当前位置: 仪器信息网 > 行业主题 > >

快速植物胁迫测量仪

仪器信息网快速植物胁迫测量仪专题为您提供2024年最新快速植物胁迫测量仪价格报价、厂家品牌的相关信息, 包括快速植物胁迫测量仪参数、型号等,不管是国产,还是进口品牌的快速植物胁迫测量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速植物胁迫测量仪相关的耗材配件、试剂标物,还有快速植物胁迫测量仪相关的最新资讯、资料,以及快速植物胁迫测量仪相关的解决方案。

快速植物胁迫测量仪相关的仪器

  • OS-30P+ 快速植物胁迫荧光测量仪 产品介绍:OS-30P+ 快速植物胁迫荧光测量仪 广泛应用于植物生理、生态、农学、园艺和生物技术等学科的叶绿素荧光相关研究,特别是对植物胁迫的相关研究中OS-30p+采用的是先进的调制-饱和-脉冲技术测量时,先将叶片暗处理一段时间,然后再在饱和光强下暴露短暂的时间,测量这段时间内荧光强度随时间的变化的荧光动力学曲线曲线的形状和重要的瞬时值可以用于指示环境胁迫对光合器官的损伤产品特点:“JIP" Test – OJIP:通过OS30p+可直接读取以下数据:O、J、I、P、t100μs、t300μs (或K)、tFm (或到达Fm的时间)、A (曲线上方的 面积)、MO (或 RC/ABS)、PIABS (或performance Index)、FO/FM、FV/FM及FV/FO。更重要的是,OS-30p+直接 测量Fo,而不是通过计算获得。同时 ,它还可以直接显示设置,以及彩色的使用对数坐标轴的测量曲线,并直接读 取使用很多的测量参数。设备使用的红色光化光的光 强可以调节FV/FM、FV/Fo:相对于OS-30p,OS-30p+具有自动的程序,使用8个点的均值、确保仅25ms内达到很大值的叶绿素荧光被测量,因此 ,对于陆地植物 或海藻来说,饱和脉冲的持续时间问题将不存在,确保将误差控制在很小的范围内操作简单、测量快速USB数据输出彩色显示屏坚固、耐用、适于野外使用的设计手持式操作、提供野外便携箱技术参数:FV/FM、FV/FO:饱和强度 600- 6000μmols ,设定从10%到100%饱和光源红色点阵660 nm的LEDs调制光源红色0.2到1.0 umols检测方法调制脉冲检测器与过滤器 具有700-750 nm波段过滤器的Pin光电二很管测试时间0.1s到1.5 s,默认的饱和脉冲持续时间是1s,;但是仪器软件采用取每25ms测量值的平均值的方式计算FO和FM,可作为陆生和海藻植物理想的测量工具。调制光调节10%到100%手动调节测量和作图参数 FO、FM、FV/FM、FV/FOJIP测量:光化光强度6000 umols, 4500umol, 3500 umols, 3000umols, 2500 umols,1000 umols, 875 umols, 525 umols, 300 umols, 200 umols, 100 umols, & 50 umols. 一个650nm点阵LEDs用于光化光照明检测方法 具有700-750nm波段过滤的Pin光电二很管;使用红色脉冲调制光源,取样时间在10us 到1s测量时间JIP测量3 - 300sJIP测量参数 O, t100us, t300us (or K), t2ms (or J), t30ms (or I), P, tFM, A (area above the curve), MO(or RC/ABS), PI/ABS (or performance index) FO, FM, FV/FM, FV/FO, Fo为实测值。S, M, T也是实测值 但他们只记录于数据文件中,并不再测量屏上显示。每个数据文件可存储20个曲线数据。通用参数:显示彩色图形显示存储 JIP测量中,每个数据文件可存储160000次测量及20个曲线;使用多个数据文件,可存储上百个曲线。数字输出 USB端口电池 工作时间8小时的镍氢充电电池尺寸 18cm×7 cm× 6cm.重量 2 lbs.便携箱 包含于标准配置
    留言咨询
  • OS30p+快速植物胁迫测量仪一、概述OS30p+是一款经济、轻便、精确、可靠的调制式叶绿素荧光测量系统。二、用途广泛应用于植物生理、生态、农学、园艺和生物技术等学科的叶绿素荧光相关研究,特别适用于植物胁迫的相关研究。三、原理OS30p+采用的是先进的调制-饱和-脉冲技术。测量时,先将叶片暗处理一段时间,然后再在饱和光强下暴露短暂的时间,测量这段时间内荧光强度随时间变化的荧光动力学曲线。曲线的形状和重要的瞬时值可以用于指示环境胁迫对光合器官的损伤。四、特点 “JIP” Test – OJIP:通过OS30p+可直接读取以下数据:O、J、I、P、t100μs、t300μs (或K)、tFm (或到达Fm的时间)、A (曲线上方的面积)、MO (或RC/ABS)、PIABS (或performance Index)、FO/FM、FV/FM及FV/FO。更重要的是,OS30p+直接测量Fo,而不是通过计算获得。同时,它还可以直接显示设置,以及彩色的使用对数坐标轴的测量曲线,并直接读取使用最多的测量参数。设备使用的是红色光化光,光强可以调节。 FV/FM、FV/FoOS30p+具有自动的程序,使用8个点的均值、确保仅25ms内达到最大值的叶绿素荧光被测量,因此,对于陆地植物或海藻来说,饱和脉冲的持续时间问题将不存在,确保将误差控制在最小的范围内。 Y(II)、ETR等测量模块为适应更多胁迫测量的需求,提供额外的Y(II)测量模块,可测量叶温、空气相对湿度、Y(II)、ETR、叶片对PAR吸收比例、PAR等参数。 操作简单、测量快速 USB数据输出 彩色显示屏 坚固、耐用、适于野外使用的设计 手持式操作、提供野外便携箱五、组成主机、10个暗适应叶夹、电池充电器、USB数据线、野外便携箱。六、技术参数 FV/FM、FV/FO:饱和强度:600- 6000μmols ,设定从10%到100%饱和光源:红色点阵660 nm的LEDs调制光源:红色0.2到1.0 umols检测方法:调制脉冲检测器与过滤器:具有700-750 nm波段过滤器的Pin光电二极管测试时间:0.1s到1.5 s,默认的饱和脉冲持续时间是1s,;但是仪器软件采用取每25ms测量值的平均值的方式计算Fo和Fm,可作为陆生和海藻植物理想的测量工具。调制光调节10%到100%手动调节测量和作图参数FO、FM、FV/FM、FV/FO JIP测量:光化光强度6000 umols, 4500umol, 3500 umols, 3000umols, 2500 umols,1000 umols, 875 umols, 525 umols, 300 umols, 200 umols, 100 umols, & 50 umols. 一个650nm点阵LEDs用于光化光照明检测方法具有700-750nm波段过滤的Pin光电二极管;使用红色脉冲调制光源,取样时间在10us 到1s测量时间JIP测量3 - 300sJIP测量参数O, t100us, t300us (or K), t2ms (or J), t30ms (or I), P, tFM, A (area above the curve), MO (or RC/ABS), PI/ABS (or performance index) FO, FM, FV/FM, FV/FO, Fo为实测值。S, M, T也是实测值 但他们只记录于数据文件中,并不再测量屏上显示。每个数据文件可存储32个曲线数据。 Y(II)测量:光化光强度7000 umols白色LEDs,具有PAR叶夹检测方法具有700-750nm波段过滤的Pin光电二极管;使用红色脉冲调制光源,取样时间在10us 到1s测量时间小于3sY(II)测量参数Y(II)或ΔF/Fm‘、ETR、PAR、T、FMS或FM’、Fs、α(叶片吸收)。 通用参数:显示:彩色图形显示存储JIP测量中,每个数据文件可存储160000次测量及32个曲线;使用多个数据文件,可存储上百个曲线。数字输出USB端口电池工作时间8小时的镍氢充电电池尺寸18cm×7 cm× 6cm.重量1.25lbs.便携箱包含于标准配置 36cm×28cm×15cm六、产地:美国七、参考文献Kautsky H., Hirsch A. (1931) Neuw Versuche zur Kohlensaureassimilation. Naturwissenshaften 19, 964.Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105-115Strasser R.J, Tsimilli-Michael M., and Srivastava A. (2004) - Analysis of Chlorophyll a Fluorescence Transient. From Chapter 12, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 340Vredenberg Wim (2011) Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems, BioSystems Contents lists available at journal
    留言咨询
  • PSK植物胁迫测量套件 400-860-5168转2933
    应用Y(II)或ΔF/FM’ 或 (FM’ – FS )/FM’) 是经受时间考验的光适应测量参数,比FV/FM对更多类型的植物胁迫更加敏感。已有的大量证据表明FV/FM对许多种植物胁迫和健康植物的光系统II的测量十分出色,而Y(II)或光量子产额则可测量实际光照下光适应环境和生理状况的光系统II的效率。原理 采用调制饱和脉冲原理,测量植物的叶绿素荧光,通过相关文献的研究成果,计算植物的光量子产额及相对电子传递速率,同时可测量PAR、叶温、相对湿度等环境参数。 特点叶片吸收测量:提供叶片吸收测量及随环境变化导致的叶片吸收变化。根据Eichelman (2004) 叶片吸收在健康植物的变化范围在0.7~0.9 之间。因此,为获得准确的ETR或“J”,Y(II)测量仪提供了一个可靠的测量方法,FV/FM测量单元:可额外选配FV/FM测量仪,用于暗适应测量。具有暗适应叶夹阳光下屏幕可见图形显示FV/FM曲线2GB存储空间USB通讯数据Excel查看 先进的PAR叶夹:采用底部叶夹打开装置,防止测量时误操作打开叶夹。对传感器进行余弦校正,确保叶片相对测量光的角度不变。 FM’校正:对于具有高光照强度历史的植物,完全关闭光反应中心是一个问题,Y(II)测量仪使用Loriaux &Genty 2013的方法进行FM’校正,确保误差最小。自动调制光设定:快速准确自动的调整合适的调制光强,避免人工操作的误差。先进算法避免饱和脉冲NPQ:采用25ms内8点的平均值确定FM’,消除饱和脉冲NPQ的影响。更精确的叶温测量:采用非接触式红外测量,测量精度可达±0.5℃。直接测量相对湿度:含有测量气体交换使用的固态传感器,可测量相对湿度。降低叶片遮挡的设计:倾斜的角度减少对叶片的遮挡,可以测量拟南芥等小叶。 系统组成标配:Y(II)光量子产额测量仪、充电器、USB电缆、便携箱、2个吸收测量单元、U盘(包含说明书)。可选:FV/FM测量仪及10个暗适应叶夹、三脚架。 技术指标测量参数:Y(II)或ΔF/Fm‘、ETR、PAR、T、FMS或FM’、Fs、α(叶片吸收)。监测模式:可使用电脑,长时间监测Y(II)、ETR、叶片吸收、PAR、叶温、相对湿度、及计算NPQ。相对湿度:5%~95%,±2%。可选参数:FV/FM、FV/FO,FO, FM, FV。可使用AC或USB供电,可配三脚架。技术参数:光源饱和脉冲:白色LED具有PAR时7000μmols调制光:红色LED 660nm,具有690nm短波过滤。光化光源:仅可使用外部光源检测方法:调制脉冲法检测器&过滤器:具有700~750nm带通过滤的PIN光电二极管取样速率:1~10000点/秒自动切换。测量时间:3s或长期监测存储空间:2GB输出:USB尺寸:便携箱尺寸为14”x 11”x 6”,仪器为9’’长质量:Y(II) 测量仪0.45 kgFV/FM测量仪0.36 kg.总重1.95 kg.产地美国文献Adams & Demming-Adams 2004 – Chlorophyll Fluorescence as a tool to Monitor Plant Response to the Environment. William W. Adams III and Barbara Demmig-Adams, From Chapter 22, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, pages 598 -599Adams WW III, Demmig-Adams B. (1994) Carotenoid composition and down regulation of Photosystem II in three conifer species during the winter. Physiol Plant 92: 451-458Ball MC. (1994) The role of photoinhibition during seedling establishment at low temperatures. In: Baker NR. And Bowyer JR. (eds) Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field, pp365-3376 Bios Scientific Publishers, OxfordBall MC., Butterworth JA., Roden JS., Christian R., Egerton JJG., (1995) Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiology 22: 311-319Baker N.R, Rosenquist E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, Bukhov & Carpentier 2004 – Effects of Water Stress on the Photosynthetic Efficiency of Plants, Bukhov NG., & Robert Carpentier, From Chapter 24, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by GeorgePapaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 627-628 Burke J. (2007) Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay, Plant Physiology, Jan. 2007, Vol 143, pp108-121Burke J., Franks C.D. Burow G., Xin Z. (2010) Selection system for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm, Agronomy