当前位置: 仪器信息网 > 行业主题 > >

可编程流化床干燥器

仪器信息网可编程流化床干燥器专题为您提供2024年最新可编程流化床干燥器价格报价、厂家品牌的相关信息, 包括可编程流化床干燥器参数、型号等,不管是国产,还是进口品牌的可编程流化床干燥器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可编程流化床干燥器相关的耗材配件、试剂标物,还有可编程流化床干燥器相关的最新资讯、资料,以及可编程流化床干燥器相关的解决方案。

可编程流化床干燥器相关的论坛

  • 【求助】(已应助)干燥设备设计选型与应用实用手册---急用!!!

    《干燥设备设计选型与应用实用手册》 第一篇 总论第一章 干燥技术概述第二章 干燥过程基础第二篇 厢式和带式干燥器设计第一章 水平气流式厢式干燥器设计第二章 穿流气流式厢式干燥器设计第三章 真空厢式干燥器设计第四章 洞道式干燥器设计第五章 水平气流带式干燥器设计第六章 穿流气流带式干燥器设计第七章 穿流气流干燥的计算第三篇 流化床干燥器设计第一章 概述第二章 流化床干燥器主要技术参数的确定第三章 流化床干燥器的分类和型式第四章 流化床干燥器的设计计算第五章 流化床干燥器的使用实例第四篇 气流干燥器设计第一章 基本原理第二章 气流干燥器设计第三章 气流干燥装置的型式第四章 气流干燥器设计实例第五篇 喷雾干燥器设计第一章 概述第二章 喷雾干燥器的型式第三章 喷雾干燥器的设计原则第四章 雾化器第五章 喷雾干燥器的组成及设计第六章 喷雾冷却干燥器第七章 喷雾干燥器设计应用实例第六篇 其他干燥器设计第一章 滚筒干燥器设计第二章 回转圆筒干燥器设计第三章 红外线和远红外线干燥器设计第四章 高频和微波干燥器设计第五章 其他干燥器设计第七篇 组合干燥器和干燥器辅助设备设计第一章 组合干燥器设计第二章 干燥器辅助设备设计第八篇 干燥设备选型第一章 干燥设备选型基础第二章 干燥设备选型第三章 干燥配套设备选型第九篇 干燥设备应用第一章 流化床干燥器应用第二章 喷雾干燥器应用第三章 气流及旋转闪蒸干燥器应用第四章 转筒及带式干燥器应用第五章 厢式干燥器应用第六章 转鼓干燥器应用第七章 真空冷冻干燥器应有第八章 红外干燥器应用第九章 高频及微波干燥器应用第十章 塔式干燥器应用第十一章 涂膜干燥设备应用第十二章 热导式搅拌干燥器应用第十三章 热风炉应用第十四章 除尘器应用第十五章 清选筛分机械应用第十六章 粮食干燥第十七章 纸线干燥第十八章 木材干燥第十九章 茶叶干燥第二十章 中药饮片干燥第十篇 相关标准规范

  • 如何购买可编程恒温恒湿机要点

    如何购买可编程恒温恒湿机要点

    说到恒温恒湿设备,大伙儿毫无疑问都是想起稳定的溫度和环境湿度,那可编程恒温恒湿机呢?是否便是一个的溫度和环境湿度全是稳定的小箱子呢?回答不完全的正确。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/02/202102031400033717_5810_1037_3.jpg!w348x348.jpg[/img][/align]  可编程恒温恒湿机是选用高精密全智能触摸式溫度及环境湿度操纵,配搭高稳定性的铂金温度测量抵御体,相互配合温显度检测的风力呼吸系统,以做到匀称、精确、平稳的溫度、环境湿度操纵。另有彻底单独的提温、减温、增湿、制冷去湿系统软件,可独立作高溫、超低温及恒温恒湿设备的不一样自然环境实验。  现阶段可编程恒温恒湿机的品牌也是良莠不齐,如何挑选你要想的可编程恒温恒湿机呢?这一全看您需要什么。  可编程恒温恒湿机系列产品能够为生产厂家仿真模拟各种各样温度湿度自然环境,适用检验电子器件、家用电器、食品类、轿车、硫化橡胶、塑胶胶、金属材料等商品,可编程恒温恒湿机将给您出示预测分析和改善产品品质及可信性的根据。  自然,我们买回家了的可编程恒温恒湿机还要留意维护保养,除开要按时开展维修保养,制冷机组的冷却器按时清除,针对主题活动构件应按使用说明给油润化,家用电器自动控制系统维护保养查验这些。  假如還是在实验运作全过程中出現常见故障,亲,那就需要找您买设备的地方给您检修了,自然这就需要到磨练您机生产厂家的售后维修服务的情况下了,因此挑选一个可靠的设备生产厂家才算是关键的。

  • 可编程气动显微注射器说明书

    [b][url=http://www.f-lab.cn/microinjectors/im-300.html]可编程气动显微注射器[/url]是Narishige[/b]的IM-300型[b]气动微注射器microinjector,可编程气动显微注射器[/b]非常适合微量体积精确控制注射应用,是一款多功能电控[b]气动注射器,纳升微注射器[/b]和[b]微升微注射器。可编程气动显微注射器[/b]提前设置时间和压力后,可以非常精确地注入非常小体积的液体。这种编程气动显微注射器有许多功能,包括注射,填充和保持,以及如脚开关,编程和空气分配等多样功能,可以用于各种各样的应用。只需要提供外部压力源,编程气动显微注射器即可工作。[img=可编程气动显微注射器]http://www.f-lab.cn/Upload/IM-300-L_.jpg[/img][b][url=http://www.f-lab.cn/microinjectors/im-300.html]可编程气动显微注射器[/url]规格[/b][table=95%][tr][td]配件[/td][td]输入软管,输出软管,脚踏开关,硅橡胶垫片,电源电缆线,HI-7注射夹[/td][/tr][tr][td]压力[/td][td]最大为7kg/cm^2 [/td][/tr][tr][td]能源消耗[/td][td]大约. 35W[/td][/tr][tr][td]尺寸/重量[/td][td]W425 x D205 x H90mm, 3.7kg[/td][/tr][/table]*要使用这个型号,需要压缩机或压缩气体罐和调节器。如果有需要,我们可以提供兼容的空气压缩机。

  • 干燥设备在工业上的应用

    .喷雾干燥器(a)催化剂的干燥如丙烯腈催化剂、轻油转化催化剂、中温变换催化剂、高压甲醇催化剂及低压甲醇催化剂等。(b)洗涤剂的干燥如合成洗衣粉、十二醇硫酸钠及皂基等。(c)染料和颜料的干燥如活性翠蓝、咔叽绿B、增白剂及铬黄等。(d)化学肥料的干燥如尿素及氮磷钾复合肥料等。(e)聚合物的干燥如聚氯乙烯醋酸酯、聚乙烯醇、尿素甲醛树脂、三聚氰胺甲醛树脂、苯酚甲醛树脂、聚丙烯酸酯、聚碳酸酯、苯乙烯丁二烯树脂及聚甲醛等。(f)陶瓷原料的干燥如铁氧体、碳化钨、皂石、高岭土、氧化铝及钛酸盐等。(g)矿物的干燥如铜精矿、镍精矿、铂精矿、氧化铜精矿、铝精矿、锌精矿、锡精矿、沉淀铜、沉淀氢氧化铝、沉淀碳酸镍,贵重金属泥、皂土、冰晶石及磷酸盐等。(h)农药的干燥如除草剂、杀虫剂及杀菌剂等。(i)药品干燥如维生素、抗菌素、酶、糊精、肝精、培养基及中草药植物抽取液等。(j)速溶食品的干燥如全脂奶粉、脱脂奶粉、麦乳精、可溶性鱼粉、鱼浆及鱼蛋白质等。2.流化床干燥器(a) 单层圆筒形流化床已用于硫酸铵、氯化铵、无水亚硫酸钠、食盐、聚四氟乙烯、葡萄糖酸钙、碱性青莲染料、催化剂颗粒等物料的干燥。(b) 多层圆筒形流化床干燥器已用于涤纶切片、聚丙烯树脂、尼龙1010、邻氯苯甲酸、四环素、土霉素、氯霉素、合霉素、肝粉、糖粉、S.M.P、A.P.C等物料的干燥。(c) 卧式多室流化床干燥器已用于聚氯乙烯树脂、聚丙烯树脂、尼龙1010、邻氯苯甲酸、四环素、土霉素、氯霉素、合霉素、肝粉、糖粉、S.M.P、A.P.C等物料的干燥。(d) 带有搅拌器的流化床已用于硫酸铵、硫酸铜、氯化钠、氨基酸、酐酪素、聚丙烯树脂、酚醛树脂等物料的干燥。(e)惰性粒子流化床干燥器已用于钛白粉、代森锌、颜料、染料、硅藻土、腐殖酸钠、腐殖酸等物料的干燥。(f)振动流化床已用于糖、石棉矿、奶粉等物料的干燥。(g)喷雾流化造粒干燥已用于尿素、葡萄糖、溴化钠、溴化钾、溴化铵、钛白粉、丙二酸钠、醋酸钾、氯化钙、硝酸铵等物料的干燥。3.气流干燥器(a) 直管式气流干燥器已用于硫酸铵、磷酸三钠、磷酸氢钙、苏打、氯化锂、亚硫酸钠、硼砂、保险粉、催化剂、聚氯乙烯、聚乙烯、对氨基酚、醋酸钠、草酸、717离子交换树脂、季戊四醇、水杨酸钠、阿司匹林、扑热息痛、安乃近、吡唑酮、四环素、金霉素等物料的干燥。(b) 脉冲式气流干燥器已用于聚氯乙烯、聚丙烯、硫酸钠、焦亚硫酸钠、苯甲酸、糠氯酸等物料的干燥。(c) 倒锥式气流干燥器已用于小苏打、聚氯乙烯、重铬酸钾等物料的干燥。(d) 旋风式气流干燥器已用于四环素、合霉素、氯霉素、土霉素、咖啡因、药用淀粉、硬脂酸镁、二乙苯胺、磷酸镁、磷酸钙等物料的干燥。(e) 带分散器的气流干燥器已用于淀粉、氧化铁、粉末活性炭、沉淀炭粉、粘土、醋酸纤维絮等物料的干燥。4.回转圆筒干燥机已用于硫酸铵、硝酸铵、尿素、焦亚硫酸钠、钙镁磷肥、轻质碳酸钙、磷矿、硫精矿、石棉矿等物料的干燥。5.滚筒干燥机用于硫化蓝、淀粉、轻质碳酸钙、苯甲酸钠、三盐基硫酸铝、葡萄糖、草酸、酵母、煤粉、味精、硝酸钠、立德粉、增白剂、重碱、拉开粉、电玉粉、碳酸氢钠、盐基锌、硫酸铬、骨胶、活性炭等物料的干燥。6.箱式、洞道式干燥器常压箱式干燥器已用于纸张、皮革、棉纱、人造丝束、羊毛、染料、颜料、盐类、催化剂半成品、催化剂、陶瓷、耐火砖、木材等物料的干燥。真空箱式干燥器已用于电玉粉、香料、人造纤维、皂基、糖、味精、催化剂、丁苯橡胶等物料的干燥。7.真空耙式干燥器已应用于还原染料中间体、蒽醌磺酸、还原橄榄绿R、卡普龙聚合体、二氨基蒽醌、水杨酸中间体等物料的干燥。8.竖式(移动床)干燥器已用于矿石、煤、涤纶切片、合成树脂、谷物等物料的干燥。9.红外线干燥器已用于食品、木材、皮革、纸张、浆纱、各种油漆涂料层等物料的干燥。10.高频干燥器已用于烟叶捆、玻璃钢、皮革、布匹、陶瓷坯、木材等物料的干燥。我们在这里不可能全部论述到各种形式的干燥机或其应用,由于新型产品和加工工艺的发展,需要有进一步的研究。在近些年来,新的干燥工艺尽管很少出现,但也有突破性的进展,例如,在食品、农业、废物处理、林木产品、矿产品及化学产品的大规模操作的工业中,脉冲燃烧干燥装置就取代了传统方式,急骤型喷雾流化床和振动床干燥机,随着实践经验的积累其实用性也将会逐步增加。因此,肩任干燥装置选择的技术人员,通晓现代干燥技术的发展水平,是至关重要和紧迫的,只有这样,他才能很好地向干燥机设计者及提供者提出合理的要求。

  • 可编程直流电源在新能源领域中的应用

    [size=16px]随着新能源技术的不断发展,可编程直流电源作为一种重要的电力设备,在新能源领域中得到了广泛应用。本文将介绍可编程直流电源的工作原理、特点以及在新能源领域中的应用。[/size][align=center][img=图片]http://9064567.s21i.faiusr.com/2/ABUIABACGAAg4tzqpwYoqKGgdTC4CDjQBQ.jpg[/img][/align][b][size=16px]工作原理[/size][/b][size=16px]:[/size][size=16px]可编程直流电源是一种基于直流电源的设备,通过控制输出电压和电流,实现对电力设备的供电。其工作原理主要包括以下几个步骤:[/size][size=16px]1.输入交流电,通过变压器转换为直流电;[/size][size=16px]2.通过功率半导体器件(如IGBT)对直流电进行调节和控制;[/size][size=16px]3.将直流电输出到电力设备中。[/size][b][size=16px]可编程直流电源具有以下特点:[/size][/b][size=16px]1.高效节能:可编程直流电源采用直流供电方式,避免了交流到直流的转换过程,从而降低了能源消耗;[/size][size=16px]2.灵活性强:可编程直流电源可以通过软件编程实现对输出电压和电流的精确控制,从而满足不同电力设备的供电需求;[/size][size=16px]3.可靠性高:可编程直流电源采用功率半导体器件进行调节和控制,具有较高的稳定性和可靠性。[/size][size=16px][/size][b][size=16px]新能源领域中的应用:[/size][/b][size=16px]可编程直流电源在新能源领域中具有广泛的应用前景,主要包括以下几个方面:[/size][size=16px]1.风能发电:可编程直流电源可以用于风能发电机的并网逆变器中,实现对风能发电机的稳定供电;[/size][size=16px]2.太阳能光伏发电:可编程直流电源可以用于太阳能光伏发电系统中,实现对太阳能电池板的稳定供电;[/size][size=16px]3.电动汽车充电桩:可编程直流电源可以用于电动汽车充电桩中,实现对电动汽车的快速充电。[/size][size=16px]可编程直流电源作为一种重要的电力设备,在新能源领域中具有广泛的应用前景。其高效节能、灵活性强、可靠性高等特点使其成为新能源领域中的重要支撑。随着[/size][size=16px]新能源技术的不断发展和应用场景的不断拓展,可编程直流电源市场规模将不[/size][size=16px]断[/size][size=16px]扩大。未来,可编程直流电源市场将迎来更加广阔的发展空间。[/size]

