业现场的操作人员能够快速、准确地进行金属碳含量测量,短短10秒就可以得到结果。而借助Niton Apollo手持式LIBS分析仪的便携性,此前需要在狭窄复杂空间中操纵大型设备执行的分析任务,现在也可以轻松完成。 赛默飞中国区总裁艾礼德(Tony Acciarito)表示:“赛默飞致力于不断创新,通过提供行业领先的解决方案,帮助合作伙伴提升其核心竞争力。此次发布的Niton Apollo手持式LIBS分析仪无疑也将为中国客户带去更高效、更便捷的产品体验,助力实现‘更健康、更清洁、更安全’的中国。” 除了量化低合金钢和L + H级钢中的碳浓度外,Niton Apollo手持LIBS分析仪还可以更准确地测量铝、铬、铜、铁、锰、钼、镍、硅、钛、钒、钨,碳当量(CE)和伪元素等多种元素成分,满足了多元化的行业需求。 Thermo Scientific™ Niton Apollo手持激光诱导击穿光谱(LIBS)分析仪 Niton Apollo 手持LIBS分析仪的其它附加性能和优势还包括: 经过第三方验证的联锁装置,可确保操作人员和旁观者免受激光照射伤害 锥形探头可覆盖更多拐角、接头和狭窄焊接区域 微观和宏观相机,以提供样品定位和保持记录 NitonConnect 支持无线数据传输、远程操作和软件更新 IP54 防护等级,适用于扬尘环境 两块热插拔的 Milwaukee® 电池,每块电池续航能力为3-4 小时 可翻转的彩色触摸屏,可从多个角度观看 简洁易用的应用程序界面# # # 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额超过240亿美元,在全球拥有约70,000名员工。 我们的使命是帮助客户使世界更健康、更清洁、更安全。我们帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、加速药物上市进程、提高实验室生产力。 借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们领先结合创新技术、便捷采购方案和全方位服务。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。 为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。 我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 第一届光谱技术及应用大会 暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会2022 年 12 月 4-6 日 | 上海大华虹桥假日酒店https://b2b.csoe.org.cn/meeting/CSLIBS2022.html 光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2022 年 12 月 4-6 日在上海举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请 150 余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。总体日程日期时间活动地点12.4周日14:00-20:00签到一楼大堂12. 5周一08:30-12:00大会开幕式 & 大会报告一楼大华厅13:00-13:30海报交流与评选一楼海报区13:30-18:3008:30-18:30专题 1:激光诱导击穿光谱及相关技术一楼文华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用二楼馨华厅专题 4:光声光谱与TDLAS 技术及应用专题5:红外及太赫兹光谱一楼锦华厅专题 6:超快及瞬态光谱专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示一楼展区12. 6周二08:30-12:0513:30-18:00专题 1:激光诱导击穿光谱及相关技术二楼怡华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用专题 4:光声光谱与TDLAS 技术及应用专题 5:红外及太赫兹光谱二楼祥华厅专题 6:超快及瞬态光谱二楼馨华厅专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示二楼展区12.4-616:00-18:00现场核酸采样一楼核酸区12.4-617:30-19:00晚餐一楼餐厅12.5-612:00-13:00午餐一楼餐厅*日程可能会根据现场情况进行调整详细日程大会场12 月5 日上午08:30开幕式(1)介绍与会嘉宾 (2)主席致开幕辞大会报告08:50陈建民(复旦大学)——大气气溶胶光学特性研究09:20舒嵘(中国科学院上海技术物理研究所)09:50周怀春(中国矿业大学)——用于燃烧及高温光谱/成像诊断的高精度辐射模型10:20合影 & 茶歇10:40刘志(上海科技大学)11:10俞进(上海交通大学)——针对火星就位探测的激光诱导击穿光谱方法研究 会议日程专题 1:激光诱导击穿光谱及相关技术12 月 5 日下午第一场:基础研究+定量化方法主持人:俞进13:30王哲(清华大学)——激光诱导击穿光谱(LIBS)定量化理论方法及应用13:50苏茂根(西北师范大学)——激光等离子体辐射、诊断与应用14:10周卫东(浙江师范大学)——激光诱导空化气泡的演化及其对 LIBS 光谱的影响14:30张大成(西安电子科技大学)—— 激光诱导击穿光谱新技术与器件研究 (CSLIBS2022-01- 027)14:50陈钰琦(华南理工大学)——新型靶增强正交 DP-LIBS 与 OPC-LIBS 的元素分析研究(CSLIBS2022-05-003)15:00尼 洋(中国地质大学(武汉))——Elemental determination in stainless steel via laser- induced breakdown spectroscopy and back-propagation artificial intelligence network (CSLIBS2022-05-009)15:10李小龙(中国科学院近代物理研究所)——激光诱导击穿光谱表征软物质表面力学性能的实验研究 (CSLIBS2022-01-022)15:20茶歇第二场:基础研究+仪器设备+方法主持人:王哲15:50丁洪斌(大连理工大学)——LIBS 基本物理过程及聚变能应用进展16:10郭连波(华中科技大学)——激光诱导击穿光谱基础、仪器及应用研究16:30马欲飞(哈尔滨工业大学)——小型化固体激光器16:50曾和平(华东师范大学)——飞秒光丝非线性相互作用诱导击穿光谱17:10刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)17:20孙天洋(上海交通大学)——基于神经网络的火星模拟和大气压环境 LIBS 光谱的非线性校准迁 移 (CSLIBS2022-01-003)17:30卢渊(中国海洋大学)——基于显微 LIBS 成像技术的贝壳有机成分分析 (CSLIBS2022-01- 017)17:40饶云飞(上海交通大学)—— 光谱选择和随机森林结合的碎石微量元素的灵敏和精准测定(CSLIBS2022-05-030)12 月 6 日上午第三场:基础研究+仪器设备主持人:丁洪斌08:30段忆翔(四川大学)——LIBS 技术与仪器的发展历程—从实验室研发到现场应用08:50汪正(中国科学院上海硅酸盐研究所)——基于微等离子体增强 LIBS 信号研究09:10林庆宇(四川大学)——面向肺癌组织的 LIBS 元素成像技术、装置及方法(CSLIBS2022- 01-006)09:20刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)09:30张倍艺( 上海交通大学) —— 火星模拟气氛和模拟壤中氮元素的灵敏和精准测定(CSLIBS2022-05-031)09:40茶歇第四场:工业应用主持人:舒嵘10:00孙兰香(中国科学院沈阳自动化研究所)——矿浆成分 LIBS 定量分析方法与工业在线应用10:20王茜蒨(北京理工大学)——LIBS 技术在生物医药诊断监测中的应用研究10:40张雷(山西大学)——NIRS-XRF 联用煤质分析方法研究与应用11:00刘玉柱(南京信息工程大学)——Online in situ detection of elements and pollutions in the atmosphere (CSLIBS2022-05-029)11:20刘可( 华中科技大学) —— 基于 MLIBS 技术的挥发性卤代污染物检测方法研究(CSLIBS2022-01-005)11:30崔敏超(西北工业大学)——Rapid analysis of steel powder for 3D printing using laser- induced breakdown spectroscopy (CSLIBS2022-01-008)11:40刘曙(上海海关工业品与原材料检测技术中心)——激光诱导击穿光谱与铁矿石检测(CSLIBS2022-01-010)12 月 6 日下午第五场:其他应用主持人:汪正13:30郑荣儿(中国海洋大学)——深海 LIBS:何去何从13:50周小计(北京大学)——LIBS 在定量应用中的探索研究14:10刘木华(江西农业大学)——PRLIBS 对农产品品质信息分析能力提升方法研究14:30傅院霞(蚌埠学院)——An exploration of matrix effect on optimal acquisition delay for laser-induced breakdown spectroscopy of metal samples (CSLIBS2022-05-001)14:40田野(中国海洋大学)——水下固体靶的激光诱导等离子体诊断及光谱分析 (CSLIBS2022-01-014)14:50陈枫叶(上海交通大学)——LIBS 和机器学习实现火星气氛和模拟壤中碳元素的精确测定(CSLIBS2022-05-032)15:00何洪钰(中国原子能科学研究院)——激光诱导等离子体光谱直接探测气溶胶中的锶元素(CSLIBS2022-01-016)专题 2:原子光谱与质谱 & 专题 3:激光拉曼光谱与激光荧光光谱技术及应用12 月 5 日下午第一场:激光拉曼光谱与激光荧光光谱 I主持人:杨海峰、胡继明13:30胡继明(武汉大学)——拉曼光谱在细胞分析中的应用13:50杨海峰(上海师范大学)14:10朱井义(中科院大连化学物理研究所)14:30高亮(核工业西南物理研究院)——大气压等离子体活性物种激光诱导荧光定量诊断研究14:50于亚军( 中国科学技术大学) —— 基于线扫描和偶氮拉曼探针的快速活细胞成像(CSLIBS2022-03-004)15:10茶歇第二场:原子光谱与质谱 I主持人:侯贤灯、杭纬15:30侯贤灯(四川大学)——原子光谱分析研究15:50杭纬(厦门大学)——高电离电位元素的激光质谱分析技术16:10胡斌(武汉大学)——ICP-MS 单细胞分析16:30吕弋(四川大学)——基于金属稳定同位素标记的生物分析研究16:50郑成斌(四川大学)——碳原子发射光谱及其应用17:10邢志(清华大学)——高纯非导体材料纯度分析方法探索17:30杨杰(中国科学院近代物理研究所)——ⅥB 族原子一氧化物分子(CrO/MoO/WO)电子态结构研究 (CSLIBS2022-02-010)12 月 6 日上午第三场:原子光谱与质谱 II主持人:杭纬、于永亮08:30于永亮(东北大学)——适于微等离子体发射光谱分析的样品引入方式与接口08:50徐明(中国科学院生态环境研究中心)——利用 LA-ICP-MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律09:10陈明丽(东北大学)——LA-ICP-MS 对动植物组织中元素成像方法研究09:30郭伟(中国地质大学(武汉))——高精度 LA-ICPOES/ICPMS 原位分析技术及古气候中的应用 09:50茶歇第四场:激光拉曼光谱与激光荧光光谱 I主持人:任斌、陈建10:10谱与质谱 III主持人:侯贤灯、高英13:30高英(成都理工大学)——基于钒的
