当前位置: 仪器信息网 > 行业主题 > >

开循环低温制冷系统

仪器信息网开循环低温制冷系统专题为您提供2024年最新开循环低温制冷系统价格报价、厂家品牌的相关信息, 包括开循环低温制冷系统参数、型号等,不管是国产,还是进口品牌的开循环低温制冷系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合开循环低温制冷系统相关的耗材配件、试剂标物,还有开循环低温制冷系统相关的最新资讯、资料,以及开循环低温制冷系统相关的解决方案。

开循环低温制冷系统相关的资讯

  • 上海喆图低温培养箱DW-100CL制冷系统解析
    上海喆图低温培养箱DW-100CL制冷系统解析低温培养箱是实验室中常用的设备之一,广泛应用于细胞、组织培养以及微生物的低温保存。上海喆图科学仪器有限公司生产的DW-100CL低温培养箱以其优异的恒温性能和可靠性受到用户的信赖。本文将详细介绍DW-100CL低温培养箱的制冷系统工作原理。制冷系统组成DW-100CL低温培养箱的制冷系统主要由以下几个部分组成:压缩机:作为制冷系统的核心部件,负责压缩制冷剂,提升其温度和压力。冷凝器:高温高压的制冷剂气体在冷凝器中放出热量,由气态转变为高压液态。膨胀阀:通过膨胀阀,高压液态制冷剂迅速膨胀,压力和温度急剧下降,变成低温低压的湿蒸汽。蒸发器:低温低压的制冷剂在蒸发器中吸收箱内热量,从而使箱内温度下降。风机和风道:用于强制对流,使冷气均匀分布到培养箱的各个角落。一、制冷系统工作原理压缩过程:压缩机将低压低温的制冷剂蒸汽吸入,并压缩为高压热蒸汽。冷凝过程:高压热蒸汽进入冷凝器,向周围环境放热,冷凝成液态。节流过程:液态制冷剂通过膨胀阀时,压力和温度迅速降低,形成低温低压的湿蒸汽。蒸发过程:低温低压的湿蒸汽在蒸发器中吸收箱内的热量,使箱内温度下降,同时制冷剂蒸汽化,完成制冷循环。热交换:风机将蒸发器中的冷气送入培养箱内,通过风道循环,实现箱内温度的均匀分布。二、制冷系统特点高效节能:采用高效的压缩机和优化的热交换设计,提高制冷效率,降低能耗。精确控温:通过精确的电子温控系统,实现对箱内温度的精确控制。均匀制冷:采用风冷方式,确保箱内温度均匀,避免局部过冷或过热。安全可靠:具备多重安全保护措施,如压缩机过热保护、超温报警等。三、结论上海喆图DW-100CL低温培养箱的制冷系统设计精良,通过高效的压缩机、合理的热交换和精确的电子控制,实现了低温环境的稳定维持。这种制冷系统不仅能够满足实验室对低温培养和保存的需求,而且具有节能、安全和可靠性高的特点,是科研和医疗领域理想的低温设备选择。
  • 如何精确控制冷媒充注,提高制冷系统能效比
    随着全球对环保和能效的日益重视,制冷系统的能效和稳定性成为了关注的焦点。在这一背景下,电子冷媒压力表能够提供精确的压力和温度数据,成为了优化制冷系统运行、提高能效以及减少能源浪费的关键工具。01传统机械冷媒表性能单一精度差在制冷系统的安装以及维护过程中,操作人员需要观察蒸发压力、冷凝压力、过热度、过冷度等系统的关键运行参数,来判断系统是否存在潜在故障源,从而快速准确地定位并修补系统。冷媒压力表,也称制冷剂压力表或加氟表,主要用于检测系统冷媒不同阶段的压力值,方便工作人员掌握设备的运行状况,在空调热泵调试维修过程中被广泛应用。传统机械冷媒表虽然能够满足基本的测量需求,但在精度、功能、操作便捷性等方面存在明显的不足。它们容易受到环境温度和压力变化的影响,导致测量结果不准确。此外,传统机械表通常仅限于测量压力,无法同时测量温度等其他重要参数。随着制冷技术的不断进步,电子数显冷媒压力表逐渐崭露头角。华盛昌DT-8921专业级电子冷媒压力表,就是一款高精度、高量程、多用途的专业型冷媒测试数字压力表,用户可以比以往更快、更可靠和更灵活地处理制冷系统和热泵上的所有测量。02多功能冷媒表让制冷更高效更环保华盛昌DT-8921专业级电子冷媒压力表在空调冷媒循环系统的检测和维护方面表现出色,支持压力测试、温度测试、真空负压测量,覆盖了40种常用制冷剂特性参数测量。1压力测试压力测量可用于检查制冷系统的泄露密封性。使用传统冷媒表测量气密性,测量数值往往会受到环境温度影响而变得巨大,测量人员只能选择特定环境条件或者花费很长的测量时间。DT-8921电子冷媒压力表测量范围广泛,高压承压达到800PSI,量程从0至500PSI,测量精度为±1PSI,分辨率达到0.1PSI。有两个带温度补偿的高精度宽量程电子压力传感器,可以有效降低温度对测量的影响,快速、准确地测量高低压。2真空负压测量抽真空是空调安装维护过程中的重要步骤,它主要是为了清除系统中的不凝性气体以及水分。很多制冷系统在运行一段时间之后,发现压力偏高,电流偏大,这些可能是系统抽真空没有彻底的原因。DT-8921电子冷媒压力表在测量常规压力的同时也能测量制冷系统的真空负压。同时还能从屏幕上看到水分蒸发温度、环境温度以及它们的差值,实现制冷系统及热泵抽真空过程中精确可靠的测量。3温度测量压缩机长时间过热不仅会降低电机绝缘性能和可靠性,还会降低润滑能力,导致润滑油碳化和酸解。DT-8921电子冷媒压力表温度测量范围-40~204°,精度±1℃,分辨率0.1℃,有两个外接钳式温度探头接口,将探头夹在压缩机的进气口和排气口处,可以快速检测两处温度差,判断压缩机是否过热。可以同时连接3个温度探头,同时测量周围环境温度。华盛昌DT-8921专业级电子冷媒压力表还具备自动检测蒸发和冷凝温度,自动热泵模式无需切换制冷剂软管等功能。适用于各种制冷系统,如HVAC空调系统、汽车空调系统、热泵等,能够满足抽真空、冷媒填充、保压测试等维护工作的需求。在全球追求环保和能效的时代背景下,华盛昌DT-8921专业级电子冷媒压力表不仅是制冷系统和热泵维护的得力助手,更是推动行业进步的重要力量。选择华盛昌,就是选择专业、高效与可靠的测量解决方案,为制冷行业的可持续发展注入新的活力。
  • 发布绝热退磁制冷机 绝热去磁制冷系统 ADR恒温器新品
    德国kiutra -绝热退磁制冷器 绝热去磁制冷器 ADR低温恒温系统kiutra结合了多级磁性制冷和闭环预冷功能,在无致冷剂下,可提供连续不断的开尔文至亚开尔文温度。 我们的冷却系统提供了一种便捷的方式来生成非常低的温度,达到接近绝 对零值(–273.15°C):无危险且使用简单 我们的设备是全电气高度自动化。特别是它们不需要稀有且昂贵的液化气(低温剂),而是使用廉价的固体作为冷却介质。具有出色的温度精度和稳定性 由于采用了直接的电磁控制机构,因此可以以非常出色的稳定性和稳定性达到并保持温度设定点,从而获得更好的测量数据或性能结果。最小的基础设施和空间要求 电磁冷却解决方案以紧凑的方式构建,并且只需要最少的基础架构。如何工作磁性制冷是基于磁热效应的:当介质被磁化时,其磁矩会对齐,并且释放出磁化热。反之亦然,如果介质被消磁,其温度将下降。kiutra的冷却系统可以利用两种不同类型的磁制冷方法:单次绝热退磁制冷(ADR)如以上附图中示意性所示,磁制冷可用于产生短期冷却。从封闭式低温冷却器提供的初始基准温度开始(步骤1)首先,将合适的冷却介质磁化(步骤2)。然后,磁化热由低温冷却器消散(步骤3)。随后,冷却介质通过所谓的热开关进行热分离(步骤4),然后再消磁(步骤5)。在退磁过程中,冷却介质的温度下降。如果在磁场B降低到零之前达到设定点温度,则可以调节冷却功率以在一段时间内提供恒定温度,例如持续几个小时甚至几天(步骤6)。当磁场最终减小到零时,冷却过程停止(步骤7),介质再次加热到基本温度(步骤8)。等待一段时间后,可以重新启动该过程。3级电磁冷却系统中的连续ADR对于某些应用,单发冷却是不够的。对于这些应用,kiutra提供永 久冷却动力的无低温磁性热泵。这些系统基于多级磁制冷,其中几个磁制冷单元相互连接并控制温度稳定性,如上图所示。原理:在n个磁化冷却单元释放的热量是由第(n-1)个单元消散,等等...这确保了连接到样品台的最终冷却单元永远不会耗尽了磁场,因此可以永 久连续提供开尔文甚至亚开尔文温度。 kiutra的磁性制冷系统以高度模块化的组件提供单次和连续ADR。根据客户的特定需求,单次ADR系统可以升级为多级CADR恒温器。创新点:kiutra结合了多级磁性制冷和闭环预冷功能,在无致冷剂下,可提供连续不断的开尔文至亚开尔文温度。我们的冷却系统提供了一种便捷的方式来生成非常低的温度,达到接近绝对零值(–273.15° C)。绝热退磁制冷机 绝热去磁制冷系统 ADR恒温器
  • 开启制冷系统的检测新时代
    作为全球便携式测量仪器的领导者之一,德图仪器测量的风向标是节能环保。2008年德图推出的testo 560制冷节能监测仪,致力于推动中国制冷行业的检测技术。在中国,来自倍省节能技术咨询(上海)有限公司的工程师苏先生是第一个使用者,他对仪器的性能赞赏有加,对于如何更好的应用推广,更有独到看法。 ● 集成测量对制冷系统的意义 &ldquo 为什么倍省节能技术咨询(上海)有限公司愿意将几百块的测量仪器换成现在的制冷节能监测仪?&rdquo 对于这个问题,苏先生娓娓道来。以前,现场制冷技术人员原先要拿很多东西,温度计,真空表,两个压力表,还要时时刻刻手工记录,同时查询很多表格。而德图testo 560制冷节能监测仪可同时测量温度、压力。制冷技术人员可以不必携带温度表和三通歧管仪(这些工具加起来会很重),同时,testo 560可以实时记录,并且通过软件可以把这些数据导出。这给日后的制冷系统分析带来了第一手资料。软件记录更准确直观,而且数据的准确性远比人为记录要可靠。这样,制冷工就能够直接测量各个数据,并对数据进行处理,做出空调运行状态的曲线图。&ldquo 总而言之,这款仪器对现场制冷技术人员以及节能技术咨询公司而言是一款集成的不可多得的工具。&rdquo 另外,德图testo 560制冷节能监测仪存储了多达30种标准制冷剂数据,可以根据不同制冷剂的选择需要来配置。新的制冷剂数据可以从德图网站下载,输入电子歧管仪。显示屏同时显示高压端和低压端的压力值,对应制冷剂的蒸发温度和冷凝温度,也同时被计算和显示出来。该歧管仪的便携性具有很大的优势。制冷系统的局部有问题,可以很方便的用歧管仪检测。&ldquo 一机在手,一劳永逸,这些都是我们选择这款制冷节能监测仪的理由。&rdquo ● 长期测量对制冷系统的意义 节能咨询行业首先要在制冷系统正常工作的条件下,一一对应系统的温度压力和环境的温度压力后,才能对数据进行分析,进而提出节能方案。制冷这一块是有周期性的,尤其对于冷冻行业,仅通过一个时间点的测量,并不能判断系统是否正常工作。例如,冷冻过程有制冷和化霜两个周期,现在很多制冷系统都运用自动化控制来调节化霜和制冷过程。制冷工记录的数据没办法和过程一一对应起来。有了歧管仪,再和控制参数对应起来比较,就能知道试运行的效率怎么样了。 苏先生谈到他们公司之前遇到的一个案例。一个大型超市的一个制冷系统经常出现问题,维修费很高,最后他们公司出马,到制冷系统现场接了德图testo 560制冷节能监测仪,连续检测了两个星期,然后分析数据得出了原因。制冷这一块的要求现在还没有那么高,但是很多时候却因此无法解决本质的问题,导致人力财力的大量浪费。有了歧管仪就能对整个系统进行监测,查出了问题所在,根本上解决。因为制冷设备是长期运行的,只有长期记录才能判断设备是不是正常运行。 当今,很多大型超市公司都做了监控平台,帮客户解决日常运行维护。另外,像一些特殊的冷库,如血库,必须24小时监控,同时还需要做到预警。即将到来的世博会也是制冷节能监测仪的用武之地。很多物流仓库必须通过对数据的监控,保证系统这段时间运行良好,如果有迹象就事先对冷藏库做一个处理。 ● 发展趋势:制冷系统日常维护工具 如众人所知,压力和温度对制冷系统十分重要。压缩机进口出口的温度和压力必须在一个额定的范围内,且以此判断系统的运行效率。对制冷系统而言,每个地方的温度和压力都非常重要。某一点温度不对就意味着系统不正常工作。制冷系统在试运行前必须进行检漏。良好的检漏可以阻止制冷剂的损失,减少能量的消耗,对保护环境也有积极的作用。 德图testo560制冷节能监测仪是一款集测量压力、温度为一体的制冷工具。主要应用于制冷系统检漏、抽空、制冷剂充注和选择,以及制冷系统试运行和日常的排查、保养维护。它具有高精度温度和压力的传感器,优化的管理模式和专业便携的数据管理系统,从而可以协助制冷技术人员及时发现制冷系统内部的信息,做出及时的判断。尤其是在不能确定系统内部状况时,通过所记录的数据,可以让更多的人员一起分析制冷系统,及时优化制冷系统。 据了解,在欧洲德图的制冷节能监测仪很早就被广泛应用,是制冷系统日常维护的工具。目前,在中国该款仪器主要应用于比较高端的客户,如节能公司,节能办的实验室等。大型超市公司的冷库的日常维护一般找专业的节能咨询公司来做。但就整个行业来说,总体水平还不是很高。德图希望开启制冷系统的检测新时代,成为制冷系统的日常维护工具,帮助制冷公司及制冷技术人员推出更专业的制冷服务,从而更好的节能环保。
