当前位置: 仪器信息网 > 行业主题 > >

界达电位粒径量测仪

仪器信息网界达电位粒径量测仪专题为您提供2024年最新界达电位粒径量测仪价格报价、厂家品牌的相关信息, 包括界达电位粒径量测仪参数、型号等,不管是国产,还是进口品牌的界达电位粒径量测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合界达电位粒径量测仪相关的耗材配件、试剂标物,还有界达电位粒径量测仪相关的最新资讯、资料,以及界达电位粒径量测仪相关的解决方案。

界达电位粒径量测仪相关的资讯

  • 使用BeNano 90检测UV色浆粒径
    UV色浆是有机或者无机颗粒和分散液形成的分散体系,广泛应用于油墨、涂料,可进行印刷和喷涂,具有较好施工性、高光泽、干燥速度快、低污染、墨层丰满平整、美观、流平性佳、附着力优良、柔韧性好、表面耐抗性好、耐划伤、抗化学性好等特点。UV色浆在紫外光照射下会固化。UV色浆的发展趋势是使用极细纳米颗粒。纳米级颗粒UV色浆具有分散性好,光泽度更高,色彩鲜艳,更好的固化性能等特点。在这篇应用报告中,我们使用丹东百特仪器公司最新推出的BeNano 90 Zeta纳米粒度电位仪检测了分散在乙酸乙酯中的不同颜色的UV色浆的粒径和Zeta电位信息。原理和设备采用丹东百特公司的BeNano 90 Zeta纳米粒度电位仪进行测试。仪器使用波长671nm,功率50mW激光器作为光源。动态光散射光路收集90°散射光,通过相关计算得到原始相关曲线信号,进而推导出颗粒的布朗运动速度,由斯托克斯爱因斯坦方程得到颗粒的粒径和粒径分布信息。样品制备和测试条件一共检测了6个纳米色浆样品,颜色分别为红、蓝、黄、黑、白颜色。其中白色色浆有两个样品,其中一个为进口白色浆。色浆的原始浓度较高,使用乙酸乙酯(折射率1.37,粘度0.426 cp@25℃)进行分散。稀释倍数为1000-10000倍直至色浆透明。通过BeNano 90 Zeta内置的温度控制系统将测试温度控制为25℃±0.1℃,样品注入玻璃粒径池采用动态光散射进行粒径池进行粒径测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论图1. 动态光散射检测UV浆料的相关曲线和粒径分布(上)图1. 动态光散射检测UV浆料的相关曲线和粒径分布(下)通过使用动态光散射技术,得到了UV浆料的粒径和粒径分布。可以看出所有六个样品的光强分布为一个粒径峰,没有团聚物峰。通过表1中的结果可以看出,所有浆料中的颗粒均为纳米级颗粒,不同颜色的浆料的平均粒径在100 – 300nm范围内,多次重复性测试的标准偏差均较小,说明样品分散均匀。 PDI值均超过了0.08说明所有浆料样品中的颗粒粒径具有一定的分布。可以注意到,白色浆和进口白色浆的平均粒径非常接近,而且白色浆的PDI甚至小于进口白色浆,说明通过工艺控制国产白色浆从颗粒大小和分布的角度已经达到进口白色浆水平。表1. 6次重复性测试粒径和PDI结果
  • 【AAV热点应用】Zetasizer精准表征rAAV颗粒粒径及衣壳滴度
    rAAV腺相关病毒载体表征腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一。其直径约为20-26nm,含有4.7kb左右的线状单链DNA。重组腺相关病毒载体(recombination AAV, rAAV)则是在非致病的野生型AAV基础上改造而成的,因其具有:安全性高、免疫原性低;宿主细胞范围广(对分裂细胞和非分裂细胞均具有感染能力);体内表达时间长;血清型众多,且具有组织特异性等特点被广泛用于基因治疗、疫苗等研究、应用领域[1]。在rAAV的生产工艺中,有无团聚体(aggregate),以及衣壳滴度(titer)的高低是重点考察的关键质量属性(CQAs)[2],Zetasizer纳米粒度仪通过对rAAV颗粒的粒径及衣壳滴度的表征,快速实现该CQAs的鉴定。纳米粒度电位仪马尔文帕纳科 Zetasizer Ultra01材料和方法将两种不同生产批次的rAAV分别用缓冲液稀释至合适的浓度,利用Zetasizer Ultra-Red (Malvern Panalytical Ltd.)以及小体积石英比色皿(ZEN2112)进行相应的粒径和滴度测定[3]。样品测试体积为20 µL,rAAV折射率、吸收率分别设置为1.45和0.001,缓冲液的散射光强度测定为80 kcps。02结果通过多角度动态光散射(multi-angle DLS, MADLS)技术,我们分别对两种批次的rAAV粒度大小及分布进行表征(图1、3)。可以看到,批次1的rAAV只有一个粒径分布峰,其值大小为28.2 nm,说明体系中没有团聚体产生,而批次2的rAAV则呈现出3个粒径分布峰,分别位于28.2、150.9以及430.6 nm,这说明体系中除了rAAV单体,还有团聚体产生。此外,基于MADLS技术得到的颗粒的准确粒径分布图,我们还能得到对应尺寸的衣壳滴度(图2、4)。图1,批次1 rAA的光强粒径分布图图2,批次1的衣壳滴度图3,批次2 rAA的光强粒径分布图图4,批次2的衣壳滴度参考文献1. Mendell J R, Al-Zaidy S A, Rodino-Klapac L R, et al. Current Clinical Applications of in vivo Gene Therapy with AAVs. Molecular Therapy, 2021, 29 (2), 464-488.2. Gimpel A L, Katsikis G, Sha S, et al. Analytical Methods for Process and Product Characterization of Recombinant Adeno-Associated Virus-based Gene Therapies. Molecular Therapy — Methods & Clinical Development, 2021, 20, 740-754.3. Cole L, Fernandes D, Hussain M T, et al. Characterization of Recombinant Adeno-Associated Viruses (rAAVs) for Gene Therapy Using Orthogonal Techniques. Pharmaceutics, 2021, 13, 586.
  • HORIBA动态光散射粒径分布/Zeta电位测定仪SZ-100最新型号登场!
    SZ-100 是 HORIBA Scientific 新推出的纳米粒子解析装置,可更高灵敏度、高精度地评价单一纳米粒子,并能完全解析纳米粒子的物质结构。该仪器被广泛应用于陶瓷粒子、金属纳米粒子、石炭、制药、病毒、颜料和涂料、化妆品、聚合物、食品和 CMP 等的检测。  新推出的纳米粒子解析装置 SZ-100 有以下诸多性能:  ◎将解析纳米尺寸重要的三要素(粒子直径、Zeta 电位、分子量测定)的测定囊括于一身。  ◎从 PPM 级的低浓度到百分之几十的高浓度样品,都能够在保持原液状态下进行测量。  ◎微小容量电泳样品池是 HORIBA Scientific 独自研发,可以测定取样调查仅100μL的 Zeta 电位。  ◎适合胶质粒子、机能性纳米粒子材料、高分子、胶束、核糖体、纳米囊等广泛应用。  ◎操作简单,进样、设定参数后,只要按开始按钮即可得到测量结果。
  • 北大学者研制便携传感器 粒径分辨率达10纳米
    p 大气中超细颗粒物的检测首次有了低成本便携式利器。近日,北京大学物理学院肖云峰研究员和龚旗煌院士带领的课题组,成功制备了基于纳米光纤阵列的全光传感器,新传感器的单颗粒粒径分辨率首次达到10纳米。/pp 颗粒物的高灵敏传感检测在环境监控、国家安全和生化研究等方面具有重要意义。基于光学方法的传感技术具有非物理接触、易于操作且灵敏度高等优势,故而传统光纤传感器已在高灵敏检测领域“大显身手”。/pp 肖云峰对科技日报记者解释:“国际学术界研究表明,当光纤直径减小至光波长量级时,光纤外部产生显著的倏逝场(尺度约在百纳米量级),其对周围环境的微弱变化极为敏感,因此,可利用颗粒物在倏逝场中的散射效应,实现对超细颗粒物的传感与尺寸分布测量。”/pp 据肖云峰介绍,在新研究中,他们首先精确地计算了散射效率与散射体尺寸和光纤直径的关系,预测了纳米光纤传感器的最优几何尺寸和探测极限;随后进行了高灵敏度的纳米光纤阵列的设计和制备,并通过优化光纤模式,实现了单个标准聚苯乙烯纳米颗粒的传感和测量,粒径分辨率达10纳米。/pp 课题组利用这一传感器对2015年和2016年北京冬季大气细颗粒物进行了持续监测,直接获得了百纳米尺度细颗粒物的粒径分布信息及实时演化图,以此数据为基础计算得到的细颗粒物质量浓度数据与官方公布的数据趋势符合良好,展示了此成果具有较高的应用价值。/pp 龚旗煌院士说:“与其他传感器相比,纳米光纤型传感不仅精度高,且成本低、操作简单、便于携带,可快速精准地检测出大气中的超细颗粒物,有望为环境保护和雾霾形成机理研究提供一种新的工具。”/pp 这项成果发表在重要光学期刊《光:科学与应用》上,研究得到了国家自然科学基金委、科技部等的支持/p
  • DT推出新型DT-1210超声粒度和zeta电位分析仪
    生物医药行业是公认的朝阳行业,对医药开发的技术有着旺盛的需求。为了满足生物医药及其相关行业的研究需要,2017年初,美国分散技术公司即正式推出能够满足该行业少量样品研究的新型dt -1210超声粒度及zeta电位分析仪,和仅用于粒度研究的dt-110超声粒度分析仪。 dt-1210与dt-1202具有相同的性能指标,但其声学传感器的组合可以建立在最小样品体积3毫升的基础上,测量粒度和zeta电位。dt-1202甚至可以连接微型泵,通过声学传感器泵送样品。在这种情况下,样品体积为7ml。软件与dt-1202相同。美国分散科技公司(dti)专注于非均相体系表征的科学仪器业务。 dti开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 zeta电位、电导率、表面电荷、流变学性质、固体含量、孔隙率,包括cmp浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,乳液和微乳液、药物乳剂等,并可应用于多孔固体。 在生物与制药领域的应用包括:色谱用树脂与蛋白质相互作用及其电性能表征颗粒大小和胶束的演变细胞粒径测定蛋白质的电荷(价态)测定蛋白质吸附,蛋白质和血细胞的超声波特性没有稀释的药物乳液和微乳液表征溶解和结晶速度的动力学监测产品特性: 能分析多种分散物的混合体 可精确地判定等电点 可适用于高导电(highly conducting)体系 可排除杂质及对样品污染的干扰 可精确测量无水体系 样品的最高浓度可达50%(体积比),被测样品无 需稀释,对浓缩胶体和乳胶可进行直接测量 具有自动电位滴定功能 产品规格:1. 粒径范围:从5nm至 1000um 2. 可测量zeta电位、超声波频率、电导率、ph、温度、声衰减、声速、电声信号,动态迁移率、等电点(iep)、及弹性流变性质3. zeta电位测量范围:无限制, 低表面电荷可低至0.1mv, 高精度(±0.1mv)4. 在零表面电荷的条件下也可测量粒径 5. 允许样品浓度:0.1~50%(体积百分数)6. ph 范围:0.5~13.5 7. 电导率范围:0.0001~10 s/m8. 温度范围: 50℃9. 最大粘度:20,000厘泊10. 电位滴定和体积滴定,滴定分辨率0.1μl 目前,流行的粒度测定方法是激光粒度法(小角激光散射法),但是,这种方法致命的缺点就是必须对样品进行稀释,并且样品最好不带颜色,对光的吸收不能太强。同样,测量zeta电位的动态光散射技术也要求在极稀的分散体系中进行,并且样品粒径不能大于几个微米(一旦颗粒产生定向运动——沉淀,就偏离了该方法的测量原理)。其实,基于同样的瑞利散射原理,如果用声波代替光波,就能够成功地克服上述缺陷。19世纪七八十年代,亨利、廷德尔和雷诺首次研究了与胶体相关的声学现象--声音在雾中的传播。散射理论的创始人洛德瑞利也将他的散射理论中的书命名为“声音理论”。 他把计算方式主要运用到了声音,而不是用在由光学的研究中。由于理论计算的复杂性, 声学更多的依赖于数学计算而不是其他传统的仪器分析技术。随着计算机快速时代的到来和新理论研究方法的发展,今天很多问题已经在美国dti公司有了清晰的答案。 享誉世界的dt-1200系列粒度和zeta电位分析仪, 利用超声波在含有颗粒的连续相中传播时,声与颗粒的相互作用产生的声吸收、耗散和散射所引起的损失效应来测量颗粒粒度及浓度,采用专利电声学测量技术测量胶体体系的zeta电位。对于高达50%(体积)浓度的样品,无需进行样品稀释或前处理即可直接测量。甚至对于浆糊、凝胶、水泥及用其它仪器很难测量的材料都可用dt-1200系列的zeta探头直接进行测量,粒度适用范围从5nm到1mm。 zeta电位电声探头(zeta probe)能直接在样品的原始条件下测量zeta电位,允许样品浓度高达50%(体积)。