当前位置: 仪器信息网 > 行业主题 > >

晶体电光调制实验仪

仪器信息网晶体电光调制实验仪专题为您提供2024年最新晶体电光调制实验仪价格报价、厂家品牌的相关信息, 包括晶体电光调制实验仪参数、型号等,不管是国产,还是进口品牌的晶体电光调制实验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合晶体电光调制实验仪相关的耗材配件、试剂标物,还有晶体电光调制实验仪相关的最新资讯、资料,以及晶体电光调制实验仪相关的解决方案。

晶体电光调制实验仪相关的论坛

  • 晶体管知识简介

    晶体管知识简介

    晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。晶体管作为一种可变开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关(如Relay、switch)不同处在于晶体管是利用电讯号来控制,而且开关速度可以非常之快,在实验室中的切换速度可达100GHz以上。http://ng1.17img.cn/bbsfiles/images/2012/12/201212201403_414109_1841898_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212201403_414110_1841898_3.jpg

  • 美制造出超小型单电子晶体管

    据美国物理学家组织网4月19日(北京时间)报道,由美国匹兹堡大学领导的一个研究小组日前宣布,他们制造出了一种核心组件直径只有1.5纳米的超小型单电子晶体管。该装置是制造下一代低功耗、高密度超大规模集成电路理想的基本器件,具有极为广泛的应用价值。相关论文发表在最新一期《自然·纳米技术》杂志上。  单电子晶体管是用一个或几个电子就能记录信号的晶体管,其尺度都处于纳米级别。随着集成电路技术的发展,电子元件的尺寸越来越小,由单电子晶体管组成的电路日益受到研究人员的青睐,其高灵敏度的特性和独特的电气性能使其成为未来随机存储器和高速处理器制造材料的有力竞争者。  据研究人员介绍,这种新型单电子晶体管的核心组件是一个直径只有1.5纳米的库伦岛,另外还有一两个电子负责对信号进行记录。负责该项研究的匹兹堡大学文理学院物理学和天文学教授杰里米·利维称,该晶体管未来可用于研制具有超密存储功能的量子处理器。这种处理器将能轻松应对那些让目前全世界所有的计算机同时工作数年也计算不完的复杂问题。同时因其中央的库伦岛可以被当作人工原子,该晶体管还可用来制造自然界原本并不存在的新型超导材料。  利维和其同事将这种超小型单电子晶体管命名为“SketchSET”。原因在于这项技术受到了一种名为蚀刻素描画板(Etch A Sketch)的启发,这种晶体管的制造原理也与其类似。在实验中,通过原子力显微镜,研究人员用一种极为尖锐的电导探针就能在钛酸锶晶体界面上用1.2纳米厚的一层铝酸镧“蚀刻”出所需的晶体管。  据介绍,SketchSET是第一个完全由氧化物制成的单电子晶体管,并且其库伦岛内能容纳两个电子。经过库伦岛的电子数量可以是0、1或2,而不同数量的电子将决定其具有怎样的导电性能。  利维表示,这种单电子晶体管对电荷极为敏感,且所使用的氧化物材料具有铁电效应,该晶体管还可制成固态存储器,即便没有外部电源,该晶体管存储器也不会丢失此前存储的信息。此外,这种晶体管对压力变化也极为敏感,根据这一特性可用其来制成纳米尺度的高灵敏度压力传感设备。  1959年一个芯片上只能放一个晶体管,今天家用计算机微处理器上的晶体管数量已达11.7亿,是半导体材料支撑起了电子计算机时代。下一代计算机如何发展?无论是基于单电子晶体管的量子计算机,还是基于蛋白质技术的生物计算机,我们还是要从新材料上找答案。当前已经有多种单电子晶体管研制出来,也许这些方案将来都派不上用场,然而每次实验都会向成功迈进一步,最后开启计算机新时代的新材料一定会在这些实验中脱颖而出。

  • 【分享】晶体结构

    一、研究晶体结构的重要意义  自然界中的固体物质绝大部分都是晶体,只有极少数是非晶体。初中化学课本在溶液部分讲述结晶过程时指出:在结晶过程中形成的具有规则外形的固体叫做晶体。高中化学课本在分别讲述四类晶体的特点以前,先讲了所有晶体在结构上的共同特征。它指出:“晶体为什么具有规则的几何外形呢?实验证明:在晶体里构成晶体的微粒(分子、原子、离子等)是规则地排列的,晶体的有规则的几何外形是构成晶体的微粒的有规则排列的外部反映”。这里所说的“实验”主要指有X射线来测定分析晶体结构的实验。高中化学课本下册“金属键”一节中就指出,金属晶体的内部结果是用X射线进行研究发现或证实的。其它晶体也是如此。用X射线测定晶体结构的科学叫做X射线晶体学,它和几何晶体学、结晶化学一道,对现代化学的发展起了很大作用。它们的重要性可概括为以下四点:(1)结晶化学是现代结构化学的一个十分重要的基本的组成部分。物质的化学性质是由共结构决定的,所以结构化学包括结晶化学,是研究和解决许多化学问题的指南。结晶化学的知识在研制催化剂中的应用就是一例。(2)由于晶体内的粒子排列得很有规则,所以晶态是测定化学物质的结构最切实易行的状态,分子结构的实际知识(如键长、键角数据)的主要来源是晶体结构。很多化合物和材料只存在于晶态中,并在晶态中被应用。(3)它们是生物化学和分子生物学的支柱。分子生物学的建立主要依靠了下列两个系列的结构研究:一是从多肽的α螺旋到DNA的双螺旋结构;二是从肌红蛋白、血红蛋白到溶菌酶和羧肽酶等的三维结构。它们都是应用测定晶体结构的X射线衍射方法所得的结果。(4)晶体学和结晶化学是固体科学和材料科学的基石。固体科学要在晶体科学所阐明的理想晶体结构的基础上,着重研究偏离理想晶态的各种“缺陷”,这些“缺陷”是各种结构敏感性能(如导电、扩散、强度及反应性能等)的关键部位。材料之所以日新月异并蔚成材料科学,相当大的程度上得力于晶体在原子水平上的结构理论所提供的观点和知识。二、晶体的通性和分类  在介绍晶体结构研究的发展简史以前,需要先说明一下晶体中微粒是怎样有规则地排列的,并用晶体的这个本质特征来解释晶体的一些通性。应用X射线研究晶体内部结构的大量实验证明,一切晶体在结构上不同于非晶体(以及液体、气体)的最本质的特征,是组成晶体的微粒(离子、原子、分子等)在三维空间中有规则的排列,具有结构的周期性。所谓结构的周期性,是指同一种微粒在空间排列上每隔一定距离重复出现。换句话说,在任一方向排在一直线上的相邻两种微粒之间的距离都相等,这个距离称为周期。如果每一个微粒用一个点代表,则所有这些点组成一个有规则的空间点阵。过一点在不同方向取三根联结各点的直线作为三个坐标轴,用三组平行于坐标轴的直线将所有的点联结起来,则将空间点阵划成所谓空间格子,空间格子的最小单位是一个平行六面体。晶体的空间格子将晶体截分为一个个内容(组成粒子、粒子的排布、粒子间的作用力的性质等)完全等同的基本单位──晶胞。晶胞的形状、大小与空间格子的平行六面体单位相同。晶体可以看作无数个晶胞有规则地堆积而成。在非晶体中,微粒的排列没有规则,不存在空间点阵结构。  与非晶体不同,晶体具有以下几个通性:(1)晶体有整齐、规则的几何外形。例如,只有结晶条件良好,可以看出食盐、石英、明矾等分别具有立方体、六角柱体和八面体的几何外形。这是晶体内微粒的排布具有空间点阵结构在晶体外形上的表现。对晶体有规则的几何外形进行深入研究以后,人们发现不同晶体有不同程度的对称性。晶体中可能具有的对称元素有对称中心、镜面、旋转轴、反轴等许多种。玻璃、松香、橡胶等非晶体都没有一定的几何外形。(2)晶体具有各向异性。一种性质在晶体的不同方向上它的大小有差异,这叫做各向异性。晶体的力学性质、光学性质、热和电的传导性质都表现出各向异性。例如,石墨晶体在平行于石墨层方向上比垂直于石墨层方向上导电率大一万倍;云母片沿某一平面的方向容易撕成薄片等。这是由于在晶体内不同方向上微粒排列的周期长短不同,而微粒间距离的长短又直接影响它们相互作用力的大小和性质。非晶体由于微粒的排列是混乱的,表现为各向同性。(3)在一定压力下,晶体有固定的熔点,非晶体没有固定的熔点,只有一段软化温度范围。这是由于晶体的每一个晶胞都是等同的,都在同一温度下被微粒的热运动所瓦解。在非晶体中,微粒间的作用力有的大有的小,极不均一,所以没有固定的熔点。  晶体的分类在几何晶体学上和在结晶化学上是不同的。在几何晶体学上,按照晶体的对称性将晶体分为七个晶系、32种宏观对称类型、230种微观对称类型(可参看大学《结构化学》教材有关部分)。在晶体化学中,如高中化学课本所说,是根据组成晶体的微粒的种类及微粒之间相互作用力的性质,将晶体首先分为金属晶体、离子晶体、原子晶体和分子晶体四大类。关于离子晶体和金属晶体结构研究的历史过程,以及与另两类晶体有关的共价键理论的历史发展,分别在本章其它几节中介绍。下面主要介绍几何晶体学(其主要内容是空间点阵理论)和X射线晶体学建立和发展的史实。

