当前位置: 仪器信息网 > 行业主题 > >

锂电池隔膜透气度仪

仪器信息网锂电池隔膜透气度仪专题为您提供2024年最新锂电池隔膜透气度仪价格报价、厂家品牌的相关信息, 包括锂电池隔膜透气度仪参数、型号等,不管是国产,还是进口品牌的锂电池隔膜透气度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锂电池隔膜透气度仪相关的耗材配件、试剂标物,还有锂电池隔膜透气度仪相关的最新资讯、资料,以及锂电池隔膜透气度仪相关的解决方案。

锂电池隔膜透气度仪相关的论坛

  • 旭精工王研式透气度仪的校准用具和测试方法都有哪些?

    旭精工王研式透气度仪的校准用具和测试方法都有哪些?

    [b][color=#ff0000] 日本旭精工王研式EGO1-55-1MR透气度仪,有哪些校准用具?该怎么样校准试验?[/color][/b]测试方法在被规定的条件下,每单位面积,每单位压力差及单位时间通过的平均空气。*王研式测试法和格力式测试法的区别和特长在哪里?格利式(JIS方式): 在每1平方英寸,100CC的空气通过纸面的秒数(格利秒) ISO 5635-5 ※制造厂商:格利公司(美)王研式:一定加压的条件下,基准面和试验片表面流过的空气流量用供给气压的压力变化来测量。( 格利的记秒或者压力指数(ISO单位)都可以表示)王研式测试法跟格利式比较,测试时间快。 ※格利式对于1平方英寸,需要等100CC的空气通过完。但,王研式经过压力测试所以可以缩短时间(约1/50分)格利式・ 王研式(秒・ ISO)两者都可以表示。测试精度也是比格利式优越。 ※格利式 误差范围 ±10% 王研式 误差范围 ± 2%旭精工王研式透气度仪在造纸行业里,被使用为纸的密度・ 质地・ 吸水性及印刷等管理的手法之一。最近在锂电池材料之一的隔膜里面使用的也非常广泛。还有,纸・ 过滤器・ 高分子膜・ 不织布等领域也使用的非常广泛。[img=旭精工,638,652]http://ng1.17img.cn/bbsfiles/images/2018/04/201804041104528330_5290_3234046_3.png!w638x652.jpg[/img][b][color=#ff0000]在校准方面,旭精工王研式透气度仪需要用到哪些工具呢?[/color][color=#ff0000]1测试的用的胶板 2管子[/color][color=#ff0000][img=旭精工校准工具,686,811]http://ng1.17img.cn/bbsfiles/images/2018/04/201804041109132630_7047_3234046_3.jpg!w686x811.jpg[/img][/color][/b][color=#ff0000][b]最后,当旭精工配件需要更换时,哪里可以购买到正规,原产的配件和测试工具呢?[/b][/color][color=#ff0000][b]配件如何更换?[/b][/color][color=#ff0000][b][/b][/color][b][color=#ff0000][/color][/b]

  • 电池隔膜的质量控制方法

    随着信息、材料和能源技术的进步,锂离子电池以其高比能量、长循环寿命、无记忆效应、安全可靠以及能快速充放电等优点而成为新型电源技术研究的热点。电池隔膜作为锂离子电池的重要组成部分,在电池中起着防止正、负极短路,同时在充放电过程中提供离子运输通道的作用。其性能的优劣决定了电池的界面结构内阻,进而影响电池的容量、循环性能、充放电电流密度等关键特性。Labthink兰光接下来结合透气性测试仪、智能电子拉力试验机、测厚仪及热缩试验仪对电池隔膜的透气性能、耐穿刺性能、拉伸强度、厚度及热收缩性能检测进行简要的介绍。一、电池隔膜透气性能电池隔膜是指在锂离子电池正极与负极中间的聚合物隔膜,其主要作用有:隔离正、负极并使电池内的电子不能自由穿过;让电解质液中的离子在正负极间自由通过。隔膜的存在首先要满足它不能恶化电池的电化学性能,主要表现在内阻上。通常内阻的大小通过其透气率来表征,或者称之为Gurley数,即一定体积的气体,在一定压力条件下通过一定面积的隔膜所需要的时间。对于相同的电池隔膜,这个数值从一定意义上来讲,和用此隔膜装配的电池的内阻成正比,即该数值越大,则内阻越大。Labthink兰光的BTY-B1P透气性测试仪,采用计算机控制,三测试腔设计,压力差可调,人机交互友好,测试效率高,可满足各种客户对于电池隔膜透气性测试的要求。二、电池隔膜耐穿刺性能及拉伸强度锂电池在使用过程中电池内部会逐渐形成枝状晶体,有可能刺破隔膜,造成内部微短路。在制造过程中由于电极表面涂覆不够平整、电极边缘有毛刺等情况,以及装配过程中工艺水平有限等因素,都要求电池隔膜具有相当的穿刺强度。另外,电池隔膜的拉伸强度也是影响其应用的一个重要因素,如果隔膜在使用过程中破裂,就会发生短路,降低成品率。Labthink兰光的XLW(PC)智能电子拉力试验机,该机具备拉伸强度与变形率、剥离强度,热合强度,撕裂等7项测试功能,并且这些功能均采用菜单式界面,选择相应检测功能,即可执行标准规定的检测。配合专用的测试夹具,还可以对电池隔膜进行刺破性能测试,是目前行业中最为专业的仪器。三、电池隔膜厚度电池隔膜的厚度是否均匀是检测其各项性能的基础。厚度不均匀,会影响到透气率、拉伸强度等性能,对厚度实施高精度控制也是确保质量与控制成本的重要手段。Labthink兰光的CHY-CA测厚仪,采用目前世界测量领域最先进的技术成果,确保测量结果的高精确性,多次测量结果的高度一致性;并且操作调试极其方便,几近于自动化操作,最大限度地减少了人为因素对测量结果带来的影响。该仪器具有手动、自动两种测量模式,对于手动模式测量,可打印输出测量结果;对于自动模式测量,可按照预先设置好的次数自动测试,并对测量结果进行统计、分析、打印输出;接触面积、测量压力、移动速度等严格遵循相关标准的规定。四、电池隔膜热收缩性在电池生产过程中由于电解液对水分非常敏感,大多数厂家会在注液前进行85℃左右的烘烤,要求在这个温度下电池隔膜的尺寸也应该稳定,否则会造成电池在烘烤时,隔膜收缩过大,极片外露造成短路。Labthink兰光的RSY-R2热缩试验仪,采用微电脑控制,PID温度控制,液体加热介质,温度控制精确,受热均匀,用于电池隔膜、热缩管、背板等材料在多种温度下进行热收缩性能及尺寸稳定性的精准测试。当然确保了电池隔膜的透气性能、耐穿刺性能、热收缩性能等指标合格后,还需要对其他的一些指标如浸润度、化学稳定性、孔径及分布、闭孔温度、破膜温度、孔隙率等进行控制,以确保其使用适应性。 以上资料由济南Ulab优班检测提供更多资料www.ulab.cn