可配置zeta电位自动滴定装置,自动、快速地判断等电点,快速得到最佳分散剂和絮凝剂,对粒度和双电层因素导致的失真进行自动校正。该仪器的软件易于使用,通用性强,非常适用于科研及工厂的优化控制。 美国分散科技公司(dti)成立于1996年,专注于非均相体系表征的科学仪器业务。 dti开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 zeta电位、流变学、固体含量、孔隙率,包括cmp浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,药物乳剂等,并可应用于多孔固体。dti享有7项美国专利,在iso参与领导组织超声法粒度分布国际标准和电声法测量zeta电位国际标准的制定,并获得2013年科学仪器行业最受关注国外仪器奖。 1999年,现任仪思奇科技总经理的颗粒和多孔材料表征专家杨正红先生即访问了dti美国总部,并建立了联系,之后双方进行了广泛的合作。自2016年8月仪思奇(北京)科技发展有限公司成立,即开始负责dti在中国大陆的全部业务。 利用dt系列仪器,我们能够分析: 浓浆中粒度分布 浓浆zeta电位 膜和多孔材料的表面zeta电位 等电点 孔隙率 体积流变学 表面活性剂优化 表面活性剂配伍优化 非水相和水相电导率 微流变 表面电荷和表面电导率 德拜长度 固体含量dt系列仪器和规格指标操作过程可选附件操作者将0.1 - 150 ml样品倒入样品池,然后在简单对话框中定义样品,选择所需的实验方案(协议),启动"run" 对于zeta电位测定,样品量可少至0.1 ml.当测量完成,用户需要将样品倒出,并用水或相应清洁溶液清洗探头。对于粒度测量,用dt-110或dt-1210,样品量可少至3ml。 ? 配有1个或2个注射泵的自动滴定系统? ph / 温度测量探头? 电导率测量探头,可选水相和/或非水相? 用于非常粘稠样品的蠕动循环泵? 用于远程“在线”测量的端口? 弹性流变性能测定? 温度加热控制 ? 样品量5毫升的一次性样品池样品测量 样品需求dt-1202/10型测定粒度 & zeta 电位dt-100/110型dt-500型仅测粒度dt-600型超声法弹性流变分析仪dt-300系列(300/310/330)zeta 电位探头dt-400型自动滴定系统样品体积范围0.1 -150 ml3 -70 ml3 -100 ml0.1-100 ml100 ml体积浓度范围 % (1)0.1-500.1-50无限制0.1-50必须能搅拌电导率 (2)无限制无限制无限制无限制无限制ph0.5-13.50.5-13.50.5-13.50.5-13.50.5-13.5温度 [℃]低于 50低于50低于50低于50低于100介质粘度[cp]可至 20,000可至20,000可至20,000可至20,000可至20,000介质微粘度 [cp] (3)可至100可至100无限制可至100可至100胶体粘度 (4)可至 20,000可至20,000可至20,000可至20,000可至20,000粒径范围 [微米] (5)0.005 to 10000.005 to 1000无限制 100无限制zeta 电位范围无限制无限制无限制无限制无限制 测量参数温度[℃]0 to 100, ±0.10 to 100, ±0.10 to 100, ±0.10 to 100, ±0.10 to 100, ±0.1ph0.5-13.5, ±0.10.5-13.5, ±0.10.5-13.5, ±0.10.5-13.5, ±0.10.5-13.5, ±0.1频率范围 [mhz]1- 1001- 1001- 1001- 10n/a超声衰减 [db/cm mhz]0 to 20, ±0.010 to 20, ±0.010 to 20, ±0.01n/an/a声速 [m/sec]500 to 3000,± 0.1500 to 3000, ±0.1500 to 3000, ±0.1n/an/a电声信号重现性±1%n/an/a±1%n/a电导率(s/m)0.0001-10, ±1% 0.0001-10, ±1%n/a0.0001-10, ±1% 0.0001-10, ±1%所计算参数平均粒径 [微米]0.005 to 10000.005 to 1000n/an/an/a单峰模型参数yesyesn/an/an/a双峰模型参数yesyesn/an/an/azeta 电位±(0.5% +0.1)n/an/a±(0.5% +0.1)n/a弹性粘度 [cp]可选n/a0.5-20000, ±3%n/an/a牛顿液体的体积粘度 [cp]可选n/a0.5-100, ±3%n/an/a液体压缩率 [104/mpa-1]可选n/a1-30, ±3%n/an/a牛顿液体试验范围 (mhz)可选n/a任何频率n/an/a测量时间 [分,min]粒度分布1- 101- 10n/an/an/a水相zeta 电位0.5n/a0.50.5n/a非水相zeta 电位0.5-5n/a0.5-50.5-5n/a流变性能n/an/a1-10n/an/a物理指标重量[kg]电控箱 20池体及探头: 30电控箱 20池体及探头: 30电控箱 20池体及探头: 30电控箱 20池体及探头: 7电控箱 20池体及探头: 5功率300 w300 w300 w300 w300 wdt系列仪器选件的适用性型号ph/温度探头电导率泵滴定升级到 dt- 1202dt- 100yesyesyesyesyesdt- 600yesyesyesyesyesdt- 300yesyesyesyesnodt- 400yesnoyesnonodt- 1202yesyesyesyesn/a(1)仪器可以测量的超声衰减谱远远超过50%(体积),但是从该数据计算psd和ζ电位的理论被限制为50%(体积)。 在胶体样品密度与介质密度的对比比较接近的一些体系中,最小体积分数为1%。(2)ζ电位的概念在非常高和非常低的电导率的极端情况下变得不确定。(3)在计算粒径和ζ电位时,重要的粘度值是当粒子响应于声波而移动时粒子所经历的粘度。 在诸如凝胶或其它结构化体系的情况下,这种“微粘度”可以显著小于用常规的流变仪测量出的介质粘度,这种介质粘度比其颗粒的微粘度要大于一个数量级。(4)对于自动滴定实验,可能有必要使用外部循环泵,以使(酸/碱)试剂与相当粘稠的样品之间充分混合。 (5) 对于zeta电位测量的粒度范围,可能取决于颗粒密度与介质密度的对比度。
  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
  • ISO颗粒表征专家许人良解读《Zeta电位测定操作指南》国家标准
    Zeta 电位通常用于研究液体介质中颗粒分散体系的等电点(IEP)和表面吸附,并作为比较不同样品静电分散稳定性的指标。Zeta电位不是可直接测量的量,而是使用适当理论确定的量。此外,Zeta电位不是悬浮颗粒的固有属性,而是取决于颗粒和介质属性,以及它们在界面上的相互作用。介质的化学成分和离子浓度的任何变化都会影响这种界面平衡,从而影响Zeta电位。因此,样品制备和测量过程都会影响测定结果。为了避免zeta电位测量操作问题使测量结果出现误差,需要一个统一的zeta电位测量操作指导原则。近期,GB/Z 42353-2023《Zeta电位测定操作指南》发布实施,提供了使用光学电泳迁移法或电声法测定Zeta电位的样品制备和测量过程的操作指南。本文特邀该标准主要起草人、ISO颗粒表征专家许人良博士对标准进行解读。一、背景近年来,Zeta电位这个参数越来越多地出现在各行各业。Zeta电位的测定不仅被用于科学探索,产品研发的理论设计、各个阶段的试验、最终产品的参数设定,在生产中也越来越多地被用于过程控制,以及中间产品或最终产物的质量控制,关于Zeta电位的在线测定也有所报道。而在化学工业出版社2023年出版《Zeta电位实用指南》专著之前,国内外尚缺乏有关Zeta电位的专业书籍,在相关领域的专业图书中涉及的Zeta电位专业知识也不尽详细。高等教育中除了胶体化学专业课程,一般本科物理化学教学中涉及Zeta电位的很少,致使很多使用者不能完全理解这一参数的物理意义,难以正确地进行样品制备与测量、阐释测量结果,从而将测量结果应用到所要解决的理论或实践问题中去。与其他颗粒表征的参数不同,Zeta电位不是通过直接测量得到的,而是通过测量某个物理量,然后使用某一理论模型得到的;Zeta电位不仅是颗粒表面的特性,而与颗粒的浓度以及所处的介质性质也密切有关。由于这两个特性,在Zeta电位的测定以及数据阐释中,普遍存在错误的操作、计算与结论。基于上述原因,及时制定发布《Zeta电位测定操作指南》国家标准,为广大科技工作者提供正确的Zeta电位测定操作指导,是极其重要与必要的。本标准等同采用由ISO TC24/SC4制定的ISO/TR 19997:2018《Guidelines for good practice in zeta-potential measurement》,填补了国内现有标准的空白,为胶体颗粒Zeta电位测定标准化奠定了良好的基础;对正确使用Zeta电位测定技术与数据解释,具有重要的参考价值。本标准制定了用于测定Zeta电位的样品制备和测定过程的一般指导原则,有望统一国内的测试方案,在科研、医药、化工等领域有着重要意义。二、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。主要参与单位有山东理工大学、上海市计量测试技术研究院、中机生产力促进中心有限公司、河南中科智能制造产业研发中心有限公司。2021年4月,标准起草工作组组建,讨论了具体的工作过程,拟定了相应的工作计划和各单位承担的工作内容。此标准的编制工作依据《标准化工作导则第1 部分:标准化文件的结构和起草》,《标准化工作导则 第2 部分:以ISO/IEC标准化文件为基础的标准化文件起草规则》,以及《国际单位制(SI)和国际单位制多功能与某些其它单位的使用推荐规程》等国家标准。本标准共进行了一项验证实验,对聚苯乙烯的浓溶液采用均衡稀释法进行稀释,在一系列浓度条件下测量样品的Zeta电位,说明均衡稀释法使得样品的特性除了颗粒浓度外,其余的都保持原样,颗粒的Zeta电位在稀释过程中没有改变。经过广泛征求修改意见与评审会专家意见,并经过相关实验验证,本标准最终于2023年3月发布, 并于10月1日起实施。三、主要内容本标准首先概括性地介绍了Zeta电位的定义与特性,主要用途,以及主要测量技术。强调了从不稳定悬浮液到稳定悬浮液转变的临界Zeta电位值,只在有限的应用中才得到证实,需要小心使用。并建议以监测和关联第二被测量(例如粒度分布,浊度,黏度等)以验证由Zeta电位测量得到的结论。本标准分两章详细地描述了样品制备与测定的不确定度与误差来源。样品制备:Zeta电位测定起始于取样。只有当测试样品能够代表某一材料批次,且取样量足够时,在该样品中测到的实验值才适用于该批次。在大多数的应用中,样品必须保持稳定状态,例如没有沉淀、团聚等现象,否则所测量的实验值只能代表某一时间段的状态。除了悬浮液样品制备中的一般做法以外,由于颗粒的Zeta电位取决于颗粒以及分散介质,如果不采取特殊措施,简单的稀释可能会改变介质的化学成分,从而影响颗粒Zeta电位。样品制备需要遵循的程序是能从原始体系变为可用于测量的稀释样品后,Zeta电位不变。这就要求在稀释时,不仅原始体系和稀释后体系之间的颗粒及其表面保持相同,而且介质保持相同的电化学性质,有相同的pH值和各种离子浓度,也即除了颗粒浓度,悬浮液的其他特性都不变。使用去离子水进行简单稀释是一种常见的误导性且通常不正确的制备Zeta电位测量样品的方法。样品稀释可以遵循所谓的平衡稀释方法,即使用与原始体系中相同的液体作为稀释剂。如果处理得当,平衡稀释会导致样品中唯一修改的参数是颗粒浓度。理论上只有基于平衡稀释的样品制备过程才能产生与初始体系有相同Zeta电位的稀释样品。得到用于平衡稀释的液体有三种方法。第一种方法包括使用重力沉降或离心法提取上清液。然后用此清液或“母液”将初始样品稀释至所选测量技术的最佳程度。该方法适用于相对于介质有足够密度差的颗粒。对于用第三相(乳化剂)稳定的通常不混溶的油相和水相的乳液,离心方法不适用。通常将其稀释到匹配的离子背景中,使在初始的浓的和稀释后的悬浮液有相同的离子背景。该稀释剂可通过了解分散剂相中的离子组成(离子、离子表面活性剂)获得。第三种可能更适合纳米和生物胶体的方法是使用透析。透析膜需要对离子和分子具有渗透性,但对胶体颗粒不具有渗透性。如果样品需要稀释,建议在不同浓度下进行一系列测量,这样可以观察到颗粒-颗粒相互作用的影响或其他稀释效应。通常,由颗粒-颗粒相互作用引起的受阻运动会减少表观运动,从而使测量的Zeta电位绝对值偏小,而不同程度的稀释可能会观察到不同的Zeta电位,直至稀释到颗粒间的相互作用不再影响到测量值。无论是初始样品还是经过制备(稀释)的样品,必须对其稳定性进行一系列按时间顺序进行的测量。如果遇到测量值随时间而变,则除了报告测量值之外,还需报告变化率。通常在实验报告中需要详细说明样品是如何处理的,以及稀释剂是如何制备的。可以对样品进行多次稀释和测量,以证明所采用的方法是稳定和可重复的。