  • 晶体、非晶体等概念的分别

    首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚!自然界中物质的存在状态有三种:气态、液态、固态 固体又可分为两种存在形式:晶体和非晶体 晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。晶体共同特点:均 匀 性: 晶体内部各个部分的宏观性质是相同的。 各向异性: 晶体种不同的方向上具有不同的物理性质。 固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。 规则外形: 理想环境中生长的晶体应为凸多边形。 对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。 对晶体的研究,固体物理学家从成健角度分为离子晶体 原子晶体 分子晶体 金属晶体 显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶 英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,也就没有晶界一说。也有人曾跟我说过非晶可以看成有晶界组成。 那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶。人们都说,强扭的瓜不甜,既然都是抑制成核长大,那么从热力学上看,很多非晶,纳米晶应该不是稳态相。所以你作出非晶、纳米晶了,人们自然会问你热稳定性如何。后来,又有一个牛人叫卢柯,本来他是搞非晶的,读研究生的时候他还一直想把非晶的结构搞清楚呢(牛人就是牛人,选题这么牛,非晶的结构现在人们还不是很清楚)。他想既然我把非晶做出来了,为什么我不可以把非晶直接晶化成纳米晶呢,纳米晶热啊,耶,这也是一种方法,叫非晶晶化法。既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制。如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同的性能,各向异性,谁都知道啊。当然还有其他的特性。所以很多人也在天天捣鼓着,弄些单晶来。现在不得不说准晶。准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。 斑竹也提到过孪晶,英文叫twinning,孪晶其实是金属塑性变形里的一个重要概念。孪生与滑移是两种基本的形变机制。从微观上看,晶体原子排列沿某一特定面镜像对称。那个面叫栾晶面。很多教科书有介绍。一般面心立方结构的金属材料,滑移系多,已发生滑移,但是特定条件下也有孪生。加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好的文章。前两年,马恩就因为在铝里面发现了孪晶,发了篇Science呢。卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜的强度,又保持了铜良好导电性(通常这是一对矛盾),也发了个Science.这年头Science很值钱啊。像一个穷山沟,除了个清华大学生一样。现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。纳米晶,微晶是从晶粒度大小角度来说的,在大一点的晶粒,叫粗晶的。在从衍射上看,一般很难作纳米晶的单晶衍射,因为最小物镜光栏选区还是太大。有做NBED的么,不知道这个可不可以。孪晶在衍射上的表现是很值得我们学习研究的,也最见标定衍射谱的功力,大家可以参照郭可信,叶恒强编的那本《电子衍射在材料科学中应用》第六章。准晶,一般晶体不会有五次对称,只有1,2,3,4,6次旋转对称(这个证明经常作为博士生入学考试题,呵呵)。所以看到衍射斑点是五次对称的,10对称的啊,其他什么的,可能就是准晶。

  • 【原创】晶体管特性图示仪

    晶体管特性图示仪是一种可以检测晶体管的特性参数的电子测量仪器。晶体管特性图示仪操作简便,主要有六个旋钮,每个旋钮代表不同的功能作用。它们分别是用来测试调控电流开关、电压开关、峰值电压开关、功耗限制电阻、零电压、零电流开关。晶体管特性图示仪的工作原理大致是这样的:通过示波管的内刻度可直接读测半导体管的低频直流参数,通过摄影装置可记录所需的特性曲线;根据需要还可以测试隧道二极管、场效应管、VMOS管、达林顿管及可控硅等半导体材料制做的器件。晶体管特性图示仪可同时在示波器管荧光屏上显示两只同类型半导器件的特性曲线。晶体管特性图示仪的具体参数如下:集电极扫描电压0-500V 二端测试电压0-5KV、 集电极电流1μA-500mA/div 、具有脉冲阶梯信号。

  • 【网络会议】Bruker新一代小分子晶体学和蛋白质晶体学解决方案

    【会议讲座】Bruker新一代小分子晶体学和蛋白质晶体学解决方案:PHOTON II CPAD探测器和IμS 3.0光源【会议时间】2016年03月16日 14:00:00【主讲老师】张振义博士,Bruker AXS SCD单晶应用科学家,负责中国区的小分子晶体学和蛋白质晶体学的技术支持工作。在晶体学领域具有10年的研究经历,涵盖蛋白质晶体学,蛋白质和药物小分子复合物以及小分子晶体结构的研究。【会议简介】本次讲座将为您带来最新单晶衍射技术的精彩介绍,让您的工作变得更加得心应手,效率更高。布鲁克公司一直致力于在光源和探测技术上革命性的创新,在材料研究、晶体结构研究等领域给用户提供了一系列解决方案,引领者单晶衍射仪的潮流。最新推出新一代PHOTON II探测器,自动化程度更高,易学易用,在提升用户工作效率方面有着惊人的进步。该探测器使用了最前沿的用于四代同步辐射光源的CPAD(电荷积分像素阵列)技术,将实验室探测器的技术提升到了一个新的高度:最大的单片有效区域,最高的动态范围,单光子的检测效率。同时布鲁克公司推出新一代,光强度媲美转靶的微焦斑光源:IμS 3.0。这些新技术的应用将为您的晶体学的实验带来质的飞跃。【会议报名】http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1798-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名截止时间:2016年03月15日 13:303、报名及参会咨询:QQ群—171692483

  • 【求助】用高氯酸+硝酸分解植物样品,定容后溶液中有白色晶体,这白色晶体是什么物质?