  • 【分享】锂电池材料构成主要有哪些?锂电池主要材料简单介绍

    [font=&]锂电池是一类由锂金属或锂合金为正/负极材料、使用非水电解质溶液的电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。随着科学技术的发展,锂电池已经成为了主流。[/font][font=&]一、锂电池材料构成主要有哪些[/font][font=&]碳负极材料:实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。[/font][font=&]锡基负极材料:锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。没有商业化产品。[/font][font=&]氮化物:没有商业化产品。[/font][font=&]合金类:包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金 ,也没有商业化产品。[/font][font=&]纳米级:纳米碳管、纳米合金材料。[/font][font=&]纳米氧化物:根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大地提高锂电池的充放电量和充放电次数。[/font][font=&]二、锂电池的四大主要材料[/font][font=&]锂电池材料构成主要包括正极材料、负极材料、隔膜和电解液。[/font][font=&]1、正极材料:在锂电正极材料当中,最常用的材料有钴酸锂,锰酸锂,磷酸铁锂和三元材料(镍钴锰的聚合物)。[/font][font=&]2、负极材料:在负极材料当中,目前锂电池负极材料主要以天然石墨和人造石墨为主。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡合金、纳米负极材料,以及其他的一些金属间化合物等。[/font][font=&]3、隔膜:市场化的隔膜材料主要是以聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)为主的聚烯烃(Polyolefin)类隔膜。锂电池的结构中,隔膜是关键的内层组件之一。[/font][font=&]4、电解液:电解液由高纯度的有机溶剂、电解质锂盐、必要的添加剂等原料,在一定条件下、按一定比例配制而成的。[/font]

  • 纸张极低透气度测试仪

    希望找到一款应用于日常测试的透气度测试仪。因纸张透气性极低,与塑料隔膜差不多。要求单个测试时间<1min,测试面积>1cm2。仪器的测试重现性好。

  • 【求助】谁有锂电池方面的书籍啊

    那位大哥 能个小弟提供一些锂电池方面的资料吗?现在我急需这方面的资料,可是在一般的书店你没得买?苦啊~关于 LiCoO2 LiFeO4 LiMnO4 等方面的资料 真的很难找啊还有电解液 隔膜 等等 我的邮箱batteryzhang@sohu.com

  • 电池薄膜的重要性

    隔膜是构成电池的基本材料之一,置于电池的正负电极之间,有利于提高电池的比容量和比能量,降低电池的内阻。好的电池隔膜对于电子绝缘性、离子导电性、材料的厚度和均匀性、力学强度、耐碱性、透气性以及电化学稳定性都有要求。电池结构 电池主要由正极、负极、隔板、电解液四部分构成,隔膜是特殊形式的隔板。在使用隔膜之前,浆糊纸曾用作隔板广泛应用于糊式电池和纸板电池中,当电池工业发展到碱性电池、二次电池之后,以前的浆糊纸已经无法满足电池设计的要求,在多种指标上均占优势的 隔膜就成为主要使用的隔板了。电池隔膜的作用 电池隔膜是电池结构中最重要的一部分,它作为电池的正负极之间的隔离板,首先它必须具备良好的电绝缘性,其次由于它在电解液中处于浸湿状态,必须具备良好的耐碱性,并且要有良好的透气性等。因此电池制造商在选择隔膜时多选用在较广的温度范围内(-55℃~85℃)保持电子稳定性、体积稳定性、和化学稳定性,对电子呈高阻,对离子呈低阻,便于气体扩散的尽量薄的隔离板。 隔膜性能的好坏在很大程度上将影响电池的循环寿命和自放电状况,隔膜孔洞、厚度、阻抗的设计也成为判别电池品质好坏的重要指标。对于镍氢电池,如果隔膜的透气性不好,电池过充时正极产生的氧气可能无法被快速复合掉,造成电池内压升高,当压力升高达到一定值后将从安全阀泄压从而造成电解液的损失;隔膜透气性好将有利于电池的氧复合顺利进行,增加电池的耐过充性能。对于锂电池,如果隔膜的透气性不好,将影响锂离子在正负极之间的传递,继而影响锂电池的充放电。对于锂离子电池用隔膜,基本性能参数如下:1、厚度:2、透气率:3、浸润度:4、化学稳定性:5、孔径及分布:一般来说,隔膜为了阻止电极颗粒的直接接触,很重要的一点是防止电极颗粒直接通过隔膜。目前所使用的电极颗粒一般在10微米的量级,而所使用的导电添加剂则在10纳米的量级,不过很幸运的是一般炭黑颗粒倾向于团聚形成大颗粒。一般来说,亚微米孔径的隔膜足以阻止电极颗粒的直接通过,当然也不排除有些电极表面处理不好,粉尘较多导致的一些诸如微短路等情况。6、穿刺强度:7、热稳定性:8、闭孔温度、破膜温度:9、孔隙率:目前,锂离子电池用隔膜的空隙率为40%左右。孔隙率的大小和内阻有一定的关系,但不同种隔膜之间的孔隙率的绝对值无法比较市场情况:目前隔膜供应商主要为以下几家:美国:Celgard(三层PP/PE/PP),Entek(单层PE)荷兰:DSM(单层PE)德国:Degussa(为无机有机复合膜,较厚,主要适用于动力型大电池)日本:Asahi,Tonen(单层PE),UBE(三层PP/PE/PP)此外国内有三到五家在做,但目前产品性能还不尽人意。国内制作的目前主要有以下一些问题:1、孔隙率不够:2、厚度不均3、有针孔4、均匀度不够5、强度不够总结:理想的电池隔膜孔径值应该在100nm左右,但目前国产的电池隔膜孔径值仅在几微米,这就要要求有专业的测试仪器进行相关研究开发,以满足国内市场的空缺。