Journal 102:1118-1122 May 2010Cavender-Bares J. & Fakhri A. Bazzaz 2004 – “From Leaves to Ecosystem: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant Function in Ecological Studies”. Jeannine Cavender Bares, Fakhri A. Bazzaz, From Chapter 29, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 746-747 ETR Drought stress and npqCazzaniga S, Osto L.D., Kong S-G., Wada M., Bassi R., (2013) “Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photo oxidative stress in Arabidopsis”, The Plant Journal, Volume 76, Issue 4, pages568–579, November 2013 DOI: 10.1111/tpj.12314Cheng L., Fuchigami L., Breen P., (2001) “The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves.”Adams WW III, Demmig-Adams B., Vernhoeven AS., and Barker DH., (1995) Photoinhibition during winter stress – Involvement of sustained xanthophyll cycle-dependent energy-dissipation. Aust J. Plant Physiol 22: 261-276 Journal of Experimental Botany, 55(403):1607-1621Journal of Experimental Botany, 52(362):1865-1872Crafts-Brandner S. J., Law R.D. (2000) Effects of heat stress on the inhibition and recovery of ribulase-1, 5- biphsphate carboxylase/ oxygenase activation state. Planta (2000) 212: 67-74all’Osto L, Cazzaniga S, Wada M, Bassi R. (2014) On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Phil. Trans. R. Soc. B 369: 20130221.da Silva J. A. & Arrabaca M.C. (2008).Physiologia Plantarum Volume 121 Issue 3, Pages 409 – 420 2008Eichelman H., Oja V., Rasulov B., Padu E., Bichele I., Pettai H., Niinemets O., Laisk A. (2004) Development of Leaf Photosynthetic Parameters in Betual pendula Roth Leaves: Correlation with Photosystem I Density, Plant Biology 6 (2004):307-318Eyodogan F., Oz M. T. (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant (2007) 29:485-493Flexas 1999 – “Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines”J. FLEXAS, J. M. ESCALONA & H. MEDRANO Plant, Cell & Environment Volume 22 Issue 1 Page 39-48, January 1999Flexas 2000 – “Steady-State and Maximum Chlorophyll Fluorescence Responses to Water Stress In Grape Vine Leaves: A New Remote Sensing System”, J. Flexas, MJ Briantais, Z Cerovic, H Medrano, I Moya, Remote Sensing Environment 73:283-270 Physiologia Plantarum, Volume 114, Number 2, February 2002 , pp. 231-240(10)Gonias E. D. Oosterhuis D.M., Bibi A.C. & Brown R.S. (2003) YIELD, GROWTH AND PHYSIOLOGY OF TRIMAX TM TREATED COTTON, Summaries of Arkansas Cotton Research 2003Hendrickson L., Furbank R., & Chow (2004) A simple alternative approach to assessing the fate of absorbed Light energy using chlorophyll fluorescence. Photosynthesis Research 82: 73-81Kramer D. M., Johnson G., Kiirats O., Edwards G. (2004) New fluorescence parameters for determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79: 209-218Krause G.H., Weis E. (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. 5, 139-157.Krupa Z., Oquist G., and Huner N., (1993) The effects of cadmium on photosynthesis of Phaseolus vulgaris – a fluorescence analysis. Physiol Plant 88, 626-630 D Edwards GE and Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37: 89–102Laisk A and Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Ribulose-1,5-bisphosphate carboxylase / oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiol 110: 903–912Photosynthesis in the water-stressed C grass is mainly limited by stomata with both rapidly and slowly imposed water deficits. Flexas (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C plants Flexas J., Escalona J. M., Evain S., Gulías J., Moya I., Charles Barry Osmond C.B., and Medrano H. 4 Setaria sphacelataEarl H., Said Ennahli S., (2004) Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation. Photosynthesis Research 82: 177186, 2004.Laisk A., Oja V, Eichelmanna H., Luca Dall' Osto L. (2014) Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1, Biochimica et Biophysica Acta 1837 (2014) 315–325Loriaux S.D., R.A Burns,Welles J.M., McDermitt D.K. Genty B. (2006) “Determination of Maximal Chlorophyll Fluorescence Using A Multiphase Single Flash of Sub-Saturating Intensity”. Abstract # P13011 August 1996.American Society of Plant Biologists Annual Meetings, Boston MA LORIAUX S.D, AVENSON T.J., WELLES J.M., MCDERMITT D.K., ECKLES R. D., RIENSCHE B. & GENTY B. (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity Plant, Cell and Environment (2013) 36, 1755–1770 doi: 10.1111/pce.12115Maai E., Shimada S., Yamada M.,, Sugiyama T., Miyake H., and Taniguchi M., (2011) The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid Journal of Experimental Botany, Vol. 62, No. 9, pp. 3213–3221, 2011, doi:10.1093/jxb/err008 Advance Access publication 21 February, 2011Moradi F. and Ismail A. (2007) Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice Annals of Botany 99(6):1161-1173Nedbal L. Whitmarsh J. (2004) Chlorophyll Fluorescence Imaging of Leaves and Fruits From Chapter 14, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, TheNetherlands, page 389 -407Netondo G., Onyango J., and Beck E., (2004) Sorghum and Salinity I. Response of Growth,Water Relations, and Ion Accumulation to NaCl Salinity, Crop Science 44:797-805Siffel P., & Braunova Z., (1999) Release and aggregation of the light-harvesting complex in intact leaves subjected to strong CO2 deficit. Photosynthesis Research 61: 217-226Strasser R.J, Tsimilli-Michael M., and Srivastava A. (2004) - Analysis of Chlorophyll a Fluorescence Transient. From Chapter 12, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 340 Tripathy BC, Bhatia B., Mohanty P., (1981) Inactivation of chloroplast photosynthetic electron transport activity by Ni ++. Biochim Biophys Acta 638:217-224Vredenberg W., Kay J. and Russotti R. (2013) The instrumental implementation of a routine for quantitative analysis of photochemical-induced variable chlorophyll fluorescence in leaves: Properties and prospects. ISPR conference in St. Louis, Poster e-mail: e-mail: ?iv ák M., Bresti M., Ol?ovská K., Slamka P.(2008) Performance index as a sensitive indicator of water stress in PLANT SOIL ENVIRON., , 2008 (4): 133–139Oquist G., and Huner N., (1991) Effects of Cold acclimation on the susceptibility of photosynthesis to photoinhibition in Scots pine and in winter and spring serials: A fluorescence analysis. Functional Ecology 5: 91-100
    留言咨询