    [em09509]用5ml硝酸+高氯酸(5:1)去分解0.5g植株样品,之后消解液有呈黄色的,有呈无色的。定容至50ml,在容量瓶中发现有白色晶体(味精形状)。不知道这白色晶体是什么?直接上机的话怕它堵塞物化器。想过滤吧又 怕白色晶体中含有待测成分。若把稀释倍数放大的话,个别元素的含量又太低,所以不能再稀释。该试验是分析植株中K,P,Ca,Mg,Cu,Fe,Mn,Zn,S,B等。请各位老师帮助:1,白色的晶体是什么?2,16个样品同时放在消解炉上消解,加入的酸的量,植物样品及消解条件都一样,为什么会呈现出不同的颜色?

  • 超快普克尔斯盒介绍以及用途

    1111型[b]超快普克尔斯盒[/b]和1112型[b]超快电光调制器[/b]是目前全球转换最快的美国lasermetrics公司[b]超快电光Q开关[/b],上升沿时间可达40皮秒,非常适合[b]超快激光脉冲斩波和超快激光脉冲拾取[/b],锁模激光器脉冲中[b]拾取皮秒脉冲[/b]或[b]拾取飞秒激光脉冲[/b].[url=http://www.felles.cn/keerhe/chaokuai.html][img=超快普克尔盒]http://www.felles.cn/Upload/chaokuai.jpg[/img][/url]其中1111KD*P普克尔斯盒使用一块晶体, 上升时间为40皮秒,光程15mm,而1112KD*P型具有两块晶体,上升时间为85皮秒[i].[/i],光程是22mm, 这样就最大程度地减小时间色散.这两款超快普克尔盒,超快电光Q开关同样使用最优质的KD*P晶体制造而成, 晶体安装在配备熔炉石英窗口的密闭铝制外壳里, 也可使用折射率匹配的液体以减少内部光学界面的反射.[b]超快普克尔斯盒超快电光Q开关[/b]产品参数:型号:FP-1111-KD*P材料:KD*P晶体晶体个数:1光程:15mm净孔径:2.5mm半波电压: 约6.5KV@1064nm反射系数 tr=140ps: 5%上升时间:50ps终端阻抗: 50欧姆阻抗 使用1米长50欧姆阻抗的线连接到调制器上尺寸:光束方向 83W x 48H x 50.8 L mm重量:312g型号:FP-1112-KD*P材料:KD*P晶体晶体个数:2光程:22mm净孔径:2.5mm半波电压: 约3.3KV@1064nm反射系数 tr=140ps: 5%上升时间:100ps终端阻抗: 50欧姆阻抗 使用1米长50欧姆阻抗的线连接到调制器上尺寸:光束方向 83W x 48H x 50.8 L mm重量:312g[b]超快普克尔盒,[/b]超快电光调制器,超快电光Q开关由[url=http://www.felles.cn/][b]孚光精仪[/b][/url]进口销售,[url=http://www.felles.cn/][b]孚光精仪[/b][/url]是中国领先的进口(光学)精密仪器旗舰型服务商!精通光学,服务科学,先后为北京大学,中科院上海光机所,哈尔滨工业大学,中国工程物理研究院,山东大学等单位提供这种优质进口的[b]:[/b]超快普克尔盒,超快电光调制器,超快电光Q开关[b]。更多型号:http://www.felles.cn/keerhe.html[/b]

  • 【转帖】美研制出新式超导场效应晶体管

    2011年04月29日 来源: 科技日报 作者: 刘霞  本报讯(记者刘霞)据美国物理学家组织网4月28日(北京时间)报道,美国科学家使用自主设计的、精确的原子逐层排列技术,构造出了一个超薄的超导场效应晶体管,以洞悉绝缘材料变成高温超导体的环境细节。发表于当日出版的《自然》杂志上的该突破将使科学家能更好地理解高温超导性,加速无电阻电子设备的研发进程。  普通绝缘材料铜酸盐在何种情况下从绝缘态跃迁到超导态?这种跃迁发生时,会发生什么?这些问题一直困扰着物理学家。探究这种跃迁的一种方法是,施加外电场来增加或减少该材料中的自由电子浓度,并观察其对材料负载电流能力的影响。但要想在铜酸盐超导体中做到这一点,还需要构建成分始终如一的超薄薄膜以及高达100亿伏/米的电场。  美国能源部物理学家伊万·博若维奇领导的布鲁克海文薄膜研究小组之前曾使用分子束外延技术制造出这种超导薄膜,该技术在一次制造一个原子层时还能精确控制每层的厚度。他们最近证明,用分子束外延方法制造出的薄膜内,单层酮酸盐能展示出未衰减的高温超导性,他们用该方法制造出了超薄的超导场效应晶体管。  作为所有现代电子设备基础的标准场效应晶体管内部,一个半导体材料将电流从设备一端的“源”电极运送至另一端的“耗”电极;一个薄的绝缘体则作为第三电极“门”电极负责控制场效应晶体管。当在绝缘体上施加特定的门电压时,该门电极会打开或关闭。但没有已知的绝缘体能对抗诱导该酮酸盐内部高温超导性所需的高电场,因此,标准场效应晶体管的设计并不适用于高温超导场效应晶体管。  博若维奇团队用一种能导电的液体电解质来分离电荷。当朝电解液施加外电压时,电解质中的正电荷离子朝负电极移动,负电荷离子朝正电极移动,但当到达电极时,离子会突然停止移动,就像撞到“南墙”一样。电极“墙”负载的等量相反电荷之间的电场能超过100亿伏/米。  新研制的超导场效应晶体管中,高温超导体化合物模型(镧-锶-铜-氧)的临界温度可达30开氏度左右,为其最大值的80%,是以前纪录的10倍。科学家可使用该晶体管来研究与高温超导性有关的物理学基本原理。  超导场效应晶体管的应用范围很广泛。基于半导体的场效应晶体管能耗大,而超导体没有电阻也无能耗。另外,原子逐层排列制造出的超薄结构也使科学家能更好地使用外电场来控制超导性。  博若维奇表示,这仅仅只是一个开始,高温超导体还有很多秘密有待探寻,随着其神秘“面纱”逐一揭开,将来能制造出超快节能的高温超导体。   总编辑圈点:  辛亥革命爆发、乔治五世加冕、普利策逝世……这是历史书上的1911年。但同年,一个平常的4月天里,荷兰一所实验室内人类首次发现了超导体,于今恰好百年。这种进入超导态就会电阻趋0的材料,尚未露真容,却承载了一个世纪的无热损和强磁场之梦,直接涉及超导电性的诺奖就有4起,1987年临界温度的速提甚至成为了科技史之奇迹。于是,人们谈起那年4月的荷兰小城,会说:超导百年,对人类社会的影响,不亚于和它同年发生之事。

  • 帮看下这个高分辨照片—是非公度调制结构吗?愁!

