当前位置: 仪器信息网 > 行业主题 > >

宽波段时域太赫兹仪

仪器信息网宽波段时域太赫兹仪专题为您提供2024年最新宽波段时域太赫兹仪价格报价、厂家品牌的相关信息, 包括宽波段时域太赫兹仪参数、型号等,不管是国产,还是进口品牌的宽波段时域太赫兹仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合宽波段时域太赫兹仪相关的耗材配件、试剂标物,还有宽波段时域太赫兹仪相关的最新资讯、资料,以及宽波段时域太赫兹仪相关的解决方案。

宽波段时域太赫兹仪相关的论坛

  • 太赫兹时域光谱

    [color=#444444]求助!我最近测试了太赫兹时域光谱,只得到了时间和电场强度的数据,请问如何处理成折射光谱和吸收光谱的数据?[/color]

  • 2000万美元的太赫兹光谱市场到底在哪里?

    2000万美元的太赫兹光谱市场到底在哪里?

    太赫兹波介于微波与红外之间,波长大概在0.1mm(100um)到1mm范围。太赫兹光谱和其他光谱技术形成互补,许多化合物(毒品、炸药和各种形态的原料药)在太赫兹波段具有独特的指纹特征谱。太赫兹波不会引起生物组织的光致电离,人类可以安全接触。各种各样的商业太赫兹光谱仪已经在市场上销售,包括传统的频域系统、时域系统、成像系统和便携式仪器。2012年的全球实验室太赫兹光谱的需求约为2000万美元,并且至少有六个主要的竞争对手能够提供商业化太赫兹光谱仪器。尽管2013年太赫兹光谱市场面临一个具有挑战性的环境,但是仍然会获得中等个位数的增长。而且到2014年这一市场预期会达到两位数的强劲增长。http://ng1.17img.cn/bbsfiles/images/2013/10/201310142026_470848_2063536_3.png

  • 太赫兹技术——“改变未来世界的十大技术”之一

    太赫兹技术——“改变未来世界的十大技术”之一

    太赫兹(Terahertz,1THz=1,000,000,000,000Hz)泛指频率在0.1~10THz波段内的电磁波,位于红外和微波之间,处于宏观电子学向微观光子学的过渡阶段。早期太赫兹在不同的领域有不同的名称,在光学领域被称为远红外,而在电子学领域,则称其为亚毫米波、超微波等。在20世纪80年代中期之前,太赫兹波段两侧的红外和微波技术发展相对比较成熟,但是人们对太赫兹波段的认识仍然非常有限,形成了所谓的“THz Gap”。http://ng1.17img.cn/bbsfiles/images/2012/02/201202141622_349255_1798788_3.jpg  2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。    关注太赫兹技术的最新仪器研究成果、应用进展及相关科研成果,太赫兹技术领域的实验室动态及会展新闻,请关注仪器信息网技术专题:太赫兹技术——“改变未来世界的十大技术”之一。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646122_1798788_3.jpg  专题链接:http://www.instrument.com.cn/news/subject/201003/?SubjectID=161  该专题对于您了解太赫兹技术有哪些帮助?您认为该专题中还应该包含哪些内容,以便对太赫兹技术有更好的了解?欢迎广大网友讨论,我们会根据您的建议不断改进,希望今后能够推出内容更丰富的技术专题,对广大网友的学习工作带来更多的帮助。