  • 可编程高低温试验箱不制冷的缘由

    可编程高低温试验箱不制冷的缘由

    [sub]?在大伙儿平常应用可编程高低温试验箱时,无可避免会出現疑难问题,那麼可编程器高低温试验箱不制冷的缘由是什么呢?这类状况理当怎样解救?依据很多年工作经验,剖析有三个关键缘故:[/sub][align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/03/202103191559514830_405_1037_3.jpg!w348x348.jpg[/img][/align]  ①可编程高低温试验箱系统设置疑难问题:有可能造成可编程高低温试验箱不致冷的系统设置是致冷预制件构件,如继电器和冷冻机组。操作工能够根据听或觉得系统设置的震动来粗略地鉴别系统设置毁坏的水平。假若冷冻机组出現疑难问题,可能造成出现异常响声或立刻不姿势和不起动,冷冻机组自身的溫度可能比平常高得多。可继电器疑难问题和别的致冷预制件构件疑难问题的消费者不太善于把握,此刻应邀约技术维修人员开展维护保养检修。  ②可编程高低温试验箱系统异常:系统异常就是指试验箱制冷机组原始设计方案里可能出現的难题,或制冷管路全自动自动控制系统方案设计难题,造成没法制冷的冷媒泄露。适度的原始设计方案将保证可编程高低温试验箱的特性效率性。  ③可编程高低温试验箱软故障:软故障就是指可编程高低温试验箱的控制板疑难问题、內部主要参数、信息管理系统操纵和操纵继电器电源开关的各测点的輸出数据信号等。这类疑难问题的消费者不太善于把握,因理当请技术专业的检修产品工程师来维护保养剖析。  技术专业开发设计生产制造可编程高低温试验箱、高低温交变箱、高低温湿热试验箱等地形地貌实验室仪器。假若您对大家的商品特别喜爱或想掌握一些基本信息,请关注本站信息。

  • 阐述可编程高低温试验箱温度平衡术

    阐述可编程高低温试验箱温度平衡术

    可编程高低温试验箱是环试设备中的一种,我们在采用这类设备时是必须依据实验试品净重、尺寸、规格型号、型号规格来挑选的,不一样的设备规格型号,不一样的温度范围价钱也是不一样的,实验室内空间跟价钱正比,内箱规格越大价钱就越高 温度范围越低价钱也越高,由于溫度越低,设备的制做难度系数就越大 应用的制冷压缩机越大,配备也是相对的增加,因此价钱也越高。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/03/202103081555214801_8900_1037_3.jpg!w348x348.jpg[/img][/align]  因为可编程高低温试验箱的外形与高低温试验机的外形是一样的,因此要区分客户是用可编程高低温试验箱还是高低温试验箱就要确认是否要做湿度 控制器要确认是用触摸屏还是按键式,触摸屏式的控制器可以中英文转换。可编程高低温试验箱采用环试行业的温度平衡技术(制冷不加热),通过能量调节技术在降温及低温平衡是不需要另外启动加热来平衡控温,通过调节控温单位时间内进入蒸发器制冷剂的质量来达到控制制冷功率,从而控制工作室内的温度。  温度平衡技术可以在大限度上,降低用户的成本和延长可编程高低温试验箱压缩机的寿命,该技术适用于整机或大型零部件的低温、高温、恒定湿热等,科学的风道设计,能满足不同用户的需求。

  • 【可编程高低温试验箱】汽车光信号装置的热变形试验

    【GB/T10485-2007道路车辆外部照明和光信号装置环境耐久性】标准中规定了汽车光信号装置的热变形试验,其试验要求如下: 适用性:本试验项目适用于光信号装置,用来评定其塑料部件对环境和自身光源的耐热性。 设备:可编程高低温试验箱 试样:两只光信号装置。 试验条件:试验前、后应检验配光性能。 试验方法:1、放置试样前,箱内气流为1m/s~2m/s;2、试样应安装在试验支架上,并安放在可编程高低温试验箱内中心位置处,其基准轴线平行于气流的主方向,试样与箱避间距离应大于200mm;3、可编程高低温试验箱内的温度应为46℃~49℃之间(对于后雾灯温度应为23℃±5℃)。 试验方法: 1、试样应按下述规定的方式,以试验电压(13.5V±0.1V或28.0V±0.1V)点亮1h。 --牌照灯、侧标志灯、前位灯、后位灯、后雾灯、驻车灯、昼间行驶灯和示廓灯应稳定点亮; --制动灯和倒车灯应点亮5min,关闭5min; --转向信号灯以闪烁方式点亮。 2、具有多种功能的装置,除倒车灯和后雾灯组合灯外,应同时点亮所有的功能。 3、制动灯、倒车灯和后雾灯应分别进行试验。 4、若后雾灯与后位灯结合成混合灯,则试验时应同时点亮两种功能。 结果判定:试验后,目视检验塑料部件应不变形。 本文出自北京雅士林试验设备有限公司 转载请注明出处

  • 干燥设备在医药上的发展领域

    干燥设备在医药上的发展领域

    干燥设备在医药上的发展领域 现在我国医药工业的飞速发展,在医药上的干燥设备技术在市场上也取得很大的进步。国内干燥设备不管是在结构、功能还是质量都有了显著的改善和提高。设备除了在国内制药企业需要外,还有一部分设备还走出国门,远销海外。这些都说明,中国医用干燥设备这个行业的潜力是很大的,中国的干燥设备技术正在逐步走向成熟,其中流化床干燥设备就是这样。 1 流化床的定义利用流态化技术对流体或固体颗粒进行物理或化学加工,如干燥、浸取、吸附和离子交换、颗粒混合等,流化床干燥就是其中之一。流化床干燥设备的工作原理:干燥时先将颗粒状的湿物料加入到多孔分布板上,热空气由多孔分布板的下部送入,控制速度,使颗粒松动并向上浮动,并部分悬浮于气流中。由此形成的气固混合物被热风加热至干燥状态。与其他干燥类方式相比,流化床干燥具有:颗粒原料可以轻易地流化、输送加工;对干燥热敏性产品可避免局部物料过热,适应性强。不降解产品的分子量,不破坏产品的物化特性;由于流化床能给物料和流体介质提供较大的接触面积,使物料均匀混合并进行充分的传热和传质,因此具有极高的热效率;流化床内可设管束型或平板型的热交换器,用于间接加热或冷却,能使物料在较低温度下得到较高的蒸发速度,明显节约能耗,减少废气净化设施;干燥和冷却能在一台组合式流化床中有效的进行,因而既节省投资又降低生产成本;自动采集各段干燥介质温度、床面负压等重要数据,实现电脑控制,满足干燥工艺的要求;流化床适用于平均粒度在50~5 000 um的粒状、粉状、块状的产品,故尤其适用于药品类物料的干燥作业。2 发展沿革我国流化床技术的发展经历过三个不同历史时期。改革开放前,我国基本上没有正规的工业化生产,个别生产企业、设计研究院(所)、大专院校等单位设计生产了一部分圆筒式或卧式多室流化床,并已开始接触振动流化床和惰性粒子流化床。据不完全的调查结果显示,到1971年,全国使用流化床的企业已有40多家,分布在化工、轻工、制药等行业,涉及到的物料有聚四氟乙烯、涤纶颗粒、氯化铵、水杨酸钠、无水亚硫酸钠、氨基匹林、土霉素、催化剂等数十种。但由于当时国内专业化生产水平有限,新技术的推广只能在行业内小范围进行,发展速度和规模均受到限制。改革开放初期,国家提倡鼓励引进先进技术,国内的化工、医药、食品等行业,引进了一大批代表当代先进水平的流化床干燥机,如黑龙江安达乳品厂引进的喷雾+振动流化床双级干燥系统,辽阳石化、燕山石化、齐鲁石化等引进的多室流化床和气流+流化床双级干燥装置,湖北应城盐矿、天津碱厂引进的振动流化床,营口盐场引进的内热流化床,北京药厂等引进的流化床制粒干燥设备,吉林盘石农药厂引进的搅拌流化床等。这些先进设备的引进,极大地开阔了国内干燥行业的视野,促进了产品的革新换代。与此同时,国内干燥行业的一些企业也迅速采取引进、横向联合、消化吸收等手段,加大新产品开发力度。3 药用流化床干燥设备产品市场概况我国药用干燥设备产品市场发展很快,就流化床干燥设备而言,目前国内绝大多数干燥设备生产厂家都能生产多种类型的流化床干燥设备,产品的技术水平则参差不齐,除了供应国内药厂使用外,还被广泛应用于食品、化工、轻工等工业领域。从生产厂家分布情况看,大致集中在江苏、浙江、上海、重庆和东北地区。其中尤以江苏常州地区为甚,这一区域集中了几百家干燥设备生产厂家,而且几乎家家都具有生产流化床干燥设备产品的能力。4 市场调研简况为了进一步了解国内药用流化床干燥设备产品及市场情况,近期,我们通过发调查函、电话咨询、网上查询及与一些业界人士的交流,对目前国内生产药用流化床干燥设备的企业、产品在用情况做了一些调查。从网上不完全搜寻到国内生产此类设备的厂家达150多家,其中江苏常州地区的干燥设备生产企业特别集中,占据了“半壁江山”,其他地区也有,如江苏靖江地区、浙江地区、上海地区、山东地区、东北地区等,但像常州地区集中度如此之高的绝无仅有。我们对国内的部分药厂(其中不乏知名药厂)的设备管理部门发放了一份简单的调查问卷,回复的结果涉及了15家药机生产厂家的41台药用流化床干燥设备。其中国产设备38台,进口设备3台。15家中既有常州地区和重庆地区的干燥设备制造企业,也有其他地区的厂家,另外还有德国GLATT公司、德国基伊埃公司。我们对用户反馈的流化床干燥设备在用情况(质量、性价比、售后服务)作了一个简单的综合评价。质量方面:“优”占16.67%,“中”占75%,“差“占8.33%;性价比方面:“高”占16.67%,“中”占75%,“低”占8.33%;售后服务方面:“优”占16.67%,“一般”占70.83%,“差”占12.5%。对进口设备的评价较高,国产设备中性评价的居多。具体评价有:(1)质量不错,性价比较高,设备带变频控制,可实现半自动和全自动控制。(2)质量还行,基本未出大问题,小问题时有但未影响生产。(3)质量还行,总体感觉不错,研发配合也不错,设备使用至今尚未遇过大修,等等。在不足之处方面,他们对一些设备也提出了一些建议,如产品的设计和制造方面还应作进一步的改进和提高、加强设备的节能设计。5 当前国内药用流化床干燥设备产品技术上还存在的一些亟待解决的问题药品生产工艺技术的快速发展带动了制药机械的空前繁荣,药用流化床干燥设备的产品技术也随之“水涨船高”。由于流化床干燥方式所固有的优势及设备技术的不断完善和提高,其在制药工艺中得到了越来越多的推广和应用,但是,其应用有一定的限止性,如:对被干燥物料的颗粒度要求较为严格,粒度太小易被气流夹带,粒度太大不易流化;当几种物料混在一起干燥时,则要求几种物料的相对密度应接近;一般不适用含水量过高易结团的物料,否则易发生结壁或堵床的现象,等等。但瑕不掩瑜,流化床干燥设备以其优良的性能已经越来越多的得到了认可,其在制药生产中的广泛使用也就不奇怪了。6 从流化床干燥设备看国内市场前景我国干燥设备的运用已有几十年的历史,但大规模地研究开发则只有短短的20多年。经过广大工程技术

  • 【可编程高低温试验箱】汽车光信号装置的热变形试验

    【GB/T10485-2007道路车辆外部照明和光信号装置环境耐久性】标准中规定了汽车光信号装置的热变形试验,其试验要求如下: 适用性:本试验项目适用于光信号装置,用来评定其塑料部件对环境和自身光源的耐热性。 设备:可编程高低温试验箱 试样:两只光信号装置。 试验条件:试验前、后应检验配光性能。 试验方法:1、放置试样前,箱内气流为1m/s~2m/s;2、试样应安装在试验支架上,并安放在可编程高低温试验箱内中心位置处,其基准轴线平行于气流的主方向,试样与箱避间距离应大于200mm;3、可编程高低温试验箱内的温度应为46℃~49℃之间(对于后雾灯温度应为23℃±5℃)。 试验方法: 1、试样应按下述规定的方式,以试验电压(13.5V±0.1V或28.0V±0.1V)点亮1h。 --牌照灯、侧标志灯、前位灯、后位灯、后雾灯、驻车灯、昼间行驶灯和示廓灯应稳定点亮; --制动灯和倒车灯应点亮5min,关闭5min; --转向信号灯以闪烁方式点亮。 2、具有多种功能的装置,除倒车灯和后雾灯组合灯外,应同时点亮所有的功能。 3、制动灯、倒车灯和后雾灯应分别进行试验。 4、若后雾灯与后位灯结合成混合灯,则试验时应同时点亮两种功能。 结果判定:试验后,目视检验塑料部件应不变形。

  • RFX7111B可编程噪声发生器Noisecom

    [url=https://www.leadwaytk.com/article/5208.html]Noisecom[/url][font=宋体] [/font][font=宋体][font=Calibri]RFX7111B[/font][font=宋体]可编程噪声发生器具有超强的嵌入式工控机和灵活性架构,适用于为高端测试设备构建复杂的自定义噪声信号。[/font][font=Calibri]RFX7111B[/font][font=宋体]可编程噪声发生器让用户可以满足极具挑战性的测试需求。精密器件提供高输出功率和优秀的平整度,灵活的处理器架构允许操控多个衰减器和电源开关。[/font][/font][font=宋体][font=Calibri]RFX7111B[/font][font=宋体]可编程噪声发生器[/font][font=Calibri]RF[/font][font=宋体]配置包含宽带噪声源、噪声线路衰减器([/font][font=Calibri]1dB[/font][font=宋体]步幅最大衰减范围为[/font][font=Calibri]127.9dB[/font][font=宋体])和电源开关。信号输入和噪声输出的[/font][font=Calibri]RF[/font][font=宋体]连接能够设在设备的前板上或后板上。可选择的信号合成器和信号衰减器允许单独控制噪音和信号线路,并且在[/font][font=Calibri]BER[/font][font=宋体]测试期间调整[/font][font=Calibri]SNR[/font][font=宋体]。[/font][/font][font=宋体][font=Calibri]RFX7111B[/font][font=宋体]可编程噪声发生器主要面向架构调试测试系统中常用的自动化和远程操作应用需求设计。后面板上的以太网是标准的,[/font][font=Calibri]GPIB[/font][font=宋体]和[/font][font=Calibri]RS-232[/font][font=宋体]连接主要通过可选择的适配器。此外,能够使用光标和连接到背板的显示屏来手动操作设备。[/font][/font][font=宋体][font=Calibri]Noisecom[/font][font=宋体]可编程噪声发生器是高度个性定制的,需要配置可以满足最复杂的检测挑战的需求。[/font][/font][font=宋体] [/font][table][tr][td][font=Calibri]Model[/font][/td][td][font=Calibri]Frequency Range[/font][/td][td][font=Calibri]Frequency Range[/font][/td][td][font=Calibri]dBm / Hz[/font][/td][td][font=Calibri]Flatness[/font][/td][td][font=Calibri]μV / root Hz[/font][/td][td][font=Calibri]Noise Attenuation[/font][/td][/tr][tr][td][font=Calibri]RFX7111B[/font][/td][td][font=Calibri]1 GHz - 2 GHz[/font][/td][td][font=Calibri]+10 dBm[/font][/td][td][font=Calibri]-80 dBm[/font][/td][td][font=Calibri]±1.5 dBm[/font][/td][td][font=Calibri]22.4[/font][/td][td][font=Calibri]0 - 127.9 dB, 0.1 dB steps[/font][/td][/tr][/table]

