当前位置: 仪器信息网 > 行业主题 > >

立式砂浆收缩膨胀仪

仪器信息网立式砂浆收缩膨胀仪专题为您提供2024年最新立式砂浆收缩膨胀仪价格报价、厂家品牌的相关信息, 包括立式砂浆收缩膨胀仪参数、型号等,不管是国产,还是进口品牌的立式砂浆收缩膨胀仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合立式砂浆收缩膨胀仪相关的耗材配件、试剂标物,还有立式砂浆收缩膨胀仪相关的最新资讯、资料,以及立式砂浆收缩膨胀仪相关的解决方案。

立式砂浆收缩膨胀仪相关的论坛

  • 壁挂炉膨胀罐有什么作用

    壁挂炉膨胀罐用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。壁挂炉膨胀罐作用: 壁挂炉膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,壁挂炉膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。壁挂炉膨胀罐工作原理: 当壁挂炉膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。

  • 壁挂炉膨胀罐有什么作用

    壁挂炉膨胀罐用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。壁挂炉膨胀罐作用:壁挂炉膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,壁挂炉膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。壁挂炉膨胀罐工作原理:当壁挂炉膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。南京捷登专业销售壁挂炉膨胀罐,意大利原装进口Aquafill壁挂炉膨胀罐以及国内组装wozi壁挂炉膨胀罐。两大品牌,从质到价,给您超高性价比的性价比。

  • 深析膨胀罐的作用与优缺点

    膨胀罐目前已经被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,下面南京捷登流体设备以我司的Aquafill与wozi膨胀罐为例,为大家深析深析膨胀罐的作用与优缺点。一、膨胀罐的工作原理:  由膨胀罐的结构可知,当膨胀罐用于系统中时,由于系统压力比预充气体的压力高,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再往系统补给,维持动态的平衡。二、膨胀罐的作用:  膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。三|、隔膜式膨胀罐 隔膜式膨胀罐是早期第一代的产品,对隔膜式膨胀罐来讲,其罐体和隔膜之间预充有一定压力的氮气,气囊式膨胀罐是罐体可气囊之间预充有一定压力的氮气。  1.因为隔膜式膨胀罐壳体是直接与水接触的,所以壳内都喷涂防锈层。罐的接口与壳体之间是焊接而成。这样在焊接的过程中,高温就会将防锈涂层氧化。本来是银白色的涂层,在焊接后呈现黑色。用手触摸可感觉有黑色小颗粒。那么这些看似微不足道的氧化点工作时长期与水接触,慢慢就会生锈并逐渐扩大,直到整个罐体生锈,为什么这种膨胀罐用一段时间后,倒出来来的水呈黄水也就不足为奇了。 2.隔膜式膨胀罐的内膜是通过热轧的方式固定在膨胀罐的两个半壳的碳钢中间,这种工艺过程如果处理的不好,就会留下微小的气孔在内膜和碳钢之间,这些微小的气孔就会将预充的气体泄露出去,膨胀罐如果泄露气体,90%就是从这里泄露的。这种漏气的膨胀罐用一段时间如果不再补充气体就不能起到定压卸荷作用。而这本身是很难察觉。由于罐壁厚度一般在1mm左右,接口直接与罐焊接在一起,这种联接方式可承受的扭力相当小。而安装罐时只能抱着壳体旋转,这样如果用力太大或过猛,就会将接口旋断。这种情况在空调生产过程中最为常见。四、气囊式膨胀罐 气囊式膨胀罐就克服了隔膜式气压罐的缺点,气囊式膨胀罐内部有一个整体的气囊,在工作时水只进入气囊内,不与壳体接触。接口处用法兰盘连接。这种结构就避免了焊接过程引起的生锈问题。这种结构的膨胀罐的气囊可更换。同样,由于是法兰连接,故它的接口就可以承受很大的扭力,在安装过程中就不怕会扭断接口。

  • 国内大尺寸构件超低热膨胀系数测试技术综述

    国内大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文对国内在大尺寸构件热膨胀系数整体测量方面的研究工作进行了综述,以了解国内目前的发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以m为长度单位的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍国内在工程构件级热膨胀系数测试方法和测试设备方面所开展的工作。2. 光纤位移传感器测试方法(1) 针对卫星用低膨胀纤维增强复合材料杆件,上海复合材料科技有限公司与国防科技大学合作开展相应的热膨胀系数测试系统研究,具体的测试要求为: (1)测试件是碳纤维复合材料杆件,杆件形状为圆杆或矩形杆。长度尺寸1m,圆杆直径φ10~80mm,壁厚为2mm左右。矩形杆的截面不超过100mm×100mm,壁厚2mm左右。 (2)能测量在温度范围-70~+100℃的轴向伸缩量,并测量相应温度,从而得出工程试件的热膨胀曲线。测量误差不大于±3%。 (3)试验箱能按要求的程序升温,升温程序可调,并能实时控制。对设定点的温度控制精度优于±1℃,测量精度优于0.5℃。试件周边温度的均匀性优于±2℃。 上海复合材料科技有限公司研制的这套热膨胀测试系统主要由温度控制系统、机械系统、数据采集系统、计算机控制与分析系统四大部分构成。 (1)温度控制系统:采用高低温试验箱,满足温度范围和温度控制要求。 (2)机械系统:包括测试系统的基座、测试基准、试件支架。 (3)数据采集系统:包括光纤位移传感器。 (4)计算机控制与分析系统:主要用于控制整个测试过程,实现测试数据的自动采集、分析、存储与测试结果的显示。 位移采集采用MTI2000光纤位移传感器,其特点是非接触式,最大量程2mm,分辨率为0.25um。MTI2000光纤位移传感器包含一组发射光光纤和一组接收光光纤,如图 2 1所示,发射光光纤和接受光光纤以三种不同方式排列(不规则、半圆心及同心圆形状),卤钨灯提供光源,光传输到光纤中,光纤探头发出的光照射在被测物上,被测物反射回来的光进入接受光光纤并传入到MTI-2000中。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614789_3384_3.png图 2-1 光纤分布示意图 如图 2-2所示,当光纤与被测物接触时,没有光能传输给接收光光纤,输出信号为“零”。随着探头与被测物之间距离的增加,接收光纤接收的光也增加,并且增加的光和距离之间非常敏感,与信号输出也呈很好的线性。随着距离的继续增加,接收光光纤接收到的光达到峰值,如果探头和被测物之间的距离继续增加,接收到的光将会持续减少,结果是具有第二个很灵敏且具有大量程和标准距离的测量范围。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614790_3384_3.png图 2-2 MTI2000光纤位移传感器输出信号与位移的变化关系 整个测量系统的测量基准利用低膨胀系数材料殷钢制作,测量基准包括殷钢连杆、传感器微调台和殷钢传感器夹具。测量基准至于试验箱外,因醋不受试验箱内温度变化影响,而且整个测量基准能够控制在0.5um/m℃以下。 被测件通过试件支架安装在试验箱内,试件支架包括殷钢V形架、低导率材料升降杆和剪式升降台,被测件水平置于V形架内,由V形架自动定心,从而保证被测件轴心与两个传感器侧头平行。被测件支架通过剪式升降台固定在大理石基础件上,不与试验箱体接触。 剪式升降台能够调整被测件在试验箱内高度,从而保证能够测量不同直径的被测件的热膨胀系数。在温度快速变化的情况下保证箱体和支架对称变形,同时减小支架的质量,以减小其热容,防止测量时受到支架变形影响而产生的缓慢漂移。 文献中并未报道此测试系统的结构,但根据分析可以大概此测试系统为双端面测试结构,即将两路光纤位移传感器对准被测件的两个端面,同时测量两个端面的位移,最终得到整个测试件的热膨胀长度变化。整个测试系统的结构如图2-3所示。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614791_3384_3.png图 2-3 低膨胀纤维增强复合材料杆件热膨胀系数测试系统结构示意图 从文献报道分析这套大尺寸构件热膨胀系数测试系统技术指标和测试结果,可以得出以下初步的结论: (1)位移传感器分辨率为0.25um,那么测量准确度基本也就在1um左右,这个测量准确度基本与千分表相同,所能测试的热膨胀系数最小也就在1E-06/K左右,还无法测试-7量级甚至-8量级的零膨胀系数材料。而目前的2m长构件热膨胀系数可以达到5E-08/K水平,由此可见采用这种测试方法无法满足目前零膨胀构件的测试需求。 (2)采用光纤式位移传感器所进行的位移测量,是一种相对测试方法,实际测量精度还需要采用更高级别仪器进行计量标定才能保证热膨胀系数测量准确性。 (3)采用已知热膨胀系数的铝材Ly12CZ(淬火状态)制成的测试件进行测量精度考核,测试件直径为φ20mm,常温下长度1m,壁厚为2.5的管型材。在-50?20℃测试温度范围内,测定的平均热膨胀系数为19.9E-6/K,20~100℃测试温度范围内,测定的平均热膨胀系数为21.4E-6/K。文中得出的结论是对于这种E-06/K量级的热膨胀系数测试偏差在7%以内。由此试验证明这套大尺寸只能测试E-06/K量级的热膨胀系数。 (4)文中报道了对直径?20mm、壁厚2mm、长度为1m的碳纤维复合材料圆杆热膨胀系数测试结果,测试温度范围为10~30℃。测试结果显示热膨胀长度变化量为-17.47um,线膨胀系数为-0.87E-06/K。文中仅报道了两次重复性测量,两次重复行测量重复精度为1.3%。由此可见这种碳纤维复合材料圆杆热膨胀系数很大,距离所需要的零膨胀系数差距很大。 (5)从文中报道可以看出,整个测试是以殷钢基座为基准,理论上这个测量基准能够控制在0.5um/m℃以下。但考虑到伸入试验箱内光纤长度的变化,以及并未采用同侧差分测量抵消光纤长度的技术手段,很大可能会出现碳纤维复合材料圆杆实际热膨胀系数很小,但此套装置并不能准确测试,测试结果反而是此装置的系统误差,即碳纤维复合材料圆杆很小的热膨胀以及完全淹没在测试系统误差内。 (6)尽管文中报道的碳纤维复合材料圆杆热膨胀系数测试结果在-0.87E-06/K左右,这表现出碳纤维复合材料圆杆生产工艺还未能实现整体圆杆的零膨胀,更表现出测试方法自身精度完全无法达到零膨胀测试需要,但这是目前国内对大尺寸管件低膨胀测试的首次尝试,尽管不成功但意义非常重大。从对1m长的圆杆测试结果可以看出,在10?30℃温度范围内,圆杆收缩了17.47um。那么如果采用取样方式进行热膨胀测试,取样尺寸如果为100mm,那么100mm小试样的受热收缩也仅仅为1.7um左右。对于这种不到2um的热膨胀,采用目前常规的热膨胀仪器都无法进行测量。文中所报道的1m长碳纤维复合材料圆杆热膨胀系数测试恰恰证明了低膨胀构件整体热膨胀系数测试的必要性,这点在超低热膨胀系数构件中显得更为突出。[color=#ff000