  • 锂电池交流内阻测试解决方案

    锂电池的内阻是电池性能评估的重要指标之一,已广泛应用于电动汽车系统、储能系统、电子设备和新能源产业等多领域,所以对于锂电池性能参数的快速测试也有了大量需求。内阻影响着锂电池功率性能和放电效率,随着存储时间的增加,电池不断老化,其内阻不断增大。不同类型的锂电池内阻变化程度不同,其初始的内阻大小主要受电池的结构设计、原材料性能和制程工艺的影响。通过测试内阻,可以全面评估电池在高功率应用下的性能表现,是衡量功率性能和寿命的关键参数。因此,内阻的合理控制和优化是提高电池品质、性能和可靠性的重要手段,对锂电池内阻的持续关注和有效管理是不可忽视的重要议题。通过精准测试和控制锂电池内阻,可以更好地满足不同应用场景对电池性能和品质的要求,推动电池技术的不断创新与进步。[img=锂电池内阻测试.png]http://uphotos.eepw.com.cn/1693205920/pics/1712640743873053.png[/img][b]锂电池的内阻[/b]是指电池在工作时,电流通过电池内部时所遇到的电阻。内阻的大小直接影响电池的性能,包括放电效率、温升情况以及电池的寿命。锂电池内阻通常分为欧姆内阻和极化内阻两部分。其中欧姆内阻由电池的总电导率决定,极化内阻由锂离子在电极活性材料中的固相扩散系数决定。[b]欧姆内阻:[/b] 由电极材料、电解液、隔膜电阻以及各部分零件的接触电阻所构成。它是电流通过电池时产生的电阻。极化内阻: 是指电化学反应时由极化引起的电阻,包括电化学极化内阻和浓差极化内阻。两者共同影响电池内阻的变化。[b]解决方案分享[/b]锂电池内阻测量可采用[b]直流内阻测量方法(DCR)和交流内阻测量方法(ACR)两种[/b]。[b]直流内阻测量方法[/b]是测试设备让电池在短时间内(一般为2~3秒)强制通过一个很大的恒定直流电流(一般使用40A~80A的大电流),测量此时电池两端的电压,并按公式计算出当前的电池内阻。通过公式计算出电池的直流内阻。然而,这方法存在一些问题,如果长时间通过大电流电池内部的电极会发生极化现象,出现极化内阻,影响结果的可靠性。另一种[b]交流内阻测量方法[/b]是通过在电池正负极注入正弦波电流信号,同时通过另外两端在电池正负极检测得到正弦波电压信号,进而可以推导出电池的交流内阻。交流内阻测试通入的电流较小,一般为50mA,且测量时间短,一般发生在毫秒级。现如今交流内阻测量方法得到了广泛的认可,并在实际应用中得到了较多的采用。但无论哪种方法,都存在一些很容易被我们忽视的问题,那就是测试仪器本身的元件误差和用于连接电池的测试线缆问题。一条短短的从仪器到电池的连接线本身也存在电阻(大约也是微欧级),还有电池与连接线的接触面也存在接触电阻,这些都将影响测试结果的准确性。[img=锂电池内阻测试方案图.png]http://uphotos.eepw.com.cn/1693205920/pics/1712640865761075.png[/img]由此可见在测量锂电池交流内阻时,采用高精度的测量仪器至关重要。SBT300电池测试仪是一款高精度、高分辨率的电池测试仪。采用交流四端子测试方法,可更精准地测试锂电池的内阻和电压。电阻最小分辨率可达0.1μΩ,电压最小分辨率可达10μV。内建比较器功能,可自动判断电池参数是否符合标准,以便统计合格率,适合各种电池的检测和分拣。仪器具有RS-232C/LAN通讯接口,支持SCPI通讯协议。为手机锂电池、动力电池、储能电池等各种应用场景提供精准测试支持。[b]主要优势[/b]1、比较器功能:电池测试仪SBT300中的电压和交流内阻测量分别具备独立的比较功能,能够同时进行Pass/Hi/IN/Lo的判断并在画面上显示,且可以向外部I/O口输出综合判断结果。2、模拟输出功能:电池测试仪SBT300可以进行交流内阻测量值的模拟输出,通过将模拟输出量连接到数据记录仪上,记录交流内阻值的变化,便于使用数据采集仪进行需要长期记录的测量和电池的评估等。3、统计功能:电池测试仪SBT300可以根据测量结果计算统计指标,绘制正态分布图,观察测量结果的正态分布情况。4、存储功能:电池测试仪SBT300内置2.8G存储空间,测量结果可以使用csv格式或者mat格式存储到仪器内存,并且提供USB接口,能够通过外接U盘导出数据,随时查看相应时间的测量结果。

  • 【资料】锂电池知多少

    【资料】锂电池知多少

    [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908301013_168389_1610969_3.jpg[/img]锂电池[color=#DC143C]目录[/color]锂电池的概述 锂电池的特点 锂电池的结构 锂电池的应用 锂电池的研究 锂离子电池的作用 锂离子电池发展史 锂离子电池发展前景 锂电池的概述锂电池的特点锂电池的结构锂电池的应用锂电池的研究锂离子电池的作用锂离子电池发展史锂离子电池发展前景• 电池的基本性能• 锂离子电池的特征• 锂电池的保护电路• 简易充电电路• 单节锂电池的应用举例• 锂电池的保存• 注意事项• “超级”锂电池

  • 锂电池过度充电测试

    锂电池以其能量密度高等特点,广泛应用于工业自动化、新能源汽车、消费电子产品等领域。然而,在日常使用中,电池过度充电等问题时有发生,这可能对电池造成不可逆的损害,轻则缩短电池寿命或导致彻底失效,重则可能引发电池燃烧爆炸,危及电气设备和人员安全。为确保锂电池在使用和运输过程中的安全性,必须进行严格的测试和检测,以评估其对过度充电的承受能力。其中,UN38.3过度充电测试是锂电池在运输前必须通过的安全检测,由联合国发布,具备高度的公信力。在锂电池行业中,注重安全标准和测试的重要性,是为了推动科技发展的同时,最大程度地降低潜在的风险和安全隐患。通过这一测试,可以有效避免用户在使用锂电池时发生意外,保障设备和人员的安全。[align=center][img=,690,411]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181624110174_6281_6387980_3.png!w690x411.jpg[/img][/align][b]什么是UN38.3(可充电型锂电池操作规范)[/b]UN38.3(可充电型锂电池操作规范)是联合国危险物品运输专门制定的《联合国危险物品运输试验和标准手册》的第3部分38.3款,为确保锂电池在运输前的安全性,规定了一系列严格的测试要求。这些测试包括高度模拟、高低温循环、振动试验、冲击试验、55℃外短路、撞击试验、过度充电试验、强制放电试验等。如果锂电池与设备没有安装在一起,并且每个包装件内装有超过24个电池芯或12个电池,则还须通过1.2米自由跌落试验。[b]解决方案[/b]在这些测试中,过度充电试验是其中难度较大的一项。该测试要求在2倍最大连续充电电流和2倍最大连续充电电压的条件下,将待测锂电池连续充电24小时。测试的主要目的是评估锂电池对过度充电的承受能力,要求电池在过度充电过程中及之后七天内没有发生电池解体或燃烧爆炸的情况。这一系列的测试确保了锂电池在运输过程中的高度安全性,尤其是过度充电试验,关系到用电设备与用户的安危,具有极其重要的意义。为应对UN38.3标准中的过度充电测试。利用直流电源为电池进行持续供电,同时结合SBT300电池测试仪,全面监测电池充电过程中的电压、交流内阻等关键参数。通过这些先进的测试设备,工程师能够深入分析锂电池的衰化效应和稳定性,为研发制造更加安全可靠的锂电池提供有力支持。[align=center][img=,690,460]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181625312538_6416_6387980_3.png!w690x460.jpg[/img][/align][b]主要优势[/b]交流四端子法测量:SBT300电池测试仪采用交流四端子法测量交流内阻和电压,能够分离提供电流的导线和测量器件上电压降的导线,进而消除电缆和探针接触电阻的阻抗。校正功能:SBT300电池测试仪能够补偿仪器内部电路的偏置电压或者增益漂移等,对测量数据进行校正以提高测量精度,并且可以根据测量结果计算统计指标,绘制正态分布图,观察测量结果的正态分布情况。模拟输出:SBT300电池测试仪可以进行交流内阻测量值的模拟输出,通过将模拟输出量连接到数据记录仪上,记录电阻值的变化,便于使用数据采集仪进行需要长期记录的测量和锂电池的评估等。

  • 锂电池露点仪使用注意事项

    锂电池露点仪使用注意事项

    众所周知,锂电池的品质要有保证在生产的时候必须得控制号生产环境的水分,而生产锂电池手套箱里的水分控制主要依靠露点仪进行监测。在锂电池行业中使用的露点仪比其他行业中使用的露点仪更容易坏,主要是因为锂电池注液箱里的电解液(LiPF6)很容易与水(H2O)反应生成氢氟酸(LiPF6+H2O—LiF+PF3O+2HF),氢氟酸为强酸,具有很强的腐蚀性,对探头芯片产生腐蚀。为了更好的延长露点仪的使用寿命,必须注意一下三点:http://ng1.17img.cn/bbsfiles/images/2015/09/201509291525_568480_3005330_3.jpg

  • 锂电池模拟前端芯片是什么?