  • 可编程恒温恒湿试验箱进行大样品试验的重点在这

    可编程恒温恒湿试验箱进行大样品试验的重点在这

    可编程恒温恒湿试验箱在对于各类电子、电工以及塑胶等等原材料或者是器件所进行耐寒或者是耐热的设备中都是可靠性的测试设备,同样优一点就是适用于对光钎、LCD、电池等等产品对于耐高温或耐低温的循环试验来说,都是非常有益的设备。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/01/202101261449348479_3704_1037_3.jpg!w348x348.jpg[/img][/align]  可编程恒温恒湿试验箱在对于进行大件样品试验的时候,上升的气流与下降的气流将会出现温湿度偏差,所以应该仔细的考虑放置样品的位置。在放置试验样品时,应当尽量放置在设备工作空间的中心位置,样品之间不可以互相的接触与重叠,应该保留在一定的间隔使得空气流通,还应当保证样品在试验时便于移动,容易的替换样品。  可编程恒温恒湿试验箱中有出风口和回风口,按照规定标准严格的来说,箱体的体积要大于或等于待测品体积的3倍,但为了节约资源,一般的建议是:内腔的上部100MM、下部100MM,左右各5MM是不宜放置产品的,并且箱体内放置的产品不宜太密是为合适的。先待测品应当放置在箱体的中间,不能遮住上面的风道和下面的回风口,等测品需要离开箱体左右两侧至少5MM的距离,另外如果测品的大小、形状、重量、数量的不同,是可以适当的调节置物架的距离。

  • JDSU 可编程衰减器(HA1/HA9)

    JDSU 可编程衰减器(HA1/HA9)

    JDSU可编程衰减器是一种高分辨率,扩展范围,可编程衰减器,非常适合测试功率计以及一般测试和实验室工作。衰减器的分辨率为0.01 dB(0.001dB HA1系列)和100dB的扩展衰减范围,标准工作波长为1200-1700nm。(对于HA9W衰减器, 波长为750-1700nm,衰减范围为60 dB)HA1衰减器为单模、超高分辨率,以及可编程衰减器,适用于误码率测试和一般实验室工作。HA2系列可编程衰减器提供波长依赖性为±0.05 dB,输入功率高达 1W(30 dBm),HA2适用于各种应用包括放大器测试和DWDM系统特性。HA衰减器非常适合在苛刻的应用中使用。作为多通道AM系统和高比特率数字脉冲编码调制(PCM)系统,离散内反射最小化到60dB以上,几乎消除了空腔效应。所有HA衰减器均配有高回波损耗和低光谱纹波的有线电视AM系统。这些衰减器的固有线性设计,结合内置校准和偏移功能,允许用户在大功率范围内将显示器与光学功率计匹配,此功能在需要控制测试设备的绝对光功率的测试中很有用。内置光束阻断开关提供从任何衰减快速设置为无限衰减(90dB)。主要特点和优点:100dB范围0.01或0.001dB分辨率 ,0.01dB重复性精度为±0.1 dB ,典型极化相关损耗(PDL)0.03dB1200-1700 nm或750-1700 nm波长范围内置GPIB和RS232远程控制单模或多模光纤SCPI兼容命令集可选耦合器或开关1000mW大功率输入波长依赖性在1530-1625 nm范围内小于±0.05 dB.符合CE要求及UL3101-1和CAN/CSA-C22.2,编号1010.1应用:精密光功率控制, 功率计线性校准模拟传输测试, 误码率测试光纤链路损耗模拟, EDFA输出功率特性[img=,616,340]https://ng1.17img.cn/bbsfiles/images/2019/04/201904180910225483_1842_3388456_3.png!w616x340.jpg[/img][img=,690,295]https://ng1.17img.cn/bbsfiles/images/2019/04/201904180910238184_2549_3388456_3.png!w690x295.jpg[/img][img=,650,552]https://ng1.17img.cn/bbsfiles/images/2019/04/201904180910250685_5875_3388456_3.png!w650x552.jpg[/img]

  • CHROMA6530可编程交流电源

    CHROMA6530参数及功能 输出范围功率 : 1200VA, 1? (6512)2000VA, 1? (6520)3000VA, 1? (6530)6000VA, 1? (6560)9000VA, 1? or 3? (6590)电压 : 0-150V / 0-300V / Auto (6512,6520, 6530)0-150V / 0-300V (parallel)(6560)0-300V / 0-500V (series)(6560)0-150V / 0-300V (6590)内建直接数字频率合成(DDS)之波形产生器可程序化正弦波、方波及箝制正弦波形 (Clipped Sine)输出可程序化电压、频率、相位、限电流及失真仿真功能模拟市电波形失真的能力内建30组谐波波形数据库用户可编辑谐波电压波形用户可编程自动执行的循序输出电压波形高精密度电压、电流、峰值电流、功率、频率、峰值系数、功率因子、浪涌电流、视在功率(VA)、虚功率(VAR)等量测机能功率因子校正线路,提升输入端功率因子至0.98以上,符合IEC规范运用先进的脉波宽度调变(PWM)技术,使本系列机种体积小、重量轻内建输出电磁开关,真正隔离用户默认电压、频率组合单键控制输出输出变化时产生TTL讯号,提供自动测试系统使用远方程控之模拟信号控制接口(选购配备)GPIB和RS-232为选用配备使用LIST模式作电压瞬间变化及变动的模拟,应用IEC 61000-4-11法规的前测简易使用的计算机图形化操作接口Softpanel(选购配备) 6530可编程交流电源供应器 0-300V/15-2KHz/ 1.2KVA 6560可编程交流电源供应器 0-300V/15-2KHz/ 3KVA 6590可编程交流电源供应器0-500V/45-1kHz/6KVA I/P 3? 220V 可编程交流电源供应器0-300V/45-1KHz/9KVA, 1?or3?, 3KVA per phase, I/P 3? 220V

  • 【求助】求助 关于可编程高温炉 P I D的设置

    我们公司所使用的高温炉是可编程式的高温炉,在下现在有几个问题没搞清楚,希望各位高手能帮我解答一下。1.控制器中P I D A 这几个参数的定义。2.这个高温炉的工作原理应该是通过控制器输出一个可变的电压到可控硅,然后通过可控硅来调节加在硅碳棒两边的电压,从而改变硅碳棒的发热量,从而达到控制升温速度的目的,但现在出现的问题是 例如:我设定升温曲线是1小时到600度 然后再过1小时到1000度 但当炉的实际温度在580度左右的时候,温度就没办法再上升,于是导致程序无法进行(我估计是由于P I D A中的参数没调好),当我把P参数调小后,程序能通过,但会出现超温情况而且超得还比较严重。 我想问一下 ,我应该怎么去调节这几个参数?

  • RFX7110B可编程噪声发生器Noisecom

    [url=https://www.leadwaytk.com/article/5162.html]Noisecom[/url][font=宋体] [/font][font=宋体][font=Calibri]RFX7110B[/font][font=宋体]可编程噪声发生器[/font][/font][font=宋体]具备[/font][font=宋体][font=宋体]超强的嵌入式工控机和灵活性系统架构,适用于为高端测试平台建立复杂的自定义噪声系数。[/font][font=Calibri]RFX7110B[/font][font=宋体]可编程噪声发生器允许用户满足极具挑战的测试标准。[/font][font=Calibri]RFX7110B[/font][font=宋体]可编程噪声发生器提供高输出功率以及优秀的平整度,高效的处理器架构允许操控多个衰减器和控制开关。[/font][/font][font=宋体]应用领域[/font][font=宋体][font=宋体]?[/font][font=Calibri]Eb/No[/font][font=宋体]、[/font][font=Calibri]C/N[/font][font=宋体]、[/font][font=Calibri]SNR[/font][/font][font=宋体]?硬盘驱动器检测[/font][font=宋体][font=宋体]?[/font][font=Calibri]BER[/font][font=宋体]检测[/font][/font][font=宋体]?军事化干扰[/font][font=宋体][font=宋体]?[/font][font=Calibri]GPS[/font][font=宋体]接收器检测[/font][/font][font=宋体][font=宋体]?[/font][font=Calibri]CATV[/font][font=宋体]检测[/font][/font][font=宋体]?频谱分析仪校正[/font][font=宋体]?过滤器检测[/font][font=宋体][font=宋体]?[/font][font=Calibri]EMI[/font][font=宋体]检测[/font][/font]

  • 供应Lattice可编程逻辑芯片FPGA和CPLD

    [url=https://www.ldteq.com/brand/95.html]Lattice[/url][size=14px]是一家知名的半导体公司,专注于生产FPGA(现场可编程门阵列)和CPLD(复杂可编程逻辑器件)产品。这些产品被广泛应用于通信、工业控制、汽车电子、消费类电子等领域,为客户提供了灵活的、可定制的解决方案。Lattice的FPGA产品具有低功耗、高性能和丰富的资源,而CPLD产品则提供了低成本、低功耗的可编程逻辑解决方案。无论您是在寻找灵活的数字逻辑设计解决方案还是需要实现特定的控制和处理任务,Lattice的产品系列都能够满足您的需求。([color=#ff0000]推荐[/color]:[url=https://www.ldteq.com/article/3103.html]可编程逻辑器件芯片选型[/url])[/size][size=14px]Lattice FPGA和CPLD产品是一类重要的可编程逻辑器件,它们在现代电子设计和嵌入式系统开发中具有广泛的应用。FPGA(现场可编程门阵列)是一种集成电路芯片,具有可编程的逻辑功能,可根据用户的需求进行配置和重新编程。与之相比,CPLD(复杂可编程逻辑器件)则是一种更小型化的可编程器件,适用于需要较低功耗、较小规模的应用。Lattice FPGA和CPLD产品对于满足各行各业的高性能、低功耗、灵活配置等需求至关重要。[/size][align=center][size=14px][img=Lattice可编程逻辑芯片FPGA和CPLD,400,262]https://www.ldteq.com/public/ueditor/upload/image/20231207/1701938993563492.png[/img][/size][/align][b][size=14px]FPGA现场可编程门阵列[/size][/b][size=14px]Lattice FPGA(现场可编程门阵列)是一种灵活的、可编程的集成电路,可用于实现各种数字逻辑功能。Lattice FPGA具有高度灵活性和可重构性,可以根据特定的应用需求进行重新配置,从而为设计师提供了广泛的定制化选项。Lattice FPGA产品系列包括ECP、MachXO、iCE40等型号,适用于不同的应用场景,如通信、工业、汽车电子等,为用户提供了多种选择。[/size][b][size=14px][b]FPGA[/b]产品系列[/size][/b][size=14px]:[url=https://www.ldteq.com/product/1601.html]LatticeXP2系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1600.html]LatticeECP3系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1599.html]ECP5 / ECP5-5G系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1598.html]Certus-NX系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1597.html]CertusPro-NX系列[/url][color=#0070c0],[/color][/size][url=https://www.ldteq.com/product/1596.html]Avant-E?系列[/url][size=14px][color=#0070c0],[url=https://www.ldteq.com/product/1594.html]MachXO3系列[/url],[url=https://www.ldteq.com/product/1593.html]MachXO3D系列[/url],[url=https://www.ldteq.com/product/1592.html]Mach-NX系列[/url],[url=https://www.ldteq.com/product/1591.html]MachXO5-NX系列[/url][/color][/size][b][size=14px]CPLD复杂可编程逻辑器件[/size][/b][size=14px]Lattice的复杂可编程逻辑器件(CPLD)产品系列提供了低功耗、高性能的解决方案,适用于数字逻辑设计和控制应用。这些产品通常具有灵活的IO资源和可编程的逻辑功能,可用于实现各种控制和处理任务。Lattice的CPLD产品广泛应用于通信、工业控制、消费类电子等领域。[/size][b][size=14px][b]CPLD[/b]产品系列[/size][/b][size=14px]:[url=https://www.ldteq.com/product/1588.html]LA-MachXO汽车系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1586.html]MachXO系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1585.html]MachXO2系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1584.html]ispMACH 4A系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1583.html]ispMACH 4000V/B/C/Z系列[/url][/size][size=14px][url=https://www.ldteq.com/]立维创展[/url]供应[url=https://www.ldteq.com/brand/95.html]Lattice[/url]可编程逻辑芯片FPGA和CPLD全系列产品,价格优惠,欢迎咨询 。[/size]