  • 第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2023 年5月7-9日在敦煌举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请150余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。主办单位:中国光学工程学会承办单位:中国光学工程学会西北师范大学协办单位:敦煌研究院中国科学院近代物理研究所上海理工大学中国科学院合肥物质科学研究院中国矿业大学支持单位:长春新产业光电技术有限公司长沙麓邦光电科技有限公司光谱时代(北京)科技有限公司北京镭宝光电技术有限公司国仪量子(合肥)技术有限公司埃德比光子科技(中国)有限公司成都诺为光科科技有限公司北京欧兰科技发展有限公司东方闪光(北京)光电科技有限公司奥谱天成(厦门)光电有限公司上海五铃光电科技有限公司上海尤谱光电科技有限公司深圳市唯锐科技有限公司大会名誉主席:庄松林 院士(上海理工大学)范滇元 院士(深圳大学)乐嘉陵 院士(中国工程院)陈良惠 院士(中国科学院半导体研究所)许祖彦 院士(中国科学院理化技术研究所)大会主席:田中群 院士(厦门大学)刘文清 院士(中国科学院合肥物质科学研究院)孙世刚 院士(厦门大学)王建宇 院士(中国科学院上海技术物理研究所)执行主席:董晨钟(西北师范大学王 哲(清华大学 )蔡小舒(上海理工大学)阚瑞峰(中国科学院合肥物质科学研究院 )周怀春(中国矿业大学 )程序委员会(音序):蔡伟伟、 蔡小舒、曹世权、陈军 、褚小立 、崔执凤、狄慧鸽 、丁洪斌、丁晓彬、董晨钟、董大明、董磊、 董美蓉、付洪波、郭金家 、郭连波、杭纬、 侯贤灯、侯宗宇、胡继明、 胡仁志 、贾云海、阚瑞峰 、 雷庆春 、李博 、李传亮 、李聪、李飞 、李华、李润华、李祥友、李晓晖 、林庆宇、刘诚 、刘冬 、刘飞、刘继桥 、刘木华、卢渊、陆继东、陆克定 、马维光 、马新文、马欲飞、 梅亮 、 敏琦、彭江波 、 钱东斌、任斌、 邵杰 、邵学广、 史久林 、舒嵘、苏伯民、苏茂根、孙对兄、孙兰香、田野、万福 、王茜蒨、王强、 王珊珊 、王圣凯 、王哲、王珍珍、吴涛 、 吴学成 、 吴迎春 、夏安东、 徐文江 、 许传龙 、 许振宇 、 闫伟杰 、 杨荟楠 、 杨磊、杨增玲 、 姚顺春、殷耀鹏、尹王保、于宗仁、俞进、袁洪福 、 张大成、张登红、张雷、赵南京、赵卫雄 、 郑培超、周怀春 、 周磊 、 周卫东、周骛 、 周小计、朱家健 、 朱香平专题分会1) 激光诱导击穿光谱及相关技术召集人:王哲 (清华大学 )、 董晨钟 (西北师范大学 )邀请报告:➢ 丁洪斌(大连理工大学) LIBS 基本物理过程及聚变能应用进展➢ 段忆翔(四川大学) LIBS 技术与仪器的发展历程 从实验室研发到现场应用➢ 郭连波(华中科技大学) 激光诱导击穿光谱基础、仪器及应用研究➢ 刘木华(江西农业大学) PRLIBS 对农产品品质信息分析能力提升方法研究➢ 马欲飞(哈尔滨工业大学) 小型化固体激光器➢ 舒嵘(中国科学院上海技术物理研究所) )————“祝融号”火星车物质成分探测仪中的 LIBS探测与分析➢ 苏茂根(西北师范大学) 激光等离子体辐射、诊断与应用➢ 孙兰香(中国科学院沈阳自动化研究所) 矿浆成分 LIBS 定量分析方法与工业在线应用➢ 王茜蒨(北京理工大学) LIBS 技术在生物医药诊断监测中的应用研究➢ 王哲(清华大学) 激光诱导击穿光谱( LIBS )定量化理论方法及应用➢ 汪正 中国科学院上海硅酸盐研究所 基于微等离子体增强 LIBS 信号研究➢ 俞进(上海交通大学) 针对火星就位探测的激光诱导击穿光谱方法研究➢ 曾和平 华东师范大学 飞秒光丝非线性相互作用诱导击穿光谱➢ 郑荣儿(中国海洋大学) 深海 LIBS :何去何从➢ 周卫东(浙江师范大学) 激光诱导空化气泡的演化及其对 LIBS 光谱的影响➢ 周小计(北京大学) LIB S 在定量应用中的探索研究2) 原子光谱与质谱召集人:侯贤灯 (四川大学 )、 杭纬 (厦门大学 )邀请报告:➢ 陈明丽(东北大学) LA ICP MS 对动植物组织中元素成像方法研究➢ 冯流星(中国计量科学研究院) 阿尔茨海默症计量溯源技术研究➢ 高英(成都理工大学) 基于钒的光化学蒸气发生及应用➢ 郭伟(中国地质大学(武汉)) 高精度 LA ICPOES/ICPMS 原位分析技术及古气候中的应用➢ 杭纬(厦门大学) 高电离电位元素的激光质谱分析技术➢ 侯贤灯(四川大学) 原子光谱分析研究➢ 胡斌(武汉大学) ICP MS 单细胞分析➢ 蒋小明(四川大学) 微型原子发射光谱仪的放电激发源研制➢ 刘睿(四川大学) 金属元素标记均相免疫分析➢ 吕弋(四川大学) 基于金属稳定同位素标记的生物分析研究➢ 邢志(清华大学) 高纯非导体材料纯度分析方法探索➢ 徐明(中国科学院生态环境研究中心) 利用 LA ICP MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律➢ 于永亮(东北大学) 适于微等离子体发射光谱分析的样品引入方式与接口➢ 郑成斌(四川大学) 碳原子发射光谱及其应用➢ 朱振利(中国地质大学(武汉)) 基于等离子体技术的锑元素与同位素分析方法开发3) 激光拉曼光谱与激光荧光光谱技术及应用召集人:任斌(厦门大学 )、 胡继明 (武汉大学 )邀请报告:陈建(中山大学)➢ 高亮(核工业西南物理研究院) 大气压等离子体活性物种激光诱导荧光定量诊断研究➢ 韩鹤友(华中农业大学)➢ 胡继明(武汉大学) 拉曼光谱在细胞分析中的应用➢ 谭平恒(中国科学院半导体研究所)➢ 杨海峰(上海师范大学)➢ 朱井义(中科院大连化学物理研究所)4) 光声光谱 与 TDLAS技术及应用召集人:马欲飞(哈尔滨工业大学 )、 董磊 (山西大学 )、 王强 (中科院长春光机所 )邀请报告:➢ 陈珂(大连理工大学) 光纤光声传感技术及应用研究进展➢ 姜寿林(香港理工大学深圳研究院) 基于空芯光纤光热光谱法的宽波段多组分痕量气体检测技术➢ 黎华(中国科学院上海微系统与信息技术研究所) 太赫兹光频梳与双光梳光源➢ 李磊(郑州大学)➢ 刘俊岐(中国科学院半导体研究所) 中红外可调谐半导体激光器➢ 刘锟(中国科学院合肥物质科学研究院) 光声光谱多组分检测技术研究➢ 鲁平(华中科技大学) 光声探测技术及应用➢ 王福鹏(中国海洋大学) 基于吸收光谱的海洋原位气体传感技术研究和共性关键问题探讨➢ 王强(中国科学院长春光机所) 高灵敏、大动态范围的腔增强光声光谱气体传 感技术➢ 王如宝(北京杜克泰克科技有限公司) 基于光学麦克风光声光谱技术的环境空气 VOCs检测➢ 吴君军(重庆大学) 基于石英增强光声光谱的相变液滴局部蒸汽浓度表征➢ 许可(朗思科技有限公司) 基于石英增强光声光谱的超高灵敏度气体分析仪器➢ 姚晨雨(山东大学) 空芯光纤 Fabry-Perot干涉仪解调方法和光热光谱气体检测研究➢ 闫明(华东师范大学) 基于光梳的光谱测量技术及应用➢ 郑传涛(吉林大学)➢ 郑华丹(暨南大学) 新型石英增强光声光谱测声器5) 红外及太赫兹光谱召集人:邵学广(南开大学 )邀请报告:➢ 陈斌(江苏大学) 低场核磁与近红外光谱联用分析仪的开发与应用探索➢ 陈孝敬(温州大学) 结合 Libs和线性回归分类对泥蚶重金属污染检测➢ 姜秀娥(中国科学院长春应用化学研究所) 仿生膜水合及其效应的红外光谱电化学研究➢ 兰树明(无锡迅杰光远科技有限公司) IAS在线近红外光谱分析仪器开发➢ 李晨曦(天津大学) 光谱成像与太赫兹光谱技术在食品检测中应用➢ 邵学广(南开大学) 近红外光谱分析中的化学计量学方法与应用➢ 夏兴华(南京大学) 等离激元增强红外光谱生化分析➢ 谢樟华(天津市能谱科技有限公司) 国产红外光谱仪的新机遇和新挑战➢ 臧恒昌(山东大学) 药品连续制造过程中近红外实时评价与放行技术的研究➢ 张良晓(中国农业科学院油料作物研究所) 油料油脂质量安全近红外快速检测技术研究➢ 周新奇(杭州谱育科技发展有限公司) FTIR光谱技术产品开发及其应用6) 超快及瞬态光谱召集人:夏安东(北京邮电大学 )邀请报告:➢ 边红涛(陕西师范大学)——受限体系结构及超快动力学研究➢ 陈海龙(中国科学院物理研究所)——利用飞秒红外光谱实现二维材料准粒子带隙的非接触测量➢ 陈缙泉(华东师范大学)——表观遗传核酸分子的激发态动力学研究➢ 陈雪波(北京师范大学)——镧系化合物势能面交叉控制能量转移动力学研究➢ 丁蓓(上海交通大学)——蓝光受体BLUF域质子耦合电子转移机理➢ 勾茜(重庆大学)——微波光谱探测Diels–Alder环加成预反应中间体➢ 金盛烨(中国科学院大连化学物理研究所)——瞬态光谱技术及其在半导体材料研究中的应用➢ 兰鹏飞(华中科技大学)——阿秒激光与阿秒时间分辨测量➢ 李明德(汕头大学)——双键光开关分子纳米晶激发态顺反异构化机制及其超快动力学研究➢ 蔺洪振(中国科学院苏州纳米所)——和频光谱在电化学能源器件界面表征中的应用➢ 刘剑(北京大学)——路径积分刘维尔动力学和超快振动光谱的模拟➢ 马骁楠(天津大学)——新型有机发光材料中的激发态化学研究➢ 任泽峰(中国科学院大连化学物理研究所)——准二维钙钛矿的本征载流子动力学➢ 夏安东(北京邮电大学)——藻胆蛋白光谱红移机理:构象或激子耦合?➢ 吴成印(北京大学)——超快激光与物质相互作用的新型光源产生及应用➢ 吴凯丰(中国科学院大连化学物理研究所)——胶体量子点自旋超快相干操控➢ 杨延强(中物院流体物理研究所)——含能材料冲击响应的时间分辨拉曼光谱技术➢ 叶树集(中国科学技术大学)——光转换材料构效关系的超快光谱研究➢ 张春峰(南京大学)——分子光电材料的激发态动力学妍究➢ 张贞(中国科学院化学研究所)——气液界面超分子手性自组装动力学及手性传递分子机理➢ 郑俊荣(北京大学)➢ 郑盟锟(清华大学)——面向实现超冷的绝对基态锂锶分子的精密光谱测量➢ 周蒙(中国科学技术大学)——金团簇相干振动的超快光谱研究➢ 朱海明(浙江大学)——石墨烯-半导体界面超快光谱研究➢ 朱一心(杭州善上水科技有限公司) ——一种新型的水合氢离子及其生物功能初探7) 燃烧诊断召集人:蔡伟伟 (上海交通大学 )、 彭江波 (哈尔滨工业大学 )邀请报告:➢ 蔡伟伟(上海交通大学)——金属颗粒燃烧三维形貌、温度、速度测量方法研究➢ 超星(清华大学)——红外光频梳光谱燃烧流场多参数测量方法➢ 陈爽(中国空气动力研究与发展中心)——复杂流场光学诊断技术研究进展➢ 雷庆春(西北工业大学)——四维燃烧诊断:从技术到应用➢ 梁静秋(中国科学院长春光机所)——基于光谱技术的航空发动机涡轮叶片温度及燃气浓度反演研究➢ 林鑫(中国科学院力学研究所)——激光吸收光谱技术在固液火箭复杂燃烧场测量的应用探讨➢ 彭江波(哈尔滨工业大学)——高频PLIF燃烧流场测量及数据分析方法研究进展➢ 彭志敏(清华大学)——基于多光谱融合的热工过程气体参数测量理论及应用研究➢ 齐宏(哈尔滨工业大学)——基于主被动光学层析探测的碳烟火焰温度场与粒径分布场重建研究➢ 伍岳(北京理工大学)——跨界面三维层析技术的开发与优化➢ 武文栋(上海交通大学)——高温环境中激光诱导等离子体激发过程的能量吸收特性研究➢ 熊渊(北京航空航天大学)——高速背景纹影测量技术及其应用8) 环境监测召集人:陆克定 (北京大学 )、梅亮 (大连理工大学 )邀请报告:➢ 陆克定(北京大学)——典型光化学观测站中的光学测量技术与挑战➢ 梅亮(大连理工大学)——基于可调谐二极管激光器的大气环境激光遥感技术➢ 胡仁志(中国科学院合肥物质科学研究院)——大气HOx自由基探测技术研究及应用➢ 刘诚(中国科学技术大学)——卫星结合地面靶向遥感VOCs排放源➢ 楼晟荣(上海市环境科学研究院)——基于激光诱导荧光的城市大气OH自由基总反应性测量与应用➢ 韦玮(重庆大学)——腔增强红外光谱技术➢ 赵卫雄(中国科学院合肥物质科学研究院)——磁旋转吸收光谱法测量OH自由基➢ 郑海明(华北电力大学)——光谱技术在烟气汞连续监测中的应用方法研究9) 工业检测召集人:姚顺春 (华南理工大学 )、袁洪福 (北京化工大学 )邀请报告:➢ 陈达(中国民航大学)——气体可再生能源在线监测技术与装备开发➢ 褚小立(中石化石油化工科学研究院)——近红外光谱分析技术在炼油工业的应用➢ 董大明(国家农业智能装备工程技术研究中心)——水体污染的激光光谱探测方法-从智能传感器到仿生机器鱼➢ 李天骄(南京理工大学)——纳米材料光点火诊断与应用➢ 马维光(山西大学)——光学反馈线性腔增强吸收光谱技术及其应用➢ 杨荟楠(上海理工大学)——基于激光光谱技术的气液两相多参数同步测量及疾病前瞻性诊断研究➢ 姚顺春(华南理工大学)——激光诱导击穿光谱的煤质检测方法➢ 张志荣(中国科学院合肥物质科学研究院)——冶金、石化等工业领域的光谱检测技术及其应用➢ 张彪(东南大学)——基于光场成像的燃烧诊断技术研究
  • 首台智能化高性能激光诱导击穿光谱仪成功登录中国