    [align=left][font='Segoe UI'][color=#000000][back=#ffffff]随着科技的发展,锂电池已经成为了现代生活中不可或缺的能量来源。为了提高锂电池的性能和安全性,研究人员们一直在努力探索新的技术和方法。其中,锂电池模拟前端芯片作为一种新型的技术手段,已经在市场上取得了一定的关注。那么,锂电池模拟前端芯片究竟是什么呢?本文将为您详细解答。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]一、锂电池模拟前端芯片的概念[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]锂电池模拟前端芯片,顾名思义,是一种模拟锂电池充放电过程的前端芯片。它主要通过对锂电池的电压、电流等参数进行实时监测和控制,来实现对锂电池的高效管理。与传统的锂电池管理芯片相比,锂电池模拟前端芯片具有更高的集成度和更低的功耗,可以有效地提高锂电池的使用效率和延长其使用寿命。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]二、锂电池模拟前端芯片的功能[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]1. 充电管理:锂电池模拟前端芯片可以实时监测电池的充电状态,根据电池的需求自动调整充电电流和电压,以保证电池的安全和快速充电。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]2. 放电管理:锂电池模拟前端芯片可以监测电池的放电状态,避免过度放电导致的损伤。在电池即将放空时,它会自动降低放电电流,保护电池不受损害。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]3. 温度监控:锂电池模拟前端芯片可以实时监测电池的工作温度,当温度过高或过低时,它会自动调整电池的工作状态,以保证电池的安全和稳定运行。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]4. 故障检测与保护:锂电池模拟前端芯片可以对电池的各项参数进行实时监测,一旦发现异常情况,如过充、过放、短路等,它会立即采取措施,保护电池免受损害。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]三、锂电池模拟前端芯片的应用场景[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]锂电池模拟前端芯片主要应用于以下几个领域:[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]1. 移动设备:如智能手机、平板电脑等,这些设备需要长时间使用电池供电,采用锂电池模拟前端芯片可以有效地提高电池的使用效率和延长其使用寿命。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]2. 可穿戴设备:如智能手表、健康手环等,这些设备通常需要在低功耗状态下运行,采用锂电池模拟前端芯片可以满足这些需求。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]3. 电动工具和无人机:这些设备的电源需求较大,采用锂电池模拟前端芯片可以确保电池的安全和稳定运行。[/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff][/back][/color][/font][font='Segoe UI'][color=#000000][back=#ffffff]4. 汽车电子系统:如电动汽车的电池管理系统等,采用锂电池模拟前端芯片可以提高汽车电池的性能和安全性。[/back][/color][/font][/align][align=left][font='Segoe UI'][color=#000000][back=#ffffff] [/back][/color][/font][/align][align=left][font=宋体][font=宋体]销售各种电子元器件,有需要可来询价。[/font][/font][/align]

  • 【资料】(锂离子)锂电池的认识

    锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应:Li+MnO2=LiMnO2该反应为氧化还原反应,放电。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。现在锂电池已经成为了主流。目录锂电池原理简介 概述 锂电池发展进程 锂电池材料锂电池的特点 锂离子电池主要优点 锂原电池简介:锂电池的研究 锂离子电池的作用 锂离子电池发展史 锂离子电池发展前景 电池的基本性能 锂离子电池的特征 锂电池的保护电路 简易充电电路 单节锂电池的应用举例 锂电池的保存 如何为新电池充电 正常使用中应该何时开始充电 对锂电池充电的正确做法 使用锂电池注意防火“超级”锂电池 锂电池型号 锂锰电池常规型号 圆柱锂离子电池常见型号 方型锂离子电池关于乘飞机携带锂电池的规定 相关规定的条文 禁止托运的原因锂电池原理简介 概述 锂电池发展进程 锂电池材料锂电池的特点 锂离子电池主要优点 锂原电池简介:锂电池的研究锂离子电池的作用锂离子电池发展史锂离子电池发展前景电池的基本性能锂离子电池的特征锂电池的保护电路简易充电电路单节锂电池的应用举例锂电池的保存 如何为新电池充电 正常使用中应该何时开始充电 对锂电池充电的正确做法 使用锂电池注意防火“超级”锂电池锂电池原理简介[/size

  • 使用ACE600镀膜,观察锂电池隔膜样品的更多细节

    使用ACE600镀膜,观察锂电池隔膜样品的更多细节

    扫描电镜爱好者经常以拍摄电池隔膜来验证仪器性能和操作技巧,而且为了避免喷金带来的样品形貌变化,需要费精力挑战不镀膜直接拍摄。如果有一台高性能镀膜仪,将会带来哪些改变呢?通过近期做过的实验,锂离子电池隔膜使用徕卡ACE600镀膜仪之后:1、镀膜颗粒度小,高倍率图像观察不到镀膜金属颗粒。2、厚度2nm连续成膜,导电性好,避免放电现象。3、使得高分子材料表面导热性增强,避免热损伤现象。4、降低二次电子信号出射深度,增加表面细节形貌。5、信号激发效率提高,图像明亮,立体感和景深增强。6、图像拍摄变得简单快捷,极大提高操作效率!干法隔膜:http://ng1.17img.cn/bbsfiles/images/2014/11/201411241711_524277_1804341_3.jpg湿法隔膜http://ng1.17img.cn/bbsfiles/images/2014/11/201411241712_524279_1804341_3.jpg下面是我根据实验结果做的PPT总结,欢迎大家讨论!http://ng1.17img.cn/bbsfiles/images/2014/11/201411241713_524280_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241713_524281_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241713_524282_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241714_524283_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241714_524284_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241715_524285_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241715_524286_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241716_524287_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241716_524288_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241717_524289_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241717_524290_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241717_524291_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241717_524292_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241718_524293_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241718_524294_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241718_524295_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241719_524296_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241719_524298_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241720_524299_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241720_524301_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241721_524302_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241721_524303_1804341_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411241722_524304_1804341_3.jpg