  • 如何使用TEC半导体制冷器实现各种精度和功率的可编程温度控制

    如何使用TEC半导体制冷器实现各种精度和功率的可编程温度控制

    [color=#000099][size=14px]摘要:针对目前TEC半导体制冷器温控装置对高精度、模块化、可编程和远程控制等方面的技术需求,本文提出了一种高性价比的解决方案。解决方案的具体内容是采用模块式结构,以24位AD和16位DA超高精度PID控制器作为基础单元,采用分立模块式电源驱动器。此解决方案可根据不同应用场景选择不同功率的电源驱动器,配合带有通讯功能的PID控制器可实现灵活的组合和应用,并配合随机软件可以方便快捷的进行可编程温度控制。[/size][size=18px][b]一、问题的提出[/b][/size][/color][size=14px] TEC半导体致冷器(Thermo Electric Cooler)是一种利用半导体材料的珀尔帖效应制成的可在-60~100℃范围实现制冷和加热功能的器件。在TEC的具体控温应用中,目前普遍采用了两种形式的温度控制装置:[/size][size=14px] (1)采用专用TEC控制芯片加外围电路的定点温控模块或温控器。这种TEC温控器的功能非常有限,无论在控制精度和加热制冷功率都比较低,而且无法满足可编程的程序自动控制,很多不具备PID参数自整定功能,但优势是价格低廉。[/size][size=14px] (2)采用具有正反作用(加热和制冷)功能的通用型PID控制器,结合电源驱动器,构成的TEC温度控制仪器。尽管这些价格昂贵的TEC控制仪器具有可编程和PID参数自整定的强大功能,但这些通用型PID控制器的AD和DA位数普遍偏低,大多为12和14位,极少有16位和24位,而且基本没有配套的计算机控制软件,很多程序控制还需要软件编写才能实施。[/size][size=14px] 目前TEC温控系统的应用十分广泛,所以对TEC温控系统普遍有以下几方面的要求:[/size][size=14px] (1)具有较高的控制精度,AD位数最好是24位,DA位数为16位,并采用双精度浮点运算和最小输出百分比可以达到0.01%。[/size][size=14px] (2)可编程程序控制功能,除了任意设定点温度控制之外,还需具备可按照设定折线和冷热周期变化进行控制的功能。[/size][size=14px] (3)模块式结构,即PID控制器与电源驱动器是分立结构。这样即可用超高精度PID控制器作为基本配置,根据不同的制冷/加热对象选配不同功率的电源驱动器,由此使得TEC温控系统的搭建更合理、便捷和高性价比。[/size][size=14px] (4)具有功能强大的随机软件,通过随机软件在计算机上实现温度变化程序设定,并对温度变化过程进行采集、显示、记录和存储。[/size][size=14px] (5)具有与上位机通讯功能,通讯采用标准协议,上位机可与之通讯并对TEC温控仪进行访问和远程控制。[/size][size=14px] 针对上述对TEC温控装置的技术要求,本文提出了一种高性价比的解决方案。解决方案的具体内容是采用模块式结构,以24位AD和16位DA超高精度PID控制器作为基础单元,采用分立模块式电源驱动器。此解决方案可根据不同应用场景选择不同功率的电源驱动器,配合PID控制器可实现灵活的组合和应用,并配合随机软件可以方便快捷的进行可编程温度控制。[/size][b][size=18px][color=#000099]二、解决方案[/color][/size][/b][size=14px] 解决方案的技术路线是采用模块式结构,即将PID控制器与电源驱动器拆分为独立结构,以超高精度PID控制器作为基础单元,电源驱动器可根据实际应用场景的功率要求进行选择。解决方案的结构如图1所示。[/size][align=center][size=14px][color=#000099][b][img=分立式TEC半导体制冷器多功能控制装置解决方案结构示意图,600,442]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231152472194_9272_3221506_3.jpg!w690x509.jpg[/img][/b][/color][/size][/align][size=14px][/size][align=center][color=#000099][b]图1 分立式TEC半导体制冷器多功能控制装置解决方案结构示意图[/b][/color][/align][size=14px] 如图1所示,解决方案描述了一个典型TEC制冷器温度控制系统的整体结构。整体结构有三部分组成,分别是PID控制器、电源驱动器和TEC模组。此整体结构结合温度传感器和外置直流电源组成闭环控制回路,可实现TEC模组温度快速和高精度的程序控制。三部分具体描述如下:[/size][size=14px] (1)超高精度PID控制器:此PID控制器是一台具有分程控制功能的超高精度过程调节器,分程功能可实现不能区间的控制,自然可以实现TEC模组制冷/加热的分程控制。此控制器采用了24位AD和16位DA,是目前国际上精度最篙的工业用PID控制器,特别是采用了双精度浮点运算,使得最小输出百分比可以达到0.01%,这非常适用于超高精度的控制。另外此控制器具有无超调PID控制和PID参数自整定功能,并具有标准的MODBUS通讯协议。控制器自带控制软件,计算机可通过软件进行各种参数和控制程序设置,可显示和存储整个控制过程的设定、测量和输出三个参数的变化曲线。[/size][size=14px] (2)电源驱动器:电源驱动器作为TEC模组的驱动装置,可根据PID控制信号自动进行制冷和加热功能切换,具有一系列不同的功率可供选择,基本可满足任何TEC模组功率的需要。[/size][size=14px] (3)TEC模组:TEC模组是具体的制冷加热执行机构,可根据实际对象进行TEC片的串联或并联组合。TEC模组还包括风冷或水冷套件以及温度传感器,温度传感器可根据实际控制精度和响应速度要求选择热电偶、铂电阻或热敏电阻。[/size][size=14px] 总之,本文所述的解决方案极大便利了各种TEC半导体致冷器自动温度控制应用,既能保证温度控制的高精度,又能提供使用的灵活性和便捷性,关键是此解决方案具有很高的性价比。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size]

  • 【原创大赛】流化床制粒发展现状

    [align=center][size=16px][b]流化床制粒[/b][/size][size=16px][b]发展现状[/b][/size][/align]药品是人们常备的不可或缺的日常用品。近年来,随着国民生活水平的提高,人们对药品质量和药物安全问题广泛关注,制药领域也随之越来越多的进入到我们的视野中。长期以来,制药行业都采用传统的方式进行生产,无论是自动化、信息化水平还是认知观念水平都与其他行业存在着一定的差距。“十三五”规划以来,国家大力发展智能制造,制药行业作为制造业的一部分,需要紧跟发展潮流,朝着信息化、智能化方向发展。固体制剂是目前最常见的剂种之一,其生产过程是将原料通过一系列操作包括粉碎、混合、制粒、包衣及压片等过程转化成药物制剂。无论是制作胶囊还是压片,制粒都是非常重要的关键步骤。制粒是将药物粉末与相关的辅料进行混合,待混合均匀后再喷入润湿剂或者粘合剂,在设备中制成具有颗粒形态的过程。干法制粒和湿法制粒是目前固体制粒中最常用的两种方法[font='calibri'][size=13px][1][/size][/font]。干法制粒不需要使用粘合剂,常用于对水分比较敏感的制剂;湿法制粒是常用的制粒方法,在混合均匀的粉末中喷入粘合剂,将粉末表面打湿,粉末通过粘合剂的媒介作用聚结在一起可以慢慢形成颗粒。流化床制粒是常见的湿法制粒方法之一。流化床制粒过程中使用的工艺参数较少、且操作方法简单,广泛应用于固体制粒中。然而,目前的流化床制粒大多依靠于人工经验,对于制粒过程中颗粒的质量属性的变化都是离线进行分析,严重滞后于生产过程。制粒过程信息不透明,对制粒过程影响因素不能准确把握,容易导致药物疗效达不到预期甚至造成制粒批次的失败。随着计算机信息技术、人工智能、传感器技术的发展,及时获取流化床制粒过程工艺参数与颗粒的关键质量属性,通过数据挖掘出工艺参数变化对于流化床制粒过程的影响,通过质量属性的变化及时调整工艺参数,从而可以大大提高制粒成功率,打破国外技术封锁,实现连续化、智能化生产的目标。针对流化床制粒信息化、自动化水平低,数据采集困难等问题,合理改造设备以及通过机器学习等人工智能算法了解工艺参数的内部机理,达到准确调控,对流化床制粒连续化、智能化生产具有重要指导意义。流化床制粒技术只在一个腔体中就可以完成整个制粒过程。药物粉末和辅料等一次性的投入到密封的腔体中,在腔体内进行混合,直至腔体内的各种物料都混合均匀,接着从底部通入热空气,药物粉末在从下方而来的热空气作用下能够保持悬浮,从而达到理想的流化状态。接着将按照一定比例配成的黏合剂液体在蠕动泵和一定压力的压缩空气作用下,以雾化的形式从喷枪中向流化层喷入,使药物粉末聚结成颗粒。在整个制粒过程中,颗粒只受到流化床内部气流的作用,上下流动,因此形成的颗粒之间的粘合度较低,颗粒密度比较小,粒度比较均匀,并且有较好的可压缩性和流动性。流化床制粒设备的整体情况都大同小异,主要的不同在于雾化的粘合剂喷入的方式。按照喷嘴所在位置的不同,可以大体将流化床分为顶喷式、底喷式和流化床三类,这三类流化床的示意图如下图1-1所示。顶喷式流化床是将喷枪从腔体外部伸入到制粒室中,从流化层的上方自上而下进行喷液。颗粒通过气流的作用上升至喷嘴的位置,雾化的粘合剂从喷嘴喷出并将颗粒包裹起来,颗粒上升到一定的高度后回落,如此往复,顶喷式流化床一般用于制粒。底喷式流化床是喷枪中粘合剂的喷洒方向与进风气流的方向一致,侧喷式流化床的喷嘴安装在制粒室的内壁上,最明显的特点是在其底部安装有布风板,底喷式流化床和侧喷式流化床一般用于包衣。[align=center][font='times new roman']图[/font][font='times new roman']1-[/font][font='times new roman']1 [/font][font='times new roman']制粒[/font][font='times new roman']流化床[/font][font='times new roman']分类[/font][/align][font='times new roman'][size=16px][b]流化床制粒技术研究现状[/b][/size][/font]1959年,美国的Wurst首先提出了流化床技术,该技术以其工艺简单,操作时间短,劳动强度低等特点广泛应用于固体制药领域。我国于上世纪八十年代才引入流化床制粒设备,相对于国外来说起步较晚,因此对于流化床制粒技术的研究也相对较少。石海涛[font='calibri'][size=13px][3][/size][/font]等人使用流化床制粒技术解决了采用传统的湿法制粒批次间颗粒质量属性差异大,制粒终点难以把握的缺点,制出崩解性能良好的甲磺酸吉米沙星片。申楼[font='calibri'][size=13px][4][/size][/font]等人把颗粒的流动性、表面性状和崩解时限作为衡量颗粒质量的标准,采用正交试验的方法确定出流化床制粒的最佳工艺参数。东北大学的王正松[font='calibri'][size=13px][5][/size][/font]以颗粒的粒度为研究对象,建立并验证了流化床制粒最终颗粒粒度的机理模型,并且建立了预测颗粒粒度的回归模型。浙江大学的周家辉[font='calibri'][size=13px][6][/size][/font]针对流化床制粒室温度难以控制的问题,分析了流化床制粒温度影响因素,对流化床进行了热力学分析,并且设计了温度控制器。在国外近几年的研究中,Neugebauer[font='calibri'][size=13px][7][/size][/font]等人针对流化床分层制粒过程中颗粒形成干燥区的问题,提出了一种用于研究各种工艺参数对粒子动力学和工艺稳定性的影响的模型。Hayashi[font='calibri'][size=13px][8][/size][/font]等人对流化床造粒过程中颗粒生长和破碎的机理进行了研究,提出了一种基于离散元法和计算流体动力学相结合的粒子碰撞频率函数的粒子平衡模型。Heidari[font='calibri'][size=13px][9][/size][/font]等人考虑液滴蒸发过程引起的体积变化等因素,综合考虑粘合剂粘性与液滴表面张力的平衡力,建立了流化床制粒过程中液滴蒸发的力学模型,利用该模型研究了不同温度、蒸汽压力、接触角和液滴直径条件下蒸发速率对液滴扩散时间的影响。Teixeira[font='calibri'][size=13px][10][/size][/font]等人研究了提高姜黄素溶解度的多种策略并且以姜黄素为原料,采用流化床制粒法,制备姜黄素颗粒。国外的流化床技术已经取得了一定的成就,然而国内的流化床制粒领域中相关的文献报道却比较少,这种现状对于我们来说既是机遇也是挑战。通过文献可以看出,越来越多的学者都针对流化床制粒工艺进行研究,这也必将会是未来研究流化床制粒技术的一个趋势。

  • 【原创大赛】流化床在线设备改造

    【原创大赛】流化床在线设备改造

    [align=center][size=16px][b]流化床在线设备改造[/b][/size][/align]常规的顶喷式制粒流化床的主要组成系统分为温度控制系统、喷雾系统以及其他控制系统等。主要的结构有底锅、喷嘴、空气进出口、滤袋、取样口等,需要调整的工艺参数比较少,因此操作比较简单。在制粒过程中,粘合剂在蠕动泵和压缩空气的作用下经过喷嘴喷到处于流化状态的物料上,使得粉末在粘合剂的作用下和周围粉末聚并成粒子核,粒子核与粒子核之间慢慢形成比较大的颗粒。继续向流化床内部喷入粘合剂,使得颗粒和颗粒之间,颗粒与粒子核之间发生聚并作用形成更大的颗粒。同样,粘合剂喷入量过少,在进风量和温度等工艺参数的影响下,聚并的颗粒也会破碎,变成小颗粒和小的粒子核。颗粒生长过程如下。[img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031750279617_8904_3890113_3.jpeg[/img]本实验采用的是山东新马制药装备有限公司的实验型流化床(LGL 002),设备实物图如上图。此流化床设备操作简单方便,但是缺乏信息采集装置,不能及时准确地得到颗粒的水分含量,而且制粒过程中需要进行操作的实时工艺参数数据也不能够及时记录,这样就无法对每一时刻的工艺参数数据与颗粒的水分含量进行关联分析,影响颗粒水分含量的关键工艺参数不能掌握,对制粒工艺也就不能有更为充分的理解。为了及时获取相关的颗粒水分信息和工艺参数信息,需要对流化床进行改造。安装[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]为了获得流化床制粒过程中颗粒的实时水分数据,需要在流化床设备上添加[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]用于实时在线获取颗粒的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据。NIRS在线分析光谱采集方式主要有接触式和非接触式两种,非接触式主要通过从流化床的视镜进行对颗粒的采谱,接触式是将近红外探头安装到流化床底锅内部,直接与颗粒接触进行采谱。本文选用微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](MicroNIR PAT-U)在流化床制粒过程中采集颗粒的光谱数据进行水分含量的在线监测。与传统的近红外仪器相比,MicroNIR PAT-U体积较小、方便携带、质量较轻,对生产过程不会产生太大影响,因此在实际生产中适合用来对颗粒进行监测。温度对近红外仪器具有较显著的影响[50],同一个仪器在不同的温度条件下采集到的光谱也会所差异。流化床内温度比较高,并且随着实验过程物料温度在不断变化,如果直接将近红外探头与物料进行接触,采集到的光谱会有较大的误差,对实验结果的准确性也会产生影响。因此,为了尽可能地减少温度对近红外仪器的影响,将MicroNIR PAT-U外接探头,让近红外仪器不与物料直接接触,从而可以采集到较为稳定和准确的光谱数据。MicroNIR PAT-U与探头的连接方式为螺纹连接,在距离探头顶端与底锅厚度相同的地方安装材料为聚四氟乙烯的密封圈,保证采集光谱过程中的密封性与可靠性。MicroNIR PAT-U和探头的整体安装图如下图所示。为了采集颗粒的光谱,要将近红外探头伸入流化床内部,这就需要在流化床的底锅上进行打孔,孔的直径要比探头的直径大0.2~0.3mm,使得生产过程中探头不会发生晃动,保证光谱采集位置的一致性。孔的位置要尽量与取样口保持在同一条水平线上,这样可以减小近红外仪器采集的光谱数据与物料离线测量的数据在外部环境条件下的差异,尽可能减少采集数据的误差。探头具体的安装位置如下图所示。近红外探头吹扫装置在物料未成粒之前,粉末状的物料具有很强的粘附性,随着实验的进行,粉末会粘附在近红外探头上,从而对光谱的正确性产生严重的影响。这就要求在制粒过程中及时地清除掉粘附在探头上的粉末以消除这种不利影响。然而,频繁地把探头拿出来手动擦净不但会影响探头地使用寿命,而且由于光谱地采集是一个连续的过程,这样做反而会更加影响光谱数据的准确性。因此,流化床上安装近红外探头吹扫装置是非常有必要的。上节已经提到,近红外探头伸入流化床的长度与底锅的厚度一样,因此,近红外探头与底锅内壁是平行的。在近红外探头孔内径的下方孔壁上开一个直径为5mm的小孔,设计一个端部带螺纹的空心装置,外部接上吹入压缩空气的橡胶管,用于在制粒过程中对探头的吹扫,使物料尽量少的粘附在探头上。吹扫装置的原理示意图及安装实物图如图所示。吹扫装置要设置适当的吹扫频率和吹扫时间,并不是频率越快、时间越长越好。吹扫频率太快,每次吹扫时间过长,可能在探头采集光谱的时间段,刚好物料被吹扫装置吹跑,使得近红外探头实际采集的为空气的光谱,这会对结果造成较大的误差。近红外探头采集光谱的时间大约在2s左右,因此设置吹扫装置的脉冲频率设置在15s吹一次,每次吹1s为最适宜频率。工艺参数采集装置流化床制粒过程中使用的工艺参数比较少,因此每个工艺参数都对颗粒质量属性产生重要的影响。在制粒过程中,流化床的主要工艺参数有雾化压力、蠕动泵流量、进风温度、排风温度、进风量和物料温度。为了获取这些工艺参数数据,需要在流化床的相应位置上安装风量传感器、温度传感器、流速计、压力表等。流化床工艺参数采集装置的原理示意图如下图所示。进风温度、排风温度、风量的传感器,流量计和压力表都是安装在流化床系统内部,只有物料温度传感器需要在制粒的过程中将传感器加入到流化床内部。物料温度传感器采用热电偶式,为了测量流化床制粒过程中物料的温度,也需要在底锅上进行打孔,使温度传感器伸入到流化床内部,通过与物料直接接触的方式感受物料的温度并转换成可用于输出的信号。传感器孔的位置尽可能与近红外测量的位置在同一水平线上,保证测量的物料温度与近红外探头测量的物料是同一状态下的。物料温度传感器如下图所示。 [img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031750281516_7229_3890113_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031750284280_7065_3890113_3.png[/img]物料温度传感器暴露在外部,容易受外部环境的影响。为了确保传感器的稳定性和可靠性,保证在制粒过程中传感器不会发生晃动,需要对物料温度传感器增加固定装置。采用管夹作为温度传感器的增固装置,如上图所示。