  • 中科院理化所在极低温制冷研究方面取得重要进展
    极低温制冷是指制冷温度低于1K的制冷技术,广泛应用于凝聚态物理、天文观测、量子计算等领域,至今已经有20余项诺贝尔物理学奖成果来自极低温区,如超流3He、量子霍尔效应等。绝热去磁制冷和稀释制冷是目前主流的极低温制冷技术,其中绝热去磁制冷利用磁热材料的磁热效应实现制冷,具有高效、不依赖重力等优点,稀释制冷利用3He原子在极低温下从浓相流入稀相时吸热来实现制冷。中科院理化所低温与制冷研究中心立足于小型低温制冷的长期研究积累,从2019年开始开展极低温制冷的研究工作,近期取得了一系列重要进展。在绝热去磁制冷技术方面,深入研究了多级间歇和连续循环的高效热力学流程,与所内晶体中心交叉合作开发了高传热效率顺磁盐模块,搭建了单级和多级绝热去磁制冷系统,解决了高精度控温等技术难点。三级制冷系统最低温可达48.6 mK,温度波动控制在 μK级别。在稀释制冷技术方面,搭建了特殊形式的冷凝泵型稀释制冷机,揭示了低驱动力下稀释制冷整机运行机理和损失机制,解决了低温循环启动等技术难点,系统最低温达到108 mK,进一步的优化工作仍在进行。上述研究工作对于提升我国极低温平台的自主研发能力有重要意义,大力支撑包括天文望远镜、量子计算机和单光子探测器等高端设备的研制和前沿科学研究。绝热去磁制冷机实验平台冷凝泵型稀释制冷机实验平台
  • 真空冷冻干燥机制冷系统常见的故障及排除方法
    真空冷冻干燥机制冷系统常见的故障及排除方法 真空冷冻干燥机广泛用于医学、制药、生物研究、化工和食品等领域。经冷冻干燥处理的物品易于长期保存,加水后能恢复到冻干前状态并保持原有生化特性。LGJ-18N系列立式冷冻干燥机,适用于实验室使用或少量生产,可满足大多数实验室常规冻干的要求。   真空冷冻干燥机制冷系统常见的故障及排除方法:   1)高压报警。出现高压报警的主要原因有:   ①冷却水水温过高或冷却水量不足。   ②冷凝器内部结垢,导致换热效率降低。   ③压缩机工作时,低压管道发生泄漏,从而导致外界空气进入制冷系统。   ④制冷管道存在未开足阀门或因管道被堵而造成排气不畅的情况。   解决办法:   ①降低冷却水温度或增加水流量。   ②清洗冷凝器的冷却水管路。   ③对制冷管道进行检漏,如果在工作中无法实现该项操作,可将水冷凝器上方的截止阀打开,使存在于冷凝器中的空气排放出一部分。   ④将压缩机管道.上的阀门开启到最大。   2)水压报警。水压报警的主要原因有:   ①冷却水供水压力不足或供水泵不运转。   ②水压力控制器故障。   解决办法:   ①增大外部供水压力或检修供水泵。   ②检查压力控制器的触头是否能正常工作或检查在其线路.上是否存在其他问题。   3)压缩机吸气温度异常。吸气温度异常的主要原因是膨胀阀调节不当,开启度过小或过大,导致回气量过小或过大。其解决办法是对膨阀进行调节,如回气量过大,应关小开启度,如回气量过小,应开大开启度,调节过程中以微调为主,多观察压缩机的回霜情况。   4)膨胀阀堵塞。堵塞分泌物物堵塞(脏堵)和冰堵塞两种。   ①杂物堵塞。在堵塞不严重时,可用扳手轻轻敲打阀体,经振动使阀体疏通。若不奏效或膨胀阀很快又重新堵塞,则说明堵塞严重,应拆卸膨胀阀,对膨胀阀滤网进行清洗,清洗完后重新装上即可。   ②冰堵。出现冰堵,应更换冷凝器出液端过滤器。   5)载冷剂泄漏   可用肉眼观察,查找板层,软管上的泄漏点。若发现可疑漏点,应放空板层或软管内的载冷剂,对泄漏点进行充压确认,确认后放气补好泄漏点,重新加入载冷剂并排出板层和软管内气体。
  • 冷水机的双级压缩制冷循环及其分类
    冷水机的制冷循环有单级压缩制冷循环和双级压缩制冷循环。单级压缩制冷循环比较常用,在此就不再解释了。 那么什么是 冷水机的双级压缩制冷循环呢?所谓双级,是指:从蒸发压力到冷凝压力通过两级进行压缩的机械式压缩制冷循环,主要是通过双级压缩型工业冷水机来实现的。 冷水机的双级压缩制冷循环是在单级压缩制冷循环的基础上发展起来的。双级压缩型工业冷水机的工作原理:压缩过程分为两个阶段,第一个阶段:来自蒸发器的制冷剂蒸气在低压级压缩机中进行压缩,然后进入中间冷却器进行冷却;第二阶段,制冷剂蒸气进入高压级压缩机压缩到冷凝压力。 冷水机的双级压缩制冷循环的组成可按以下两种方式: 1、单机双级压缩机:由一台压缩机组成,其中几个气缸作为高压缸,其余几个气缸作为低压缸,这种缸数的比例一般是1:3,或者是1:2,这类压缩机通常称为单机双级压缩机。 2、双机双级系统:由两台压缩机组成的,其中一台为低压级,另一台为高压级; 按照节流和冷却方式,冷水机双级压缩制冷循环的可以分为:双级压缩一级节流循环和双级压缩两级节流循环。一级节流:是指冷凝压力直接节流到蒸发压力。两级节流:是指制冷剂先从冷凝压力节流到中间压力,然后由中间压力节流到蒸发压力。 对于工业冷水机组制冷循环的中间完全冷却,则是指将低压级的排气冷却成中压下的干饱和蒸气,如果只降低温度而并没有达到饱和状态时,我们称之为中间不完全冷却。 采用一级节流时制冷工质液体直接从冷凝压力节流到蒸发压力,故可以利用其压力差实现远距离或高处供液,而且也便于调节,因此它的应用较为广泛。 文章原创:上海田枫实业有限公司 www.tfsye.com上海田枫实业有限公司,专业生产各类制冷设备,包括层析冷柜,冻干机,冷水机,超低温冰箱,恒温槽等,一流的专业,一流的服务,上海田枫是您的最佳选择!
  • 超低温制冷技术将成为量子研究的“卡脖子”技术
    近年来,低维材料、超导材料、量子科技等已成为科学研究关注的焦点,在日常生活上用不上超低温制冷技术,却在这些领域中发挥了重要的作用,为相关研究创造了极端条件,推动了相关科技的进步。近日,由全国纳标委低维纳米结构与性能工作组和中国科学院半导体研究所联合主办的第四届低维材料应用与标准研讨会(LDMAS2021)在北京西郊宾馆成功召开。在展会上,北京飞斯科科技有限公司的黄社松先生向我们介绍了超低温制冷技术的发展。氦是不可再生资源,无液氦制冷意义重大目前的超低温制冷技术离不开氦,但我国却是贫氦国家。据黄社松介绍,我国氦储量仅占全球2%左右,且开采难度大,目前我国还没有氦生产能力,氦气严重依赖于美国进口。虽然我国已通过资本注入等手段向卡塔尔等国家购买氦矿,但目前来讲氦还是不可再生资源,总量有限,如果不对其进行回收,在做完实验后会排入大气,现在无液氦系统传统替代氦气制冷已成为趋势。针对我国对无液氦制冷技术的需求,北京飞斯科科技有限公司在今年四月份推出了多功能高效闭环氦气循环系统,可以为用户提供一个低温的真空环境,最低温度小于1.7k且完全无液氦。同时设备消除了冷头的震动,解决了目前商用4K制冷机普遍存在的振动较大问题,特别适用于一些对振动敏感的实验(如STM、SEM、AFM、ARPES、显微镜、红外、高能物理、高压物理、单光子探测、布里渊散射和离子阱等)。黄社松表示,飞斯科的这款产品目前在同类产品中处于世界领先地位,虽然国际上仍有两家公司也有类似产品,但这些产品最低温度只能到3~4k,在两三年之内应该还不会有能匹敌该产品制冷效果的产品。此外,飞斯科还提供了相应的一些低温插件。黄社松先生还介绍了配套的ST-500显微型低温恒温器。恒温器采用低膨胀措施和低漂移设计,使样品振动水平降至纳米量级。采用新一代高效热交换器最低温度小于1.8K,可用作单量子点/单分子低温测试平台,紧凑型设计满足高倍放大的短焦距显微物镜要求,可与多数商用显微镜和Raman光谱仪匹配使用。黄社松透露,飞斯科推出的无液氦的多功能高效闭环氦气循环系统受到了用户的欢迎,目前已有20多套的订单在做。多功能高效闭环氦气循环系统国产稀释制冷机技术亟待突破除了已经实现商业化的多功能高效闭环氦气循环系统,飞斯科还在准备研发稀释制冷机。黄社松表示,消除震动和电磁噪音的稀释制冷机目前仍是空白,我们正在努力在做,但是时间比较长,不同于实验室研究产物,相关产品将直接推商业化。现在稀释制冷机的超低温制冷主要应用在量子领域、二维材料当中,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。最近中关村一个创新论坛上,飞斯科的客户于海峰研究员也介绍了突破500ms退相干时间的成果,创造了世界纪录。不过目前稀释制冷机还存在一些技术问题。一方面,稀释制冷机本身是有震动的,而且稀释制冷机制造难度大,再加上减震更难,所以大家先不考虑这个问题。另一方面,整机上的冷托有磁性会造成非常大的干扰,量子比特会大幅度无效。黄社松表示,应用分体式的创新可以解决这个问题,现在世界上还没有第二个厂家在做这些事情,飞斯科规划当中明年可以推出商用的机型,同时会以此为基础制造无震动、无磁性的稀释制冷机,虽然最后不一定成功,但是总是要做一些尝试。黄社松也向我们透露,稀释制冷机现在主流的还是500微瓦,明年飞斯科推出来也就是500微瓦,后年才能推出1毫瓦的,届时将采用新的设计,在理论上有望解决噪音和磁性震动等问题。氦三提纯技术已成为量子研究的“卡脖子”技术水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液体的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。值得注意的是,氦三是氦四的同位素,氦四实际上是天然的,在美国很多天然气矿里面有百分之几的氦四,但氦三却不是天然的,而是纯粹的人造的,但是在宇宙中氦三、氦四非常多,比如太阳中有大量的氦3、氦4,核聚变就是氕氘氚反应最后变成氦三和氦四。众所周知,月球存在很多氦三,实际上月球本身是没有氦三的,是因为太阳风上亿年日积月累把它吹到上面而形成,但月球上的资源开采不易。当前,稀释制冷机需要的氦三全部需要进口。现在氦三主要从氚中提取。我们国家不缺氦三,缺的是没有放射性的,不带氚的氦三。氦三无放射性,但氚是有放射性的,而只有俄罗斯和美国可以生产商业化的无放射性的氦三。目前来讲,我国还没有真正的把无放射性的氦三的提纯商业化,所以全进口且非常受美国管制。黄社松在采访中呼吁道,国家需要把无放射性氦三提纯技术提上日程,否则量子计算机的稀释制冷还没解决掉,氦三就没了,没有氦三我们就没法做稀释制冷。黄社松表示,实际上飞斯科稀释制冷机的研制已经准备了很多年,但闭关锁国是不行的,实际上有很多技术来自于先进的国家,这些技术不是我们讲我们憋着脑袋就能想出来的,真的很多需要全球联合。关于北京飞斯科北京飞斯科科技有限公司创建于2007年,集国内著名大学和科研院所的优秀人才,专门从事物理、化学和材料等领域的科学仪器研发、销售和技术咨询的国家高新技术企业。北京飞斯科不仅提供各种低温强磁场设备,如低温和超低温 (He-3、DR)恒温器,超导磁体,ADR恒温器,热电型恒温器,红外杜瓦,液氦杜瓦,SQUID传感器、Bolometer探测器,低温控温仪,金刚石对顶砧、低温低噪音放大器等,而且提供多种测试系统,如低温电导率测试系统、低温霍耳效应测试系统、交流磁化率测试系统、低温强磁场高压物性测试系统、低温磁光测试系统、瞬态光电流/光电压测试系统、Seebeck测试系统、热输运测试系统、RRR测试系统和多路温度巡检系统等。
  • 打破国外垄断!物理所成功自主研发极低温氦3制冷机
    我国用于极低温区科学研究的制冷设备在相当长一段时期内主要依赖进口。这些制冷设备根据其温区和功能特点的不同而分为几个不同的系列,分别是:(1)温度低至~1 K的氦4减压降温制冷系统;(2)温度低至~300 mK的氦3制冷机;(3)温度低至~10 mK的稀释制冷机;(4)温度低至1 mK以下的核绝热去磁制冷机。其中,氦3制冷机具有在百mK温区制冷功率大的特点,特别适合在该温区开展各类电学、热学和谱学实验,是在建的怀柔综合极端条件实验装置量子调控系统的核心低温设备之一。目前其商业产品主要来自于英国牛津公司和美国Janis等公司。中国科学院物理研究所曾于2021年率先自主研发成功了最低温度达到10mK以下的干式稀释制冷机,消除了固态量子计算研究被“卡脖子”的隐患。最近,在承建怀柔综合极端条件实验装置的过程中,物理所Q02组又自主研发成功了顶部插杆式氦3制冷机,实现了265mK的最低温度,并在300mK实现了200μW的大制冷功率。这些指标均达到了国际同类先进商业产品的水平,并圆满完成了低温强磁场低维电子波谱学实验站的低温工艺验收指标。该氦3制冷机的核心单元在设计、工艺和材料等方面实现了全部国产化,打破了此前我国此类极低温科研仪器设备市场被国外垄断的局面。中国科学院物理研究所自主研发的用于综合极端条件实验装置的顶部插杆式氦3制冷机
  • 温度试验箱对制冷剂的要求