    是碳酸钙中的球文石晶体,六方的!衍射照片显示是【110】带轴的大家帮分析一下,两个图结合起来。我以前从来没有接触过调制结构主要是想把这两个图分析清楚,分析调制结构和其衍射主要关注些什么或者推荐相关书籍也好太感谢了![img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606041943_19566_1797952_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606041952_19567_1797952_3.gif[/img]

  • 【分享】原始行星盘中晶体形成机制

    原始行星盘被认为是恒星系统(包括我们的太阳系)前身的星际气体和尘埃云,它们大部分由无定形的硅酸盐颗粒组成。然而,在彗星和陨石(代表早期太阳系)中所发现的、可以在年轻恒星的光谱中找到踪迹的颗粒却包括大的晶体颗粒,它们一定在高于1000K的温度下经历了退火或凝固过程,尽管包裹它们的材料从未经过这样的加热。这一明显的异常一直是很多人讨论的问题,也是理论研究的课题。2009年5月14日的Nature杂志上发表的两篇论文也加入了这一讨论。Abraham等人报告了年轻的太阳类恒星EX Lupi的爆发光谱中的中红外特征,他们将这些特征归因于镁橄榄石晶体。这些特征在EX Lupi最近的爆发之前不存在,所以这可能是对一个天体中的晶体形成过程所作的第一个直接观测结果。由来自一次恒星爆发的热量所引发的退火反应,是以前没有对原始行星盘考虑过的一个晶体形成来源。Dejan Vinkovic提出了有可能产生晶体的另一个新机制:来自一个原始行星盘的红外光在理论上可将超过1微米大的颗粒从内盘中击出,在那里,它们被恒星辐射压力向外推,同时从盘上滑过。在达到一定的半径时,温度会太低,不能对具有一定大小和固体密度的颗粒产生足够大的红外辐射压力支持,因而这些颗粒会重新回到盘中。

  • 【讨论】垂直ATR各种晶体区别

    有个问题想问下大家,我用的是Thermo的红外,常见的ATR晶体有Ge,金刚石,ZnSe,KRS-5(溴碘化铊),我看参数因为折射率不一样,适用的波数范围也不一样,好像KRS-5性能最好,最近买了一块锗晶体,银白色的,主要是因为锗晶体硬度高,不容易划伤,但是为什么同样的样品量测试,KRS-5和ZnSe晶体出来的峰差不多,但锗晶体都不出峰,要样品量增加很多才会出峰,应该是检测限也有区别阿.有人知道是为什么吗?

  • 【资料】"眼科晶体及其种类

    什么是"眼科晶体及其种类?(一)PMMA人工晶体 人们眼球内有一个能把平行光线曲折的组织结构叫晶体(前述),而且它能随人们意志随时变动屈光能力,使你看远看近都清楚。这种能力叫调节。当白内障手术时,要把病变混浊不透明的晶体摘除,术后要补足这种屈光的损失,以前用眼镜代替,后来科学家们制造了一种按病人所需类型不同的人造晶体,英文称Intraocular Lens(缩写为IOL),意思是眼球内的一个透镜,我国早期翻译为人工晶体。人工晶体的材料主要是PMMA(聚丙基丙烯酸甲酯),是通称的有机玻璃。 50年来的使用,仍然被认为是最理想的,相容性好,几乎不降解。数十年于眼内仍然保持完好的形态、光洁度、透明性、分辨率。由于PMMA质地偏硬, 80年代制造IOL时袢的材料用聚丙烯制做,后来发现仍然不如PMMA稳定,同时人们想出办法对PMMA进行处理,改变了分子排列序列,也能变软而富有弹性,所以近来的人工晶体光学部和袢是不同处理的PMMA,光学部直径一般为5.0;5.5;6.0;6.5;7.0mm,祥长12一13.5mm。  (二)折叠式人工晶体 随着超声乳化手术的开展与普及,为了把人工晶体自很小切口植入,于1984年人们设计制造了可以折叠或卷曲的晶体,近十年来才得以应用并不断改进。现用可折叠式晶体的材料主要有:硅酮(Silicone)、水凝胶(Hydrogel)、丙烯酸(Acrylate)三种。这三种材料生物相容性都很好,光学部直径6.0mm,但可由3.2一4.0mm切口植入眼内。所以,植入折叠晶体者术后效果好。缺点是价格比普通晶体贵。  (三)多焦人工晶体 人工晶体植入后,由于无调节力,看远清楚看近不清楚(老花现象),反之看近清楚看远需要近视镜补足,这是美中不足。为了克服此缺陷,30年来,人们研制应用过多焦人工晶体,其中主要分为二种类型:1、多区多焦型,有二区、三区、四区等,即把人工晶体分为中心区,周围环状区,各部位屈光度不同,一般差2.5D,形成二个焦点,一个看近,一个看远。此类晶体的缺点是远近视力受瞳孔大小、环境光线强弱的影响;2、衍射多焦型,此种晶体是根据Huygens光的波性理论为基础,在人工晶体后表面上刻了30条深2um的小槽,克服了分区多焦晶体受瞳孔大小变动的影响。但是上述二种晶体的共同缺点是必需将进入眼内光线的能量分为二部分,用一半看近,一半看远,远近都不十分清楚,可使视敏度受一定影响。所以,在临床上只有少数医师和患者应用,未成为主流。  关于人工晶体植入的位置, Ride1y1949年的设计是后房型,因当时屈光力计算和预测所限及手术后巨大散光而陷入低谷。后来,人们试制并应用了前房型,虹膜面型及虹膜夹型,由于并发症多,效果差,80年代回到了当年的设想一一后房型。又经近几年改进,现在的人工晶体是囊袋内植入的后房型,即完全回到了“上帝”造人时给予的位置。 2。 隐形眼镜材料晶体类型 切口大小 特点 合资晶体 5.5mm PMMA材料,硬性不可折叠进口单片晶体 5.5mm PMMA材料,硬性不可折叠折叠晶体 2.8mm 灭烯酸酯,软性,可折叠,手术切口小,眼内固定良好.蓝光滤过晶体 2.8mm 可减少有害光线进入眼内,保护视网膜,可预防老年性黄斑变性 多焦点晶体 2.8mm 可提供远,中,近全程视力.减少验光,减少患者术后对眼镜的依赖 可调节晶体. 2.8mm 术后具有一定的调节预定力,达到调节看远看近的效果 有晶体眼屈光性晶体 保持了晶体的调节力预定, 对中高度近视预测性高.

  • 【史料】晶体结构分析及其发展(范海福)