    2008年10月21日,上海凯来实验设备有限公司成功地完成了清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)的安装调试工作。目前这套Spectrolaser 4000 Target LIBS系统标配有532nm激光源,*能量为1064nm,300mj,4通道光谱仪,CCD检测器,内置图像2维扫描系统,将协助该中心进行煤炭领域的研究工作,最终目标将在煤矿,发电厂等企业实现在线快速分析,这标志着中国在煤炭的元素分析领域将掌握一种崭新的分析手段。    清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)    LIBS应用专家讲解中    激光源导出系统实验    在大气环境中激发效果    外置激光源空气中测试名片中元素含量的实验    标煤(GBW111 O2i)    标煤(GBW111 O2i)LIBS 图谱1    标煤(GBW111 O2i)LIBS 图谱2   标煤(GBW111 O2i)结果显示,该样品煤中含有Si, Fe, N, Ti, C, Mg, Ba, Na, Sr, K, Ca, O、H、Al等多种元素,其中总S含量为33.51%(偏差为0.18%),挥发性硫含量为24.92%(偏差为0.29%),C含量为49.83%(偏差为0.35%),H含量为2.98%(偏差为0.14%),N含量为0.90%(偏差为0.03%),完全符合标准。   传统的煤分析方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。   煤炭分析背景资料   煤炭是我国国民经济发展的物质基础,煤炭企业生产的煤炭产品不仅要在数量上满足国民经济各物质生产部门的生产和人民群众的生活需要,而且也要在质量上满足不同用户的使用要求。   长期以来,我国煤炭供需关系总的来讲一直比较紧张,只要将煤炭从地下采出,销售就不成问题,这在一定程度上也淡化了人们的质量意识。但发展到今天,煤炭质量问题己引起越来越多用户的高度重视,对煤炭企业提出了严峻的挑战。从目前煤炭市场情况看,煤质不好,不仅价格较低,而且煤炭的利用率较低,浪费严重。据统计,我国煤炭平均利用率约在30%左右。一般来说煤炭燃烧时,煤质越差,热损失越多,热效率也就越低,耗煤数量也越多。如普通锅炉使用灰分为4O%的原料煤与使用灰分为90%的原料煤相比,热效率至少相差10%。可见,由于煤质不好或供煤品种的不对路,其浪费是惊人的。   同时,我国每年因燃煤而产生的硫的氧化物和氮的氧化物的总量在1000万t以上,这些有害的酸性气体排入大气后,在一定的条件下与雨水一起再降到地面。相当于从空中降下2000多万t强酸,对环境污染很大,特别是烟煤中所含苯并芘对人体危害*,其浓度每增加百万分之一,癌发率上升5%。由上可见,提高煤炭质量,不仅可以达到节约煤炭,降低用户生产成本的目的,而且有利于环境的保护,减轻煤炭利用对环境的污染。   为了严格控制煤炭的质量,1987年,国家标准局发布《煤质分析试验方法一般规定》(GB/T 483-1987)。其中包括:煤的元素分析方法 煤中碳和氢测定方法电量—重量法 煤中全硫的测定方法 煤中各种形态硫的测定方法 煤中磷的测定方法 煤中砷的测定方法 煤中氯的测定方法 煤中氟的测定方法 煤中锗的测定方法 煤中镓的测定方法 煤灰中钾、钠、铁、钙、镁、锰的测定方法(原子吸收分光光度法) 煤中铬、锡、铅的测定方法 煤中铀的测定方法 煤中钒的测定方法 煤中硒的测定方法 煤中汞的测定方法等等(详见GB/T 483-1987)。   传统的方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。    实验室留影1    技术交流会议合影留念   LIBS 技术背景介绍   激光诱导击穿光谱仪(LIBS),无论是在样品制备、检测元素及分析时间上都明显优异于传统分析技术。其基本原理是使用高能量激光光源在分析材料表面形成高强度激光光斑(等离子体),使样品激发而发光, 通过检测系统对激发光信号的分析从而对待测样品元素进行定性和定量分析。   早在1961年,相关技术的论文已发表在了Brech上,但由于当时的激光发射器造价较高,实际生产的应用并不多见。随着激光发射器的商业化,LIBS已经逐渐应用在各行各业:环境:土壤,微粒,沉积物 材料分析:金属,矿渣,塑料,玻璃、煤炭 法医和生物医学:牙齿,骨头 计量学:硅晶片,半导体材料 生物学研究:植物,谷物 国防和军事:爆破,生化武器 艺术品修复和保存:颜料 宝石学和冶金术:贵金属,宝石。   上海凯来拥有一支理论知识扎实和实践经验丰富的团队,秉承着为客户提供完善技术服务的理念,与清华大学BP清洁能源研发与教育中心合作开发LIBS在煤炭领域中的应用。此次合作也对LIBS技术的肯定,欢迎任何对此技术方法感兴趣的分析工作者一起探讨,同时我们可以提供测试服务。相信在不久的将来,LIBS将具有广阔的市场前景。
  • 激光诱导击穿光谱技术在钾盐和钠盐检测中的应用
    前言激光诱导击穿光谱(LIBS)技术是一种利用高能流激光脉冲击穿样品诱导产生高温等离子体,通过测量等离子体在冷却过程中相应元素所发射的原子或离子光谱谱线进行元素成分定性和定量检测分析的一种发射光谱技术,原理图如图1所示。LIBS不依赖于复杂的样品制备,对样品的破坏极小,对样品的形态无选择性,同时能够进行多元素检测,由于这些优点,LIBS被广泛应用于工业检测领域。图1 LIBS实验原理图氯化钾和氯化钠是常见的盐类,广泛应用于农业和化工行业。氯化钾主要用于生产肥料,提供植物所需的钾元素,促进植物生长;同时也是多种化学品的原料。氯化钠则用于生产盐酸、烧碱和氯化铵等基础化工产品,并在污水处理中充当混凝剂和沉淀剂。尽管两者成分相似,但在具体的应用中还是必须要加以区分,例如在水产养殖中,氯化钾和氯化钠的功效不同,互相替代可能导致生长发育图3 Maria多通道光谱仪氯化钾和氯化钠其外观都为白色晶体状,同样都拥有味咸、易溶于水和甘油的特性。为了便于使用激光脉冲照射,需要对样品进行压片处理,使用压片器将两种样品压制成片状,然后放在样品台上进行测量。实验样品如图4所示。不良或水质急剧变化,进而影响养殖效果。氯化钾和氯化钠的区分难点不仅在于它们的化学性质相似,还包括外观相似,均为白色结晶,容易混淆。如果使用焰色反应等传统的区分方法通常需要复杂的样品制备以及严格的实验条件,这使得快速识别变得困难。LIBS技术能够直接分析样品,无需特殊处理,从而克服了这些困难,实现高效、准确的区分。实验设备和样品本实验中使用的LIBS系统如图2所示,激发光源为输出波长为1064nm的泵浦激光器,激光光束经透镜组反射和聚焦后照射在样品表面,光谱信号由光纤收集。图2 实验设备本实验中使用如海光电Maria多通道光谱仪,如图3所示。Maria是一款集成式多通道光谱仪,最多可以支持8个通道。光谱范围最宽可达190-1100nm。分辨率0.1nm,最短积分时间可设置为10μs,外触发延迟可以控制在1μs±10ns,能够精准捕获等离子体信号,适用于等离子体光谱测量,原子发射、吸收光谱测量,火焰燃烧光谱测量和LIBS等多个领域。图3Maria多通道光谱仪氯化钾和氯化钠其外观都为白色晶体状,同样都拥有味咸、易溶于水和甘油的特性。为了便于使用激光脉冲照射,需要对样品进行压片处理,使用压片器将两种样品压制成片状,然后放在样品台上进行测量。实验样品如图4所示。图4 实验样品,左为氯化钾样品,右为氯化钠样品实验结果和分析通过查询美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)的原子光谱数据库,从中找到钾元素、钠元素、氯元素的常用谱线,数据如表1所示。表1 元素特征谱线元素Element特征谱线(nm)Characteristic spectral lineK766.49、769.896Na818.326、819.482Cl777.109、868.496实验测得的光谱数据如图5所示,根据之前查询的元素特征谱线,可以识别谱峰对应的元素。从图中可以观察到,对于氯化钾样品来说,可以在766.49nm和769.896nm处观察到两条较为明显的钾元素特征谱线;对于氯化钠样品来说,可以在818.326nm和819.482nm处观察到两条较为明显的钠元素特征谱线,钾元素和钠元素的特征谱线能够很清晰地区分。因为两种样品都含有氯元素,所以在777.109nm和868.496nm处两种样品的数据中都能观察到了氯元素的特征谱线,且强度相差不大,这可能因为氯化钾和氯化钠都是离子化合物,均由阳离子和氯阴离子组成,尽管它们的阳离子不同,但都形成相似的晶体结构,这使得它们在相同条件下容易产生相似的光谱特征。图5 氯化钾和氯化钠的光谱图总结本实验中,我们成功识别了氯化钾样品中的钾元素特征谱线(766.49 nm和769.896 nm)以及氯化钠样品中的钠元素特征谱线(818.326 nm和819.482 nm)。此外,实验中也观察到氯元素的谱线,进一步展示了光谱仪在分析离子化合物时的能力。在氯化钾和氯化钠的区分中,与传统的焰色反应相比,LIBS技术无需复杂的样品制备且能够实现多元素的快速检测。这一优势使得LIBS在盐类检测和其他工业应用中具备较高的实用价值。实验中对样品的破坏极小,使得该技术适合于各种样品类型的分析。本实验表明,LIBS技术是一种高效、准确的检测手段,能够在工业领域中快速区分氯化钾和氯化钠等盐类。随着技术的进一步发展,LIBS在更多应用领域的潜力将愈加显现,未来可以为材料分析和工业检测等方面提供更广泛的解决方案。如海光电提供适用于多领域的LIBS系统。仪器推荐
  • 中科院研制出基于激光诱导击穿光谱技术的新型环境监测系统
    p   近日,中科院安徽光学精密机械研究所研究员赵南京研制出一种新型环境监测系统——“工业排放废水重金属在线监测技术系统”,可对工业排放废水中多种重金属进行实时在线自动监测。该系统已通过专家组验收。 /p p   目前,对水体中重金属的在线测量主要采用比色法和电化学分析法,这两种方法各有缺陷,有的不能同时测量多种离子,有的灵敏度较低。 /p p   据了解,该系统基于激光诱导击穿光谱技术,以石墨基片为水样载体,通过自动加载与卸载石墨基片、水样自动进样与精确滴定、样品烘干、光谱测量与分析,从而实现废水重金属含量的连续在线自动监测,可同时测量铅、镉、铬、铜、镍、锌等多种重金属元素。 /p p   科研人员在一家金属冶炼厂进行了为期两周的外场示范运行试验,结果显示测量稳定性误差在5%以下,相对误差在0.02%至9.1%之间。系统连续运行期间,无人值守但运行稳定、可靠。 /p
  • 激光诱导等离子体光谱重大仪器开发专项启动
    4月14日,光电院在北京新技术基地组织召开了国家重大科学仪器设备开发专项&ldquo 激光诱导等离子体光谱分析设备开发和应用&rdquo 项目启动会。中科院条财局科技条件处副处长姜言彬代表院机关出席会议,院内外专家、项目监理组和合作单位代表共50余人参加了会议。   副院长樊仲维参加了项目启动会和技术研讨会,表示将瞄准应用目标全力将项目做好。项目负责人孙辉研究员汇报了项目的背景、开发和工程化方案、进度安排、组织管理和进展情况等。与会专家重点就项目知识产权保护、管理措施、指标细化、接口关系以及技术难点等方面进行了深入研讨,提出了许多宝贵的意见和建议。   姜言彬最后讲话,主要提出了三点要求:一是充分发挥总体组、技术专家组和监理组的作用。二是强调任务书的重要性,其中经费、指标和周期的调整要严格遵守相关程序要求。三是要加强对项目质量、可靠性和相关软件的重视。通过项目总体统一协调,做好提前规划,为项目的顺利开展提供保障。   目前我国粗钢总产量接近世界一半,特殊钢产量不足5%,且品质亟待提高,主要是冶炼过程中钢水成分难以精确控制,成品率低造成的。现有成分检测技术耗时长,属事后检测方法,无法为改善品质提供实时参考。激光诱导等离子体光谱技术(LIPS 技术)是基于激光和材料相互作用产生发射光谱的一种定量分析技术,提供了一种实时在线监测的可能性,可为改善钢水品质提供实时的数量依据,不仅缩短检测时间,还可降低成本,节约能源。   发达国家由于拥有窄成分控制技术而保障了特殊钢占钢铁总产量的高比例,国内应用于冶金行业的LIPS 研究还处于起步阶段,相关设备的研发几近空白。本项目针对高温冶炼环境特征,研制基于激光诱导等离子体光谱的钢水成分实时在线检测设备,不仅有利于推动我国钢水成分检测技术研究与应用发展,而且有助于提高我国钢产品品质,对我国钢铁行业发展具有重要的战略意义。
  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • TSI推出手持式激光诱导击穿光谱仪(LIBS)
    近日,在Pittcon 2014举行期间,TSI推出了一款坚固耐用的ChemLogix&trade 手持式激光诱导击穿光谱元素分析仪(LIBS)用于现场研究,质量控制和移动实验室的市场。   该ChemLogix&trade 手持式激光诱导击穿光谱仪采用位于IR-B频段,Class 1级别的对人眼安全的激光源,可以除去样品表面的污染物。仪器使用不需要特殊的用户培训和个人防护装备。ChemLogix&trade 手持式激光诱导击穿光谱仪可以在几秒钟内完成分析,甚至是对轻元素的分析也可以在这么短的时间内完成。该仪器非常适合要求苛刻的领域,以及在线质量监测。   TSI LIBS全球产品经理Phillip Tan说:&ldquo LIBS技术是一种行之有效的固体样品元素快速分析手段。该技术几乎不需要样品制备,并且甚至可以在短短一秒钟获得结果。利用我们的ChemReveal&trade 台式激光诱导击穿光谱元素分析仪,实验室研究人员已经意识到LIBS在元素分析方面的能力与优势。通过采用便携LIBS,我们的用户现在可以在现场或生产车间快速得到分析结果。&rdquo
  • 川大研制出便携式激光诱导击穿光谱仪(LIBS)
    日前,由四川大学生命学院分析仪器研究中心牵头承担的国家重大科学仪器设备开发专项成果&mdash &ldquo 便携式激光诱导击穿光谱仪(LIBS)&rdquo 亮相第九届中国西部国际科学仪器展览会。该产品是国内自主研发的首例便携式LIBS仪器。除了具有与实验室台式LIBS相似的优点之外,其方便,便携,可现场,在线分析等优势受到国内外用户和参展商的高度关注。这一成果也标志着我国激光诱导击穿光谱仪器自主研制能力的提升。   与传统的技术相比较,该便携式仪器用途更加广泛,能够更好地服务于冶金、地质、医学,生物,环境污染监测等多个领域,为相关产业提供有效的现场、原位、快速分析的技术装备,从而加快检测速度,缩短分析时间,降低分析成本,提高生产效率,有广阔的市场前景和空间。 四川大学自主研制的便携式激光诱导击穿光谱仪亮相第九届中国西部国际科学仪器展览会
  • 聚光科技发布CALIBUS系列手持式LIBS激光诱导击穿光谱仪新品