    p style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "适应温度环境试验箱的制冷剂显然应该满足温度环境试验的基本要求,包括: /span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "strong1)标准气化温度(ts)/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "制冷剂从液态蒸发成为气态的温度由其工作压力所决定,在标准大气压下制冷剂由液态蒸发成为气态的温度称为制冷剂的标准气化温度(ts),如R22的标准气化温度ts=-40.8° C;R502的标准气化温度ts=-45.6° C;R404A的标准气化温度ts=-47.6° C;R23的标准气化温度ts=-82.2° C。制冷剂工作压力越低,其气化温度也越低,反之,如果要求某制冷剂(如R12)的蒸发温度到达某个低温值(-40° C),则必须调整其工作压力低于某个相应的压力(如0.6MPa),称该压力值为饱和蒸汽压力。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "为了避免空气渗入到制冷系统内降低制冷效率,温度试验箱制冷系统正常运行压力(如蒸发压力,冷凝压力,吸气压力等)一般都应稍高于当地的大气环境压力,因此制冷剂的标准气化温度(ts)是温度试验箱可能达到的最低极限温度。考虑到蒸发器传热的温差要求,温度试验箱可能达到的最低温度一般应比制冷剂的标准气化温度(ts)高3° C~7° C。 /span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "strong2)冷凝压力Pk不能太高/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "冷凝压力Pk是从压缩机排出的高温高压的蒸汽在冷凝中被冷却为液态的工作压力,这个压力受冷却介质的温度和压缩机排气压力所制约。压缩机排气压力越高,冷却介质的温度越低,则制冷剂的蒸气越容易冷凝。但是提高压缩机的排气压力不仅会加大压缩机的功耗,缩短压缩机的工作寿命,而且容易出现工质的泄漏。另一方面,冷却介质的温度受大气环境温度(风冷)和冷却水温度(水冷)的限制不可能太低,通常情况下,冷却介质进入冷凝器的入口温度为24° C~29° C,冷凝器出口处冷却的温度为40° C~50° C,冷却介质的平均温度在30° C~50° C范围内,例如制冷剂R502的冷凝压力Pk大体是1.5MPa~2.0MPa,由于工质在管道内流动的压阻损失,压缩机的排气压力必须高于冷凝压力Pk,所以使用制冷剂R502的压缩机排气压力必须是1.8MPa~2.2MPa。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "strong 3)制冷剂的溶油性与溶水性/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "制冷剂应该有一定的溶油性和溶水性。制冷剂中溶入润滑油后,有利于制冷系统中各种运转零部件的润滑,特别是在冷凝器中具有溶油性的液态制冷剂会带走因冷凝效应凝聚在冷凝器内壁上的油膜,可以降低贴符在冷凝器内壁上油膜对冷凝器热交换效率的影响。但是当液态制冷剂带着溶油进入蒸发器后,随着液态制冷剂的蒸发,气化,会在蒸发器内在实际的制冷系统中,压缩机的排气口之后都加装有油气分离器,限制制冷剂中的溶油量。同时在蒸发器的安装中采取一些回油的措施,如复叠式制冷机组中的蒸发冷凝器通常采用盘管式蒸发器,液态制冷剂从盘管的上部进入蒸发冷凝器,气化后的蒸汽从下部返回压缩机吸气口,吸附在蒸发器的内壁的油液也会在重力与压缩机吸气负压的作用下返回压缩机的油池中。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "对于壳管式蒸发器,回气管道安装时必须向压缩机吸气口方向有一定的倾斜度,便于残留的油液依靠重力的集油作用,被压缩机的吸气负压吸回压缩机内。制冷系统中渗入水汽会在低温段的局部地方形成“冰塞”,阻挡制冷剂的顺利流动,所以在制冷系统中无一例外地在冷凝器之前都安装有“干燥过虑器”,吸收可能渗入制冷系统中的水分,并且在安装和维修制冷系统时,适当增加抽真空的时间,以有利于制冷系统中残留水分在真空状态下加速蒸发、排除。但这些措施不能完全清除渗入制冷系统中的水汽。为确保制冷系统正常工作,采用具有溶水性的制冷剂可以携带极少量残余的水汽循环运行。例如采用溶水性能好的氨作为制冷工质的制冷系统,基本上无“冰塞”之忧,而采用溶水性能差的氟利昂作为制冷工质的制冷系统必须特别重视“干燥”除水的要求,及时更换“干燥”过滤器的滤芯。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "strong4) 制冷剂单位容积的制冷量/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "此外,还希望制冷剂单位容积的制冷量大,可减小制冷机组的尺寸;具有较高的导热系数,可减少冷凝器和蒸发器的换热的面积;黏度低且密度较小,可降低管道流动中的阻力,减少管路压降;化学及物理性能稳定,无腐蚀性,无毒,不燃烧,不爆炸,具有一定的抗电性能等。在实际工程中,温度环境试验箱最低极限温度一般为:-40° C~-35° C或-75° C~-70° C,采用大气环境温度的风和地表的水为冷却介质的冷凝器进口温度通常不高于30° C,故温度试验箱制冷系统最常使用的制冷剂是R404A和R23(R508B)。/span/p
  • 韦布望远镜同款黑科技!详解天霁ODS5-PRO超低温制冷技术
    北京时间2022年7月11日凌晨5点,人类有史以来最强大的太空望远镜——詹姆斯韦布空间望远镜(James Webb Space Telescope, 简称JWST)发布了第一张经过官方处理的科学图像。这张前所未有的清晰宇宙图像标志着人类对宇宙的观察进入了新的红外时代,也引起了人们对韦布空间望远镜的更多兴趣。韦布望远镜首张经过官方处理的科学图像 韦布空间望远镜经历了二十五年研发,耗资100多亿美元,是集人类多领域顶尖科技于一身的强大观测仪器。它的主要观测波段为红外,这是因为来自早期宇宙的光在经过百亿年的红移后,大部分已经变成了红外线。但观测红外线是件麻烦事,所有具有温度的物体都会发射红外线,温度越高红外辐射就越强。为了观测到来自遥远宇宙深处的红外线,韦布的核心组件之一中红外成像仪(Mid-Infrared Instrument, MIRI)必须运行在低于7K(-266℃)的低温环境下,以抑制成像仪自身红外“噪音”的干扰,获得高质量的图片。这个温度甚至比韦布空间望远镜所在的空间温度(约36K)还要低30度,因此必须使用额外的制冷系统才能实现。 实现这样低的温度本身已经很不容易了,更何况韦布空间望远镜独自运行在距地球150万公里的L2拉格朗日点上。这套制冷系统还必须满足体积小、重量轻、可靠性高、振动低等一系列苛刻要求,才能保证韦布在十余年设计寿命内的稳定工作。韦布身上这套顶尖的制冷系统,便是被NASA工程师们称为“最强黑科技”的脉管式热声制冷系统。MIRI的超低温制冷装置 热声制冷是目前最先进的制冷方式之一,它利用热在弹性介质(常为高压惰性气体,如氦)中引起声学自激振荡的物理现象实现介质的压缩或膨胀,进而实现对热量的“搬运”达到制冷的效果。没看懂也没关系,总之与传统压缩机式制冷相比,热声制冷的优势在于装置结构非常紧凑,制冷效率高,并且几乎不需要机械运动部件,因此成为了韦布空间望远镜的不二选择。下面这张图就是韦布空间望远镜的脉管式热声制冷装置示意图,有兴趣的同学可以研究一下。脉管式热声制冷装置示意图 “天霁”ODS5-PRO高精度环境空气破坏臭氧层物质(ODS)与含氟温室气体监测系统在对环境空气进行监测时,为了实现对四氟化碳、三氟化氮等痕量超低沸点(约-130℃)组分的有效捕集,制冷温度需要低于-200℃(73K)。这个温度虽然比韦布的7K高了不少,但也足以让空气液化了。为了满足在线监测系统对于可靠性的要求,“天霁”ODS5-PRO采用了和韦布空间望远镜同款的脉管式热声制冷系统。该系统极为小巧,却可以在10分钟内实现从室温到-200℃的急速制冷。相比于上一代压缩机制冷,该系统不需要外置压缩机和传统制冷剂,可集成在主机内部,且制冷效率高,可靠性好。“天霁”ODS5-PRO超低温制冷系统 脉管式热声制冷系统的应用,使“天霁”ODS5-PRO分析精度、工作效率和可靠性均得到了有效保障。该低温技术源自工程中国科学院理化技术研究所低温工程学重点实验室,具有完全自主知识产权,是真正的“中国创造”+“中国制造”。
  • 乐研发布制冷循环器(RE系列)新品
    Elegant是专门针对外部循环制冷应用而开发的系列产品,Elegant制冷循环器工作温度范围是-30℃到25℃。制冷速率可快速达到设定的低温,强效的性能充分满足低温循环的各种应用。配备有先进的7寸彩色触控屏(RE310为5寸),同时还有不同制冷功率的型号可供选择。产品优势:进口品质:采用国际知名品牌压缩机(艾佛森)和高性能磁力泵。稳定运行:继电器、保护器和电容均为原装进口,保障设备连续稳定运行。智能控温:自主开发控制系统实现智能控温,提供精确的温度场。极速降温:极速的降温速率,确保高效的热量交换。多重保护:具备过热、过电流、过压等多重安全保护装置。长久使用:储液槽具备极好的防腐蚀和防低温液体污染等性能,使用寿命大大增强。精巧设计:立式设计,占地面积小。相同型号下,尺寸在国产仪器中最小。多重选择:对于不同的客户我们还可以选配制热,搅拌等功能EASY耐腐蚀彩色触控屏和传统普通按键式屏不一样,在这款机器上我们设计了基础版EASY耐腐蚀彩色触控屏,省去了按键式操作带来的不便,控温只需指尖轻轻一点。七寸高分辨率彩色触控屏。界面简洁美观、操控合理。图形精美,显示清晰。触控灵敏,戴手套也可流畅操作。正面挡风面板磁铁吸附,拆装简单,维修方便。专业的化工机械结构师倾力设计,专为实验室技术人员特别打造,典雅美观。创新点:1.专门的化学仪器结构师专业设计,性能更好,操作更加人性化。2.5寸触摸彩色屏,与手机智能屏一样灵敏。3.体积小,降温速率高,同时满足不同低温需求。制冷循环器(RE系列)
  • 上海技物所在1~2 K温区复合制冷循环研究方面取得重要进展
    近日,上海技物所党海政研究员课题组以四级高频脉冲管循环作为前级、JT循环作为终端的复合制冷循环实验方案,获取了迄今为止公开报道的基于多级高频脉冲管耦合JT的复合制冷循环实际获取的最低温度——1.36 K。在此基础上,该团队针对目前获取2 K以下温度的具体实践均需使用昂贵而稀缺的氦-3工质,严重阻碍实用化推广的缺点,提出了以氦-4为唯一工质的创新复合制冷循环方案,并进一步联合上海微系统所尤立星团队,将以氦-4为唯一工质的复合制冷机应用于冷却实际的超导纳米线单光子探测器(SNSPD),通过对系统探测效率和暗计数率等关键指标的实测,结果表明该制冷机可以为SNSPD提供1.84 K工作温度和良好电环境,使其保持稳定可靠的工作状态。以上研究结果为该类复合制冷循环技术在未来的空间应用和进一步实用化奠定了重要基础,相关成果先后发表于低温和超导领域国际期刊《Cryogenics》、《IEEE Transactions on Applied Superconductivity》及国内综合性学术期刊《科学通报》上。 相关工作得到国家自然科学基金、上海市“量子信息技术”市级重大科技专项、上海市产业协同创新项目以及上海市科技创新行动计划项目资助。上海量子科学研究中心、上海铂钺制冷科技有限公司、中科院上海微系统与信息技术研究所、赋同量子科技(浙江)有限公司、中国科学院大学等作为合作单位给予了重要支持。上海技物所1~2 K温区复合制冷机典型实物图:(a)系统整体布置 (b) 低温端细节 【附】相关已发表的系列学术论文链接如下:(1)以氦-4为唯一工质的1.8 K复合制冷机:https://engine.scichina.com/doi/10.1360/TB-2021-1305 (2)复合制冷循环获取1.36 K的实验验证:https://doi.org/10.1016/j.cryogenics.2022.103452 (3)工作于1 K温区的复合制冷循环理论:https://doi.org/10.1016/j.cryogenics.2021.103282 (4)复合制冷循环获取1.52 K的实验结果:https://doi.org/10.1109/TASC.2021.3060357 (5)3.3 K四级高频脉冲管循环理论研究:https://doi.org/10.1016/j.cryogenics.2019.103014 (6)3.3 K四级高频脉冲管循环实验验证:https://doi.org/10.1016/j.cryogenics.2019.103015 (7)三级高频脉冲管循环理论与实验:https://doi.org/10.1016/j.cryogenics.2018.05.005
  • 如何为旋转蒸发仪选择合适的冷却循环系统?
