纠缠光子对探测系统

仪器信息网纠缠光子对探测系统专题为您提供2024年最新纠缠光子对探测系统价格报价、厂家品牌的相关信息, 包括纠缠光子对探测系统参数、型号等,不管是国产,还是进口品牌的纠缠光子对探测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纠缠光子对探测系统相关的耗材配件、试剂标物,还有纠缠光子对探测系统相关的最新资讯、资料,以及纠缠光子对探测系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

纠缠光子对探测系统相关的厂商

  • 深圳市檀臻科技有限公司 Tangent Optics Co.,Ltd檀臻科技专注于光电探测领域,与全球顶级光电仪器及器件厂商合作,致力于为物理光学、生物光子学、化学材料分析、纳米光子学等领域提供优质产品和服务,并不断积累经验为科学研究者和高科技企业提供成像及光谱相关解决方案。目前我们代理的国外仪器、设备及系统生产商产品均为各自领域内的技术领先产品:Cobolt:单纵模、窄线宽、高功率DPSS激光器,多波长激光器HüBNER:OPO激光器,激光合束器,太赫兹成像产品Becker & Hickl: TCSPC单光子计数器,荧光寿命成像-FLIM系统id Quantique:TCSPC单光子计数器,SPAD, 近红外InGaAs SPAD,超导纳米线探测器,量子传感Semrock:高性能荧光滤光片, 拉曼滤光片,激光反射镜,窄带滤光片Princeton Instruments:科学级制冷型CCD,X-ray CCD , EMCCD, ICCD 各种研究级光谱探测与影像探测系统Energetiq:超高亮度,宽光谱LDLS光源SuperLum:超辐射发光二极管,OCT领域首选低相干光源SmartAct:尖端的微米、纳米移动控制系统,机械手,真空、低温系统用移动台
    留言咨询
  • 深圳市汇成探测科技有限公司始建于2007年是一家专业从事金属探测器研发、生产、销售为一体的企业。公司严格依照ISO9001国际质量标准体系的要求,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和保证体系。目前公司主营品种齐全有地下可视成像仪、可视地下金属探测器、远程地下金属探测器、探盘式地下金属探测器、手持金属探测器。品质彰显价值,服务缔造信誉。为广大客户提供更优质的服务,公司以“专业、信誉、质量第一、用户至上”为经营宗旨,以高品质的产品与服务满足客户的梦想。追求卓越是我公司致力追求的目标。我们更坚信:有了您的支持和我们不断的努力,我们与社会各界同仁携手并进,开拓创新,共创美好未来。
    留言咨询
  • 东莞市嘉乐仕金属探测设备有限公司是一家专业金属探测器,金属探测仪,金属检测仪,金属检测器,食品金属探测器,金属分离器,x光机,x射线异物检测仪的集研发、生产、销售于一体的民营高科技企业.经过多年的经营发展和科技上的不断创新,已成为中国最大的金属探测器生产厂家之一,嘉乐仕凭借优质的产品,卓越的技术和完善的服务,产品遍及祖国各地,并远销美洲,欧洲,非洲,中东,东南亚等国际市场。   东莞市嘉乐仕金属探测设备有限公司以“诚信是我风格,质量是我生命“ 为宗旨,视用户为“上帝”,一贯秉承“质量第一、顾客满意,持续改进,争创一流”的方针,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和质量保证体系,且采取有效的市场保护措施,确保为每个用户提供最优质的产品和最完善的服务。   展望未来,嘉乐仕将一如继往的秉承”敬业,诚信,融合,创新“的企业精神,研制出更好的产品,提供更好的服务,树立更好的形象,愿与各界新老朋友进行更广泛的合作,共创辉煌!   嘉乐仕热忱欢迎企事业单位前来参观考察,洽商合作,愿与您携手共创更辉煌的明天! 联系人:卢生15907693763(微信同号)QQ:2777469253 欢迎来电咨询!官网:www.jls668.net
    留言咨询