  • 【资料】锂电池的原材料市场供应不足新兴产业却遭遇成长“天花板”完善发展机制迫在眉睫

    在全球重点发展电动车、储能电池等性能源产业的今天,锂电池作为公认的理想储能元件,得到了更高的关注。我国也在动力电池领域投入了重大的资金和政策支持,已经涌现了比亚迪、比克、力神、中航锂电等全球电池行业引人注目的骨干企业。正集材料、负极材料、电池隔膜、电解液是锂电池最重要的四项原材料。而六氟磷酸锂主要用作锂离子电池电解质材料。六氟磷酸锂电解液主要用于锂离子电池制造。目前全球锂电池产能急速扩张,作为主要材料的锂电池隔膜产能增长速度呈现滞后的局面。已经有众多的电池厂家不同程度的表示了隔膜紧缺,隔膜材料产能的提高不仅对我国锂电池乃至世界锂电池产业的发展都是一个迫切的要求。因而,在国内尽快的涌现出更多的民族企业是完善我国锂电池行业产业链,提升我国锂电池生产企业竞争和可持续发展能力的重要举措,也是关乎我国新能源汽车产业快速发张的关键环节。尽管未来市场需求空间巨大,但市场主要被跨国公司占据,国内企业受制于技术水平落后而在竞争中处于下风。更让人担心的是“一窝蜂”式的投资使碳纤维、六氟磷酸锂两大行业遭遇了国内企业扎堆低端产品、产能过剩等问题。大规模投资一旦实现投产,跨国公司就会把产品价格大幅下调到企业生产成本线,到时候企业生存都成问题,想收回投资更是难上加难。相关企业负责人、行业专家认为,碳纤维、六氟磷酸锂折射出部分战略性新兴产业的现状。技术和市场已成为战略性新兴产业成长的两大瓶颈,如果不及时化解,战略性新兴产业顺利发展恐难如愿。六氟磷酸锂负重前行技术、市场两头吃亏的现状,是投资火热的碳纤维、六氟磷酸锂面临种种困扰。江苏省如东县洋口化工公园区的一个年产400吨六氟磷酸锂项目正在紧张的建设中。该项目由主业为医药中间体的当地上市企业九九久公司投资。根据规划,该项目将使用九九久公司超募资金8050万元,所有设备预计于2011年3月底前安装结束,4月底进入调试阶段。目前公布要实施六氟磷酸锂项目的上市企业除了九九久公司,还有江苏国泰、多氟多等。江苏国泰下属的亚源高新公司计划新建年产300吨六氟磷酸锂项目,投资总额为8330万元,多氟多投资1.2945亿元建设的年产200吨六氟磷酸锂项目中试已经成功。上市公司中的一些氟化工企业尽管没有公告,但实际都有投资意向。江西兴国氟化工产业园、福建邵武金唐工业园区等资源资源丰富地区的六氟磷酸锂项目正在招商。六氟磷酸锂为何掀起了一波投资热潮?九九久公司董秘陈兵表示,新能源汽车列入战略性新兴产业,作为车用动力电池关键材料之一的六氟磷酸锂,自然也在政策鼓励范围之内。市场前景可能是投资热的另一个原因。业内专家介绍,电解液厂商基本上都使用六氟磷酸锂作为电解质。一辆纯电动车需要使用40公斤电解液,如果2015年前实现100万辆混合动力汽车的市场规模,按其中20%采用锂电池作为动力电池测算,新增电解液需求将超过8000吨,相当于目前中国锂电池电解液约85%的市场规模。除了新能源汽车,六氟磷酸锂还应用于手机、笔记本电脑、电动自行车、电动工具等领用,即使不考虑新能源汽车带来的需求激增,目前六氟磷酸锂的市场依然可观。但市场前景不等于真是盈利,国内企业想在六氟磷酸锂上赚钱并不容易。六氟磷酸锂生产装置建成之后还要进行调试、试生产、改进工艺、试生产验收等环节才能实现产业化,技术门槛比较高,突破起来不会那么快,实现真正产业化过程可能比较长。更坏的消息是,国内企业十几年来尚未突破核心技术关,而六氟磷酸锂的市场价格已开始呈现下降趋势。2000年前后,六氟磷酸锂每千克价格是8000多元,2006年是500元,现在的价格是380-400元。国内企业从研发、中试到产品走向市场的各个环节都面临国外产品降价的局面,未来产品的价格可能还会继续下降。另一层让人担心的事是现在大家都去做,行业未来可能会产能过剩。新兴产业的成长不仅要实现技术突破,还要在政策体质上有所突破,比如完善产业布局和投资管理、加大扶持资金的监管力度。完善发展机制迫在眉睫。事实上,不仅仅是碳纤维、六氟磷酸锂等面临技术、市场难题和产能过剩隐忧,在战略性新兴产业投资热潮席卷全国的同时,部分行业已暴露出一定程度的潜在过剩问题。另外,由于一些新上马的项目技术水平不过关,所以未来不具备竞争力。技术落后其实是大部分新兴产业面临的问题,有的新算技术达到国际先进水平,产业化方面也存在差距。市场换不来技术、资源换不来技术,中国必须加大自主创新力度,赶超国外技术水平。形式很紧迫,这段时间不能拖太久。正因为技术要求比较高,国家应重点支持技术水平较高的企业,研究成果让行业共享。而在投资上应设立一定的门槛,“一路绿灯”反而不利于资金的使用和行业的发展。政府扶持资金的投向不能仅要看企业的大小、是否有国资背景,而且还要看企业的技术水平和资金的真是投向。更多的专家指出,新兴产业的成长不仅要实现技术突破,更要在政策体质上有所突破。如果不冲破体质瓶颈,新兴产业未来可能难以修成正果。“十二五”国家肯定会加大对新兴产业的扶持力度,但除了在资金扶持上加大力度,一个庞大的体质改革系统工程待完成。建议进一步完善产业布局和投资管理。新兴产业门槛较高、技术突破难度大,各地应选择自身具有优势或者最有可能突破的产业重点发展,分层次、分布实施。与此同时,国家应当制定有关产业政策,达不到一定技术标准、配套条件的项目部应当上马。此外,钱要用在“刀刃”上。在资金的使用上,应加大监管力度,必须是用于研发,政府可以设立或者委托基金负责,这样可以起到更好的监管效果。

  • 电池成分分析(正极、负极、隔膜、电解液)

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37741.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=&][size=16px][color=#333333]我司专注于生态环境综合检测与环保咨询服务, 凭借多年的专业技术经验积累沉淀和全国实验室布局建设,助力推进生态文明建设进程,用科技的力量守护人类生存环境,创造美好生态家园,下面给大家介绍电池分析相关知识。[/color][/size][/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font][size=13px][color=#000000][back=#fbed94][/back][/color][/size][font=&][color=#333333][/color][/font]检测对象:[size=13px][back=#fbed94]软包电池、铝壳电池、圆柱电池[/back][/size] 锂电池检测周期:15[size=13px][color=#000000][back=#fbed94]软包电池、铝壳电池、圆柱电池[/back][/color][/size][font=sans-serif][size=16px][color=#000000] 锂电池正极、负极、隔膜、电解液等分析[/color][/size][/font]

  • 电池成分分析(正极、负极、隔膜、电解液)

    [color=#333333][font=&][size=16px][/size][/font][/color][font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37741.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=&][size=16px][color=#333333]我司专注于生态环境综合检测与环保咨询服务, 凭借多年的专业技术经验积累沉淀和全国实验室布局建设,助力推进生态文明建设进程,用科技的力量守护人类生存环境,创造美好生态家园,下面给大家介绍电池分析相关知识。[/color][/size][/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font][size=13px][color=#000000][back=#fbed94][/back][/color][/size][font=&][color=#333333][/color][/font]检测对象:[size=13px][back=#fbed94]软包电池、铝壳电池、圆柱电池[/back][/size] 锂电池检测周期:15[size=13px][color=#000000][back=#fbed94]软包电池、铝壳电池、圆柱电池[/back][/color][/size][font=sans-serif][size=16px][color=#000000] 锂电池正极、负极、隔膜、电解液等分析[/color][/size][/font][font=sans-serif][size=16px][color=#000000][/color][/size][/font]