  • 科学家开发出石墨烯太赫兹设备样机

    为研制太赫兹设备与操控系统开辟了广阔舞台 中国科技网讯 在电磁波谱中,太赫兹波段是当前最热的研究范围之一。据美国物理学家组织网5月2日报道,美国圣母大学通过实验证明了利用石墨烯原子层可以有效操控太赫兹电磁波,并制作了一台基于石墨烯材料的太赫兹调制器样机,为开发紧密高效且经济的太赫兹设备与操作系统开辟了广阔舞台。相关论文近日发表在《自然·通讯》杂志上。 人们每天都在用着电磁能量,看电视、听广播、用微波炉做爆米花、用手机通话、拍X光片等,电子产品和无线电设备中的能量大部分是以电磁波形式传输的。太赫兹波处于微波和可见光频率之间,在日常生活中有着重要应用。比如在通讯设备中,用太赫兹波能携带比无线电波或微波更多的信息;在拍X光片的时候造成的潜在伤害更小,所提供的医学和生物图像分辨率也比微波更高。 “太赫兹技术前景光明,但一个最大的瓶颈问题是缺乏有效的材料和设备来操控这些能量波。如果有一种天然二维材料能对太赫兹波产生明显反应,而且可以调节,就给我们设计高性能太赫兹设备带来了希望。而石墨烯正是理想的材料。”圣母大学电学工程系研究生贝拉迪·森赛尔-罗德里格斯说,石墨烯是仅有一个原子厚度的半导体材料,具有独特的电学、机械力学和热学性质,在诸多领域都有着潜在的应用价值,如最近开发的快速晶体管、柔性透明电子产品、光学设备,以及目前正在开发的太赫兹主动元件。 研究小组演示了他们用于概念论证而制作的第一台样机,这台基于石墨烯材料的调制器,可在石墨烯内部实现带内跃迁,是目前唯一能做到这一点的太赫兹设备。 该校电学工程系副教授邢慧丽(音译)指出,石墨烯自发现以来,一直被当作新研究的理想平台,但至今它在现实中还很少应用,操控太赫兹波就是其应用之一。在2006年时,他们曾想用二维电子气体来操控太赫兹波,去年他们论证了基于石墨烯的高性能设备,今年是首次通过实验证明了这种设备,并将进一步开展研究。(记者 常丽君) 《科技日报》(2012-05-04 二版)

  • 集成太赫兹收发器问世

    美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然·光子学》杂志上。  太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。  新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。  量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。  研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。

  • 近红外光谱与太赫兹光谱相比,各有哪些技术优势?

    [font=宋体][font=宋体]太赫兹泛指频率在[/font][font=Times New Roman]0.1THz[/font][font=宋体]到[/font][font=Times New Roman]10THz[/font][font=宋体]波段内的电磁波,位于红外和微波之间。[/font][/font][font='Times New Roman'][font=宋体]太赫兹光谱具有很宽的带宽[/font][/font][font=宋体]([/font][font='Times New Roman']0.1 ~10TH[/font][font=宋体][font=Times New Roman]z[/font][font=宋体]),动态范围大,具有大于[/font][font=Times New Roman]10[/font][/font][sup][font=宋体][font=Times New Roman]5[/font][/font][/sup][font=宋体]的高信噪比;具有瞬态性,可以进行时间分辨光谱的研究;[/font][font='Times New Roman'][font=宋体]太赫兹光谱[/font][/font][font=宋体]光子能量低,穿透性强,适合于生物组织的活体检查。但存在仪器价格非常昂贵,分析检测环境要求高等缺点。而[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]则对分析环境要求较低,受环境因素影响小;此外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器价格便宜,尤其是[/font][font=Times New Roman]CCD[/font][font=宋体]型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],且仪器性能稳定,具有较好的环境抗干扰能力,适用于工业生产场景的检测应用。[/font][/font]