测定的不确定度与误差来源:为了保证测量的准确性,强烈建议仪器制造商或其指定人员定期对仪器进行性能验证。当使用电泳光散射法测量时,必须保证在测量区有足够的颗粒,而不会由于沉降而使颗粒都沉到底部。当电泳速度很小时,使用可测量极小电泳迁移率的相位分析光散射法。操作人员不正确的参数输入也是可能的误差来源。Zeta电位测量对清洁度和少量污染物(如多价离子或浸出材料)的存在特别敏感,这些污染物可能不会显著影响电导率或pH值,但却会影响Zeta电位的测量。可能的污染源有:1)用于稀释或样品制备的介质(通常为水)的质量;2)前一个样品在样品池内的残留,特别是当前后两个样品的离子浓度相差很大时,简单的冲洗可能是不够的;3)用于实验的任何玻璃器皿或其他容器内壁所残留的离子;4)介质在测量温度下显著挥发或蒸发而导致介质的变化;5)气泡(在灌装过程中或者过滤过程中形成,或者从溶解空气中产生,或者由于电化学反应而产生,例如在电极表面发生电解)的存在会扭曲电场,并导致错误的电导率测量,或受障碍的电泳运动;6)水中二氧化碳的溶解对悬浮液pH与电导率的影响。其他会影响测量结果的因素主要来自于所加的电场:1)由于所加电场后产生焦耳热。焦耳热可以同时引起温度升高和温度梯度,两者都会影响zeta电位测量过程中的电泳和电渗;2)当电流通过样品时所导致的样品变化,特别是对蛋白质和蛋白质类生物分子(如DNA),或颗粒表面包覆有生物分子或其他易受影响涂层的样品;3)电场作用导致电极表面的氧化还原反应,从而影响某些生物样品。减轻该问题可以考虑几种解决方法,包括减少电场的施加时间,用微弱的电场,使用短脉冲电压,使用较低活性的电极材料(如将金换成钯),或同时监测粒径大小,当观察到显著的变化趋势时,停止测量,等等。Zeta电位是由电泳迁移率计算得来的。用于计算的合理理论和公式极大程度上取决于悬浮液的环境,商业仪器使用的理论计算ζ电位一般假定颗粒为光滑的刚性圆球,对非理想颗粒,应谨慎使用。四、进一步阅读本标准仅对如何正确测定Zeta电位提出了一些指导,如果想要系统地了解Zeta电位的定义、物理含义、计算方式、测定方法,以及一些典型的应用,可以参考由化学工业出版社出版、许人良所著的《Zeta电位实用指南》。该书涵盖了有关Zeta电位与电动现象的最新发展,提供了诸多最终能用于解释实验结果的公式,并附有对于这些公式的理论基础以及数学推导与公式演变过程的较详细的参考资料。
  • 精准+智能——记优秀新品百特BeNano 90 Zeta纳米粒度及Zeta电位分析仪
    为了将在中国仪器市场上推出的、创新性比较突出的国内外仪器产品全面、公正、客观地展现给广大的国内用户,同时,鼓励各仪器厂商积极创新、推出满足中国用户需求的仪器新品,仪器信息网自2006年发起“优秀新品”评选活动,至今已成功举办十六届。发展至今,该奖项也成为了国内外科学仪器行业最权威的奖项之一,获奖名单被多个政府部门采信。2022年度“优秀新品”评选活动正在进行中,2022下半年入围名单已公布(详情链接)。值此之际,一起再来回顾下往届年度优秀新品奖获得者们吧! 本期带您回顾的是2021年度“优秀新品”获奖产品:百特 BeNano 90 Zeta 纳米粒度及Zeta电位分析仪。2021年度共有711台仪器参与“优秀新品”奖项评选,在“技术评审委员会主席团”的监督下,经仪器信息网“专业编辑团”初审、“网络评审团”评审、“技术评审委员会”终审,确定12台仪器获奖。其中,百特 BeNano 90 Zeta 纳米粒度及Zeta电位分析仪脱颖而出。百特 BeNano 90 Zeta 纳米粒度及Zeta电位分析仪介绍如下:BeNano 90 Zeta是BeNano系列纳米粒度及Zeta电位分析仪中的一员,是百特历经12年,经过不懈研发投入而推出的第四代该类产品。BeNano 90 Zeta集动态光散射(DLS)、电泳光散射(ELS)和静态光散射技术(SLS)三种技术于一体,能准确的检测颗粒的粒径及粒径分布、Zeta电位、高分子和蛋白体系的分子量信息等参数,可广泛应用于药物及药物释放体系、生命科学和生物制药、油漆油墨和涂料、食品和饮料、纳米材料以及学术领域等。综合各方表现,BeNano 90 Zeta堪称为一款“精准,智能,值得信赖”的纳米粒度及Zeta电位分析仪。此外,BeNano系列纳米粒度及Zeta电位分析仪具有众多突出特点,主要包括以下几点:(1)高速测试能力:更快的测试速度,所有结果可以随后编辑处理;(2)高性能固体激光器光源:高功率、极佳的稳定性、长寿命、低维护;(3)智能光源能量调节:根据信噪比,软件智能控制光源能量;(4)光纤检测系统:高灵敏度,有效增加信噪比;(5)相位分析光散射:准确检测低电泳迁移率样品的Zeta电位;(6)可抛弃毛细管电极:极佳的Zeta电位测试重复性,避免较交叉污染;(7)毛细管极微量粒径池:3-5μL极微量样品检测和更高的大颗粒测试质量;(8)智能结果判断系统:智能辨别信号质量,消除随机事件影响;(9)宽泛的温度控制范围:-10℃~110℃ 温控满足用户测试需求;(10)高稳定性设计:结果重复性极佳,不需日常光路维护;(11)灵活的动态计算模式:多种计算模型选择涵盖科研和应用领域。百特产品总监宁辉发表获奖感言:
  • 从专利申请文献统计看近百年颗粒粒径检测技术演进
    p  strong编者按/strong:让PM2.5无所遁形的颗粒粒径检测技术,已被广泛应用于工业、化学、环境安全等诸多领域。本文作者利用中国专利文摘数据库(CNABS)和德温特世界专利索引数据库(DWPI),采用分类号G01N与关键词对2017年7月12日之前的专利申请文献进行了检索,并对颗粒粒径检测方法的各技术分支的发展状况进行了分析和综述,以期对该领域的进一步研究提供一些参考。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/8421654c-8b9f-40df-adeb-ff1dbf5948e4.jpg" title="00.jpg"//pp  2011年底,美国驻华大使馆在新浪微博的官方账号发出一条微博:“北京空气质量指数439,PM2.5细颗粒浓度408.0,空气有毒害??”该微博随即在国内引发了对PM2.5(细颗粒物)的强烈关注,最终PM2.5被纳入到常规空气质量监测体系中。事实上,让PM2.5无所遁形的就是颗粒粒径检测技术,其已被广泛应用于工业、化学、环境安全等诸多领域。笔者利用中国专利文摘数据库(CNABS)和德温特世界专利索引数据库(DWPI),采用分类号 G01N与关键词对2017年7月12日之前的专利申请文献进行了检索,并对颗粒粒径检测方法的各技术分支的发展状况进行了分析和综述,以期对该领域的进一步研究提供一些参考。/pp  strong各项技术并行发展/strong/pp  颗粒粒径或粒度分布的检测方法种类繁多,按照测量原理主要有7类技术分支,包括:筛分法、沉降法、显微图像法、光散射法、电阻法、静电法和超声法。笔者对各技术分支的专利申请量进行统计发现,光散射法的专利申请量最高,其早在20世纪70年代就进入人们的视线,是目前最先进、应用最广的一种颗粒测量技术。此外,排名第二的是显微镜法,尤其是电子显微镜图像分析技术是当前比较流行的分析手段,该方法优势明显,除了可得到颗粒的粒径,还可以对颗粒的结构、形状和表面形貌有一定的直观认识和了解。然后分别是沉降法和筛分法,这两种方法是测量颗粒粒径的传统方法,工艺过程简单、成本较低,且操作便捷、装置结构简单。/pp  在颗粒粒径检测技术演进的过程中,主要的发展趋势有2个方面:检测精确度的提高及检测对象的扩展。上世纪 40年代以前,业内主要是采用筛分法、沉降法和显微镜法。其中筛分法最早的专利出现在1933年,公开号为GB402402A 沉降法则是基于 Stokes重力沉降公式来测定粒径,沉降法的专利早期以国外专利申请为主。显微镜法是唯一可直接观测单个或混合颗粒形状、粒度和分布的方法,早期国内相关专利申请较少,从2010年才开始出现激增态势。此外,将显微镜法和其他粒度测试方法结合于一体的装置,是当前显微镜法的研究热点,如上海理工大学公开号为CN102207443A、CN102207444A的专利申请,就是利用传感器件将多种颗粒粒度测量方法融合在一起。/pp  随着计算机、电子和激光等技术的快速发展,20世纪70年代起,颗粒粒径检测逐渐开始实现检测对象的多元化,光散射颗粒粒度测量仪受到市场欢迎。光散射技术的思想最早由前苏联学者Mandelshtam于1926年提出,随后其应用逐步扩展至界面和胶体科学等领域,并开发出了荧光相关光谱法、X射线光子相关光谱法、动态光散射显微术等。近年来,对动态光散射仪器的应用需求明显增长,相关技术研究主要集中在对动态光散射仪器的局部结构改进和采用各种新技术改造传统装置以扩展新应用等方面。/pp  对于电阻法和基于电阻法发展起来的静电法和超声法,其理论基础的发展目前已趋于成熟。其中电阻法最早为美国Coulter公司创始人Wallace H. Coulter于1953年发明,随后Coulter公司将其商品化,开发出库尔特计数器,Coulter公司此后不断对电阻法进行深入研究,其生产的 Multisizer I全自动粒度分析仪仍是目前较为先进的颗粒测量多功能仪器。而其他公司和个人对于电阻法、静电法和超声法的研究,在1980年之后得到迅速发展,大量相关的专利都是基于Coulter公司技术的改进而来。/pp  总体而言,虽然不同检测方法均有其各自的特点和适应的颗粒类型,各技术之间呈现并行发展的趋势,但整体上呈现出向更快速、更准确以及更加便捷检测的方向发展,各分支的专利申请量也均呈现出上升趋势。/pp strong 两家公司平分秋色/strong/pp  笔者分析了排名靠前的主要申请人的核心专利数量和企业综合实力,发现在颗粒粒径检测领域,a style="color: rgb(0, 176, 240) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/netshow/SH100646/"span style="color: rgb(0, 176, 240) "英国马尔文仪器有限公司/span/a(下称马尔文公司)和a style="text-decoration: underline color: rgb(0, 176, 240) " title="" target="_self" href="http://www.instrument.com.cn/netshow/SH100336/"span style="color: rgb(0, 176, 240) "美国贝克曼库尔特公司/span/aspan style="text-decoration: underline color: rgb(0, 176, 240) "(/span下称贝克曼公司)呈现平分秋色的竞争态势。/pp  马尔文公司成立于1963年,早在20世纪80年代,该公司便进行了颗粒粒径测量仪器的技术研发,其最早的研究方向是基于激光技术测定颗粒粒径。随后,该公司研发了利用超声法测量颗粒粒径的相关技术,相关专利包括US5121629A、GB9801667D0、WO2010/041082A2等。在 1980年到2010年间,马尔文公司在颗粒粒径检测的几个主要技术分支上均保持了稳定的专利申请量,在光散射法和超声法检测两个分支的专利申请量最大。/pp  马尔文公司在超声测量方面的主要产品为Ultrasizer MSV超声测量仪,该仪器可根据颗粒粒径与声波衰减之间的关系计算出颗粒粒度分布,同时还可以测出体系的固含量。随后,该公司在初代产品的基础上进行改进,开发出了探头式超声粒度测量仪。近年来,马尔文公司发展迅速,从专利申请分布来看,自2010年至今,该公司提交了50余件关于激光粒度分析的专利申请,这表明该公司可能欲向高精密仪器方向转型。/pp  贝克曼公司于1997年成立,现已成为世界最大的颗粒分析仪器公司,其于1953年制造出了世界上第一台颗粒粒度分析仪,并于1965年对该产品提交了专利申请NL6505468A。/pp  1983年贝克曼公司就进入了中国市场,并在北京、上海等地设立了代表处,此后不断完善专利战略,迅速占领了国内外市场。2000年之后,贝克曼公司进入超声颗粒测量领域,获得了一系列专利权,如公开号为WO0057774A1、US2006001875A1等。2000年至2012年,贝克曼公司在颗粒粒度检测的四个主要分支领域均进行了专利布局,其开发了基于电阻原理的Multisizer 3系列粒度分析仪,基于光脉冲原理的HIAC系列液体颗粒检测仪,基于光脉冲和库尔特原理的Multisizer 4e系列粒度分析仪,以及融合了超声与光散射原理的DelsaMax Pro粒径分析仪和DelsaMax CORE系列产品。其最新的DelsaMax Pro系列产品与马尔文公司的Zetasizer Nano系列产品采用的技术都结合了声学和光学颗粒检测技术,可见两家公司在该领域的竞争态势比较激烈。/pp  笔者认为,今后颗粒粒径检测领域的技术发展将更注重提高测量精度和对颗粒特性的多方面测定等方面,将不同颗粒粒径检测技术进行融合以提高检测性能将成为未来专利布局的热点。(詹雪)/pp(本文仅代表作者个人观点)/p