  • AP4植物污染胁迫监测仪名称:植物污染胁迫监测仪 型号:AP4 产地:英国用途:AP4植物污染胁迫监测仪用来定量测量各种因素对气孔行为的影响,可方便、重复、准确地计算出气孔阻力。植物叶片气孔是植物体水分散失和光合作用所需CO2进入的通道。气孔特性是植物生理生态状态的一个十分重要的指标,它对于研究植物物种的特性和环境因子,如土壤水分状况、太阳辐射强度、污染物对植物的影响具有重要价值。AP4植物污染胁迫监测仪在数据采集的精度、方便性和仪器的整体设计、价格都在原有气孔计的基础上有很大突破。 测量原理:根据循环扩散原理,由植物叶片表面湿度的变化来进行测量计算。特点:AP4植物污染胁迫监测仪整机设计十分合理,全机由三部分组成:主机、传感器和附件(充电器、校准板等),仪器仅重3kg;在野外和实验室条件下,随时能进行标定,保证测定数据的高精度、高分辨率;自动快速的测量回路,温度补偿测定结果,测定时间小于15秒;使用的方便性:AP4植物污染胁迫监测仪的运行由内置微处理器控制,有十分便捷的操作程序。液晶屏上菜单式操作过程使用户极易完成仪器的标定,数据的获取,浏览和存储过程,系统帮助按钮能为用户适时提供操作帮助;便捷安全的数据处理系统:存储单元能存储1500个读数,可通过RS232连线传输到计算机、打印机或其它小型终端设备。其数据格式适宜于直接输入一些通用数据处理软件,如Excel;数据采集的多样化:该机能够同时采集植物叶片气孔导度、气孔阻力、光照强度、大气相对湿度、温度等多种指标; 应用范围:植物蒸腾作用特点的研究;环境条件(光、温、水)对植物蒸腾作用的影响;逆境条件下,应用植物气孔导度,评价城市大气污染状况;全球变化,特别是在温室气体浓度升高情况下植物生理生态反应;目的植物筛选,应用植物气孔导度筛选抗旱植物、抗污染植物等。 技术规格: 气孔导度(mmol/m2/s)测量范围:5.0~1200 mmol/m2/s;分辨率:0.01~0.1mm/s;精度:±10%(5~800 mmol/m2 /s),±20%(800~1200 mmol/m2 /s)气孔导度(mm/s)测量范围:0.25~ 30.0 mm/s;分辨率:0.01~0.1mm/s;精度:±10%(0.25 ~20.0 mm/s),±20%(20.0 ~30.0 mm/s)气孔阻力测量范围:0.2 ~ 40 s/cm;分辨率:0.01~0.1;精度:±0.2 s cm-1(0.2~0. 5 s/cm),±10%(0. 5~40 s/cm)相对湿度测量范围:0~100%;分辨率:0.1;精度:±4%样品室温度测量范围:-5~+55℃;分辨率:0.1;精度:±0.7℃(0~+50℃)样品室和叶子温度差测量范围:-5~+5℃;分辨率:0.1;精度:±0.2℃(0~+50℃)光量子通量测量范围:0~2500 μmol/m2 /s;分辨率:10;精度:±15%测量单位气孔导度:mmol/m2 /s、mm/s、cm/s;气孔阻力:s/cm、s/m、m2 s/mol传感器样品室槽状:2.5×17.5毫米;圆形:直径6毫米相对湿度传感器Vaisala 16663HM温度传感器高精度100K热电偶光传感器未滤光GaAsP光电二极管电缆长度1.2米尺寸110×30×27毫米重量130克(包含电缆)数据处理存储容量约1500个读数数据接口RS232接口,波特率9600软件用于windows操作系统,记录的数据可下载为逗号分隔的ASCⅡ数据文件(CSV)控制单元显示8行×40个字符LCD按键13个功能键,标准键盘尺寸300×200×140毫米重量3公斤供电电池内置电池,可连续工作20个小时充电器12~15V DC,0.5A,110、220或240AC电源(订购时指定)充电时间14个小时基本组成主机含有气路系统及分析计算系统传感头传感头包括两个叶室,一个槽状,另一个圆形。可针对不同形状的叶片来选择适当的叶室,传感头中含有微型电热调节器、RH传感器和PAR传感器校正盘一个特别铸造的有六组有精确直径的小孔的聚丙烯塑料盘,校正盘用潮湿的滤纸覆盖,提供了在已知速率下以扩散方式通过小孔的水蒸气源 产地:英国点将科技-心系点滴,致力将来! : (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • PolyPen RP 410手持式植物光谱测量仪通过内部光源(氙气白炽灯380-1050nm)测定植物叶片的反射光谱,也可以测定其他光源的透光度和吸光率。PolyPen在软件中内置了几乎所有常用的植物反射光谱指数公式,例如NDVI,PRI,NDGI等。测得的数据以图形或数据表的形式实时显示在仪器的显示屏上。这些数据都可以储存在仪器的内存里并传输到电脑里。PolyPen RP 410由可充电锂电池供电,不需要使用电脑即可独立进行测量。仪器配备全彩色触屏显示器、内置光源、内置GPS和用于固定样品的无损叶夹。叶夹具备进行光源和检测器校准的标准参照物。应用领域:? 植物反射光谱测量? 植物胁迫响应? 色素组成变化? 氮素含量变化? 产量估测 PolyPen RP 410手持式植物光谱测量仪技术特点:? 目前最便携的测量植物叶片反射光谱的高光谱测量仪。? 自动计算常用的植物反射光谱指数,也可计算用户定制的指数,同时提供高精度反射光谱图。? 非破坏性原位测量。? 手持式仪器,电池供电,无需外部电脑,便于野外测量。? 内置GPS,USB/蓝牙双通讯模式技术参数:? 光谱检测范围:PolyPen RP 410 UVIS光谱响应范围为380-790nmPolyPen RP 410 NIR光谱响应范围为640-1050nm? 内置植被指数:PolyPen RP 410 UVIS:NDVI、SR、绿度指数、MCARI、TCARI、TVI、ZMI、SRPI、NPQI、PRI、NPCI、Carter指数、SIPI、GM1。PolyPen RP 410 NIR:NDVI、SR、MCARI1、OSAVI、MCARI、TCARI、ZMI、Ctr2、GM2
    留言咨询
  • 暂时或者持续高温都会造成植物在形态、生理和生化上的变化,进而影响植物的生长和发育并造成农业的严重减产和经济的巨大损失。随着全球变暖的加剧,世界上越来越多地区的农业都开始面临热胁迫(heat stress)的威胁。因此,评估植物尤其是农作物的热耐受性(heat tolerance)并培育具有较高的热耐受性作物品种成为目前农业应对全球变暖的最紧迫任务之一。PlanTherm PT 100 植物热耐受性测量仪通过同步测量升温过程中的植物离子析出(电导)与叶绿素荧光动态曲线,能够简便、快速、全面地评估植物的热耐受性。它可以测量从小型叶到中型叶的各种叶片及藻类的热耐受性。研究者通过专用软件的ProfileCon图形用户界面可以设定实验、分析数据并将数据输出到电脑中。实验进行情况、原始测量数据和分析结果都可以实时显示到软件主界面上。工作原理:将植物样品或微藻藻液加入到样品杯中,然后加热使温度线性的从20℃升高到85℃(根据不同设置大约需要20-50分钟),同时持续监测样品杯中电导的变化。通过获得的电导/温度曲线能够计算出细胞中离子大量渗出的精确临界温度。这个临界温度可以衡量样品细胞膜的热耐受性与热稳定性。在加热的过程中,仪器还会同步监测样品的叶绿素荧光强度,叶绿素荧光强度/温度曲线用于评估光系统和光合电子传递链的热耐受性与热稳定性。应用范围:快速评估植物的结构性和诱导性热耐受性农作物热耐受性评估及新品种筛选研究植物抗逆性和响应机制光合研究检测生物和非生物胁迫植物对胁迫因子的抗性和敏感性 功能特点:同步测量植物离子析出(电导)与叶绿素荧光动态实时显示温度-电导曲线及温度-荧光动态曲线可测量高等植物(具叶夹)及藻类热胁迫耐受性 技术参数:电导测量参数:电导/温度曲线、电导临界点荧光测量参数:Ft、荧光/温度曲线及4个荧光临界点荧光激发光源:460nm,提供饱和光和测量光,光强可设加热速度:1-3℃/min,线性加热,用户可自行设定温度控制范围:20-85℃,用户可自行设定温度测量分辨率:0.01℃电导测量分辨率:0.01μS样品杯容积:7ml电磁搅拌频率:0-2000 RPW数据取样频率:2Hz典型测量样品:分离叶片,最大面积0.5cm×2.0cm;微藻溶液微型PC工作站配置:Intel NUC Golden Lake D33217GKE i3-3217-U 1.8 GHz,min 90GB SSD HD,2 GB DDR3 RAM电源功率:最大70W尺寸:5cm×20cm×20cm重量:2kg电压:90-240V 产地:捷克 应用案例:
    留言咨询
  • 美国MultispeQ V2多功能植物测量仪产品简介:多功能植物测量仪MultispeQ V2是由知名光合作用专家DavidM.Kramer教授团队研发的技术。MultispeQ V2通过手机APP控制,野外操作简便,能够对植物或者藻类的光合表型和生物/非生物胁迫进行原位测量,数据实时存储至PhotosynQ云平台,以便进一步查看和存储数据。若为室内试验,也可以通过桌面APP和网页APP进行操作。美国MultispeQ V2多功能植物测量仪功能特性:1.功能强大,1台MultispeQ V2=叶绿素荧光仪+差式吸收+叶绿素仪+光谱仪+气象站2.测量快速,一次典型测量只需15秒3.灵活、开源,创建适于自己的操作流程4.预留额外传感器接口(USB3.0)--通过桌面电脑(PC、Mac或Linux)或安卓手机连接PhotosynQ5.云平台,随时随地管理、分析和共享数据6.改良的PAR传感器,测量更广泛的光质7.5500mAh内置电池,轻松满足全天使用 美国MultispeQ V2多功能植物测量仪测量参数:1.植物和藻类叶绿素荧光参数:ΦII、ΦNPQ、ΦNO、NPQ、qE,、qI、qL、qP、LEF(rETR)、RFd等2.叶绿素相对含量:SPAD3.质子动力势:VH+、GH+、ECSt等4.448nm,530nm,590nm,655nm(2x),730nm,810nm,880nm和950nm(2x)的光吸收5.非接触测量参数:叶片角度、叶片朝向、叶片温度,叶片和环境的温度差6.环境参数:PAR、环境温度、气压、相对湿度、海拔7.改善用户体验,数据采集速度和使用可选泵测量气孔导度的能力。
    留言咨询
  • Dualex是一款源自于法国国家科学院 (CNRS)及巴黎第十一大学技术,由奥地利PESSL公司生产(原法国Force-A公司)开发的新型多功能叶片测量仪。PESSL植物多功能氮平衡指数测量仪可同时准确测量叶片的叶绿素含量、叶片表层的类黄酮和花青素含量,适用于植物生理学和农学(如水稻叶绿素浓度,玉米氮素状况,葡萄藤等)相关研究。工作原理多酚测量原理叶绿素红外荧光 (2) 是通过未被多酚吸收的参考激发光(1)而测量的;与多酚测量光(例如绿光(3)反映花青素,或者紫外光(4) 反映类黄酮)结果进行比较,由于多酚物质的吸收作用,只有小部分的光到达叶肉中的叶绿素,并能产生红外光。叶绿素测量原理通过光的透射率可以快速测量出叶片中叶绿素的含量。第一束近红外光(5)用于测量叶片中叶绿素的含量,第二束近红外光 (6) 测量叶片结构对叶绿素含量的干扰值。叶片叶绿素吸收率是基于两种近红外光的透射率测量的,两束近红外光(710nm和850nm)直接照射叶片,根据检测器分别检测到的透射率比较计算得出叶片叶绿素吸收率。技术参数测量对象:植物叶片测量面积:5mm直径精度:5%相对精度: 2,5 m (CEP, 50%, 24 h 静态)数据输出:.csv 文件数据传输:USB尺寸:205 mm x 65 mm x 55 mm重量:220克(含电池)其它特性:内置GPS,可储存一万多个数据产品特色便携小巧十分轻便(重量只有220克,包括电池),小巧 (适合手持)。Dualex Scientific+ 携带方便并且可以频繁使用。其人体工学设计特别适合测量0.5到16厘米宽的叶片。测量简单在自动模式下,当设备探测到叶片出现时会自动储存测量结果。同时也可使用手动开关。适用于实验研究Dualex Scientific + 提供多种选项:删除上次测量结果、管理测量结果 (三种分类),可记录多达 1000多条数据。这些参数附带日期、时间、分组编号和GPS位置 (精确到米)。个性化设置可以对荧光计显示的指数进行定制,而这将影响到产品的最终价格。简易的数据管理数据可以通过USB数据线导出为数据文件,可兼容任何数据处理软件。内置GPS (可选)Dualex Scientific+ 内置GPS,显示的数据可以用于绘制图。超长使用寿命内置的可充电大容量锂电池可进行1000次循环充电。得益于充电技术的应用,这套设备仅需充4个小时的电即可是实现多达25000次测量。应用案例氮平衡指数效果示意图氮平衡指数(NBI: Nitrogen Balance Index)是叶绿素(CHL)和类黄酮(FLAV)的比值:当未发生氮肥胁迫时,植物生长健康,合成叶绿素较多,产生的多酚(类黄酮)较少;当发生氮肥胁迫时,植物营养不平衡,产生的多酚(类黄酮)较多,生成叶绿素较少。传统方法中只用叶绿素判断氮肥状况,当叶片叶绿素含量下降时(叶片变黄),说明植物缺失氮肥。而事实上,这种方法有一定的延迟效应,叶绿素下降是几天甚至十几天前氮肥缺失的表现,即使此时施肥,也会影响作物的最终产量。通过这项全新的指数,可获取更早更具有针对性地关于农作物的氮素信息。利用氮平衡指数来评估氮肥状况时,避免了传统方法中的延迟效应,叶绿素和多酚 (类黄酮 )稍有变化,即可检测出植物的氮肥状况,及时快速进行氮肥管理。
    留言咨询
  • Dualex是一款源自于法国国家科学院 (CNRS)及巴黎第十一大学技术,由奥地利PESSL公司生产(原法国Force-A公司)开发的新型多功能叶片测量仪。PESSL植物氮平衡指数测量仪可同时准确测量叶片的叶绿素含量、叶片表层的类黄酮和花青素含量,适用于植物生理学和农学(如水稻叶绿素浓度,玉米氮素状况,葡萄藤等)相关研究。工作原理多酚测量原理叶绿素红外荧光 (2) 是通过未被多酚吸收的参考激发光(1)而测量的;与多酚测量光(例如绿光(3)反映花青素,或者紫外光(4) 反映类黄酮)结果进行比较,由于多酚物质的吸收作用,只有小部分的光到达叶肉中的叶绿素,并能产生红外光。叶绿素测量原理通过光的透射率可以快速测量出叶片中叶绿素的含量。第一束近红外光(5)用于测量叶片中叶绿素的含量,第二束近红外光 (6) 测量叶片结构对叶绿素含量的干扰值。叶片叶绿素吸收率是基于两种近红外光的透射率测量的,两束近红外光(710nm和850nm)直接照射叶片,根据检测器分别检测到的透射率比较计算得出叶片叶绿素吸收率。技术参数测量对象:植物叶片测量面积:5mm直径精度:5%相对精度: 2,5 m (CEP, 50%, 24 h 静态)数据输出:.csv 文件数据传输:USB尺寸:205 mm x 65 mm x 55 mm重量:220克(含电池)其它特性:内置GPS,可储存一万多个数据产品特色便携小巧十分轻便(重量只有220克,包括电池),小巧 (适合手持)。Dualex Scientific+ 携带方便并且可以频繁使用。其人体工学设计特别适合测量0.5到16厘米宽的叶片。测量简单在自动模式下,当设备探测到叶片出现时会自动储存测量结果。同时也可使用手动开关。适用于实验研究Dualex Scientific + 提供多种选项:删除上次测量结果、管理测量结果 (三种分类),可记录多达 1000多条数据。这些参数附带日期、时间、分组编号和GPS位置 (精确到米)。个性化设置可以对荧光计显示的指数进行定制,而这将影响到产品的最终价格。简易的数据管理数据可以通过USB数据线导出为数据文件,可兼容任何数据处理软件。内置GPS (可选)Dualex Scientific+ 内置GPS,显示的数据可以用于绘制图。超长使用寿命内置的可充电大容量锂电池可进行1000次循环充电。得益于充电技术的应用,这套设备仅需充4个小时的电即可是实现多达25000次测量。应用案例氮平衡指数效果示意图氮平衡指数(NBI: Nitrogen Balance Index)是叶绿素(CHL)和类黄酮(FLAV)的比值:当未发生氮肥胁迫时,植物生长健康,合成叶绿素较多,产生的多酚(类黄酮)较少;当发生氮肥胁迫时,植物营养不平衡,产生的多酚(类黄酮)较多,生成叶绿素较少。传统方法中只用叶绿素判断氮肥状况,当叶片叶绿素含量下降时(叶片变黄),说明植物缺失氮肥。而事实上,这种方法有一定的延迟效应,叶绿素下降是几天甚至十几天前氮肥缺失的表现,即使此时施肥,也会影响作物的最终产量。通过这项全新的指数,可获取更早更具有针对性地关于农作物的氮素信息。利用氮平衡指数来评估氮肥状况时,避免了传统方法中的延迟效应,叶绿素和多酚 (类黄酮 )稍有变化,即可检测出植物的氮肥状况,及时快速进行氮肥管理。