    物质的各种宏观性质源出于本身的微观结构。探索物质结构与性质之间的关系,是凝聚态物理、结构化学、材料科学、分子生物等许多学科的一个重要研究内容。晶体结构分析,是在原子的层次上测定固态物质微观结构的主要手段,它与上述众多学科有着密切的联系。就其本身而言,晶体结构分析是物理学中的一个小分支。这主要研究如何利用晶态物质对X-射线、电子、以及中子的衍射效应来测定物质的微观结构。晶体结构分析服务于许多不同的学科,因而许多学科的发展都对晶体结构分析产生深刻的影响。另一方面,晶体结构分析有自己独立的体系,它本身的发展又对所服务的学科起着促进作用。 晶体结构分析是伦琴发现X-射线以后创站的最重要学科之一。它奠基于物理学的几项重要进展。其中包括1895年W. C. Roentgen发现X-射线,1912年M. von Laue发现晶体对X-射线的衍射,1927年C. J. Davisson和G. P. Thomson发现晶体对电子的衍射,以及1931年E. Ruska建造第一台电子显微镜。上述几项重大的物理学进展使人类掌握了在原子层次上研究物质内部结构的手段,它们分别获得1901、1914、1937和1986年的诺贝尔物理学奖。其中,1901年伦琴获得的诺贝尔奖还是历史上第一个诺贝尔物理奖。通过研究物质内部结构与性质的关系,晶体结构分析有力地促进了各相关学科的发展。晶体结构分析的发展,是一个不断完善自身和不断扩大应用的过程。诺贝尔将的年谱记录了晶体结构分析历史上的重大事件并展示了它与其他学科相互作用所产生的丰硕成果。 晶体结构分析的方法主要有两大类。这就是以X-射线衍射为代表的衍射分析方法和以电子显微术为代表的显微成像方法。电了显微成像也可以认为是两上相继的电子衍射过程。因此,可以说衍射分析是晶体结构分析的核心。用衍射分析方法测定晶体结构的理论依据,在于晶体结构同它的衍射效应之间存在着互为Fourier变换的关系。这里说的衍射效应,是指从晶体向各个方向发出的衍射的振幅和相位。从衍射实验可以记录下各个方向上衍射波的振幅。但是在目前以及可见的将来,还不容易找到有普遍意义的实用方法来记录由晶体发出的衍射波的相位。因此要想从衍射效应的Fourier变换解出晶体结构,必须先设法找回"丢失了的"相位。这就是晶体学中的"相位问题",它一直是研究晶体结构分析方法的关键问题。 紧接着Laue发现X-射线衍射,Bragg父子 (W. H. Bragg和W. L. Bragg) 就迅速建立了用X-射线衍射方法测定晶体结构的实验手段和理论基础。这使人类得以定量地观测原子在晶体中的位置。为此他们两人同获1915年的诺贝尔物理学奖。晶体结构分析最初用于一些简单的无机化合物。对碱金属卤化物结构的研究导至W. L. Bragg提出原子半径的概念。不久Bragg又将晶体结构分析应用于研究硅酸盐以及金属和合金。硅酸盐晶体结构分析的工作为硅酸盐结构化学提供了最早的实验基础,而有关金属和合金的工作则作物理冶金、金属物理、以及相平衡图的研究推上了一个新的台阶,使有关工作深入到原子的层次。 晶体结构分析在研究无机化合物上取得成功,引起人们对有机物尤其是生命物质内部结构的兴趣。英国从二十年代中期就开始研究有机物晶体结构。但是过了十年多仍未见有重大的突破。原因是当时的分析技术和方法还很原始。于是迎来了三、四十年代晶体结构分析方法和技术大发展的时期。如前所述,晶体结构分析中所谓"相位问题"。早期的晶体结构分析用以解决相位问题的方法是所谓尝试法。其要点是:先根据已尼掌握的线索猜想出一个结构模型,再从这个模型计算出相应的一组理论衍射强度,然后同实验所犁衍射强度作比较并据此对模型进行修改。。上述步骤须经多次反复,直至理论和实验的衍射强度得以吻合。用这样的"方法"来测定晶体结构,说明科学试验却更像艺术创作。它显然适应不了测定复杂的晶体结构的需要。早在二十年代后期,英国的W. L. Bragg和J. M. Cork为解决相位问题分别提出了所谓重原子法和同晶型置换法。重原子法的大意是:假定晶体中含有少数原子序较大的原子,即所谓重原子,而且它们的位置是已知的,这时就可以计算出重原子对相位的贡献并以此代替由全体原子贡献的相位。用这样的相位配以由实验测得的衍射振幅就可以近似地计算出一幅代表晶体结构的电子密度图。同晶型置找法的要点则是如果能够制备出待测晶体的重原子衍生物,而且衍生物的晶体与母体晶体是"同晶型"这时如果已知重原子的位置,就可以根据母体和衍生物两者在衍射强度上的差异来推算相应的衍射相位。这两种方法后来在一系列有机物以及蛋白质的晶体结构分析中作出了关键性的贡献。但是它们的诞生后相当长的一段时间里并未发挥很大的作用。原因是它们都依赖于已知的重原子位置而当时还没有便确定重原子位置的方法。1934年,美国的A. L. Patterson提出用衍射振幅的平方为系数以计算Fourier级数,从而绕开相位问题。Patterson指出,这样一个级数是晶体中电子密度分布函数的自卷积,在一定的条件下可以从中提取出有关晶体中原子位置,首先是重原子位置的信息。这个用衍射振幅平方计算的Fourier级数后来被称作Patterson函数,相应的分析方法称作Patterson法。经过几年发展之后,Patterson法和以它为基础的重原子法、同晶型置换法等就成了X-射线单晶体结构分析中用以处理相位问题最有效的手段。再加上实验技术和结构精修技术的改进,晶体结构分析达到了一个机关报的不平并终于打开了有机物和生命物质的大宝藏。 美国L. Pauling领导的小组花了十几年的时间,测定了一系列的氨基酸和肽的晶体结构,从中总结出形成多肽链构型的基本原则并在1951年推断多肽链将形成a-螺旋构型或折叠层构型。这是通过总结小分子结构规律预言生物大分子结构特征的非常成功的范例。为此Pauling获得1954年的诺贝尔化学奖。英国D. Hodgkin领导小组测定了一系列重要的生物化学物质的晶体结构,其中包括青酶素和维生素 。她因此获得1964年的诺贝尔化学奖。美国W. N. Lipscomb研究硼烷结构化学的工作获得1975年的诺贝尔化学奖。所有这些获奖工作都是以晶体结构分析为研究手段。可以说,没有晶体结构分析本身在理论和技术上的长期积累,就不会有上面几个诺贝尔奖。英国的J. D. Bernal早在三十年代中期就开始用X-射线衍射研究蛋白质的结构。但是真正取得进展是在W. L. Bragg主持Cavendish实验室之后。这里还有一段插曲。原来在E. Rutherford主持下,英国剑桥大学的Cavendish实验室是国际上原子物理学的研究中心。随着学科的发展、国力的变化、加之剑桥大学本身的局限,及至1938年W. L. Bragg接任时Cavendish的地位已开始下降。Bragg上任后果断地顺应了形势,主动放弃了"原子物理国际中心"的地位,改而抓住当时物理学上的两项新应用:X-射线衍射分析用于生物以及雷达技术用于天文学。这一举措使英国得以在创建分子生物和射电天文学上"领导世界新潮流"。 分子生物学发展史上具有划时代意义的发现中,有两项出自Cavendish实验室。第一项是1953年J. D. Watson和F. H. C. Crick根据X-射线衍射实验建立了脱氧核糖核酸 (DNA) 的双螺旋结构。它把遗传学的研究推进到分子的水平。这项工作获得了1962年的诺贝尔生理学和医学奖。另一项是用X-射线衍射分析方法测定肌红蛋白和血红蛋白晶体结构的工作。它始于三十年代,前后延续了二十多年并牵涉到为数众多的科学家。这两个蛋白质的晶体结构终于在1960年被测定出来。这项工作不仅首次揭示了生物大分子内部的立体结构,还为测定生物大分子晶体结构提供了一种沿用至今的有效方法--多对同晶型置换法。它以原有的同晶型置换法为基础,但是在实验技术和分析理论上都加入了崭新的内容。作为这项工作的代表人物,J. C. Kendrew和M. F. Perutz获得1962年的诺贝尔化学奖。看到成就的辉煌,不由得也想起探索的艰辛:1947年,战后的英国,科研经费拮据。为了给正在从事蛋白质晶体结构分析的J. C. Kendrew和M. F. Perutz寻求资助,W. L. Bragg找到英国医学研究委员分 (MRC)。他告诉MRC的主管:"…如果能获得资助,我们的研究结果会有助于在分子层次上了解生命的运作。不过,即便如此,要想在医学上产生任何一点效益,大概还得有一段很长的时间"。MRC当时的主管承担了这一风险,建立了一个只包含Kendrew和Perutz两个人的MRC研究小组。这一慷慨的支持,过了十五年之后才开始得到回报。顺便说一句:那个MRC小组现在已经变成拥有上百名学者的、世界著名MRC分子生物学实验室。在Kendrew和Perutz两人之后由于测定蛋白质晶体结构而获诺贝尔奖的还有美国的J. Deisenhofer和德国的R. Huber和H. Michel。他们因测定了光合作用中心的三维结构而获得1988年诺贝尔化学奖。