    为您的蒸馏实验选择合适的冷却方法,对于整个系统的性能、经济性和效率的影响是超乎想象的。作为蒸馏过程的必需阶段,目前大家常用的冷凝方式主要包括:使用干冰冷凝器、配备或自行搭建冷却循环体系,以及使用自来水进行蒸汽的冷却。但在大多数情况下,需要选购冷却循环系统来做配套设备。冷却循环系统在运行时,通过其制冷系统将加注在水箱中的冷却液冷却,由内置的循环泵将冷却液泵入冷凝器,吸收冷凝器内蒸汽的热量,以达到冷凝的效果,最后将温度升高的冷却液再次回流到水箱进行降温,如此循环交换冷却,实现为旋转蒸发系统提供均一稳定的冷凝温度,同时有效避免使用自来水时可能发生的季节性温度波动。而且作为理想、环保的替代自来水冷却的方法,也有助于实验室节约用水。在您选购合适的冷却循环系统时,需要考虑的重要因素包括:1、最低冷凝温度和相应的制冷能力2、泵压3、泵速4、合适的配件01最低冷凝温度和相应的制冷能力冷却循环系统的最低温度需要等于或低于旋蒸冷凝器以理想速率冷凝溶剂蒸汽的温度。该温度由溶剂的沸点决定。在进行冷却循环系统温度选择和设定时,一般建议遵从“20法则”,即加热锅温度和蒸汽温度、蒸汽温度和冷凝器温度之间各设置20°C的温差。比如,将加热锅温度设置为60°C,调整系统的真空设置以产生40°C的溶剂蒸汽,并在 20℃下进行冷凝操作。所以,溶剂蒸汽温度比加热锅温度低 20℃,冷凝器温度比蒸汽温度低20℃。冷却循环系统通常在 20°C或常温时具有最大的冷却能力,即理想状态下的最大制冷功率参数。随着设置温度越低,设备能实现的制冷能力随之降低。所以实验过程中并非设置的温度越低,冷凝效果越好。这也是为什么实验过程中将冷却循环系统温度设置到最低水平实现的并不一定是理想冷凝效率,因为冷却循环系统的制冷效果需要综合考虑温度和制冷能力两项参数。通过查看产品规格,您会发现针对不同温度下,冷却循环系统有相对应的不同冷却能力。如果需要冷凝器在比较低的温度下工作,就需要深入了解较低温下冷却循环系统的冷却能力。如果旋转蒸发仪需要蒸馏多种溶剂,那么就要根据所需的最低冷凝温度来选择冷却循环系统的功率。如果您的冷却循环系统在其设定温度下功率不足,意味着在实际蒸馏中冷却液将无法达到设定的温度,从而无法提供足够的热传导效应,对蒸汽进行有效冷凝。不能被及时冷却的蒸汽会被吸入真空泵,增加泵组件的磨损并缩短其使用寿命。它甚至可能浸泡泵,造成无法挽回的损坏。另外,如果您的冷却循环系统有过温警报,设置过低的温度可能会导致设备报警并关闭,蒸馏实验中断。02泵压另一个需要考虑的重要因素是冷却循环系统的循环泵泵压范围。冷却循环系统的泵压通常在10-15 psi(0.67-1.03bar)的范围内。如果泵压过低,一旦旋转蒸发仪与冷却循环系统存在一定的高度差(如冷却循环系统置于实验台下方)就会导致冷却液无法在冷凝器中有效循环。如果泵压过高,冷凝器内部因为冷却液压力过大造成破裂的风险就会急剧增加。Heidolph玻璃冷凝器内部最高承受压力为2bar,适度提升了适用范围。所以在选购冷却循环系统时,需要先确认该设备的压力范围以及旋转蒸发仪冷凝器的工作压力范围。一般来讲,大多数离心泵的最大压力为10 psi(0.67bar),从而使其适合与玻璃冷凝器一起使用。另一方面,容积泵和涡轮泵往往具有更高的输出压力,因此更需要重点关注其泵压范围,从而避免因使用相应的冷却循环系统增加玻璃冷凝器破裂的风险或泵压不足导致冷却液无法有效循环。03泵流量冷却循环系统的泵流量会影响冷却液在冷凝器中的停留时间。流速越低,冷却液在冷凝器中停留的时间就越长。随着温度升高,蒸汽和冷却液之间的热传递效率降低。在这种情况下,会增加溶剂蒸气冷凝不充分的风险。虽然目前大多数冷却循环系统的流量相对于其冷却功率而言都足够,但还是需要注意这一点。04合适的配件:冷却液和加强型冷却水管路根据您的应用对温度范围的需求,选择合适的冷却液。如果您需要更低的温度,建议使用乙醇或乙二醇混合物。虽然乙醇直到117.3℃才会冻结,但它的高度易燃性具有一定风险。将其用作冷却液时应格外小心。Kryo 30冷却液是含有抑制剂的单乙二醇和水的混合物,工作温度范围-30到+90°C,燃点约120 °C,是大多数冷却循环水浴匹配旋转蒸发仪的理想选择。选择的冷却水管路应与所使用的冷却液的化学相容性、应用的温度范围以及额定压力相匹配。未能选择正确的管路将导致管路立即或在长时间使用的情况下发生爆裂。如果您在低温下运行,则可使用保温套以减少因为环境温度影响而造成的热损失。加强型冷却水管路(P/N: 591-38000-00-0),内径Ø 8mm,工作温度范围&minus 20到60°C,是连接冷却循环系统与旋转蒸发仪的推荐选择之一。冷却循环系统选购指南Hei-CHILL Pro系列冷却循环系统具备强大的制冷能力,即使使用高极性容积,也能快速达到设定的温度并保持稳定,运行噪音低,可适用于广泛应用。优化的泵送能力,可放置在试验台下运行。配备RS 232接口,可通过海道尔夫控制型旋转蒸发仪集成控制。针对不同的蒸发应用,我们为您提供多种冷却循环系统,以满足您的个性化需求。基本说明1为了保护玻璃冷凝器,冷却循环系统的最大泵压不得超过2 bar(包括压力峰值)2为了获得理想的蒸馏速度,建议遵守四分之三原则:即在冷凝器高度的四分之三处及以下,蒸汽应被有效凝结,形成液滴并作为冷凝物排出,尽量避免蒸汽达到冷凝器的上部四分之一处,因无法及时被冷却导致蒸汽被真空泵吸入,从而影响泵的使用性能3玻璃冷凝器的顶部应始终保持有效的低温状态,以避免蒸汽被吸入真空泵END关于HeidolphHeidolph集团是创新型实验室前处理设备的制造厂商。磁力搅拌器、顶置式搅拌器、台式旋转蒸发仪、工业大型旋转蒸发仪、蠕动泵、混匀器、恒温摇床等相关产品构成了Heidolph实验室设备的产品线。集团总部位于德国南部的纽伦堡附近的施瓦巴赫市。作为Heidolph集团全资子公司,海道尔夫仪器设备(上海)有限公司于2019年正式成立,旨在为中国用户提供更为直接、更快速的服务。如需更多详细信息请致电400-021-7800或邮件sales@heidolph-instruments.cn,我们将竭诚为您服务。
  • 自主专研加热制冷循环机 无锡冠亚打造品牌形象
    在制药化工行业中,实验室控温是其发展的重要组成部分,加热制冷循环机的运行,对于制药化工行业的发展也是有着一定作用的。在实验室中,加热制冷循环机也称为了不可或缺的组成部分。  随着近年来对科研事业的重视,加热制冷循环机等仪器设备发展也迎来的一定的发展机遇,无锡冠亚恒温制冷技术有限公司(以下简称无锡冠亚)是一家专业从事制冷加热控温仪器开发、研究、生产、销售的仪器生产商,无锡冠亚一直致力于提升中国实验室生产力水平,希望通过专业、细致和全面的技术支持服务不断践行“为客户创造更多价值”的承诺。目前,无锡冠亚已成为一家多元化科技型企业。  无锡冠亚拥有十多年的研发经验, 不仅能提供多种可靠的实验室仪器、设备,还能为客户度身定制系统的制冷加热控温整体解决方案。在多年的运营下,无锡冠亚已经和全国多家知名制药化工企业长年达成深度合作,在技术创新、产品研发、营销渠道等多领域不断前行,无锡冠亚在产品研发和改进上拥有着雄厚的实力,而这也让无锡冠亚的仪器在产品质量、性能、价格、售后服务等多方面具备强劲的市场竞争优势。  除了加热制冷循环机外,无锡冠亚也同时经营冷水机、冷冻机、工业冰箱、超低温冷冻箱、新能源电池电机测试用控温系统等,为制药、化工、医疗、军工、新能源、芯片、机械等多个行业提供了众多可靠的产品。无锡冠亚知道,一个好的品牌形象会让公司收益良多,无锡冠亚高瞻远瞩,积极探索,力求用可靠的产品和妥帖的服务打造良好品牌形象。  在加热制冷循环机国产仪器设备市场上,未来的市场竞争还会更加激烈,无锡冠亚要保持竞争优势,仍需刻苦专研,以产品品质说话!