  • 中国科学院精密测量院关于液体中激光诱导太赫兹辐射的实验研究方面获进展

    [align=center][img=,500,109]https://img1.17img.cn/17img/images/202403/uepic/1bf362c7-d04f-4598-abef-b156b7517a65.jpg[/img][/align]太赫兹波在通讯和成像等方面颇具应用价值。强场超快激光与物质非线性相互作用是产生太赫兹波的重要方式之一。等离子体、气体、晶体等太赫兹产生介质相关的实验与理论研究较为充分。然而,液体水是很强的太赫兹波吸收介质,尚未有其产生太赫兹波的报道。2017年,实验发现,液体薄膜厚度或液体束直径降到微米量级时,太赫兹波的辐射大于吸收。这开启了液体太赫兹波研究的新方向。近年来,液体太赫兹波领域有实验报道,但实验观测到的较多现象均与其他介质的结果不同。例如:单色激光场可以有效地产生液体太赫兹波,而气体介质需要特定相位差的双色激光;液体太赫兹波的产率与驱动激光的能量是正比关系,而气体介质中是平方关系;在一定范围内液体太赫兹波的产率随激光的脉冲宽度的增加而增加,而气体介质相反;在双色激光的驱动下,液体太赫兹波出现非调制信号,在气体介质中却未见类似信号。复杂无序的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]体系的理论研究一直是难题,以上现象难以用已有理论来解释。科研人员只能基于之前的等离子体模型和界面效应等,来解释一些高光强下的宏观实验结果。近日,中国科学院精密测量科学与技术创新研究院研究员卞学滨和博士研究生李正亮,提出了产生液体太赫兹波的位移电流模型,可以系统解释上述实验观测到的系列反常现象。该微观机制模型的物理图像如图所示:液体的无序结构使得电子波包局域化,同时不同分子的外层电子的能量受到环境的影响而发生移动,在强场激光的作用下不同分子的外层电子发生跃迁,产生非对称体系的位移电流。这些跃迁的能量差在太赫兹能量区域,进而辐射出太赫兹波。同时,该工作表明原子核的量子效应起到关键作用,并预言太赫兹辐射可以研究液体的同位素效应。[align=center][img=,500,140]https://img1.17img.cn/17img/images/202403/uepic/ab7bd8de-a34e-46d4-8c18-af8e57f38952.jpg[/img][/align]关于液体中激光诱导太赫兹(THz)辐射的实验研究取得了长足进展。液体太赫兹显示出许多不同于气体和等离子体太赫兹的独特特征。例如,液体太赫兹可以通过单色激光有效产生。驱动脉冲持续时间越长,产生率越高。它还与激发脉冲能量成线性关系。在双色激光场中,测量到了意想不到的未调制太赫兹场,其对驱动激光能量的依赖性与调制太赫兹波完全不同。然而,由于难以描述复杂无序液体中的超快动力学,其潜在的微观机制仍不清楚。在此,提出了一个位移电流模型并且理论成功地再现了实验观测结果。此外,理论上还可进一步用于研究太赫兹辐射在 H[font=等线][sub][size=13px]2[/size][/sub][/font]O 和 D[font=等线][sub][size=13px]2[/size][/sub][/font]O 中的核量子效应。这项工作为研究块状液体中太赫兹辐射的起源提供了基本见解。上述成果是卞学滨团队在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]强场超快动力学研究领域继高次谐波统计涨落模型之后的又一理论进展。相关研究成果以Terahertz radiation induced by shift currents in liquids为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。[align=center][img=,500,407]https://img1.17img.cn/17img/images/202403/uepic/abaa2b75-02df-446e-b97d-f1ac0f39ce5b.jpg[/img][/align][align=center]液体太赫兹波产生的原理图[/align][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【Sunny看新闻】-2012.2.7:新安检技术,太赫兹

    昨晚的北京经历了过年最后的疯狂,烟花爆竹不断,仿佛回到了年三十。今天的天气依然不错,进入新闻短评,欢迎大家讨论!  从太赫兹安检技术延伸看安检技术  新闻链接:http://www.instrument.com.cn/news/20120206/073687.shtml  今天看到一条新闻“我国太赫兹安检技术研究取得进展”,新闻中提到“说该项技术样机将于年内面世,快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,并且该技术对人体更加安全。”  对于太赫兹技术,我不是专家,没有发言权。但作为一名每天都要接受安检检测的普通人,我希望安检技术能够更简便,同时更快速,当然对人体安全是首要的。不知道这种太赫兹安检技术能否能满足我这样的需求。  目前,我们接触到最多的安检技术就是基于X射线技术的安检机,这种技术通过对包内物成像后,再由工作人员来进行判断。对我而言,我觉得他最大的缺点就是太慢了,太繁琐,特别在地铁口,导致很多人不愿意按规则接受安检。  其次是金属探测器,在飞机场安检时,手持的,在人体上移动的仪器就是金属探测器。这类仪器故名思议只能对金属危险品可以检测。对我而言,这个速度还是比较快的。  第三是Smiths Detection的基于离子迁移谱技术的毒品痕量检测仪,我在成都机场曾经接受过此检测。这项技术进行检测,是通过一个与仪器匹配的试纸现在行李上进行触碰,而后将试纸放入仪器中进行检测。我对这项安检技术体验较好,第一速度很快,第二受检者基本不需要有任何的配合。  第四是基于拉曼光谱的安检技术。前三种技术,我在生活中都切身体验过,而唯独这项技术我只在仪器展会上看到过演示。测量是通过探头对可疑的物品(如粉末或瓶装液体)的触碰,然后通过与数据库中的毒品物谱图相对比而进行判断,速度也比较快。  以上四种技术都有各自所专注的一方面,新的太赫兹技术据报道看可以满足现有技术的所有能满足的各种需求,不知道是否如此,欢迎大家讨论?另大家有没有亲身经历过别的或了解到别的技术?也欢迎提供。