  • 认清自身优缺点,向安全高效进军——锂电池

    目前锂离子蓄电池已被广泛应用于手机、笔记本电脑等电子产品中,在很多人看来,它也是电动汽车的理想动力来源,但锂离子蓄电池目前并不完美,其缺点和优点一样明显。 锂离子电池具有能量比高、重量轻、寿命长等一系列优点,但作为自然界中最轻的金属,锂遇到水或者潮湿空气极易自燃乃至爆炸。特别是“怕水”的特性让科学家感到遗憾,因为锂与水接触会释放出很大能量。美国锂电池生厂商正试图利用这一特性,以安全的方式生产出更高效的锂离子电池。 据报道,在3月初美国国防部下属的高级计划研究署(ARPA)年会上,美国电池生产商PolyPlus宣布,已通过在外部包裹一层特殊的电解质薄膜,成功使得金属锂电极与水中的溶氧安全发生反应,每公斤锂足以产生1.3千瓦时的电力,而当前等量的锂离子电池只能生产出0.4千瓦时的电力,这也是目前的纯电动汽车无法像传统汽车一样实现长距离行驶的原因。 美国能源部部长在年会上表示,对他们而言,改造电池是当前唯一一种既可以降低美国庞大的石油消费,又创造出就业机会的途径。美国每天需要为购买石油支付10亿美元,这些钱中大部分流向了中东、加拿大和委内瑞拉这样的国家和地区,研发更好更安全的电池——就像PolyPlus所作的那样,最终将让美国摆脱对国外石油的依赖。 事实上,美国已拥有锂电池50年的发展史,是世界上锂电池工业最发达的国家之一,如今普遍使用的锂电池、移动电源锂电池正是由美国德克萨斯大学的研究人员发明的,但当前日本和韩国厂商却占有全球大部分产能。为此高级计划研究署专门制定了一个储能电池的研发计划,为10个电池项目提供资金支持,PolyPlus只是其中的一个项目,其他项目还包括完全由固体材料制造的可充电电池到高能密度电容等。

  • 【原创大赛】OPTON的微观世界之 锂电池负极材料的显微世界

    [b]概 述[/b] 锂离子电池作为一种新型无污染、可再生的二次能源装置,具有输出电压高、比容量高、寿命长等优点,因此成为了手机、笔记本电脑、电动汽车以及航空航天领域的理想电源之选。正极材料、负极材料、电解液以及隔膜是锂离子电池的核心组成部分,电解液的主要作用是承载着锂离子在正负极之间的传导,组成部分包括锂盐、有机溶剂以及功能添加剂。隔膜起着隔开正、负极材料的作用,防止二者接触造成短路,其主要是由过孔的高分子聚合物薄膜构成,在实际应用过程中,锂离子电池充电/放电就是靠锂离子在正、负极材料中可逆的嵌入/脱出来完成。作为锂电池的核心组成之一——负极材料,今天就随小编来一起探究锂离子电池负极材料的神秘世界吧。[b]一、样品制备[/b] 为了更好地观察锂电池负极材料的内部结构,小编们决定观察负极材料的截面,但是传统的截面样品制备方式或多或少地会使样品形貌失真,比如剪切的话会使样品表面产生应力,为了更好地观察负极材料的真实结构,于是小编们将样品制备在挡板上,采用Gatan的氩离子抛光仪对样品截面进行抛光处理后观察。[align=center][img]http://img1.17img.cn/17img/images/201705/uepic/d59890fd-9324-4220-bc05-b6129b4b235c.jpg[/img][/align][align=center]图一:(A)、原始样品[/align][align=center][/align][align=center][img]http://img1.17img.cn/17img/images/201705/uepic/31c2099e-7941-4619-bc66-b4bb11c4956b.jpg[/img][/align][align=center](B)、将样品剪切合适后粘在挡板上[/align][align=center][/align][align=center][img]http://img1.17img.cn/17img/images/201705/uepic/34515ad9-b076-402b-b2a6-62a6a1c44dc0.jpg[/img][/align][align=center](C)、抛光处理后的样品[/align][align=center]图一:样品的制备[/align][b]二、锂电池负极材料的SEM分析[/b]采用ZEISS的sigma 500电镜观察样品的形貌,从图二的A图负极材料截面宏观形貌图可以看出锂电池负极材料分为上中下三层, 从图二的B图可以看出负极材料其形貌存在层状结构,从图二的C、D图可以看出出现了不同的成分衬度,代表着不同的元素分布。[align=center][img]http://img1.17img.cn/17img/images/201705/uepic/54f50ea6-1628-4294-b576-a938f2f0d2f2.jpg[/img][/align][align=center][/align][b]三、锂电池负极材料的元素分析[/b] 结合图三的A图SEM图和能谱面分布B、C图可以看出,锂电池负极材料的上下两层主要是石墨且掺杂有硅。自锂电池问世以来,石墨一直是负极材料的主流,石墨为层状结构,层与层之间通过范德华力结合在一起,层内碳原子统统以sp[sup]2[/sup]杂化的共价键结合。其具有的优良导电性和高度结晶的层状结构,有利于锂离子的嵌入与脱出,且其具有工作电压平台较低以及稳定性好等特点,但是其理论比容量仅为372mAh/g,实际生产应用的产品已经能达到360mAh/g,接近其理论比容量,因此石墨负极已经难有提升空间。硅理论比容量高达4200mAh/g,而且具有较低的嵌锂电位,然而,硅在电化学循环过程中,体积变化高达400%,严重影响其比容量、库伦效率和循环稳定性等电化学性能,因此为充分利用硅和石墨的优点,同时克服其缺点,在石墨材料中掺硅是获得高比容量负极材料的有效途径。 根据锂电池的工作原理和结构设计,负极材料需涂覆于导电集流体上。金属箔是锂离子电池集流体的主要材料,其作用是将电池活性物质产生的电流汇集起来,以便形成较大的电流输出。通过图三的能谱面分布D图可以看出锂电池负极材料采用的金属箔是铜箔,这主要是铜箔具有良好的导电性、质地较软、制造技术较成熟、价格相对低廉等特点,因而成为锂离子电池负极集流体首选。一般将配好的负极活性浆料均匀涂覆在铜箔表面,活性材料厚度为50~100um,经干燥、滚压、分切等工序,制得负极电极,铜箔在锂离子电池内既可充当负极活性材料的载体,又可充当负极电子收集与传导体。[align=center][img]http://img1.17img.cn/17img/images/201705/uepic/03bc2c1f-4f00-4689-bdc3-4a96e324820e.jpg[/img][/align][b]结 论[/b] 通过扫描电镜的显微观察以及能谱分析,可以看出该锂电池的负极材料主要由掺硅的石墨涂覆在铜箔上组成,是一种常见的锂电池负极材料,人们为了获得性能更好的负极材料,已经出现了众多类型的锂电池负极材料,但是随着大家对锂电池负极材料的研究越来越深,锂电池负极材料的种类也将更加丰富。根据锂离子电池的形状锂离子电池可分为圆柱形的锂离子电池、方形的锂离子电池、扣式锂离子电池等,下图是锂离子电池的结构图。[align=center][img]http://img1.17img.cn/17img/images/201705/uepic/a4cb349f-76eb-48bd-bc72-8b717a9c2917.jpg[/img][/align][align=center]图五:(A)、圆柱形锂离子电池的结构[/align][align=center][img]http://img1.17img.cn/17img/images/201705/uepic/e282ac3e-16c0-48da-8675-562c944eedd0.jpg[/img][/align][align=center](B)、方形锂离子电池的结构[/align][align=center][img]http://img1.17img.cn/17img/images/201705/uepic/cc820147-eda5-4e90-8cfd-00b6e17248f7.jpg[/img][/align][align=center](C)、扣式锂离子电池的结构[/align][align=center]图五:锂离子电池的结构图[/align][align=center][/align]

  • 【原创】锂电池UN38.3 测试相关资料!