    留言咨询
  • Monitoring Pen 植物叶绿素荧光测量仪产品介绍: Monitoring Pen 植物叶绿素荧光测量仪可用于田间或其他恶劣环境下进行植物胁迫后的光合状态监测。Monitoring Pen内置5个荧光测量程序:Ft、QY、NPQ、OJIP、和光响应曲线。可用于光合作用研究,自然环境下的光合性能监测,植物胁迫监测,除草剂测试,温室或野外条件下植物生长监测等。 有三个版本可选Monitoring Pen MP 100-S,塑制外壳,内部电池供电,用于室内研究;Monitoring Pen MP 100-E,外接电池包及电池单独购买,防水金属外壳,可用于室内及野外监测;Monitoring Pen MP 100-A,外接电池包及电池单独购买,用于水生植物监测。产品特点: 内置5个参数测量程序:Ft、QY、NPQ、OJIP、和光响应曲线; 电池支持365天监测运行;在线数据采集(可选);FluorPen软件数据传送处理;应用领域: 长期环境监控;在变化环境中环能性能调查; 植物筛选和土地研究;技术参数:测量和计算参数F0、FT、FM、FM'、Qy Fv/Fm、OJIP、NPQ1,2、LC1,2,3,饱和脉冲0~100%可调节(最大3000µ mol(photon)/m2/s)光化光0~100%可调节(最大1000µ mol(photon)/m2/s)测量光0~0.03µ mol(photon)/m2探测波长范围PIN光电二极管带697~750nm滤光器FluorPen 2.0软件Windows 2000, XP或更高存储容量16MB内置数据记录最大10万个数据点显示2×8字符LCD显示屏按键密封,2个触屏按键自动关机无操作5分钟后自动关机电源4节AAA碱性或可充电电池(标准版)电池电量典型情况下可连续操作48小时,低电量LCD显示尺寸120 mm×57 mm×30 mm重量180克样品固定器机械式叶夹工作环境温度0~55℃,相对湿度0~95%(非冷凝)存储环境温度-10~+60℃,相对湿度0~95%(非冷凝)
    留言咨询
  • Monitoring Pen 植物叶绿素荧光测量仪名称:植物叶绿素荧光测量仪 型号:MP 100-S; MP 100-E; MP 100-A 三种版本可选 产地:捷克 Monitoring Pen 物叶绿素荧光测量仪可用于田间或其他恶劣环境下进行植物胁迫后的光合状态监测。Monitoring Pen内置5个最常用的荧光测量程序:Ft、QY、NPQ、OJIP、和光响应曲线。可用于光合作用研究,自然环境下的光合性能监测,植物胁迫监测,除草剂测试,温室或野外条件下植物生长监测等。 Monitoring Pen具备可编程自动程序运行功能,可通过电池供电长期监测,测量数据直接存储在仪器内存存储里,可通过USB或蓝牙传输到电脑,采用FluorPen软件进行表格或图形数据显示。 有三个版本可选Monitoring Pen MP 100-S,塑制外壳,内部电池供电,用于室内研究;Monitoring Pen MP 100-E,外接电池包及电池单独购买,防水金属外壳,可用于室内及野外监测;Monitoring Pen MP 100-A,外接电池包及电池单独购买,用于水生植物监测。 测量原理:利用调制荧光测量技术,内置LED光源,内设测量给光程序测量并计算叶绿素荧光响应的各种参数。 特点:内置5个参数测量程序:Ft、QY、NPQ、OJIP、和光响应曲线; 自动运行程序和存储数据;电池支持365天监测运行;坚固的设计,适合户外无人极端条件;在线数据采集(可选);FluorPen软件数据传送处理; 应用领域: 长期环境监控;光合作用研究、教学;在变化环境中环能性能调查; 恶劣条件下的无人荧光测定研究;植物筛选和土地研究;农艺、林业和生物工程学; 技术规格:测量和计算参数F0、FT、FM、FM'、QY、Fv/Fm、OJIP、NPQ1,2、LC1,2,3,饱和脉冲0~100 %可调节(较大3000μmol(photon)/m2/s)光化光0~100 %可调节(较大1000μmol(photon)/m2/s)测量光0~0.03μmol(photon)/m2探测波长范围PIN光电二极管带697~750nm滤光器FluorPen 2.0软件Windows 2000, XP或更高存储容量16MB内置数据记录10万个数据点显示2×8字符LCD显示屏按键密封,2个触屏按键自动关机无操作5分钟后自动关机电源4节AAA碱性或可充电电池(标准版)电池电量典型情况下可连续操作48小时,低电量LCD显示尺寸120 mm×57 mm×30 mm重量180克样品固定器机械式叶夹工作环境温度0~55℃,相对湿度0~95%(非冷凝)存储环境温度-10~+60℃,相对湿度0~95%(非冷凝)产地:捷克
    留言咨询
  • 多功能植物测量仪MultispeQ 多功能植物测量仪MultispeQ 集合了叶绿素荧光仪、差示吸收仪、叶绿素仪和气象站等功能于一身,小巧轻便,是一款野外便携且性价比高的多功能植物测量仪!多功能植物测量仪MultispeQ产品简介:多功能植物测量仪MultispeQ是由知名光合作用专家DavidM.Kramer教授团队研发的创新性技术。MultispeQ 通过手机APP控制,野外操作简便,能够对植物或者藻类的光合表型和生物/非生物胁迫进行原位测量,数据实时存储至PhotosynQ云平台,以便进一步查看和存储数据。若为室内试验,也可以通过桌面APP和网页APP进行操作。Kramer教授是非常知名的光合作用专家,其论文总引用次数11100+次,h指数59,i10指数135,其2004年发表在PhotosynthesisResearch上提出qL、ΦNPQ和ΦNO参数的文章已被引用900+次。(GoogleScholar数据,截止2018年10月)。 PhotosynQ平台PhotosynQ平台使用高质量、低成本的MultispeQ传感器和手机在实验室、温室以及野外试验田测量收集作物生理数据。数据上传到PhotosynQ平台,将数据与项目连接起来,您和协作者可以在其中聚合、可视化、映射和分析结果。使用工具管理1 - 1000名合作者的项目,确保数据的可比性、一致性和有效性。PhotosynQ平台数据分析做图示例: 功能特性:1.功能强大,1台MultispeQ V2=叶绿素荧光仪+差式吸收+叶绿素仪+气象站2.测量快速,一次典型测量只需15秒3.灵活、开源,创建适于自己的操作流程4.预留额外传感器接口(USB3.0)--通过桌面电脑(PC、Mac或Linux)或安卓手机连接PhotosynQ5.云平台,随时随地管理、分析和共享数据6.改良的PAR传感器,测量更广泛的光质7.5500mAh内置电池,轻松满足全天使用 测量参数:1.植物和藻类叶绿素荧光参数:Fo、 Fm、 Fs、 Fo’、 Fm’、Fv/Fm、ΦII、ΦNPQ、ΦNO、NPQt、qE,、qI、qL、qP、LEF(rETR)、RFd等2.叶绿素相对含量:SPAD3.质子动力势:VH+、GH+、ECSt等4.非接触测量参数:叶片角度、叶片朝向、叶片温度,叶片和环境的温度差5.环境参数:PAR、环境温度、气压、相对湿度、海拔技术参数:1.LED光源:448nm,530nm,590nm,655nm(2x),730nm,810nm,880nm和950nm(2x)2.检测器:400-700nm,700-1150nm3.自动存储田间位置信息和时间信息4.环境温度:±0.5℃5.非接触叶片温度:±0.1℃(30℃到40℃之间)6.相对湿度:±3%7.气压:±0.25%8.测定叶片角度(萎蔫)和朝向9.外置传感器连接器10.内置电池:5500mAh11.手机APP操控,云平台存储数据代表用户部分参考文献Takano H K, Beffa R, Preston C, et al. A novel insight into the mode of action of glufosinate: how reactive oxygen species are formed[J]. Photosynthesis Research, 2020, 144(3): 361-372.Carmody N, Go?i O, ?angowski ?, et al. Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set[J]. Frontiers in Plant Science, 2020, 11: 807.Souza-Alonso P, Lechuga-Lago Y, Guisande-Collazo A, et al. Drifting away. Seawater survival and stochastic transport of the invasive Carpobrotus edulis[J]. Science of the Total Environment, 2020, 712: 135518.Ibrahimova U, Zivcak M, Gasparovic K, et al. Electron and proton transport in wheat exposed to salt stress: is the increase of the thylakoid membrane proton conductivity responsible for decreasing the photosynthetic activity in sensitive genotypes?[J]. Photosynthesis research, 2021, 150(1): 195-211.Deva C R, Urban M O, Challinor A J, et al. Enhanced leaf cooling is a pathway to heat tolerance in common bean[J]. Frontiers in plant science, 2020, 11: 19.Colorado J D, Cera-Bornacelli N, Caldas J S, et al. Estimation of nitrogen in rice crops from UAV-captured images[J]. Remote Sensing, 2020, 12(20): 3396.Susi? N, ?ibrat U, Sinkovi? L, et al. From genome to field—observation of the multimodal nematicidal and plant growth-promoting effects of Bacillus firmus I-1582 on tomatoes using hyperspectral remote sensing[J]. Plants, 2020, 9(5): 592.Zavafer A, Labeeuw L, Mancilla C. Global trends of usage of chlorophyll fluorescence and projections for the next decade[J]. Plant Phenomics, 2020, 2020. 想了解更多内容,获取相关资料请扫码联系联系人:张经理 186 1389 8130
    留言咨询
  • 多波长颜料计原位植物多色素测量仪产品介绍:MPM-100多色素测量仪使用成熟的技术组合方式能同时测量以上不同参数。仪器标准二极管波长配置如下,也可定制测量其他参数如CCI或SPAD二极管波长。叶绿素含量:T850nm/T710nm花青素含量:F660nm/F325nm黄酮醇含量: F660nm/F525nmNFI: (T850nm/T710nm)/( F660nm/F325nm)优势:l 使用成熟的技术同时测量不同植物的色素l 使用比率荧光测量花青素含量和黄酮醇含量l 使用叶片在远红外和近红外波段的透射光谱来测量叶绿素含量l 使用测量叶绿素含量和黄酮醇含量结果测定氮-黄酮醇指数l 测量模式包含离散单次测量和平均测量(2-30个样品),软件支持平均和中值选择。l 1GB非易失性测量数据内存l USB输出:数据文件逗号分隔&Excel直接打开l 触屏彩色界面&数据显示叶绿素含量叶绿素含量对检测植物氮和硫胁迫非常灵敏,通常使用测量叶绿素含量来管理氮施肥。叶绿素含量也用于衡量很多植物其他类型的胁迫,当测验植物的测量值为正常施肥植物的90%时,需要施氮肥。这个系统的测量波段不同于大多数叶绿素测量仪,同时能测量氮平衡指数。叶绿素含量 : T850nm/T710nm黄酮醇含量黄酮醇在植物中呈现黄色。 有证据表明,它们有助于在紫外线光谱中对植物进行光保护,并清除活性氧,从而保护植物的光合作用。黄酮醇能很好的指示植物氮状况,同时呈现的黄色能吸引传粉昆虫。黄酮醇含量 : 荧光比值F660/F325花青素含量依据植物中pH不同可显现为红色,蓝色,紫色或者无色。研究表明花青素在极duan植物温度保护起重要作用,吸引传粉昆虫和促进动物对种子分布。花青素含量 : 荧光比值F660/F525NFI(氮-黄酮醇指数)叶绿素和黄酮醇是植物氮状态的很好指示剂,在最you条件下植物生产叶绿素和少量黄酮醇,在氮不足时植物生产更多的黄酮醇或者碳基化合物,NFI对叶龄和叶厚的敏感性低于标准叶绿体。氮-黄酮醇指数:叶绿素与黄酮醇测量比值 (T850nm/T710nm)/( F660nm/F325nm)比率荧光方法有很多优势,可用于测量很小样品以及不透明的样品,花青素和黄酮醇测量方法都是比率荧光法。叶绿素含量测量使用叶片吸收两种波长的光,所以不适用测量不透明或者宽度小于6mm样品。测量浆果盖MPM-100测量葡萄相对成熟度,用刀片把薄皮的浆果盖取下,可以用仪器测量葡萄相对成熟度。技术参数:l 测量参数: 相对叶绿素含量值,相对黄酮醇含量值,相对花青素含量和氮-黄酮素指数。l 重复性: ± 1%l 噪声: ±2%l 光源:l 叶绿素含量-医疗级LED光720nm&近红外LED 850nml 黄酮醇含量-LED 325nm&660nml 花青素含量-LED 525nm&660nml 检测器: 固态高灵敏度检测器,支持带限过滤设置l 检测: 调制光信号控制减少背景干扰,光源和检测器温度补偿。l 内存: 1GB非易失性测量数据内存l 测量模式: 测量模式包含离散单次测量和平均测量(2-30个样品),软件支持平均和中值选择。l 仪器界面: 240×320彩色触屏l 输出: USB 1.1l 工作温度: 0-50℃l 电源: 2个AA可充电电池,配备充电器l 自动关机间隔: 0-20minl 大小: 12cm×9cm×3cml 重量: 275gl 测量时间: 5sl GPS: 定位准确度可高达0.3m,可记录经度,纬度,卫星数量和DOPl 设备配置: MPM-100 GPS测量仪,样品夹,电池充电器,4个AA NiMH可充电电池,USB线,便携箱,说明书和校准板。
    留言咨询