  • 【分享】晶体结构分析及其发展

    范海福 中国科学院,物理研究所,北京,100080物质的各种宏观性质源出于本身的微观结构。探索物质结构与性质之间的关系,是凝聚态物理、结构化学、材料科学、分子生物等许多学科的一个重要研究内容。晶体结构分析,是在原子的层次上测定固态物质微观结构的主要手段,它与上述众多学科有着密切的联系。就其本身而言,晶体结构分析是物理学中的一个小分支。这主要研究如何利用晶态物质对X-射线、电子、以及中子的衍射效应来测定物质的微观结构。晶体结构分析服务于许多不同的学科,因而许多学科的发展都对晶体结构分析产生深刻的影响。另一方面,晶体结构分析有自己独立的体系,它本身的发展又对所服务的学科起着促进作用。 晶体结构分析是伦琴发现X-射线以后创站的最重要学科之一。它奠基于物理学的几项重要进展。其中包括1895年W. C. Roentgen发现X-射线,1912年M. von Laue发现晶体对X-射线的衍射,1927年C. J. Davisson和G. P. Thomson发现晶体对电子的衍射,以及1931年E. Ruska建造第一台电子显微镜。上述几项重大的物理学进展使人类掌握了在原子层次上研究物质内部结构的手段,它们分别获得1901、1914、1937和1986年的诺贝尔物理学奖。其中,1901年伦琴获得的诺贝尔奖还是历史上第一个诺贝尔物理奖。通过研究物质内部结构与性质的关系,晶体结构分析有力地促进了各相关学科的发展。晶体结构分析的发展,是一个不断完善自身和不断扩大应用的过程。诺贝尔将的年谱记录了晶体结构分析历史上的重大事件并展示了它与其他学科相互作用所产生的丰硕成果。 晶体结构分析的方法主要有两大类。这就是以X-射线衍射为代表的衍射分析方法和以电子显微术为代表的显微成像方法。电了显微成像也可以认为是两上相继的电子衍射过程。因此,可以说衍射分析是晶体结构分析的核心。用衍射分析方法测定晶体结构的理论依据,在于晶体结构同它的衍射效应之间存在着互为Fourier变换的关系。这里说的衍射效应,是指从晶体向各个方向发出的衍射的振幅和相位。从衍射实验可以记录下各个方向上衍射波的振幅。但是在目前以及可见的将来,还不容易找到有普遍意义的实用方法来记录由晶体发出的衍射波的相位。因此要想从衍射效应的Fourier变换解出晶体结构,必须先设法找回"丢失了的"相位。这就是晶体学中的"相位问题",它一直是研究晶体结构分析方法的关键问题。 紧接着Laue发现X-射线衍射,Bragg父子 (W. H. Bragg和W. L. Bragg) 就迅速建立了用X-射线衍射方法测定晶体结构的实验手段和理论基础。这使人类得以定量地观测原子在晶体中的位置。为此他们两人同获1915年的诺贝尔物理学奖。晶体结构分析最初用于一些简单的无机化合物。对碱金属卤化物结构的研究导至W. L. Bragg提出原子半径的概念。不久Bragg又将晶体结构分析应用于研究硅酸盐以及金属和合金。硅酸盐晶体结构分析的工作为硅酸盐结构化学提供了最早的实验基础,而有关金属和合金的工作则作物理冶金、金属物理、以及相平衡图的研究推上了一个新的台阶,使有关工作深入到原子的层次。 晶体结构分析在研究无机化合物上取得成功,引起人们对有机物尤其是生命物质内部结构的兴趣。英国从二十年代中期就开始研究有机物晶体结构。但是过了十年多仍未见有重大的突破。原因是当时的分析技术和方法还很原始。于是迎来了三、四十年代晶体结构分析方法和技术大发展的时期。如前所述,晶体结构分析中所谓"相位问题"。早期的晶体结构分析用以解决相位问题的方法是所谓尝试法。其要点是:先根据已尼掌握的线索猜想出一个结构模型,再从这个模型计算出相应的一组理论衍射强度,然后同实验所犁衍射强度作比较并据此对模型进行修改。。上述步骤须经多次反复,直至理论和实验的衍射强度得以吻合。用这样的"方法"来测定晶体结构,说明科学试验却更像艺术创作。它显然适应不了测定复杂的晶体结构的需要。早在二十年代后期,英国的W. L. Bragg和J. M. Cork为解决相位问题分别提出了所谓重原子法和同晶型置换法。重原子法的大意是:假定晶体中含有少数原子序较大的原子,即所谓重原子,而且它们的位置是已知的,这时就可以计算出重原子对相位的贡献并以此代替由全体原子贡献的相位。用这样的相位配以由实验测得的衍射振幅就可以近似地计算出一幅代表晶体结构的电子密度图。同晶型置找法的要点则是如果能够制备出待测晶体的重原子衍生物,而且衍生物的晶体与母体晶体是"同晶型"这时如果已知重原子的位置,就可以根据母体和衍生物两者在衍射强度上的差异来推算相应的衍射相位。这两种方法后来在一系列有机物以及蛋白质的晶体结构分析中作出了关键性的贡献。但是它们的诞生后相当长的一段时间里并未发挥很大的作用。原因是它们都依赖于已知的重原子位置而当时还没有便确定重原子位置的方法。1934年,美国的A. L. Patterson提出用衍射振幅的平方为系数以计算Fourier级数,从而绕开相位问题。Patterson指出,这样一个级数是晶体中电子密度分布函数的自卷积,在一定的条件下可以从中提取出有关晶体中原子位置,首先是重原子位置的信息。这个用衍射振幅平方计算的Fourier级数后来被称作Patterson函数,相应的分析方法称作Patterson法。经过几年发展之后,Patterson法和以它为基础的重原子法、同晶型置换法等就成了X-射线单晶体结构分析中用以处理相位问题最有效的手段。再加上实验技术和结构精修技术的改进,晶体结构分析达到了一个机关报的不平并终于打开了有机物和生命物质的大宝藏。 美国L. Pauling领导的小组花了十几年的时间,测定了一系列的氨基酸和肽的晶体结构,从中总结出形成多肽链构型的基本原则并在1951年推断多肽链将形成a-螺旋构型或折叠层构型。这是通过总结小分子结构规律预言生物大分子结构特征的非常成功的范例。为此Pauling获得1954年的诺贝尔化学奖。英国D. Hodgkin领导小组测定了一系列重要的生物化学物质的晶体结构,其中包括青酶素和维生素 。她因此获得1964年的诺贝尔化学奖。美国W. N. Lipscomb研究硼烷结构化学的工作获得1975年的诺贝尔化学奖。所有这些获奖工作都是以晶体结构分析为研究手段。可以说,没有晶体结构分析本身在理论和技术上的长期积累,就不会有上面几个诺贝尔奖。 英国的J. D. Bernal早在三十年代中期就开始用X-射线衍射研究蛋白质的结构。但是真正取得进展是在W. L. Bragg主持Cavendish实验室之后。这里还有一段插曲。原来在E. Rutherford主持下,英国剑桥大学的Cavendish实验室是国际上原子物理学的研究中心。随着学科的发展、国力的变化、加之剑桥大学本身的局限,及至1938年W. L. Bragg接任时Cavendish的地位已开始下降。Bragg上任后果断地顺应了形势,主动放弃了"原子物理国际中心"的地位,改而抓住当时物理学上的两项新应用:X-射线衍射分析用于生物以及雷达技术用于天文学。这一举措使英国得以在创建分子生物和射电天文学上"领导世界新潮流"。 分子生物学发展史上具有划时代意义的发现中,有两项出自Cavendish实验室。第一项是1953年J. D. Watson和F. H. C. Crick根据X-射线衍射实验建立了脱氧核糖核酸 (DNA) 的双螺旋结构。它把遗传学的研究推进到分子的水平。这项工作获得了1962年的诺贝尔生理学和医学奖。另一项是用X-射线衍射分析方法测定肌红蛋白和血红蛋白晶体结构的工作。它始于三十年代,前后延续了二十多年并牵涉到为数众多的科学家。这两个蛋白质的晶体结构终于在1960年被测定出来。这项工作不仅首次揭示了生物大分子内部的立体结构,还为测定生物大分子晶体结构提供了一种沿用至今的有效方法--多对同晶型置换法。它以原有的同晶型置换法为基础,但是在实验技术和分析理论上都加入了崭新的内容。作为这项工作的代表人物,J. C. Kendrew和M. F. Perutz获得1962年的诺贝尔化学奖。看到成就的辉煌,不由得也想起探索的艰辛:1947年,战后的英国,科研经费拮据。为了给正在从事蛋白质晶体结构分析的J. C. Kendrew和M. F. Perutz寻求资助,W. L. Bragg找到英国医学研究委员分 (MRC)。他告诉MRC的主管:"…如果能获得资助,我们的研究结果会有助于在分子层次上了解生命的运作。不过,即便如此,要想在医学上产生任何一点效益,大概还得有一段很长的时间"。MRC当时的主管承担了这一风险,建立了一个只包含Kendrew和Perutz两个人的MRC研究小组。这一慷慨的支持,过了十五年之后才开始得到回报。顺便说一句:那个MRC小组现在已经变成拥有上百名学者的、世界著名MRC分子生物学实验室。在Kendrew和Perutz两人之后由于测定蛋白质晶体结构而获诺贝尔奖的还有美国的J. Deisenhofer和德国的R. Huber和H. Michel。他们因测定了光合作用中心的三维结构而获得1988年诺贝尔化学奖。