    由于国内外锂电池在航空运输过程以及在日常使用和存放过程中,发生过多起安全事故,联合国、国际航协等国际机构和国家民航总局等都非常关注锂电池运输的安全问题。锂电池UN38.3检测(电池安全性能检测)已经成为运输锂电池时必须提交的检测报告。AOV按照《联合国关于危险品运输的建议书试验与标准手册》的要求开通了UN38.3项测试。并依据国内外各种标准对各种型号电池进行全套安全性能测试,为各电池厂家保证产品质量安全,符合各项标准提高出口创汇能力。锂电池UN38.3检测按照《联合国关于危险品运输的建议书试验和标准手册》中第3部分38.3款要求进行8项安全性能测试UL 1642-2005锂电池的安全性能检测IEC 61960 电池的基本性能检测GB/T 18287-2000手机锂电池安全性能检测QB/T 2502-2000锂离子蓄电池安全性能检测SN/T 1414.3-2004锂离子蓄电池安全检测测试标准要求如下:[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=91741]锂电池UN38.3 测试[/url]

  • 锂电池跟镍氢电池除了产品不一样外,使用方式也不相同

    [color=#595757][b]新买的锂电池:[/b]头三次先用至自然关机,再配合原装直充在手机开机充电到满,然后继续保持充电约1小时(2000mah以上约2小时)。[b]日常:[/b]充满就可,满后续充莫超过1小时。避免深夜充(电网电压偏高)。电池可随充随用,可用到告警或关机。注意用到关机的电池尽量及时充电,否则电池自放电、电压继续下降可能导致自锁保护无法充电。要养成习惯:白天到单位、晚上到家,就开始充电,充满后或离开、睡觉前拔掉电源。[b]使用:[/b]一般锂电池可随充、随用、随停。循环寿命是指全充全放次数,部分充放电可理解为几分之一次寿命。电池使用的关键:电池充满,可加充电20分钟-半小时以达到饱和,但一定要避免充满后长时间充电。满后长时间继续充电会导致副反应,结果是容量下降及内阻变大,出现容量缩短、一打电话就关机的情况。PPC等带电量芯片的机器,一直用到没电再充,主要是考虑电量显示计量的问题。[/color]

  • 目前锂电池的UPS好用吗?

    目前锂电池行业发展这么快,不知道锂电池用在UPS上怎么样?公司大大小小的UPS也不少,领导有心换成锂电池的UPS,不知道各方面的性能怎么样呢。

  • 直线电机双轴联动平台在锂电池激光焊接的解决方案

    直线电机双轴联动平台在锂电池激光焊接的解决方案

    为了解决日益突显的能源、环保问题,新能源行业越来越受到世界各国的关注。锂电池行业作为国家重点扶持新能源项目发展较为迅速。近两年,中央和地方各项扶持政策协同效果逐渐显现,我国的新能源汽车市场出现了超预期发展和增长,并带动了产业链上下游企业的高速增长尤其是锂电池行业, 随着新能源汽车销量的进一步提高,业内预计,2018年锂电池或将进入供应紧张的阶段,强烈的需求对锂电池的产品技术、工艺、性能提出了更高的要求,更进一步凸显了产能的不足。目前国际上大多采用先进的激光焊接技术对锂电池的电池芯及保护板进行焊接。随着制造业的不断发展,大力发展高端制造技术,如何提高激光技术在锂电池制造领域的技术水平、如何升级优化激光焊接设备的整体性能,成为目前各个厂家研究的重点。在运动平台部分,直线电机相较于滚珠丝杆有更优的动态性能,更精密的定位精度及重复定位精度,更高的稳定性,更低的维护成本。用直线电机传动平台替换滚珠丝杆运动平台已成为必然趋势。激光焊接技术特点及难点: 激光焊接是一个将正负极材料、隔膜和电解液等原材料化零为整的融合制造过程,是整个锂电池生产流程中的关键工艺。激光焊接是利用激光束优良的方向性和高功率密度等特点来进行工作的。激光焊接有以下特点:激光功率密度高,可以对高熔点、难熔金属或两种材料进行焊接 聚焦光斑小,加热速度快,作用时间短,热影响区域小,热变形可忽略;激光焊接属于非金属焊接,无机械应力和机械变形;激光焊接装置易于计算机联机,能精确定位,实现自动焊接。锂电池模组通过高效精密的激光焊接可以大大降低接触电阻,降低能耗,提高电池的安全性、可靠性和使用寿命。但激光焊接要求焊件装配精度高,且要求激光束在工件上的位置不能有显著偏移。若焊件装配精度以及激光束定位精度达不到要求,很容易造成焊接缺憾,影响焊接质量。激光焊接技术的特点以及锂电池的结构性能对激光焊接设备的运动平台提出了更高更精密的要求。双轴联动直线电机平台技术特点及难点: 直线电机的本质是把旋转电机平放展开并直接连接到驱动负载上。它能替代例如滚珠丝杠、齿条与齿轮、皮带与皮带轮和减速箱的所有机械传动部分,从而消除了齿隙以及与机械传动相关的问题。具有结构简单、调速范围宽、动态性能优良、定位精度高、安全可靠、运行噪声低、无磨损、免维护以及无限行程等优点。灵猴双轴联动直线电机平台加速度可达5g、重复定位精度可达1μm并且在深度优化结构设计的基础上采用独特自主编写控制算法,跟踪检测速度波动,并作出后续补偿,使双轴直线电机在高速度走曲线小圆弧运动条件下,速度波动在3%以下,轨迹偏差更是在微米级别。完全满足锂电池激光焊接对平台精度、加速度、速度等性能的要求。日前有某激光焊接设备厂商客户的设备运动平台采用的是丝杆模组,但在其加速度为1g、速度提到100mm/s时其设备的焊接质量将无法保证,现需求双轴联动直线电机平台以替代丝杆平台模组并明确要求提供包括圆弧转角在内的跟随误差测试报告,但该客户对直线电机运动平台并不了解,故向我公司寻求解决方案。经过与客户的数次技术交流,在完全理解掌握客户设备的特性信息后设计了初版双轴联动直线电机运动平台模组,但是其要求的运动平台的运动轨迹的圆弧转角要求较小,且其速度及精度要求较高,经过我司对双轴联动直线电机平台的结构优化,定制化编写算法控制上下两轴的耦合,经过详细的系统测试,最终满足客户的需求,升级优化了客户的激光焊接设备,使其设备的焊接速度、精度以及稳定性在同行业处于领先地位。客户要求如下:[b]直线电机需求表 [/b]客户名称:[u] 某激光焊接设备集成 [/u]运用行业:[u] 锂电池激光焊接 [/u]联系人电话:[u] [/u]电子邮箱:[u] [/u]运动轴运动方式 :□水平 √ □垂直速度规划曲线:□1/3-1/3-1/3梯形波 √ □1/2-1/2三角形波总的运动行程:[u] 上轴270mm、下轴300mm [/u]mm总的运行时间:[u] 1.8s [/u]s最大运行速度:[u] 0.5 [/u]m/s最大运行加速度:[u] 3g [/u]m/s2负载重量:[u] 30 [/u]kg精度定位精度:[u] ±5 [/u]μm重复定位精度:[u] ±1 [/u]μm分辨率:[u] 0.1 [/u]μm放大器和电源最大电流:[u] 6.3 [/u]A电压:[u] 220 [/u]VAC □50 Hz √ □60Hz使用环境环境温度:[u] 室温 [/u]℃最大允许温升:[u] 130 [/u]℃是否在无尘环境中: □是 √ □否是否允许水冷或空气冷却:□是 □否 √是否是真空环境: □是 √ □否硬件总体设计及验证系统配置: 双轴联动直线电机运动平台主要由:直线电机、检测反馈、驱动控制,防护装置四部分组成。该运动平台选用无铁芯直线电机,运动平滑无齿槽力;检测反馈由光栅或磁栅、霍尔、温控组成;此平台模组选用的是高创驱动器,防护装置由风琴防护罩、高性能拖链、光电传感器、优力胶硬限位组成,充分保护运动平台的安全可靠性。模型效果如图2所示: [img=十字滑台,554,415]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311009_01_3294819_3.jpg[/img][align=center]图1:双轴联动模组模型[/align]双轴联动直线电机主要性能参数如图3所示: [img=,327,290]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311010_01_3294819_3.jpg[/img][align=center]图2:双轴联动模组性能参数[/align]验证测试根据客户设备的运动特点及轨迹,为保证客户设备在运行过程中的稳定性及可靠性,我们多次做了过需求验证并出具了相关的验证报告,运动平台的各项参数均符合客户需求,并做了相当于设备连续运行1.5年的耐疲劳测试,各项参数均无异常。经过多次技术交流、结构优化、测试验证,灵猴双轴联动直线电机运动平台仅在两周的时间就达到了客户的要求,满足了交付条件并实时在客户现场调试安装,直到客户设备完全出货,我们还积极跟踪我司产品在客户设备终端的运行状况以及各项数据,实时为客户设备提供可靠性报告。该客户“非标私人订制”的双轴联动直线电机运动平台模组上下两轴均采用自主研发的BUM系列无铁芯直线电机,该系列直线电机具有高推力、低运动质量、无齿槽效应、无磁吸力等特点,特别是在走曲线圆弧轨迹时,可实现高速度小圆弧转角下的低速度波动。在使用了双轴联动直线电机运动平台后,使其焊接速度提高50%,提高了其圆弧转角处的焊接质量,升级优化了客户整体设备的性能,提高客户设备销量的同时也增加了直线电机模组的销量,真正实现了双赢价值。直线电机平台模组除上述应用外,还有在医疗行业应用的超薄十字蛇形运动平台模组,其整体尺寸大小仅有圆珠笔大小;在3C行业中的视觉检测以及点胶平台上的快速移动的四轴联动直线电机模组;在机床以及快速搬运行业的LPS系列单轴平台模组;可以完全直接替换丝杆的SP标准系列单轴平台模组等等。随着制造行业越来越苛刻的要求,现代先进制造装备向着高速度、高精度、快响应、大行程的趋势发展。这必然要求一个反应灵敏、高速、轻便的驱动系统,由于传统的进给方式—“旋转电机+ 滚珠丝杠”需要联轴器、丝杠等中间传递环节,造成整体系统刚性不够、弹性变形严重,又因为该“间接传动”中丝杠精度很难提高、存在反向间隙等缺点,使得传统的进给系统无法达到上述要求。相对而言,直线电机具有结构简单、安装方便、无接触、无磨损等优点,并在精度、重复定位精度、刚度、工作寿命等其他性能指标上都优于旋转电机。其主要推广与高速、高精等旋转电机无法满足要求的场合。现代直线电机技术日益成熟,其势必取代传统的“旋转电机+ 丝杠”的传动模式。