  • 膨胀罐有哪几种分类

    膨胀罐的主要分类有哪几种,对于这一个问题,南京捷登流体设备有限公司的小编通过文章介绍膨胀罐的类型,让客户更好的了解产品。结构膨胀罐有哪几种分类膨胀罐—由罐体、气囊、进/出水口及补气口四部份组成。罐体一般为碳钢材质,外面是防锈烤漆层;气囊为EPDM环保橡胶;气囊与罐体之间的预充气体出厂时已充好,无需自己加气。原理膨胀罐的工作原理:当外界有压力的水进入膨胀罐气囊内时,密封在罐内的氮气被压缩,根据波义耳气体定律,气体受到压缩后体积变小压力升高,直到膨胀罐内气体压力与水的压力达到一致时停止进水。当水流失压力减低时膨胀罐内气体压力大于水的压力,此时气体膨胀将气囊内的水挤出补到系统。分类膨胀罐分为气囊式和隔膜式两种,前者在使用的过程中水与罐体内壁完全不接触,所以杜绝了生锈和水质的二次污染,是2010年至今市场上的主流产品,无论国内还是国外大部分都是采用气囊式;隔膜式膨胀罐是早期第一代的产品,工作时有一半的罐体内壁直接与水接触,容易锈蚀,严重影响其使用寿命,隔膜式膨胀罐已经淡出市场。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 混凝土公路设计中的热膨胀系数