纠缠光子对探测系统相关的仪器

  • 小型量子纠缠源实验系统上海昊量光电推出一款商业化小型量子纠缠源实验系统。这款小型量子纠缠源实验系统是一套完整的产生和分析偏振纠缠光子对的装置。它的设计结合了量子光学的新成果,易于大学老师及研究人员使用。这套装置完全匹配高等院校量子实验应用,也可以集成到现代科学实验和商业应用中。小型量子纠缠源实验系统的核心采用自发参量下转换过程生产偏振纠缠光子对。光纤耦合单光子探测器结合偏振滤波器探测光子对,分析偏振方向以及验证相关性。小型量子纠缠源实验系统包含一个计数器和符合计数模块记录单光子事件,并显示相应的计数率。关键特性:高准确度偏振纠缠光子对产生与分析验证贝尔不等式违背实验完备系统量子现象亲身动手研究学习容易使用,无需专业技能要求定制化配置方式应用实验(请查看参考文献):光粒子性/量子随机产生 Franson干涉 光波粒二象性/量子擦除 HOM干涉+HBT测量 系统配置:光纤耦合偏振纠缠光子源两个硅基雪崩二极管准直模块(含辅助低功率激光模块)集成符合逻辑单元的三通道计数器两个偏振旋转光学支撑架控制和读出电路模块主要技术参数标准型高计数型单一计数率10kHz50kHz符合计数率1kHz5kHz纠缠质量S2.2S2.2工作波长810nm810nm泵浦激光功率15mW50mW相位匹配TyPe I and TyPe IITyPe I and TyPe II
    留言咨询
  • 1550nm纠缠光子源 400-860-5168转2831
    1550nm纠缠光子源电信波长的高亮度独立量子纠缠光子对源,高性能、紧凑且易于使用的独立双光子源。仅用5mW 的泵浦功率,它的光谱亮度就超过 250000 光子/秒/秒。且在室温下工作的独立量子光子源,在C波段产生正交偏振的频率纠缠光子。在周期性极化铌酸锂ppln波导(准相位匹配-QPM)中,通过自发参量下转换(SPDC)产生光子对。是量子信息技术的理想选择。该纠缠源基于台式设计,将温度可调的PPLN波导晶体与波长稳定的激光源结合在一起。通过USB接口和专有软件接口控制激光泵浦功率和晶体内部温度,以高精度调整相位匹配。 可实现大于250000 pair photons/s的光谱亮度。精心的设计使得该纠缠源使用方便,它提供两种控制模式,一是前面板控制,二是电脑图形界面软件控制。我们同时还提供DLL文件以方便您使用LabVIEW, C++, and Visual basic等语言进行控制或二次开发。 photon pair generation - type Il中心波长1550 nm +/- 10 nm双光子带宽2 nm有效成对率250 000 pairs/sHeralded efficiencyz35%g(0) factor0.01Coincidence to Accidental ratio10 000双光子干涉可见度 :- Frequency- Polarization 99% 99%波长稳定性20 pm中心波长可调性+/- 2 nm输入/输出 - 设备- 环境1550 nm OutFC/APC for PM 1550 fiberOptical Pump OutFC/APC for PM HI780 fiberOptical Pump InFC/APC for PM HI780 fiber功耗40W尺寸 (LxWxH)250 x 280x 70 mm3重量4.5 kg工作温度0°C to 30°C纠缠光子是展示量子物理原理和新量子信息应用的一种有前途的方式。例如,纠缠光子允许在几百公里内开发量子密钥分发协议。在生物成像应用中,纠缠光子光源可以产生原始的无色散测量因此,对这种光子源的非经典性质的操纵对于开发非常新的量子应用具有巨大的前景。该近红外纠缠源的设计精良,结构紧凑,软件调教舒适,是您进行蕞苛刻的学术和工业量子研究的必备分析工具!
    留言咨询
  • 俄罗斯Scontel公司(Superconducting Nanotechnology)是世界著名的超导探测器制造厂商,以生产超快响应速度、超高灵敏度的超导探测器而闻名,其超导单光子探测器()可覆盖可见光和近红外。产品介绍:Sconel公司生产的超导单光子探测系统基于光纤耦合的NbN超导材料,提供多独立通道(最多至4通道)。由于超导探测器需要低温环境,Scontel公司提供两种制冷系统:Type 1:无制冷剂系统,此制冷系统不需要循环液氦制冷,适用于那些希望避免操作液氦制冷的用户。此系统的优势在于只用供电就可以进行制冷,并且可以连续工作几个月。Type 2:内置标准杜瓦瓶液氦制冷装置。系统关键参数:时间抖动:≤50ps暗计数率:≤10cps计数率:≥100MHz (停止时间≤10ns)通道数:1-4原始输出电压:≤150mV输出电压信号模式:TTL,ECL,LVDS产品优点:无寄生脉冲光纤耦合 无偏差可连续操作产品应用:单光子探测器普遍应用于通信、量子信息、荧光和拉曼光谱学领域,特别是量子信息技术和微光技术最关键的器件之一。超导单光子探测技术是基于NbN超导材料的单光子探测技术,其量子效率、暗计数率和计数率远高于传统的单光子探测器,它们的出现势必给单光子测量相关科学带来巨大的影响。瞬渺科技(香港)有限公司Rayscience Optoelectronic Innovation Co., Ltd 地址:上海市闵行区都会路2338号总部一号21号5楼电话: ,传真:E-mail: Web:
    留言咨询