  • 模块化PSS可编程安全系统3100的单元描述

    模块化PSS可编程安全系统3100的单元描述数字输入/输出模块PSS DI20 Z, PSS1 DI20 ZPSS 3000/PSS 3100能够处理比特、字节或字输入状态。每个输入都有相应标识和显示状态的LED。输入适合于下述连接:单通道与安全相关的输入设备,有或无测试脉冲双通道与安全相关的输入设备,有或无测试脉冲应用范围符合EN 954-1 11/94标准,无需额外的测试脉冲,安全等级高达第三级。安全等级第四级应用需要外部测试脉冲。输出可适用于连接:双极阻性和感性负载,最大电流不超过2A,皮尔磁PSS监控输出正极和输出负极的值。可通过插件式螺丝连接器连接输入设备。模块地址由模块支架上的插槽号确定。在下面列出的CPU上,仅支持具有所述版本号的模块。PSSCPU.版本1.7或更高PSS1 CPU.版本1.1或更高[b][color=#ffffff]文章转自:皮尔磁 http://www.china-pilz.com[/color][/b]

  • 【原创大赛】流化床生产工艺影响因素及研究现状

    [font='times new roman'][size=16px][b]流化[/b][/size][/font][font='times new roman'][size=16px][b]床[/b][/size][/font][font='times new roman'][size=16px][b]生产[/b][/size][/font][font='times new roman'][size=16px][b]工艺影响因素及研究现状[/b][/size][/font][font='times new roman'][size=16px][b] [/b][/size][/font][font='times new roman'][size=16px][b]流化[/b][/size][/font][font='times new roman'][size=16px][b]床生产[/b][/size][/font][font='times new roman'][size=16px][b]工艺影响因素概述[/b][/size][/font]流化床生产过程的内部机理比较复杂,很多因素都会影响制得颗粒的质量属性。其中,设备、工艺、处方等因素通常会对制粒结果有较大影响。设备因素主要是由于流化床本身造成的,不同的流化床制得的颗粒有所不同;工艺因素是与生产过程中实际操作的工艺参数相关;处方因素是指使用的原辅料性质和粘合剂的性质等有关。(一)设备因素在流化床制粒中,容器材料和形状影响比较大,容器的形状会对粒子的运动轨迹产生影响。流化床设备不但要使得物料可以达到流化状态,还要保证不会黏附在容器内壁上,这样可以使得在制粒过程中避免产生不规则的颗粒以及大量的细粉[font='times new roman'][size=16px][11][/size][/font]。流化床锅体的主要形状是圆锥体,上面比较宽,下面部分比较窄,其样式和内部结果如下图所示。[align=center][font='times new roman'][size=16px] [/size][/font][/align][align=center][font='times new roman'][size=16px]图[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]流化[/size][/font][font='times new roman'][size=16px]床锅体图[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]图[/size][/font][font='times new roman'][size=16px]1-[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]流化[/size][/font][font='times new roman'][size=16px]床锅体内[/size][/font][font='times new roman'][size=16px]部图[/size][/font][/align]锅体一般是用低碳钢304作为材料,并且在锅体内部进行抛光处理。锅体的最底端是进风口,分流板就安装在进风口处,并且在分流板上固定一层不锈钢筛网。Borne等人提出,分流板不会对物料粉末粒子的运动产生影响。(二)工艺因素流化床的工艺因素主要有进风温度、进风量、雾化压力、粘合剂的流速等。流化床的进风温度要保持在合理的范围内,一般设定在25°C~55°C之间。如果进风温度过低,粘合剂不能够及时蒸发从而使得颗粒湿润过度,这样流化床内壁上就会黏附部分物料粉末,从而不能达到较好的流化状态,粒子容易粘成一团;如果进风温度过高,会使得颗粒上的粘合剂过早的被干燥,颗粒上附着的粘合剂变少,从而达不到良好的制粒效果。流化床的进风量也是一个很重要的影响因素之一,合适的风量可以使得物料能够处于很好的流化状态,对使粉末形成颗粒比较有利,提高进风量有利于大颗粒的形成[font='times new roman'][size=16px][13][/size][/font]。若进风量过大,细小颗粒中的粘合剂挥发过快,不能达到良好的粘合作用,使得颗粒的粒度分布比较宽,细粉相对来说也比较多;若进风量较小,颗粒不能够被很好的吹起来形成流化状态,在粘合剂的作用下容易形成粒径很大的颗粒,从而形成很大的一团,造成塌床。雾化压力可以影响喷雾雾滴的大小,雾化压力过低,形成的喷雾的雾滴变大,喷雾范围变小,造成粘合剂在物料中分布不均匀;雾化压力过高则喷雾的雾滴过小,不利于物料良好的流化状态,不能很好的制粒。粘合剂的流速跟流化床制粒室内的湿度有关系,粘合剂流速过高,颗粒不能够被及时干燥,容易有塌床的风险;流速过低时,喷入的粘合剂过少,则会使颗粒的粒径过小,粉末较多,导致制粒效率低下。(三)处方因素物料主要有疏水性和亲水性两种。疏水性物料一般采用干法制粒;亲水性物料由于亲水性的不同也会产生差异。亲水性越强的物料越不容易被粘合剂润湿,因此成粒难度较大,需要提高粘合剂喷入速度[font='times new roman'][size=16px][14][/size][/font]。粘合剂的种类和浓度也会影响粉末的成粒,是流化床制粒中比较重要的工艺[font='times new roman'][size=16px][15][/size][/font]。合适的粘合剂与物料之间具有较高的粘合力,有利于颗粒的形成。粘合剂浓度较高可以有较高的粘合力,制得的颗粒较大;浓度较低则会使得粘合力不够,导致制粒速度变慢,细粉增多。[font='times new roman'][size=16px][b]流化[/b][/size][/font][font='times new roman'][size=16px][b]床生产[/b][/size][/font][font='times new roman'][size=16px][b]工艺研究现状[/b][/size][/font]质量源于设计(Quality by Desigh, QbD)在药物制剂研究中常用的研究方法,通过对生产工艺的理解来对过程进行控制[font='times new roman'][size=16px][16][/size][/font][font='times new roman'][size=16px][17][/size][/font]。在流化床制粒过程中,如果采用不同的工艺参数,则制备出来的颗粒的尺寸、粒径分布、含水量、流动性、可压性和溶解特性等质量属性都会有所不同,从而影响制成的颗粒的最终品质[font='times new roman'][size=16px][18][/size][/font]。已经有不少国内外学者在流化床制粒工艺方面进行了研究。宋顺宗[font='times new roman'][size=16px][19][/size][/font]等人采用正交试验的方法研究了进风温度、雾化压力和包衣液流速等工艺参数对包衣颗粒完整度、效率和成品率的综合影响。余楚钦[font='times new roman'][size=16px][20][/size][/font]等人以进风温度、进风参数、粘合剂流量、雾化压力为自变量采用正交试验的方法,考察这些工艺参数对颗粒的粒度、流动性、表面性状及崩解时限的影响。比利时布鲁塞尔自由大学的Rambali [font='times new roman'][size=16px][21][/size][/font]等人研究制粒过程的进风温度、进风速度、喷雾速率和进风湿度等工艺参数,确定了颗粒的理论含水率和液滴尺寸的测量方法,并且用这些工艺参数作为变量,建立了与粒径尺寸的回归模型。Aleksić [font='times new roman'][size=16px][22][/size][/font]等人采用响应面分析、多层感知机神经网络和偏最小二乘法对流化床制粒过程进行了数值模型来设计工艺参数的调节范围,研究表明,粘合剂的粘度会在很大程度上影响颗粒的形状。Bellocq[font='times new roman'][size=16px][23][/size][/font]等人研究了流化床制粒在不同工艺条件下对团聚体结构和功能的影响。Ehlersa[font='times new roman'][size=16px][24][/size][/font]等人在粘合剂流速、流量和进风温度恒定的条件下,研究脉冲喷雾和雾化压力在顶喷式流化床中对颗粒粒径大小的影响,结果表明,雾化压力对粒径的影响取决于入口空气的相对湿度,脉冲喷雾的占空比对最终产品的质量至关重要。目前为止,流化床制粒工艺主要依靠工人的经验,具有较强的主观性,缺乏对工艺参数和质量属性之间的深入理解,很少考虑制粒过程中质量属性的变化,缺乏有效的实时监控手段,同时还有很多的不确定性因素。因此,实施过程监控手段,实时测量流化床制粒过程中的关键质量属性对理解工艺参数对颗粒质量属性的影响具有重要作用。