  • MPM-100 GPS多色素测量仪测量:l 叶绿素含量l 花青素含量l 黄酮醇含量&l NFI(氮-黄酮醇指数)MPM-100多色素测量仪使用成熟的技术组合方式能同时测量以上不同参数。仪器标准二极管波长配置如下,也可定制测量其他参数如CCI或SPAD二极管波长。叶绿素含量:T850nm/T710nm花青素含量:F660nm/F325nm黄酮醇含量: F660nm/F525nmNFI: (T850nm/T710nm)/( F660nm/F325nm)优势:l 使用成熟的技术同时测量不同植物的色素l 使用比率荧光测量花青素含量和黄酮醇含量l 使用叶片在远红外和近红外波段的透射光谱来测量叶绿素含量l 使用测量叶绿素含量和黄酮醇含量结果测定氮-黄酮醇指数l 测量模式包含离散单次测量和平均测量(2-30个样品),软件支持平均和中值选择。l 1GB非易失性测量数据内存l USB输出:数据文件逗号分隔&Excel直接打开l 触屏彩色界面&数据显示叶绿素含量叶绿素含量对检测植物氮和硫胁迫非常灵敏,通常使用测量叶绿素含量来管理氮施肥。叶绿素含量也用于衡量很多植物其他类型的胁迫,当测验植物的测量值为正常施肥植物的90%时,需要施氮肥。这个系统的测量波段不同于大多数叶绿素测量仪,同时能测量氮平衡指数。叶绿素含量 : T850nm/T710nm黄酮醇含量黄酮醇在植物中呈现黄色。 有证据表明,它们有助于在紫外线光谱中对植物进行光保护,并清除活性氧,从而保护植物的光合作用。黄酮醇能很好的指示植物氮状况,同时呈现的黄色能吸引传粉昆虫。黄酮醇含量 : 荧光比值F660/F325花青素含量依据植物中pH不同可显现为红色,蓝色,紫色或者无色。研究表明花青素在极端植物温度保护起重要作用,吸引传粉昆虫和促进动物对种子分布。花青素含量 : 荧光比值F660/F525NFI(氮-黄酮醇指数)叶绿素和黄酮醇是植物氮状态的很好指示剂,在最优条件下植物生产叶绿素和少量黄酮醇,在氮不足时植物生产更多的黄酮醇或者碳基化合物,NFI对叶龄和叶厚的敏感性低于标准叶绿体。氮-黄酮醇指数:叶绿素与黄酮醇测量比值 (T850nm/T710nm)/( F660nm/F325nm)比率荧光方法有很多优势,可用于测量很小样品以及不透明的样品,花青素和黄酮醇测量方法都是比率荧光法。叶绿素含量测量使用叶片吸收两种波长的光,所以不适用测量不透明或者宽度小于6mm样品。测量浆果盖MPM-100测量葡萄相对成熟度,用刀片把薄皮的浆果盖取下,可以用仪器测量葡萄相对成熟度。技术参数: l 测量参数: 相对叶绿素含量值,相对黄酮醇含量值,相对花青素含量和氮-黄酮素指数。l 测量面积: 6mm直径的圆l 重复性: ± 1%l 噪声: ±2%l 光源:l 叶绿素含量-医疗级LED光720nm&近红外LED 850nml 黄酮醇含量-LED 325nm&660nml 花青素含量-LED 525nm&660nml 检测器: 固态高灵敏度检测器,支持带限过滤设置l 检测: 调制光信号控制减少背景干扰,光源和检测器温度补偿。l 内存: 1GB非易失性测量数据内存l 测量模式: 测量模式包含离散单次测量和平均测量(2-30个样品),软件支持平均和中值选择。l 仪器界面: 240×320彩色触屏l 输出: USB 1.1l 工作温度: 0-50℃l 电源: 2个AA可充电电池,配备充电器l 自动关机间隔: 0-20minl 大小: 12cm×9cm×3cml 重量: 275gl 测量时间: 5sl GPS: 定位准确度可高达0.3m,可记录经度,纬度,卫星数量和DOPl 设备配置: MPM-100 GPS测量仪,样品夹,电池充电器,4个AA NiMH可充电电池,USB线,便携箱,说明书和校准板。
    留言咨询
  • 6095原位茎杆水势测量仪用途:该测量仪是为提高农业灌溉和自然资源利用效率而设计地,许多农作物产区需要灌溉水才能有利于农作物生长。然而土壤的灌溉是基于气候条件、参考蒸散和农作物系数等条件优化地,考虑到农业系统中天气和土壤的时间与空间变异性和不确定性。因此在不直接测量树木的情况下得出植物水势,又能为灌溉决策者提供准确数据,使用直接测量树木水分状况的原位茎杆水势测量仪是朝着准确灌溉迈出的重要一步。了解植物茎杆水势变化,以避免不理想的水分胁迫。这会提高农作物果实质量和产量,也不会浪费有限的资源和土壤养分,同时降低成本。 原位茎杆水势测量仪是通过测量植物内部的水张力来直接测量树木水分状况的指标。传统上,它被用作与其他水势状况指标进行比较的参考。由于测量是直接在载水组织内部进行的,因此读数准确可靠。这种微张力计的测量范围高达100bar,通过使用纳米多孔硅片实现测量。硅片的膜孔直径约为2nm,数据非常精准可靠。数据可以通过网络进行数据传输,实时更新数据图表变化,为植物水势和农田灌溉提供科学的数据建议。特点:全天实时数据,可以看到白天水势的微小波动;作物对灌溉、阴天或温度变化的反应;水势在夜间的表现,在冬季植物休眠期间的水势变化等。远程通信,可以手机或者电脑端连接随时观测数据。小巧便捷和实用简单安全压力膜孔2nm测量准确采用旋钮连接方式,方便更换电缆长期原位进行水势测量,数据一致性良好。第三方研究人员已经在杏仁、葡萄和其他作物中验证了其测量结果的一致性技术参数:测量原理压力法水势测量范围0到-35Bar(可达100Bar)分辨率0.1Bar准确性读数的±5%孔膜直径2nm通信协议SDI-12、电压模拟量数据储存SDI12数据采集器通讯兼容远程通信包括探头、4G数据记录器、蜂窝数据和可视化平台。线缆长度10m防尘防水是压力室微型气压室微伏信号支持阻尼值影响无可选型号1. SDI12探头2.电压模拟量探头3.探头、数据采集器、软件响应时间1min;5cm^2
    留言咨询
  • 用途:N-Pen N110植物氮含量测量仪用于植物生长过程中叶片氮含量的测量。该仪器根据植物叶片反射光线的特性测量氮含量,而叶片反射光线的特性由叶绿素含量决定,叶绿素含量与叶氮含量精密相关,经过校正拟合,即可直接用于氮素含量的测量。N-Pen可在野外、实验室使用,对测量对象没有任何损伤。 测量的数据保持在仪器内部,通过蓝牙或USB线可传输至计算机中,使用专业FluorPen 软件进行可视化分析。特点:无损测量,快速便捷,操作简便,可在生长季对同一样本做无数次测量;快速获得植物叶氮含量,指导合理高效施用氮肥,在降低成本,减少环境污染方面具有重要意义;对特定作物进行校正后直接获得氮含量数据,用户也可根据自己需要,对某物种做校正;操作简便,只需把叶片夹在叶夹里读数即可,可逐个保存数据,也可以计算平均值;采样须在同一物种不同植株上进行,选取从顶端向下第2或第3片叶片,每片叶都检测靠近中间的位置; 应用领域:提高作物的产量;快速调整对植物氮管理;提高氮的使用效率;减少缺少氮的风险;节约劳动力的成本;减少过多施肥对环境造成的污染;农艺学研究;样品测量:测量的时候将测量样品放在叶夹和光学探头之间夹住即可;N-Pen对测量数据进行存储,并可自动计算平均值;测量的时候应该取同一物类的不同植物;测量的时候应该取每个植物顶端向下的第2或第3片叶;测量的时候应该取每个植物上大约同一位置进行测量(接近中间位置);测量结果:氮读数是针对特殊植物进行了校准(大麦、小麦和玉米),用户可根据需要,对某物种校准;不同品种会影响N-Pen的读数;操作简便,只需要把叶片夹在叶夹里读数,N-Pen可逐个保存数据,也可计算平均值;植物疾病,营养缺失和其他情况的植物胁迫同样也会影响N-Pen的读数;氮含量与归一化绿度指数相关:NDGI= (R780 – R560)/(R780 + R560);氮含量,百分比方式。技术参数:测量参数氮含量(标准测量对象:玉米、大麦和小麦)测量光双波段光源565 nm和760 nm探测波长范围500~800nm带通滤波片存储容量最大16MB数据存储容量最大10万个数据点显示2×8字符LCD显示屏按键密封2键自动关机无操作3分钟后自动关机电源可充电锂电池电池寿命典型情况下可连续操作48个小时低电量LCD显示尺寸135 mm×65 mm×33 mm重量188g工作环境温度0~+55℃,相对湿度0~95%(非冷凝)存储环境温度-10~+60℃,相对湿度0~95%(非冷凝)
    留言咨询
  • PRI 200 植物PRI测量仪 400-860-5168转4470
    用途:PRI 200植物PRI测量仪是一款设计精巧、可快速测量植物反射率的便携式仪器,可根据反射系数确定植物特征。通过各种反射系数可以评定叶绿素含量,和其他重要特征。PRI(光化学反射系数)是通过计算植物叶片对531 nm和570 nm两种波长光发射情况计算得到的值,反应植物光合作用过程中光能利用效率,可作为植物水分胁迫的参考指数。PRI与叶黄素循环有关的环氧化状态关系密切,对类胡萝卜素含量的变化敏感,而类胡萝卜素又是反应光合效率、CO2摄入率或者水胁迫的指标,因此PRI可应用于植物生产了和胁迫的研究。测量数据存储于仪器内部,可选择蓝牙(PRI 200-B)或USB数据线(PRI 200-U)与计算机连接,使用专业FluorPen软件进行数据传输和可视化分析;可选配GPS模块。特点:设计紧凑、坚固的PRI非常适用于野外环境、植物温室等;独特的手持叶夹,双键操作,LED显示屏设计,使用方便;非侵入式无损测量;4节AAA电池供电,方便耐用;USB或蓝牙传输数据,专业软件进行可视化分析;应用领域:光合作用教学与研究;植物分子生物学;植物的筛选和实地研究;逆境生理;农学与林业;技术参数:测量参数PRI(光化学反射系数)PRI=(R531-R570)/(R531+R570)测量光内置双波段光源 R531 = 531 nm(带宽520-540nm), R570 = 570 nm(带宽570-590nm)探测波长范围PIN光电二极管带500~600 nm波段滤光器测量光可调节闪光持续时间探测波长范围PIN光电二极管带697~750nm滤光器FluorPen 1.0软件Windows 2000, XP或更高存储容量最大16MB数据存储容量最大10万个数据点显示2×8字符LCD显示屏按键密封2键自动关机无操作3分钟后自动关机电源4节AAA碱性或可充电电池电池电量典型情况下可连续操作48个小时,低电量LCD显示尺寸170mm×57 mm×30 mm重量180克样品固定器机械式叶夹工作环境温度0~+55℃,相对湿度0~95%(非冷凝)存储环境温度-10~+60℃,相对湿度0~95%(非冷凝)保修1年专业软件与实验数据分析: 案例分析:案例一:不同N元素水平下水稻叶绿素含量、光化学反射系数和荧光参数的测量 图1:PRI随着N供应的增加而升高。 图2:PRI与SPAD有显著的正相关性。光适应的PRI比暗适应的低,并且随着N供应的增加差别增大。图3:NPQ,NPQs,NPQf与SPAD和光适应和暗适应的PRI的关系NPQ和NPQf与SPAD、PRI在20DAO时呈负相关关系。低N供应增加PSII光化学和非光化学淬灭的激发能力,PSII产生光抑制和最大量子产量(Fv/Fm)的下降。案例二:干燥控制条件下,两种石耳(Umbilicaria)的光合效率与光化学反射系数的差别两种石耳,(U. cylindrica,左图)和(U. decussata,右图)PSII有效量子产量与两种石耳水势变化(WP=0(湿的)到WP= -25(干的))之间的拟合曲线 两种石耳的PRI与水势(WP)变化的拟合曲线两种石耳的有效量子产量和PRI的关系结果表明:PRI和WP之间有明显的线性相关,PRI随着WP的降低而曲线增加,两种物种间的关系曲线类似。PRI和有效量子产量之间同样有线性相关趋势,在完全水化及失水初始阶段,有效量子产量从0.7降至0.6,PRI快速增加,从-0.18增加到-0.06,这在U. cylindrica中非常明显,而U. decussata增加很小。石耳属(Umbilicaria)物种及其光合能力对水分胁迫有很强的耐受性,即使在完全失水状态下。两种石耳光合能力对水势的临界值在-25MPa,因此,推测U. cylindrica和U. decussata可以在极端缺水的生态环境中生长繁殖。近期发表文献:CALDERÓ N R., LUCENA C., TRAPERO-CASAS J. L. ET. AL. (2014): Soil temperature determines the reaction of olive cultivars to Verticillium dahliae pathotypes. PLoS One. Volume 9. DOI:10.1371/journal.pone.0110664CALDERÓ N, R., ZARCO-TEJADA, P.J., LUCENA, C. ET AL. (2013):High-resolution airborne hyperspectral and thermal imagery for pre-visual detection of Verticillium wilt using fluorescence, temperature and narrow-band indices, Remote Sensing of Environment. Volume 139 Pages, 231-245. DOI:10.1016/j.rse.2013.07.031ZARCO-TEJADA P.J., GUILLEN-CLIMENT M.L., HERNANDEZ-CLEMENTE R. ET AL. (2013): Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle. Agricultural and Forest Meteorology 171-172. Pages. 281-294. DOI:10.1016/j.agrformet.2012.12.013JUPA R., HÁ JEK J., HAZDROVÁ J. ET AL. (2012): Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. Czech Polar Reports, Brno, Volume 2, Pages 31-41. DOI: 10.5817/CPR2012-1-4KOVÁ R, M., VEVERKOVÁ , E. AND &Ccaron ERNÝ , I. (2012): Utilization of Enfrared Thermography and Leaf Reflectance Indices in Evaluation of Effects of the Treatment of Sunflower (Helianthus annuus L.) by Biologically Active Compounds. Acta fytotechnica et zootechnica. Volume 15, Pages 23-28SHRESTHA S., BRUECK H. AND ASCH F. (2012): Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. Journal of Photochemistry and Photobiology B: Biology. Volume 113, Pages 7–13. DOI:10.1016/j.jphotobiol.2012.04.008ZARCO-TEJADA P.J., GONZALES-DUGO V. AND BERNI J.A.J. (2012):Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment. Volume, 117. Pages 322-337. DOI:10.1016/j.rse.2011.10.007.