纠缠光子对探测系统相关的资讯

  • 多自由度光场的共振输出,获取连续变量高维纠缠
    量子纠缠是量子信息中的核心资源,它已经广泛应用到量子测量、量子通信以及量子计算领域。纠缠态的产生、发展和创新极大地推动了第二次量子革命的发展。随着量子信息技术的发展,多模、大尺度的连续变量量子态成为研究的发展方向,以满足大容量量子通信、分布式及多参数、容错量子计算的需求。为了满足量子计算需求和构建量子网络,需要获得大尺度纠缠态。目前,研究人员基于光场时间、空间或频率结构模式,制备出了可观数目的光场纠缠,并已经实现了单自由度复用的连续变量量子通信,展现了增强信道容量的前景。而进一步扩展纠缠数目,需要对多个自由度的同时调控技术,构建连续变量高维纠缠光场。为解决上述问题,山西大学量子光学与光量子器件国家重点实验室的郜江瑞团队通过色散、像散补偿技术和多模参量控制技术,实现了光学参量振荡器中多自由度光场的共振输出,获得了同时具有频率梳、自旋和轨道角动量纠缠的连续变量高维纠缠。并基于其中产生的高维纠缠态,演示了空间-频率复用的量子密集编码协议。相关研究成果发表于Photonics Research 2022年第12期。如图所示,通过光学参量下转换过程产生的纠缠光子对具有多个物理自由度。关联光子A,B具有对称“能级”,相反的轨道角动量和相互垂直的偏振。在实验中,量子关联的测量通过可独立选择的一对参考光场,在平衡零拍探测系统中提取。图(a)参量下转换过程纠缠光子三自由度示意图;(b)多模光学参量谐振器同时输出多个“能级”的三自由度纠缠;(c) 实验验证装置;(d) 完整的第一“能级”纠缠关系测量(左图)及其在复用量子密集编码的演示(右图)实验结果表明,光学参量谐振器直接输出了携带频率梳,自旋角动量和轨道角动量的三自由度高维纠缠,达到-3.3 dB的纠缠水平。值得一提的是,该谐振器有能力直接输出约2000个“能级”共计8000对的量子纠缠。为探究多自由度高维纠缠资源在量子信息的潜能,团队首次实验演示了空间-频率复用的量子密集编码,图(d)展示了量子通信信道容量的显著增强。刘奎教授表示:“相比于传统的连续变量纠缠产生方案,多自由度、多模光学参量谐振器产生的纠缠光源具有更高可扩展性,更丰富光场结构的特点,不但适合高信道容量量子通信需求,而且可用于实现特别的量子任务,例如量子多参数测量,多自由量子界面和混合型的高维量子离物传态等。”目前对于连续变量高维纠缠的研究还有许多开放性问题值得研究,如是否具有与分离变量高维纠缠类似的纠缠特性,更高的安全性,和更强的抗噪能力等。团队后续将进一步开展更高纠缠水平、更多元的纠缠数量以及多自由度分离及交互的研究,同时开展基于连续变量高维纠缠的应用研究,如高维量子离物传态以及其在量子传感和量子测量领域的应用。
  • 上海微系统所等研制出移动式高效率超导单光子探测系统
    近日,中国科学院上海微系统所李浩、尤立星团队等研制出基于小型液氦杜瓦(工作温度4.2K)、在1550nm波段系统探测效率超过70%的移动式超导单光子探测系统,为未来开展基于移动平台(机载、车载等)的高性能单光子探应用铺平了道路。相关研究成果以《在1550nm波段探测效率超过70%的移动式超导条带光子探测系统》(Mobile superconducting strip photon detection system with efficiency over 70% at a 1550 nm wavelength)为题,发表在《光学快报》(Optics Express)上。