    英国阿朗科技公司至今已服务于金属元素成分分析行业近40年。40年间ARUN公司共推出10多款产品,覆盖现场及实验室金属材料检测领域。CALIBUS系列手持式LIBS激光诱导击穿光谱仪是ARUN最新推出的手持产品,有着绝佳的元素分析性能,尤其是C元素检测分析性能优异,是目前分析检测碳元素最稳定的手持光谱仪。 检测范围宽 全谱元素检测,可精准稳定检测C及合金材料中的Li、B、Be元素,填补了XRF的检测盲区;分析能力强 全新高分辨率的光学系统设计,搭配CMOS传感器,使得检测精度更高;无辐射 采用激光诱导击穿技术,没有辐射危险,产品通过《设备使用安全认证》;分析速度快 1s完成分辨牌号,快速分析检测;样品适应性广 无需样品前处理,样品适应性广:不要求导电,不要求消解,不要求大量;易用性高 智能触摸屏,人性化交互界面,操作简单便捷,大大提高工作效率。 应用领域: 冶金制造:CALIBUS手持式LIBS光谱仪优异的定量定性检测能力,能解决客户在冶金制造全过程中的质量控制、材料分类、安全防范、事故调查等检测要求,无论是黑色金属还是有色金属,CALIBUS都可以快速、准确给出准确可靠的测试数据,获得接近实验室级别的分析结果。轻金属材料分析:CALIBUS是一款超高分辨率、宽波段范围的手持激光光谱仪,有着强大的分析能力,能够准确分析以往X射线荧光分析仪不能识别的轻元素,即可对C,Si,Mg,B,Be,Li,Na等原子序数小于13的元素的现场快检,满足一切金属材料检测应用场景。材料可行性鉴定:材料检验是确保金属制品使用合格材质的关键。CALIBUS的出现,使工业生产过程中对金属材料的100%全检替代抽样检验成为现实,只需扣动扳机,元素含量及牌号1秒即可准确清晰显示在彩色触摸屏上,并可适应各种现场检测条件。金属交易:在金属废料交易市场中,进行快速可靠的现场分析检测是非常必要的,CALIBUS能够快速准确的对大量的废旧金属(碳素钢、不锈钢、铸铁、铝合金、铜合金等)进行现场检测和分拣,为购销双方在交易时做出迅速可靠的判断。创新点:阿朗CALIBUS系列手持激光诱导击穿光谱仪是英国阿朗科技公司的最新光谱产品。 创新点一 CALIBUS的谱线范围190nm-800nm,可对C,Si,Al,Mg,B,Be,Li,Na等原子序数小于13的元素进行现场快检。尤其是其优异的C元素检测能力,解决了广大黑色金属应用领域客户的痛点,弥补了XRF技术检测的不足与空白; 创新点二 CALIBUS采用三光室光学系统设计,CMOS探测器,分辨率低于0.1nm。另外它的氩气吹扫功能够消噪增强谱线信号强度,保证检测的准确性,搭配标样可实现金属材料的定量分析; 创新点三 CALIBUS内置高频纳秒级激光器,可在极短时间内完成多次分析,并迅速稳定下来,且无辐射危险,即CALIBUS激光光谱仪1s即可对金属材料完成准确安全的检测分析; CALIBUS系列手持式LIBS激光诱导击穿光谱仪
  • 世界首款激光诱导击穿-拉曼一体化光谱分析仪面世
    日前,由四川大学生命科学学院分析仪器研究中心段忆翔教授作为项目负责人,牵头承担的国家重大科学仪器设备开发专项又取得最新进展&mdash &ldquo 激光诱导击穿-拉曼光谱分析仪(LIBRAS)&rdquo 首次亮相于2014年12月20日-21日的&ldquo 激光光谱分析前沿技术国际研讨会&rdquo 。   继2014年3月份在第九届中国西部国际科学仪器展览会成功展出作为国内自主研发的首例便携式激光诱导击穿光谱仪(LIBS)之后,该项目团队再接再厉,与各参研兄弟单位联合攻坚,将用于元素测量的LIBS技术与用于分子结构测量的拉曼(Raman)技术有机结合,成功研制出世界上首款风冷型高性能激光诱导击穿-拉曼一体化的光谱分析仪,并将其命名为LIBRAS(Laser Induced Breakdown Raman Spectroscopy)。该仪器可用于待分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。   LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。这一成果也标志着我国激光光谱仪器自主研制能力的快速提升。
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 第8届激光诱导击穿光谱(LIBS)国际会议在清华召开
    仪器信息网讯 2014年9月8-12日,由中国激光诱导击穿光谱组委会组织,清华大学热能工程系主办的&ldquo 第8届激光诱导击穿光谱(LIBS)国际会议&rdquo 在北京清华大学召开。该会议主题为&ldquo Share our LIBS Make a difference&rdquo ,来自中国、美国、法国、德国、俄罗斯、日本、韩国等国家的相关代表362人参加了此次会议。 会议现场 清华大学热能工程系主任李政和中国激光诱导击穿光谱组委会王哲博士共同作开幕报告,介绍LIBS技术在我国的发展情况。 中国激光诱导击穿光谱组委会王哲博士作大会报告,报告题目为&ldquo Overview of LIBS Development in China&rdquo 自2011年我国首次举办中国激光诱导击穿光谱学研讨会以来,LIBS技术在我国发展迅猛。此次LIBS国际会议在北京的召开,有助于我国LIBS学者与来自世界各地同行间的学术成果交流,促进彼此之间的共同合作。 此次会议共设基础理论、分子LIBS、计量与建模、低温低压LIBS、LIBS工业应用、LIBS技术等14个主题,安排了88个报告,收到会议论文摘要264篇。 J. Hermann, CNRS - Aix Marseille University, France Presentation title: Mechanisms and Features of Laser-Induced Breakdown A. Hassanein, Purdue University,USA Presentation title: Comprehensive Self-Consistent Simulation and Benchmarking of Laser Interaction with Materials for Various Applications Xueshi Bai, Institut Lumiè re Matiè re, France Presentation title: Morphology of Laser-Induced Plasma in Different Ambient Gases: the Microscopic Mechanisms Hassan Y.Oderji, Dalian University of Technology, China Presentation title: An Approach in Simulation of LIBS: Laser Ablation, Plume Dynamics and Emission I. B. Gornushkin, BAM Federal Institute for Materials Research and Testing, Germany Presentation title: Theoretical and Instrumental Tools for Study, Diagnostics and Applications of Laser Induced Plasma NasrullahIdris, Syiah Kuala University, Indonesia Presentation title: Excltation Mechanisms in Low Pressure Plasma Induced by 1 mJ Plcosecond Nd-YAG Laser in Amblent Hellum Gas RawadSaad, DPC, CEA, France Presentation title: Unexpected Spatio-temporal Evolutions of Al I Spectral Lines under Different Atmosphere Conditions During LIBS Experiment Alexey Ilyin, Institute of Automation and Control Processes, FEB RAS, Russia Presentation title: Emission and Absorption Characteristics of Femtosecond Laser-induced Plasma in Air R. Gaudiuso, Institute of Inorganic Methodologies and Plasmas (IMIP), NationalResearch Council (CNR), Italy Presentation title: Nanoparticle-Enhanced LIBS Staci BROWN, Florida A&M University, United State Presentation title: Analysis of Dicarboxylic Acids Using Nanosecond and Femtosecond Laser Induced Breakdown Spectroscopy 此外,会议还得到了TSI、海洋光学、APPLIED SPECTRA等仪器公司的大力支持,部分公司还在会上展示了相关产品。(撰稿:李学雷) 公司展台 合影
  • 第三届中国激光诱导击穿光谱学研讨会通知
    第三届中国激光诱导击穿光谱学研讨会(第一轮通知) CSLIBS -2013, 广州 时间:2013年3月22至24日 地点:广东广州五山华南理工大学 主办:中国光学学会环境光学与技术专业委员会 承办:华南理工大学   会议宗旨   近年来,LIBS技术研究及其应用在我国得到了迅速的发展,无论是在新机理的探索、新技术研发,还是在现有技术实用化等方面均取得了很大的成绩,尤其是在2011年第一届"CSLIBS2011-青岛"和2012年第二届"CSLIBS2011-合肥"的推动下,LIBS技术在电力、石油、冶金、食品安全和环境监测等各个领域的应用取得了显著进展。   为进一步促进激光诱导击穿光谱(LIBS)技术的应用与交流,提高LIBS技术在我国的研究水平,交流近期取得的研究成果,共同研讨我国LIBS研究发展的对策,并为2014年在北京召开的第8届国际LIBS会议做准备,由华南理工大学承办的"第三届中国激光诱导击穿光谱学研讨会 - CSLIBS'2013"定于2013年3月22日至2013年3月24日在广州华南理工大学召开。此次会议已得到国内外同行的高度关注,将有多名国外LIBS领域著名专家参会。同时也将邀请国内外与LIBS相关的仪器设备公司举办最新产品展览会。   征文范围   l LIBS基础:   激光等离子体基础(Fundamental of laser-induced plasma)   -激光烧蚀和激光等离子体物理(Physics of laser ablation and laser-induced plasma)   -激光等离子体光谱及其诊断(Diagnostics and spectroscopy of laser-induced plasma)   - LIBS技术及装置的发展:过去、现在和未来(Instrumentation development of LIBS: the past, the present, and the future)   -LIBS数据处理和化学计量学(LIBS data processand Chemometrics)   - LIBS定量分析评价(Quantitative analytical performance assessment)   lLIBS应用   专业设备研发及其应用(Applications and specific instrument development)   - 环境领域(Environment)   - 工业领域(Industrials)   - 极端环境:太空、海洋、军事、核环境(Detections in extreme conditions:space, ocean, military, nuclear…)   - 有机物和生物学(Organic and biomedical)   - 其他领域(other areas)   会议形式   根据会议学术委员会多次商议,此次会议将更注重学术效果,主要采用如下模式安排会议内容:   1、基础短训班   邀请国内外LIBS领域的著名专家,就LIBS技术相关理论基础进行专题讲座:   对象:研究生和交叉学科的LIBS应用者   课程:   1)LIBS物理基础   2)LIBS发射光谱   3)LIBS仪器设备   4)数据处理   2、大会主题报告   由国内外LIBS主要研究单位报告近一年中的最新研究进展与发展趋势   3、学术交流   将全部采用poster形式,安排专门单元进行充分研讨,并进行评选奖励最佳poster报告活动(以鼓励和表彰青年学者和研究生为主)   4、其他形式   如学术沙龙等,主要安排青年学者和研究生进行学术交流,特邀资深专家进行指导。   投稿及其他信息   会议网址:http://www.scut.edu.cn/CSLIBS2013/   参会报名与论文提交邮箱地址:CSLIBS2013@scut.edu.cn   参会报名与投稿截止日期:3月1日   参会费用:   由于参会人员的不断增加,为保证会议的顺利进行,本次会议将酌情收取会务费:   短训班:300元/人   会务费:600元/人   会议日程   3月21日参加短训班人员报到   3月22日上午、下午   短训班   参会人员报到   晚上:学术沙龙   3月23日上午:开幕式,大会报告   下午: poster研讨   晚上:珠江夜游   3月24日上午:大会报告   下午:专题研讨   会议地点   广东广州五山华南理工大学逸夫人文馆   住宿   广东广州五山华南理工大学西湖苑、学者楼   会议语言   中文、英文   (为了做好LIBS2014的预演,CSLIBS 2013鼓励用英语准备ppt和poster)   联系方式   地址:广东广州五山华南理工大学电力学院, 510640   联系人:姚顺春(13925150807),李军(15989024816),张博(13580339824),   E- mail :CSLIBS2013@scut.edu.cn