    留言咨询
  • PhenoGA植物表型分析测量仪系统Instrument for Measuring plant phenotype — Model PhenoGA一、用途基因型、表型和环境是遗传学研究的铁三角。表型(性状)是基因型和环境共同作用结果,而基因型与表型之间有着多重关系。研究者用测序和基因组重测序来评估等位基因差异定位数量性状等已变得很普遍,但其需大量性状数据来佐证。然而这类分析测量的结果受人员、工具和环境等的干扰很大,还会损伤到植物。高效、准确的万深PhenoGA植物表型分析测量仪实现了可视化的精确数据分析和表型测试,如测试对压力和环境因素的表型反应、生态毒理学测试或萌发测定、遗传育种研究、突变株筛选、植物形态建模、生长研究等。二、主要性能指标1、成像(1)双彩色相机:由顶视和侧视的超大变焦镜头自动对焦2400万像素以上的佳能EOS单反相机直连电脑获取植物顶视和侧视的RGB彩色图。(2)红外光双目3D相机:由顶部的主动红外光的双目3D相机(点云密度1024*1024像素)来获取植物冠层的3D景深伪彩色图和可转换视角的3D重建伪彩色图。(3)拍摄箱:外尺寸200cm高*120cm长*120cm宽,可成像分析植株高可达150cm、可测最大叶冠幅115cm*115cm。2、分析软件(1)常规分析:投影叶面积及其动态变化,外周长,外接圆直径及面积,拟合椭圆主副轴及偏角,凸包内径、面积及周长,植株高、宽,最小外接矩形长、宽,植株紧实度。(2)颜色分析:RGB、LAB颜色值,具有叶片颜色自动矫正特性,可按英国皇家园林协会RHS比色卡2015版来自动比色。可按指定颜色数进行聚类分割,并统计颜色分布及面积占比。(3)骨架分析:骨架长度,端点数(叶片数),分叉数(分枝数、分节数),茎叶夹角等。(4)玉米株形分析:叶片数,叶片长、宽,叶片弯曲度,叶片投影面积,茎秆分节数,分节长、粗,叶片颜色等,并可编辑。(5)生长分析:植株绝对生长、相对生长曲线,相对生长趋势。(6)根系分析:根长,根粗,根尖数等(要求根粗1mm)。(7)考种分析:种粒数,种粒面积,种粒长、宽(种粒直径2mm,不粘连),分析种子形态、果实外观品质、花形和花色。(8)其它:不同生长时期自动批量化处理分析,多植株网格分析,直线、角度等几何测量,各测量结果可编辑修正。3、数据报表(1)可接入条码枪来自动刷入样品编号,具有按条码标识跟踪分析的特性。(2)各项分析数据和标记图片可导出。三、标准配置1、万深PhenoGA植物表型分析测量仪软件U盘及软件锁1套2、超大变焦镜头自动对焦2400万像素以上的佳能EOS单反相机2套3、主动红外光的双目3D相机(深度相机+RGB相机)及适配器1套4、单反相机拍摄支架1套5、含光源的拍摄箱(200cm高*120cm长*120cm宽)1套6、叶色色彩矫正板+尺寸自动标定板及其座板 1套7、可承重25kg盆栽植株的升降台1付8、可承重25kg电动转台1套9、手持式条形码阅读器1付10、超薄背光灯板1付11、掌式便携小背光板1付12、品牌电脑(13代酷睿i5 CPU / 16G内存/ 512G硬盘以上 / 23”彩显/无线网卡,2个USB3.0和3个USB2.0口,运行环境Windows 10或11完整专业版)1台四、可选配硬件1、LA-S手机版叶面积分析软件,可用于野外的方便成像与分析叶面积。2、RootGA根系动态生长监测分析仪,以分析植株根系的胁迫响应等。
    留言咨询
  • PolyPen RP 410手持式植物光谱测量仪通过内部光源(氙气白炽灯380-1050nm)测定植物叶片的反射光谱,也可以测定其他光源的透光度和吸光率。PolyPen在软件中内置了几乎所有常用的植物反射光谱指数公式,例如NDVI,PRI,NDGI等。测得的数据以图形或数据表的形式实时显示在仪器的显示屏上。这些数据都可以储存在仪器的内存里并传输到电脑里。PolyPen RP 410由可充电锂电池供电,不需要使用电脑即可独立进行测量。仪器配备全彩色触屏显示器、内置光源、内置GPS和用于固定样品的无损叶夹。叶夹具备进行光源和检测器校准的标准参照物。应用领域:? 植物反射光谱测量? 植物胁迫响应? 色素组成变化? 氮素含量变化? 产量估测 技术特点:? 目前最便携的测量植物叶片反射光谱的高光谱测量仪。? 自动计算常用的植物反射光谱指数,也可计算用户定制的指数,同时提供高精度反射光谱图。? 非破坏性原位测量。? 手持式仪器,电池供电,无需外部电脑,便于野外测量。? 内置GPS,USB/蓝牙双通讯模式技术参数:? 光谱检测范围:PolyPen RP 410 UVIS光谱响应范围为380-790nmPolyPen RP 410 NIR光谱响应范围为640-1050nm? 内置植被指数:PolyPen RP 410 UVIS:NDVI、SR、绿度指数、MCARI、TCARI、TVI、ZMI、SRPI、NPQI、PRI、NPCI、Carter指数、SIPI、GM1。PolyPen RP 410 NIR:NDVI、SR、MCARI1、OSAVI、MCARI、TCARI、ZMI、Ctr2、GM2? 光源:氙气白炽灯380-1050nm? 光谱响应半宽度:8nm? 光谱杂散光:-30dB? 光学孔径:7mm? 扫描速度:约100ms? 触控屏:240×320像素,65535色? 内存:32MB(可存储8000组以上测量数据)? 系统数据:16位数模转换? 动态范围:高增益 1:4300;低增益 1:13000? GPS:内置? 通讯方式:USB/蓝牙双通讯模式? 软件功能:自动计算内置植被指数、计算用户自定义植被指数、实时显示数据图和数据表、数据导出为Excel、GPS地图、固件升级,Windows XP及以上系统适用? 光谱反射标准配件(选配):提供最高的漫反射值(99%)。光谱平面涵盖UV-VIS-NIR光谱,保证+/-1%的光学平面。用于光源和检测器的校准。? 尺寸:15×7.5×4cm? 重量:300g? 外壳:防水溅外壳? 电池:锂电池,通过USB接口充电? 续航时间:可连续测量48小时? 工作温度:0~50℃? 存放温度:-20~70℃ 软件界面应用案例扁桃树红色叶斑病造成叶片反射光谱及相应植被指数变化(M López-López, et al. 2016)参考文献1. A Niglas, et al. 2017. Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula). Tree Physiology 37(9): 1218-12282. M Ashrafuzzaman, et al. 2017. Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). Environmental Pollution 230: 339-3503. M López-López, et al. 2016. Early Detection and Quantification of Almond Red Leaf Blotch Using High-Resolution Hyperspectral and Thermal Imagery. Remote Sens. 8(4): 2764. PJ Zarco-Tejada, et al. 2016. Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sensing of Environment 179: 89-1035. VV Ptushenko, et al. 2015. Possible reasons of a decline in growth of Chinese cabbage under a combined narrowband red and blue light in comparison with illumination by high-pressure sodium lamp. Scientia Horticulturae 194: 267-2776. VV Ptushenko, et al. 2014. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants. Biochemistry (Moscow) 79: 260-272内置计算公式的植物光谱指数:? 归一化差值植被指数Normalized Difference Vegetation Index (NDVI)参考文献:Rouse et al. (1974)公式:NDVI = (RNIR - RRED ) / (RNIR + RRED )? 简单比值植被指数Simple Ratio Index (SR)参考文献:Jordan (1969) Rouse et al. (1974)公式:SR = RNIR / RRED? 改进的叶绿素吸收反射指数1 Modified Chlorophyll Absorption in Reflectance Index 1 (MCARI1)参考文献:Haboudane et al. (2004)公式:MCARI1 = 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)]? 最优化土壤调整植被指数Optimized Soil-Adjusted Vegetation Index (OSAVI)参考文献:Rondeaux et al. (1996)公式:OSAVI = (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16)? 绿度指数Greenness Index (G) 公式:G = R554 / R677? 改进的叶绿素吸收反射指数Modified Chlorophyll Absorption in Reflectance Index (MCARI)参考文献:Daughtry et al. (2000)公式:MCARI = [(R700- R670) - 0.2 * (R700- R550)] * (R700/ R670)? 转换类胡萝卜素指数Transformed CAR Index (TCARI)参考文献:Haboudane et al. (2002)公式:TSARI = 3 * [(R700- R670) - 0.2 * (R700- R550) * (R700/ R670)]? 三角植被指数Triangular Vegetation Index (TVI)参考文献:Broge and Leblanc (2000)公式:TVI = 0.5 * [120 * (R750- R550) - 200 * (R670- R550)]? Zarco-Tejada & Miller 指数Zarco-Tejada & Miller Index (ZMI)参考文献:Zarco-Tejada et al. (2001)公式:ZMI = R750 / R710? 简单比值色素指数Simple Ratio Pigment Index (SRPI)参考文献:Pe?uelas et al. (1995)公式:SRPI = R430 / R680? 归一化脱镁作用指数Normalized Phaeophytinization Index (NPQI)参考文献:Barnes et al. (1992)公式:NPQI = (R415- R435) / (R415+ R435)? 光化学植被反射指数Photochemical Reflectance Index (PRI)参考文献:Gamon et al. (1992)公式:PRI = (R531- R570) / (R531+ R570)? 归一化色素叶绿素指数Normalized Pigment Chlorophyll Index (NPCI)参考文献:Pe?uelas et al. (1994)公式:NPCI = (R680- R430) / (R680+ R430)? Carter指数Carter Indices参考文献:Carter (1994), Carter et al. (1996)公式:Ctr1 = R695 / R420 Ctr2 = R695 / R760? 结构加强色素指数Structure Intensive Pigment Index (SIPI)参考文献:Pe?uelas et al. (1995)公式:SIPI = (R790- R450) / (R790+ R650)? Gitelson and Merzlyak 指数 Gitelson and Merzlyak Indices参考文献:Gitelson & Merzlyak (1997)公式:GM1 = R750/ R550 GM2 = R750/ R700 产地:欧洲
    留言咨询
  • 植物直径生长测量仪 400-860-5168转1432
    仪器简介:在与植物有关的研究工作中,一个很重要的任务就是了解植物生长、产量和环境因素的关系。为此我们一方面需要有关环境因素的数据(气象,水分,营养等等),另一方面我们也需要有关植物生理生长方面的数据。 目前,由于测量技术方面的困难,有关植物方面的数据都是不连续的,如年轮宽度,产量,生物量等,这些指标一般都是多种环境因素在一个生长季里累计作用的结果。究竟哪个环境因素,什么时间对这些植物指标起决定性的作用,一般很难客观确定。譬如,某一年的年轮宽度小于往年,你很难说清其成因,是由于春节霜冻,夏季干旱,还是由于秋季低温,等等。生长测量仪正是为解决这个问题而开发生产的。生长测量仪连续测定生长率,即时反应环境因素变化及人为措施给生长带来得影响。在实际使用中,完全可以将生长和气象因素同步观测,这样不但可以准确认定影响生长的关键因素,而且也给数据处理带来极大方便。 工作原理: Dendrometer是一种电子设备,带张力传感器,可监测环境因子对植物水分平衡的影响及茎杆、果实直径的生长。该系统具温度补偿功能。将Dendrometer固定在测量部位,数据可以直读,也可用Datalogger自动记录。Ecomatik公司的Dendrometer是在多项专利的基础上开发出来高质量的测量仪器。其优点在于精确度高,性能可靠,质优价廉。 应用: 不同经营方式(干旱/灌溉程度,施肥方式,耕作方式,间伐方式)与植物生长的关系。 同一植物在不同条件下(土壤,降雨量,海拔,气候)的生长情况。 长期监测树木的生长情况。 气候变化对物候的影响,准确测定生长季的始末。 用DV型测定树干的生长趋势。研究树干在机械力(风力,压力)作用下的变化,在竞争中的趋光性。 连续测量植物体内的含水量。 测定植物体水分饱和的时间。 连续测量植物体内的水势(Xylem waterpotential)。 灌溉控制。根据生长速度确定灌溉时间和灌溉量 研究冬天树干破裂的原因。寻找冬天树干破裂的原因关键是准确确定树干破裂的时间和发生的过程。这两个数据都可用生长仪准确测定。 准确确定霜冻发生的时间。通过测量空气温度一般无法确定霜冻发生的时间,因为不同植物的冰点不一样。但所有植物在遭受霜冻时,其直径都发生剧烈变化。因此通过监测直径变化,可以准确确定霜冻发生的时间。 研究热带植物的生长规律。因热带季节不分明,树木没有年轮,植物生长节奏很难观测。 产地:德国Ecomatik公司技术参数:性能指标: 数据采集器: 型号:U型数据采集器 通道:4个模拟通道 (可同时连接4个生长测量仪) 分辨率:12bit 内存:32K,可存21600个数据 机箱:密封防水箱 接口:RS232 电源供应:碱性电池,保证两年以上供电 传感器 测量范围:11mm,通过重调测量范围可一直扩大 准确性:7&mu m 分辨率:7&mu m 线性:± 0.5% 温度系数:0.04%/℃ 应用环境:温度:-30℃~40℃;湿度:0~100% 重量:13g (不含电缆) 电缆长度:标准电缆长2m,可延长至100m 传感器型号:DD型直径生长测量仪 应用范围: 水果蔬菜树干及其他球状植物器官的直径树枝 直径: 0~11cm (11 cm可特制) 是否损伤:植物对植物没有损伤 温度系数:极小 尺寸/重量:27× 24× 1.5 cm主要特点:特点: 高度精确 自身重量极小(13克),几乎不压迫植物 耗能小,如和专用数采一起,用一个小电池可以连续测量两年以上 适用各种户外条件 直接微米输出,无需标定 已有十年以上的实地使用经验 几乎无需保护维修措施
