当前位置: 仪器信息网 > 行业主题 > >

离子分子分析质谱仪

仪器信息网离子分子分析质谱仪专题为您提供2024年最新离子分子分析质谱仪价格报价、厂家品牌的相关信息, 包括离子分子分析质谱仪参数、型号等,不管是国产,还是进口品牌的离子分子分析质谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离子分子分析质谱仪相关的耗材配件、试剂标物,还有离子分子分析质谱仪相关的最新资讯、资料,以及离子分子分析质谱仪相关的解决方案。

离子分子分析质谱仪相关的方案

  • 使用 Agilent 8800 电感耦合等离子体串联质谱仪分析 NMP 中痕量的磷
    N-甲基-2-吡咯烷酮 (NMP),化学分子式为 C5H9NO,是一种化学性质稳定的水溶性有机溶剂,广泛应用于制药、石化、高分子科学,特别是半导体行业中。电子级 NMP 通常被半导体生产商用作晶片清洗剂和光刻胶剥离剂,以及用作和晶片表面直接接触的溶剂。这就要求 NMP 中金属(和非金属)污染物的含量尽可能地低。ICP-MS 是测定半导体工艺化学品中痕量金属杂质的首选技术。但对 ICP-MS 技术而言,测定 NMP 中的非金属杂质如硫、磷、硅和氯却是个挑战。这些元素较低的电离效率大大降低了分析信号的强度,与此同时,由 NMP基质中的 N、O 和 C 元素形成的多原子离子造成的高背景信号(计为背景等效浓度,BEC)使这一痕量检测更加雪上加霜。电感耦合等离子体串联质谱仪的高灵敏度和强大的消干扰能力使它特别适合于应对这一应用的挑战。本应用介绍了 Agilent 8800 电感耦合等离子体串联质谱仪 (ICP-MS/MS)在 MS/MS 模式下,测定 NMP 中的 S、P、Si 和 Cl。
  • 使用 Agilent 8800 电感耦合等离子体串联质谱仪分析 NMP 中痕量的硅
    N-甲基-2-吡咯烷酮 (NMP),化学分子式为 C5H9NO,是一种化学性质稳定的水溶性有机溶剂,广泛应用于制药、石化、高分子科学,特别是半导体行业中。电子级 NMP 通常被半导体生产商用作晶片清洗剂和光刻胶剥离剂,以及用作和晶片表面直接接触的溶剂。这就要求 NMP 中金属(和非金属)污染物的含量尽可能地低。ICP-MS 是测定半导体工艺化学品中痕量金属杂质的首选技术。但对 ICP-MS 技术而言,测定 NMP 中的非金属杂质如硫、磷、硅和氯却是个挑战。这些元素较低的电离效率大大降低了分析信号的强度,与此同时,由 NMP基质中的 N、O 和 C 元素形成的多原子离子造成的高背景信号(计为背景等效浓度,BEC)使这一痕量检测更加雪上加霜。电感耦合等离子体串联质谱仪的高灵敏度和强大的消干扰能力使它特别适合于应对这一应用的挑战。本应用介绍了 Agilent 8800 电感耦合等离子体串联质谱仪 (ICP-MS/MS)在 MS/MS 模式下,测定 NMP 中的 S、P、Si 和 Cl。
  • 使用 Agilent 8800 电感耦合等离子体串联质谱仪分析 NMP 中痕量的硫
    N-甲基-2-吡咯烷酮 (NMP),化学分子式为 C5H9NO,是一种化学性质稳定的水溶性有机溶剂,广泛应用于制药、石化、高分子科学,特别是半导体行业中。电子级 NMP 通常被半导体生产商用作晶片清洗剂和光刻胶剥离剂,以及用作和晶片表面直接接触的溶剂。这就要求 NMP 中金属(和非金属)污染物的含量尽可能地低。ICP-MS 是测定半导体工艺化学品中痕量金属杂质的首选技术。但对 ICP-MS 技术而言,测定 NMP 中的非金属杂质如硫、磷、硅和氯却是个挑战。这些元素较低的电离效率大大降低了分析信号的强度,与此同时,由 NMP基质中的 N、O 和 C 元素形成的多原子离子造成的高背景信号(计为背景等效浓度,BEC)使这一痕量检测更加雪上加霜。电感耦合等离子体串联质谱仪的高灵敏度和强大的消干扰能力使它特别适合于应对这一应用的挑战。本应用介绍了 Agilent 8800 电感耦合等离子体串联质谱仪 (ICP-MS/MS)在 MS/MS 模式下,测定 NMP 中的 S、P、Si 和 Cl。