  • 贝克曼库尔特发布新一代DelsaMax 纳米粒度及zeta电位分析仪
    2013年3月18日贝克曼库尔特发布最新一款高效能纳米粒度及ZETA电位分析仪。每年一度的全球最大型科学仪器展---美国费城PITTCON上,贝克曼库尔特公司发布一款多通道高效能的纳米粒度及Zeta电位仪---DelsaMax系列。该系列当前共推出DelsaMax Pro及DelsaMax Core 两个型号。该系列采用当前最尖端的并行测量技术,一次加样即可同步进行纳米粒径测量与Zeta电位分析,而且测量时间仅需1秒钟!最新的DelsaMax系列被赞誉为“最小的样品量,最快捷的分析,成就最极致的结果”。这又将是一项划时代的贡献!  DelsaMax PRO于3月18日至21日在PITTCON的2403展位展出。  DelsaMax PRO堪称为全球最快的同步分析仪,仅需45微升即可在短短1秒钟内获得纳米粒径与Zeta电位的结果,完全不可思议却又成为事实!  DelsaMax CORE分析仪利用独立的动态和真正的静态光散射检测器,测量从0.4纳米至10,000 纳米的颗粒大小与分子量,样品量低至11uL。系统温控范围为-15º 和150º C。  DelsaMax ASSIST样品前处理增压系统,可强制充入惰性气体以减少样品池中起泡现象,使样品更稳定。  欲了解更多信息,请访问www.delsamax.com。  关于Beckman Coulter公司,请访问:www.beckmancoulter.com。
  • 聚焦颗粒物来源解析,先河环保推出颗粒物粒径监测与溯源决策支持系统
    2021年,生态环境部发布《“十四五”全国细颗粒物与臭氧协同控制监测网络能力建设方案》(环办监测函[2021]218号),该方案强调:“十四五”期间将按照“国家负责统一规范和联网、地方负责建设和运维”的模式,进一步加强细颗粒物(PM2.5)和臭氧(O3)协同控制监测能力建设。同时,方案中特别提到,要“以交通、工业园区和排污单位为重点开展污染源专项监测,组建和完善全国协同控制监测网络,掌握PM2.5与O3的主要来源、浓度水平、生成机理、传输规律等,更好支撑多污染物协同控制和区域协同治理。”可以说,对颗粒物进行全天候、全方位、全粒径的监测溯源是后续精准治理必不可少的步骤。仪器信息网获悉,河北先河环保科技股份有限公司(以下简称:先河环保)推出颗粒物粒径监测与溯源决策支持系统,该系统可有效支撑颗粒物与臭氧协同控制。本次第二十一届中国国际环保展览会(CIEPEC2023)上,先河环保携颗粒物粒径监测与溯源决策支持系统亮相。展会期间,先河环保总裁助理、生态环境物联网与大数据应用技术国家地方联合工程研究中心主任潘本锋接受了仪器信息网的独家采访。先河环保总裁助理、生态环境物联网与大数据应用技术国家地方联合工程研究中心主任潘本锋仪器信息网:从2022年各地区陆续发布“十四五”时期生态环境保护规划中几乎都提到:要加强协同控制PM2.5和臭氧污染。针对该热点,先河环保在产品层面有的解决方案?潘本锋:目前,颗粒物和臭氧是影响大气环境质量的主要污染物,也是目前大气环境治理的重点与难点。而国家提出的加强细颗粒物和臭氧协同控制具体来说,就是要落实“问题、时间、区域、对象、措施”五个精准要求,进而实现污染物的精准监测及溯源解析,为制定城市大气污染控制对策提供必要的科学依据。因此,围绕大气颗粒物污染的精准溯源、科学研判、依法治理,先河环保推出了颗粒物粒径监测与溯源决策支持系统,该系统可有效支撑颗粒物与臭氧协同控制。图解颗粒物粒径监测与溯源决策支持系统仪器信息网:该产品(颗粒物粒径监测与溯源决策支持系统)与传统的空气监测类产品有何不同?在研发设计与技术创新上,有何亮点和突破?潘本锋:颗粒物粒径监测与溯源决策支持系统是对颗粒物进行全天候、全方位、全粒径的颗粒物监测溯源。这套系统基于颗粒物监测数据,结合源解析算法,对颗粒物分粒径进行实时源解析、及时预警和精准溯源,实现数据的统一收集、统一展示和统一分析。也就是说,这套系统能够协助我们快速确定颗粒物的来源,比如颗粒物是来自于机动车?还是工地扬尘?或是来自于生活源或工业源?类似这样的粒径溯源会为我们下一步的治理提供信息,指导各地开展精细化管控,实现精准治污、科学治污、依法治污,为国家提供可靠和技术与数据支撑。系统采取“一张网、一中心、四应用”的总体架构,布局科学合理,让人一目了然。其中,“一张网”统筹粒径监测、走航监测等各种基础数据;“一中心”集成各源各类大气环境数据资源,实现数据采集汇聚、数据计算研发、数据存储共享、数据资产管理,为数据应用提供服务;“四应用”囊括了实时监测、粒径分析、颗粒物来源解析以及粒径与空气质量关联分析四大模块,实现精准溯源,助力颗粒物污染高效、并持续地改善。目前,这套平台系统已取得软件著作权。仪器信息网:依托这套系统,先河环保能够为各地的颗粒物污染管控带来哪些具体的帮助?潘本锋:依托这一系统,可以为各地大气颗粒物污染管控提供三方面的帮助:一是帮助各地政府构建颗粒物粒径监测网。这套系统通过高精度粒径监测站与微型站的组合方式,以粒径移动监测作为固定站补充,帮助各地政府全面掌握各区域粒径分布与污染来源。粒径监测网可以覆盖环境空气质量评价点、区域预警、道路、工业园区等,实现对区域颗粒物数据的全天候、全方位、全粒径的动态立体监测与评估,为环境颗粒物监管提供数据支撑。环保展上展出高精度粒径监测站与微型站二是协助建设颗粒物粒径监测与溯源决策支持平台。通过建设智慧平台,可实时展示各监测设备状态及监测浓度,并对粒径段数据、粒径分布及变化趋势、粒径浓度变化规律进行统计分析,这便于我们掌握道路扬尘、施工扬尘、固定燃烧源、机动车和工艺过程源等对本地颗粒物污染的贡献,实现对PM10和PM2.5的实时源解析溯源。三是实现颗粒物粒径溯源分析研判服务。依托颗粒物粒径监测与溯源决策支持平台,融合大气环境监测数据及其他专业数据资源,我们提供的颗粒物粒径数据溯源分析研判服务可为政府部门提供准确、及时的数据信息和科学、高效的管控建议,以实现颗粒物污染精准溯源。仪器信息网:目前该系统是否已经进入市场应用阶段,效果怎样?潘本锋:目前,颗粒物粒径监测与溯源决策支持系统已经推向市场,特别是在扬尘精细化治理领域取得了较好的管控效果。目前,先河环保已在河南、河北、山西等区域安排了试点。比如在河北某试点,我们利用粒径谱监测仪、颗粒物粒径溯源解析车等对当地PM10进行来源解析,结果显示,这座城市的扬尘源(道路尘、施工尘)为第一大贡献源,且夜间4μm—10μm大粒径段颗粒物浓度显著高于白天。为此,先河环保专家组协助政府开展常态化、高标准的扬尘源针对性管控,同时狠抓重点时段,强化夜间粗颗粒管控,提出了许多管控建议。比如,进一步强化施工工地治理、采取道路清洗湿扫、严格重点运输车辆扬尘管控等措施。经过几天的综合整治,该试点扬尘污染控制效果明显,扬尘污染数据及大粒径段污染占比下降明显。仪器信息网:立足十四五,展望未来,先河环保将在哪些领域进一步加强布局?潘本锋:步入十四五以来,先河环保紧抓“高质量发展与技术创新”,并积极布局下一步的技术创新和产业规划。我们力争将科技创新有效转变为产品创新、模式创新、应用创新,驱动公司技术和高质量发展共同进步。当前,“双碳”是各地政府关注的重点,先河环保围绕国家降碳、减污、扩绿等目标,持续推动生态环境和“双碳”全产业链业务,并将整合生态环境监测、监管和治理全产业链的创新资源,紧扣以生态大脑为核心的生态环境大数据分析、环境治理体系,加快构建生态环境的产业创新。我们将持续构建高效、精准、专业的现代化治理体系,不断推进源头治理、系统治理、综合治理业务的创新与深耕,协助区域生态环境质量持续改善和区域经济协调绿色发展,进而推动整个生态环境产业做大做强。先河环保展台后记:本次,先河环保还带来了水生态、污水治理、交通污染监测、温室气体监测等众多明星产品,覆盖了多个领域。潘本锋特别介绍到,随着大家对“双碳”愈发加大关注,先河环保在未来还会在温室气体方面加强与相关科研机构的合作,并推出新的产品。比如本次带来的XHCRDS100P高精度温室气体在线监测系统可以对大气环境中的温室气体(CO2,CO,H2O,CH4)进行精准实时监测。预知该系统详情,请持续关注仪器信息网有关环保展温室气体监测领域的后续报道。
  • 美国MAS发布Zeta-APS 高浓度纳米粒度及Zeta电位分析仪新品
    Zeta-APS 高浓度纳米粒度及Zeta电位分析仪典型应用:综合稳定水泥浆,陶瓷,化学机械研磨,煤浆,涂料,化妆品,环境保护禅选法矿物富集,食品工业,乳胶,微乳,混合分散体系,纳米粉,无水体系,油漆成像材料。主要特点:1)能分析多种分散物的混合体;2)无需依赖Double Layer模式,精确地判定等电点;3)可适用于高导电(highly conducting)体系;4)可排除杂质及对样品污染的干扰;5)可精确测量无水体系;6)Zeta电位测试采用多频电声测量技术,无需先测量粒度即可进行电位测量;7)样品的高浓度可达60%(体积比),被测样品无需稀释,对浓缩胶体和乳胶可进行直接测量;8)具有自动电位滴定功能;优于光学方法的技术优势:1)被测样品无需稀释;2)排除杂质及对样品污染的干扰;3)不需定标;4)能分析多种分散物的混合体;5)高精度;6)所检侧粒径范围款从5 nm至1000um优于electroactics方法的技术优势:1)无需定标;2)能测更宽的粒径范围;3)无需依赖Double Layer模式4)无需依赖( electric surface properties)电表面特牲;5)零表面电荷条件下也可测量粒径;6)可适用于无水体系;7)可适用于高导电(highly conducting)体系;优于微电泳方法的技术优势:1)无需稀释,固合量高达60%;2)可排除杂质及对样品污染的干扰;3)高精度(±0.1mv);4)低表面电荷(可低至0. 1mv);5)electrosmotic flow不影响测量;6)对流(convection)不影响测量;7)可精确测量无水体系;技术参数:1)所检测粒径范围宽:从5 nm至1000um;2)可测量参数:粒度分布、固含量、Zeta电位、等电点IEP、E5A、电导率、PH、温度、声衰减;3)Zeta电位测量范围:+/-200 mv,低表面电荷(可低至0. 1mv),高精度(±0.1mv) 4)零表面电荷条件下也可测量粒径;5)允许样品浓度:0.1-60%(体积百分数);6)样品体积:30-230ml;7)PH范围:0~14 8)电导率范围:0~10 s/m创新点:Zeta-ASP是高浓度胶体和乳液的特性参数检测仪,可以测试:粒径、Zeta电位、滴定、电导等。此仪器容易使用、测量精确。对于高达60%(体积)浓度的样品,也无需进行稀释或样品前处理,即可直接测量甚至对于浆糊凝胶、水泥以及用其它仪器很难测量的材料都可直接进行测量。Zeta-APS 高浓度纳米粒度及Zeta电位分析仪
  • 研讨会预告| 一次分析,两种测试:全新在用润滑油粒径/颗粒计数和金属含量分析方法
    润滑油承担着减小机械摩擦、散热等重要功能,是重工业、军事、航空、基础建设等现代化工业发展中必不可少的用品。确定合适的更换润滑油的时机,既可以降低使用成本,还可以预防机械故障和严重事故。通常情况下油品中的金属元素代表了机械磨损情况,油品中的添加剂元素含量也能反映出在用油的降解情况,因此这两者都是在用润滑油监控的重要指标。除此之外,在用油中的颗粒普遍被认为是造成机械磨损的主要原因。因此,在用润滑油一般既要监测其中的元素含量,又要监测其颗粒数量及粒径的信息(ISO 4406代码)。在传统的方法里,粒径/颗粒计数测试和金属含量分析是两种完全独立的方法,需要对油样品进行两次样品制备,消耗的样品量大,前处理耗时长,产生的废液多。珀金埃尔默全新的LPC 500™ 液体颗粒计数器是业内体积最小的自动化颗粒计数系统,其与Avio 500电感耦合等离子体发射光谱仪油品系统联用,每个样品用量少于1毫升,仅需45秒就能够实现一次进样分析、完成粒径/颗粒计数和金属分析两种测试,并获得重复性优异的结果。为评估LPC 500的准确度,在全程8小时的分析中定期分析检定流体。通常采用ISO清洁度代码来评估油品颗粒数分布情况。表1列出了粒径大于4 μm、6 μm 和14 μm时,每毫升预期颗粒数以及对应的ISO 4406代码。表1. 检定流体COA结果和对应的ISO 4406代码粒径( μm(c))颗粒数(颗粒数/mL)ISO 4406代码412,5402165,186201444016图1. 检定流体的颗粒计数分析准确度,其中,粒径大于4 μm、6 μm和14 μm的颗粒结果均在+/- 1 ISO代码范围内图2. 齿轮油样的颗粒计数分析稳定性,其中,粒径大于4 μm、6 μm和14 μm的颗粒结果均在+/- 1 ISO代码范围内图3. 576份在用油样的整个8小时分析过程中,50 ppm QC稳定性为了让大家更好的了解LPC 500激光粒度仪新品的特点及润滑油分析解决方案,我们将于2019年11月29日下午举办《珀金埃尔默LPC500™ 及润滑油品分析解决方案介绍》在线讲座。欢迎大家报名参加。研讨会详情主题:珀金埃尔默LPC500™ 及润滑油品分析解决方案介绍时间:2019年11月29日 14:00-15:00讲者:杨柳 珀金埃尔默产品专家立即报名扫描上方二维码,即可预约线上研讨会,在直播期间与讲师积极互动,还可获得精美礼品了解更多相关资料,扫描下方二维码,即可下载《分析在用润滑油粒径/颗粒计数和金属含量的新方法》。立即扫码