  • 量子计算用极低温稀释制冷机打破两项纪录
    作者:吴长锋 来源:科技日报3月26日,安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发的“量子计算用国产极低温稀释制冷机”项目,顺利通过鉴定委员会鉴定。专家认为,研制的极低温稀释制冷机满足量子计算需求,连续稳定运行的最低温度为8.5mK,项目创造了已公开报道的连续运行最低温度和制冷量两项国内纪录。安徽大学供图“量子计算用国产极低温稀释制冷机”是一种能够提供接近绝对零度低温环境的高端科研仪器,是现代量子科学研究与量子技术发展的关键核心设备之一。由领域内知名专家组成的鉴定委员会听取了项目工作汇报,审阅了技术报告和相关技术资料,考察了实验现场,查看了系统运行状况;经质询、答疑和讨论,一致认为:针对无液氦、极低温、大冷量、大空间、高稳定性等量子计算需求,单磊教授、王绍良研究员团队成功研制出无液氦型量子计算用极低温稀释制冷机,连续循环运行最低温度达到8.5mK。相关成果增强了我国相关基础科学和技术领域的原始创新能力,进一步解决了大摩尔流量条件下极低温流体热交换效率低的技术难题,研发出具有超大比表面积的极低温高效换热部件,同时实现了相关核心部件的完全自主研发,扭转核心技术“卡脖子”的被动局面。据悉,去年12月31日,这台机器已经获得在100毫K具有435微瓦和120毫K具有671微瓦的制冷量,达到国际主流产品的水平,满足量子计算的温度和冷量需求。
  • 理化所在室温热声制冷领域取得重要突破
    热驱动热声制冷技术是一种新兴的制冷技术,它基于可压缩性气体工质的往复运动与邻近固体壁面之间的复杂的热相互作用(热声效应)而工作。其中,热声发动机利用温差产生声波形式的机械功(声功),而热声制冷机则消耗声功产生温差泵热,即产生制冷效应。该技术一般采用惰性气体工质,没有机械运动部件或运动部件极少,因而具有工质环保、可靠性高以及紧凑等优点,被认为是一种具有巨大应用前景的新一代制冷技术。然而截至目前,国内外报道的室温温区的热驱动热声制冷机的效率普遍较低,在空调制冷温区的热制冷系数(COP)通常不超过0.5,难与商业化的吸收式制冷技术相比(单效溴化锂-水吸收式制冷系统的COP在0.7左右,而双效系统的COP可达1.2)。因此,提高热驱动热声制冷系统的COP是当前实现其产业化应用的重大科学技术问题。理化所低温与制冷研究中心罗二仓研究员课题组从多场协同的原理出发,首次揭示了声场、温度场以及能流场互相耦合以及实现高效热声转换的工作机制,在此基础上提出了高效的热驱动热声制冷工作流程,使得发动机和制冷机不仅实现了高效的行波声场转换,而且实现了不同加热温度下发动机中声功产生与制冷机中声功消耗的理想匹配,进而大幅度提高了系统的整机热制冷效率。实验中采用氦气作为工质时,当加热温度为450 °C时,在标准空调制冷工况下(环境温度35 °C,制冷温度7 °C)获得的COP达到1.12,制冷功率为2.53 kW。在相近的制冷工况下,该COP是以往报道同类型样机最高水平的2.7倍,并超过了现有吸附式和单效吸收式制冷技术的水平,可媲美部分双效吸收式制冷系统。理论预测当加热温度进一步提升至燃气燃烧的温度时(~700 °C),该系统可获得超越直燃型双效吸收式制冷系统的COP(1.5以上)。该研究为热声制冷技术的产业化进程迈出了关键一步。相关研究以A highly efficient heat-driven thermoacoustic cooling system为题发表在Cell旗下期刊Cell Reports Physical Science上,论文第一作者为理化所2021级直博生肖磊,通讯作者为理化所罗二仓研究员与吴张华高级工程师。图1. 新型热驱动热声制冷系统及其实验样机性能此外,相比氦气,氮气作为一种更常见、经济的工质,亦十分具有应用前景。采用氮气作为工质时,在标准空调制冷工况下该系统实验的COP仍能达到0.49,且展示出与氦气不同的工作特性。数值计算结果表明,如对系统结构尤其是回热器填料进行优化改进后,其COP还可大幅提升。相关研究以An efficient and eco-friendly heat-driven thermoacoustic refrigerator with bypass configuration为题发表在物理学期刊Applied Physics Letters上,并被编辑选为亮点论文(Featured Article),且受到美国物理学联合会《科学之光》(AIP Scilight)的专访报道。论文第一作者为理化所2021级直博生肖磊,通讯作者为理化所罗二仓研究员与吴张华高级工程师,理化所为第一兼通讯作者单位。上述研究工作得到国家自然科学基金委、科技部以及中国科学院等单位的项目支持。图2. Scilight专访报道Cell Rep. Phys. Sci.文章链接:https://doi.org/10.1016/j.xcrp.2024.101815Appl. Phys. Lett.文章链接:https://doi.org/10.1063/5.0181579Scilight专访报道链接:https://doi.org/10.1063/10.0024392
  • LAUDA推出Alpha新型加热和制冷循环浴
    有限的预算, 高性能的产品  可信赖的技术  更现代的设计  更高的性价比  随着新型LAUDA Alpha系列产品的问世,用户可以使用到最新现代工业设计的高质量的温度控制产品。通过简化一些功能,并把重点放到提高设备的可靠性和用户使用的方便性上,德国LAUDA能提供同级别中最高性价比的产品。高质量的零部件和材料的使用,如不锈钢槽体,保证了制冷和加热循环浴的长期使用寿命  这一系列产品的控制器标均为三键操作和大屏幕LED高清晰显示屏。这些特点使得操作更加简单明了,同时使得菜单中各项功能的切换更加容易。该系列可以使用非可燃液体(水、水/乙二醇混合液)。新型LAUDA Alpha循环浴在-25到+85℃温度范围内为各种内循环和外循环应用提供可靠的温度控制。±0.05K的温度稳定性使用户在加热和制冷的广泛应用中对高精度温度控制的要求得以实现。用户可以自行对循环浴进行单点温度校准。压力泵可为导热液提供0.2bar压力和15L/min的最大流量,也可以通过标配的压力调节装置调节流速最小至5L/min。安全功能如报警、警告和错误功能都可以显示在LED显示屏上。  浸入式A系列控制器可以通过标配的螺纹夹子固定在各种开口浴槽上使用。配合可选的泵循环套件和冷却盘管,浸入式恒温器可以扩展为一套完整的恒温循环系统。如果与容积为6升、12升或24升不锈钢浴槽配合使用,就产生了A 6、A 12或A 24三种型号的恒温循环浴。浸入式恒温器和加热循环浴的工作温度范围从+25到+85 °C,加热的功率在230V电压下为1.5kW。对于Alpha产品系列,冷却盘管和泵循环套件作为加热循环浴的可选配件  制冷循环浴RA 8、RA 12和RA 24同样提供了浴槽容积规格在8到24L之间。该系列的制冷循环浴的工作温度范围可从-25到+85 °C。在20 °C时,RA制冷循环浴可以提供给用户225瓦的冷却功率。使用RA 12时,冷却功率为325瓦。RA 24使这一系列的产品更加完善,提供了425瓦的冷却功率。LAUDA还给客户提供更多更为实用的功能。如所有的制冷循环浴均配备自动压缩机控制系统。在节省能源的同时,它还可以减少压缩机的磨损,最终达到延长设备使用寿命的目的。并且自动制冷控制系统可以工作在整个-25到+85 °C温度范围内且不受温度限制。更实用的一个特点就是前置盖板可以无需任何工具轻易拆卸,使日常清洗冷凝器更加方便。设备后部的排液口可以非常轻易地排空设备中的导热液。浴槽盖和泵循环套件为标准配置。  LAUDA Alpha 系列循环浴是医疗血清制备或化工制药样品制备等应用的理想温度控制产品。更典型应用如在制药行业、质量控制和化学分析中的简单温度控制。  典型的应用领域:  化学/制药分析、质量控制领域的样品制备  敏感领域,例如血清学,高精度温度控制的应用  生物领域各种不同温度控制的应用   LAUDA China 劳达中国  电话:021-64401098  传真:021-64400683  网站:www.lauda.cn  电子邮件:info@lauda.cn
  • 施都凯stik低温冷却循环器ILB-008-03 特价促销 8500元一台
    产品描述 1.浸入式控制器 采用模糊逻辑PID控制,高亮度液晶显示屏,可显示时间和日期以及当前设备各系统进行的信息,简洁明了方便用户操作.2.便于维修 便于用户维护,清洁冷凝器,提高制冷性能,节省能源.3.RS232接口 PC机专用接口,专用软件光盘一张(适用简体中文WINDOWS2000或简体中文WINDOWS XP操作系统)通过PC机专用软件编制试验程序并监控和保存。通过PC机专用软件直接显示和打印试验数据.4.方便排放液体 方便排放液体,易于箱内清洁保养.5.均匀的温度 采用四周冷凝盘管设计,冷热均匀有利保证箱内温度的均匀.6.人性化拉手 专业人力学原理设计,提高用户使用的舒适度. 应用范围:广泛应用于制药,化工,医疗,科研等行业对各种研究用机器,分析以及计测设备和工业用机械装置的发热部位进行低温冷却和温度控制。特点:◆箱体采用优质的冷轧板并订制专用杜邦粉沫喷塑处理。内胆采用SUS304不锈钢板,激光切割加工技术,表面平整,美观大方。◆主要零部件国外进口(循环水泵,漏电保护器,控制系统,传感器&hellip )性能优越,质量可靠。◆冷冻机和加热器组合使用温度范围广泛,控温更精确,可能进行高精度的温度调节。◆外部循环和冷却能力强,且泵功率电子可调,可保证最佳循环换热效果。◆控制面板下方的吸气口处,配备了空气过滤网,有效防止灰法吸入,维护设备内部清洁。◆本品采用模糊PID控制,高亮度液晶大显示屏,可显示时间和日期以及当前设备各系统进行的信息,操作方便。◆具有漏电保护,断电恢复,水位报警,独立超温保护,温度上下限报警等装置,保证设备运行更安全。产品参数: 产品型号ILB-008-01ILB-008-02ILB-008-03ILB-008-04槽内搅拌喷流式搅拌控温方式模糊逻辑PID控制方式控温范围负20℃~95℃温度显示精度0.1℃控温精度± 0.1℃控温均匀度± 0.2℃工作环境温度5℃~35℃最大流量5L/min最大扬程1.5m外形尺寸 (mm)· 重量 W413*D705*H790 约48KGW413*D705*H790 约45KGW297*D590*H770 约36KGW297*D550*H750 约32KG内胆尺寸 (mm)· 容积 W242*D452*H213 约23.3LW187*D392*H213 约15.6LW152*D302*H193 约8.8LW152*D262*H153 约6L外部循环接水口外径18mm配管外径11mm配管加热功率2000W2000W2000W2000W制冷功率· 冷媒830W· R22725W· R22600W· R22425W· R134a电源电压AC-220V 50/60HZ■性能参数测试在空载条件下:环境温度20℃,环境湿度50%RH。■产品外观及参数的更改恕不另行通知,产品外观因摄影及印刷等原因会产生偏差,敬请谅解。※注明:我公司可根据用户所需的温度控制范围订制产品。
  • 勤卓科技发布勤卓吊蓝式冷热冲击试验箱小型高低温冲击箱HK-80-3H新品
    勤卓吊蓝式冷热冲击试验箱小型高低温冲击箱HK-80-3H产品用途吊篮式冷热冲击试验机用于光伏组件、LED灯管、LED灯具、电子电器零组件、自动化零部件、通讯组件、汽车配件、金属、化学材料、塑胶等行业,测试其材料对高、低温的反复抵拉力及产品于热胀冷缩产出的化学变化或物理伤害,可确认产品的品质,从精密的IC到重机械的组件,无一不需要冷热冲击试验箱的鉴定。勤卓吊蓝式冷热冲击试验箱小型高低温冲击箱HK-80-3H产品用途产品特点 通过气动方式将样品放置篮在蓄冷箱和蓄热箱两者之间快速移动,有测试孔,可带电,带信号,带气源测试。新一代外观设计,箱体结构、制冷系统、控制技术均做较大改进,技术指标更加稳定,运行更可靠。维护更方便,备有gao挡万向滚轮,方便在实验内移动。超大触摸屏操作,外观更加简洁大方,操作更加容易,设定值实际值实时显示。 真空双层玻璃:大视窗设计,飞利浦高亮度照明,加热无雾气 为编程和文档处理提供更多的接口选项 USB 输出,电脑连接打印可靠性高:主要配件选配zhu名专业厂商,保证提高整机可靠性一、产品属性1.1容积:80L1.2工作室尺寸500*400*400mm (宽×高×深)1.3 外形尺寸1400*2000*2100mm (宽×高×深)1.4 冲击形式低温高温按程序自动交变,转移样品提篮,提篮式.1.5供电电源380V±10%,50Hz±1 三相四线+接地线,保护接地电阻小于 4Ω1.6 总功率15KW主要技术参数 2.1 高温室高温蓄温箱温度范围+60℃~+200℃高温冲击温度+60~150℃2.2 低温室低温蓄温箱温度范围-10℃~-65℃低温冲击温度-10℃~-40℃ 2.3.工作室 温度波动度≤0.5℃温度偏差≤±1℃温度均匀度≤2.0℃高低温转换时间5~15S高低温恢复时间3~5min(空载下非线性)预热区升温速度≥3℃/min(非线性)预冷区降温速度≥2℃/min(非线性)2.4噪音65dB 2.5 满足试验标准1、1.IEC 60068-2-14环境试验 第2部分:试验方法 试验N:温度变化,2、GB/T 2423.22环境试验 第2部分:试验方法 试验N:温度变化,3、GJB 150.5军用装备实验室环境试验方法第5部分:温度冲击试验,4、JESD 22-A106B.01-2016温度冲击 三、试验箱结构(水冷式)3.1、结构方式预热室、预冷室与制冷机组一体式.通过气动方式使样品吊篮在高温和低温测试区上下移动 3.2、材料构成3.2.1 外壁材料:冷轧钢板静电双面喷塑,颜色为象牙白3.2.2 内壁材料:SUS304 不锈钢板3.2.3 绝热材料:100mm 玻璃棉保温层3.3、结构强度试验箱承重能力:≤100Kg3.4、大门全开单翼型箱门一扇,带门锁。