  • 使用 Agilent 8800 电感耦合等离子体串联质谱仪分析NMP中痕量的硫、磷、硅和氯
    S、P、Si 和 Cl 对四级杆 ICP-MS 分析都是极具挑战性的元素,而对 NMP 这样的有机基质,这些元素的检测会更加困难。使用 Agilent 8800 电感耦合等离子体串联质谱仪,在其独特的 MS/MS 模式下采用质量转移方法,对所有分析物都获得了很低的 BEC,充分展示了 ICP-MS/MS 在应对 ICP-MS 领域最具挑战的应用中表现出的灵活性和优越的性能。
  • 应用具有扩展质量数范围的三重四 极杆质谱仪对高质荷比多肽离子进 行常规分析
    前言使用液相色谱/三重四极杆质谱仪对蛋白质进行常规的高通量定量分析时,我们将多肽作为相应蛋白质的替代物。选择独特的多肽以及适合每种目标多肽的MRM 离子对是分析成功的关键步骤。考虑到仪器质量数范围限制,分析时通常不会选择具有高 m/z 母离子或子离子的多肽。但是,若要解决生物学问题,此类多肽也许能提供关键信息,甚至可能是唯一的分析选择。此类例子包括具有大型疏水性跨膜结构域的膜蛋白、带有多种翻译后修饰结构的蛋白质,以及内源性多肽等等。
  • 使用 Agilent 8800 电感耦合等离子体串联质谱仪分析 NMP 中痕量的氯
    N-甲基-2-吡咯烷酮 (NMP),化学分子式为 C5H9NO,是一种化学性质稳定的水溶性有机溶剂,广泛应用于制药、石化、高分子科学,特别是半导体行业中。电子级 NMP 通常被半导体生产商用作晶片清洗剂和光刻胶剥离剂,以及用作和晶片表面直接接触的溶剂。这就要求 NMP 中金属(和非金属)污染物的含量尽可能地低。ICP-MS 是测定半导体工艺化学品中痕量金属杂质的首选技术。但对 ICP-MS 技术而言,测定 NMP 中的非金属杂质如硫、磷、硅和氯却是个挑战。这些元素较低的电离效率大大降低了分析信号的强度,与此同时,由 NMP基质中的 N、O 和 C 元素形成的多原子离子造成的高背景信号(计为背景等效浓度,BEC)使这一痕量检测更加雪上加霜。电感耦合等离子体串联质谱仪的高灵敏度和强大的消干扰能力使它特别适合于应对这一应用的挑战。本应用介绍了 Agilent 8800 电感耦合等离子体串联质谱仪 (ICP-MS/MS)在 MS/MS 模式下,测定 NMP 中的 S、P、Si 和 Cl。
  • 利用四极杆飞行时间质谱仪LCMS-9030分析食品容器中添加剂
    通过使用四极杆飞行时间液相色谱质谱仪LCMS-9030和LabSolutions Insight Explore、ACD/MS Structure ID Suite等分析软件,实现了包括检测、定性及定量高分子材料中所含功能性添加剂的工作流程。可期待为合成高分子材料进一步有效开发、改良做出贡献。
  • 离子阱飞行时间串联质谱定性分析玉米赤霉醇及杂质
    本文在研究α‐玉米赤霉醇(α‐zearalanol)标准物质时,采用高效液相色谱/离子阱-飞行时间/串联质谱仪(HPLC‐IT‐TOF MS)对其中杂质进行定性鉴定。高效液相色谱/离子阱-飞行时间/串联质谱仪是将高效液相色谱和离子阱质谱仪(IONS TRAP)以及飞行时间质谱仪(TOF MS)串联起来,使其在准确质量数和灵敏度方面较之其它多级质谱有较大提高,仪器具备高分辨率性能,能够准确提供分子和碎片离子的结构信息。由HPLC‐IT‐TOF MS 得到杂质的多级谱,对碎片裂解规律进行了探索,利用TOF较高的质量准确度,推测了杂质的可能结构,并用标准品对方法进行验证,结果表明,高效液相色谱/离子阱-飞行时间/串联质谱方法对杂质定性分析是很有效的。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的碘化乙烯
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的碘乙酸乙酯
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的碘乙醛
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 使用 Agilent 6550 Q-TOF 质谱仪进行完整蛋白质分析