  • 锂电池使用注意事项

    [color=#000000]电池充满后继续充电对锂电池伤害很大。[/color][color=#000000]满后继续充电,电池内部将产生副反应,活性物质减少,垃圾物质增多,容量下降,内阻增大,严重过充直接破坏电池结构,导致电池报废。[/color][color=#000000]现在一些充电器也提供了充电保护模式,会根据电池的电量是否充满调节充电模式,可以有效的保护电池。锂离子电池可随时充电,对寿命的影响有限,对PPC等带电量计电池,建议用到自动关机后充电,以免影响。[/color][color=#000000]随时可充电、随时可停止,如果充满了继续充电,会对电池的寿命产生影响。[/color]

  • 【讨论】啊-啊-啊-全球锂电池标准混乱-?-?-?---不会吧?

    【来源:北青网—北京青年报】09-02-21 戴尔召回的笔记本电脑电池由索尼生产  近日,由于锂电池安全问题,戴尔、苹果不得不在全球范围内对一批问题笔记本用锂电池进行召回。目前而言,全球范围内还没有一个统一的笔记本电池标准,而中国在这一方面还没有具体规范。  全球锂电池标准混乱  在全球范围,锂电池标准处于混乱状态,国家标准、行业标准各行其是。总体而言,大致分为两个体系,一是以国家标准为代表的地方派,如JIS(日本国家标准),另外一类为行业体系,如IEEE(美国电气及电子工程师学会)、IEC(国际电工委员会)。这两类标准体系虽然在大致监测项目上相似,但各自又有不同的强调重点。这种情况下,锂电池生产商为了进入世界市场,不得不通过多种认证。 [em09504]真的是这样,现在也没统一?

  • 【资料】CAAC颁发锂电池空运新规范

    锂电池领域:CAAC颁发锂电池空运新规范 2009年1月1日,国际民航组织(ICAO)针对危险性货物的安全空运颁布最新生效版本的技术说明,国际航空运输协会IATA 也在2009年发布第50版的危险品规则,中国民航总局(CAAC)据此也发布了中国新版《锂电池航空运输规范》(MH/T 1020-2009),以此替代之前发布的2007版,并将最新版本发至各大航空公司,要求其按照2009年版《规范》对锂电池航空运输进行安全管理。规范性引用文件联合国《关于危险货物运输的建议书-试验和标准手册》/ST/SG/AC.10/11/Rev.4IATA《危险品规则》(2009版)ICAO Doc9284-AN/905《危险物品安全航空运输技术细则》(2009-2010版)空运限制条件UN38.3测试1、除原型样品锂电池外,任一型号的锂电池,无论作为危险货物还是非限制性货物,单独运输还是安 装在设备中或与设备包装在一起运输,在交付航空运输前,均应通过UN38.3要求的系列测试。2、当某一特定型号的锂电池与已通过测试的同一型号锂电池具有以下任一差别时,应被视为新型号, 即需重新进行UN38.3测试:→ 阴极、阳极或电解液的质量有大于20%或大于0.1g的改变,以较大者为准→ 对试验结果有显著影响的改变批准运输原型样品锂电池应获得始发国主管当局的书面批准,方可根据ICAO Doc9284-AN/905(以下简称ICAO TI)和IATA《危险品规则》(以下简称IATA DGR)特殊规定A88的相关要求进行航空运输。禁止运输1、任一特定型号的锂电池,如果既未通过UN38.3测试,也没有批准文件,不予空运;2、锂金属电池(UN3090和UN3091)作为危险货物运输时,液态阴极含有SO2、磺酰氯、亚硫酰氯 的锂电池芯当放电至开路电压低于下列2个电压之中较低者,或含有一个或更多个此类电池芯的 电池,不予空运:→ 2V→ 未放电时电池芯电压的2/3

  • 【原创】锂电池消解问题?

    前天我在做一个锂电池消解时,没想到用3052会出现这样,微波生气了,罢工了。好响当当啊!以前做得好好的,现,唉!电池里有一种绿色的胶我只取了0.0756啊,她就突飞猛进地放气体,这不?把自己送葬了。请问那是一种什么材质啊?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制