门框两道硅橡胶密封条,低温室门框防结露电热装置3.5、观察窗门上有 1 个多层观察窗,低温室门上观察窗带镀膜加热以防止其冷凝和结霜3.6、冷凝出水孔具有工作室冷凝水和机组凝结水的引出孔3.7、引线孔在试验箱一侧设定一个直径为5cm的引线孔,便于样品通电\通讯号之用。3.8、照明灯工作室顶部设低压照明灯,控制屏开关控制四、试验箱空气调节系统4.1、调控方式空气强制循环平衡调温4.2、空气循环装置离心式风机,长轴外置电机驱动。4.3、加热方式镍铬合金电热丝式加热,PID 调节,执行元件:固态继电器4.4、空气冷却方式翅片式蒸发器 五、试验箱制冷系统5.1、工作方式复叠汽体压缩式制冷5.2、冷凝方式水冷5.3、制冷压缩机国际品牌法国泰康压缩机5.4、制冷机控制根据试验条件,控制系统自动调节制冷机运行工况、冷量大小,确保压缩机 工作在合适状态,延长压缩机使用寿命5.5、制冷剂环保制冷剂 R404a ;R235.6、减振、降噪制冷机系统减振、降噪措施六、试验箱控制系统6.1、传感器铠装铂电阻6.2、控制器进口彩色液晶触摸控制屏 6.3、人机界面中文、彩色 LCD 显示、触摸屏方式输入设定。6.4、分辨率温度 0.1℃,时间 1min6.5、运行方式定值运转、程序运转6.6、试验数据显示设定温度、实测温度、冲击次数、总运行时间、段运行时间、加热制冷状态6.7、制冷机工况自动选择根据试验条件控制器能自动配置制冷机的工况或开/停。6.8、其他功能6.8.1 故障报警及原因、处理提示功能6.8.2 断电保护功能6.8.3 上下限温度保护功能6.8.4 日历定时功能(自动启动及自动停止运行)6.8.5 自检功能。6.8.6 密码保护控制器设置参数6.9、功能自动调用分组 PID 参数。6.10、接口选配 RS232/RS485 电脑接口及控制操作软件系统。能实现计算机控制、数 据采集控制计算机的数据通讯功能。 七、试验箱安全保护装置 7.1、工作室7.1.1 独立式工作室超温保护器7.1.2 风机过热保护7.2、制冷系统7.2.1 压缩机超压7.2.2 压缩机过流7.2.3 压缩机过热8.2.4 排气温度保护7.2.6 压缩机缺油保护7.3、电源系统7.3.1 电源缺相及相序错误保护7.3.2 漏电保护7.3.3 加热器短路等过流保护7.4、其他试验箱外壳接地保护八、试验箱标准附件及随机资料8.1、产品使用说明书1 份8.2、产品合格证1 份8.3、质量保证书1 份8.4、出厂检验报告1 份九、项目说明说 明电 压三相五线制 380VAC±10%; 50Hz±2%。环境湿度≯85%R.H;大气压86~106Kpa;环境条件设备现场周围无强烈振动、无强电磁场干扰、无高浓度粉尘及腐蚀性物质、无阳光直接照射或其它热源直接辐射设备水平放置通风良好的试验室内,周围应留有充足的空间供操作及维护之用。十、安装场所为了便于箱体散热及维修保养,安装本设备的场所必须符合下列条件:)1、与相邻的墙壁或器物之间的距离。2、为了稳定地发挥试验箱的功能、性能,应选择常年温度为30 ℃以下,相对湿度小于 85%的场所。3、安装场所的环境温度切忌急剧变化。4、应安装在无直射阳光的场所。5、应安装在通风良好的场所。6、应安装在远离可燃物、爆炸物及高温发热源的地方。7、应安装在灰尘少的场所。8、尽可能地安装在靠近供电电源的场所。9、尽可能地安装在靠近水塔管道连接的场所 创新点:一台品质精密的试验设备,让您的产品品质稳中获胜.采用进口智能触摸屏,温控器显示不失真,操作灵敏 散热孔加装过滤棉,内部选用耐腐蚀、易清洗优质304钢材。内置过滤器,隔绝灰尘深入,以保证部件清洁,延长使用寿命.设备底部采用高品质福马脚轮,稳定性好,更顺滑,不卡顿.选购品质风扇,强大的散热系统,告诉循环散热,温控精准。勤卓吊蓝式冷热冲击试验箱小型高低温冲击箱HK-80-3H
  • 德图参与2009年中国制冷展
    2009年4月7日,为期三天的2009中国制冷展圆满结束。来自全球33个国家和国内外近900家主机和配件企业参与展会,参观人数达到4万余人。展会上,位于德国展示厅的德图(testo)公司带来了最新的无线环境温湿度监测系统&mdash &mdash testo Saveris,结合同时参展的20多个测量仪器,德图为制冷业及空调业提供了全面的测量方案。 S 本次制冷展上的企业展示的实力和新技术得到了众人的认可。受国际金融危机的影响,节能的思想已经深入人心。参与制冷展的每一个企业都在为节能减排做着自己的努力,或以节能的产品设备,或以完整的节能系统解决方案,积极贡献自己的力量。德图,作为全球便携式测量仪器行业的领导之一,&ldquo 测量专家&rdquo 的形象已经深入人心。但殊不知,测量只是第一步,在精准测量的基础上进行控制进而节能才是根本。此次,德图带来了空调行业、制冷业全套测量方案,凭着可靠的节能手段成为&ldquo 节能排头兵&rdquo 。 现场,众多客户对德图的新产品无线环境温湿度监测系统saveris表示兴趣。通过testo Saveris测量数据监测系统,德图首次实现了自动化的数据集中获取。Saveris的无线探头和以太网探头可对环境和制程中的温湿度进行精确的测量。任何需要进行温湿度测量、数据归档以及报警提示的地方,都会是testo Saveris的用武之地。saveris的产品经理吴保东先生惊喜的发现不仅制冷业的终端用户,很多工程类公司也需要无线和以太网结合的监测系统。在市场上,目前还没有发现saveris的竞争对手。对于这一点,吴经理很骄傲。他介绍说,德图的口号&ldquo 致力于未来&rdquo 也意味着对研发部门的大力投资。每年,德图总部会投入总销售利润的14%用于产品研发部门,用于新产品的研究与开发。研发部门针对不同的目标群体,通过对相关市场进行调查分析,找到适合于不同群体的解决方案。Testo saveris花了近四年时间研发才被推出。 另外,德图还带来了testo556/560制冷节能监测仪。testo556/560具有高精度温度和压力的传感器,优化的管理模式和专业便携的数据管理系统,主要应用于制冷系统检漏、抽空、制冷剂充注,以及制冷系统试运行和日常的排查、保养维护。制冷系统在试运行前必须进行检漏,良好的检漏可以阻止制冷剂的损失,减少能量的消耗,对保护我们的环境也有积极的作用。此款产品去年年末一经推出,大受国内外市场的欢迎。展会期间,德图举办了技术交流会,共同探讨制冷行业的最新技术和应用,很多人就是专门来了解这个仪器。 正如中国制冷空调工业协会秘书长张朝晖指出,节能环保对于人类长远的生存发展来说至关重要,制冷空调在全球来说都是能源消耗的大户,所以节能和环保价值在中央空调行业的体现,对于整个国际社会和人类未来的发展,具有非常重要的作用。据了解,欧洲政府通常会强制执行一些节能要求并形成法律规范,整个国家都在实施节能规范,节能不仅仅是口号,更是行动。 面对09年的形势,吴经理独具慧眼,他表示在中国,还有许多的节能法规没有实行,而经济危机的出现并非坏事情,因为相关减缓危机的措施会被提上日程并加快实施,强制节能指日可待。只要有这些法律出来,节能就产生商业机会,企业愿意投入精力研发,并取得商业利润以保证他们再创新,从而促进节能产品生产的良性循环。对于这次展会,吴保东感觉收获颇丰:&ldquo 德图不仅获得了很多的高端客户,而且展会现场就达成许多零散的销售。&rdquo
  • PPMS稀释制冷机选件· 提供便利优质的低温解决方案
    自1911年4月,H. K. Onnes在低温下发现汞的超导电性以来已有整整110年,超导和低温物理以其特的魅力吸引着无数研究者前赴后继。温度是基本的物理量之一,温度越低越便于发现和观察丰富的量子力学现象。对低温的追求推动着低温制冷技术在过去的一百年里不断发展,当今,科研工作者已经可以非常便捷地使用商用化的稀释制冷机实现mK超低温环境,因而也发现了众多前所未见的本征物理现象,量子相变(QPT)就是其中之一。量子相变是指0K下系统所处的量子基态性质随外界参数变化而发生的相变。20世纪80年代在二维超导体中发现的磁场或载流子密度调制的超导-缘体相变(SIT)和超导-金属相变(SMT)是量子相变的典型范例。严格意义上讲,量子相变是在零度下发生的相变,其量子临界涨落会影响到有限温区的物理性质,使得很多特殊的物理性质出现在量子临界点(QCPs)附近。近期由中科院上海微系统与信息技术研究所狄增峰研究员、谢晓明研究员、胡涛研究员等与北大王健研究员合作,在人工二维超导体系中观测到一种具有量子格里菲斯奇异性(Quantum Griffiths Singularity)的特殊超导-金属量子相变。该篇工作发表在Advance Science期刊上[1]。在该工作中,单晶石墨烯通过化学气相沉积到金属锗Ge(110)表面形成导电衬底,掩膜完成电制作后利用电子束蒸发法将20 nm厚的铅(Pb)沉积到单晶石墨烯上。由于两者浸润性差,因而沉积的Pb容易形成随机不规则分布的、不连贯的纳米岛,透射电镜和扫描电镜结果都验证了Pb纳米岛的构型,且单个Pb纳米岛内部晶格结构整齐无明显晶界。在10K以下,Ge(110)基底为缘体,而表面覆盖的单晶石墨烯提供了理想的二维电子气平台,使得超导Pb纳米岛之间建立二维耦合。类似基本约瑟夫森结的超导-金属-超导体系,Pb纳米岛/单晶石墨烯片层同样构成了约瑟夫森结阵列。从上图片层电阻随温度的演变曲线可以观测到明显的两阶段超导转变,分别对应Pb纳米岛的超导转变(Region II),以及更低温的约瑟夫森耦合效应超导转变(Region III)。通过对60mK~3.9K温度区间输运数据的细致采集和仔细分析,发现该Pb纳米岛/单晶石墨烯片层在超导-金属相变量子临界点附近的输运性质异常,表现为超导-金属相变临界参量随温度连续变化,形成一条临界线,在逼近量子临界点,临界磁场与WHH理论模拟值(上图c中虚线)存着显著差异,同时临界指数趋于量子临界磁场时发散,而不是通常认知的固定值,这正是量子格里菲斯奇异性的表现。在传统相变中,在逼近临界点时,各临界指数趋于常量,而格里菲斯奇异性的存在,导致各临界指数不再保持为常数,而呈现发散趋势。格里菲斯奇异性来源于系统的无序或涨落在临界点附近对系统的相变行为产生的非平庸影响。在系统从无序相到有序相的转变中,较强的随机无序或涨落导致系统还未到达临界点时就以一定概率出现趋近热力学临界尺度的有序相。这些大块连通的有序区域使得系统的热力学势达到相变点以前就已出现奇异行为,从而导致系统各临界指数在临界点处呈现发散趋势[2]。早在低维超导体系中发现和证实量子格里菲斯奇异性的存在是由北京大学王健研究组与谢心澄院士、林熙研究员、王垡研究员、马旭村研究员、薛其坤院士等人合作完成,在三个原子层厚(小于1纳米厚)的镓(Ga)薄膜中发现了二维超导-金属相变具有格里菲斯奇异性,该工作发表在Science上[3]。此后王健研究组与谢心澄院士、林熙研究员和北京师范大学刘海文研究员等人合作在超薄晶态铅膜中发现了反常量子格里菲斯奇异性的存在,该工作发表在Nature Communication上[4]。 量子相变的细致研究与低温制冷技术的发展密不可分,前文提到的多篇工作的mK温区数据均采用了Quantum Design的综合物性测量系统的稀释制冷机选件(DR)。该选件可以实现样品处50mK低温环境,大的拓展了PPMS系统的研究范畴。DR选件简单易用,与PPMS平台无缝连接,并与PPMS平台的测量应用软件完全兼容。DR选件出厂时已经密封了He3和He4的混合气体,运行时只需将样品安装到样品台,再将DR选件插杆插入样品腔,控制程序自动降温到50mK,不需要额外的操作。与此同时,DR选件又是完全立的,所有组件都被整合到一个推车上,在不使用DR选件时能够简易从样品腔取出安置和收纳,完全不影响系统其他测试选件的使用。简单易用和完全闭循环的设计使PPMS系统的DR选件成为实验室mk低温获得的有效工具,不仅如此,多样化的兼容选件可直接实现低温下的各种测量功能,包括直流电阻测量,高电输运ETO测量,比热HC测量以及交流磁化率AC测量。相对于常规商用低温测量设备而言,PPMS系统及其低温组件有着较低的学习门槛,易于上手。即便是初次接触低温实验的用户也能在较短时间内掌握使用技巧。让一个新手能够很快的掌握测量技术,使大家有更多的精力和注意力集中在科学问题上,而不是技术手段上,这是对科学方面生产力的释放。Quantum Design以其专业精神,致力于为科研工作者提供便捷优质的专业设备,用户的选择与认可也是我们一直前行的不竭动力。 参考文献:[1]. X. Han et al., Disorder-Induced Quantum Griffiths Singularity Revealed in an Artificial 2D Superconducting System. Advanced Science 7, 1902849 (2020).[2]. S. Ye, J. Li, J. Wang, High-temperature superconductivity and quantum Griffith singularity in two-dimensional crystal. SCIENTIA SINICA Physica, Mechanica & Astronomica 48, 087406 (2018).[3]. Y. Xing et al., Quantum Griffiths singularity of superconductor-metal transition in Ga thin films. Science 350, 542 (2015).[4]. Y. Liu et al., Anomalous quantum Griffiths singularity in ultrathin crystalline lead films. Nature Communications 10, 3633 (2019).