    生物制药行业已将 LC/MS 广泛应用于治疗性蛋白质的分子量确定。这种方法快速、准确,可实现相对定量。准确的质量测量有助于确定预期的翻译后修饰 (PTM) 是否表达为正确的蛋白质序列,其还提供了同一样品中不同蛋白质或 PTM 的相对丰度。高分离度和高灵敏度质谱仪有利于这一分析的进行。本应用简报介绍了一种使用 Agilent 6550 Q-TOF 质谱仪进行的完整蛋白质分析。
  • 伯东Pfeiffer 残余气体分析质谱仪应用于分子束外延系统
    分子束外延(MBE)是一种晶体生长技术,将半导体衬底放置在超高真空腔体中,和将需要生长的单晶物质按元素的不同分别放在喷射炉中,由分别加热到相应温度的各元素喷射出的分子流能在衬底上生长出极薄的,可薄至单原子层水平,单晶体和几种物质交替的超晶格结构。分子束外延主要研究的是不同结构或不同材料的晶体和超晶格的生长。该方法生长温度低,能严格控制外延层的层厚组分和掺杂浓度。分子束外延系统对真空度要求及其高,对真空腔体的密封性、材料放气率、微量杂质气体和水蒸气比较敏感,本系统采用上海伯东德国 Pfeiffer 残气质谱仪 QMG 对超高真空腔体进行检漏,及材料放气组分及水汽进行分析,确保超高真空及真空的稳定性,对晶格的生长起到很好的作用。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的消毒副产物
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的氯碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的二碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的一溴二碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 使用Open Access大气压气相色谱-质谱联用系统(APGC-MS)进行小分子 反应监测
    使用APGC实现“软”电离,生成[M+H]+离 子,然后进行自动化化合物目标解析。 鉴定化学反应中的目标化合物是药物化学实验室中化学家面临的一个主要挑战。使用自助式分析应用快速获得这种化合物的反应信息,对于现代研究部门来说具有重要价值。大气压气相色谱(APGC)是一种支持将气相色谱仪与配备大气压化学电离(APCI)源的质谱仪联用的离子源。它将GC分离与软电离相结合,通常产生分子离子或准分子离子。该系统与带OpenLynx的MassLynx软件相结合,是监测和鉴定小分子的一款强大工具。 通过质子化电离条件下的自动化解析过程,发现化合物目标匹配[M+H]+。 该应用针对在电喷雾电离(ESI)条件下,未表现出最佳响应的化学中间体和化合物进行了优化。APGC-MS系统与自动化解析和报告过程相结合,为研究化学家提供了一款非常强大的自助式分析应用工具。本应用纪要的目的是展示自助式APGC-MS为监测化学反应带来的速度和易用性优势。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的二氯碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用 Orbitrap 高分辨质谱仪分析水中的碘甲烷
    • 本次测试应用 Q Exactive GC 系统成功对经消毒处理后的水样提取物中的碘化 DBPs 进行了检测分析。• 测试样品中检测到大量离子流色谱峰,通过应用 TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化 DBPs 含量显著高于经氯化反应处理的样品。• 将采集到的 EI 数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。• 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。