    混凝土公路设计中的热膨胀系数

    [color=#990000]摘要:本文编译自美国交通部联邦公路管理局的技术简报,该技术简报描述了混凝土的热膨胀系数(CTE),其在混凝土路面行为中的作用,以及如何确定混凝土路面设计和分析目的的建议。讨论了“力学-经验路面设计指南”中混凝土路面性能预测模型的敏感性。描述了用于确定或估算CTE的实验室测试和其他方法,并总结了来自“长期路面性能”对路面部分的岩心所进行CTE的实验室测试结果,提供实用的指导路线来确定或估算CTE,并在设计和建造混凝土路面时考虑CTE对混凝土板对温度变化响应的影响。[/color][color=#990000]关键词:热膨胀系数,混凝土测试,混凝土公路设计,力学-经验路面设计指南[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#990000]1. 引言[/color][/b]  混凝土在温度升高时膨胀,在温度降低时收缩。衡量温度变化对混凝土体积变化的影响称为混凝土的热膨胀系数(CTE),定义为温度变化一度时单位长度变化量。混凝土路面混合物的CTE取决于骨料类型和饱和度。  由于粗骨料占混凝土体积的大部分,因此对混凝土CTE影响最大的因素是粗骨料的CTE。混凝土路面施工中常用的粗骨料类型中石英的CTE最高,其他常用粗骨料类型的CTE在很大程度上取决于其石英含量。根据所用骨料类型,混凝土CTE的典型值如表8-1所示。[align=center][color=#990000]表8-1 混凝土骨料类型的热膨胀系数(CTE)(LTPP标准日期版本25.0)[/color][/align][align=center][img=混凝土骨料类型的热膨胀系数,800,448]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251803468244_6004_3384_3.png!w900x505.jpg[/img][/align]备注1. 在LTPP标准数据25.0版本(2011年1月)中共提供了2991个CTE数据,由于骨料类型没有定义或主要骨料类型只提供了一个样品,其中628个数据无法使用,另外11个CTE异常数据并未包含在此数据表中。 粗骨料对CTE值的影响最大,但细骨料也是一个影响因素。天然砂通常含有高二氧化硅(高CTE),而制造的碎石灰石细骨料的CTE则较低。  水泥浆的CTE对水分含量非常敏感,但由于粗骨料的影响减弱使得混凝土的CTE较低(Powers和Brownyard,1947;Yeon等人,2009)。混凝土的CTE在相对湿度约70%时最高,当混凝土完全饱和时CTE会降低20~25%(美国陆军COE 1981)。[b][color=#990000]2. CTE如何影响混凝土路面行为变化[/color][/b]  混凝土响应温度变化时在体积上的改变是混凝土路面多种行为的起因,混凝土路面中每天和季节性温度循环变化导致衔接和裂缝的循环打开和关闭。为了使横向开裂最小化,使用具有高CTE的混凝土构造的连接路面可能需要比具有较低CTE的混凝土路面更短的接缝间距,这将增加初始建造的成本。  在白天,当混凝土路面的顶部比路面的底部更热时,混凝土将在路面的顶部膨胀而不是在底部。如果不限制这种不同的变形(通过横向接头处的销钉、纵向接头处的连杆或两者,以及路面自身的重量),则路面将向下卷曲。另一方面,如果沿着路面边缘限制路面的白天向下卷曲,结果将造成混凝土和销钉之间的支撑应力更高。  同样,在夜间,当混凝土路面顶部冷比路面底部更冷时,混凝土将在路面顶部收缩而不是在底部收缩。如果这种差异变形不受限制(通过横向接头处的销钉,纵向接头处的连杆或两者),则路面将向上卷曲。另一方面,如果沿着路面边缘限制路面的夜间向上卷曲,则结果将是混凝土和销钉之间的支撑应力更高。  如果路面下方的基层足够柔软,则路面可以向上或向下卷曲,并且仍然与路面中间的基层和沿其边缘保持完全接触,如果路面平坦且与基层完全接触,则由交通车辆载荷引起的应力将不会差别很大。然而,如果路面下方的基层足够坚硬,且当路面响应深度方向温度梯度而向上或向下卷曲时,一部分路面会卷曲而不与基层接触,由交通车辆载荷对路面引起的应力将大于路面平坦且与基层完全接触时的情况。这种向上卷曲在夜间尤其是一个问题,当路面边缘和拐角处的支撑减少将导致交通车辆荷载下边缘和拐角处的应力增加。  混凝土的CTE对连续钢筋混凝土路面(CRCP)的性能也有影响。CRCP中的钢含量设计为可以达到相当均匀的裂缝间距,并且是在约1~2米范围内。裂缝间距太短可能会增加冲孔的可能性,裂缝间隔过长可能会增加钢材断裂的可能性。如果混凝土的CTE高于钢设计中的假定(或隐含值),则可能无法实现所希望的裂缝间距和均匀性。因此,在设计阶段确定混凝土CTE(基于过去的经验或新测试)、调整设计以达到所需的性能水平并要求在施工期间验证CTE值就变得非常重要。[color=#990000][b]3. 热膨胀系数测试方法[/b][/color]  确定混凝土CTE的AASHTO测试方法是T 336-11。该实验室测试包括测量直径为10 mm的饱和混凝土芯材或圆柱体的长度变化,同时温度从10℃升至50℃然后将温度降低到10℃。混凝土样品和测量装置完全浸泡在水浴中以在测试期间保持混凝土的饱和度,虽然100%饱和度混凝土的CTE不如水分含量稍低时CTE,但实验室测试是在饱和样品上进行以便控制水分含量。来自两家供应商的CTE测试设备和安装在CTE测试设备中的混凝土样品如图8-1所示。[align=center][img=测试设备测量混凝土的CTE,900,298]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251806355253_264_3384_3.png!w900x298.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图8-1 在FHWA混凝土实验室使用的测试设备测量混凝土的CTE[/color][/align]  在进行膨胀(加热)和收缩(冷却)段期间的测量时,需要对测量进行调整以考虑温度变化对测试设备本身的影响,通过计算两个测试段中每度温度变化的样品长度变化,并除以样品长度得到混凝土的CTE。必要时重复测试过程,直到在膨胀段和收缩段测试的CTE值相差在每度每百万分之0.3之内。然后将混凝土的CTE计算值确定为获得的两个连续CTE值的平均值,一个来自测试的膨胀段,一个来自测试的收缩段。  美国陆军工程兵团有一个类似的测试方法来确定混凝土的CTE(美国陆军COE 1981),该测试方法CRD-C 39-81指出测试在5~60℃的温度范围内进行。工程兵团测试方法指出,当混凝土试样的长度变化仅在两个温度点之间进行测量时,应报告单个CTE值,但是当在一系列不同温度下进行长度变化测量时,应给出CTE与温度的关系曲线,并应说明不同温度区间的CTE计算值。[b][color=#990000]4. 力学-经验公路设计指南推荐的测定热膨胀系数[/color][/b]  对于1级设计:此级别需要输入最高精度且被认为适用于最重要项目。力学-经验路面设计指南(MEPDG)建议对混凝土样品进行实验室测试以确定CTE(AASHTO 2008)。  许多国家已开始使用其典型骨料来描述其典型的普通水泥混凝土混合物,并将这些CTE值存储在数据库中。他们将根据项目位置将这些值用作CTE输入。通过定义,这些值不是1级输入,但它们是比2级或3级输入更真实的输入。  对于2级设计:此级别被认为适用于常规、实际项目。MEPDG建议将混凝土CTE估算为骨料和水泥浆的CTE值的平均值,相对于它们在混合物中的体积比例。  对于3级设计:此级别是需要输入精度最低的级别。MEPDG允许使用典型的CTE值。要使用的值应该是要在项目中使用的骨料类型制作的混凝土的典型值。表 81提供了从“长期路面性能(LTPP)”项目中实验室对芯材测试获得的混凝土CTE范围,应该注意的是,这些值是基于来自美国和加拿大的骨料。根据矿物的不同,这些CTE值可能在不同地区有显著差异。  MEPDG(ARA-ERES 2004)基于未校正的LTPP CTE数据和其他来源(Mindess和Young 1981 Kosmatka等2002 Jahangirnejad等2008 )还提供了不同类型骨料典型混凝土CTE信息。[b][color=#990000]5. CTE如何影响MEPDG的性能预测[/color][/b]  MEPDG将CTE确定为混凝土材料关键响应计算所需的输入参数之一,混凝土的CTE值对路面开裂的预测具有显著影响,并且在较小程度上对MEPDG的连接断裂具有影响(Malella等人,2005)。这两种危害都在MEPDG对路面不平整度预测中起着作用,较高的CTE值对应于更大的路面开裂预测量、更大的连接断裂和更大的路面不平整度。[b][color=#990000]6. CTE测试和MEPDG危害模型[/color][/b]  JCP新的力学-经验路面设计指南(MEPDG)模型是使用LTPP数据库开发的,使用的LTPP数据参数之一是混凝土CTE。由于发现用于原始混凝土路面危害模型开发的混凝土CTE数据是错误的(Crawford等人2010),当时使用的是AASHTO TP 60-00(AASHTO 2005)测试方法,使用此方法导致CTE测量值偏高。对于用于校准CTE测试框架的304不锈钢校准样品,TP 60试验方法推荐值为17.3×10-6/℃,但根据ASTM E 228测定的304不锈钢试样的CTE为15.0×10-6/℃,使用这些错误的CTE数据对于混凝土而言造成实际使用的混凝土CTE相同比例的偏低。  用于校准CTE测试框架的不锈钢校准样品CTE测试方法已在新的AASHTO T 336标准方法(AASHTO 2011; Tanesi等人2010)中得到颁布,使用新的测试方法测定的CTE值低于使用TP 60-00测试方法测定的CTE值。LTPP标准数据版本24.0及更高版本中的CTE值已经过校正,以符合T 336测试方法,并且是表8-1中报告的方法。  截至2011年8月,混凝土路面危害模型已纳入最近发布的(2011年7月)DARWin-ME?软件(包含MEPDG版本1.1危害模型),此版本软件是基于使用TP 60-00测试方法确定的CTE值。因此,建议Darwin ME用户使用未经修正的CTE值,如AASHTO于2008年出版的“力学-经验路面设计指南:实践手册”(临时版)表11-5中所列数据,或使用根据TP 60-00测试方法确定的CTE数据。如果使用T 336标准确定可用的CTE数据,则应调整CTE值以与DARWin-ME一起使用,方法是将校准棒假定的CTE(17.3×10-6/℃)与ASTM E 228测量304不锈钢校准样品的CTE值之间的差值相加,差值约为1.5×10-6/℃。[b][color=#990000]7. 推荐[/color][/b]  MEPDG提供了量化混凝土CTE对JCP和CRCP预测性能影响的机会,MEPDG对JCP路面裂缝的预测对所输入的CTE敏感,在较小程度上,MEPDG对连接断裂的预测也是如此。这两种危害都在MEPDG对路面不平整度的预测中起着作用。  鉴于MEPDG的几个混凝土路面危害模型对混凝土CTE输入的敏感性,对于1级设计,应通过对具有相同骨料类型和混合设计以及应用在路面结构中的圆柱体样品进行测试来确定CTE(使用AASHTO T 336-11测试方法)。  对于3级设计,应使用表8-1中提供的数据。这些数据是对LTPP混凝土路面的数百个芯材进行实验室测试后获得的平均CTE值,也是几个来源报告中的混凝土CTE的典型中间值。  如上所述,重要的是如果使用DARWin-ME软件(包含MEPDG 1.1版危害模型),如果使用AASHTO T 336方法确定这些值,则应对CTE值进行调整,否则直接使用表8-1中的CTE值。  [b][color=#990000]8. 参考文献[/color][/b]  American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” T 336-11, Washington, DC, 2011.   American Association of State Highway and Transportation Of?cials (AASHTO), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim Edition, Washington, DC, 2008, p. 120.   American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” TP 60-00, Washington, DC, 2005.   ARA-ERES, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37a, Final Report, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, 2004.   Crawford, G., J. Gudimettla, and J. Tanesi, “Inter- laboratory Study on Measuring Coef?cient of Thermal Expansion of Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington, DC, January 2010.   Jahangirnejad, S., N. Buch, and A. Kravchenko, “A Laboratory Investigation of the Effects of Aggregate Geology and Sample Age on the Coef?cient of Thermal Expansion of Portland Cement Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington DC, January 2008.   Kosmatka, S. H., B. Kerkhoff, and W. C. Panerese, Design and Control of Concrete Mixtures, Engineering Bulletin EB001, 14th ed., Portland Cement Association, Skokie, IL, 2002.   Malella, J., A. Abbas, T. Harman, C. Rao, R. Liu, and M. I. Darter, “Measurement and Signi?cance of the Coef?cient of Thermal Expansion of Concrete in Rigid Pavement Design,” Transportation Research Record: Journal of the Transportation Research Board, No. 1919, 2005, pp. 38-46.   Mindess, S., and J. F. Young, Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ, 1981.   Powers, T. C., and T. L. Brownyard, “Studies of the Physical Properties of Hardened Cement Paste,” Proceedings of the American Concrete Institute, Vol. 43, 1947, p. 988.   Tanesi, J., G. L. Crawford, M. Nicolaescu, R. Meininger, and J. M. Gudimettla et al., “New AASHTO T336-09 Coef?cient of Thermal Expansion Test Method: How Will It Affect You?” in Transportation Research Record: Journal of the Transportation Research Board, No. 2164, pp. 52-57, 2010.   U.S. Army Corps of Engineers, “Test Method for Coef?cient of Linear Thermal Expansion of Concrete,” CRD-C 39-81, issued 1 June 1981.  Yeon, J. H., S. Choi, and M. C. Won. “Effect of Relative Humidity on Coef?cient of Thermal Expansion of Hardened Cement Paste and Concrete,” Transportation Research Record: Journal of the Transportation Research Board, No. 2113, 2009, pp. 83-91.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 低温冷冻箱膨胀阀如何调试?