  • GRIMM发布1纳米粒径谱仪新品
    GRIMM气溶胶科技公司颗粒物粒径检测下限可达: 1.1 nm融合了Airmodus专利的纳米颗粒增大技术(PSM)和GRIMM 的扫描电迁移率粒径谱技术(SMPS+C)从1纳米至1微米完整测量 特点从1.1 纳米开始测量颗粒物的粒径分布融合了Airmodus 专利PSM技术和GRIMM SMPS+CAirmodus 专利的纳米颗粒增大技术(PSM)技术可使SMPS测量到最小的纳米颗粒和团簇2级CPC凝聚长大技术(二甘醇和正丁醇)为测量1纳米颗粒优化了DMA气路系统DMA可以选择扫描模式,步进模式或单一粒径筛分三种模式Airmodus PSM-A10 纳米颗粒增长器,第一级检测器工作溶液:二甘醇50%粒径检出限:1.5 纳米 (镍铬颗粒)采样流量:2.5 升/分钟真空要求:100—350 mbar NTP压缩气源要求:1.5—2.5 bar NTP, 除油/除水/除颗粒电源要求:100-240 VAC 50/60 Hz, 280 W通讯接口:USB或RS-232外观尺寸:29*45*46.5 cm重量:17 kg GRIMM 5417 CPC工作溶液:正丁醇50%粒径检出限:4 纳米 (氧化钨颗粒)采样流量:0.3升/分钟或0.6 升/分钟采样泵:内置检测浓度:单颗粒模式:1.5*10^5个/cm3,光度计模式:10^7个/cm3响应时间:T10—90 3s电源要求:90-264 VAC 47--63 Hz, 80--130 W通讯接口:USB,RS-232,模拟脉冲外观尺寸:40*25*29cm重量:12.4 kg 分级器DMA模式: GRIMM 维也纳型S-DMA或M-DMA,L-DMA粒径筛分范围:1.1—55纳米(10升/分钟鞘气流速 S-DMA) 2.8---155纳米(10升/分钟鞘气流速 M-DMA)粒径分辨率:步进模式: 45—255通道,可调 扫描模式:64通道每10倍粒径,对数间距 PSMPS数据输出:颗粒物数量浓度/粒径分布进样湿度:0—95%RH,非凝结采样压力:600—1050 mbar工作温度:15—30 oC工作湿度:0—95%RH,非凝结创新点:颗粒物粒径检测下限可达: 1.1 nm融合了Airmodus专利的纳米颗粒增大技术(PSM)和GRIMM 的扫描电迁移率粒径谱技术(SMPS+C)从1纳米至1微米完整测量1纳米粒径谱仪
  • 【新品】欧美克NS-90Z纳米粒度及电位分析仪隆重上市!
    11月8日,珠海欧美克仪器有限公司(以下简称“欧美克”)隆重推出新产品NS-90Z纳米粒度及电位分析仪。新品成功引进和吸收了马尔文帕纳科纳米颗粒表征技术,在NS-90纳米粒度分析仪基础上进一步增加了zeta电位测试功能。NS-90Z纳米粒度及电位分析仪NS-90Z在一种紧凑型装置仪器中集成了动态光散射技术、静态光散射技术、电泳光散射技术三种技术,具有优越的粒度和电位分析功能,能满足广大纳米材料、制剂开发和生产用户的颗粒粒度和表面电位的测试需求。NS-90Z融合马尔文帕纳科M3-PALS相位分析检测技术,并广泛采用全球化供应链的优质光电部件,例如进口雪崩式光电二极管(APD)检测器和He-Ne气体激光器等,加上精确的内部温控技术、密闭光纤光路以及先进软件算法,保障了数据的高重复性、准确性和灵敏度,使该型号仪器可以分析宽广的粒径、浓度及电位范围的样品。NS-90Z同时支持SOP标准操作,以及测量数据智能评估,方便用户使用。技术指标【粒径】测量范围:0.3nm – 5000nm(以样品为准)测量原理:动态光散射法重复性误差:<1%(NIST可追溯胶乳标样)最小样品容积:20µL最小样品浓度:0.1mg/mL (以样品为准)【分子量】分子量测量范围:342 Da – 2×107 Da , 由流体动力学直径估算(动态光散射)分子量测量范围:9800 Da – 2×107 Da , 由德拜图计算 (静态光散射)测量原理:动态光散射,静态光散射最小样品容积:20µL(需要3-5种样品浓度)【Zeta电位】测量原理:电泳光散射灵敏度:10mg/mL 66kDa 蛋白质Zeta 电位范围:>+500mV / <-500mV电泳速度范围:>+20μ.cm/V.s / <-20μ.cm/V.s最高样品浓度:40% w/v (以样品为准)最小样品容积:20μL最高电导率:200mS/cm检测技术:M3-PALS【系统参数】检测角度:90。+13。激光光源:高稳定He-Ne 激光器,波长633nm,功率 4mW。激光安全:1类,符合CDRH 和 CE 标准检测器:雪崩式光电二极管(APD)检测器,QE50%相关器:采样时间25ns – 8000s,4000通道,1011动态线性范围冷凝控制方法:干燥空气吹扫(需外接气源)温度控制范围:0° – 90°C温度控制精度:± 0.1°C电源:AC 90 – 240V, 50 – 60Hz功率:50W典型应用胶体和乳液表征药物分散体和乳液脂质体和囊泡粒子和表面的 Zeta 电位墨水、碳粉和颜料性能改进优化水处理中絮凝剂的用量以降低水处理成本缩短稳定分散体和蛋白质溶液的开发时间了解产品稳定或不稳定的原因,提高产品保质期防止形成蛋白质聚集体增加蛋白质浓度时保持稳定性
  • 使用插入式电极检测有机体系下样品的Zeta电位
    关键词:Zeta电位、插入式电极、有机溶剂分散体系图1. 插入式电极分散在有机溶剂中的颗粒往往在表面也会带有一定量电荷。这些电荷产生的电势会增加颗粒之间的相互作用力,起到增加系统稳定性的作用。由于有机体系的极性普遍较低,颗粒上携带的电荷量极少,在Zeta电位测试过程中需要施加较强电场才能够引发足够明显的电泳运用,而且测试电极及其配套的样品池需要考虑到对于有机溶剂的耐受性。在这篇应用报告中,我们利用插入式电极,利用BeNano 90 Zeta纳米粒度电位仪检测了分散在甲醇和乙醇环境中的硅颗粒的粒径和Zeta电位。原理和设备 动态光散射技术DLS,也称作光子相关光谱PCS或者准弹性光散射QELS,是利用激光照射在样品溶液或者悬浮液上,通过光电检测器检测样品颗粒布朗运动产生的散射光波动随时间的变化。利用相关器的时间相关性统计学计算可以得到相关曲线,进而得到颗粒的布朗运动速度,即扩散系数D。通过斯托克斯-爱因斯坦方程,我们把颗粒的布朗运动速度和其粒径DH联系起来:其中kB为玻尔兹曼常数,T为环境温度,𝜂为溶剂粘度,DH为颗粒的流体力学直径。电泳光散射技术ELS是利用激光照射在样品溶液或者悬浮液上,检测向前角度的散射光信号。在样品两端施加一个电场,样品中的带点颗粒在电场力的驱动下进行电泳运动。由于颗粒的电泳运动,样品的散射光的频率会产生一个频移,即多普勒频移。利用数学方法处理散射光信号,得到散射光的频率移动,进而得到颗粒的电泳运动速度,即电泳迁移率μ。通过Herry方程,我们把颗粒的电泳迁移率和其Zeta电位ζ联系起来:其中ε为介电常数,𝜂为溶剂粘度,f(κα)为Henry函数,κ为德拜半径倒数,α代表粒径,κα代表了双电层厚度和颗粒半径的比值。丹东百特公司的BeNano 90 Zeta纳米粒度电位仪,使用波长671 nm,功率50 mW激光器作为光源,在90度角进行粒径检测,在12度角进行Zeta电位检测。采用PALS相位分析光散射技术。样品制备和测试条件1#纳米硅粉末样品分散在甲醇分散液中,2#纳米硅样品分散在乙醇分散液中,施加超声波进行分散。通过BeNano 90 Zeta内置的温度控制系统开机默认测试温度控制为25℃±0.1℃,样品注入玻璃粒径池采用动态光散射进行粒径池进行粒径测试。使用插入式电极进行Zeta电位测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论粒径测试图2. 动态光散射检测1#纳米硅样品的粒径分布曲线(上)和2#纳米硅样品的粒径分布曲线(下)通过使用动态光散射技术,得到当前分散条件下同样品的粒径和粒径分布。其中1#样品Z-均直径为365.2±0.8 nm,PDI为0.58;2#样品Z-均直径为41.0±0.3 nm,PDI为0.50。可以看出粒径测试结果具有很好的重复性,两个样品的PDI较大,分布都比较宽,这也可以从样品的粒径分布曲线中看出。图3. 使用插入式电极检测1#(上)样品和2#(下)样品的三次测试的相图通过电泳光散射,得到了样品的Zeta电位信息。图3中展示了三次重复性测试的相图,相图斜率代表了散射光由于电泳运动造成的频率的偏移。可以通过图中曲线看出,分散在甲醇中的1#样品斜率清晰,信噪比良好,而分散在乙醇中的2#样品相图相对嘈杂。对于样品的3次重复性结果列于表1中,可以看到纳米硅样品在甲醇和乙醇溶液环境中Zeta电位为负值,说明样品颗粒携带负电,三次测试结果的重复性较好。颗粒在甲醇环境中的Zeta电位幅值明显高于乙醇环境。
  • 应用 | 揭秘动态表面张力对个人护理中喷雾产品粒径的影响
    研究背景制备个人护理应用方面的喷雾产品对于配方师来说是个很大的挑战。产品要求在雾化容易的同时, 最佳尺寸范围的乳化液滴要确保足够数量在目标区域上的沉积,但也需避免形成小液滴(小于100 μM)来减小喷射漂移。后者对使用者来说也是一种潜在的危险(小液滴可能会导致吸入口中),也可能造成喷射产品的效能降低。为了满足以上的需求 , 喷射乳液的配方必须保证符合以下的标准 :1.最合适的液滴尺寸分布,确保在目标区域上的最大沉积和附着 , 而且无漂移现象 2.在目标区域表面的良好涂布性和肤感。以上两个标准要求表面活性剂在气 / 液界面迅速吸附(降低动力学表面张力)。然而 , 这个表面张力不能低于临界值,从而可以防止乳化液滴尺寸过小而产生漂移 。喷雾液滴的形成原理在喷射过程中, 液体被压经喷嘴, 并在静力学压力下形成液滴 。高于某个静力学压力值, 液体通过喷嘴形成连续喷射, 而后分散成小液滴 。这个连续喷射, 而后分散成小液滴的过程是受到表面压力的结果 。球形的表面积和它的表面自由能(表面积 ×表面张力)小于其他对称体 。因此 , 少量的其它形状的液滴将会形成更小的球形液滴 。动态表面张力与粒径的关系表面活性剂和聚合物对于喷雾液滴尺寸分布的影响 , 在于他们对于表面张力的影响,表面张力一定程度上推动着雾化的产生。因为表面活性剂降低了水的表面张力 , 会形成粒径更小的液滴 。配方中含表面活性剂 , 帮助降低表面张力, 其雾化所需要的能量比不含表面活性剂的产品要少。因此 , 同样的能量输入, 会得到更小尺寸的液滴 。然而, 实际情况并不是这样简单 。在雾化的过程中,会不断形成新液体的表面。这种溶液的表面张力, 依赖于形成新界面的时间与表面活性剂从溶液内部迁移到气/ 液表面的吸附速度和扩散速度。如果形成新界面的时间比表面活性剂扩散和吸附的速度快, 那么喷雾液体的表面张力不会比纯水大很多,会形成大尺寸液滴 。相反, 如果形成新界面的时间比表面活性剂吸附的速度慢 , 那么喷雾液体的表面张力会进一步降低,形成较小的液滴尺寸 。图1显示两个不同表面活性剂体系A和B在不同吸附速度下 , 随时间t而变化的表面张力 γ,也可以叫作动态表面张力。这些曲线可以通过使用KRÜ SS最大气泡压力法来测量。气泡在表面活性剂溶液中以不同的频率形成,控制气泡形成的时间并且测量气泡中所产生的最大压强,可以得到不同时间下的表面张力。在短时间内,观察到表面活性剂体系B比A的体系所带来的表面张力更小 。许多体系的动态表面张力和时间对数的曲线可分为4个阶段:诱导区、表面张力快速下降区、介平衡区和平衡区。在诱导区,由于吸附在界面层上的助剂质量浓度太低,溶液的表面张力较大;随着助剂大量被吸附到溶液表面,表面张力急剧降低,就形成了快速下降区;而随着溶液表面助剂分子的积累,吸附接近饱和时吸附速度变慢,就形成了介平衡区;足够长的时间后当表面吸附达到饱和体系进入动态平衡阶段表面张力达到平衡,此即为平衡表面张力。表面活性剂种类和质量浓度不同,其溶液体系达到上述各阶段所需时间不同,表现为各溶液体系间动态表面活性的差异。从线性相关性关系的角度上来说,时间指标越小,动态表面张力与雾滴指标之间的关系越倾向于线性状态,可以通过测试表面活性剂体系的动态表面张力来优化雾滴尺寸和粒径。传统意义上采用静态表面张力为指标研究雾滴形成的方式并不合理,在有关喷雾的实践工作过程当中,选取动态表面张力作为研究指标有着更为显著的优势。 图2. 动态表面吸附曲线图动态表面张力与粒径关系的示例图3. 不同表面活性剂溶液的动态表面张力曲线 表1. 不同表面活性剂溶液的粒径分布从图3和表1示例曲线可以明显看到,可以通过控制动态表面张力来优化雾滴的粒径,张力在一定时间内下降的越快,雾滴粒径越细腻。为了避免雾滴尺寸过小而产生雾滴的漂移,可以将表面活性剂的张力调控在一定范围。在实际生产中,喷头尺寸、喷雾压力也是改变喷量、雾滴粒径的重要手段之一。本文仅讨论了动态表面张力的改变对喷雾粒径的影响,期望能为配方设计工作者提供合适的思路。本文有删减,详细信息见原文萨瓦特 塔琼斯,玛丽克莱尔 堤尔曼,杜 晶.喷雾型产品的配方原理[J].日用化学品科学, 2004.