• 本文所采用的 Q Exactive GC 质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知 DBPs 进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。• 峰宽为 3 秒。图 5 展示了不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200 处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,图 6 展示了在质量分辨率为 60,000 时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于 0.3 ppm。
  • 应用气相色谱联用Orbitrap高分辨质谱仪分析水中的消毒副产物
    本次测试应用Q Exactive GC系统成功对经消毒处理后的水样提取物中的碘化DBPs进行了检测分析。 测试样品中检测到大量离子流色谱峰,通过应用TraceFinder 软件的精确质量过滤功能单独分离出含碘化合物。暴露于氯胺反应的样品中的碘化DBPs含量显著高于经氯化反应处理的样品。 将采集到的EI数据与现有商业化标准谱图库相匹配,可鉴定目标化合物结构。重要的是,通常情况下,有很多检测到的化合物并未被此类标准谱图库收录,这时唯有通过稳定的亚-ppm 级质量精度测定结果才能够对未知化合物进行准确的元素组成及化学结构推测。 此外,以甲烷作为反应气体的正化学电离的软电离模式可用于确证化合物的分子离子。 本文所采用的Q Exactive GC质谱仪以及化合物检测鉴定流程可对经消毒处理水样中的未知DBPs进行快速检测和可信鉴定,有助于研究人员对未知化学物质进行可靠的、及时的分析报告。 峰宽为3秒。不同质量分辨率条件下,同一色谱峰的扫描点数的变化,即使在最高质量分辨率(120,000 FWHM 在 m/z 200处)下,仪器仍然能够采集到足够的扫描点用于准确的峰面积积分计算。此外,在质量分辨率为60,000时,色谱峰中每个扫描点的质量精度,所有点均保持稳定良好的质量精度,偏差均小于0.3ppm。
  • 使用MALDImini-1紧凑型MALDI数字离子阱质谱仪进行微生物鉴定
    本文应用紧凑型MALDI数字离子阱质谱仪MALDImini-1结合微生物质谱数据库对2种常见的微生物(大肠埃希菌和金黄色葡萄球菌)进行检测。通过简单的样品前处理,成功鉴定2个标准菌株,结果与预期相符。分析过程具有分析成本低、速度快、结果准确可靠的特点。MALDImini-1作为紧凑型基质辅助激光解吸电离数字离子阱质谱仪,体型精巧、功能全面,在微生物快速检测和分析领域的发展未来可期。
  • 遵循 SANTE/11945/2015 指导文件采用 GC Orbitrap 质谱仪对西红柿中乙嘧酚磺酸酯农药进行定量分析的常规方法
    本研究结果表明,与 TraceFinder 软件配用的 Thermo Scientific Exactive GC Orbitrap 高分辨率质谱仪是一个高性能的分析系统,可在完全遵循 SANTE 指导文件的前提下,针对果蔬中的常规农药分析,提供稳定的、高灵敏度的分析定量性能。
  • 遵循 SANTE/11945/2015 指导文件采用 GC Orbitrap 质谱仪对韭葱中乙嘧酚磺酸酯农药进行定量分析的常规方法
    本研究结果表明,与 TraceFinder 软件配用的 Thermo Scientific Exactive GC Orbitrap 高分辨率质谱仪是一个高性能的分析系统,可在完全遵循 SANTE 指导文件的前提下,针对果蔬中的常规农药分析,提供稳定的、高灵敏度的分析定量性能。
  • Prelude SPLC和TSQ Endura质谱仪联用技术研究分析人血清中睾酮的评估
    本文成功评估了Prelude SPLC系统与TSQ Endura质谱仪联用技术采用在线和离线两种样品净化方法分析人血清中的睾酮的方法性能。Prelude SPLC系统提供了两种快速LC方法,在线净化方法和离线净化方法分别只需要4分钟和6.5分钟。两种方法的基质效应都很小。TSQ Endura质谱仪的高灵敏度为两种方法提供了很低的定量检出限。