  • 第六届中国激光诱导击穿光谱研讨会通知
    p   尊敬的LIBS研究专家和同仁: /p p   在第一届“CSLIBS 2011-青岛”的推动下,中国无论是在LIBS 机理的探索、新技术研发,还是在LIBS 的实际应用方面均得到了迅速发展 并成功举办了五届CSLIBS 会议、一次LIBS高级研讨会,以及清华大学承办的“第八届国际LIBS(LIBS2014)大会”和华中科技大学承办的“第一届亚洲LIBS(ASLIBS2015)研讨会”两次国际会议。这些会议的顺利召开,对中国LIBS 技术的研究、交流和发展起到了非常重要的推动作用。目前中国LIBS 技术领域的基础和应用研究方兴未艾,并在电力、冶金、海洋、食品安全和环境监测等各个领域的应用取得显著进展。 /p p   为进一步提高我国激光诱导击穿光谱的研究水平,促进 LIBS 技术的进步与创新,为LIBS 领域科技工作者、相关企业提供学习和交流的平台,中国光学工程学会激光诱导击穿光谱专业委员会定于2018年3月23-26日在陕西省西安市举行“第六届中国激光诱导击穿光谱研讨会 (CSLIBS 2018)”,并委托西安交通大学承办,西安电子科技大学、中国科学院西安光学精密机械研究所协办此次会议。会议将邀请国内从事LIBS研究的专家、学者、研究生和企业届人士参加会议,通过学术报告和海报展示等环节就LIBS技术的重要科学问题、最新研究结果及发展趋势等问题展开研讨,同时也将邀请LIBS业界相关企业展示LIBS最新仪器产品和技术。本届会议将秉承往届CSLIBS会议的宗旨,共同研讨我国LIBS研究发展的对策。同时,CSLIBS会议也将发展创新,每届会议将设立相应主题报告。本届会议将以能源与动力工程为主题设立专题报告,会议将邀请能源与动力工程领域的知名专家学者就应用需求方面与LIBS 技术研究者展开探讨。 /p p   投稿信息 /p p   请提交报告摘要及报告人简介。报告摘要内容包括题目、作者、作者单位、报告内容简介等部分,字数限300~500 字。报告人简介限500 字以内。并提供1 张1 寸电子版照片。 /p p   Poster 尺寸要求:90cm × 120cm /p p   投稿邮箱地址:CSLIBS2018@163.com /p p   投稿截止日期:2018 年3 月1 日 /p p   会议网址: a href=" http://CSLIBS2018.conf.cnki.net" http://CSLIBS2018.conf.cnki.net /a /p p   诚邀各位专家、学者、以及企业界朋友光临本次会议! /p p   严俊杰、王珍珍 /p p   西安交通大学 /p p   会议联系人: /p p   王珍珍,刘人玮,胡若木 :029-82667331 /p p   E-mail:CSLIBS2018@163.com /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201712/ueattachment/0ed5443c-f55c-48f2-9192-80e7644e8dd3.docx" CSLIBS2018参会回执表.docx /a /p
  • 激光诱导击穿光谱(LIBS)研究领域再次取得重要进展
    激光诱导击穿光谱技术(LIBS)又称激光诱导等离子体光谱,是一种基于原子发射光谱法的元素分析技术,在多元素分析、实时快速原位检测等方面具有突出优势,并且在痕量物质定性定量分析领域具有重要的应用前景。目前该技术已在深空深海探测、地质勘探、生物医药,以及环境监测等众多领域得到广泛应用。但在普遍应用中,LIBS技术面临信号波动大、光谱强度低、信噪比差、探测灵敏度低等不利因素。瞬态光学与光子技术国家重点实验室汤洁研究员课题组近年来开展了激光等离子体光谱研究领域的技术攻关。放电辅助增强策略可实现大幅度的激光等离子体光谱增强。然而,D-LIBS在放电时电能消耗过大,同时从交变电压和电流中产生电磁脉冲,这不可避免地导致能源浪费和环境污染相关问题。2023年2月份,瞬态光学与光子技术国家重点实验室汤洁研究员课题组与Vassilia Zorba教授团队合作共同提出一种离子动力学调制方法,对克服传统放电辅助LIBS技术(D-LIBS)放电能耗大、安全风险高、环境危害大等不利因素,同时提高分析灵敏度具有显著改善效果。该项工作借助于这种方法,合理优化电极配置,有序调控放电模式,在有效增强光谱信号强度的同时,大幅降低放电能耗。然而,这一方法在液态样品的探测中受液相对放电过程的干扰导致LIBS信号波动大,影响探测光路甚至无法探测,极大阻碍了放电辅助LIBS(DA-LIBS)在液态样品中痕量物种定性或定量分析方面的应用。近日,针对放电辅助LIBS在液态样品探测中面临的关键技术性难题,该团队提出了DA-LIBS结合滤纸采样的方法,促进等离子体中更多的物质被持续加热、电离,致使其寿命从几微秒延长至近百微秒,等离子体光谱强度增加1–2个数量级,滤纸均匀采样巧妙克服了液相干扰放电过程及信号稳定性差等不利因素,显著增强激光烧蚀样品的稳定性,等离子体光谱信号稳定性得以提升33%。凭借显著的光谱增强效应,痕量Ca、Ba元素检出限降低至ppb量级( 1ppb=10-9=十亿分之一),相比于传统单脉冲LIBS,检出限降低近2个数量级。相比于其他LIBS增强技术(如双脉冲LIBS),该方法不仅享有同等高水平的探测灵敏度,还具备低成本、低能耗、装置简易等优势,将在环境与生态废油污染监测中,对污染物质的溯源,以及预防措施的制定,展现出巨大的应用潜力和价值。图片来源于中国科学院西安光学精密机械研究所该项研究成果发表于分析化学领域顶级期刊 Analytical Chemistry(Nature Index 收录,IF:8.0)。
  • 激光诱导击穿光谱分析对火星潜在生命信号的探测启示
    近日,中科院地质与地球物理研究所地球与行星物理院重点实验室地球与行星磁场及宜居性学科组的申建勋博士后与合作导师林巍研究员等,利用激光诱导击穿光谱(LIBS)对地球类火星环境中岩石样品的光谱特征进行了研究,结合拉曼光谱测量,探讨了LIBS技术在火星生命信号筛选中的应用潜力。该研究选取了柴达木盆地西北干旱区岩滩的一块典型岩石碎屑样品(图1),分别利用拉曼光谱和LIBS对样品不同部位(岩上、岩侧和岩下)的数百个点进行了系统分析。图1 柴达木盆地采样点(a)地形图、(b)地质图以及(c和d)石英岩碎屑样品拉曼光谱分析显示岩下部位存在能够吸收紫外辐射并清除氧自由基的β-胡萝卜素,指示了岩石下部有耐辐射微生物群落的存在。而岩上、岩侧未检测到有效的微生物信号,仅发现石英和少量其他矿物信号(图2)。该研究结果表明在环境恶劣的类火星地区,岩石下部为微生物生存提供了适宜的生态位,未来的火星生命探测中可以着重关注火星岩下区域。同时结合前人研究,揭示出合成色素分子是类火星极端环境微生物的一类重要生存策略。图2 柴达木盆地西北干旱区类火星环境石英岩碎屑样品部分测量位点的拉曼光谱图。Qz:石英;Fr:锌铁矿;Hm:赤铁矿;Cr:β-胡萝卜素为了评估LIBS筛选生命信号的潜力,进一步对该样品的岩上、岩侧和岩下不同部位进行了LIBS分析。研究显示样品不同区域的LIBS光谱整体特征类似,但利用多元统计分析方法(主成分分析法PCA和相似性分析ANOSIM)可以对岩石样品不同部位的LIBS光谱数据进行区分(图3)。进一步分析区分样品的波段信息,发现涵盖了部分钙、镁的峰区和一些可能由于生命化学元素空间分布而产生的相互作用信号。以上结果表明,在样本均质程度较高但有足够样本量的前提下,基于LIBS数据的多元统计分析可以作为快速筛选潜在生命信号的一种手段,再结合其他探测技术,有望在火星生命信号的原位探测中发挥作用。图3 类火星环境石英岩碎屑样品部分测量位点的LIBS光谱图(左图)与PCA散点图(右图)研究成果发表于美国化学学会旗下期刊ACS Earth and Space Chemistry(申建勋,刘立,陈妍,孙宇,林巍. Geochemical and biological profiles of a quartz stone in the Qaidam Mars analog using LIBS: Implications for the search for biosignatures on Mars[J]. ACS Earth and Space Chemistry, 2022. DOI: 10.1021/acsearthspacechem.2c00129)。该成果受中国科学院、国家自然科学基金、中国科学院地质与地球物理研究所等联合资助。
  • LIBS人的盛会 第六届中国激光诱导击穿光谱技术研讨会召开
    p    strong 仪器信息网讯 /strong 2018年3月24日,第六届中国激光诱导击穿光谱技术研讨会(CSLIBS 2018)在西安交通大学召开。CSLIBS 2018由中国光学工程学会激光诱导击穿光谱专业委员会主办,西安交通大学承办,西安电子科技大学、中国科学院西安光学精密机械研究所协办。来自科研院校的专家学者以及相关企业、仪器设备公司的200多位代表参加了此次会议。 /p p style=" text-align: center " img title=" 会场1.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/1933c015-4973-48a8-b006-9a706065852b.jpg" / /p p style=" text-align: center " img title=" 会场1.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/c154933b-bdb3-4f0f-906b-0a9b6ae69a4b.jpg" / /p p style=" text-align: center " CSLIBS 2018会议现场 /p p   会议举行了简短的开幕式,激光诱导击穿光谱专业委员会副主任陆继东、西安交通大学能动学院副院长赵亮分别致欢迎辞,西安交通大学王珍珍教授主持开幕式。致辞中,陆继东副主任表示,本次会议有许多热爱激光诱导击穿光谱的老朋友,也有非常多的来自各个领域的新朋友,会议将以“能源动力”为主题展开广泛的交流。赵亮副院长介绍了西安交大能动学院的概况,以及学院开展激光诱导击穿光谱研究工作的情况。二位都预祝此次会议取得圆满成功和丰硕成果。 /p p style=" text-align: center " img title=" 陆继东1.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/6ef00b4f-e892-4c39-92f8-b7c0abd03bc2.jpg" / /p p style=" text-align: center " 激光诱导击穿光谱专业委员会副主任陆继东 /p p style=" text-align: center " img title=" 赵亮.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/43ee6863-9b89-459e-a932-5629c18ce2e5.jpg" / /p p style=" text-align: center " 西安交通大学能动学院副院长赵亮 /p p style=" text-align: center " img title=" 王珍珍.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/193a7e27-6135-44a0-8235-80e411cb9525.jpg" / /p p style=" text-align: center " 西安交通大学王珍珍教授 /p p   激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,LIBS)利用激光功率密度非常高的特点,与物质(气体、固体、液体)直接相互作用,从而产生高温等离子体,待测元素在高温等离子体中激发或电离,根据特征谱线进行定性分析,根据特征谱线的强度进行定量分析。LIBS具有不需要样品准备、多元素同时检测、测量速度快、可远程非接触测量、系统结构组成简单等诸多优点,因此,在2004年的一篇综述文章中,世界著名的光谱分析专家James Winefordner博士称之为化学分析技术的“未来之星”。 /p p   不过,LIBS是一个优点与缺点都非常明显的分析技术。由于受不可控的激光-物质(无法通过样品准备进行精确控制)相互作用的影响,加上其后的激光-等离子体(由激光烧蚀产生)、等离子体-环境气体、等离子体-激波(由等离子体快速碰撞产生)之间相互作用过程中受多种不确定因素的影响,导致LIBS系统信号测量不确定度较高,可重复性精度较差;受基体效应的影响,测量误差也相对较大。 /p p   所以,关于对LIBS的看法也有着很多不同的声音,看好、不看好都有。对此,上海交通大学俞进教授和清华大学王哲教授都曾说到,LIBS在短短的时间内吸引了大量学者和工业界人士的关注,是因为LIBS能够解决其他技术不能解决的问题。而对于LIBS能不能用的问题,二人如此说到,“LIBS肯定能用,但不能用在所有地方,让LIBS做自己能做的事情!” /p p   如此,也意味着在今后一段时间内,LIBS还需要进行大量的机理、数据处理、应用研究,积极和其他仪器配合,开发商业化定量分析技术......,虽然这个过程可能会有点长,但是对于推动LIBS技术发展、实现其大规模商业应用来说,这些都是非常重要的。 /p p   CSLIBS 2018为期两天,在第一天,西安交通大学严俊杰教授、西安电子科技大学邵晓鹏教授分别做主题报告。 /p p style=" text-align: center " img title=" 严俊杰.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/d95b2f75-d32a-4885-ace5-50ca466d7c57.jpg" / /p p style=" text-align: center " 西安交通大学严俊杰教授 /p p style=" text-align: center " 报告题目:燃煤电站调峰过程的能耗和环保性能理论研究 /p p   实现灵活运行、深层次节能减排是燃煤发电行业发展面临的机遇与挑战,提升燃煤电站调峰过程的能效、速率并降低排放是重点、难点、热点问题。针对这一关键问题,严俊杰教授研究团队进行了10 余年的持续研究,建立了燃煤发电机组全厂瞬态模型,通过研究燃煤机组变负荷瞬态过程中热工控制与热力系统的耦合匹配特性,获得了燃煤发电机组瞬态过程能耗特性,揭示了节能机理;研究了通过热力系统与热工控制耦合匹配实现机组变负荷速率提升的基础理论问题,并利用LIBS等分析技术定量分析了灵活运行对机组排放特性的影响规律。 /p p style=" text-align: center " img title=" 邵晓鹏.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/c50b36f6-5bcb-48bb-8e2d-97376cbd5fdc.jpg" / /p p style=" text-align: center " 西安电子科技大学邵晓鹏教授 /p p style=" text-align: center " 报告题目:计算成像技术及应用 /p p   传统光学成像技术由于受到物理上的限制,在探测距离、成像分辨率与视场等方面存在着矛盾。为了实现更高、更远、更小的要求,引出计算成像技术的概念。邵晓鹏教授通过对计算成像技术的深入分析,对其数学问题和物理机制进行了深入的探讨。并重点讨论了计算成像技术的发展,分别介绍了多孔径成像技术、散射成像技术、编码成像技术、偏振成像技术以及光声成像技术等,并针对SWaP 的要求,提出了基于全局优化全新的光学系统设计思路。最后,针对人工智能技术在光电系统中的应用,阐述了超分辨率重建技术和TLD目标跟踪技术,并对计算成像技术的发展进行了总结与展望。 /p p   与上届研讨会有所不同的是,在CSLIBS 2018的第一天进行的报告中,LIBS应用研究的内容有一定的增加。部分报告内容如下: /p p style=" text-align: center " img title=" 陆继东.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/31830c05-8e65-4200-a9c8-6f8caba604aa.jpg" / /p p style=" text-align: center " 华南理工大学陆继东教授 /p p style=" text-align: center " 报告题目:能源转化过程对于光学测量的需求和LIBS 技术的可能潜力 /p p   以煤炭为首的化石能源以及生物质能的转化是一个复杂的物理化学过程,而能源清洁转化系统的安全、可靠、经济运行取决于对全流程关键参数的快速、在线检测。因此,急需发展合适的光学测量技术。报告中,陆继东教授综合分析了能源转化过程中基础研究和工业应用对光学测量的需求,结合其研究团队的多年研究进展对LIBS技术在能源转化过程中的应用、瓶颈和前景进行了深入的探讨和分析。 /p p   其后,陆继东教授团队的董美蓉、姚顺春分别做题为“激光诱导击穿光谱技术应用于单颗粒煤燃烧过程特性研究”、“直接测量颗粒流的等离子体光谱优化方法研究”的报告。报告分别介绍了在煤燃烧前、燃烧过程中、燃烧后等环节利用LIBS进行的研究工作所取得的进展。 /p p style=" text-align: center " img title=" 王金华.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/b6fdb6c4-01a5-4c6b-b556-341e1af2b539.jpg" / /p p style=" text-align: center " 西安交通大学王金华教授 /p p style=" text-align: center " 报告题目:高压预混湍流火焰结构和动力学实验研究 /p p   王金华在报告中介绍了利用OH-PLIF(平面激光诱导氢氧基荧光技术)火焰结构激光诊断技术开展高压预混湍流火焰结构和动力学实验研究,包括两个方面:一是在层流平面火焰和预混层流本生灯火焰上,利用OH-PLIF 获得局部拉伸火焰的反应区结构,研究火焰自身对于固有扰动、拉伸、流场扰动的响应规律和机理;二是在准各向同性预混湍流火焰本生灯上,结合高压燃烧实验平台,定量控制湍流场参数、火焰自身参数,利用OH-PLIF 获得湍流火焰瞬时火焰结构及其统计表征,研究流场、火焰自身与湍流火焰结构参数三者的作用规律和机理。 /p p style=" text-align: center " img title=" 李常茂.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/b919703d-64bd-4479-bc87-ff6ac7495ae5.jpg" / /p p style=" text-align: center " 中国工程物理研究院材料研究所李常茂博士 /p p style=" text-align: center " 报告题目:LIBS 在核材料分析领域应用研究进展 /p p   发展核能对优化能源结构、保障能源安全、促进污染减排和应对气候变化具有重要作用。然而核裂变材料拥有高放射性,给传统成分分析手段带来困难。而核材料分析是LIBS优势应用领域之一,可以说也是LIBS 技术发展及应用的一大机遇。在国际上,LIBS分析核材料正成为一大热点,其发表的相关论文数量快速增长,而在我们国内,相关论文几乎为“0”。 /p p   李常茂博士在报告中介绍了核燃料循环基本环节基础上,介绍了LIBS 在铀含量检测、放射性同位素分析、核污染远程分析等方面的研究现状。如,铀、钚基体光谱复杂,对LIBS光谱分辨率有极高要求;微量铀分析灵敏度低至150ppm,铀钚材料中杂质元素分析灵敏度低至100~500ppm,但均严重依赖于基体光谱复杂度;LIBS分辨同位素效果一般,目前仅能分辨具有较大同位素位移的核素,且需要特定的气氛条件;远程LIBS分析距离高达30m,核污染检测灵敏度约为10~100ug\cm2,但严重依赖于基体材料。 /p p style=" text-align: center " img title=" poster.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/25a36426-8a03-492d-9b91-ff2febe37059.jpg" / /p p style=" text-align: center " Poster Session /p p   更多会议内容请见后续报道。 /p p    a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/news/20180326/242756.shtml" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 第六届中国LIBS研讨会闭幕 2019相约安徽 /strong /span /a /p p & nbsp /p
  • 第8届激光诱导击穿光谱(LIBS)国际会议通知
    8th International Conference on Laser-induced Breakdown Spectroscopy (LIBS 2014)   第8届激光诱导击穿光谱(LIBS)国际会议将于2014年9月8日到9月12日在北京清华大学召开。这一会议是LIBS领域最高等级的学术会议,每两年举办一次。这将是第一次在亚洲召开的LIBS国际会议。会议由中国LIBS组委会组织,由清华大学热能工程系主办,并得到了国际LIBS科委会和国家自然科学基金委的大力支持。   会议将邀请国内外从事LIBS研究的专家、学者、企业家和研究生出席会议,共同围绕LIBS技术的基础研究、应用现状和发展趋势等问题展开研讨。会议将通过学术报告和海报展示等环节,向与会专家学者们展示LIBS技术的最新研究进展,同时也为LIBS业界相关企业提供展示LIBS最新仪器产品和技术的平台。   会议时间:2014年9月8日&mdash 12日   会议地点:清华大学主楼   组织单位:中国激光诱导击穿光谱组委会   主办单位:清华大学热能工程系   支持单位:国际光诱导击穿光谱科委会   国家自然科学基金委   会议形式   1. 短期培训   2. 大会主题报告,包括邀请报告和口头报告   3. 海报交流   4. 仪器展示   征文范围   LIBS物理基础(LIBS Fundamentals)   LIBS技术及装置(LIBS Instrumentation and Technique)   LIBS在不同领域中的应用,例如工业应用,生物医学应用,国家安全应用,文化遗产应用等等(LIBS Applications in Several Fields (Industrial Applications, Biomedical Applications, Environmental and Homeland Security Applications, Cultural Heritage Applications, etc. )   LIBS数据处理和建模(Modeling and data analysis)   出版物:   未发表和经过同行评审的论文将刊登在以下期刊之一。   《Plasma Science and Technology》 (SCI索引)   《Spectrochimica Acta Part B》 (SCI索引)   会议网址   http://www.libs2014-beijing.org   重要日期   2014年8月1日,第一轮完整材料递交截止时间   2014年6月13日,第二轮完整材料递交截止时间   2014年7月13日,提前报名注册截止时间   2014年7月29日,住宿预订截止时间   2014年9月8日,会议开始   参会费用   提前报名注册:参会人员,RMB ¥ 4095/ USD $650 学生,RMB ¥ 2205/ USD $350   普通报名注册:参会人员,RMB ¥ 4410/ USD $700 学生,RMB ¥ 2520/ USD $400   参会人员与学生的注册费用包括全部会议流程的费用、会议材料、午餐、茶歇和会议晚餐的费用。   参展公司:   美国TSI集团,TSI集团中国公司 (主赞助商)   美国ASI公司 (主赞助商)   北京澳作生态仪器有限公司   瀚宇科技(香港)有限公司   德国LTB激光技术有限公司   Litron激光有限公司   北京爱万提斯科技有限公司   海洋光学公司 (Ocean Optics Asia)   Secopta 有限公司   北京镭宝光电技术有限公司   北京先锋光电科技有限公司   Quantel激光公司   必达泰克光电科技(上海)有限公司   IVEA Solution公司   联系方式   学术问题:   王哲   电话:+86 10 62797913   传真:+86 10 62795736   Email: info@libs2014-beijing.org ,support@libs2014-beijing.org   会务问题:   易自洁   电话:+86 10 58166465   Email: libs2014.pco@gmail.com
  • 直播预告|手持式激光诱导击穿光谱仪(LIBS)发展及应用
    【10月15日下午14:00直播】 “手持式激光诱导击穿光谱仪(LIBS)发展及应用”网络研讨会 莱雷科技举办 【会议分享内容】 导师:薄学庆—赛谱司中国技术中心华中区域经理 主要围绕“手持式激光诱导击穿光谱仪(LIBS)发展及应用” 一、LIBS技术发展历程二、手持激光光谱仪工作原理及优势三、手持激光光谱仪主要应用方向(一)合金领域 1.石油化工 2.电力电建 3.装备制造 (二)环境地质 1.土壤环境 2.录井钻探 3.地矿开采-锂矿 4:核科学应用 5.古气候研究 (三)科技考古 微信扫描下方二维码,9月10日下午14点线上与您不见不散!