    留言咨询
  • 植物半径生长测量仪 400-860-5168转1432
    仪器简介:在与植物有关的研究工作中,一个很重要的任务就是了解植物生长、产量和环境因素的关系。为此我们一方面需要有关环境因素的数据(气象,水分,营养等等),另一方面我们也需要有关植物生理生长方面的数据。 目前,由于测量技术方面的困难,有关植物方面的数据都是不连续的,如年轮宽度,产量,生物量等,这些指标一般都是多种环境因素在一个生长季里累计作用的结果。究竟哪个环境因素,什么时间对这些植物指标起决定性的作用,一般很难客观确定。譬如,某一年的年轮宽度小于往年,你很难说清其成因,是由于春节霜冻,夏季干旱,还是由于秋季低温,等等。生长测量仪正是为解决这个问题而开发生产的。生长测量仪连续测定生长率,即时反应环境因素变化及人为措施给生长带来得影响。在实际使用中,完全可以将生长和气象因素同步观测,这样不但可以准确认定影响生长的关键因素,而且也给数据处理带来极大方便。 工作原理: Dendrometer是一种电子设备,带张力传感器,可监测环境因子对植物水分平衡的影响及茎杆、果实直径的生长。该系统具温度补偿功能。将Dendrometer固定在测量部位,数据可以直读,也可用Datalogger自动记录。Ecomatik公司的Dendrometer是在多项专利的基础上开发出来高质量的测量仪器。其优点在于精确度高,性能可靠,质优价廉。应用: 不同经营方式(干旱/灌溉程度,施肥方式,耕作方式,间伐方式)与植物生长的关系。 同一植物在不同条件下(土壤,降雨量,海拔,气候)的生长情况。 长期监测树木的生长情况。 气候变化对物候的影响,准确测定生长季的始末。 用DV型测定树干的生长趋势。研究树干在机械力(风力,压力)作用下的变化,在竞争中的趋光性。 连续测量植物体内的含水量。 测定植物体水分饱和的时间。 连续测量植物体内的水势(Xylem waterpotential)。 灌溉控制。根据生长速度确定灌溉时间和灌溉量 研究冬天树干破裂的原因。寻找冬天树干破裂的原因关键是准确确定树干破裂的时间和发生的过程。这两个数据都可用生长仪准确测定。 准确确定霜冻发生的时间。通过测量空气温度一般无法确定霜冻发生的时间,因为不同植物的冰点不一样。但所有植物在遭受霜冻时,其直径都发生剧烈变化。因此通过监测直径变化,可以准确确定霜冻发生的时间。 研究热带植物的生长规律。因热带季节不分明,树木没有年轮,植物生长节奏很难观测。 产地:德国Ecomatik公司技术参数:性能指标: 数据采集器: 型号:U型数据采集器 通道:4个模拟通道 (可同时连接4个生长测量仪) 分辨率:12bit 内存:32K,可存21600个数据 机箱:密封防水箱 接口:RS232 电源供应:碱性电池,保证两年以上供电 传感器 测量范围:11mm,通过重调测量范围可一直扩大 准确性:7&mu m 分辨率:7&mu m 线性:± 0.5% 温度系数:0.04%/℃ 应用环境:温度:-30℃~40℃;湿度:0~100% 重量:13g (不含电缆) 电缆长度:标准电缆长2m,可延长至100m 传感器型号 型号 DR型半径生长测量仪 应用范围 树枝,树干的半径 可测量植物的尺寸 直径8cm 是否损伤植物 树干上要钻两个直径4mm的小孔 温度系数 极小 材质 不锈钢,铝合金 尺寸/重量 14× 15× 1.5 cm,60g主要特点:特点: 高度精确 自身重量极小(13克),几乎不压迫植物 耗能小,如和专用数采一起,用一个小电池可以连续测量两年以上 适用各种户外条件 直接微米输出,无需标定 已有十年以上的实地使用经验 几乎无需保护维修措施
    留言咨询
  • MonitoringPenMP100植物叶绿素荧光测量仪一、产品简介 MP 100叶绿素荧光自动监测仪是一款轻便、耐用、小巧的叶绿素荧光仪。它配备了坚固防水的外壳,可在野外恶劣环境下进行长期无人值守的叶绿素荧光监测,既可以电池供电也能使用太阳能板供电。 多个MP 100监测单元还可以连接到中央控制单元进行同步控制,数据可通过数据采集器和移动调制解调器进行在线传输。 MP 100植物叶绿素荧光测量仪可用于田间或其他恶劣环境下进行植物胁迫后的光合状态监测。内置5个常用的荧光测量程序:Ft、QY、NPQ、OJIP、和光响应曲线。 MP 100叶绿素荧光自动监测仪具备可编程自动运行功能,可以通过电池供电进行长期自主独立工作。测量数据存储到自带的内存中,可通过电脑导出数据和曲线图。 二、测量程序与功能 &bull Ft:瞬时叶绿素荧光,暗适应完成后Ft=F0 &bull QY:量子产额,表示光系统II 的效率,等于Fv/Fm(暗适应状态)或ΦPSII (光适应状态) &bull OJIP:快速荧光动力学曲线,用于研究植物暗适应后的快速荧光动态变化 &bull NPQ:荧光淬灭动力学曲线,用于研究植物从暗适应到光适应状态的荧光淬灭变化过程 &bull LC:光响应曲线,用于研究植物对不同光强的荧光淬灭反应 &bull PAR:光合有效辐射,测量环境中植物生长可以利用的400-700nm实际光强(限PAR型号)三、产品型号 MP 100-E增强版:用于野外叶绿素荧光监测,配备防水金属外壳、测量探头、外置电池盒及FluorPen软件等 MP 100-A水下版:用于水下藻类叶绿素荧光监测,配备水下外壳、测量探头、外置电池盒及FluorPen软件等四、产品参数测量和计算参数F0、FT、FM、FM'、Qy Fv/Fm、OJIP、NPQ1,2、LC1,2,3,饱和脉冲0~100%可调节(Max:3000µ mol(photon)/m2/s)光化光0~100%可调节(Max:1000µ mol(photon)/m2/s)测量光0~0.03µ mol(photon)/m2探测波长范围PIN光电二极管带697~750nm滤光器FluorPen 2.0软件Windows 2000, XP或更高存储容量16MB内置数据记录10万个数据点(Max)显示2×8字符LCD显示屏按键密封,2个触屏按键自动关机无操作5分钟后自动关机电源4节AAA碱性或可充电电池(标准版)电池电量典型情况下可连续操作48小时,低电量LCD显示尺寸120 mm×57 mm×30 mm重量180克样品固定器机械式叶夹工作环境温度0~55℃,相对湿度0~95%(非冷凝)存储环境温度-10~+60℃,相对湿度0~95%(非冷凝)五、产地:捷克
    留言咨询
  • Agro作物水分胁迫指数成像仪是第一款可用于精确农业领域绘制大面积水分胁迫制图的设备。该方法和装置的目的是确定植物林分水分胁迫值。例如,这些信息可用于确定产量图、优化灌溉或控制水管理补救措施。相机提供了LWIR波段传感器和10x光学变焦RGB相机分辨率全高清(1920x1080像素)。在旱季,我们通常感兴趣的是干旱对农作物的实际影响。这些影响不仅取决于所谓的气候干旱状况,还取决于地下水干旱、植物根系的大小等。使用 Agro成像仪测量植物的水分胁迫状况将帮助您确定干旱对作物的实际影响,获取植物表型信息。根据水分胁迫值,可以进行近似的作物产品制图。显然,受干旱影响越大的作物产量就越低。Agro成像仪配套的Agro分析仪软件,能够在很短的时间内生产出大面积农作物的潜在产量图。您可以通过Agro成像仪的航测作业,快速获取作物水分胁迫数据;或者使用收集的数据创建概览地图,通过比较不同年份的水分胁迫状况及产量,进而根据当前水分胁迫状况进行作物估产。根据Agro成像仪的数据,可以有效地规划补救措施,特别是评估与植物水分和干旱管理有关的措施。使用Agro成像仪,可以直接发现水分管理对作物生长的重要影响。Agro在水资源管理方面比NDVI更有价值Agro和NDVI是两个非常不同的指数,它们都基于一个事实,即有关作物状态的信息。到目前为止,NDVI可能是使用最广泛的指数,不过它只基于光谱中不同波段的作物颜色(包括近红外);而Agro提供了关于作物如何受到干旱影响的额外信息,因此,具有专利技术的 Agro成像数据比NDVI技术更能提供作物胁迫和水分管理方面的重要信息。配套的Agro Analyzer是一款用于处理Agro图像的软件。它允许设置正确计算Agro所需的参数,该软件包括预定义的常见作物,其最大优势是能够同时处理数百幅图像(海量数据处理)。丰富的接口Agro成像仪提供了多种接口,可以与无人机、控制单元、外部GPS传感器等进行广泛的连接。具有Wi-Fi低延迟实时视频流和命令链路。还具有以下接口:S.BusCAN总线(兼容DJI M600和A3控制器)以太网(RJ 45)MavLink外部GPS连接外部触发
    留言咨询
  • Mini植物PRI测量仪 400-860-5168转1895
    仪器简介:PRI (Photochemical Reflectance Index) 是通过计算植物叶片对531nm和570nm两个波长光反射情况而得到的参数,该参数反应植物的光合作用中的光能利用效率,并可作为植物水胁迫的指数。技术参数:技术参数 测量参数:光化学反射系数PRI = (R531 - R570)/(R531 + R570) 测量光:内置双波长光源R531 = 531 nm, R570 = 570 nm 检测波长:500 &ndash 600 nm 操作环境:温度: 0 ~ 55 oC 相对湿度: 0 ~95 % (无冷凝) 存储条件:温度:-10 ~ 60 oC 相对湿度:0 ~ 95 % (无冷凝) 通讯:蓝牙1.1* 存储:4M,PDA可无限存储* 电源:4节可充电或碱性电池,可连续使用70小时 自动关机:5分钟无操作 重量:180g 软件:FluorPen/PlantPen 2.0主要特点:特点及应用 携带方便、操作简单 直接测量得到PRI值 数据导出方式可选(蓝牙、USB、串行接口) 可用于农业、林业以及植物学中光合作用、逆境胁迫等的研究和教学。
    留言咨询
  • CWSI作物水分胁迫指数成像仪是第一款可用于精确农业领域绘制大面积水分胁迫制图的设备。该方法和装置的目的是确定植物林分水分胁迫值。例如,这些信息可用于确定产量图、优化灌溉或控制水管理补救措施。相机提供了LWIR波段传感器和10x光学变焦RGB相机分辨率全高清(1920x1080像素)。在旱季,我们通常感兴趣的是干旱对农作物的实际影响。这些影响不仅取决于所谓的气候干旱状况,还取决于地下水干旱、植物根系的大小等。使用CWSI成像仪测量植物的水分胁迫状况将帮助您确定干旱对作物的实际影响,获取植物表型信息。根据水分胁迫值,可以进行近似的作物产品制图。显然,受干旱影响越大的作物产量就越低。CWSI成像仪配套的CWSI分析仪软件,能够在很短的时间内生产出大面积农作物的潜在产量图。您可以通过CWSI成像仪的航测作业,快速获取作物水分胁迫数据;或者使用收集的数据创建概览地图,通过比较不同年份的水分胁迫状况及产量,进而根据当前水分胁迫状况进行作物估产。根据CWSI成像仪的数据,可以有效地规划补救措施,特别是评估与植物水分和干旱管理有关的措施。使用CWSI成像仪,可以直接发现水分管理对作物生长的重要影响。上图:使用案例,灌溉优化--优化传感器位置马铃薯田基于土壤传感器的数据优化灌溉作业。然而,正如右侧CWSI成像仪的图像所示,灌溉控制不是最佳的,一些区域灌溉饱和,而其他区域灌溉不足,因此需要根据获取的CWSI图像,更好地重新定位土壤传感器。 CWSI在水资源管理方面比NDVI更有价值CWSI和NDVI是两个非常不同的指数,它们都基于一个事实,即有关作物状态的信息。到目前为止,NDVI可能是使用最广泛的指数,不过它只基于光谱中不同波段的作物颜色(包括近红外);而CWSI提供了关于作物如何受到干旱影响的额外信息,因此,具有专利技术的CWSI成像数据比NDVI技术更能提供作物胁迫和水分管理方面的重要信息。 配套的CWSI Analyzer是一款用于处理CWSI图像的软件。它允许设置正确计算CWSI所需的参数,该软件包括预定义的常见作物,其最大优势是能够同时处理数百幅图像(海量数据处理)。CWSI成像仪的主要用途及优点:?状态监控,监控水分胁迫:使用彩色CWSI地图表述作物的水分问题;?管理灌溉管理:灌溉系统优化,优化土壤传感器的位置和分布;?植物表型:CWS成像仪可获取不同的植物种类对水分状况的不同反应。 丰富的接口CWSI成像仪提供了多种接口,可以与无人机、控制单元、外部GPS传感器等进行广泛的连接。具有Wi-Fi低延迟实时视频流和命令链路。还具有以下接口:S.BusCAN总线(兼容DJI M600和A3控制器)以太网(RJ 45)MavLink外部GPS连接外部触发 技术指标 CWSI作物水分胁迫指数成像仪CWSI探测器640 x 512 像素FPA有效尺寸1.088 x 0.8705 cm灵敏度0.03 °C (30 mK)光谱范围LWIR波段CWSI图像4种彩色地图,用于CWSI和水资源管理评估镜头FOV45°校准具有不同环境温度的校准数字变焦1 ~ 14 x可持续变焦可见光相机空间分辨率1920 x 1080像素(FHD)自动白平衡、宽动态范围、背光补偿、曝光和Gamma曲线控制视角 / 焦距6.9°~ 58.2°/ 焦距33.0 mm ~ 3.3 mm光学变焦10 x光学变焦,具有防抖功能对焦方式自动对焦且变焦同步降噪特殊的3D降噪功能内存与数据存储存储方式内置高速SSD 128GB固态硬盘USB可外接U盘、SD卡插槽数据记录方式CWSI JPEG图像和数码相机全高清JPEG图像数码相机视频高清录制、全帧CWSI视频录制(原始数据)GPS信息外接GPS时可将GPS数据直接记录在图像或者视频内文件存储与传输飞行图像与视频数据分类存储,可通过USB导出数据测量功能设备功能在线CWSI评估、现场CWSI评估、区域CWSI估(最大、最小值)同时捕捉CWSI图像和可见光图像显示模式全屏模式、画中画、全双屏、双屏图像规格1280 x 720像素(720p),16 : 9物理指标输入电压9 ~ 36 V DC功耗12 W尺寸83 mm x 85 mm x 68 mm重量 430 g安装孔位2 x 1/4” - 20 UNC操作温度-10°C ~ +55°C储存温度-30°C ~ +60°C产地:欧洲