    低温冷冻箱的有效运行与需要的制冷效果息息相关,要想保证好一点的制冷效果,正确的调试膨胀阀就尤为重要,那么,怎么调试低温冷冻箱膨胀阀呢?低温冷冻箱运行过程中,膨胀阀的开启度小,制冷剂通过的流量就少,压力也低,低温冷冻箱膨胀阀的开启度大,制冷剂通过的流量就多,压力也高。根据制冷剂的热力性质,压力越低,相对应的温度就越低;压力越高,相对应的温度也就越高。所以,如果低温冷冻箱膨胀阀出口压力过低,相应的蒸发压力和温度也过低,但由于进入蒸发器流量的减少,压力的降低,造成蒸发速度减慢,单位容积制冷量下降,制冷效率降低。与之相反,如果低温冷冻箱膨胀阀出口压力过高,相应的蒸发压力和温度也过高,进入低温冷冻箱蒸发器的流量和压力都加大,由于液体蒸发过剩,过潮气体(甚至液体)被压缩机吸入,引起压缩机的湿冲程,使压缩机不能正常工作,造成一系列工况恶劣,甚至损坏压缩机。所以说,低温冷冻箱的膨胀阀开启度,应根据当时的低温冷冻箱温度进行调节,即在低温冷冻箱相对应的压力下调整。低温冷冻箱压缩机的吸气压力由于存在吸气管的压力损失和过热度(取决于管路的长短和隔热效果),一般较蒸发压力稍高。此时膨胀阀的调节压力应基本与蒸发压力相似(蒸发压力稍高)。调节低温冷冻箱膨胀阀必须仔细耐心地进行,调节压力必须经过低温冷冻箱蒸发器与低温冷冻箱温度产生热交换沸腾(蒸发)后再通过管路进入压缩机吸气腔反映到压力表上的,需要一个时间过程。无锡冠亚提醒,每调动低温冷冻箱膨胀阀一次,一般需10~15分钟的时间后才能将膨胀阀的调节压力稳定在吸气压力表上,调节不能操之过急,低温冷冻箱压缩机的吸气压力是膨胀阀调节压力的主要依据参数,低温冷冻箱膨胀阀技术性能的好坏,直接影响其能否正常调节运行的标志。低温冷冻箱膨胀阀如果出现堵塞以及冰堵等故障,需要各位及时解决,以免影响低温冷冻箱的使用。

  • 活性污泥中非丝状菌膨胀的条件和成因

    非丝状菌膨胀是由于菌胶团细菌本身生理活动异常,导致活性污泥沉降性能恶化。可分为两种。一种是由于进水中含有大量的溶解性有机物,使污泥负荷F/M太高,而进水中缺乏足够的氮、磷等营养物质,或者混合液内溶解氧不足。高F/M时,细菌会把大量的有机物质吸入体内,而由于缺乏氮、磷或溶解氧不足,又不能在体内进行正常的分解代谢。此时细菌会向体外分泌出过量的多聚糖类物质。这些物质由于分子式中含很多羟基而具有较强的亲水性。使活性污泥的结合水高达400%(正常污泥结合水为100%左右)以上。呈粘性的凝胶状,使活性污泥在二沉池内无法进行有效的泥水分离及浓缩。这种污泥膨胀称为粘性膨胀。另一种非丝状菌膨胀是由于进水中含有大量的有毒物质,导致污泥中毒。使细菌不能分泌出足够的粘性物质,形不成絮体,因此也无法在二沉池进行有效的泥水分离及浓缩。这种污泥膨胀有时又称为非粘性膨胀或离散性膨胀。