  • 一文了解|制冷型和非制冷型红外探测器的区别
    红外探测器是一种能够探测红外辐射的设备,主要由探测元件和信号处理电路组成。根据其工作原理的不同,红外探测器可以分为制冷型和非制冷型两种类型。本文将详细介绍制冷型红外探测器和非制冷型红外探测器的原理、特性、区别、应用场景等。制冷型红外探测器【原理】制冷型红外探测器采用红外辐射的吸收来产生电信号,其探测元件是一种特殊的半导体材料,例如氧化汞、锑化铟等。当红外辐射照射到探测元件上时,将会激发探测元件中的载流子,进而产生电信号。但由于载流子的寿命非常短,为了保证探测器的灵敏度和响应速度,需要将探测元件制冷至低温,通常为77K。这种制冷技术通常采用制冷剂制冷的方法,例如液氮和制冷机等。【特性】制冷型红外探测器具有高灵敏度、高分辨率、高响应速度和宽波段响应等特点。由于探测元件的制冷温度非常低,因此可以有效减少热噪声的影响,提高探测器的灵敏度和分辨率。同时,制冷型红外探测器具有极高的响应速度,可以实现高速实时探测,非常适合于远距离监测、目标跟踪等应用场景。【应用场景】制冷型红外探测器广泛应用于远距离监测、目标跟踪、导弹导航、航空、航天、军事侦察、安防监控等领域。例如,制冷型红外探测器可以用于导弹的制导和跟踪,对于高速飞行的目标,需要具备高灵敏度和高响应速度,这正是制冷型红外探测器的优势所在。此外,制冷型红外探测器还可以用于医学诊断和科学研究等领域,例如在医学诊断中,可以通过制冷型红外探测器来检测人体的体表温度分布,从而诊断疾病。非制冷型红外探测器【原理】非制冷型红外探测器采用红外辐射的吸收来产生电信号,其探测元件通常是一种半导体材料,例如硅和锗等。当红外辐射照射到探测元件上时,将会激发探测元件中的载流子,进而产生电信号。由于探测元件的电阻随温度的变化而变化,因此可以通过测量探测元件的电阻来实现对红外辐射的探测。【特性】非制冷型红外探测器具有体积小、重量轻、价格低廉等特点,相较于制冷型红外探测器来说,更加便于制造和使用。同时,非制冷型红外探测器还具有响应速度快、适用于宽波段的特点,因此在一些特定的应用场景中具有优势。【应用场景】非制冷型红外探测器广泛应用于热成像、火灾报警、工业检测、安防监控等领域。例如,在热成像领域,非制冷型红外探测器可以用于检测建筑物和设备的热分布,从而提高能源利用效率和安全性。此外,非制冷型红外探测器还可以用于火灾报警,可以及时发现火灾并进行报警处理。在工业检测中,非制冷型红外探测器可以检测工业设备的异常热量,从而及时发现设备故障。在安防监控领域,非制冷型红外探测器可以用于监测人员和车辆等移动目标的热分布,从而提高监控的精度和准确性。区别【灵敏度与精度】制冷型红外探测器由于配备了制冷机组件,可以使红外探测器工作温度降低到很低的水平,从而提高了灵敏度,并具备更高的测量精度,能够实现更高的信号检测和分辨能力【工作波长】制冷式红外热像仪是敏感型红外热成像仪,可探测物体间细微的温差,它们工作在光谱短波红外(SWIR)波段、中波红外(MWIR)波段和长波红外(LWIR)波段。因为从物理学角度来讲在这些波段热对比度较高,热对比度越高就越容易探到那些目标湿度与背景差异不大的场景。非制冷型红外热像仪光谱集中在长波红外(LWIR)波段,8~14um范围。【使用功耗】制冷型红外探测器需要通过制冷机维持较低的工作温度,这个制冷系统通常需要耗费较高的电能来驱动。所以,相对于非制冷红外探测器,制冷型红外探测器的功耗一般较高。【应用】制冷型红外探测器通常具有更高的灵敏度和分辨率,适用于需求更高性能的应用场景,例如远距离探测系统等、科学研究等。非制冷型红外探测器虽然相对于制冷型红外探测器性能较低,但价格更经济实惠,适用于安防监控、消防救援、无人机载荷、户外观测等领域。举例说明以非制冷型红外探测器在安防监控领域的应用为例,一些商业场所需要进行24小时的监控,以确保安全。在这种情况下,非制冷型红外探测器可以用于监测人员和车辆等目标的热分布,从而提高监控的精度和准确性。例如,在停车场的监控中,可以通过非制冷型红外探测器来检测停车位上是否有车辆,以及车辆的数量和位置。当检测到停车位上有车辆时,就可以向管理人员发送相应的通知,以便及时采取措施维护停车场的秩序和安全。另外,非制冷型红外探测器还可以用于火灾报警。在一些需要保持高温的场所,例如电力设施、化工厂等,火灾的风险较高。这些场所可以使用非制冷型红外探测器来监测设备的温度,一旦检测到异常温度变化,就可以及时发出火灾报警信号,通知相关部门进行应急处理。综上所述,红外探测器作为一种重要的光学传感器,在热成像、安防监控、工业检测、医学诊断等领域中发挥着重要作用。制冷型红外探测器和非制冷型红外探测器各有优缺点,在不同的应用场景中都有广泛的应用前景。
  • 超导量子计算用mK级国产稀释制冷机实现商用量产
    近日,安徽省量子信息工程技术研究中心及科大国盾量子技术股份有限公司联合发布消息,国产稀释制冷机“ez-Q Fridge”在交付客户后完成性能测试,实际运行指标达到同类产品国际主流水平,成为国内首款可商用可量产的超导量子计算机用稀释制冷机。据媒体报道,2023年下半年,国盾量子向两家科研单位交付了国产稀释制冷机产品,经客户多月测试,设备长时间连续稳定运行,能够结合主动减震系统以及磁屏蔽等,为量子芯片提供低至10mK级别的极低温低噪声环境,制冷功率达到450uW@100mK。在容纳78根低温测控同轴线缆的超导量子计算低温支撑系统中,分别对56比特和24比特超导量子芯片进行测试,稀释制冷机运转效果良好,达到了国际先进水平。实际上近年来,量子科技已引起国内外的广泛关注。而发展先进的量子科技离不开极低温制冷技术,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。目前达到低温的手段主要有吸附制冷、绝热去磁制冷和稀释制冷。稀释制冷技术于 1950 年代首次提出,并在 60 年代建成了第一个完整的稀释制冷系统,随后便成功商业化。稀释制冷技术最低温度可以低至数个mK(10K),具有制冷过程连续不间断及制冷功率较大等优点,随着低温物理研究需求的不断增加,其已经成为目前最为流行的制冷方法。水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液态的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。随着量子计算等技术的不断发展,对mK级的稀释制冷机提出了更高的要求,当前国内有数家单位和企业在投入精力开发。中科院物理所2021年,中国科学院物理研究所自主研发的无液氦稀释制冷机6月下旬实现近10mK(比绝对零度-273.15摄氏度高0.01度)极低温,标志着中国在高端极低温仪器研制上取得突破性进展,具备了为量子计算等前沿研究提供极低温条件保障的能力。2023年3月28日,中国科学院物理研究所承担的北京市科技计划课题“400微瓦无液氦稀释制冷机研制”顺利通过了第三方技术测试。测试专家组认真听取了项目工作报告,审查了技术测试方案,查验了测试仪器和受试设备,通过现场测试和读取测试数据,一致认为该无液氦稀释制冷机长时间连续稳定运行最低温度已达到7.6mK,制冷功率达到450μW@100mK,两项指标均达到了国外主流中型商业稀释制冷机的水平。合肥知冷低温科技有限公司2023年6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。本源量子2023年10月,由本源量子计算科技(合肥)股份有限公司完全自主研发的本源SL400国产稀释制冷机成功下线,这是国内科创企业的研发团队首次成功突破量子计算极低温制冷这一关键核心技术。省量子计算工程研究中心相关负责人张俊峰说:“该稀释制冷机可提供12mK以下的极低温环境及不低于400μW@100mK的制冷量,降温时间在40小时内,升温时间在24小时内,可满足超导量子计算的极低温运行环境和快速回温的要求,达到国际主流产品的水平。”此外,中船重工、飞斯科等国产厂商目前也在投入相关设备研发。中船重工鹏力(南京)超低温技术有限公司市场总监巢伟向仪器信息网透露,当前国内能用的最基础版本的是400-500μW,而国外主流厂商的1mW设备已经成熟了,甚至开展了10mW的研究,比如IBM的10mW的设备已经用起来了。林德等企业已开发了百瓦级、甚至数百瓦级别4K制冷量来预冷的稀释制冷机。当前中船低温已实现4K制冷机每年一千多套的量产。上世纪70年代物理所冉启泽老先生曾研制出湿式稀释制冷机,但后来无人从事相关研究,相当长一段时间内国内处于技术断层和研究空白,目前国内所用到的稀释制冷机均从欧美购买,比如Oxford Instruments ,Cryomagnetics,Janis Research Company,Bluefors Oy NanoMagnetics Instruments, ICE Oxford Ltd,Quantum Design, Inc.,Leiden Cryogenics Entropy等。2019年12月,美国商务部的一份内部文件提出,未来将限制向中国等美国在量子计算上的竞争对手出口稀释制冷机。一旦被限,中国的量子计算研究将面临重大挑战。据了解,国际主流稀释制冷机售价400万元至600万元,稀释制冷机的国产化,在一定程度上扭转了量子计算关键核心技术受限的局面,加快了量子计算领域自立自强步伐,增强我国在量子计算领域完全自主可控能力。
  • 制冷剂泄漏危险又费钱?FLIR声像仪为企业带来新希望