  • DSC 测量晶体转化曲线没有变化?

    请问各位高人,我做DSC实验,0-600度,NaFO4晶体在400度左右晶体转化,XRD已经证明转化了,但是DSC结果是一条平线,DTA也是没有任何变化,我做了三次都一样,快疯了,谁能指点我一下,先谢谢了。

  • 【求助】有关X光谱仪中的分光晶体

    老师给了我一个课题是生长大尺寸的PET晶体一直不知道这个PET是做什么的后来才知道是用在X射线光谱仪中的色散元件,称为分光晶体请问大侠们对分光晶体的了解多少啊

  • 【讨论】XDR晶体衍射峰相对强度不一样原因

    我在实验室制备了同一物质的几个样品,红外完全一致,纯度也完全一样,因结晶温度控制不完全一样,得到颗粒大小稍有不同,经XDR晶体衍射后,得到的峰值一样,但相对强度不能完全一致,想请教高人分析一下,引起相对强度不一样的原因可能是什么,这样晶型还是同一晶型么?

  • 【分享】为什么晶体有熔点,而非晶体没有?

    构成物体的大量分子(含原子、离子和分子,下同)永不停息地运动着,分子运动越剧烈,分子的能量就越大,物体的内能就越大,宏观上就表现为温度越高。物体的内能除了包括分子运动的动能外,还包括分子间因存在的相互作用力而具有的势能。分子的运动和势能的总和就是物体的内能。 构成固体的分子,都有固定的平衡位置,但由于这些分子的排列方式不同,固体又可以分为晶体和非晶体两大类。如果组成固体的分子杂乱堆积,没有一定规则,这样的物质叫做非晶体,非晶体内部的分子是无规则的均匀排列。如果分子的排列有一定的规则,在三维空间里作周期性的排列,这样的物质叫晶体。 一般来说,当晶体从外界吸收热量时,其内部分子的平均动能增大,温度也开始升高,但仍保持有规则排列。继续吸热达到一定的温度(熔点)时,其分子运动的剧烈程度可以破坏其有规则的排列,于是晶体开始变成液体。在晶体从固体向液体的转化过程中,吸收的热量用来破坏晶体分子的有规则的排列。晶体熔化的过程就是破坏分子间的规则排列,增大分子间距离的过程,这个过程需要克服分子间的吸引力而做功,这就是晶体熔化之所以会吸收热量的原因。晶体熔化时吸收的热量是用来克服分子引力做功,晶体熔化时吸收的热量全部转化为分子的势能,分子的动能并没有改变,所以温度不变。当晶体完全熔化后,随着从外界吸收热量,温度又开始升高。 非晶体由于分子的排列不规则,吸收热量后不需要破坏分子的有规则排列,只用来提高平均动能,所以当从外界吸收热量时,非晶体的温度不断升高,并由硬变软,最后变成液体。 特殊情况:冰熔化的过程是破坏分子间的规则排列,减小分子间距离的过程,这个过程需要克服分子间的斥力而做功,熔化时吸收的热量全部转化为分子的势能,使分子间的势能增大,分子的动能并没有改变,所以温度也保持不变。除冰外,还有灰铸铁等也属于这种情况。

  • lamda 950测晶体透射率流程

    新手求助,我想用lamda 950测YAG晶体镀膜在1000-1200nm波段的透射率,但测量几次下来在1100nm波段以上透射率一直是负的(正常应该是比0稍大一点),不知道是什么原因。我先说一下我的测量流程(仪器属于借用,仪器所有者也对950一知半解,另外他们买950是用来测溶液的,无法提供更多帮助):最开始的时候我是在他们指导下测的,设置好参数,当时根本不知道两条光路是有区别的,一直认为只用外面的光路就行。光路上什么都不放,测了一遍空白,再重新走一遍,测的一条直线,然后外侧样品光路放上晶体,测到一条曲线。第二次测得时候,我在外侧样品光路的出光孔与样品位置之间放一块光阑,因为我的晶体尺寸是3*3的,远远小于光路的截面积,但我不确定是否要放,在那之后我都是会在光路中准备一个圆孔光阑的。第三次的时候那边实验室另一个老师又跟我讲了一遍流程,增加了对测空白的认识,认识到里面的光路是参考光路,原理上就是要两条光路对比的。所以我在里面的参考光路也加了一块光阑,还准备了未镀膜的YAG晶体作为参考。我放完两块光阑后测了一次空白,然后在参考光路上放未镀膜的YAG晶体,样品光路上放镀膜的YAG晶体,测得一条曲线。第四次的时候,我在放完光阑后,两边各方一块未镀膜的YAG晶体测量一遍空白,然后样品光路替换成镀膜的YAG晶体,测的曲线。最近我上网查lamda950的操作流程,看到还有一个"autozero"背景校准步骤,但也有人说调零是针对某一特定波长来说的,整的我也蒙了。请各位大神帮我看看我的测量步骤有什么不对的地方。