    留言咨询
  • 产品介绍台式CT断层扫描仪用于植物根系、茎干、果实、种子、叶片等分析,为研究提供数据和进行数据分析。该系统符合EN规范电气安全线路要求。另外,对特定客户的需求,我们也提供个性化设备配置。比如您需要比技术参数更高的分辨率,或者需要测量的目标尺寸超过了技术参数中的最大尺寸,重量或材料厚度等,我们会针对您的特殊应用来提供解决方案。产品优势无损监测系统适用于不同植物种子、根系等可快速有效扫描种子易于操作使用通过螺旋扫描实现所有体积层的各向分辨率用户友好的控制软件、专有图像处理软件根据特定检测任务精确调节系统,降低成本也适合土壤研究应用领域台式CT断层扫描仪不仅运用于生物学,如植物根系、茎干、果实、种子、叶片等分析,也适用于地质学和考古学的大学或研究机构,也可用于对土壤结构如团粒结构等进行无损检测,分析土壤和根系关系以及结构等。台式CT断层扫描仪提供一种快速可视的物体内外结构三维模式,在生物学、工业无损检测领域里变得越来越重要。种子分析:玉米、小麦等植物生长分析:叶片结构、根系结构等土壤:土壤结构等地理学和考古学:岩石样品等测量技术描述除了X光源以及高分辨率检测器,此易于操作的设备本身还配有精确旋转的操作系统。螺旋功能集成在操作控制软件中,当测试目标旋转360°后,可进行垂直操作。该设计确保了高品质测量结果,不产生无用制品,特别是在检测多层结构目标时。根据样品尺寸(参见技术参数),扫描可一步完成,之后便将测量数据保存以便浏览。系统自带Fraunhofer EZRT研发中心开发的控制软件,直观友好的界面可逐步指导用户进行个性化设置,直至获得所需结果,即便客户没有经验或没有参加培训亦可进行操作。有经验的用户可使用加强版软件界面以对所有部件实现中心控制。在执行测量前,可用备选功能实现模拟测量。技术参数重量:150kg软件:Fraunhofer Volex Fraunhofer VPX-射线检测器分辨率:49.5 μm最大扫描面积:21cmX10cm扫描方式:样品360°转动扫描时间:快速2-10分 高分辨率模式,60 - 80分X-射线检测器表面涂层:Gd2O2S闪烁体材质安全防护:安全线路设计,防辐射设计扫描仪操作电压: 230 V或380 V( 50 Hertz)样品升降操作距离:20cm 像素数(px):2304 x 1300手动定位放大倍数:1.6倍(Φ140 mm)- 35倍(Φ 1 mm)环境条件:操作温度10℃-30 ℃,湿度10-85%,防尘样品操作旋转台:n x 360°利用CT断层扫描仪筛选小麦耐旱耐热性提高小麦对非生物胁迫的耐受性,需要对产量构成因素如粒数、单粒重等进行大规模筛选,这些都是非常费时费力的,而对种子形态的详细分析在视觉上往往是不可能的。计算机断层扫描技术为更快速、更准确地评估产量构成因素提供了机会。通过对种子和穗部形态的详细分析来评估不同胁迫条件下不同品种小麦种子的性状。对203份不同品种小麦的X射线计算机断层扫描分析结果表明,该方法能够以 95-99%的准确率评估小麦结实;大多数暴露在干旱和高温胁迫下的材料都发育出较小的、干瘪的种子,种子表面增加;与干旱相比,干旱和高温叠加作用显著降低了种子重量、穗粒数和单粒大小,测定了干旱和高温联合胁迫下的种子皱缩和胚芽变形等形态性状。CT断层扫描分析方法可以检测小麦、小麦穗甚至单粒种子之间的微小遗传差异,这对于提高粮食产量和生产有韧性的品种至关重要。更重要的是,该方法是易于自动化的,能够以很高的分辨率在短时间内完成大批量小麦麦穗的表型分析。在大规模的遗传研究和育种计划中,每年都要对大量材料进行实地评估,这一分析处理能力与遗传研究和育种计划相适应。参考文献Jessica S, Joelle C , Norbert W, Anja E, Delphine F, Trevor G, Stefan G. (2020). Drought and heat stress tolerance screening in wheat using computed tomography. Plant Methods, 16:15
    留言咨询
  • 植物冠层测量仪 400-860-5168转4275
    一.用途 植物冠层测量仪根据各种图像处理手段提取多个角度的冠层间隙率,采用装配鱼眼镜头的相机从树冠下向上拍摄冠层照片,利用间隙率参数来反演出各种冠层参数,导田园合理施肥、现代化农场高效管理提供可靠的科学依据,广泛应用于农业、林业、植物等科学研究和生产指导。 二.测试原理与方法 植物冠层测量仪采用了冠层孔隙率与冠层结构相关的原理。它是根据光线穿过介质减弱的比尔定律,在对植物冠层定义了一系列假设前提的条件下,采用半理论半经验的公式,通过冠层孔隙率的测定,计算出冠层结构参数。这是目前世界上各种冠层仪一致采用的原理。在上述原理下,植物冠层图象分析仪采用的是对冠层下天穹半球图像分析测量冠层孔隙率的方法,该方法是各类方法中最精确和最省力、省时、快捷方便的方法。 三.结构组成 植物冠层测量仪由鱼眼图像捕捉探头(由鱼眼镜头及CMOS图像传感器组成)、内置25个PAR传感器的测量杆(摇臂)、笔记本电脑、图像分析软件组成。鱼眼探头安装在一个很轻的摇臂的顶端,它可以获取180°视角的鱼眼图像。图像的显示和存贮由配置的笔记本计算机完成。 四.技术指标 1.可测量指标: 叶面积指数 叶片平均倾角 聚集指数1 聚集指数2 树冠开阔度 天空散射光透过率 不同太阳高度角下的植物冠层直射辐射透过率(间隙率透光率) 不同太阳高度角下冠层的消光系数 叶面积密度的方位分布(不透光率) 光合有效辐射(PAR) 2.镜头角度:180° 3.分辨率:2592×1944 4.测量范围:天顶角由0°~90°(180°鱼眼镜头)可分割成十个区域,方位角360°亦可分割成十个区域 5.PAR感应范围:感应光谱400nm~700nm 6.测量范围0~3000μmol/㎡&bull S 7.分析软件:植物冠层分析系统 8.重量:500g 9.工作及存储环境:-10℃~55℃≤85%相对湿度 10.传输接口:USB 五、功能特点 1.鱼眼镜头可自动保持水平状态:专门为植物冠层结构测量设计的小型鱼眼摄像镜头安装在手持式万向平衡接头上,可自动保持镜头处于水平状态,无需三角架; 2.鱼眼镜头可以伸入至冠层中:镜头安装在摇臂一端,由于小巧和带有测量杆,可以方便地水平向前或垂直向上伸入到冠层不同高度处,快速地进行分层测量,测出群体内光透过率和叶面积指数垂直分布图; 3.图像分析软件:图像分析软件可以任意定义图像分析区域(天顶角可分10区,方位角可分10区)。 4.可屏蔽不合理冠层部分:对不同方向的冠层进行区域性分析时,可以任意屏蔽地物景象和不合理的冠层部分(如缺株、边行问题等)。 5.自动化阈值调节,避免主观设置阈值导致增大误差 6.数据浏览:可浏览历史数据 7.内置中英文双语显示,一键切换 8.配置清单:鱼眼探头、测量杆、笔记本电脑(内置分析软件)、电脑包、加密狗、铝箱、说明书,合格证
    留言咨询
  • 仪器简介:在与植物有关的研究工作中,一个很重要的任务就是了解植物生长、产量和环境因素的关系。为此我们一方面需要知道有关环境因素的数据(气象、水分、营养等),另一方面我们也需要有关植物生理生长方面的数据。 目前,由于测量技术方面的困难,有关植物方面的数据都是不连续的,如年轮宽度,产量,生物量等,这些指标一般都是多种环境因素在一个生长季里累计作用的结果。究竟哪个环境因素,什么时间对这些植物指标起决定性的作用,一般很难客观确定。譬如,某一年的年轮宽度小于往年,你很难说清其成因,是由于春节霜冻,夏季干旱,还是由于秋季低温,等等。生长测量仪正是为解决这个问题而开发生产的。生长测量仪连续测定生长率,即时反应环境因素变化及人为措施给生长带来得影响。在实际使用中,完全可以将生长和气象因素同步观测,这样不但可以准确认定影响生长的关键因素,而且也给数据处理带来极大方便。技术参数:Dendrometer是一种电子设备,带张力传感器,可监测环境因子对植物水分平衡的影响及茎杆、果实直径的生长。该系统具温度补偿功能。将Dendrometer固定在测量部位,数据可以直读,也可用Datalogger自动记录。Ecomatik公司的Dendrometer是在多项专利的基础上开发出来高质量的测量仪器。其优点在于精确度高,性能可靠,质优价廉。主要特点:1.高度精确 2.种类齐全,分别可以测量树木半径,直径,周长和纵向变化,水果,疏菜的直径变化 3.自身重量极小(13克),几乎不压迫植物 4.耗能小,如和专用数采一起,用一个小电池可以连续测量两年以上 5.适用各种户外条件 6.直接微米输出,无需标定 7.已有十年以上的实地使用经验 8.几乎无需保护维修措施
    留言咨询
  • 植物叶面积测量仪 400-860-5168转4379
    一、植物叶面积测量仪主机简介:  云唐YMJ系列植物叶面积测量仪是新研发的产品。是一种使用方便,可以在野外工作的便携式仪器。它可以精确、快速、无损伤地测量叶片的叶面积及相关参数,也可对采摘的植物叶片及其他片状物体进行面积测量。广泛应用于农业、气象、林业等部分。  仪器可以直接测量叶片长度、宽度和面积,并集成了GPS定位以及4G无线传输系统,增加了Type-C接口,可将测量数据和定位信息同时导入计算机和云数据平台,方便广大科研者对数据的进一步处理。  二、云唐YMJ系列植物叶面积测量仪/叶面积仪型号区别:  植物叶面积测量仪型号功能区别  YMJ-A无计算机接口,可在主机上存储数据并查看  YMJ-B有计算机接口,除了在主机上存储数据外,还可以将数据传输到计算机,软件可打印,转成EXCEL格式  YMJ-G有计算机接口,且增加4G无线传输以及GPS定位模块,测量的同时可以实现时间、地址等的同步及传输  植物叶面积测量仪功能特点:  1)主机、探头一体化设计,更方便操作。  2)采用微电脑技术,LCD大液晶显示。  3)高性能大容量电池,无需外部供电,低电压显示,可持续测量更适用于野外测量。  4)一次性可测量较大叶片面积(2000*155mm2)  5)可存储5000组数据(叶面积、叶长、叶宽)。  6)可测量叶片的多种参数:叶面积、平均叶面积、叶长、叶宽。  7)内置校准模块,用户可根据不同使用环境进行校准  8)通讯接口:Type-C接口,可将数据导入计算机。(此功能只限B和G型)  9)GPS定位:集成高速GPS定位模块,上传数据都自带时间、经纬度信息,方便更有效的处理数据。(此功能只限G型)  10) 4G无线传输:测量数据可实时上传至云平台,可查看测量时间、叶片面积等数据,可对不同参数做柱状图分析,支持数据以EXCEL表格形式导出,支持数据在线打印,可根据选择的时间段展示数据、支持数据以表格、柱状图等分析、在线下载。(此功能只限G型)  植物叶面积测量仪技术参数:  (1)面积单位:cm2  (2)分辨率:0.01cm2  (3)测量精度:±2%  (4)宽度量程:0~155mm  (5)长度量程:0~2000mm  (6)数据记录:0~5000组  (7)电源:锂电池(内置) 3200mA+(外置可更换) 1400mA  植物叶面积测量仪配置清单:  YMJ-A:主机、铝箱、充电器、 U盘(操作视频、电子版说明书) 、挂绳、说明书、合格证  YMJ-B:主机、铝箱、数据线、充电器、 U盘(上位机软件、操作视频、电子版说明书) 、挂绳、说明书、合格证  YMJ-G:主机、铝箱、数据线、充电器、 U盘(上位机软件、操作视频、电子版说明书) 、4G物联网卡(2年)、挂绳、说明书、合格证  植物叶面积测量仪质量保证:  1、 公司提供的所有货物均为原装正品。  2、 公司售后服务专线,在接到电话后12小时内将回复你,尽力解决你的所有困惑和问题。  3、 1年保修。在三个月内出现重大质量问题给予更换新机或维修。保修壹年,保修期间不收费用。提供终身维修服务,保修期后只收取成本费。本公司能长期提供良好的技术支持及零配件的优惠供应。
    留言咨询
  • 植物叶面积测量仪主机简介:YMJ系列活体叶面积测量仪是新研发的产品。是一种使用方便,可以在野外工作的便携式仪器。它可以精确、快速、无损伤地测量叶片的叶面积及相关参数,也可对采摘的植物叶片及其他片状物体进行面积测量。广泛应用于农业、气象、林业等部分。仪器可以直接测量叶片长度、宽度和面积,并集成了GPS定位以及4G无线传输系统,增加了Type-C接口,可将测量数据和定位信息同时导入计算机和云数据平台,方便广大科研者对数据的进一步处理。植物叶面积测量仪型号区别:型号功能区别YMJ-A无计算机接口,可在主机上存储数据并查看YMJ-B有计算机接口,除了在主机上存储数据外,还可以将数据传输到计算机,软件可打印,转成EXCEL格式YMJ-G有计算机接口,且增加4G无线传输以及GPS定位模块,测量的同时可以实现时间、地址等的同步及传输植物叶面积测量仪功能特点:1)主机、探头一体化设计,更方便操作。2)采用微电脑技术,LCD大液晶显示。3)高性能大容量电池,无需外部供电,低电压显示,可持续测量更适用于野外测量。4)一次性可测量较大叶片面积(2000*155mm2)5)可存储5000组数据(叶面积、叶长、叶宽)。6)可测量叶片的多种参数:叶面积、平均叶面积、叶长、叶宽。7)内置校准模块,用户可根据不同使用环境进行校准8)通讯接口:Type-C接口,可将数据导入计算机。(此功能只限B和G型)9)GPS定位:集成高速GPS定位模块,上传数据都自带时间、经纬度信息,方便更有效的处理数据。(此功能只限G型)10) 4G无线传输:测量数据可实时上传至云平台,可查看测量时间、叶片面积等数据,可对不同参数做柱状图分析,支持数据以EXCEL表格形式导出,支持数据在线打印,可根据选择的时间段展示数据、支持数据以表格、柱状图等分析、在线下载。(此功能只限G型)植物叶面积测量仪技术参数:(1)面积单位:cm2(2)分辨率:0.01cm2(3)测量精度:±2%(4)宽度量程:0~155mm(5)长度量程:0~2000mm(6)数据记录:0~5000组(7)电源:锂电池(内置) 3200mA+(外置可更换) 1400mA植物叶面积测量仪配置清单:YMJ-A:主机、铝箱、充电器、 U盘(操作视频、电子版说明书) 、挂绳、说明书、合格证YMJ-B:主机、铝箱、数据线、充电器、 U盘(上位机软件、操作视频、电子版说明书) 、挂绳、说明书、合格证YMJ-G:主机、铝箱、数据线、充电器、 U盘(上位机软件、操作视频、电子版说明书) 、4G物联网卡(2年)、挂绳、说明书、合格证。植物叶面积测量仪质量保证:1、 公司提供的所有货物均为原装正品。2、 公司售后服务,在接到电话后12小时内将回复你,尽力解决你的所有困惑和问题。3、 1年保修。在三个月内出现重大质量问题给予更换新机或维修。保修壹年,保修期间不收费用。提供终身维修服务,保修期后只收取成本费。本公司能长期提供良好的技术支持及零配件的优惠供应。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制