  • 瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    [size=16px][color=#cc0000][b]摘要:为准确测量航天复合材料快速加热过程中的热膨胀系数,本文介绍了热膨胀系数测试过程中加热速率、加热形式和位移测量形式对被测样品内外温度和热膨胀测量方向上温度梯度的影响,以及这些温度梯度与热膨胀系数测试结果之间的变化规律。在这些初步研究基础上,本文提出了高速加热过程中热膨胀系数测量装置的初步设计方案,即采用聚光辐射或电磁感应技术进行非接触快速高温加热,采用激光扫描或光学投影技术进行非接触应变测量。[/b][/color][/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px][color=#cc0000]1. 问题的提出[/color][/size][/b][size=16px] 比较典型的航天复合材料如碳碳和石墨复合材料、各种酚醛树脂基复合材料等,其热膨胀系数普遍还是采用加热速率较慢的各种热膨胀仪进行测试,而这种常规测试过程中的较低加热速率与航天复合材料的实际使用环境下的快速升温速率严重不符,低速加热时的热膨胀系数测试结果几乎对复合材料结构的热设计毫无用途,从而造成现有的热结构设计太过保守。为此,本文针对快速加热条件下的航天复合材料热膨胀系数测试,开展初步的测试技术研究,通过典型材料重点了解快速加热条件下的以下两方面的问题:[/size][size=16px] (1)快速加热条件下,样品或材料的内外内外温差对热膨胀系数的影响。[/size][size=16px] (2)快速加热条件下,样品或材料热膨胀测试方向上的温度均匀性影响。[/size][size=18px][color=#cc0000][b]2. 样品内外温差影响[/b][/color][/size][size=16px] 对于航天复合材料而言,由于其结构和热物理性能的不同,特别是热导率有着数量级上的差别,由此会在实际应用和取样测试过程中有时会存在严重的内外温差。热膨胀测试中,加热速率的不同会对测量结果产生明显的影响。[/size][size=16px] 为了直观了解这种内外温差对热膨胀系数测量的影响,我们选择了具有中等热导率(常温时约14W/mK)的不锈钢材料进行取样测试,测量温度范围为室温30~700℃,测试得到的平均热膨胀系数结果如图1所示。[/size][align=center][size=16px][color=#cc0000][b][img=不锈钢样品不同加速速率下的平均线性热膨胀系数测试结果,660,482]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111012258135_6561_3221506_3.jpg!w690x504.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图1 不同加速速率下的不锈钢样品热膨胀系数测试结果[/b][/color][/size][/align][size=16px] 从图1所示的测量结果可以看出,在较低加热速率(5℃/min)下的热膨胀系数测试结果相差不大,只是随加热速率的升高热膨胀系数整体有很小的降低。而在加热速率超过10℃/min时,测试结果发生明显的偏差,热膨胀系数明显的偏低,特别是在低温范围内这种现象更为明显。[/size][size=16px] 由此可见,对于热导率较低的材料,较快的加热速率会在样品内外产生明显的温差,从而对热膨胀系数产生严重的影响,使得热膨胀系数测试结果严重偏低。具体应用到航天复合材料中,由于碳碳和石墨复合材料的热导率普遍较高,相关的测试研究表明石墨材料在1600℃温度以下的范围内测试时,加热速率几乎没有影响,对于碳碳复合材料,这个不受加热速率影响的温度范围可以扩展到1700℃。[/size][size=16px] 对于热导率普遍较低的酚醛树脂复合材料,其热膨胀对加热速率则非常敏感,且膨胀过程非常复杂。有测试观察到当碳酚醛或二氧化硅酚醛层压材料被缓慢加热时,在190℃左右发生一些快速膨胀,然后材料开始收缩,从膨胀到收缩的变化对应于热降解的开始。而在高加热速率下,热膨胀系数的急剧增加发生在与低速率下开始收缩时的大致相同温度区域。据信,在高加热速率下,树脂开始软化,然后发生气体的快速释放。这些气体不容易逸出,并在材料中产生压力,导致快速膨胀和裂缝的张开。除了热膨胀之外,因材料的结构受到影响,其他性能也会受到加热速率的影响。[/size][size=18px][color=#cc0000][b]3. 样品表面温度均匀性影响[/b][/color][/size][size=16px] 在快速加热形式的热膨胀测试设备中,往往还存在以下两方面的因素会给样品表面温度的均匀性带来影响,由此会给热膨胀系数测量带来误差:[/size][size=16px] (1)加热方式:热膨胀测试中的快速加热一般会采用聚光辐射加热、感应加热和直接通电三种形式,其中辐射加热适用于非导电材料样品,而感应加热和通电加热则适用于导电类材料样品。但不论采用哪一种加热方式,发光灯管和感应线圈都会是有限长度,从而使得样品轴向方向上的温度并不是均匀分布。特别是直接通电加热方式中的电极与被测样品直接接触,样品上的热量会通过电极散失而造成较严重的样品温度不均匀性。[/size][size=16px] (2)变形测量方式:热膨胀系数的测量一般会采用顶杆法和光学投影法,在顶杆法测试中,与样品接触的顶杆同样会对样品起到散热作用而影响样品的温度均匀性,而非接触形式的光学投影法则不存在样品散热问题,对样品的温度均匀性影响较小。[/size][size=16px] 为了研究样品表面温度不均匀性对快速加热过程中热膨胀系数测量的影响,有研究人员采用了感应加热式顶杆法热膨胀仪,如图2所示,对42CrMo超高强度钢进行了不同升温速率下的测试。样品被夹在两根熔融石英顶杆之间,其中一根顶杆固定,另一根连接到一个差动变压器(LVDT)进行样品的变形量测量。样品被放置在感应线圈的中心可实现高速加热,样品上焊接了两只S型热电偶,中心位置的热电偶用于控制样品温度,边缘位置热电偶用来测量温度均匀性。[/size][align=center][size=16px][color=#cc0000][b][img=02.感应加热式顶杆法热膨胀仪结构,500,344]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014018059_9517_3221506_3.jpg!w690x476.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图2 感应加热式顶杆法热膨胀仪结构[/b][/color][/size][/align][size=16px] 如图3所示为样品和感应线圈结构和尺寸示意图,样品为壁厚为0.5mm的薄壁圆柱,样品长度为10mm,熔融石英棒顶杆的外径和内径分别为2mm和1mm。[/size][align=center][size=16px][color=#cc0000][b][img=03.快速加热热膨胀测试中使用的样品和感应线圈几何形状,660,222]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014201830_7644_3221506_3.jpg!w690x233.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图3 快速加热线膨胀测试中使用的样品和感应线圈几何形状[/b][/color][/size][/align][size=16px] 对上述样品,在1℃/s~1200℃/s范围内一系列不同的速率下对样品进行了加热,不同加热速率下样品中心与边缘之间的温度差测试结果如图4所示,相应的应变测试结果如图5所示。[/size][align=center][size=16px][color=#cc0000][b][img=04.不同加热速率下的样品中部和边缘的实测温差,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014398184_2549_3221506_3.jpg!w690x557.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图4 不同加热速率下样品中部和边缘的实测温差[/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b][img=05.不同加热速率下的样品应变量-温度测试结果,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014595694_4159_3221506_3.jpg!w690x556.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图5 不同加热速率下样品应变量-温度测试结果[/b][/color][/size][/align][size=16px] 从图4所示的温差曲线可以看出,对于低于10℃/s的加热速率,样品中心和边缘之间的温差不会超过10℃。对于所有其他加热速率,温差随着中心温度快速增加,并在达到某一温度时开始变缓。从该温度开始,中心与边缘之间的温差随着样品中间温度变化几乎呈线性增加。对于最高加热速率1200℃/s,温差达到最大值160℃,边缘温度相当于中心温度的大约70%。[/size][size=16px] 如图5所示,比较不同加热速率下测得的应变-温度曲线,可以观察到加热速率越高,测得的应变越低,这也与图1所示的规律一致,但这也部分可能与加热速率增加时膨胀方向上的温度梯度的增加有关。从图5可以看出,最小和最大升温速率下应变测量值的相对偏差约为20 %。[/size][size=16px] 显然,在非常高的加热速率下使用变形信号对发生相变的动力学过程的研究将导致严重的误差,因为应变信号中的误差将通过不确定的传播影响描述相变动力学的所需参数的计算,同时,还取决于所应用的动力学模型的数学性质,最终误差甚至可能大于这里测量的应变的20%误差。[/size][size=16px] 另外,样品轴向上的温度梯度是由于样品和棒之间的接触带来的热损失,这导致靠近样品边缘的温度降低。在低加热速率下,从中心到边缘的热传导几乎使整个样品的温度相等,导致小的温度梯度,但随着加热速率的增加,由于热传导使得样品中心的温度上升较快,这导致轴向温度差的增加。[/size][size=16px] 造成温度梯度的另一个因素是样品与线圈磁场的相互作用,感应热在整个样品长度上并不是均匀和恒定的,对于膨胀计的感应线圈的规则螺旋状几何形状,沿着轴向方向上存在强烈的感应温度梯度。[/size][size=18px][color=#cc0000][b]4. 总结[/b][/color][/size][size=16px] 通过上述高加热速率条件下进行的金属材料热膨胀系数测试,可以明显看到加热速率对样品内外和样品轴向温度差的严重影响,因此在今后的各种高加热速率条件下的热膨胀测试,需要特别注意以下几个内容:[/size][size=16px] (1)测试前,首先要确定具体测试的是哪一种热膨胀系数,稳态热膨胀系数测试则选用低加热速率,瞬态热膨胀系数测试则根据实际应用场景选择相应的高加热速率,这在材料的相变过程研究中非常重要。[/size][size=16px] (2)对于稳态热膨胀的测试,需要在样品内外温度一致后进行测量,这是就需要尽可能采用尽可能低的加热速率才能保证相应的测量准确性,甚至可以采用台阶式温升方式,使样品在不同温度下恒定一段时间后再进行变形测量。[/size][size=16px] (3)由于材料固有的导热性能,对于符合实际变温速率应用场景的高加热速率下的热膨胀测试,样品内外的温差更能符合材料的实际温度环境,但在热膨胀系数的具体测试中需要尽可能避免样品轴向温度差带来的测量误差。具体采取的措施是分别采用非接触形式的加热技术和位移测量技术,使被测样品不与其他物体接触或最小接触,如采用均温场更长的聚光辐射加热装置或能提供更均匀温度场的异型感应线圈对样品进行非接触式快速加热,如采用激光线扫描或投影法光学变形测试技术非接触测量样品的长度。[/size][size=16px] 总之,通过对高速加热过程中热膨胀系数测试技术的初步研究,确定了非接触快速加热和非接触位移测量的总体技术方案,为后续航天复合材料高速热膨胀系数测试研究工作的开展奠定了基础。[/size][size=16px][color=#cc0000][b][/b][/color][/size][align=center][size=16px][b][color=#cc0000]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 新能源汽车电机测试设备热力膨胀阀

    新能源汽车电机测试设备中每个配件的性能都是很重要的其中热力膨胀阀作为主要配件之一,其性能以及调整也是很关键的,那么新能源汽车电机测试设备热力膨胀阀怎么调整呢?  新能源汽车电机测试设备热力膨胀阀具体的调整步骤:将数字温度表的探头插入到蒸发器回气口处(对应感温包位置)的保温层内,将压力表与压缩机低压阀的三通相连。(测试蒸发压力与回气温度);让压缩机运行15分钟以上,进入稳定运行状态,使压力指示和温度显示达到稳定值。  读出新能源汽车电机测试设备数字温度表温度T1与压力表测得压力所对应的温度T2,过热度为两读数之差T1- T2,进行调节时先将热力膨胀阀下方的阀帽拧下;过热度偏小时顺时针旋转阀杆,使阀体的针孔开启度关小,即供液流量减少(简述为顺旋开小);过热度偏大时逆时针旋转阀杆,则针孔开大,即供液流量增大(简述为逆旋开大)。与调节水阀控制水流大小的方法一样。流量调节时需在新能源汽车电机测试设备制冷系统正常运行中进行,而且要缓慢操作,逐渐调节。  其次,新能源汽车电机测试设备的膨胀阀的品牌以及性能也需要我们注意,好品牌的新能源汽车电机测试设备的膨胀阀的质量更加靠谱,在运行的时候有一点的质量保障,不会轻易产生故障,更够高效的运行。  新能源汽车电机测试设备热力膨胀阀调整还是比较简单的,如果还是调整不了的话,可以联系新能源汽车电机测试设备厂家来解决。