  • 【分享】F我国晶体缺陷研究的先驱者之一——冯端 物理学家

    我国晶体缺陷研究的先驱者之一——冯端 物理学家1923年6月11日生于江苏苏州,原籍浙江绍兴。1946年中央大学物理系毕业后留校任物理系助教。1949年起历任南京大学物理系助教、讲师、副教授,1978年任教授。1984-1988年任南京大学研究生院院长,1986-1995年任固体微结构物理国家重点实验室主任,兼学术委员会主任迄今。1991-1995年任中国物理学会理事长,1992-1996年任国家科委攀登计划项目“纳米材料科学”首席科学家,1980年当选为中国科学院院士(学部委员)1993年当选为第三世界科学院院士。冯端在凝聚态物理领域特别是晶体缺陷研究方面做了大量开拓性的工作,澄清了金属和氧化物晶体中缺陷的组态和起源,开辟了非线性光学晶体微结构化新领域,首次观测到铁电相变中的微畴结构和铌酸锂晶体非公度相变中公席错的结构及其演变。他为推动中国凝聚态物理 的研究和发展起到了重要作用。冯端为国家培养了一批德才兼备的当术带头人,在创建并领导南京大不固体微结构物理国家 重点实验室方面取得了令人称道的成绩。冯端60年代初即选择体心立方结构的难熔金属为突破口,采用浮区区熔法显示位错的技术,澄清了体心立方金属中位错的类型及其组态等问题。1978年后,又以在激光技术中获得重要应用的复杂氧化物单晶体为对象,采用多种实验手段,如浸蚀法、应力双折射貌相术、X射线貌相术、电子显微镜衍衬像及高分辨率像等观测技术,对这些晶体中的位错、畴界、生长条纹、生长区界面、包裹体等缺陷的类型、分布进行研究,并追溯其生长和相变中的起源和 探索其可能的物理效应。基于对铌酸锂等晶体铁电畴深入研究,掌握了制备具有周期性畴结构的晶体生长技术,于1980年与合作才一起制备了周期为微米量级的聚片多畴铌酸锂晶体,在实验上首次全面验证了诺贝尔奖得主布鲁姆伯根(N.Bloembergen)关于非线性光学的准位相匹配理论,实现了铌酸锂晶体的倍频增强效应,从而在国际上领先开拓了非线性光学晶体微结构化这一新领域。随后,又在不能位相匹配的钽酸锂晶体中实现了准位相匹配,并研究了周期畴结构的形成机制。1996年4月中美“用于非线性光学及相关领域的微结构晶体”学术会议在南京召开,表明国际上已承认他的领先工作。冯端还研究了晶体缺陷在结构相变中的作用,首次观测到铁电相变中的微畴结构和铌酸锂晶体非公度相变中公度错的结构及其演变;并用X射线貌相术及同步辐射貌相术阐明畴界的成像规律及追踪其在铁电和铁弹相变中的行为。他倡导了金属超晶格的研究,特别是在周期金属超格中取得了具有独创性的成果。近年来,他领导了有关纳米材料科学的研究工作,在金 属的磁性和半导体的光学性质方面,取得不少具有独创性的成果。这些科研成果使冯端获得多次国家奖励,其中包括1982年国家自然科学奖二等奖(排名第一),1995年国家自然科学奖三等奖(排名第五)及1996年何梁何利科技进步奖(物理)。

  • 【资料】晶体的类型与性质

    一、一周知识概述(一)、所讲内容及目的  1、晶体的类型  2、离子晶体、分子晶体、原子晶体的性质及模型  3、氢键  4、金属晶体的结构和性质(二)、与前后周的衔接关系  本单元内容是在原子结构和元素周期律以及化学键知识的基础上介绍的,理论性较强,比较抽象,所以配了很多插图,便于理解,并能提高兴趣。重点要掌握四类晶体的概念,晶体类型与性质的关系。二、重点知识归纳及理解(一)、晶体的类型1、晶体:具有一定的几何形状,其构成粒子按某种规律排列,占有一定空间的纯净物。 (二)、离子晶体、分子晶体、原子晶体、金属晶体1、概念(1)离子晶体:阴阳离子间通过离子键结合而成的晶体。(2)分子晶体:分子间以分子间作用力相结合的晶体。(3)原子晶体:相邻原子间以共价键相结合而形成空间网状结构的晶体。(4)金属晶体:通过金属阴离子与自由电子之间的较强作用形成的单质晶体。2、四种类型晶体的比较(三)、四种晶体结构模型1、离子晶体NaCl和CsCl晶体结构特征(1)在NaCl晶体中,每个Na+同时吸引着6个Cl-,每个Cl-也同时吸引着6个Na+。故Na+、Cl-个数比为1:1,在整个晶体中不存在单个的NaCl分子。NaCl不是表示分子组成的分子式,只是表示晶体内离子个数比的化学式。(2)CsCl晶体中,每个Cs+同时吸引着8个Cl-。每个Cl-也同时吸引着8个Cs+。故而CsCl是只表示离子个数比的化学式。2、CO2分子晶体结构模型  在CO2晶体结构中,每个质点都是一个小分子,该晶体为立方体结构。每个立方体顶点上都有一个CO2分子。在立方体的六个面心也有一个CO2分子存在。每个CO2分子与12个CO2分子相邻。 3、金刚石晶体结构模型  在金刚石晶体中,每个碳原子都以共价键与相邻的4个碳原子结合四面体结构。六个碳原子形成一个六元环,每个碳原子又被12个环共用。这些正四面体(或六元环),向三维空间延伸得到立体网状晶体。4、金属共同物理性质的解释(1)金属晶体具有金属光泽和颜色:这是由于自由电子能对可见光进行选择性吸收和反射从而使金属晶体具有不同的颜色和光泽。(2)金属的导电性、导热性  导电性:由于自由电子在外加电场的作用下产生定向移动形成电流。故金属容易导电。  导热性:自由电子在运动时与金属离子相互碰撞,在碰撞过程中发生能量交换,使整块金属达到同样的温度。(3)金属的延展性:当金属受到外力时,晶体中的各原子层就会发生相对滑动,由于金属离子与自由电子之间的相互作用没有方向性,受到外力后相互作用没有被破坏,故金属只发生形变而不断裂。使金属具有良好的延展性。三、难点知识剖析(一)、晶体溶沸点高低比较(1)异类晶体分子晶体。  一般情况下:原子晶体(熔沸点)>离子晶体>分子晶体。  例如:SiO2>NaCl>CO2(2)同类晶体  原子晶体共价键键能→键长→原子半径(3)组成和结构相似的分子,分子间作用力随相对分子质量增大而增大。晶体的熔沸点升高。例如:F2<Cl2<Br2<I2,CO2<CS2。(4)分子间形成氢键时,分子间作用力增大熔沸点反常偏高。例如:H2O>H2Te>H2Se>H2S。(5)一般情况下(同类型的金属晶体),金属晶体的熔点由金属阳离子半径、所带的电荷数、自由电子的多少而定。阳离子半径越小,所带的电荷越多,自由电子越多,相互作用就越大,熔点就会相应升高。例如:熔点K<Na<Mg<Al,Li>Na>K>Rb>Cs。(二)、氢键(1)形成条件:原子半径较小,非金属性很强的原子x(N、O、F)与H原子形成极强性共价键,与另一个分子中的原子半径较小,非金属很强的原子y(N、O、F),在分子间H与y产生较强的静电吸引,形成氢键。(2)表示方法:x-H…y-H(x,y可相同或不同,一般为N、O、F)。(3)氢键能级:比化学键弱很多,但比分子间作用力稍强。(4)氢键作用:使物质有较高的熔沸点(例:HF、H2O、NH3等);使物质易溶于水(例:NH3、C2H5OH、CH3COOH等);解释一些反常现象(例:水结冰体积膨胀、水和乙醇的恒沸混合物等)。 [img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102390_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102392_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102394_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102396_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102397_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102398_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102399_1605343_3.gif[/img]

  • 【求助】分光晶体问题请教

    请问各位高手,波长色散型仪器的分光晶体2d值是否都不一样?比如LiF(220)晶体 有的是0.285nm,有的甚至是5.0nm,这是为什么?还有(220)又有什么特殊的意义?我现在需要测试Na—Fe,选用哪些晶体好?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制