  • 【原创大赛】近红外光谱分析技术应用于流化床制粒和包衣过程的研究进展

    [align=center][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术应用于流化床[color=#1d1b11]制粒和包衣[/color]过程的研究进展[/align][b][/b][align=left][b]摘要[/b][/align][align=left]目前流化床制粒、包衣技术在我国制药行业中因其具有制得颗粒流动性、压缩成型性好,微丸包衣厚度均匀等诸多优点而受到广泛应用。随着过程分析技术的推广,针对于关键质量属性的在线分析受到越来越多的关注,以采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术为代表的过程分析技术可以对流化床制粒、包衣过程进行有效地监测,从而提高产品质量、保证产品安全性。本文针对流化床制粒、包衣过程中水分含量、粒径大小、包衣厚度等关键质量属性,综述了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在监测流化床制粒、包衣过程的研究进展,表明[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术可以有效的监测流化床生产过程各关键质量属性。通过综述旨在为我国制药行业的流化床制粒、包衣单元实现自动化控制和智能生产提供参考。[/align][align=left] [/align][align=left][b]关键词:[/b][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术;流化床制粒;流化床包衣;过程分析技术;在线监测[/align][b]Abstract[/b][align=left]Thetechnologys of fluidized bed granulation and pellets coating are widely used inpharmaceutical industry. Particles made in a fluidized bed have good liquidity,compressibility, and coating thickness of pellets are homogeneous. Near-infraredspectroscopy can real time monitor in fluidbed granulation and coating process, so it can improve the productquality and ensure product security. This review gives research progress of Near-infraredspectroscopy monitoring in fluid bed granulationand coating process, and gives quantitative analysis model of moisture content, particle size and tablet/pelletthickness to realize in-line monitoring and controling.[/align][b][color=black]Key words[/color]:[/b][color=black]Near infraredspectroscopy [/color]Fluidized bed granulation Fluidized bed coating Process analytical technology In-line monitoring[align=left][b]前言[/b][/align]流化床又称沸腾床,其过程为通过气流将物料呈流态化,再喷入雾状液体对物料进行制粒或包衣。该方法可以集混合、制粒、干燥或包衣于一体,与湿法制粒、熔融制粒、包衣锅滚制等传统方法相比具有以下优点[sup][/sup]:工艺简单,生产效率高;在密闭的环境中生产,防止外界环境对物料的污染;制得的颗粒流动性好,粒度均匀、压缩成型性好;包衣厚度均匀,干燥效率高。近年来流化床技术在我国医药行业已得到广泛应用,但目前国内流化床技术(干燥、制粒、包衣)同样存在许多问题,产品关键参数的测定多依靠经验,传统的离线测定方法具有破坏性、昂贵、费时费力,且离线分析会使得参数的检测滞后于生产,检测结果难以反映生产过程的真实状态,因此产品多出现稳定性、均一性较差的问题,影响了最终产品的质量和安全性。目前一致性评价和连续化生产等对参数的在线优化提出了更高的要求。[align=left]美国FDA于2004年以工业指南的方式颁布了Processanalytical technology(PAT),旨在通过过程分析技术(PAT)提高对药品研发、生产和质量全过程更加科学性的控制[sup][/sup]。为保证产品的安全、有效、稳定、均一,近年来,研究出现多种用于流化床制粒和包衣过程的PAT在线分析仪器,以实现对生产过程的在线监控。[color=black]例如,[/color][color=black]3D[/color][color=black]图像分析技术([/color]3D imaging method)用于流化床制粒过程,在线测定颗粒粒径大小[sup][/sup];在流化床微丸包衣过程中,Mož ina等[sup][/sup]研究了数字成像技术(digital imaging)在线监测微丸包衣厚度以及判断微丸粘连问题的可行性。但应用图像分析技术需把颗粒或微丸当作理想的球体计算,难以准确测量颗粒粒径和包衣厚度。此外,聚焦束反射法(focusedbeam reflectance method,FBRM[color=#231f20])作为一种[/color]PAT工具用于监测因粘合剂溶液过量而产生的颗粒凝聚问题以及用于测定粒径大小[sup][/sup];[color=#231f20]Sheahan[/color][color=#231f20]等应用声波发射([/color]acoustic emissions[color=#231f20],[/color]AE)监测流化床顶喷包衣喷嘴的堵塞问题,且进行了用于监测包衣厚度的研究[sup][/sup]。[color=#231f20]FBRM[/color][color=#231f20]广泛应用于结晶过程,而应用在流化床制粒过程中,目前没有相关文件支持[/color][sup][/sup][color=#231f20];声波发射技术监测包衣厚度的可行性还需更深入的研究。为了克服以上分析方法的弊端,我们需要一种更实用的在线分析技术。[/color][color=#231f20]此外,[/color]Tok等[color=#131413][/color][color=#131413]研究了[/color]FBRM[color=#131413]、[/color]AE以及[color=#131413][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[/color][color=#131413]三种[/color]PAT技术应用于流化床制粒过程在线监测的可行性,在制粒生产过程中,其中AE技术易于受制粒过程中空气流速以及外界因素的影响;FBRM和[color=#131413][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[/color][color=#131413]的光纤探头易被样品污染,影响在线数据的采集。但许多研究表明[/color][color=#131413],可以通过安装吹扫装置保持[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S探头的清洁。[/align][align=left]目前[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术(Near-infraredspectroscopy,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S)作为PAT的有力工具,其波长范围为700-2500nm(14286-4000cm[sup]-1[/sup])之间,主要反映含氢基团(如C-H,O-H,N-H、S-H等)振动的倍频和合频吸收[sup][/sup]。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S分析样品含量大于千分之一,这符合一般生产要求,且其以分析速度快、非破坏性、无污染、投资少、操作技术要求低等特点在制药行业的应用日趋广泛。本文综述了在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在流化床干燥、制粒和包衣过程中应用,旨在为我国制药行业的流化床制粒、包衣单元实现自动化控制和智能生产提供参考。[/align][b]1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]应用于流化床制粒干燥过程[/b][align=left]随着计算机技术、光纤和化学计量学的发展,在制药行业质量要求日趋严格的大环境下,发展以[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S为主的在线监测研究势在必行。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在线监测流化床制粒干燥过程,连续采集过程中的光谱,可以对过程中颗粒的水分含量、粒径分布以及堆密度等关键参数进行监测[sup][/sup],从而对整个制粒干燥生产过程进行过程控制。[/align][align=left][b]1.1 颗粒的水分含量[/b][/align][align=left]在流化床制粒干燥过程中,颗粒的含水量可影响颗粒的流动性、可压性以及药物的稳定性。且含水量对制粒过程也会产生影响[sup][/sup],若在制粒过程缺少监测控制,易造成物料含水量过高或过低;含水量过高,易结成团块,造成塌床;含水量过低,颗粒的粒径小,会造成颗粒中粉末较多,由此可见,对流化床制粒过程进行过程控制[color=black]是非常重要的。水的[/color]O-H[color=black]伸缩振动一级倍频在[/color]1440 nm[color=black]附近,较强的合频吸收谱带在[/color]1940nm[color=black]附近,在早期,[/color]Rantanen[color=black]等[/color][sup][/sup] [color=black]采用[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[color=black]对流化床制粒过程中颗粒的含水量进行监测研究,表明测定过程使用与水分相关的波长而去除无关波长信息,可以更准确、更迅速地监测制粒过程中含水量的变化。[/color][/align][align=left][color=black]而且,除了进行水分定量分析监测流化床制粒干燥过程外[/color],还可利用主成分分析(principal component analysis, PCA[color=black])对过程中的多维变量进行降维分析,实现数据的可视化。此外,[/color]Rantanen等还研究了在流化床制粒过程中,利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S水分测定,结合过程中温度和湿度的测定对制粒过程的含水量进行监测,以实现制粒过程的控制与监测。以上研究中,是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S漫反射光纤探头透过流化床制粒机上的视镜来监测制粒过程中含水量的变化。[/align][align=left]除此之外,还可将光纤探头安装到流化床内部进行接触式在线采样。Kona等[color=black]在实验室规模流化床制粒机([/color]1-L)中安装一特制的勺状探头,并在探头上端位置安装压力吹扫装置,待光谱采集完毕后,启动吹扫装置,样品返回流化床[color=#231f20]内继续参加制粒,[/color]并在探头[color=red]等同的[/color]位置收集样品进行一级数据的测定。[color=#231f20]结合偏最小二乘[/color](partial least squares,PLS)算法对流化床制粒过程中样品的含水量进行在线监测,并且结合多维主成分分析(multi-way principal component analysis, MPCA)建立多元统计分析控制方法,对异常批次进行判断。同时研究中对制粒过程中的进风温度和湿度、产品的温度和湿度进行在线监测,通过对生产过程中产品的含水量、温度和湿度的监测以实现实时错误诊断和过程控制。与此类似,Peinado等[sup][/sup][color=#231f20]将[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S光纤探头嵌入到流化床中进行光谱采集,通过监测含水量的变化对生产规模流化床(300-L)干燥终点进行判断。研究中采用标准正态变量变换(Standard normal variate , SNV)预处理方法消除表面散射对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]漫反射光谱的影响,1940nm附近有较强的O-H合频吸收谱带,由此,采用1854-2075 nm波长建立了PLS水分定量模型。为了证明模型的适用性,用外部验证集对模型进行独立验证,并对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S方法进行方法学验证。与前者的研究相比,后者没有配置吹扫装置,而是通过改变探头的位置和角度保证[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S采集窗口的清洁。[/align][align=left][color=#231f20]此外,[/color][color=#231f20]Mä rk[/color]等[color=#231f20]则通过一旁路系统进行在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集,由此避免了流化床干燥过程中温度变化对光谱重复性的影响。[/color][/align][align=left] Green等[sup][/sup]研究了探头安装到流化床内进行接触式取样的3种装置对在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S水分预测的准确性的影响,颗粒分别在不同规模的流化床干燥器(65-L,300-L,600-L)中进行实验,并研究使用3种不同的取样装置以提高[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S方法的准确性。研究结果表明过程的不均匀性对表面预测的准确度会产生重要影响,此结论适合于易于不均一化的固体颗粒和混悬液系统的在线测量。此外,Heigl等采用实验室规模流化床研究了不同光谱背景和取样方式对PLS回归模型预测准确度的影响。结果显示透过流化床壁(聚甲基丙烯酸甲酯)采集的在线光谱和透过玻璃瓶采集的离线光谱建立的模型,与去除了此两个背景吸收所建立的模型相比,鲁棒性更好;其次,在线光谱建立的模型,与停止设备后取样采集的离线光谱所建立的模型相比,前者的鲁棒性和预测准确度更佳。[/align][align=left][b]1.2 颗粒的粒径大小[/b][/align][align=left][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S不仅包含样品的化学信息(比如水分含量),而且还包含样品的物理信息,比如,颗粒粒径的不同可产生基线偏移。由此,可以根据光谱的基线偏移来检测颗粒粒径的大小。[/align][align=left]在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S早期用来监测水分含量,但粒径作为质量控制的关键参数,影响压片过程片重均一性、可压性以及脆碎度等,因此为了进一步保证产品质量,提高生产效率,有必要对粒径进行在线监测。在20世纪90年代,相关研究人员对在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S监测颗粒粒径的变化进行了初期探索。Frake等[sup][color=black][/color][/sup][color=black]在生产规模顶喷制粒流化床([/color]40-kg)内安装[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光纤探头,用来连续采集颗粒的光谱信息。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光纤探头安装在偏下流处产品密度较高的位置以保证探头的清洁;研究中用原始光谱信息来表征颗粒粒径的变化,并绘制出2282nm处吸光度值随时间的变化图,其和粒径随时间变化图具有相似性,但由于颗粒变化模型的复杂性,并未能建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S粒径定量模型。[color=black]Rantanen[/color][color=black]等[/color][sup][/sup]在流化床制粒机中采用[color=red]四波长检测器[/color][color=black]对不同等级的微晶纤维素进行[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱的采集,其中1740nm和2145nm两波长用于粒径的测定,并利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S吸光度值区分微晶纤维素的等级。研究中采用激光衍射法测量微晶纤维素的中值粒径,与[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱吸光度值进行关联得到两者的相关性图。[/align][align=left][color=black]Findlay[/color][color=black]等[/color][sup][/sup]在流化床制粒干燥过程中使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在线监测颗粒水分含量和粒径大小,并用两者的监测结果结合流化床传质传热特性来判断制粒喷雾终点和颗粒干燥终点。使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱仪通过流化床上的玻璃窗采集样品光谱,此玻璃窗安装有一个特殊的垫圈以保持窗口的清洁。制粒过程中每隔5 min停机取样进行一级数据的测量,其中用干燥失重法测定样品含水量数据,用图像分析法测量颗粒的粒径大小。此外,样品在湿颗粒状态和干颗粒状态采集的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱存在差异(由于水对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱的影响),而且在制粒初期的前10min采集窗易被湿粉末污染,由此,与制粒的早期阶段相比,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在接近喷雾结束和干燥阶段更能获得准确的粒径数据。研究结果表明当样品含水量超过3%([i]w/w[/i])时,需要调整粒径的测量值,使得制粒过程中采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S测得的数据和通过一级方法测得的数据可以较好地吻合。随后对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]数据进行电脑编程,可以对流化床制粒过程进行程序化控制。同样,Makoto Otsuka等[sup][color=black] [[/color][/sup][sup]20][/sup][color=black]使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]透过流化床的玻璃壁采集光谱,并使用定制的橡皮刮刀来保持玻璃壁的清洁,研究了[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在线监测实验室规模流化床制粒过程粒径和水分的变化。此外,实验分别使用3种不同浓度的粘合剂([color=black]10%[/color][color=black],[/color]8.5%,[color=black]7.5%[/color][color=black]的羟丙基纤维素)溶液,取样后采用筛分法测定样品的[/color]D[sub]50[/sub],用[color=black]PLSR[/color][color=black]方法建立粒径定量模型,结果证明了[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在流化床混合、制粒和干燥过程预测对乙酰氨基酚配方颗粒水分含量和D[sub]50[/sub]的可行性。[/align][align=left][color=#141314]Nieuwmeyer[/color][color=#141314]等[/color][sup][/sup]用[color=#141314]PLSR[/color][color=#141314]法分别建立了水分含量和粒径的[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]定量模型。采用激光衍射法测得干样品的平均粒径(D[sub]50[/sub])作为一级数据,和干样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱数据关联,建立了具有4个主成分因子的平均粒径PLSR定量模型。Makoto Otsuka等[sup][color=black][[/color][/sup][sup]20][/sup]采用实验室规模的流化床制粒机研究[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S监测制粒过程的粒径和水分变化。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱仪透过流化床的玻璃壁采集光谱,使用定制的橡皮刮刀来保持玻璃壁的清洁。研究实验分别使用3种不同浓度的粘合剂([color=black]10%[/color][color=black],[/color]8.5%,[color=black]7.5%[/color][color=black]的羟丙基纤维素)溶液,采用筛分法测定样品的[/color]D[sub]50[/sub],对[color=black][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url][/color][color=black]光谱进行[/color]MSC预处理后,采用[color=black]PLSR[/color][color=black]方法建立粒径定量模型,并对模型进行了外部交叉验证。此研究结果证明了[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在流化床混合、制粒和干燥过程预测对乙酰氨基酚配方颗粒水分含量和D[sub]50[/sub]的可行性,表明[color=black][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[/color][color=black]可以作为在线实时监测制粒过程的有力工具。[/color][/align][align=left][b][color=#0d0d0d]1.3 [/color]颗粒的堆密度[/b][/align][align=left]制粒过程中除了颗粒含水量和粒径两个关键参数外,颗粒的堆密度也是判断颗粒质量的重要参数,例如,可以通过测量堆密度大小判断颗粒的流动性和可压性。Manel等[sup][/sup]研究在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在生产规模流化床制粒系统(GLATTWSG300)生产过程中的应用,其不仅在线监测制粒过程中产品水分和粒径的变化,还对颗粒的堆密度进行实时监测。通过[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]反射光纤探头透过流化床制粒机上的玻璃窗采集光谱,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱数据建立基于主成分分析的定性多变量分析模型,监测制粒过程,判断制粒的操作环境是否正常以及判断制粒过程是否出现异常。同样,用PLS方法建立了多个定量分析模型来监测制粒过程中各参数的变化(堆密度、含水量、粒径分布),实现了对流化床制粒干燥过程进行实时在线控制。[/align][align=left][b]2 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]应用于流化床包衣过程[/b][/align][align=left][color=black]流化床包衣广泛用于膜缓控释、骨架缓控释胶囊[/color]、丸剂包衣等。通过包衣可以掩盖药物的不良气味,还可以隔绝空气,避光防潮,提高药物的稳定性;[color=black]此外,合适的薄膜包衣厚度可控制膜的渗透性,使所包药物在体内扩散释放,达到定时、定位给药的目的[/color][sup][/sup],因此在流化床包衣过程中,包衣厚度是其质量控制的重要指标,用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S对此过程进行实时在线监测,可以有效判断包衣终点,提高产品质量。[/align][align=left] 早期Kirsch等[sup][/sup]采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S对片剂的包衣厚度进行了离线分析,验证了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S方法可作为快速、无损检测包衣厚度的有效方法。20世纪初期,Andersson等[sup][/sup]把[color=#231f20][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[/color][color=#231f20]光纤漫反射探头安装到流化床包衣机上,用于包衣过程中包衣厚度的在线监测。每批实验生产的样品量为[/color]0.5 kg,其中,包衣液材料和丸芯材料的化学组成不同,包衣液为乙基纤维素(具有荧光性),包衣厚度的一级测定方法采用图像分析法,通过包衣材料的荧光特性测定包衣厚度。采用Savitzky-Golay15点平滑和二阶导数对光谱进行预处理,选用1100-1250,[color=#231f20]1300-1450[/color][color=#231f20],以及[/color]1600-1800 nm的波长范围(纤维素类有较强的吸收)建立PLS定量模型,模型结果为R[sup]2[/sup]=0.97[color=#231f20],校正均方根误差为[/color]2.2 μm,可以较准确的判断包衣终点。Lee等[sup][/sup]使用平均聚类的方法建立了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]包衣厚度的动态校正模型,此模型具有较好的预测能力。在流化床包衣过程中在线采集[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,并间隔一定时间收集样品来测定一级数据(包衣厚度)。为了保证在线光谱的准确性,把对应收集样品时间点的21或[color=#231f20]45[/color][color=#231f20]个光谱取平均,然后与相应的一级数据关联建立[/color]PLS模型,并对模型进行外部验证。结果表明[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]可以作为流化床包衣过程在线监测工具,准确的判断包衣终点。[/align][align=left][color=black]Hudovornik[/color][color=black]等[/color][sup][/sup]采用[color=black][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url][/color][color=black]和空气滤波技术[/color](Spatial Filtering Technique, SFT)[color=black]监测中试流化床底喷包衣过程,建立了[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]水分含量预测模型,并表明[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]实时预测包衣厚度的可能性,此外,评估了两种在线方法判断过程异常(丸芯磨损和沉积)的能力。研究中建立的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]水分含量模型对包衣液的成分非常敏感,需要控制包衣液成分的变化以及采用合适的校正集范围来获得较好的预测结果。采用在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱和[color=black]SFT[/color][color=black]数据关联建立了[/color]PLS包衣厚度定量模型,此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]模型建立的物质基础为药物层的主药成分,随着包衣厚度的增加,主药成分的吸收峰(1670nm处)的强度逐渐降低,所以选择了1600-1751nm的波长范围建立此模型。结果表明采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]建立的包衣厚度、水分含量定量模型预测能力较好,同样能够实时判断包衣过程的异常状态,因此,表明[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]可以单独作为实时监测包衣过程的在线工具。[/align][align=left][b]3 结论与展望[/b][/align]近年来,随着[color=black]PAT[/color][color=black]在制药行业的推广,[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S技术已被应用到制剂生产的各个过程。流化床制粒和包衣作为制剂的关键环节,对其生产过程进行实时监测,不仅能够优化生产工艺,提高产品质量,还可以节省能源,为制药企业增加效益。本文综述了在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S技术监测流化床制粒和包衣过程的研究进展,目前流化床技术在我国制药行业已得到广泛的应用,启示我们可以对流化床工艺进行在线工程化改造,采用在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S实现流化床制粒和包衣过程实时监测,实现生产过程的自动化和智能化控制[color=black],保证产品的[/color]安全、有效、稳定、均一[color=black]。[/color][b][/b][align=left][b]参考文献[/b][/align][align=left] 张东利,郝东升,舒安庆,张维蔚.流化床喷雾造粒技术进展 . 化学工业与工程, 2005, 22(4): 289-295.[/align][align=left]宋顺宗,辛聪,宫国华,郭建鹏.利用流化床制备中药包衣颗粒的工艺研究.时珍国医国药,2007, 18(11): -2715.[/align][align=left]U.S. Food and Drug Administra2714tion. Guidance for Industry PAT-A Frameworkfor Innovative Pharmaceutical Development, Manufacturing and Quality Assurance.New Hampshire Avenue: FDA, 2004. [/align][align=left][color=black]Nä rvä nen T, Seppä lä K, Antikainen O, et al. A newrapid on-line imaging method to determine particle size distribution ofgranules, [i]AAPS Pharm Sci Technol, [/i]2008,9: 282-287.[/color][/align][align=left][color=black]Sandler N. Photometric imaging in particle sizemeasurement and surface visualization [/color][color=#231f20].[/color][i][color=black] Int J Pharm,[/color][/i][color=#231f20] 2011, 417: 227-234.[/color][/align][align=left][color=black]Mož ina M, Tomaž evič D, Leben S, et al. Digitalimaging as a process analytical technology tool for fluid-bed pellet coatingprocess[/color][color=#231f20].[/color][i][color=black]Eur J Pharm Sci, [/color][/i][color=black]2010,44: 156-162.[/color][/align][align=left] [color=black]Alshihabi F,Vandamme T, Betz G. Focused beam reflectance method as aninnovative (PAT) tool to monitor in-line granulation process in fluidized bed.[i]Pharm Dev Technol,[/i] 2011:73-84.[/color][/align][align=left] [color=#231f20]Sheahan T, Briens L. [/color]Passive acoustic emissions monitoring of the coating of pellets ina fluidized bed—A feasibility analysis . [i]PowderTechnol,[/i] 2015, 283: 373-379.[/align]褚小立.化学计量学方法与分子光谱分析技术. 北京:化学工业出版社,2011. 259.[align=left] Alcala M, Blanco M, BautistaM,et al. [color=black]On-line monitoring of a granulationprocess by [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] spectroscopy [/color][color=#231f20].[/color][color=black] [i]J Pharm Sci, [/i]2010,99(01): 336-345.[/color][/align][align=left]刘怡,马怡.流化床制粒影响因素的探讨. 中国医药工业杂志,2004,35(9): 566-568.[/align][align=left][color=black]Kona R, Haibin Qu, Mattes R, et al. Application ofin-line near infrared spectroscopy and multivariate batch modeling for processmonitoring in fluid bed [/color][color=#231f20]granulation . [/color][i][color=black]Int J Pharm,[/color][/i][color=#231f20]2013, 452: 63-72.[/color][/align][align=left][color=black]Rantanen J, [/color]Rasanen E[color=black], [/color]Tenhunen J[color=black], et al.In-line moisture measurement during granulation with a four-wavelength nearinfrared sensor: an evaluation of particle size and binder effects [/color].[color=black] [i]Eur J Pharm Biopharm[/i], 2000, 50: 209-217.[/color][/align][align=left][color=black]Peinado A, Hammond J, Scott A. Development, validationand transfer of a near infrared method to determine in-line the end point of afluidised drying process for commercial production batches of an approved oralsolid dose pharmaceutical product . [i]J Pharm Biomed Anal, [/i]2011,54: 13-20.[/color][/align][align=left] [color=black]Green RL,Thurau G, Pixley NC, et al. In-line monitoring of moisture content in fluid beddryers using near-IR spectroscopy with consideration of sampling effects onmethod accuracy [/color][color=#231f20]. [/color][i][color=black]Anal Chem,[/color][/i] 2005, 77: 4515-4522.[/align][align=left][color=black] Frake P,Greenhalgh D, Grierson SM, et al. Process control and end-point determinationof a fluid bed granulation by application of near infra-red spectroscopy [/color].[i][color=black]Int J Pharm,[/color][/i] 1997,151: 75-80.[/align][align=left][color=black] Rantanen J,Yliruusi J. Determination of particle size in a fluidized bed granulator with anear infrared set-up [/color][color=#231f20].[/color] [i]Pharm Pharmacol Commun[/i],1998,4:73-75.[/align][align=left] Findlay WP, Peck GR, Morris KR. Determination of fluidizedbed granulation end point using near-infrared spectroscopy and phenomenologicalanalysis [color=#231f20]. [/color][i][color=black]J Pharm Sci,[/color][/i] 2005,94: 604-612.[/align][align=left][color=black] NieuwmeyerFJS, Damen M, Gerich A, et al. Granule characterization during fluid bed dryingby development of a near infrared method to determine water content and mediangranule size [/color][color=#231f20]. [/color][i][color=black]Pharm Res[/color][/i], 2007, 24(10): 1854-1861.[/align][align=left] Otsuka M, Koyama A, Hattori Y. Real-time release monitoringfor water content and mean particle size of granules in lab-sized fluid-bedgranulator by near-infrared spectroscopy [color=black]. [i]RSC Adv, [/i]2014, 4: 17461-17468.[/color][/align][align=left] 柯博克[color=black], [/color][color=black]刘雪松[/color], 陈勇[color=black], [/color][color=black]等[/color].[color=black][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速测定复方丹参滴丸的包衣厚度[/color][color=black].[/color]复方丹参滴丸论文集[color=black],2005-2010:487-490.[/color][/align][align=left] Kirsch JD, Drennen JK. Near-infrared spectroscopy monitoringof the filming coating process [color=#231f20][/color]. [i]Pharm Res,[/i] 1996,13(02): 234-237.[/align][align=left] [color=#231f20]Andersson M, FolestadS, Gottfries J, et al. Quantitative analysis of film coating in a fluidized bedprocess by in-Line [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] spectrometry and multivariate batch calibration [/color]. [i]Anal Chem, [/i]2000, 72:2099-2108.[/align][align=left] [color=#231f20]Lee MJ, Park CR, KimAY, et al. Dynamic calibration for the in-Line [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] monitoring of film thicknessof pharmaceutical tablets processed in a fluid-bed coater . [i]J Pharm Sci,[/i] 2010, 99(01): 325-335.[/color][/align][align=left] [color=#231f20]Lee MJ, [/color]Seo DY, [color=#231f20]Lee HE, etal. In line [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] quantification of film thickness on pharmaceutical pelletsduring a fluid bed coating process [/color][color=black].[/color][i]Int J Pharm[/i][color=black], 2011, 403:66-72.[/color][/align][align=left] [color=black]Hudovornik G, Korasa K, Vre[/color]č [color=black]er F. [/color]A study on the applicability of in-line measurements in themonitoring of the pellet coating process [color=black]. [i]Eur J Pharm Sci[/i], 2015, 75: 160-168.[/color][/align][align=left][color=black] [/color][/align]