超导条带光子探测器(SSPD,Superconducting strip photon detector)作为高性能的单光子探测器,广泛应用于量子信息和弱光探测等领域,推动了相关领域的科技进步。然而,SSPD的综合探测性能依赖于器件的工作温度(温度越低,系统探测效率越高)。迄今为止,高效率的SSPD系统通常需要使用GM制冷机(T≤2.5 K)、吸附式制冷机(T≤0.85 K)甚至更低温度的制冷机。这些系统的质量、体积、功耗等成为限制SSPD在机载等移动平台应用的关键原因。若能在4.2K工作温度实现高效率SSPD,便可利用小型液氦杜瓦构建小型、低功耗、短时工作的超导单光子探测系统,为无人机、航空等移动平台应用提供可行的解决方案。SSPD的光响应性能与超导薄膜材料的无序度密切相关。利用高无序超导薄膜材料调控技术实现面电阻更高的超导薄膜材料,增强SSPD的探测灵敏度是提升SSPD工作温度的方法之一。本研究利用面电阻超过600Ω的NbTiN超导薄膜材料实现了4.2K工作温度近饱和探测效率的SSPD。同时,该工作研发制造了SSPD专用的小型液氦杜瓦,结合基于电池的低功耗电路模块,实现了探测效率超过70%的移动式单光子探测系统。研究工作得到国家自然科学基金和上海市“扬帆计划”等的支持。(左)液氦杜瓦的系统图;(右)移动式SSPD系统探测效率和暗计数性能曲线
  • 加利用量子纠缠开发超精密测量技术
    加拿大物理学家们首次利用量子力学克服了测量科学中的一个重大挑战。新开发的多探测器方法可测量出纠缠态的光子,实验装置使用光纤带收集光子并将其发送到由11个探测器组成的阵列。此项研究为使用量子纠缠态开发下一代超精密测量技术铺平了道路。  研究报告主要作者之一、多伦多大学物理系量子光学研究小组博士生罗泽马· 李称,新技术能利用光子以经典物理学无法达到的精度进行测量。此项研究成果在线发表在《物理评论快报》上。  现存最灵敏的测量技术,从超精确原子钟到世界上最大的望远镜,均依赖于检测波之间的干涉,这种干涉发生于两个或更多个光束在相同空间的碰撞。罗泽马及其同事使用的量子纠缠态包含N个光子,它们在干涉仪中均被保证采取同样的路径,即N个光子要么全部采取左手路径,要么全部采用右手路径。  干涉效应可用干涉仪进行测量。干涉装置的测量精度可通过发送更多的光子加以改善。当使用经典光束时,光子数目(光的强度)增加100倍,干涉仪的测量精度可提高10倍,但是,如果将光子预先设置在一个量子纠缠态,干涉仪在同等条件下的测量精度则同步增长100倍。  科学界虽已了解到测量精度可通过使用纠缠光子加以改善,但随着纠缠光子数的上升,所有的光子同时到达相同检测器的可能性微乎其微,因此该技术在实践中几无用处。罗泽马及其同事于是开发出一种使用多个探测器来测量纠缠态光子的新方法。他们设计了一种使用&ldquo 光纤带&rdquo 的实验装置,用以收集光子并将其发送到11个单光子探测器组成的阵列。  这使研究人员能够捕捉到几乎所有最初发送的多光子。罗泽马称,同时将单光子以及两个、三个和四个纠缠光子送入检测设备,测量精度可得到显著提高。  研究人员表示,两个光子好于一个光子,探测器阵列的效果则远远好于两个。随着技术的进步,采用高效探测器阵列和按需纠缠的光子源,此项技术可被用于以更高精度测量更多的光子。《物理评论快报》的评论指出,该项技术为提高成像和光刻系统的精度提供了一种行之有效的新途径。