  • 【分享】H德国物理学家 赫兹

    中文名称: 赫兹   外文名: H.R.——Heinrich Rudolf Hertz   生卒年: 公元1857-1894   洲: 欧洲   国别: 德国   省: 汉堡   赫兹,德国物理学家。1857年2月22日生于汉堡。父亲为律师,后任参议员,家庭富有。赫兹在少年时期就表现出对实验的兴趣,12岁时便有了木工工具和工作台,以后又有了车床,常常用以制作简单的实验仪器。1876年赫兹入德累斯顿工学院学习工程,由于对自然科学的爱好,转入慕尼黑大学学习数学和物理,第二年又转入柏林大学,在H.von亥姆霍兹指导下学习并进行研究工作。在随赫尔姆霍兹学习物理时,受赫尔姆霍兹的鼓励研究麦克斯韦电磁理论。赫兹决定以实验来证实韦伯与麦克斯韦理论谁的正确。依照麦克斯韦理论,电扰动能辐射电磁波。赫兹根据电容器经由电火花隙会产生振荡原理,设计了一套电磁波发生器,赫兹将一感应线圈的两端接于产生器二铜棒上。当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。由麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。他将一小段导线弯成圆形,线的两端点间留有小电火花隙。因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重迭应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。正如麦克斯韦预测的一样。电磁波传播的速度等于光速。1887年11月5日,赫兹在寄给亥姆霍兹一篇题为《论在绝缘体中电过程引起的感应现象》的论文中,总结了这个重要发现。1888年,赫兹的实验成功了,麦克斯韦理论也因此获得了无上的光彩。在发现电磁波不到6年,意大利的马可尼、俄国的波波夫分别实现厂无线电传播,并很快投人实际使用。其他利用电磁波的技术,也像雨后春笋般相继问世。无线电报(1894年)、无线电广播(1906年)、无线电导航(1911年)、无线电话(1916年)、短波通讯(1921年)、无线电传真(1923年)、电视(1929年)、微波通讯(1933年)、雷达(1935年),以及遥控、遥感、卫星通讯、射电天文学……它们使整个世界面貌发生了深刻的变化。1880年他以纯理论性工作的《旋转导体电磁感应》论文获得博士学位,成为亥姆霍兹的助手。1883年到基尔大学任教。1885~1889年任卡尔斯鲁厄大学物理学教授。赫兹还通过实验确认了电磁波是横波,具有与光类似的特性,如反射、折射、衍射等,并且实验了两列电磁波的干涉,同时证实了在直线传播时,电磁波的传播速度与光速相同,从而全面验证了麦克斯韦的电磁理论的正确性。并且进一步完善了麦克斯韦方程组,使它更加优美、对称,得出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。1889~1894年接替R.克劳修斯的席位任波恩大学物理学教授。1894年1月1日因血液中毒在波恩逝世,年仅36岁。为了纪念他在电磁波发现中的卓越贡献,后人将频率的单位命名为赫兹。相关研究领域:数学、物理学,特别是在电磁学方面。在赫兹以前,由法拉第发现、麦克斯韦完成的电磁理论,因为未经系统的科学实验证明,始终处于“预想”阶段。把天才的预想变成世人公认的真理,是赫兹的功劳。同时,赫兹在人类历史上首先捕捉到电磁波,使假说变成现实。相关作品:1、《论在绝缘体中电过程引起的感应现象》2、《论动电效应的传播速度》3、《论电力射线》