  • HORIBA发布新品纳米颗粒追踪粒径分析仪
    p style="text-align: justify text-indent: 2em "strong仪器信息网讯/strong 近日仪器信息网从HORIBA处获悉,HORIBA新品纳米粒度仪ViewSizer 3000已于2020年正式在中国上市。该产品是一款全新的多光源纳米颗粒追踪粒径分析仪,能同时给出颗粒的粒径分布和数量浓度信息,不仅能测量单分散样品的粒径,也能准确测量多分散性样品和多峰样品技术。该新品研发的技术来源于HORIBA刚刚于2019年收购的美国MANTA仪器公司。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/b3456bab-739e-4784-ac6e-f9ee64da138a.jpg" title="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg" alt="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg"//pp style="text-align: center text-indent: 0em "strongViewSizer 3000 多光源纳米颗粒追踪粒径分析仪/strong/pp style="text-align: justify text-indent: 2em "据了解,目前市面上可以进行单颗粒追踪的主要有两种技术,一种是ICP-MS,另外一种就是纳米颗粒跟踪分析技术(NTA),ViewSizer 3000正是一款采用了NTA技术的纳米颗粒追踪粒径分析仪。/pp style="text-align: justify text-indent: 2em "据HORIBA粒度表征应用工程师肖婷介绍,与普通的动态光散射纳米粒度仪相比,ViewSizer 3000具备如下三大优点:/pp style="text-align: justify text-indent: 2em "第一,仪器同时配备三种不同波长的激光光源,因而能够准确测量多分散性样品和多峰样品的粒径。/pp style="text-align: justify text-indent: 2em "第二,测量样品粒径分布的同时,能给出样品的数量浓度信息,并提供颗粒运动的视频,满足用户的可视化需求。/pp style="text-align: justify text-indent: 2em "第三,仪器可配置荧光功能模块,利用此功能可以扣除样品荧光的干扰,也可进行荧光标记,进一步测试各组分颗粒的粒径和数量浓度。/pp style="text-align: justify text-indent: 2em "ViewSizer 3000当前主要目标用户群为高校、研究所用户,肖婷表示,该仪器特别适合做生命科学和纳米材料方向的应用研究。在生命科学方向,ViewSizer 3000的荧光功能模块将发挥很大作用,通过荧光标记能得到各组分的粒径和数量浓度。而在纳米材料领域,该仪器能带来宽粒径分布的样品和多峰样品测量。/pp style="text-align:center"a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/cb5743d2-5345-4ce6-9a26-eab372832a55.jpg" title="640_300.jpg" alt="640_300.jpg"//a/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 75px height: 110px " src="https://img1.17img.cn/17img/images/202004/uepic/c823118b-54b9-4f5f-b995-34a69862bcfd.jpg" title="微信图片_20200330103948.png" alt="微信图片_20200330103948.png" width="75" height="110" border="0" vspace="0"/想了解ViewSizer 3000更多信息?4月9日-10日,仪器信息网将联合中国颗粒学会举办首届“颗粒研究应用与检测分析”主题网络大会。HORIBA粒度表征应用工程师肖婷也将在4月10日10:00-10:30带来《纳米颗粒追踪粒径分析技术的特点及应用》的精彩报告,重点讲解ViewSizer 3000的更多性能特点和应用方案。欢迎大家报名参会。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 0, 0) "strong免费报名渠道:span style="color: rgb(0, 0, 0) "/span/strongspan style="color: rgb(0, 0, 0) "点击进入/span/spanstrong style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "首届“颗粒研究应用与检测分析”主题网络大会/a官网/span/strong,点击“我要参会”,报名即可。/p
  • 清华蒋靖坤研究组:研发便携式气溶胶粒径谱仪,适用于大气网格化监测
    研究背景气溶胶对人体健康、气候变化及空气质量都有显著的影响,一个关键影响因素是其粒径。在进行相关研究时,需要以高时空分辨率的气溶胶粒径分布数据为基础,这些数据需要通过组建高密度的监测网络获取。扫描电迁移率粒径谱仪 (SMPS) 是一种常用的粒径分布测量仪器,通过对气溶胶进行荷电、筛分、计数来获得粒径分布。其结果准确,但是价格昂贵、尺寸较大,不适用于高密度的组网监测。已有仪器公司开发出了商业化的便携式 SMPS,但在提升了便携性的同时也牺牲了其结果的准确度。这种便携式 SMPS 的不确定度通常来源于使用单极荷电器对气溶胶进行荷电,这种荷电器因其尺寸小、荷电效率高而在便携式 SMPS 中常用,但也同时有荷电分布不稳定的缺点,而荷电分布正是获得准确粒径分布的重要参数。近日,清华大学蒋靖坤教授研究组展示了一种能够降低荷电过程带来的不确定度的新测量方法,包括使用大气天然离子对气溶胶的荷电和同时测量带正电和带负电的气溶胶粒径分布,将新方法应用于一台商用的便携式SMPS 以减少单极荷电器带来的不确定度。通过使用这种新的测量方法,研究组提高了便携式 SMPS 的性能,同时进一步减小了其尺寸,使其更适合于建立大气网格化监测设施。该文章题为 “Improving the performance of portable aerosol size spectrometers for building dense monitoring networks” (《研发适用于大气网格化监测的便携式气溶胶粒径谱仪》),发表在期刊 Environmental Science: Atmospheres 上。论文详情本工作中,研究人员通过对一台商业化的便携式 SMPS 进行改造,实现了新方法的应用。该台便携式 SMPS 原本通过单极人工荷电器调节气溶胶的荷电分布,并测量带正电的气溶胶粒径分布,结合荷电分布反演得到全部气溶胶(带正电+带负电+不带电)的粒径分布,这也是大多数 SMPS 的常用方法。而大气中有天然离子在调节着气溶胶的荷电分布,即使不使用人工荷电器,同时测量带正电和带负电的气溶胶粒径分布就可以获知这一荷电分布,并用于数据反演,这一新方法已被应用于 SMPS 上并证明了可靠性。在本工作中,通过去掉便携式 SMPS 上单极荷电器进而使用天然大气离子荷电,并将原本的单极高压电源替换为双极高压电源,使新方法可以被应用于这台仪器。为了检验改造后的仪器性能,研究人员使用了大气气溶胶和室内气溶胶进行测试,并将改进前后的粒径谱仪测量结果与一套参考粒径谱仪的测量结果进行了比较。比较的指标包括分粒径段数浓度、几何平均粒径、几何标准偏差等刻画粒径分布的重要参数,改进后的仪器与参考仪器具有更好的一致性。图 1. 改造前后便携式 SMPS 与参考 SMPS 不同参数的对比,(a) 改造后, (b) 改造前总结展望在选择应用于高密度组网监测的粒径分布测量仪器时,一大挑战是在测量结果的准确性与仪器的便携性和易于维护之间找到一定平衡。现有的商用便携式 SMPS 具有很大的应用潜力,它们已经成功地将尺寸缩小到合理的范围,但是其常用的单极荷电器对测量结果造成了较大不确定性。在本工作中,研究人员展示了新测量方法在便携式 SMPS 中的应用,通过利用天然大气离子荷电和测量两个极性的带电气溶胶,改造后的仪器更紧凑,也可以获得更准确的结果。新方法的应用使便携式 SMPS 更接近于建立密集监测网络的理想仪器,未来也可以被应用于职业暴露监测、机载测量等应用场景。论文信息Improving the performance of portable aerosol size spectrometers for building dense monitoring networksYiran Li, Jiming Hao and Jingkun Jiang*Environ. Sci.: Atmos., 2023https://doi.org/10.1039/D2EA00163B 作者介绍李怡然 清华大学博士研究生第一作者,博士研究生,指导教师为郝吉明院士和蒋靖坤教授,主要研究方向为双极气溶胶电迁移率粒径谱仪研发与应用。郝吉明 清华大学教授合作作者,清华大学环境学院教授,中国工程院院士、美国工程院外籍院士。主要研究领域为能源与环境、大气污染控制工程。主持全国酸沉降控制规划与对策研究,为确定我国酸雨防治对策起到了主导作用。建立了城市机动车污染控制规划方法,推动我国机动车污染控制的进程。深入开展大气复合污染特征、成因及控制策略研究,发展了特大城市空气质量改善的理论与技术方法,推动我国区域性大气复合污染的联防联控。蒋靖坤 清华大学教授通讯作者,清华大学环境学院教授,清华大学科研院副院长、环境学院副院长和环境模拟与污染控制国家重点联合实验室副主任。从事气溶胶测量和颗粒物成因研究。承担了国家重点研发计划、基金委重大项目、国家重大科研仪器设备研制专项等任务。发表 SCI 论文 180 余篇,授权发明专利 10 余项。入选教育部长江学者特聘教授,获国际气溶胶领域 Smoluchowski Award 和亚洲青年气溶胶科学家奖。任 Aerosol Science and Technology 副主编和 ES&T Letters 编委。
  • 技术干货 | 如何同时快速检测每个纳米颗粒的元素和粒径信息
    纳米材料,由于尺寸在1~100纳米范围,其微观尺度赋予其独特的光、电、磁、机械和光学等特性。纳米技术是一个快速发展的新兴领域,其发展和前景也给科学家和工程师们带来了许多巨大的挑战。纳米颗粒正在被应用于众多材料和产品之中,如涂料(用于塑料、玻璃和布料等)、遮光剂、抗菌绷带和服装、MRI 造影剂、生物医学元素标签和燃料添加剂等等。然而,纳米颗粒的元素组成、颗粒数量、粒径和粒径分布的同步快速表征同样也是难题。对于无机纳米颗粒,最为满足上述特点的技术就是在单颗粒模式下应用电感耦合等离子体质谱分析法,即单颗粒ICP-MS。ICP-MS 测量溶解样品和单纳米颗粒分析的响应信号如图1 所示。在分析溶解态元素时,产生的信号基本上属于稳态信号,测量单纳米颗粒时,产生的信号是非连续信号。四极杆作为检测器,工作时在各质荷比(m/z)停留一段时间,然后移动到下一质荷比(m/z);各质荷比(m/z)的分析时间被称作“驻留时间”,即工作时间。在各驻留时间的测量完成之后,执行下一次测量之前,通过一定时间进行电子器件的稳定。该时间段被称作“稳定时间”,即暂停和处理时间。当单颗粒的离子云进入四级杆后,如果单颗粒(“信号”峰)的离子云落在驻留时间窗口之外,则可能无法被检测到,如图3a 所示。当单颗粒的离子云落入驻留时间窗口内时,可以检测到该离子云,如图3b 所示。当快速连续检测到多个颗粒时,所得到的信号是一系列峰,各个峰都来自于某一颗粒,具体如图3c 所示。在单颗粒ICP-MS 中,瞬态数据的采集速度由两个参数组成:驻留时间和稳定时间。十分重要的是,ICP-MS 采集信号所需的驻留时间少于颗粒瞬态时间,从而避免因部分颗粒合并、颗粒重合和团聚/ 聚集产生的错误信号。稳定时间越短,颗粒遗漏的可能性就越小。最理想的情况是一秒钟内可进行10,000 次测量,不存在稳定时间,所有时间皆用于寻找纳米颗粒(图5c)。快速连续数据采集的另一个好处是可以从单个颗粒获得多个数据点,从而消除颗粒遗漏,或仅检测到颗粒部分离子云的情况。驻留时间越短,对单颗粒离子云采集的数据点越多,获得的峰型更加准确。珀金埃尔默公司NexION系列ICP-MS,最短驻留时间可达10 μs,单质量数据采集能力可达100000点每秒。配合专业的 Syngistix™ 软件,无需更多数据处理即可获得样品的颗粒浓度,尺寸及分布等信息,是进行单颗粒ICP-MS实验的首选。想要了解更多详情,请扫描二维码下载完整的资料和仪器信息。