纠缠光子对探测系统相关的方案

  • 同位素碳化硅中单个核自旋的纠缠和控制
    固态材料中的核自旋既是消相干的原因也是自旋比特的来源。在这项工作中,芝加哥大学David D. Awschalom通过在碳化硅(SiC)中控制单个的29Si核自旋,在一个具有光学活性的空位自旋和强耦合的核寄存器之间创造了一个纠缠态。此外,作者还展示了如何利用SiC的同位素加工来实现弱耦合核自旋的控制,并提出了一种性原理计算方法来预测优同位素分数,使可用核存储器的数量大化。总的来说,作者展示了在固态系统中控制核环境的重要性,实现了工业尺度材料中的单光子发射器与核寄存器的连接。
  • 气体监测探测器及光源解决方案
    针对多类污染气体的光电探测解决方案,特别是针对目前最热门的烟气监测,基于量子级联激光器的红外气体分析法,具备一套完整探测系统,中红外波段气体的分析,包括了甲烷、二氧化碳、一氧化碳、硫氧化物、氮氧化物等许多有害气体,均能够通过这种方法被测得。
  • 中海港务某危化品码头可燃、硫化氢探测系统
    背景:2015年天津港危化品堆垛连续发生爆炸,给当地造成的生命财产损失不可估量,故建立危化品仓库有毒有害气体在线监测系统尤为必要,防范于未然,做到源头管控,治理。   选用型号:MIC-500-Ex-A MIC-500S-H2S-A 不锈钢外壳(防腐蚀)图片1.png   产品介绍:   MIC-500-Ex-A、MIC-500S-H2S-A在线式硫化氢检测仪应用于硫化氢的气体浓度检测及硫化氢浓度超标报警,可以精确检测硫化氢的浓度并在现场显示实时浓度值、标准信号输出,具有信号稳定,灵敏度及精度高等优点,隔爆接线方式适用于各种危险场所。   产品特点:   防爆、防雷、防静电、放反接,抗EMI、EMC电磁干扰,抗脉冲浪涌电流冲击   符合最新国标并取得CMC计量器具生产许可证、防爆认证等资质   三线制或二(四)线制4-20mA标准信号输出、电压输出、2组继电器开关量   同时具有标准总线制RS485输出(RTU格式),可选配一体式声光报警器。   可选有线传输、局域网、互联网、无线传输(2公里、5公里、不限距离)   无线传输方式可选433、GPRS、WIFI、其它方式   标配红外遥控器可在危险场合免开盖操作,遥控距离15米,简单实用   各单位可互相切换,自动跟踪零点防止漂移,多级校准。支持OEM或ODM定制   可与计算机通讯,在电脑上通过上位机进行实时监控现场探头的浓度并在电脑上存储和分析、打印数据。   检测因子:可燃气体,硫化氢   传感器:工业级催化燃烧传感器,抗中毒性 电化学   说明:连接各潜在泄露点气体探测仪,集中监控泄露浓度。常规铸铝外壳无法满足现场长时期使用,采用不锈钢外壳。   现场安装图:1652161870138648.png1652161902206003.png

纠缠光子对探测系统相关的资料

纠缠光子对探测系统相关的试剂

纠缠光子对探测系统相关的论坛

  • 【分享】我自主研制纠缠光子法探测器量子效率绝对定标装置

    由中国计量科学研究院承担的国家“十一五”科技支撑课题 “利用相关光子测量技术建立光电探测器量子效率测量装置的研究”近日通过了专家验收。该课题自主研制的缠光子法探测器量子效率绝对定标装置,成功将我国光辐射功率计量的量程能力扩展到了光子水平,为用光子数重新定义国际基本单位之一的“坎德拉(cd)”量值复现研究奠定重要基础。  课题的研制成功,缩短了我国与国际发达国家之间在实现基于量子物理复现光辐射功率基准研究方面的差距;同时为研究量子信息、生物医学、空天探测器、天文物理、环境科学等领域中涉及到的光子探测技术提供了光子水平的计量技术保障。