  • 【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    原子级上电流的超快控制对纳米电子未来的创新至关重要。之前相关研究表明,将皮秒级太赫兹脉冲耦合到金属纳米结构可以实现纳米尺度上极度局部的瞬态电场。 近期,加拿大阿尔伯塔大学(University of Alberta)Frank A. Hegmann教授研究组在美国RHK Technology公司生产的商用超高真空扫描隧道显微镜(RHK-UHV-SPM 3000)系统上自主研发了太赫兹-扫描隧道显微镜(THz-STM),首次在超高真空中对Si(111)-(7×7)样品表面执行原子分辨率THz-STM测量,展示了超高真空中的THz-STM探索原子精度的超快非平衡隧道动力学的超强能力。[align=center][img=,500,264]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311403502131_145_981_3.jpg!w500x264.jpg[/img][/align][align=center]图1:利用THz-STM在超高真空中控制极端隧道电流[/align] 在图1(a)中可以看到,超快太赫兹(THz)脉冲通过反向视窗上的透镜(左侧)聚焦到超高真空(中间)的STM探针上,在隧道结(插图)处产生隧道电流。图1(c)中展示了耦合到STM针尖的太赫兹脉冲引发随时间变化的偏压(VTHz(t),红色实线),驱动超快太赫兹感应电流(ITHz(t),蓝色实线),从而产生整流的平均隧道电流。太赫兹脉冲极性(0°, 90°, 180°)可用于控制太赫兹脉冲引起的整流隧道电流,如图1(e)所示。电子从样品向尖端流动,产生负的太赫兹极性,从尖端到样品具有正的太赫兹极性。[align=center][img=,500,358]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405019168_3214_981_3.jpg!w500x358.jpg[/img][/align][align=center]图2:Si(111)- (7×7)上的单个原子非平衡隧穿的超快控制[/align] 极限太赫兹脉冲驱动的隧道电流高达常规STM中稳态电流的107倍,实现了以0.3nm的空间分辨率对硅表面上的单个原子成像,由此确定在高电流水平下的超快太赫兹脉冲驱动隧道确实可以局域化为单一原子。此外,测试结果表明解释Si(111)-(7×7)上的太赫兹驱动的STM(TD-STM)图像的原子波纹(其中数百个电子在亚皮秒时间尺度内隧穿),需要理解非平衡充电动力学由硅表面的太赫兹脉冲引起。同时,单个原子的太赫兹驱动隧道电流的方向可以通过太赫兹脉冲电场的极性来控制。在太赫兹频率下,类金属Si(111)-(7×7)表面不能从体电子屏蔽电场,导致太赫兹隧道电导与稳态隧道电导基本机制的不同。很显然,这样一个极端的瞬态电流密度并不会影响所研究的单原子STM针尖或样品表面原子,如同在传统STM测试中具有如此大小隧道电流的Si(111)-(7×7)一样。[align=center][img=,500,214]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405376531_6859_981_3.jpg!w500x214.jpg[/img][/align][align=center]图3:太赫兹感应电流中的热电子[/align] 在高太赫兹场中观察到了来自热电子的隧道电流的额外贡献。超快太赫兹诱导的带状弯曲和表面状态的非平衡充电打开了新的传导通路,使极端瞬态隧道电流在尖端和样品之间流动。半导体表面的THz-STM为原子尺度上的超快隧穿动力学提供了新的见解,这对于开发新型硅纳米电子学和以太赫兹频率工作的原子级器件至关重要。[b]参考文献:[/b]1. Tyler L. Cocker, Frank A. Hegmann et al. An ultrafast terahertz scanning tunneling microscope. Nature Photonics, 151(2013).2. Vedran Jelic, Frank A. Hegmann et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nature Physics, 4047(2017).

  • 科学家研发出太赫兹地沟油检测仪

    科学家研发出太赫兹地沟油检测仪

    http://ng1.17img.cn/bbsfiles/images/2012/08/201208022150_381350_1641058_3.jpg该项技术通过先进的太赫兹电磁波技术来辨别地沟油。http://ng1.17img.cn/bbsfiles/images/2012/08/201208022150_381352_1641058_3.jpg简单版检测仪长宽约为1米,适合固定在车辆后备箱内。  上海科学家研发地沟油检测仪:电磁波一秒"振"出地沟油  利用电磁波,一秒钟“振”出地沟油,这就是上海理工大学上海市现代光学系统重点实验室地沟油检测仪的“本领”。

  • 5.28《太赫兹波谱与成像技术在脑胶质瘤原位识别中的研究》王与烨(天津大学)

    [font=Calibri][font=宋体]仪器信息网于[/font]5[/font][font=Calibri][size=10.5pt][font=宋体]月[/font]26-29[font=宋体]日组织召开[/font][b] [size=18px][b]第九届光谱网络会议[/b][/size][/b][/size][/font][font=Calibri][size=10.5pt][font=宋体],特邀嘉宾[url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6560]王与烨(天津大学)[/url][/font][font=宋体],带来报告《[b][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6497]太赫兹波谱与成像技术在脑胶质瘤原位识别中的研究[/url]》[/b];[/font][/size][/font][font=宋体]欢迎感兴趣的你,报名参会![/font][b][font='Times New Roman'][color=#0563c1][url=https://www.instrument.com.cn/webinar/meetings/SCIEX522/]https://www.instrument.com.cn/webinar/meetings/iCS2020/[/url][/color][/font][/b]