  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style="text-indent: 2em "涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。/pp style="text-indent: 2em "激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。/pp style="text-indent: 2em "/pp style="text-indent: 2em "1 实验部分/pp style="text-indent: 2em "1.1 主要原料及仪器br//pp style="text-indent: 2em "钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。/pp style="text-indent: 2em "1.2 试验方法/pp style="text-indent: 2em "(1) 干法测试/pp style="text-indent: 2em "称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。span style="text-indent: 2em "(2) 湿法测试/span/pp style="text-indent: 2em "湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。span style="text-indent: 2em "1.3 粒径分布参数/span/pp style="text-indent: 2em "Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。/pp style="text-indent: 2em "2 结果与讨论/pp style="text-indent: 2em "2.1 钛白粉粒径分布的测试/pp style="text-indent: 2em "2.1.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title="1.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。/pp style="text-indent: 2em "2.1.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title="2.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。/pp style="text-indent: 2em "2.1.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title="3.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。/pp style="text-indent: 2em "2.1.4 钛白粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。/pp style="text-indent: 2em "2.2 滑石粉粒径分布的测试/pp style="text-indent: 2em "2.2.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title="4.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。/pp style="text-indent: 2em "2.2.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.4 滑石粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。/pp style="text-indent: 2em "2.3 石墨烯粒度分布的测试/pp style="text-indent: 2em "2.3.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title="7.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。/pp style="text-indent: 2em "2.3.2 湿法测试(不加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title="8.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。/pp style="text-indent: 2em "2.3.3 湿法测试(加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title="9.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。/pp style="text-indent: 2em "2.3.4 石墨烯2种测试方法之间的差异/pp style="text-indent: 2em "从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。/pp style="text-indent: 2em "2.4 涂料粒径分析干法和湿法之间的差异/pp style="text-indent: 2em "干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。/pp style="text-indent: 2em "2.5 干法和湿法测试的重复性比较/pp style="text-indent: 2em "2.5.1 干法测试重复性/pp style="text-indent: 2em "重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title="10.webp.jpg"//pp/pp style="text-indent: 2em "2.5.2 湿法测试重复性/pp style="text-indent: 2em "选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title="11.webp.jpg"//pp/pp style="text-indent: 2em "目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。/pp style="text-indent: 2em "影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。/pp style="text-indent: 2em "3 结语/pp style="text-indent: 2em "讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。/pp style="text-indent: 2em "在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。/p
  • 美国DTI公司推出DT-330电声法zeta电位和孔表面电位分析仪
    近日,美国分散技术公司(DTI )推出了新一代DT-330型电声电振法电位分析仪,既可在原浓液环境下测量固体颗粒zeta电位,也可测量块状或粉状固体孔表面电位。同时,公布了最新一代超声法在线粒度分析仪—— DT-500型。 目前,流行的粒度测定方法是激光粒度法(小角激光散射法),但是,这种方法致命的缺点就是必须对样品进行稀释,并且样品最好不带颜色,对光的吸收不能太强。同样,测量zeta电位的动态光散射技术也要求在极稀的分散体系中进行,并且样品粒径不能大于几个微米(一旦颗粒产生定向运动——沉淀,就偏离了该方法的测量原理)。其实,基于同样的瑞利散射原理,如果用声波代替光波,就能够成功地克服上述缺陷。 19世纪七八十年代,亨利、廷德尔和雷诺首次研究了与胶体相关的声学现象--声音在雾中的传播。散射理论的创始人洛德瑞利也将他的散射理论中的书命名为“声音理论”。 他把计算方式主要运用到了声音,而不是用在由光学的研究中。由于理论计算的复杂性, 声学更多的依赖于数学计算而不是其他传统的仪器分析技术。随着计算机快速时代的到来和新理论研究方法的发展,今天很多问题已经在美国DTI公司有了清晰的答案。 享誉世界的DT-1200系列粒度和Zeta电位分析仪, 利用超声波在含有颗粒的连续相中传播时,声与颗粒的相互作用产生的声吸收、耗散和散射所引起的损失效应来测量颗粒粒度及浓度,采用专利电声学测量技术测量胶体体系的Zeta电位。对于高达50%(体积)浓度的样品,无需进行样品稀释或前处理即可直接测量。甚至对于浆糊、凝胶、水泥及用其它仪器很难测量的材料都可用DT-300直接进行测量,粒度适用范围从5nm到1mm。 DT-300超声探头(Zeta Probe)能直接在样品的原始条件下测量zeta电位,允许样品浓度高达50%(体积)。DT-300 结构设计紧凑,外置Zeta电位滴定装置(DT-310).自动滴定装置可自动、快速地判断等电点,可快速得到最佳分散剂和絮凝剂。对粒度和双电层失真进行自动校正。该仪器的软件易于使用,通用性强,非常适用于科研及工厂的优化控制。 在此基础上,DTI公司董事长Andrei Dukhin博士与美国康塔公司首席科学家Matthias Thommes博士通力合作,开创了电声电振效应测量固体孔道内表面zeta电位的专利方法,并用于WAVE系列和DT-300型, 成就了实现两种电位测定的DT-330型。电声电振法理论上没有分析限制,只要固体样品能被某种液体浸润即可进行分析,操作简单。 随着对高浓度在线粒度灵活监测的需求扩大,DTI公司开发了新一代DT-500型在线粒度分析仪,其功能和参数等同于DT-100型超声粒度分析仪,但其样品池采用了一次性的柔性模块(照片上的绿色部分)。它易于安装或取下(几分钟),消除了清洗过程,大大简化维护程序, 降低了应用成本。在样品池顶部和底部的模块组件用于连接到各种不同的管道,可以很容易地根据现场需求进行修改。这种管路修改不会影响仪器的性能。超声发生器和接收器之间的间隙仍然是可自动可调的,其电子控制箱和软件与DT-100是一样的。 该仪器已经应用于美国某制药公司研磨在线监测,并通过了初步的灭菌工序与125℃的蒸汽考验。 美国分散科技公司(DTI)成立于1996年,专注于非均相体系表征的科学仪器业务。 DTI开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 zeta电位、流变学、固体含量、孔隙率,包括CMP浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,药物乳剂等,并可应用于多孔固体。DTI享有7项美国专利,并在ISO参与领导组织超声法粒度分布国际标准和电声法测量Zeta电位国际标准的制定。 DTI从成立之初就与美国康塔仪器公司有着广泛的合作,目前康塔仪器公司负责DTI在欧洲大陆,英国及中国大陆的全部业务,WAVE系列由康塔公司负责销售。 利用DT系列仪器,我们能够分析:l 浓浆中粒度分布l 浓浆Zeta电位l 多孔材料的表面Zeta电位l 等电点l 孔隙率l 高频流变学l 表面活性剂优化l 表面活性剂配伍优化l 非水相和水相电导率l 微流变l 固体含量l 德拜长度 在科研领域, 利用DT系列仪器发表的文献主要集中于如下应用:l 方法验证:利用声学与电声学测定粒度分布和Zeta电位。l 纳米技术:颗粒大小和Zeta电位l 生命科学与制药l 陶瓷l CMP研磨浆液:大颗粒含量l 水泥: zeta电位滴定l 矿浆l 颜料l 在极高离子强度下的Zeta电位(海水环境)l 多孔固体的表面Zeta电位l 涂料l 乳制品:液滴大小和脂肪含量l 乳液和微乳液l 化妆品:纳米粒子含量 (1)仪器可以测量的超声衰减谱远远超过50%(体积),但用于从该数据计算PSD的理论将浓度限制在50%(体积);同样,计算ζ电位的理论限定浓度为40%(体积)。在全范围内,等电点的pH值是准确的,但是,ζ电位的绝对值的降低会使体积分数限定在一定范围内。 (2)为滴定实验,可能有必要使用外部循环泵,以提供试剂与相当粘稠的样品之间充分混合。(3)在计算粒度时,因为声波响应与颗粒移动相关,颗粒黏度实际是非常重要。例如,在凝胶或其他结构化系统中,该“微黏度”应该是显著小于用传统流变仪测得的介质黏度,其所测量的黏度比颗粒黏度大得多的。 (4)为zeta电位测量时的粒度范围可能依赖于颗粒与介质的密度对比度。 欲了解更多信息,请联系jeffrey.yang @ quantachrome.com ,或致电800-810-0515 美国康塔仪器北京代表处http://www.quantachrome.com.cn
  • 【新品发布】丹东百特再出新品纳米粒度电位仪BeNano 90 Zeta
    近日,丹东百特仪器有限公司隆重推出全新BeNano系列纳米粒度及Zeta电位分析仪,该系列由丹东百特历时多年研究,且凝聚校企科研力量打造而成。BeNano系列纳米粒度电位仪包括三个型号:BeNano 90,BeNano Zeta 和BeNano 90 Zeta,其核心产品BeNano 90 Zeta集动态光散射(DLS)、电泳光散射(ELS)和静态光散射技术(SLS)三种技术于一体,既能测量颗粒的粒度和Zeta电位,又能测量聚合物的分子量,可广泛应用于药物及药物释放体系、生命科学和生物制药、油漆油墨和涂料、食品和饮料、纳米材料以及学术领域等。综合各方表现,BeNano 90 Zeta 堪称为一款“精准,智能,值得信赖”的全新纳米粒度及Zeta电位分析仪。BeNano 90 Zeta另外,BeNano系列纳米粒度电位仪具有众多突出特点,主要包括以下几点:(1)高速测试能力:更快的测试速度,所有结果可以随后编辑处理(2)高性能固体激光器光源:高功率、极佳的稳定性、长寿命、低维护(3)智能光源能量调节:根据信噪比,软件智能控制光源能量(4)光纤检测系统:高灵敏度,有效增加信噪比(5)相位分析光散射:准确检测低电泳迁移率样品的Zeta电位(6)可抛弃毛细管电极:极佳的Zeta电位测试重复性,避免较交叉污染(7)毛细管极微量粒径池:3-5μL极微量样品检测和更高的大颗粒测试质量(8)智能结果判断系统:智能辨别信号质量,消除随机事件影响(9)宽泛的温度控制范围:-10℃~110℃ 温控满足用户测试需求(10)高稳定性设计:结果重复性极佳,不需日常光路维护(11)灵活的动态计算模式:多种计算模型选择涵盖科研和应用领域