  • 热膨胀测试技术:加热速率对平均线膨胀系数测试结果影响的实验演示

    热膨胀测试技术:加热速率对平均线膨胀系数测试结果影响的实验演示

    在热膨胀系数测试过程中,加热速率是一个重要试验设置参数,加热速率的设置直接影响热膨胀系数测量的准确性。一般来说,加热速率越小,热膨胀系数测量的准确性越高,但相应的整个测试过程时间就会很长。因此,在实际热膨胀系数测试过程中,针对不同被测材料样品,选择合理的加热速率则显着非常重要,从而实现既能保证测量的准确性,又能缩短整个测试过程时间。 一直以来,加热速率对热膨胀系数测试结果的影响只是一个公认的常识,很少看到有专项研究对这种影响进行系统性考核试验和报道。如Jankula等人的研究中[1],仅展示了不同加热速率会使相对热膨胀曲线之间产生偏移,如图1所示。即在较高加热速率下,温度在整个样品中的分布并不均匀,因此可以观察到相对膨胀的一些延迟。这种不同加热速率所带来的延迟效应在热分析测试中非常典型,可以在差热分析、热重分析和其他热分析技术中找到,但这种延迟性描述和表征并不直观,特别是在热膨胀系数测试中并不能直观描述加热速率的影响。[align=center] [img=,690,378]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081406107187_3969_3384_3.png!w690x378.jpg[/img][/align][align=center][color=#990000]图1 不同升温速率下砖坯样品的相对热膨胀变化曲线:2.5℃/分钟(灰色)和10℃/分钟(黑色)[/color][/align] 为了更直接和直观的描述加热速率对热膨胀系数测量的影响,Dulucheanu等人开展了这方面的专项研究[2],具体的实验条件如下: (1)热膨胀仪:德国NETZSCH公司Expedis DIL 402-SUPREME膨胀仪; (2)样品材料:铁素体-马氏体结构双相钢; (3)样品尺寸:圆柱形样品,直径5mm,高度25mm; (4)加热温度范围:30~980℃; (5)测试温度范围:30~700℃; (6)加热速率:1、3、5、10和30℃/min; (7)试验气氛:氮气,流速100ml/min; (8)样品负载:200mN。 在加热速率为3℃/min时,得到如图2所示的相对热膨胀曲线,并由此可计算得到30~100℃、30~200℃、30~300℃、30~400℃、30~500℃、30~600℃和30~700℃的平均线膨胀系数。[align=center][color=#990000][img=,690,466]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081407341483_4829_3384_3.png!w690x466.jpg[/img][/color][/align][align=center][color=#990000]图2 膨胀曲线和线性热膨胀系数(CTE),温度范围为30~700℃,加热速率为3℃/分钟[/color][/align] 分别采用不同加热速率进行测试,得到相应的平均线膨胀系数测试结果,数值形式如表1所示,曲线形式如图3所示。[align=center][color=#990000]表1 不同加热速率下的平均线膨胀系数测试结果[/color][/align][align=center][color=#990000][img=,690,139]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081408072713_661_3384_3.png!w690x139.jpg[/img][/color][/align][align=center][color=#990000][img=,690,504]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081408542587_2405_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 平均线性热膨胀系数(CTE)随加热速率和温度范围的变化[/color][/align] 从这个直观的系列性验证试验可以看出,由于被测样品材料的内部结构和热物理性能,加热速率会对热膨胀系数测试结果产生明显影响,加热速率这一试验参数的选择不当会造成热膨胀系数测量误差极大。因此,在实际测试过程中,要根据被测材料结构和热物理性能,选择合理的加热速率。[b][color=#990000]参考文献[/color][/b] [1] Jankula M, Š íN P, PODOBA R, et al. Typical problems in push-rod dilatometry analysis[J]. Epitoanyag-Journal of Silicate Based & Composite Materials, 2013, 65(1) [2] C. Dulucheanu, T. Severin, M. Bă eș u, The Influence of Heating Rate on the Coefficient of Linear Thermal Expansion of a 0.087% C and 0.511% Mn Steel, TEHNOMUS.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 砂浆流变仪

    请问大家哪个型号的流变仪,可以检测砂浆的流变曲线,及屈服应力,砂浆的直径最大5mm,谢谢

  • Pyrex7740 膨胀系数测试

    Pyrex7740 膨胀系数测试

    Pyrex是一种由Corning公司首次研发的硼硅酸盐玻璃。它被广泛应用在实验室用玻璃器皿上。它有如下优点:在较宽的温度范围内有很好的稳定性(温度上限:490℃),具有很强的耐酸、耐碱及耐腐蚀性,具有很低的膨胀系数,制成厚玻璃具有很好的机械强度。耐驰热膨胀仪和热机械分析仪可以用来测试Pyrex及其他低膨胀的玻璃或陶瓷样品的膨胀系数。[b]测[color=black]试条件[/color][/b][color=black]耐驰热机械分析仪 TMA 402 F1 Hyperion[/color][table][tr][td=1,1,370]温度范围:-20°C … 300°C[/td][td=1,1,370]加热与降温速率:2°C/min[/td][/tr][tr][td=1,1,370]气氛:He,20ml/min[/td][td=1,1,370]样品长度:24.98 mm[/td][/tr][tr][td=1,1,370]样品支架:熔融石英[/td][td=1,1,370]测量模式:压缩[/td][/tr][/table][b]结果讨论[/b][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131418562409_2488_163_3.jpg!w590x329.jpg[/img]在整个温度范围内,Pyrex玻璃的膨胀曲线近似完全线性,0℃ … 300℃的膨胀系数(工程膨胀系数,CTE)为33.4X10[sup]-7[/sup] 1/K,与理论值(32.5 X10[sup]-7[/sup] 1/K)的误差近0.9 X10[sup]-7[/sup] 1/K,这足以说明TMA 402 F1 Hyperion可以用于测试低膨胀系数的样品。(1) Corning data sheet: Properties of PYREX[sup][/sup], PYREXPLUS[sup][/sup] and Low Actinic PYREX[sup][/sup] Code 740 Glasses(2) [url=http://www.valleydesign.com/pyrex.htm]www.valleydesign.com/pyrex.htm[/url]

  • 林赛斯热膨胀仪-激光-相变-----自荐

    热膨胀仪用于测量样品随温度变化而产生的膨胀;测量样品随温度或时间变化的函数关系,测得样品长度变化(Delta L)或CTE值(热膨胀系数)的膨胀信息。激光热膨胀--未来热膨胀测量技术的趋势—高精度和高分辨率。L75 激光热膨胀仪的优越性体现在精度是传统顶杆热膨胀仪的33倍。测量原理是麦克尔逊(Michelson)干涉计,因而消除了系统误差,专利保护的测量技术可以研究最新的高科技超低膨胀材料(ULE),Linseis成功地将最新的技术应用于此系列热膨胀仪和优化设计系统,使之易用性和传统的热膨胀仪一样。相变热膨胀仪--L78 RITA 是特别适合于研究和测量TTT,CHT和CCT图表。特殊的加热炉可以加热和制冷速度高于400°C/s。系统符合标准 ASTM A1033。所有的关键参数,如加热制冷速度,气体控制和安全保护都通过软件控制。专业的32-Bit 软件 Linseis TA- WIN 兼容Windows 系统,所有的常规(如TTT,CHT和CCT图表的建立)和应用要求可以通过仪器的软件包来实现。图解和ASCII格式可以输出,方便用户测量数据和图表导出。