  • 【原创大赛】流化床混合环节及与PAT技术的集成

    [align=center][size=21px][b]流化床[/b][/size][size=21px][b]混合环节[/b][/size][size=21px][b]及与[/b][/size][size=21px][b]PAT[/b][/size][size=21px][b]技术的集成[/b][/size][/align][font='times new roman'][size=16px]流化床[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]fluidized bed[/size][/font][font='times new roman'][size=16px]),指首先[/size][/font][font='times new roman'][size=16px]利用气[/size][/font][font='times new roman'][size=16px]流动使[/size][/font][font='times new roman'][size=16px]物料呈[/size][/font][font='times new roman'][size=16px]沸腾状态,再喷入雾化后的[/size][/font][font='times new roman'][size=16px]粘合剂进行后续的制粒、包衣、成丸等,最后得到干燥的[/size][/font][font='times new roman'][size=16px]颗粒、微丸、[/size][/font][font='times new roman'][size=16px]包衣粉末及包衣微丸[/size][/font][font='times new roman'][size=16px]的制药设备。在流化床制药[/size][/font][font='times new roman'][size=16px]过程中,物料的混合、制粒[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]包衣[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]干燥[/size][/font][font='times new roman'][size=16px]等[/size][/font][font='times new roman'][size=16px]同时完成。流化床技术是在上世纪五十年代发展起来的,最初设计只是用作干燥设备,以提高干燥效率。[/size][/font][font='times new roman'][size=16px]1964[/size][/font][font='times new roman'][size=16px]年[/size][/font][font='times new roman'][size=16px]Scott[/size][/font][font='times new roman'][size=16px]等将[/size][/font][font='times new roman'][size=16px]Wurster[/size][/font][font='times new roman'][size=16px]方法作了改进并应用于医药工业,我国于上世纪八十年代将流化床引入到口服固体制剂的制备过[/size][/font][font='times new roman'][size=16px]程[/size][/font][font='times new roman'][size=16px]中[/size][/font][font='times new roman'][size=16px][color=#080000][1][/color][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]与传统制药工艺相比,流化床工艺设备具有以[/size][/font][font='times new roman'][size=16px]下优[/size][/font][font='times new roman'][size=16px]点[/size][/font][font='times new roman'][size=16px][color=#080000][2, 3][/color][/size][/font][font='times new roman'][size=16px]:([/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px])将固体制剂制备过程中多个生产环节有机结合在一起,生产工艺高效、便捷且提高了自动化程度[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]缩短了工艺周期;([/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px])所得制剂产品有更好的流动性、同质性、可压性;([/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px])生产在密闭环境中进行,无交叉污染;([/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px])为湿热敏感药物的制备提供了良好的解决方案。[/size][/font][font='times new roman'][size=16px]随着制药机械设备的发展,流化床设备发展趋势如下:([/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px])规格越来越齐全,批次处理能力从几升到几千升;([/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px])集成智能传感器,达到对[/size][/font][font='times new roman'][size=16px]生产工艺的全自动化[/size][/font][font='times new roman'][size=16px]监测[/size][/font][font='times new roman'][size=16px]控制[/size][/font][font='times new roman'][size=16px];([/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px])物料无交叉连续化传递,[/size][/font][font='times new roman'][size=16px]整个生产过程[/size][/font][font='times new roman'][size=16px]全密闭、无尘化操作[/size][/font][font='times new roman'][size=16px];([/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px])工艺灵活,通过与其他设备集成形成连续化生产。[/size][/font][align=center][img='']" alt="[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']1-1[/font][font='times new roman'] [/font][font='times new roman']流化床与其他设备结合形成制粒流水线[/font][/align][align=left][font='times new roman'][size=16px][b]流化床混合[/b][/size][/font][/align][font='times new roman'][size=16px]流化床制药[/size][/font][font='times new roman'][size=16px]工艺凭借其无可复制的优点[/size][/font][font='times new roman'][size=16px][color=#080000][4, 5][/color][/size][/font][font='times new roman'][size=16px]在[/size][/font][font='times new roman'][size=16px]固体制[/size][/font][font='times new roman'][size=16px]剂生产过程中得到了广[/size][/font][font='times new roman'][size=16px]泛的应用[/size][/font][font='times new roman'][size=16px][color=#080000][6, 7][/color][/size][/font][font='times new roman'][size=16px]。然而,流化床制药生产过程是一个密闭的过程,物料的流化状态剧烈且不可见,很难获取腔室中物料的状态和理化性质。[/size][/font][font='times new roman'][size=16px][b]PAT[/b][/size][/font][font='times new roman'][size=16px][b]技术的集成[/b][/size][/font][font='times new roman'][size=16px]随着制药设备的发展,流化床设备与其他制药机械设备结合形成固体制剂连续化生产系统[/size][/font][font='times new roman'][size=16px],如[/size][/font][font='times new roman'][size=16px]图[/size][/font][font='times new roman'][size=16px]1-1[/size][/font][font='times new roman'][size=16px]。作为固体制剂生产的上游关键环节,混合过程物料的[/size][/font][font='times new roman'][size=16px]混合[/size][/font][font='times new roman'][size=16px]均匀度会影响到制药过程下游每个环节[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量的均匀度,[/size][/font][font='times new roman'][size=16px]这[/size][/font][font='times new roman'][size=16px]也是药品质量一致性评价的重点。因此,流化床混合过程粉末共混物中[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量[/size][/font][font='times new roman'][size=16px]的瞬态干扰检测是一个重要[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]研究课题。但目前国内流化床混合过程[/size][/font][font='times new roman'][size=16px]中[/size][/font][font='times new roman'][size=16px]CQAs[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]测定多采用离线方法,只有在混合过程的最后,分析人员才能检测产品的[/size][/font][font='times new roman'][size=16px]CQAs[/size][/font][font='times new roman'][size=16px],以决定产品是否达到放行标准。此外,离线分析具有破坏性、昂贵、费时费力的缺点,不能及时反映生产过程物料的真实状态,最终影响产品的质量和安全性。因此,对流化床混合过程[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量[/size][/font][font='times new roman'][size=16px]进行实时监测研究,能够加深对产品和工艺的理解及后续生产过程的控制,实现精益生产与偏差控制的结合。[/size][/font][font='times new roman'][size=16px]仿制药一致性评价的推行对制药行业提出了更高的要求。固体制剂是目前最重要的给药形式之一,作为固体制剂生产的上游关键环节,混合过程物料的[/size][/font][font='times new roman'][size=16px]均匀度会影响到制药过程下游每个环节[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]的含量均匀度,[/size][/font][font='times new roman'][size=16px]也是药品质量一致性评价的重点[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]只有实时在线监测产品的质量属性、过程中材料和工艺条件的变化,进一步对药品生产过程加以监测和控制,才能生产出符合要求的产品。但是目前通常采用的检测方法为离线取样检测,不能及时了解过程中物料的状态及理化信息。为此,探索并建立一套及时准确的流化床混合过程智能分析技术非常必要。[/size][/font][font='times new roman'][size=16px]过程分析技术的提出,为实现过程理解提供了技术及设备支持。[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]作为重要的[/size][/font][font='times new roman'][size=16px]PAT[/size][/font][font='times new roman'][size=16px]工具,在混合过程中的应用稳步增加。[/size][/font][font='times new roman'][size=16px]将[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]引入到流化床混合过程中,对混合过程[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量进行实时监测,加深对产品和工艺的理解及后续生产过程的控制,实现[/size][/font][font='times new roman'][size=16px]精益生产与偏差控制的结合。同时,获得了[/size][/font][font='times new roman'][size=16px]完整的关键质量参数数据,使产品质量有据可依、有据可查。因此,[/size][/font][font='times new roman'][size=16px]通过对流化床混合过程[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]过程分析研究,建立混合过程智能控制关键技术,这将为整个固体制剂药物生产过程质量管理提供借鉴和技术手段。[/size][/font][font='times new roman'][size=16px]在[/size][/font][font='times new roman'][size=16px]流化床[/size][/font][font='times new roman'][size=16px]混合过程中,[/size][/font][font='times new roman'][size=16px]腔室内粉末共混物[/size][/font][font='times new roman'][size=16px]中[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量[/size][/font][font='times new roman'][size=16px]的瞬态干扰检测是一个重要的研究课题。然而,在实际生产中流化床混合过程具有[/size][/font][font='times new roman'][size=16px]不[/size][/font][font='times new roman'][size=16px]可见性,流化床腔室中物料的化学和物理性质的真实状态无从知晓。所以使用[/size][/font][font='times new roman'][size=16px]PAT[/size][/font][font='times new roman'][size=16px]技术监测混[/size][/font][font='times new roman'][size=16px]合过程[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量均匀性的价值不言而喻。为了实现流化床混合过程的可视化,[/size][/font][font='times new roman'][size=16px]在实验模拟型流化床上将过程分析技术[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]引入到流化床混合过程中,对过程关键质量属性[/size][/font][font='times new roman'][size=16px]—API[/size][/font][font='times new roman'][size=16px]含量进行[/size][/font][font='times new roman'][size=16px]定量[/size][/font][font='times new roman'][size=16px]监测。[/size][/font][font='times new roman'][size=16px]目前,批次混合过程中的一种常见建模方法是使用多个批次的样本建立校准模型,但在生产条件下要收集具有代表性的[/size][/font][font='times new roman'][size=16px]校准[/size][/font][font='times new roman'][size=16px]集需要[/size][/font][font='times new roman'][size=16px]消耗大量的物料,否则会影响后续模型的稳健性。[/size][/font][font='times new roman'][size=16px]在小试实验型流化床中使用有限的原辅料建立校准光谱模型,用于监测流化床混合过程中[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]含量[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]加之[/size][/font][font='times new roman'][size=16px]研究了光谱预处理和波段选择方法,建立[/size][/font][font='times new roman'][size=16px]PLS[/size][/font][font='times new roman'][size=16px]模型来[/size][/font][font='times new roman'][size=16px]预测[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量。在有效的光谱预处理和波段选择方法的帮助下,近红外传感器可以准确地测定混合物中[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]的含量,从光谱监测的角度[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]用于流化床混合过程[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量均匀性检测的可行性。同时,增加了对工艺过程的了解,从而科学有效地控制生产过程,提高产品质量,保证产品安全。[/size][/font]