  • 加利用量子纠缠开发超精密测量技术

    科技日报多伦多6月6日电 (记者冯卫东)加拿大物理学家们首次利用量子力学克服了测量科学中的一个重大挑战。新开发的多探测器方法可测量出纠缠态的光子,实验装置使用光纤带收集光子并将其发送到由11个探测器组成的阵列。此项研究为使用量子纠缠态开发下一代超精密测量技术铺平了道路。 研究报告主要作者之一、多伦多大学物理系量子光学研究小组博士生罗泽马·李称,新技术能利用光子以经典物理学无法达到的精度进行测量。此项研究成果在线发表在《物理评论快报》上。 现存最灵敏的测量技术,从超精确原子钟到世界上最大的望远镜,均依赖于检测波之间的干涉,这种干涉发生于两个或更多个光束在相同空间的碰撞。罗泽马及其同事使用的量子纠缠态包含N个光子,它们在干涉仪中均被保证采取同样的路径,即N个光子要么全部采取左手路径,要么全部采用右手路径。 干涉效应可用干涉仪进行测量。干涉装置的测量精度可通过发送更多的光子加以改善。当使用经典光束时,光子数目(光的强度)增加100倍,干涉仪的测量精度可提高10倍,但是,如果将光子预先设置在一个量子纠缠态,干涉仪在同等条件下的测量精度则同步增长100倍。 科学界虽已了解到测量精度可通过使用纠缠光子加以改善,但随着纠缠光子数的上升,所有的光子同时到达相同检测器的可能性微乎其微,因此该技术在实践中几无用处。罗泽马及其同事于是开发出一种使用多个探测器来测量纠缠态光子的新方法。他们设计了一种使用“光纤带”的实验装置,用以收集光子并将其发送到11个单光子探测器组成的阵列。 这使研究人员能够捕捉到几乎所有最初发送的多光子。罗泽马称,同时将单光子以及两个、三个和四个纠缠光子送入检测设备,测量精度可得到显著提高。 研究人员表示,两个光子好于一个光子,探测器阵列的效果则远远好于两个。随着技术的进步,采用高效探测器阵列和按需纠缠的光子源,此项技术可被用于以更高精度测量更多的光子。《物理评论快报》的评论指出,该项技术为提高成像和光刻系统的精度提供了一种行之有效的新途径。 总编辑圈点 光子纠缠态,早已经不再拘束于当初爱因斯坦等人提出的玄妙理论,而被应用到如量子光刻、量子图像学等技术领域。也正是这些应用,让抽象的量子力学概念能较为实在地体现在人们面前。本文中研究者以超越经典物理学的精度测量出纠缠态光子,这种高分辨率的量子态测量,不仅能带动以上应用领域的发展,亦将有助于实现相关物理参数的高精度。来源:中国科技网-科技日报 2014年06月07日

  • 科学家成功使两根填充500个光子的光纤发生纠缠

    中国科技网讯 据物理学家组织网7月26日(北京时间)报道,量子物理学似乎一直涉及的是一些无限小的事物。而多年以来,瑞士日内瓦大学的研究人员一直试图在更大规模甚至宏观层面上观察到量子物理的性质。最近该研究团队成功让两根填充了500个光子的光纤发生纠缠,不同于以往只有1个光子的光纤纠缠实验,向实现宏观层面的量子纠缠迈出了重要一步。相关研究成果发表在最新一期的《自然·物理学》上。 30年以来,物理学家已经能够使光子对发生纠缠。不管两个光子之间存在的距离和障碍如何,第一个光子的动作会在瞬间冲击第二个光子。这种状况发生时,好像是一个单光子存在于两个不同的地方。 似乎可以直观地认为,应用于原子水平上的物理规则也可转移到宏观世界当中。然而,试图证明这一点并不容易。事实上,当一个量子系统大小增加,其与周围环境就会进行越来越多的互动,而这样却会迅速破坏其量子特性,这种现象被称为量子消相干。 尽管有这些限制,在技术的不断进步下,该研究团队一直在努力寻求突破。2011年1月,他们设法实现了晶体纠缠,从而超越了原子的维度。现在,该大学理学院教授尼古拉斯率领的团队成功使两个填充了500个光子的光纤发生纠缠。 为了做到这一点,他们先在微观层面上创建两个光纤之间的纠缠,然后将其移到宏观层面。这种微观量子纠缠态的生存过渡到更大规模世界的现象,甚至可以用传统的检测手段,即肉眼观察得到。而为了验证在宏观世界的纠缠存活,他们可以将其重新转换回微观水平。 尼古拉斯说:“这次大规模实验为许多量子物理学的应用铺平了道路。在宏观层面的纠缠是该领域的主要研究方向之一,我们希望在未来几年可以实现大型对象间发生的纠缠。”(记者 华凌) 总编辑圈点 尽管量子学还是“上帝跟宇宙玩掷骰子”,但物理学家们早已证实神秘现象不仅仅局限于极度微观领域中。好比本文中的量子纠缠,其实不像人们通常以为的那么“脆弱”,还曾在全固体材料中实现过,它最终走入到电子设备中是迟早的事。目前这一成果,在将来能为研制适用于量子通信的全光纤纠缠光源和单光子源带来益处,对于量子密钥的分发系统也起到重要作用。