  • 美国TSI公司圆满完成赞助第八届激光诱导击穿光谱国际会议
    美国TSI公司于2014年9月8日至12日赞助并参加了由清华大学热能系在清华主楼主办的第八届激光诱导击穿光谱国际会议。 TSI美国总公司副总裁Kevin Krause亲自带领TSI 美国及中国LIBS团队参加了此次会议,会晤了清华大学与美国TSI公司在煤质快速分析仪开发项目上的合作方,并于TSI展台上接受了仪器仪表信息网的有关LIBS技术及产品应用的独家专访。TSI的资深专家Amy Bauer 和 Steve Buckley 分别在大会上做了主题报告。 美国TSI公司于展台上展示了最新推出的新一代的ChemLogix系列元素分析解决方案产品线中的第一款产品:ChemReveal型台式激光诱导击穿光谱仪。其配备了先进的ChemLytics等离子体发射光谱分析和元素分析软件,大大简化了复杂的元素分析过程,对每一个固体样品矩阵里的广泛的元素进行直接鉴定和分析。事实上,这个强大的全新的解决方案提供了对包括粉末,非晶或非导电材料固体样品中的有机物,轻元素,重元素进行同时表征,而且不需要繁琐的有害的样品制备过程,对固体物质的元素进行快速分析,为材料鉴定以及固体元素成分分析提供了一种快速可靠的方式。无论是微量还是高浓度,实验室还是生产线,这款台式激光诱导击穿光谱仪的激光诱导击穿光谱元素分析技术,都是研究人员,科学家以及测试技术人员为多种应用进行快速可靠的材料鉴定以及固体元素成分分析的理想选择。作为全球精密仪器的供应商以及激光诱导击穿光谱(LIBS)技术的领导者,TSI公司还展示了新推出一款加固型手持LIBS元素分析仪,该设备主要被用于户外研究、质量控制和移动实验室等方面。ChemLogix手持LIBS设备的主要特点是采用了对视力无害的1级短波红外线激光作为光源,既可去除典型样品表面的污染,而且也无需对使用人员进行任何特殊培训,也无需配备个人保护装备。使用ChemLogix手持LIBS设备进行元素(包括轻元素)分析,操作简单,而且测试过程只需几秒钟,因此该设备是需求越来越高的现场及过程中质量监测的理想仪器。 LIBS是一种成熟完善的用于对固体进行快速元素分析的光谱分析方法。该技术几乎不需样品制备过程,而且在几秒钟之内就能获得结果。研究者在实验室中使用ChemReveal LIBS台式分析仪时便发现了这种分析方法的发展潜能。而使用目前最新推出的手持式LIBS分析仪,无论是在现场还是生产车间,用户均可通过该设备快速获得结果。关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 美国TSI激光诱导击穿光谱技术(LIBS)在快速元素分析领域的应用网上讲座的视频链接
    美国TSI公司于2014 年6 月17日下午14:30在分析测试百科网上举办了“美国TSI激光诱导击穿光谱技术(LIBS)在快速元素分析领域的应用”网上讲座,前期共有98人报名参加,60人按时出席了此次讲座。 美国TSI公司,作为全球领先的精密测量仪器和化学分析解决方案的制造商,本次举办LIBS技术在线研讨会,重点介绍激光诱导击穿光谱技术(LIBS)在快速元素分析领域的应用。激光诱导击穿光谱技术(LIBS)作为一个创新的元素化学分析技术,正在被越来越多的研究及分析人员所接受,并逐渐成为ICP-OES及其他元素分析方法的替代或补充,同时也拓展了很多新的应用及方法。 本次研讨会详细介绍了如何利用LIBS分析仪进行快速的元素成分的定性和定量分析,而不需要繁琐的样品处理或消解过程;还介绍了分析人员如何使用LIBS作为其他方法的补充 同时也介绍了TSI最新推出的ChemReveal台式LIBS激光诱导击穿光谱仪的一些独特功能和特点。研讨会通过一些在金属、土壤生态、珠宝鉴定、材料研究、岩石地质等领域的应用案例来说明LIBS的主要特点及优势,包括直接元素分析以节省时间,从常规的元素成分分析,到获取材料表面浓度分布以及深度轮廓等关键信息。 本次研讨会的内容非常适合于实验室分析人员、核心实验室管理人员、对材料科学和化学分析感兴趣的研究人员、以及负责质量控制和材料鉴别的人员,相信LIBS可以为这些客户提供一种新的分析方法和手段,并大为拓宽检测和研究的能力。 敬请没能实时参见此次讲座的各位观看TSI网上讲座录制视频,网址为: http://www.antpedia.com/webinar/89773.html 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 中智科仪逐光IsCMOS像增强相机拍摄激光诱导等离子体羽流
    1、应用背景   等离子体是区别于固体、液体和气体的第四种物质聚集状态。在高能环境下,原子的外层电子摆脱原子核的束缚成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离,这种电离气体就是等离子体,通常由带电离子、自由电子、基态/激发态分子原子和自由基等粒子组成。等离子体在自然界中广泛存在,如太阳、恒星、星际物质、闪电等都是等离子体。   激光诱导等离子体(Laser-Induced Plasma, LIP)是通过激光与物质相互作用产生的一种高温、高密度的等离子体状态物质。当高能量的激光脉冲照射到物体表面时,会使得物质迅速加热并部分或完全电离,形成等离子体。伴随形成的等离子体羽流的演化过程具有超高速、持续时间短(一般几百纳秒)、强自发光背景和小空间尺度的特点,这使得其观测变得具有挑战性。   本次实验采用中智科仪的逐光IsCMOS像增强相机(TRC411),拍摄了激光诱导等离子体羽流的形貌演化过程。基于逐光IsCMOS像增强相机的纳秒级快门门控、高精度的时序同步技术和变延迟序列推扫功能,记录了等离子体羽流的完整演化过程。 2、实验方案   实验设备:   中智科仪逐光IsCMOS像增强相机,型号:TRC411-S-HQB-F F2UV100大通量紫外镜头。   实验室所用激光器为镭宝Dawa-200灯泵浦电光调Q纳秒Nd:YAG激光器,波长1064nm,重复频率1-20Hz。采用激光器Q-out输出触发TRC411相机的方式,对相机Gate通道进行变延迟序列推扫,寻找相机与激光器的同步时刻。   实验流程:   1.实验材料被激发的等离子体羽发光在200nm-500nm左右,因此在镜头前端安装一个430nm的带通滤光片,屏蔽掉1064nm的激发激光和其他杂散光。需要注意观察成像画面中是否有强反射材料,比如样品台的光滑金属反光面或螺丝帽等,为了防止这些强烈反射面的反射光对相机造成损害,需要使用黑色电工胶带将它们遮挡或覆盖。   2. 激光器的Q-out触发输出接到示波器,测得同步输出的TTL信号电平为5V@1MΩ,频率与激光输出频率匹配,均为5Hz。TRC411相机可接受的最大外触发信号电平为5V,保守起见,在触发线末端加入了6dB衰减器,将激光器Q-out输出电平减半。   3. 由于等离子体的发光强度较大,无法确定所使用的滤光片的衰减倍率是否足够,因此首先将镜头光圈调至最小,设置增益为1800,Gate时间13ns(对应光学门宽3ns)。   软件参数设置如下表:   4. 对Gate通道进行变延迟序列扫描,最终找到Gate延时起止时刻在700ns至1100ns之间时,可以捕获到等离子体的发光信号。   软件参数设置界面: 3、实验结果   序列采集SEQ曲线:   根据曲线可以看到实验材料被激发的等离子体发光持续时间约为400ns。   高功率纳秒脉冲激光激发产生的完整等离子体羽形貌演变过程: 4、结论   中智科仪逐光IsCMOS像增强相机具有短至纳秒级的快门,超短的门控可以屏蔽背景噪声,提高信噪比。相机内置的高精度时序控制器可以确保相机与脉冲激光器的同步工作,在确定的延迟捕获等离子体信号。相机的变延迟序列扫描功能可以使相机快速拍摄不同延迟时刻的等离子体信号,获得完整的等离子体演化过程。诸多优势展示了TRC411相机在等离子体诊断方面的重要应用价值。   免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。 5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 第四届亚洲激光诱导击穿光谱学术研讨会(ASLIBS 2021) 会议通知
    第四届亚洲激光诱导击穿光谱学术研讨会(ASLIBS 2021)会议通知“第四届亚洲激光诱导击穿光谱学术研讨会 (4th Asian Symposium on Laser Induced Breakdown Spectroscopy)”是由亚洲LIBS学会每两年为周期举办的专业型学术会议,自2015年在武汉由华中科技大学举办第一届会议以来,经过2017年第二届(日本 德岛)、2019年第三届(韩国 济州岛),第四届会议由中国海洋大学在青岛举办。“第四届亚洲激光诱导击穿光谱学术会议 (4th Asian Symposium on Laser Induced Breakdown Spectroscopy)”的举办旨在加深亚洲区LIBS技术的交流合作。本次会议内容将分为“LIBS技术基础 (LIBS fundamentals )”和“LIBS技术应用 (LIBS applications )”两大模块,采用线上、线下相结合的形式举办,报告分为“口头报告”和“海报展示”两类。ASLIBS2021同期联合清华大学还将举办第二届LIBS峰会(LIBS Summit),邀请LIBS学界国际顶级专家,围绕LIBS关键问题和技术基础开展系列专题讲座。此外,中国LIBS学会(CSLIBS)十周年纪念活动也将在会议期间同时进行。一、会议时间2021年10月16日(周六)-- 2021年10月20日(周三)10月16日 14:00 ~19:00 会议预报到10月17日 09:00 ~21:00 会议报到、核酸检测10月17日 14:00 ~22:00 LIBS峰会(线上会议)10月18日 ~ 10月20日 ASLIBS 2021会议二、会议地点山东省青岛市崂山区东海东路88号 鲁商凯悦酒店三、会议组织单位1. 主办单位:中国光学工程学会 LIBS专委会2. 承办单位:中国海洋大学3. 协办单位:仪器信息网、清华大学、青岛海洋科学与技术试点国家实验室、山东省科学院海洋仪器仪表研究所、青岛大学四、会议组委会主席:郑荣儿 教授,中国海洋大学副主席:Sungho Jeong 教授, Gwangju Institute of Science & Technology, 韩国Yoshihiro Deguchi 教授, Tokushima University, 日本Tetsuo Sakka 教授, Kyoto University, 日本王 哲 教授, 清华大学五、报告形式1、口头报告:主旨报告(30分钟)、邀请报告(20分钟)、大会报告(15分钟)2、海报展示:120 cm (长) x 90 cm (宽)六、会议注册费学生1800元/人,非学生3000元/人七、会议规模国内学者约250人,国际学者约50人参展商约15家八、会议联系人秘书组,s ervice@aslibs2021.com 卢 渊,18253201226,l uyuan@ouc.edu.cn 会议官方网站:https://www.aslibs2021.com/
  • 激光诱导击穿光谱(LIBS)分析技术的几个重要发展趋势