  • 工业用PID控制器相对于可编程逻辑控制器PLC的五大优点

    工业用PID控制器相对于可编程逻辑控制器PLC的五大优点

    [size=16px][color=#339999][b]摘要:针对控制领域内广泛使用的PID控制器和可编程逻辑控制器PLC,本文分析了具体应用中PID控制器的几大优点。PID调节器的优点主要体现在测控精度高、更强的控制功能、使用门槛低和操作简单、具有明了的可视化界面和节省成本。[/b][/color][/size][align=center][size=16px][img=相对于可编程逻辑控制器PLC,PID控制器具有哪些优势,600,320]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161607321889_5876_3221506_3.jpg!w690x368.jpg[/img][/size][/align][size=16px][/size][b][size=18px][color=#339999]1. 基本概念[/color][/size][/b][size=16px] PID控制器(Proportion Integration Differentiation.比例-积分-微分控制器),由比例单元P、积分单元 I 和微分单元D组成。通过Kp,Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。PID控制器是一个在工业控制应用中常见的反馈回路部件,PID控制器通常是指闭环控制的一种形式,这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。[/size][size=16px][/size] 可编程逻辑控制器(Programmable Logic Controller,PLC)是一种具有微处理器的用于自动化控制的数字运算控制器,可以将控制指令随时载入内存进行储存与执行。可编程逻辑控制器已经相当或接近于一台紧凑型电脑的主机,其在扩展性和可靠性方面的优势使其被广泛应用于目前的各类工业控制领域。[size=16px][/size] 在大多数工业控制应用中,PLC像PID控制器一样使用,PID模块的排列可以在PACs或PLC中完成,从而为精确的PLC控制提供更好的选择。与单独的控制器相比,这些控制器既智能又强大,每个PLC基本都包括软件编程中的PID模块。[size=16px][/size] 然而,尽管PID控制器和PLC有众多类似之处,它们在设置、编程和应用方面仍有显著不同,而综合这些不同来看,PID控制器有以下几方面自己独特的优势。[size=18px][color=#339999][b]2. 测控精度高[/b][/color][/size][size=16px] [/size][size=16px]PID控制器是闭合反馈回路的一部分,该回路主动追踪过程值与设定值的偏差,并根据需要调节输出水平。许多控制器都有 PID 算法,并带自动调节功能,可以实现快速设置,并保持最小的过程值与设定值偏差。目前一些工业用PID控制器已经发展到具有极高精度的水平,如24位AD、16位DA和0.01%最小输出百分比,由此可以实现温度、真空、压力、流量、张力等物理量的超高精度测量和控制。而对于PLC则很难具备如此高精度的能力,就算个别PLC能达到如此高的精度,那价格也会远高于PID调节器。[/size][size=18px][color=#339999][b]3. 控制功能更优[/b][/color][/size][size=16px] [/size][size=16px]PID控制器是一种专门设计用于处理特定的工业过程的调节器,因此包含了与这些过程直接相关的特点、输出和控制功能,例如针对各种不同的传感器需要提供完备的数据采集能力,针对需要阀门电机驱动控制(VMD)的应用提供专门的算法。而PLC需要具备适合广泛制造和自动化功能的特点,因此针对很多具体工业控制的特点是有限的。PLC可以执行基本的控制任务,但不如专门的PID控制器优势明显。此外,由于需要处理模拟信号,控制系统对微处理器的要求非常严苛,PID控制器是专为处理这些需求而设计的,而PLC必须在系统经过测试后才能判定能否满足这些过程要求。如未能符合要求,PLC将无法快速响应过程中的各种变化,并导致超前或滞后,从而影响产品质量。[/size][size=18px][color=#339999][b]4. 使用门槛低和操作简单[/b][/color][/size][size=16px] [/size][size=16px]PLC设计用于多任务控制环境,需要专业编程技巧以及大量时间,由专业人士来打造符合特定应用需要的解决方案。而PID控制器则可以相对快速地安装、设置和优化,并且所需经验极少。特别是一些PID控制器还自带计算机软件,采用图形化界面的计算机软件可以快速实现PID控制器的设置、运行和过程变量的采集和显示,更是大幅度降低了使用门槛。 [/size][size=16px][/size] 大多数PID控制器可以面板安装,也就是可以安装在过程机械的前面板上,并且带可视屏幕,相关人员只需基本的工程知识即可在数分钟内完成设置。PLC则较为复杂,通常安装在面板后面的机架上,不带显示屏,且需要单独的HMI(同样需要设置),因此PLC操作使用的便捷性上劣势明显。[size=18px][color=#339999][b]5. 明了的可视化界面[/b][/color][/size][size=16px] [/size][size=16px]面板安装的PID控制器有多种规格以及复杂程度,因此操作员可轻松查看过程信息以及需要注意的警告或警报信息。PLC通常没有直接的界面,需要一个单独的人机界面(HMI),且人机界面需要单独设置。HIM可以显示必要的过程信息,但它通常还会显示与PLC所管理的其他任务相关的各种数据。这意味着面板安装式PID控制器优势非常明显,有专门的界面方便查看所有相关的信息,可以快速进行调节。许多PID控制器还额外提供数据记录功能,可以用于查看先前所做的更改以及标记潜在问题。[/size][size=18px][color=#339999][b]6. 节省成本[/b][/color][/size][size=16px] [/size][size=16px]当然这是相对来说的,PLC设计用于控制多任务,适用于多回路控制的应用。对于某些单回路,或者少数回路控制的应用,PLC许多特点是应用所不需要的,所以成本显得高昂,这是不如选用专门针对某个工艺参数调控设计的PID控制器。[/size][size=16px][/size] 总之,对于具有相同功能和控制精度的PID控制器和PLC,总体而言PID控制器更节省成本。[size=16px][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • Cypress CY7C341-25HC CPLD复杂可编程逻辑器件

    [b]功能描述:[/b]  CY7C341B是一种可擦除可编程逻辑器件(EPLD),其中CMOS EPROM单元用于配置器件内的逻辑功能。MAX架构是100%用户可配置的,允许器件达到调节各种独立的逻辑功能。  CY7C341B中的192个宏细胞被划分为12个逻辑阵列块(LAB),每个LAB 16个。有384个扩展器产品术语,每个LAB 32个,由每个LAB中的宏细胞使用和共享。每个LAB与可编程互连阵列相互连接,允许所有信号在整个芯片中路由。  CY7C341B的速度和密度允许它用于广泛的应用,从替换大量的7400系列TTL逻辑,到复杂的控制器和多功能芯片。CY7C341B的功能是20引脚pld的37倍以上,允许更换超过75个TTL器件。通过替换大量逻辑,CY7C341B减少了电路板空间,减少了零件数量,提高了系统可靠性。  每个LAB包含16个宏细胞。在实验室A、F、G、L中,有8个macrocell连接到I/O引脚,8个埋入 在实验室B、C、D、E、H、I、J、K中,有4个macrocell连接到I/O引脚,12个埋入。此外,除了I/O和嵌入式宏单元外,每个LAB中还有32个单乘积项逻辑扩展器。它们的使用大大提高了大细胞的能力,而不增加每个大细胞中产物项的数量。[b]更多相关产品信息请访问立维创展ldteq.com特性:[/b]?192个macrocell在12个逻辑阵列块(实验室)?8个专用输入,64个双向I/O引脚?先进的0.65微米CMOS技术,提高性能?可编程互连阵列?384膨胀器产品条款?可在84针HLCC, PLCC和PGA封装[align=center][img=image.png]https://www.ldteq.com/public/ueditor/upload/image/20231107/1699339979113332.png[/img][/align][b]Product Technical Specifications:[/b][table=715][tr=rgb(222, 222, 222)][td=1,1,352]EU RoHS[/td][td=1,1,352]Not Compliant [font=arrow-icons !important][color=#008445][/color][/font][/td][/tr][tr][td=1,1,352]Part Status[/td][td=1,1,352]Obsolete[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Automotive[/td][td=1,1,352]No[/td][/tr][tr][td=1,1,352]PPAP[/td][td=1,1,352]No[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Family Name[/td][td=1,1,352]MAX[/td][/tr][tr][td=1,1,352]Program Memory Type[/td][td=1,1,352]EPROM[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Number of Logic Blocks/Elements[/td][td=1,1,352]12[/td][/tr][tr][td=1,1,352]Number of Global Clocks[/td][td=1,1,352]1[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Number of Macro Cells[/td][td=1,1,352]192[/td][/tr][tr][td=1,1,352]Process Technology[/td][td=1,1,352]0.8um[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Product Terms[/td][td=1,1,352]32[/td][/tr][tr][td=1,1,352]Device System Gates[/td][td=1,1,352]3750[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Data Gate[/td][td=1,1,352]No[/td][/tr][tr][td=1,1,352]Maximum Number of User I/Os[/td][td=1,1,352]64[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]In-System Programmability[/td][td=1,1,352]No[/td][/tr][tr][td=1,1,352]Number of Inter Dielectric Layers[/td][td=1,1,352]2[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Programmability[/td][td=1,1,352]Yes[/td][/tr][tr][td=1,1,352]Reprogrammability Support[/td][td=1,1,352]No[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Maximum Internal Frequency (MHz)[/td][td=1,1,352]62.5[/td][/tr][tr][td=1,1,352]Maximum Clock to Output Delay (ns)[/td][td=1,1,352]14[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Maximum Propagation Delay Time (ns)[/td][td=1,1,352]25[/td][/tr][tr][td=1,1,352]Speed Grade[/td][td=1,1,352]25[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Individual Output Enable Control[/td][td=1,1,352]No[/td][/tr][tr][td=1,1,352]Minimum Operating Supply Voltage (V)[/td][td=1,1,352]4.75[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Maximum Operating Supply Voltage (V)[/td][td=1,1,352]5.25[/td][/tr][tr][td=1,1,352]Typical Operating Supply Voltage (V)[/td][td=1,1,352]5[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Maximum Operating Current (mA)[/td][td=1,1,352]380[/td][/tr][tr][td=1,1,352]Minimum Operating Temperature (°C)[/td][td=1,1,352]0[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Maximum Operating Temperature (°C)[/td][td=1,1,352]70[/td][/tr][tr][td=1,1,352]Supplier Temperature Grade[/td][td=1,1,352]Commercial[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Tradename[/td][td=1,1,352]MAX[/td][/tr][tr][td=1,1,352]Mounting[/td][td=1,1,352]Surface Mount[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Package Width[/td][td=1,1,352]29.41(Max)[/td][/tr][tr][td=1,1,352]Package Length[/td][td=1,1,352]29.41(Max)[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]PCB changed[/td][td=1,1,352]84[/td][/tr][tr][td=1,1,352]Standard Package Name[/td][td=1,1,352]LCC[/td][/tr][tr=rgb(222, 222, 222)][td=1,1,352]Supplier Package[/td][td=1,1,352]Windowed LCC[/td][/tr][tr][td=1,1,352]Pin Count[/td][td=1,1,352]84[/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制