  • 针对紫外线的四个波段,应用对应波段的紫外线传感器。

    紫外线传感器是传感器的一种,可以利用光敏元件通过光伏模式和光导模式将紫外线信号转换为可测量的电信号,目前紫外线传感器材料主要是GaN和SiC这两大类。GaN材质的传感器目前知名度比较高的是韩国Genicom的紫外线传感器,传感器的波段从200-510nm均有相对应的传感器来检测。针对UVA波段,主要有IIC、电流、电压输出方式的传感器。在智能穿戴以及一些要求传感器体积尽可能小或者对PCB尺寸要求比较小的场所可以使用GUVA-C32SM或者GUVA-S12SD(SMD3528封装)。针对一些要求温度稳定性比较高的场所,还有金属TO-46(GUVA-T11GD-L)、TO-39(GUVA-T21GD-U)、TO-5(GUVA-T21GH)封装产品。TO-5封装的产品里面都集成了运算放大电路,0-5V模拟量输出。方便使用。主要运用于UVA灯的检测,UV固化等。UVB传感器主要是用于检测B波段的LED灯、皮肤光疗仪以及UVI检测。UVI指数指标主要是针对B波段的紫外线而言的。主要运用到的型号有GUVB-C31SM(IIC输出)、GUVB-T11GD-L(电流输出)、GUVB-T21GH(0-5V输出)。UVC传感器由于具有日盲特性,除了用于紫外线消毒监测上,还可以用于火焰探测。火焰探测的前提条件是传感器能够检测极低辐射强度的紫外线,同时传感器的暗电流必须非常低,这样SiC材质的传感器就能满足需求目前知名度比较高的是德国Sglux的SiC紫外线传感器。该类型传感器能够耐高温以及强紫外线辐射。该厂商的传感器代表型号有SG01D,该传感器TO-5封装,带有聚光镜,在10uw/cm2辐射强度下可以输出350nA的电流。感光芯片面积可以从0.06mm2~36mm2。同时该产商TOCON-ABC系列可以在1.8pw/cm2~18w/cm2的范围内都有相对应的传感器来监测,能应对各种各样的需求。

  • 电子级水/超纯水 远紫外波段吸光度检测

    电子级水/超纯水 远紫外波段吸光度检测

    [size=24px]电子级水/超纯水 远紫外波段吸光度检测[/size]请教各位大神,对于类似超纯水、半导体行业用水这种水质指标极高的水,远紫外波段(<200nm)吸光度应该如何检测?有几个疑问,请论坛大神解答;1.远紫外波段真空紫外光易被空气吸收,且光程短,如何适配比色皿,排除空气干扰?2.类似安捷伦、lambda这些仪器为什么标称170nm-3300nm都可以检测,但是实际应用中最低只能检测到190nm处?3.为获得特定波长处(如185nm,超纯水TOC降解波段)吸光度,该如何实现?[img=,690,528]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291111198785_2326_5961157_3.jpg!w690x528.jpg[/img]