  • GRIMM EDM系列气溶胶粒径谱仪/在线环境颗粒物监测仪
    2012年5月新推出GRIMM EDM系列气溶胶粒径谱仪/在线环境颗粒物监测仪(德国GRIMM气溶胶技术公司研制生产)。该系列监测仪采用激光散射原理,可同时获得环境大气中PM10、PM2.5、PM1的质量浓度值,并可下载0.25 ~ 32 um范围的31个粒径通道数浓度值。EDM180型在线环境颗粒物/气溶胶粒径谱仪,符合欧洲标准EN 12341 (PM10) 和EN 14907 (PM2.5),并获得美国EPA认证(PM2.5,认证号:EQPM-0311-195)。EDM180型粒径谱仪是目前唯一通过按重量参考认证的光学系统的环境颗粒物监测仪(PM10和PM2.5)。并成为仅有的一款通过认证的能够同时在线监测PM10和PM2.5的分析仪。
  • 安东帕中国携全新纳米颗粒及Zeta电位分析仪亮相上海CPhI
    第十六届世界制药原料中国展(CPhI China 2016)于2016年6月21至23日在上海新国际博览中心拉开帷幕。展会期间,安东帕中国不仅展出了旋光仪、折光仪、密度计、微量粘度计、流变仪、微波样品制备系统等传统的拳头产品,也将LitesizerTM500纳米颗粒及Zeta电位分析仪这个全新产品带到广大制药领域用户面前。  LitesizerTM500纳米颗粒及Zeta电位分析仪  2016年,安东帕LitesizerTM500纳米颗粒及Zeta电位分析仪全新上市。这是一款用于表征溶液中分散的纳米颗粒以及亚微米颗粒的仪器。它可通过测量动态光散射(DLS)、电泳光散射(ELS)和静态光散射(SLS)来测定颗粒尺寸、zeta 电位和分子量。它采用了先进算法及尖端zeta电位测量专利技术:可连续测量透光率以选择最佳样品测试参数 静态光散射(SLS)测量分子量,快速无损 采用DLS颗粒分析法,可轻松解决在单一悬浮液中不同颗粒尺寸的测量问题 采用新型专利(欧洲专利 2735870)cmPALS技术,zeta电位测量的准确性达到最高,所需时间降到最少 而且其一页式的工作流程,大大减轻了实验室负担。另外,LitesizerTM500的一大亮点是其简单而巧妙的软件。安东帕已创建了可将输入参数、结果和分析集中到单个页面上的一页式工作流程:用户可以在数秒内完成试验设置,只需简单按键即可得出所需的分析结果和报告。  这款全新产品可广泛应用于制药、化工、材料及食品各行业内实验室质量控制、质量控制部门以及其他粒度分析领域。  展会同期,安东帕还在Innolab的主题活动上举办了LitesizerTM500纳米颗粒及Zeta电位分析仪的产品宣讲会,为大家呈现了激光粒度仪的用途、优势、参数以及应用。  宣讲会现场  自2006年起的十年来,安东帕中国致力于为中国制药行业的用户量身定制高质量的产品及服务,以确保药品的质量和可追溯性。上海CPhI展会期间,安东帕提供了全面的药物分析解决方案及组合方案,吸引众多用户参观。  安东帕展位  安东帕参展团队
  • TSI公司将举办《粒径谱仪在灰霾观测中的应用》讲座会
    美国TSI公司将于2010-9-21在广州举办《粒径谱仪在灰霾观测中的应用》讲座会 美国TSI亚太公司北京代表处 美国TSI公司将于2010年9月21日在广州举办《粒径谱仪在灰霾观测中的应用》讲座会。我们将邀请华南环境科学研究所和中国气象局热带海洋研究所专家一起研讨珠三角地区的灰霾问题以及TSI的粒径谱仪和浊度仪在灰霾观测中的应用结果。 1. 讲座日期 : 2010-9-21 9:00-16:30 2. 讲座地点:广州润都饭店 广州天河区黄埔大道300号 (86-20)85538388  3. 日程安排: 9:00—9:30 来宾 签到 9:30—10:10 TSI 仪器在气象变化观测中的应用 10:20—11:00 TSI 仪器在灰霾检测中的应用 11:00—11:15 茶歇 11:15—11:50 介绍新型大气气溶胶计数器 12:00—13:30 午餐时间 13:30—14:10 TSI 粒径谱仪和浊度仪在中国气象局热带海洋研究所的应用及TDMA研究 14:20—15:00 TSI粒径谱仪和浊度仪在华南环境科学研究所的应用 15:10—16:30 华南环境科学研究所实验室参观 欢迎大家前来参加我们的技术讲座并聆听我们的各位专家的演讲。 TSI北京代表处 电话: 8610-82515688 传真: 8610-82515699 邮箱: tsibeijing @tsi.com
  • 美国康塔仪器公司推出实时zeta电位分析仪
    颗粒的zeta电位与体系的分散稳定性密切相关,zeta电位是颗粒体系的重要表征。流行的zeta电位测量采用动态光散射技术,但是这种方法在应用上受到极大限制,首先一旦颗粒大于1微米产生定向运动,就超出了该技术的适用范围 其次必须对样品进行稀释至颗粒浓度1000ppm以下。而大多数样品一经稀释状态即已经变化,所测数据不能代表原始状态。微米颗粒的zeta电位测定是使许多学者头痛的问题,现在有了最新的测量手段。  在PittCon 2010 上,美国康塔仪器公司推出图像法实时zeta电位分析仪 Zeta Reader,使上述难题迎刃而解。这种方法基于准确可靠的计算机技术,采用高分辨紫外成像方法,可直接观察到纳米级颗粒,因此无需复杂的相关器,节约了仪器空间。这种技术容易操作,直接照像取样,无论颗粒是否团聚,均可分析颗粒单体。样品可装入任何容器,因此可在线使用。这种仪器最大的设计特点是:  ()不用样品池,直接将样品从容器中泵入电泳池;  ()快速简便,样品进入电泳池后数秒显示结果;  ()一般无需稀释; ()无需光学参数; ()无需密度值; ()可在线应用;  ()可得到如下数字信息:  ()Zeta 电位 Zeta Potential  ()迁移率 Mobility  ()电率 Specific Conductivity  ()样品pH值 Sample pH  ()样品池电压 Cell Voltage  ()样品池温度 Cell Temperature  ()可选粒度分布图像分析  ()可选综合滴定系统  ()可选动态数据储存和图表生成软件  ()记录电泳池图像  ()粒径范围:亮场-1 to 500 微米,与浓度有关;暗场-20nM 以上.  ()样品粒径:自动/手动采样 – 最小25 ml,无上限  ()手动注射: – 5 ml. (1 滴/ 5 ml 蒸馏去离子水中)  ()温度范围:0 到 62oC. Zeta电位测定:0 到 62oC.  ()悬浮介质:水或有机溶剂  ()电导率范围: 10 to 25,000 ES-v/cm.  ()样品浓度: 大约每升 25 to 4000 mg 悬浮固体 欲知详情,请致电美国康塔仪器公司中国代表处:800-810-0515;010-64400522 美国康塔仪器公司――优化颗粒性能测量技术。
  • Vasco Kin原位纳米粒度监测仪强劲来袭
    Vasco Kin原位纳米粒度监测仪强劲来袭 “Vasco Kin原位纳米粒度监测仪”强劲来袭,北京海菲尔格科技有限公司Hiferg Technology全自动化在线监测家族再添新势力。法国CORDOUA Technology是一家致力于先进的纳米体系颗粒尺寸及Zeta电位表征的制造商,拥有独特的专利和创新的技术,与IFPEN法国石油学院,KIT卡尔斯鲁厄理工学院、以及ICS查尔斯萨德龙学院等有紧密的合作,是全球非接触式原位监测和分析纳米尺寸材料的先进制造商。 “Vasco Kin原位纳米粒度监测仪”以广为熟知的DLS动态光散射技术为基石,集成了稳定的光学单元、灵敏的APD检测器和灵活的非浸入式探头,结合专用的分析软件和数学模型,开发出性能卓越的、针对各类纳米体系中颗粒尺寸的原位监测系统。“Vasco Kin原位纳米粒度监测仪”不但保持了传统DLS动态光散射仪器的高灵敏度(粒径范围0.5 nm ~ 10μm)和宽适应性(样品浓度1ppm ~ 40%,视样品而定),还开创性地采用了非接触远程式探头,将DLS技术带入原位过程监测的广泛应用场景,增加了创新的时间关联功能: &bull 时间分辨率:200 ms;&bull 时间切片,可选取监测曲线中的任意时间段进行粒径分析;&bull 高速原始数据采集,实时数据处理;数据可调用不同算法进行再分析&bull 流体动力学分析。相较于传统的实验室检测,“Vasco Kin原位纳米粒度监测仪”的原位过程监测具备众多优势:&bull 超低延时,无需频繁采样,原位监测纳米颗粒的变化过程;&bull 操作简便,非接触式远程式探头,无需批量稀释,无需样品预处理(视样品而定);&bull 适用于各种高温(500-1000度),低温,磁场,高压(100bar),超临界,流动相等应用的过程表征 和动力学监控&bull 方便快捷的和第三方设备连用,如反应釜,SAXS,SANS,HPLC,Microfluid Chip,NMR等…..&bull 测试灵活,可根据样品浓度及透光性调整工作距离和散射角;&bull 适用性好,配备背散射技术,原浓或深色的不透明样品同样适用;&bull 集成化程度高,无运动部件,减少维护,使用成本低;&bull 人性化设计,可更换探头,一机多能,一机多用。“Vasco Kin原位纳米粒度监测仪”可广泛应用于纳米级悬浮体系、各类脂质体、聚合物合成、结晶成核、纳米金属、原油萃取、凝胶质量改进、生物学研究和细胞分析等等,应用领域非常广泛。道达尔,赛诺菲,罗地亚、欧莱雅、CRPP、ENSPCI、INRS、陶氏化学、ARABLAB都是我们的用户。除了“Vasco Kin原位纳米粒度监测仪”外,法国CORDOUAN还提供如下实验室检测设备:&bull AMERIGOTM纳米粒径及Zeta电位分析仪 AMERIGOTM是一款创新的分析仪,用于表征纳米颗粒悬浮液的颗粒尺寸和Zeta电位。 粒度范围:0.5 nm~10 µ m Zeta电位范围:-500~500 mV 样品浓度范围:0.0001%~10%(w/%)&bull VASCOTM纳米粒径分析仪 VASCOTM是一款使用了专利背散射系统的纳米粒径分析仪,可测量无稀释的深色、原浓样品。 粒径范围:0.5 nm~10 µ m 样品浓度范围:0.0001%~40%(%vol)&bull WALLISTM Zeta电位分析仪 WALLISTM是一款基于LDE高级激光多普勒电泳技术的高分辨率Zeta电位分析仪,用于纳米颗粒和胶体的电荷表征,是研究胶体悬浮液的稳定性和纳米颗粒的电泳性能的理想工具。 Zeta电位范围:-500~500 mV 样品浓度范围:0.0001%~10%(w/%)
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 纳米流式检测技术,粒径表征媲美透射电镜——访厦门大学颜晓梅教授
    仪器信息网讯 厦门大学颜晓梅教授团队于2014年9月研制成功第一台纳米流式检测仪原型机,2015年10月第四代原型机研制成功,2016年1月中旬在北京计量科学研究院进行第一次试用,2016年6月第一代科研级纳米流式检测仪完美亮相CYTO 2016国际流式学术大会,2016年10月专业版软件NF Profession 1.0研发成功。纳米流式技术发展处于什么阶段?纳米流式技术成果商业化过程有哪些故事?国产仪器自主创新存在哪些痛点和不足?近期,仪器信息网在ACCSI2021现场特别采访了厦门大学颜晓梅教授,请她就上述问题进行了分享。三年实现快速成果转化,粒径表征媲美透射电镜目前,流式细胞仪在生命科学、临床医学等领域是重要的分析检测工具之一。据颜晓梅教授介绍,纳米流式检测技术是基于流式细胞技术,将检测下限推进到纳米尺度。颜晓梅教授团队首创性地结合瑞利散射和鞘流单分子荧光检测技术,研发成功具有自主知识产权的纳米流式检测技术,实现单个纳米颗粒(7-500 nm)以及外泌体、病毒、细菌、亚细胞器等天然生物纳米颗粒的粒径及其分布、颗粒浓度、和生物化学性状的高通量多参数同时表征。该技术的粒径表征分辨率媲美透射电镜,检测速率高达每分钟上万个颗粒,同时兼备电子显微镜难以实现的生物化学性状分析功能,填补了国际空白。项目团队积极推进技术产业化,成立了厦门福流生物科技有限公司,仅用3年时间就将“纳米流式检测技术”研发成果转化为“中国智造”。 厦门福流生物 纳米流式检测仪点击查看参数详情科学仪器研发平台离不开交叉学科人才培养在采访中,颜晓梅教授强调了复合型科研人才的培养对于国产科学仪器的发展至关重要,科学仪器研制的过程通常是创新技术密集(光、声、电等技术)、管理复杂的活动,需要不同学科的交叉融合,尤其成果转化过程也需要金融、市场等背景支持。因此培养兼具科研、工程和管理能力的复合型人才对于国产科学仪器成果转化具有推动作用。提高纳米医药业核心竞争力,纳米流式未来可期据颜晓梅教授介绍,纳米流式检测技术不仅应用于传统的生命科学、临床医学领域,还在食品药品安全以及能源材料等领域发挥重要作用。并且纳米流式检测仪产业化项目技术密集、附加值高、成长空间大、带动作用强,是纳米医药业核心竞争力的集中体现。 据悉,厦门福流生物科技有限公司生产的纳米流式检测仪目前已经出口到全球顶尖的医疗机构、科研单位和高科技企业,如梅奥诊所(Mayo Clinic,2018年全美排名榜首的医院)、美国德州大学安德森癌症中心(MD Anderson Cancer Center,全球排名第一的肿瘤科研与临床研究机构)、约翰霍普金斯医学院、美国国立卫生研究院(NIH)、外泌体诊断和治疗应用开发领军企业Codiak Biosciences公司、瑞士联邦理工学院(欧陆第一理工大学)、诺和诺德(世界领先的生物制药公司)、瑞典哥德堡大学、德国马尔堡大学、悉尼大学、台湾大学、复旦大学等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制