    制冷剂是制冷系统中的关键组成部分,它在制冷循环中不断地进行蒸发和凝结,从而实现热量的转移。制冷剂气体用途广泛,包括住宅、商业和工业空调应用以及汽车空调中的供暖、通风和空调(HVAC)系统。还有食品和饮料行业、制药业、化学品储存和冷链物流等,各行各业使用的制冷系统及某些需要冷却或制冷的工业流程(如化工制造和石油提炼),制冷剂同样至关重要。制冷剂应用广泛因此其泄漏状况就无法避免制冷剂系统发生泄漏会导致环境问题、能源效率降低和潜在安全隐患那么,该如何预防减少其泄漏事故的发生呢?制冷剂泄漏的危害与检测困难众所周知,R22(二氟一氯甲烷)等许多制冷剂已被证实会破坏地球臭氧层,而R32(二氟甲烷)和氨等其他制冷剂虽然更加环保,但若被大量释放至大气中,依然会产生负面影响。氨泄漏还会危害人类健康。因此,检测制冷剂系统的泄漏对于保护环境、提高能源效率、维持系统性能、保障安全和遵守法律法规至关重要。制冷剂泄漏的规模可能很小,难以轻易检测,而且往往发生在错综复杂的管道网络、连接点、阀门处甚至设备内部。制冷剂系统的某些部件可能位于密闭或难以触及的空间内,使检查和接触潜在泄漏点变得尤为困难。暖通空调(HVAC)和制冷系统中使用的许多制冷剂具有易挥发性,挥发速度极快,一旦泄漏,就可能会在被检测到之前完全散逸,因此检测泄漏困难重重。鉴于制冷剂挥发速度极快,必须采用及时高效的泄漏检测方法。制冷系统大多在嘈杂环境中运行,尤其是在工业环境中。机械、通风系统或其他设备产生的背景噪声会干扰泄漏检测工作。实施泄漏检测措施,尤其是针对大型系统或复杂装置实施泄漏检测可能耗费大量成本和时间,还有涉及到设备的升级改造或专业工具和技术的使用规范等,因此在资源分配和检测期间的停机时间安排方面会给公司带来更多挑战。制冷剂泄漏高效检测:声波成像制冷剂系统的定期泄漏检测对于防止破坏环境、保障能源使用效率和维持系统可靠性至关重要。声波成像技术可高效精确定位制冷剂泄漏,进而有助于及时维修,并将与此类泄漏相关的潜在安全风险降至最低。声波成像仪是一种非常适用于制冷剂泄漏检查的工具,因为即使在大型设施内或在周围存在嘈杂机械的情况下,它也能检测到微量制冷剂泄漏产生的独特声音。声像仪的佼佼者:FLIR Si124FLIR Si124系列声像仪内置124枚麦克风,接收频率范围在2kHz至65kHz(范围可调整),其可根据波形过滤工作环境中的背景噪音,识别气体泄漏的声音特征,精确定位目标微小气体泄漏。搭配FLIR专为其开发的Si插件(声学插件),用户可将声像图导入FLIR Thermal Studio分析软件中, 进行离线编辑、分析和创建高级报告,省事省力省心!选择FLIR声像仪的优势★ 及时定位隐蔽制冷剂泄漏,节省时间、能源和成本;★ 及早检测出泄漏,杜绝计划外的停机,提高生产效率;★ 可快速扫描大型设施、复杂设备和难以触及的空间;★ 即使在嘈杂环境中也能准确定位关键问题;★ 杜绝制造流程中制冷剂泄漏导致的缺陷,保障产品质量;★ 及早检测出潜在的危险氨泄漏,保障操作人员的安全;★ 操作简单,只需简单培训,即可轻松整合到维护周期中。;★ 可实现无中断检测;★ 防止有害制冷剂释放到空气中,有助于将对环境的影响降至最低;★ 具备基于人工智能的分析功能,可为维护和修理计划提供实时结果和诊断建议。用于气体泄漏检测的FLIR声像仪目前有两个版本,详情戳这里:详细对比Si124-LD与Plus版FLIR Si124系列声像仪让制冷剂泄漏的苗头扼杀在摇篮里它是企业节约成本和保障安全的一大利器
  • 我国科学家实现无液氦极低温制冷基础研究突破
    一个世纪之前,人类第一次将氦气液化,从此利用液氦的极低温制冷技术被广泛应用。例如一些大科学装置、深空探测、材料科学、量子计算等高技术领域。然而,低温技术中不可缺少的氦元素全球供应短缺,有什么方法可以不用氦元素实现极低温制冷?中国科学院大学苏刚教授、中国科学院物理研究所项俊森博士和孙培杰研究员、中国科学院理论物理研究所李伟研究员、北京航空航天大学金文涛副教授等人组成的联合研究团队通过多年研究,在近期实现了无液氦情况下极低温制冷基础研究的重要突破,这就为破解我国氦资源短缺的问题提供了解决方案。该科研成果北京时间1月11日在国际学术期刊《自然》发表。科研人员挑选高质量钴基三角晶格单晶样品超固态是一种在接近绝对零度(0开,也就是零下273.15摄氏度)时出现的量子物态,在超固态情形下,物质中的原子一方面呈现规则的排列,同时还可以在其间“无粘滞”地流动。超固态自20世纪70年代作为理论猜测提出以来,各国科学家尚未在固态物质中找到超固态存在的可靠实验证据。在这项研究中,我国科研人员在一种钴基三角晶格量子磁性材料中,首次发现了名为“自旋超固态”的新奇物质状态,得到了其存在的实验证据。随后科研人员利用该材料,通过绝热去磁过程获得了94毫开,也就是零下273.056摄氏度的极低温,实现了无液氦极低温制冷,并命名该效应为“自旋超固态巨磁卡效应”。科研人员调试极低温制冷平台中国科学院大学苏刚教授介绍,比如我们把这次发现的材料放到磁场里面,保持热量不泄漏的情况下给它退磁,也就是把磁场去掉。慢慢地在降磁场的过程中,材料的温度就会慢慢地降下去,最后就降到了94毫开(零下273.056摄氏度)。科研人员讨论新的实验结果据了解,极低温制冷是我国科研领域亟待攻克的关键核心技术之一。这次基础研究的突破是国际上在实际固体材料中首次给出超固态存在的实验证据。科研团队未来的工作目标是继续突破极低温的极限,并在未来建成无液氦极低温制冷机。极低温制冷机可以为例如超导量子计算机提供接近绝对零度的极低温运行环境,并且在凝聚态物理、材料科学、深空探测等前沿技术领域广泛应用。
  • 海尔超低温冰箱连续三年为南澳生命科研事业提供深冷呵护
    海尔超低温冰箱连续三年为南澳生命科研事业提供深冷呵护三年前,悉尼大学某品牌超低温冰箱因供水供电系统意外故障,多台设备无法使用,造成巨大损失。海尔水冷超低温冰箱的自动保护功能,及时解决了用户难题,赢得了澳洲用户的首肯和至高评价"Haier water-cooled ULT freezer is the best in the world!"三年中,海尔超低温冰箱运行稳定,并派驻专业的工程师进行定期巡检,领先的产品和服务保障获得悉尼大学认可。近日,悉尼大学健康与医疗研究中心再次采购20多台海尔水冷超低温冰箱,用于样本保存,进行生命科学研究。海尔生物医疗在众多国际品牌中脱颖而出  是十年的技术积淀、是行业制冷关键技术的突破,证明了品牌实力、给予了用户信心!  在能源紧缺、全球环境问题凸显的今天,海尔超低温冰箱在全球率先采用HC碳氢制冷技术,并获得中国质量认证中心 001号节能环保认证。据测算,近10年来,海尔累计为用户提供50000台超低温冰箱,深冷存储15亿生物样本。如果全部升级为节能超低温冰箱,节约能源50%,将节约用电1.8亿度,减少碳排放1.5亿吨。世界领先的水冷制冷系统,同等存储量下能耗降低20%以上,超高效率超低能耗,为用户节约样本存储成本,同时,水冷型冷凝器可将冰箱制冷过程中产生的热量利用循环水系统带到室外释放,减少90%热量回排,节能空调投入,自然凉爽,工作环境清新舒适。海尔超低温冰箱遍布全球  海尔生物医疗通过创新的技术,不断为全球用户创造价值。在亚洲,参与了中华骨髓库、中国凤凰工程、国家基因库、南极科考等国家重要科研项目,为中国生命科学研究和发展奠定了坚实的基石。在美洲,打破国外垄断,通过北美UL实验室严格验证,陆续入驻美国各大高校。在欧洲,海尔超低温冰箱成为了英国UK-Biobank,牛津大学,布莱顿大学生物样本库的首选。在澳洲,入驻悉尼大学的澳大利亚健康研究中心,支持南澳生命科学研究。
  • 重大突破!安徽大学自主研发量子计算用极低温稀释制冷机达国际主流产品水平
    2022年12月31日,安徽大学完全自主研发的量子计算用极低温稀释制冷机,经过反复严格测试,连续循环运行最低温度达到9.2mK,同时获得435μW@100mK, 671μW @120mK的制冷量,已经达到国际主流产品的水平,满足了量子计算的温度和冷量需求。该设备的研发成功,标志着我国完全掌握量子计算用极低温稀释制冷机关键核心技术,解除了我国在相关领域长期受制于人的“卡脖子”局面,为建设科技强国贡献安大人的力量。仪器照片极低温稀释制冷机是一种能够提供接近绝对零度的低温环境的高端科研仪器,是现代量子科学研究与量子技术发展的关键核心设备之一,广泛应用于量子功能材料与器件以及新奇量子现象的探索,为量子计算机提供必须的极低温环境。目前,我国量子计算用极低温稀释制冷机完全依赖于从英、美、芬兰、荷兰等国家进口。随着量子计算等高科技领域竞争的日趋激烈,该设备已逐渐成为遏制中国科技发展的禁运产品。因此,我国迫切需要具有自主知识产权、完全国产化的极低温稀释制冷机。研发团队安徽大学利用“双一流”学科建设的契机, 面向世界科技前沿,面向国家重大需求,瞄准量子计算关键设备的“卡脖子”技术——极低温稀释制冷机进行攻关。安徽大学物质科学与信息技术研究院单磊教授团队王绍良研究员利用安徽大学材料科学与工程的“双一流”学科优势,经过数轮攻坚,解决了大摩尔流量条件下极低温流体热交换效率低的技术难题,研发出具有超大比表面积的极低温高效换热部件,同时实现了相关核心部件的完全自主研发。
  • 技术线上论坛| 5月31日《从基本制冷原理到顶级的低温设备 ——如何发挥设备的低温性能》
    [报告简介]本次报告将结合具代表性的低温设备为大家介绍科研中常用制冷技术与制冷设备的工作原理, 让您了解低温设备在设计细节上的精益求精。 我们以广受关注和好评的 Montana超精细多功能无液氦低温光学恒温器、 OptiCool 超全开放强磁场低温光学研究平台、综合物性测量系统(PPMS)、磁学测量系统(MPMS)、 mK 光学恒温器、 mK 快速换样低温系统等设备为例,来介绍性能背后的温度控制技术、样品粘贴与导热技术、低温导线选择与连接技术、窗口的尺寸与厚度、低温设备的真空密封等低温知识和实验技巧。Quantum Design 中国子公司长期致力于为国内用户提供多种用途的低温光学、低温强磁场设备和测量系统,了解这些设备的特点并使设备发挥出应有的性能将会有效的提升实验结果。[直播入口]您可通过扫描下方二维码,关注QuantumDesign官方视频号,届时观看直播,无需注册!扫描上方二维码,即刻观看直播![报告时间]2022 年 5月 31 日 10:00—11:00[主讲人介绍]魏文刚 博士魏文刚,凝聚态物理博士,科研背景为低温、表面磁学与磁性材料相关领域。Quantum Design产品经理。主要负责低温恒温器、低温强磁场光学设备和低温测量设备的销售与技术沟通工作。
  • 冷却循环水机性能优越是高效的实验助手
    现代实验室对于精密实验和科研工作提出了更高的要求,而一款功能强大的冷却循环水机成为实验室不可或缺的利器。这种先进设备以其独特的设计和多项强大功能受到了广泛关注,以下是冷却循环水机的几项卓越特点:1. 先进的操作界面: 冷却循环水机采用彩色液晶显示和轻触式按键,为用户提供直观、易懂的操作界面。轻松的设置和监控实验参数使得使用变得非常方便,即便是初学者也能迅速上手。2. 宽敞的浴槽设计: 设备配置了大容量开口浴槽,不仅适应各类实验需求,而且设计合理,方便日常清洗和维护。这样的设计既提高了实验效率,也延长了设备的使用寿命。3. 多层次的报警系统: 为了更好地保障实验的顺利进行,冷却循环水机集成了多种报警接口,包括水位报警、水流报警以及超温报警。及时准确地报警,让用户能够在实验过程中更好地掌握局势,防范异常情况的发生。4. 静音制冷系统: 制冷系统采用进口压缩机和后进风侧出风设计,有效降低噪音水平。这样的设计保证了实验环境的安静,有助于研究人员更加专注于实验工作,提高实验效率。5. 精准的恒温控制: 动态恒温控制系统以及智能PID精确控温技术使得冷却循环水机的温度控制更为精准,温度波动极小,确保实验的准确性和稳定性。6. 强大的循环系统: 配备高性能进口循环泵,循环流量大,压力可调,能够保证长时间连续工作。水流自动检测装置更是提供了额外的安全保障,方便外部循环关闭和堵塞时自动切换到内循环。7. 水质保障: 冷却循环水机采用全不锈钢水路和内置过滤装置,确保水质洁净,为实验提供了可靠的保障。在科研实验领域,冷却循环水机凭借其先进的技术和卓越的性能成为实验室的得力助手,为科学家们提供了高效、便捷的实验条件,推动着实验室工作的不断创新与进步。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制