  • 美打造高强度窄波段X射线激光束

    中国科技网讯 据物理学家组织网日前报道,美国能源部斯坦福直线加速器中心国家加速器实验室的研究人员,采用金刚石细薄片把直线加速器的相干光源转化为手术刀般更精确的工具,以探测纳米世界。改进后的激光脉冲可在X射线波长更窄频带高强度聚焦,开展以前所不能为的实验。该研究结果刊登在《自然·光子学》杂志上。 这个过程被称为“自激注入”,金刚石将激光束过滤为单一的X射线颜色,然后将其放大。研究人员可以在原子水平研究和操纵物质上有更强的能力,传送更为清晰的物质、分子和化学反应的影像。 人们谈论“自激注入”已经近15年,直到2010年斯坦福线性加速器中心成立时,才由欧洲自由电子激光器和德国电子加速器研究中心的研究人员提出,并由来自斯坦福线性加速器中心和阿贡国家实验室的工程队伍将其建立。“自激注入”可潜在地产生更高强度的X射线脉冲,显著高于目前直线加速器相干光源的性能。每个脉冲增加的强度可以用来深入探测复杂的材料,以帮助解答诸如高温超导体等特殊物质或拓扑绝缘体中复杂电子态等问题。 直线加速器相干光源通过接近光速的电子群加速激光束,用一系列磁体将其设定为“之”字路径。这将迫使电子发射X射线,聚集成亮度超过之前10亿倍的激光脉冲。如果没有“自激注入”,这些X射线激光脉冲包含的波长(或颜色)范围比较宽,无法被所有的实验使用。之前在直线加速器相干光源创造更窄波段(即更精确波段)的方法则会导致大量的强度损失。 研究人员在可产生X射线的130米长磁体的中间段安装了一片金刚石晶体,由此创建了一个精确的X射线波段,并且使直线加速器相干光源更像是“激光”。该中心物理学家黄志荣(音译)说:“如果我们完成系统的优化,并添加更多的波荡,所产生的脉冲集中的强度将达10倍之多。”目前世界各地的相关实验室已经趋之若鹜,计划将这一重要进展与自身的X射线激光设施相结合。(记者 华凌) 《科技日报》(2012-09-17 二版)

  • 实现真空紫外波段测量的手段有哪些?

    在直读光谱仪的实际应用中,如C、P、S、As等元素的最优光谱线均在真空紫外波段,而空气中的氧气及水蒸气等会对这些谱线产生强烈的吸收,使光谱强度急剧减弱,影响元素测量,所以应当将光室中的空气除去。 目前主流市场上主要有两种方式可以实现真空紫外波段元素的测量,光室抽真空或充惰性气体(如氩气、氦气等)。 抽真空型的直读光谱仪需要用额外的真空泵,存在油蒸汽污染严重、噪音大等环境问题。同时,功耗高、真空稳定速度慢,仪器需长期开机,浪费严重。 光室充惰性气体能实现真空紫外探测能力的同时,还具有稳定时间短,无噪音等优点,且能避免由于真空系统造成的光室变形、仪器漂移和环境污染等问题,目前,市场主流光谱仪多采用CCD传感器作为检测装置,光室体积可做到很小,更有利于惰性气体环境建立,从而得到更好的紫外元素分析效果,且该项技术已经过十多年市场验证,稳定可靠。

  • 新疆理化所潘世烈团队利用高分辨率太赫兹光谱方法为氟化学晶体结构研究提供新途径

    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。[color=#ff0000]近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔[/color][color=#ff0000]敦[/color][color=#ff0000]、台湾大学教授Hayashi [/color][color=#ff0000]Michitoshi[/color][color=#ff0000]、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。[/color]在本研究中,我们展示了太赫兹(THz)光谱为应对这一挑战提供的强大工具。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO[font=等线][sub][size=13px]2[/size][/sub][/font]F[font=等线][sub][size=13px]2[/size][/sub][/font]阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)[font=等线][sub][size=13px]3[/size][/sub][/font]形成配位共价键,促使硼的电子轨道经历从sp[font=等线][sup][size=13px]2[/size][/sup][/font]到sp[font=等线][sup][size=13px]3[/size][/sup][/font]的转变,形成B(OH)[font=等线][sub][size=13px]3[/size][/sub][/font]F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH[font=等线][sub][size=13px]2[/size][/sub][/font][font=等线][sup][size=13px]+[/size][/sup][/font]优势离去基团。进而,氟离子通过亲核取代路径取代OH[font=等线][sub][size=13px]2[/size][/sub][/font][font=等线][sup][size=13px]+[/size][/sup][/font]基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。[align=center][img=,500,256]https://img1.17img.cn/17img/images/202403/uepic/9cc47a87-9e7a-44a3-a144-71e69f2e9a0d.jpg[/img][/align][align=center]水溶液中硼酸的氟化路径示意图[/align]该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径,而这一过程以前由于结构不明确而受到阻碍。在太赫兹光谱学的启发下,这项工作标志着我们在深入了解氧化物/氢氧化物氟化过程中的精确结构和反应机制方面又向前迈进了一步。。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。[align=center][img=,500,205]https://img1.17img.cn/17img/images/202403/uepic/6715a417-4887-42ca-a47c-044234041f99.jpg[/img][/align][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 国仪量子:成功研制可商用W波段脉冲式电子顺磁共振波谱仪