  • 低温环境混凝土热膨胀系数测试技术研究

    低温环境混凝土热膨胀系数测试技术研究

    [color=#cc0000]摘要:本文针对低温环境,介绍了目前国内外测量混凝土热膨胀系数的标准测试方法,着重介绍低温环境下混凝土热膨胀系数测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。  关键词:低温,混凝土,热膨胀系数,测试方法,膨胀仪[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  混凝土作为使用最广泛的建筑材料,它在室温和高温环境下的性能都得到了深入的研究。然而,在低温温度(即低于-165℃的温度)环境下混凝土的热物理性能尚未开展系统性研究。目前大多数液化天然气(LNG)储罐都采用了混凝土结构形式展,利用混凝土进行LNG主要密封的罐体设计将是未来发展的趋势,这将大大降低罐体的建造成本。因此,为了提高混凝土结构LNG储罐的安全性和长期耐久性,必须从根本上了解混凝土冷却到低温时的行为,而这些了解低温环境下混凝土的努力将集中于控制由于其部件的热膨胀系数引起的热变形和损伤增长的机制,因此准确测量低温环境下混凝土热膨胀系数是液化天然气储罐设计和建造的前提。  本文针对低温环境,将介绍目前国内外测量混凝土热膨胀系数(CTE)的标准测试方法,着重介绍低温环境下混凝土CTE测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。[color=#cc0000][b]2. 国内外测试方法介绍[/b]2.1. 国内标准测试方法[/color]  针对低温环境下的混凝土热膨胀系数测试,我国在2015年新制订了国家标准GB 51081-2015“低温环境混凝土应用技术规范”。  在GB 51081中对低温环境混凝土热膨胀系数的样品规定了应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081,试件应为边长100mm×100mm×300mm的棱柱体,每次检验应在相同条件下制作12个试件。  对低温环境下混凝土热膨胀系数测试设备GB 51081给出了下列规定:  (1)低温设备应有同时容纳不少于6个试件的有效空间,应满足常温至-197℃区间各种温度的施加,应具有自动控温和给出各种降温速率的功能,恒温器件的温度波动范围应在±0.5℃内。  (2)微变形测量装置应满足各职能过低温下的测量要求,且测量精度不得低于0.001mm。[img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012229434228_5404_3384_3.png!w690x342.jpg[/img][align=center][color=#cc0000]图2-1 低温混凝土热膨胀系数测试棱柱体样品示意图[/color][/align]  在GB 51081中对低温环境混凝土热膨胀系数的具体测量方法给出了如下规定:  (1)试件标准养护应达到设计龄期时取出,并应用湿布擦去表面水分后静置于室内自然环境中。应静置14天后进行时间外观检查和尺寸测量,并应将试件分成2组,每组6个试件。  (2)应标识热膨胀系数检验棱柱体试件两端面的3个测量点位置(图2-1),并应在这3个测量位置测量棱柱体试件的长度。  (3)检验低温时的低温环境混凝土热膨胀系数,第1组试件作用的温度值应为,第2组试件作用的温度值应为。  (4)测量第1组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按不高于1℃/min速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  (5)测量第2组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按与第1组试件相同的降温速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  综上所述,针对低温环境下混凝土热膨胀系数测试设备,国标GB 51081只给出了测量温度范围、温度波动大小、样品尺寸、测量位置点和热膨胀变形测量精度的规定,并没有测试设备更详细的内容,这使得很难具体执行国标GB 51081并有效保证测量准确性。[color=#cc0000]2.2. 国外标准测试方法[/color]  目前国际上并没有针对混凝土及其结构在低温环境下的热膨胀系数标准测试方法,对于液化天然气(LNG)储罐采用的混凝土及其结构,美国混凝土协会(ACI,American Concrete Institute)制订过相应的标准ACI 376(混凝土结构冷冻液化气体容器的设计和构造规范及说明),其中关于热膨胀系数测试所推荐的标准测试方法是改进后的CRD-C 39测试方法。  国外在以往混凝土常温下的热膨胀系数测试中,大多采用的测试方法为ASTM C531、CRD-C 39、AASHTO T336和Protocol-P63,但这些方法在所测试的温度范围基本适用于常温条件下,并不能直接推广应用到低温环境。  在ASTM C531中规定了需要在烘干条件下测量CTE,其中样品长度测量的温度范围为22.8~93.9℃,通过样品长度变化量除以温度变化量来得到CTE。而CRD-C 39中规定了将样品浸入水中48小时来达到饱和条件,然后在4.4~60℃温度范围内测量样品长度。在ASTM C531和CRD-C 39中,样品长度测量都是离线式测量方式,即将达到一定恒温时间的样品从恒温器中取出,并放置在样品长度测量的比较器上。由此可见,ASTM C531和CRD-C 39并不是连续测量热应变来得到热膨胀变化行为。  AASHTO T336和Protocol-P63测试方法也规定了在饱和条件下测试CTE,测试温度范围为10~50℃。然而各种混凝土构件,特别是液化天然气(LNG)储罐采用的混凝土及其结构的实际应用温度会非常低,因此需要拓展测试温度范围以覆盖低温范围。  因此,对于液化天然气(LNG)储罐采用的混凝土及其结构,其热膨胀系数的测试需要重点考虑两方面的因素,一是温度范围的拓展以满足低温测试要求,二是样品要保持一定的湿度然后在低温下进行热膨胀系数的测量。[b][color=#cc0000]3. GB 51081标准方法的改进建议[/color][/b]  对于低温环境下的混凝土热膨胀系数测试,我国基本上基于AASHTO T336标准制订了GB 51081-2015“低温环境混凝土应用技术规范”。因此,AASHTO T336中存在的问题在低温环境下会被放大,从而严重影响测量的准确性。另外,要使得GB 51081标准方法真正能推广应用并保证CTE测试的准确性,GB 51081还需要进行重大改进,主要改进建议如下:  (1)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,混凝土CTE测量装置中的辅助装置(如承台、导杆、支架等)的影响并不严重,这些辅助装置一般采用CTE较小的殷钢等材料制成就能满足要求。而按照GB 51081规定,低温环境下的最低温度要达到液氮温度(-197℃),在测试温度接近200℃这样大的温度变化范围内,CTE为1×10-6/K量级的殷钢材料的热胀冷缩影响将非常凸出。这就需要采用CTE更小的超低膨胀系数材料制作热膨胀仪的相应辅助装置,同时还需要进行热膨胀仪的基线校准来进一步降低热膨胀仪的系统误差。  (2)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,样品温度变化并不会对LVDT探测器带来明显的影响。同样,低温环境下的CTE测试,低温环境就会对安装在室温环境下的LVDT探测器产生明显影响,特别是对探测器的支撑板和固定架的温度影响从而带来探测器自身位置的改变。因此,在测试方法中要规定出LVDT探测器及其相关装置的温度变化范围,这方面的影响往往是重要的测量误差源。  (3)在GB 51081标准中缺乏校准样品相关条款,建议在GB 51081标准中增加与AASHTO T336类似的校准样品相关条款,即校准样品的CTE测定必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与GB 51081相同的温度范围内进行,即低温要达到-197℃。[b][color=#cc0000]4. 低温环境混凝土热膨胀测定仪设计[/color][/b]  为了实现低温环境下混凝土热膨胀系数测试,上海依阳实业有限公司专门设计了一种大尺寸多样品的低温混凝土热膨胀测定仪。混凝土低温膨胀仪一种测试混凝土块体低温下线膨胀系数的测试设备,测量方式为接触方式,整体结构如图4-1所示。此低温热膨胀仪依据测试标准为国家标准GB 51081-2015“低温环境混凝土应用技术规范”,测试温度范围为室温~196℃。[align=center][img=,690,397]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012230310478_4454_3384_3.png!w690x397.jpg[/img][/align][color=#cc0000][/color][align=center]图4-1 低温混凝土热膨胀系数测定仪结构示意图[/align]  此混凝土低温膨胀仪具有测试试样体积大、可多样品同时测量的特点,适合大批量样品的连续测量。  混凝土低温膨胀仪由计算机进行自动控制和检测,自动进行样品温度的监控、自动进行样品变形量的监控以及自己进行测试结果计算。  按照标准方法规定每个样品需测试三个位置点处的热变形。“低温腔体”采用侧开门结构,开启侧门安装或取出样品,使得被测样品处于“低温腔体”内进行升降温。[color=#cc0000][b]5. 参考文献[/b][/color]  AASHTO TP60,Standard Test Coefficient of Thermal Expansion of Hydraulic Cement Concrete,In American Association of State Highway and Transportation Officials,Standard Specifications for Transportation Materials and Methods of Sampling and Testing,Washington, DC, 2000.  CRD-C 39-81,Standard Test Method for Coefficient of Linear Thermal Expansion of Concrete,US Corps OF ENGINEERS,1981.   ASTM C531-00,Standard Test Method for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars,Grouts,Monolithic Surfacings,and Polymer Concretes,ASTM International, West Conshohocken, PA, 2012.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 同时可测8个试样的热膨胀仪是不是很带劲!