  • 利用 Agilent 8800 电感耦合等离子体串联质谱仪消除氢化物离子 (MH+) 对稀土元素的干扰
    Agilent 8800 电感耦合等离子体串联质谱仪(也称为 ICP-MS/MS)因其独特的 MS/MS 反应模式而能提供卓越的反应池性能。第一个主四极杆 (Q1) 位于八极杆反应池系统 (ORS3) 的前面,作为 1 amu 质量过滤器严格控制进入反应池的离子。只有具有目标分析物质量数的离子才能进入反应池;而所有其他质量数则被排除。由于等离子体和基质中的干扰离子被 Q1 消除,池内的反应过程大为简化而且更容易预测,使得 Agilent 8800 ICP-MS/MS 可以广泛应用于解决棘手的干扰问题。本应用简报将介绍消除 MH+ 对稀土元素 (REE) 的干扰。
  • 高灵敏光电离飞行时间质谱仪用于直接检测ppbv级短链正烷烃
    在这项工作中,高灵敏光电离飞行时间质谱仪使用基于VUV Kr灯新型高压光电子诱导O2+阳离子化学电离离子源,空气分子在双电场电离区的光电子电离产生了高强度的O2+反应物离子。当离子源压力从88升高到1080Pa时,C3−C6 正烷烃的准分子离子[M−H]+逐渐在质谱中占主导地位,信号强度提高了3个数量级以上。结果表明,对丙烷、正丁烷、正戊烷和正己烷的检出限分别降低到0.14、0.11、0.07和0.1ppbv。
  • 探究地球历史——用于地球科学的惰性气体质谱仪
    由于高质量要求,BGC 选择普发真空作为其惰性气体质谱仪生产线真空设备的合作伙伴。这些系统对所需的真空解决方案寄予很高的要求,因为它们在技术上很成熟,具有体积小、便于携带的特点。最重要的是要完成所需的 UHV,其极限底压要求为较低的1· 10-9 至中等 1· 10-10 hPa 范围。间或,抽吸系统也必须能够处理样品装载过程中遇到的更大气体负荷。由于 BGC 和普发真空曾经长期密切合作过,普发真空非常了解 BGC 研究的要求和领域。得益于这一条件,再加上与研究所的密切合作,从而可以开发出定制、独特的真空解决方案。普发真空的解决方案对于这种应用,稀有气体样品制备作业线和惰性气体质谱仪均需要UHV 系统。这种真空水平已经通过使用涡轮分子泵系统、离子和非蒸散型吸气泵以及应用低温分离技术获得了。为完全满足客户对样品制备作业线的要求,普发真空 HiCube Eco系统被选作主要泵系统。这个解决方案的决定性参数是:■ 紧凑的尺寸■ 简化布线和控制■ 能够远程安装控制单元■ 能够操作冷阴极真空计■ 无与伦比的低能耗(高真空模式下为 20 W)■ 高性价比将普发真空 HiCube Eco 集成到样品制备作业线底盘特别方便。显示控制单元可以轻松地从泵组拆除,并安装在样品制备底盘的顶部附近,以使控制单元在该系统中的定位更合人体工程学,更方便操作人员。而且,HiCube Eco 标准配置的 MVP 015-2 隔膜泵为客户及其应用提供额外的好处。只要 HiCube Eco 中的 HiPace 80 涡轮分子泵处于低功耗状态,隔膜泵将就会进入睡眠模式,自动关闭。因此,这种泵的有效性不是体现在组件的操作和记录时间上。这样提高了隔膜的寿命并节省电力,两者均降低了系统的运行成本。此功能还降低了系统的整体噪声和振动。虽然涡轮分子泵系统通常处于待机模式下,但需求增加时,它能够快速、可靠地响应。凭借该解决方案,普发真空完全符合伯克利地质年代学中心的高要求,并成功进行了密切、可靠的合作。
  • 探索新一代的金属元素分析质谱仪-飞行时间质谱
    近年来,人们对采用飞行时间质谱仪来进一步提升ICP-MS技术并扩展其能力的兴趣日益浓厚起来。飞行时间质 谱的最大优势在于,它是同时进样的质量分析。这种同时性,允许采用最精确的内标法和同位素比率校正法,还可 以进行瞬时信号多元素分析、元素指纹图谱分析以及领先的可回溯分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制