    LIBS是一种激光烧蚀光谱分析技术,激光聚焦在测试位点,当激光脉冲的能量密度大于击穿阈值时,即可产生等离子体。基于这种特殊的等离子体剥蚀技术,通常在原子发射光谱技术中分别独立的取样、原子化、激发三个步骤均可由脉冲激光激发源一次实现。等离子体能量衰退过程中产生连续的轫致辐射以及内部元素的离子发射线,通过光纤光谱仪采集光谱发射信号,分析谱图中元素对应的特征峰强度即可以用于样品的定性以及定量分析。   自从1960年第一台红宝石激光器的发明为原子光谱分析注入新鲜血液之后,类似于火花源的激光光束聚焦击穿现象即见诸文献报道。1962年 Jarrell-Ash的Brech发表第一篇关于用激光产生等离子体进行分析的文章,标志着激光烧蚀分析技术的诞生。1964年,得益于激光器Q开关脉冲技术,使得激光烧蚀无需通过辅助电极放电,直接通过激光产生等离子体进行分析,这也是今天LIBS的雏形。至20世纪80年代,美国Los Alamos实验室利用激光等离子体的光谱信息实现了对于物质元素信息的测量,从而将该技术正式命名为LIBS (Laser Induced Breakdown Spectroscopy)。本世纪分析领域的一大新闻就是美国NASA采用LIBS技术作为火星车表面矿物分析手段&mdash &mdash ChemCam,并出色地完成了科考任务。因而,LIBS技术的应用也相应地成为了一大研究热门。与其他常用元素分析的方法相比,其主要优点有:   (1) 利用激光特有的性能,可实现远程、实时、在线元素检测。   (2) 仪器体积相对较小,适用于现场分析、可在恶劣条件下进行测定。   (3) 可用于各种形态的固体、液体甚至气体分析,而且无需繁琐的样品前处理过程,分析简便、快速。   (4) 可测定难溶解的高硬度材料,对样品尺寸要求不严格,且对样品的破坏性小,实现微损甚至近于无损检测,样品消耗量极低(约0.1&mu g-0.1mg)。   (5) 分析时间短,从激光脉冲发射到信号收集的整个过程仅仅需要毫秒级别的时间。   (6) 可进行多元素同时检测。   远距离辐射光接收技术及光纤传感技术的迅速发展使得激光技术对高温、恶劣环境下的非接触分析得以实现,对环境的较好适应性使其成为优秀的原位监测手段,赋予其优异的实用性。凭借着以上优势,LIBS技术在光谱分析领域的舞台上崭露头角。在过去的三十多年中,国际研究者对LIBS的理论基础进行了大量的研究工作。主要集中于高速相机拍摄LIBS等离子体形貌、不同物质时间分辨谱图、LIBS等离子体温度及电子数密度的估算、激光与物质相互作用机理的研究等。   基于LIBS技术的痕量分析和在线检测的仪器设备已经开始进入市场。国外已出现较为成熟的商品化仪器,但是,昂贵的销售价格限制了其使用对象,核心技术的垄断以及可能涉及到的重要战略作用,成了束缚国内研究及应用领域的一根铁链。国内LIBS技术相对起步较晚,目前虽有一些高校及科研单位从事LIBS技术的研究,但大部分仍偏向于理论及方法的探索,研究目的多为对基础理论的探讨与改进。作为高新技术产业,国内没有相应的自主研发及集成的技术企业,相关产品均来自国外。但目前国内市场中的LIBS进口仪器并没有形成垄断地位或者一家独大的状况,行业处于多家企业共存,百家争鸣的状态,具有代表性的主要有IVEA、Applied Phonics、Applied Spectra、TSI、牛津等公司。作为一种新兴技术,上述公司的不同型号产品也都是在近几年刚刚进入中国市场。   从目前LIBS发展现状来看,主要有以下几大方向:   趋势一:便携化   近年来,随着对工业节能减排的要求,以及环境污染事件频发、食品安全等一系列问题、快速检测仪器得到了极大的重视。对于军事国防业及突发事件对快速响应的需求,环境监测与地质对在线监测的需求,历史文化遗产对于不可移动物质判别的需求,LIBS技术以其无样品预处理,多形态分析以及无辐射危害的优势成为现场检测技术最新发展的热点,而便携化无疑是这一技术的一大发展趋势。这类仪器不但要考虑仪器的集成度和稳定性等基本指标,还需要考虑能耗、抗振动、工作环境等问题。   无论是IVEA的手持LIBS还是TSI的车载小型LIBS仪器,都是在现有仪器基础上形成的小型化仪器,此外,牛津的手持仪器已经可以实现电池操控,五秒内对钢铁样品实现分类定性,这是商业化LIBS的一大进步,值得所有面向应用的科研团队学习。而对于国内的LIBS技术来说,依然多是基于实验室的研究仪器,需要复杂的参数调节与严格的检测环境。在此背景下,我们分析仪器研究中心团队首次实现了便携式激光诱导击穿光谱分析仪器的国产化。便携式激光光谱分析仪(LIBS Mobile)以及体积更小、质量更轻,更适用于野外现场样品快速分析的手持式LIBS仪器:手持式激光光谱分析仪(LIBS Mini),均能在数秒之内在原地完成对固体、液体甚至气体形态的物质的完整在线元素分析,因此该类便携式仪器可用于地质、环境、安保、古董、冶金、表面处理及电子器件现场分析。   趋势二:专用化   在实际应用中,要摒弃&ldquo 一机多用&rdquo 的面面兼顾思维模式,不仅浪费资源,也往往使仪器不能达到最优的使用效果。对于不同的使用需求,要开发各种有针对性的实用仪器。专用仪器的使用成本和检测精度都会得到有效的改善。针对特定的检测对象和检测指标,关键还要有大量的、稳定可靠的校正模型以及模型的维护和二次开发能力。以牛津mPulseTM为例,其抓住钢铁分类为应用点,采用聚类分析的手段,虽然限制了LIBS技术的应用范围,但是同时也降低了仪器成本,提高了测定速度与准确率。只有跟用户单位的有效沟通和通力协作才能够实现LIBS技术的真正专用,比如我们分析仪器研究中心的LIBS仪器,就是在基于成熟的便携LIBS系统的基础上,根据来自地质研究院以及钢铁集团的实际需求,对仪器的硬件参数与软件操作进行改进与升级。同时,建立了LIBS技术用于岩性识别的方法体系,并借助于化学计量学手段开展基体校正研究,探索了地层样品的LIBS元素定量-半定量分析的模型部分。   趋势三:核心零部件研制和创新   国家对于国产科学仪器的发展给予了高度的关注和资金支持,而核心零部件性能对于仪器整体性能的提升至关重要。光栅是光谱仪器的核心部件,光栅刻划集精密机械、光学技术于一身。但目前我国光栅、检测器、扫描装置等部件多依赖于进口。因而,积极采用以及自主研发国产部件对于最终成型仪器的商品化上市以及产品的竞争力具有极大的推动作用。优质光电倍增管检测器 光谱分析用多维固体检测器&mdash 线阵、面阵式CCD检测器 高刻线密度、高光通量全息光栅 中阶梯闪耀光栅 高强度短弧氙灯-连续光源等,这些国内或较少有自主产品,或相应的质量和性能不及国外产品。最重要的是,仪器成本往往取决于相关部件的成本,若我们仅仅靠装配组装技术,永远无法掌握真正的核心技术,也难于形成有国际竞争力的产品。反过来,LIBS技术的大力发展,不仅对于技术本身有积极意义,对于零部件国产化的进程也具有极大的促进作用。许多业内人士都曾呼吁大家关注仪器核心零部件的研制。在这一点上,我们的LIBS研发团队对此也深有体会。   趋势四:分析方法的创新   只有单纯的谱图,是远远无法满足工业分析需求的。而简单的线性拟合方法,又会受到基质效应等因素的影响。对于分类方法来说,固定不变的参数同样会因为外界基质的变动而在实际应用中产生较大误差。大多数LIBS分析软件依赖于光谱仪的操控,仅仅是获得元素的谱图,而后续再采用第三方软件进行处理 亦或是通过最小化参数的改变来实现定性测定的要求。可以说,没有合适分析方法的LIBS仪器仅仅是硬件的堆积。只有加入分析方法学,统计算法学等,才能够实现LIBS技术的有效应用。这一点也是国外现有LIBS技术的一个共性问题,其操作或过于繁复,或过于简单,用户需要自己考量的部分太多。因此,我们的研发团队在对于分析参数的变动与软件的简化,实现原位物质瞬时定性与快速定量等方面,结合光谱特征谱线识别与标定方法,在整体上完成了自动化实验平台的研发与设计,为整个LIBS实验过程的自动化控制打下了坚实的基础。   趋势五:技术联用   近年来,由于激光光谱仪器部件的趋同性,技术发展的一大趋势是将之与其他检测技术联用,例如将LIBS多元素检测能力和拉曼技术或荧光技术在分子层面的检测能力相结合,得到更为全面的物质成分信息。我们提出开发兼具原子光谱和分子Raman光谱的LIBRAS(Laser Induced Breakdown Raman Spectroscopy)系统,实现激光光谱仪对样品中元素和物质种类的鉴别和量化,这是分析技术的一次重点跨越,在推进分析测试技术方面将具有革命性的意义。另外,通过与传统富集方法的结合或者是创新的信号增强技术也是目前LIBS技术研究工作中的一个重要方向。随着网络技术的发展,分析仪器与移动网络和云技术的联用可以对于远距离测试,异地操控等实际应用有极大价值,其潜力亦不可忽视。   趋势六:遥测   目前纳米脉冲激光器的使用已经可以进行长达百米左右距离的固体目标遥测。通过使用有效的聚焦透镜对激光束远程高度聚焦,已经实现了远距离的等离子体激发和收集。随着LIBS仪器的日趋成熟,今后可能将其安装在遥控操作式载体上,完成对空气、地面甚至水下检测任务。以火星探测为例,在航天应用时,不可能将探头固定于某一位点,应用LIBS技术,在非接触的远距离条件下即可获得岩石的测定结果,因而LIBS技术继火星车ChemCam之后又一次被选为金星探测用仪器。   趋势七:提高可靠性   可靠性是分析仪器的灵魂和生命线。对于当前的LIBS系统,可靠性仍然是发展中亟待解决的问题之一。此外,在仪器完善过程中,必须采取一系列可靠性设计分析工作,做好可靠性试验与验证工作。当务之急是建立可靠的检测范围和实验方法来巩固和完善其在定量分析中的实用性,尽快制定出完善的检测标准,得到行业的认可,从而以最快速度扩大LIBS技术的应用范围。为此,我们的研发团队在前期激光等离子体空间分辨性质研究的基础上,对仪器的光学收集系统进行了创造性地改良,保证了信号收集效率的增强,提高了仪器的灵敏度,并通过光学技术的进步,采用单脉冲双光束激发的LIBS专利技术,能够有效地避开等离子体的遮蔽效应,使最终激光能量受外界环境干扰因素显著地降低。   综上所述,LIBS技术的发展正呈现出突飞猛进的势头,其研究热点主要集中于更高的灵敏度、更高的准确性、更好的选择性、更高的自动化程度、仪器的小型化和智能化等方面。在国外已经被广泛地应用于环境、国防、航空、冶炼等领域中,并且在很多领域中展现出取代传统的原子光谱技术占据主导地位的势头。对LIBS系统的设计装配,坚固耐用与用户友好型的商业化过程是LIBS未来发展的关键。毫无疑问,LIBS要更加充分地发挥其市场潜力,必将在现在的价格上进行大幅调整,向低成本迈进。同时,必须发展现场便携式系统,建立可靠的检测范围和实验方法来巩固和完善其在定量分析中的实用性。总而言之,LIBS的未来比过去任何时刻都要光明,作为元素分析领域最耀眼的一颗新星,需要我们以国人特有的顽强精神和锐意进取的态度,做大做强,赶超国际领先水平,让世界感受到国际化标准下国产仪器的崭新面貌,在LIBS发展史上留下浓墨重彩的一笔。 (撰稿人:四川大学分析仪器研究中心 段忆翔教授)   注:文中观点不代表本网立场,仅供读者参考
  • “激光诱导等离子体光谱分析设备开发和应用”研讨会在长春召开
    2015年12月23日,国家重大科学仪器设备开发专项“激光诱导等离子体光谱分析设备开发和应用”项目技术研讨会在长春召开。本次会议由光电院主办,长春工业大学承办,参加会议的其他单位有中国科学技术大学、中国科学院长春光学精密机械与物理研究所、天津理工大学、安泰科技股份有限公司、北京北冶功能材料有限公司和北京国科世纪激光技术有限公司。会议由项目负责人赵天卓副研究员主持,长春工业大学校长张会轩、光电院副院长樊仲维和本项目主要参研人员也出席了本次会议。  张会轩首先介绍了长春工业大学基本情况,对此类国家重大科研项目的参与表示了鼓励和支持。樊仲维对之前工作简单总结,希望通过项目实施为国家工业发展提供科技支撑,通过合作交流吸引人才,逐步提升团队在国际的知名度,并要求各参研单位对以往的工作进行梳理,对技术方案进行查缺补漏,逐一落实。他肯定了项目组目前取得的成果和进展,希望项目成员单位间能进一步合作,积极扩展更多的应用领域。赵天卓概要汇报了原理样机各阶段的工作进展,包括项目组织架构、文件体系、知识产权、研制接口和设备部件划分等,并对存在问题和下一步工作进行了介绍。项目各合作单位汇报了已完成工作、取得成果和存在问题,项目总师王秋平研究员和各位技术人员就具体的技术细节展开了讨论,提出了意见和建议。  本次技术研讨会建立了一个信息共享的平台,加深了项目各合作单位之间的交流和沟通,为项目更加顺利的开展提供了保证。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制