    同时可测8个试样的热膨胀仪是不是很带劲!

    对于目前市场上的各种热膨胀系数测定仪,无论采用的是顶杆式、光学式、激光干涉式等测试方法,基本都为单试样结构,一次只能测试一个试样。如果按照通常5℃/分钟升降温速度进行测试,在1000℃范围内,一个工作日一般只能完成一个试样的测试,而昼夜测试最多也只能测试两个试样,这样的测试效率普遍较低。 美国ANTER公司和德国林赛斯公司都在提高热膨胀测试效率方面做出过努力,如美国Anter公司UNITHERM™ 1000 系列热膨胀仪,采用了积木式结构,即将多个单试样热膨胀仪巧妙的组合在一起形成多试样热膨胀测试系统,做多可以集成4套装置对4个试样同时进行测量,测试温度范围-150℃~1600℃。由于此系列热膨胀仪在低膨胀测试中存在较大误差,此系列产品已经停产。http://ng1.17img.cn/bbsfiles/images/2017/03/201703281652_01_3384_3.png 美国ANTER公司UNITHERM™ 1000 系列多试样热膨胀仪 德国林赛斯公司也出品了多试样热膨胀仪,最多一次可以进行8个试样测量,但测试温度较低,测试温度范围为-40℃~160℃。林赛斯这种一个加热腔体内放置8个试样的思路是可行的,这样可以避免每个加热炉只能加热一个试样的硬件重复性,但还是存在着每个试样测量必须采用对应的独立位移传感器的弊端。http://ng1.17img.cn/bbsfiles/images/2017/03/201703281652_02_3384_3.png。 德国林赛斯公司常温型多试样热膨胀仪 有次可见,目前市场上并没有测量1000℃以上的多试样热膨胀仪,即采用一个加热加热装置同时加热8个试样,并只用一个位移传感器进行所有试样的变形测量。如果有这种设备,是不是很带劲呢?抛砖引玉,供大家讨论!

  • 电动汽车冷却水循环机膨胀阀说明

    电动汽车冷却水循环机在测试新能源汽车电池行业中的需求在不断上升,所以在电动汽车冷却水循环机选择方面是很重要的,其中,膨胀阀作为比较重要的配件,其性能我们也是需要了解清楚的。  电动汽车冷却水循环机电子膨胀阀主要有四部分组成,转子相当于同步电机的转子,其连接阀杆控制阀孔开度大小,定子相当于同步电子的定子;其将电能转为磁场驱动转子转动,阀针其受转子驱动,端部呈锥形,上下移动进行流量调节,阀体一般采用黄铜制造。  电动汽车冷却水循环机电子膨胀阀吸气过热度控制,吸气过热度控制系统由电子膨胀阀、压力传感器、温度传感器、控制器组成,工作时,压力传感器将蒸发器出口压力P1、温度传感器将压缩机吸气过热度传给控制器,控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进电机,将阀开到需要的位置。  电动汽车冷却水循环机电子膨胀阀从全闭到全开状态其用时仅需几秒钟,反应和动作速度快,开闭特性和速度均可人为设定;电子膨胀阀可在特定的范围内进行精确调节,且调节范围可根据不同产品的特性进行设定。  电动汽车冷却水循环机安装电子膨胀阀时,应以阀体及线圈的断面中心线为轴,且将线圈朝上。在对电子膨胀阀与过滤网焊接时,需对阀体进行冷却保护,使阀主体温度不超过120℃,并目防止杂质进入阀体内。另外,火焰不要直对阀体,同时需向阀体内部充入氮气,以防止产生氧化物。控制器的输出电压必须与线圈的指定电压一致。如果所加电压与指定电压不符,会出现线圈烧毁,或阀针动作异常等故障。  电动汽车冷却水循环机的膨胀阀在安装之前,需要参考厂家提供的安装指南进行安装,避免一些不必要的故障。

  • 怎样选择压汞仪膨胀计?

    实验分析中膨胀计的选择需考虑三个标准:(1) 样品类型: 如果你的样品是粉末,颗粒状,或具有良好颗粒松散度的大块状,使用粉末膨胀计。如果你的样品是固体形态或大块,使用固体膨胀计。(2) 样品体积:使用能够接近填满膨胀计的样品量。膨胀计样品室有三种型号:3,5和15cm³。因此,如果你的样品体积是4cm³那么适合放入5 cm³的样品室,从而5cm³的膨胀计是最适合的。(3)样品浸入体积:填充满样品孔的理想汞体积应该介于膨胀计“最大浸入体积”的25%至90%。一个理想范围内的有效浸入体积将会提供好的清晰度。换句话说,确保膨胀计包含足够的汞以便填充满样品孔。同时考虑粉末样品粒内孔隙的额外浸入体积也作为浸入体积测量 。

  • 【讨论】膨胀度测定仪

    请问大家知道有没有关于测膨胀度的仪器?中国药典附录里面有测膨胀度的一项,但不知那个仪器是怎样的。哪里有得卖?[em0715]

  • 线性热膨胀系数

    GBT 3810.8陶瓷砖线性热膨胀,5的第一行,原始供校准用的标准试样。。。这个怎么具体做校准,这规范上没写。是用仪器测定标准试样的膨胀系数是否为标定的值么。提供的标准试样是圆柱的石英玻璃,说明上给的石英平均膨胀系数是0.55x10(^-6),我用仪器测了室温到100℃和500℃,得到的值都大于这个值。。。厂家说仪器自动减去了补偿值Kt,也加过石英托架的膨胀系数了。。[img]https://ng1.17img.cn/bbsfiles/images/2022/02/202202162136086286_6916_5536684_3.png[/img]

  • Aquafill膨胀罐使用时该注意哪些事项

    Aquafill膨胀罐是意大利原装进口膨胀罐,其在使用过程中应该注意哪些事项呢?捷登小编为您整理如下哦。1.Aquafill膨胀罐出厂是预充压力已设定,根据罐子的大小一般体积小于150L以下的膨胀罐预充压力为1.5bar,200L或以上的预充压力为2bar用户若认为此压力不合适,可在供应商的指导下进行充/放气;2.测试Aquafill膨胀罐气囊时建议直接用水压测试,严禁使用锐利的器件碰触气囊;3.若该Aquafill膨胀罐是放在特殊场合,应告知供应商,以便有相关的膜体对应使用;4.Aquafill膨胀罐的工作介质一般为水或者防冻液的混合物,其他介质需打电话咨询;5.Aquafill膨胀罐应定期检查其预充压力,如果发现压力下降应及时补气,以免影响其正常使用;6.Aquafill膨胀罐罐体标签上有注明工作温度和最大工作压力,严禁超出此范围使用。7.应严格按公式来计算所需膨胀罐的大小,膨胀罐过小会引起安全阀的频繁起跳和自动补水阀的频繁补水;8.Aquafill膨胀罐的最大工作压力跟其罐体上标注的预充压力一一对应,如果因使用需要改变了其预充压力,最大工作压力随之改变,基本遵循以下规律,预充压力减小,其最大工作压力随之减小,具体减小到多少要计算,预充压力增大其最大工作压力不变。9.应每6个月检查一次Aquafill膨胀罐预充压力大小,如果发现气压不足应及时补气。以上注意事项都学会了吗?实际使用时切记要遵守哦

  • 2011诺贝尔物理学奖:宇宙的膨胀速度

    2011诺贝尔物理学奖:宇宙的膨胀速度

    2011诺贝尔物理学奖授予了三位杰出的天体物理学家。他们对超新星进行了系统的观测,发现宇宙正在加速膨胀。此前数年,物理学界一直认为宇宙膨胀的速度是恒定的,或者是越来越慢的。http://ng1.17img.cn/bbsfiles/images/2011/10/201110201339_325227_1609805_3.jpg宇宙正在加速膨胀的发现意义深远。

  • 求组:哪个单位的线膨胀系数测定仪质量可靠?

    实验室要按照《GB/T 1036-2008 塑料 -30℃~30℃线膨胀系数的测定 石英膨胀计法》检测玻璃钢产品-30~50℃的膨胀系数,本人菜鸟,请高手指导哪家的仪器比较可靠?仪器选型和测试中有没有特别注意的问题。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制