    [align=center][img]https://img1.17img.cn/17img/images/202404/uepic/c76fabfd-be4f-4b7f-9ef3-3be47874e493.jpg[/img][/align][align=center][color=#7f7f7f]4月2日,国仪量子研发人员正在操作W波段脉冲式电子顺磁共振波谱仪[/color][/align][color=#000000]“W波段脉冲式电子顺磁共振波谱仪的研制成功,使国仪量子成为目前国内能研制生产该类高端科学仪器的厂商。也标志着中国成为继德国之后,第二个有能力研发该型电子顺磁共振波谱仪的国家。”4月2日,国仪量子技术(合肥)股份有限公司传感事业部副总经理石致富站在最新研发的仪器前向记者介绍。[/color][color=#000000]根据揭榜项目任务书的项目目标和考核指标,国仪量子最终任务全部完成,部分指标超额完成。专家组召开验收会议,认为该产品达到了国际先进水平,此攻关任务已经完成。[/color][color=#000000]近年来,安徽在量子信息领域“从0到1”的原始创新不断突破:[/color][color=#000000]目前,安徽集聚量子科技产业链企业60余家、数量居全国首位,全国首条量子芯片生产线建成运行,全国首个量子信息未来产业科技园挂牌运营,量子专利授权量全国领先,以国盾量子、国仪量子、本源量子、问天量子、中电信量子集团等为龙头的量子高新技术企业不断涌现。[/color][color=#000000]安徽发展量子信息等未来产业,具有强劲的科技创新策源能力。[/color][color=#000000]国仪量子在2021年承接了安徽省制造业重点领域产学研用补短板产品和关键共性技术攻关任务,项目针对“W波段电子顺磁共振波谱仪”进行工程化、产品化开发,解决产品化实现涉及到的核心技术难题,研制出用户友好、皮实可靠,可产品化出售的W波段电子顺磁共振波谱仪。W波段电子顺磁共振波谱仪具有高分辨率、高灵敏度的优势,是一种重要的高端科学分析装置,将给生物、化学、物理以及交叉学科等领域提供一项强有力的研究手段,可用于进行蛋白质、RNA、DNA 的结构解析,从而解决生物学、医学、制药学中的关键问题。[/color][color=#000000]得益于中国科学技术大学、合肥国家实验室等高校与科研机构,合肥在量子信息技术的科研领域具有先发优势,为量子科技发展提供了强有力的人才和智力支撑。[/color][color=#000000]“我们团队在量子精密测量领域有着十多年的研究积累,以长相干、多比特、高精度量子操控为核心目标,目前已掌握了世界领先的高保真量子态调控技术、高灵敏度磁探测技术、微波收发技术、高精度扫描钻石探针技术等核心技术。”石致富说。[/color][color=#000000]“揭榜挂帅”是用市场竞争来激发创新活力的一种机制。国仪量子相关负责人表示,“揭榜挂帅”有助于选拔领头羊、先锋队,聚力突破关键共性技术瓶颈,提高制造业自主创新能力,带动产业链上下游的技术进步,强化供应链保障。[/color][color=#000000]未来,国仪量子将持续加强研发投入力度,在核心技术上不断追求更高标准。与用户协同创新,推动技术落地,赋能多个行业的升级发展,在全球量子领域逐渐发出中国声音,也让“安徽身影”更加活跃。[/color][来源:安徽经济网][align=right][/align]

  • 建模过程中光谱波长(波段)变量如何选择?

    [font=宋体]可以采用波长选择方法选择光谱中与目标组分相关的变量。目前,发展了很多波长选择方法,概括起来它们可以分为三大类:波长点选择、波段选择和变量加权的方法。波长点选择方法包括基于单一指标的方法、基于统计学的方法和基于智能优化算法的方法等;波段选择方法主要包括间隔偏最小二乘法、移动窗口偏最小二乘法及它们的衍生化方法;变量加权的方法是波长选择方法的发展与[/font][font=宋体][font=宋体]扩充,它使用全部的波长点,但是给每个变量赋予不同的权重,有变量加权的[/font][font=Times New Roman]PLS[/font][font=宋体]和变量加权的[/font][font=Times New Roman]SVR[/font][font=宋体]等方法。具体方法参考本章第[/font][font=Times New Roman]5[/font][font=宋体]节。[/font][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制