纠缠光子对探测系统相关的耗材

  • 超低暗计数(< 0.01cps)超导单光子探测器
    超低暗计数(所属类别: ? 探测器/光子计数器 ? 单光子计数器 所属品牌:俄罗斯Scontel公司 产品简介超低暗计数()超导单光子探测器 超低暗计数超导单光子探测器 ----最低暗计数低于0.01cps,是量子密钥分发应用的最理想选择! 俄罗斯SCONTEL公司作为世界领先的超导单光子探测器制造商,其开发出的超低暗计数超导纳米线单光子探测器彻底颠覆了常规超导单光子探测器的技术指标,最低暗计数低于0.01cps,是量子密钥分发单光子探测的理想选择。超低暗计数单光子探测器,超导单光子探测器, SSPD, 超导单光子计数器, 俄罗斯Scontel公司, Superconducting Nanotechnology,红外单光子计数器,高灵敏度单光子计数器;超导纳米线单光子探测器,SNSPD,超导纳米线,低温超导单光子探测器 超导纳米线单光子探测器应用: 超导纳米线单光子探测器技术优势:光量子计算 超低暗计数: 超低暗计数超导纳米线单光子探测器的冷却系统有两种类型: a.外接低温液氦杜瓦瓶 b.闭合循环冷藏室 相关产品 65%@500~1700nm)" 超高量子效率超导单光子探测器(65%@500~1700nm) 纠缠光子对发生器(纠缠光子源) 超导单光子探测器(SSPD) 400~1700nm 时间相关单光子计数器(TCSPC)
  • SpotOn位敏探测系统
    SpotOn位敏探测系统筱晓光子供应SpotOn位敏探测系统,光谱范围350-1100nm 、位置精度±0.1um或者光束尺寸±0.025%。该系列位敏探测系统用于测量:激光中心/位移/功率的测量、光学系统准直及品质控制、旋转及位移的测量、平面度及准直性的校准、振动及缺陷的监控。ModelDescriptionsSPOTUSB-LLateral effect PnP 9mm×9mm, no glass coverSPOTUSB-NLateral effect PnP 10mm×10mm, with glass coverSPOTUSB-QFour quadrant PnP 10mm×10mm, with 30um gap, no glass coverSPOTUSB-UFour quadrant PnP 10mm×10mm, with 10um gap, with glass coverSPOTON-LALarge aperture, 135mm×100mm, 400-800nmOptional headsL44Lateral effect PnP, usable beam sizeL18Lateral effect PnP 18mm×18mm, with glass coverL4Lateral effect PnP 4mm×4mm, no glass coverOptional accessoriesNG4ND filter in housing (3/4"-32 thread)NG9ND filter in housing (3/4"-32 thread)NG10ND filter in housing (3/4"-32 thread)Hood55mm long, for ambient light suppression
  • SpotOn CCD高分辨率位敏探测系统
    SpotOn CCD高分辨率位敏探测系统筱晓光子供应SpotOn CCD高分辨率位敏探测系统,光谱范围190-1550nm 、位置精度5um、可同时测量3束激光。该系列高分辨率位敏探测系统用于测量:激光中心及位移的测量、激光光束准直、光纤光学品质监控、平面度及准直性的校准、振动及缺陷的监控。ModelDescriptionsSPOTCCD-VIS-USBSystem with USB interface, camera for VIS range 350-1100nmSPOTCCD-VIS-PCISystem with PCI interface, camera for VIS range 350-1100nmSPOTCCD-UV-USBSystem with USB interface, camera for VIS range 190-1100nmSPOTCCD-UV-PCISystem with PCI interface, camera for VIS range 190-1100nmSPOTCCD-IR1310-USBSystem with USB interface, camera for 350-1310nmSPOTCCD-IR1310-PCISystem with PCI interface, camera for 350-1310nmSPOTCCD-IR1550-USBSystem with USB interface, camera for 1550nm±50nmSPOTCCD-IR1550-PCISystem with PCI interface, camera for 1550nm±50nm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制