当前位置: 仪器信息网 > 行业主题 > >

纳米多层沉积自动机

仪器信息网纳米多层沉积自动机专题为您提供2024年最新纳米多层沉积自动机价格报价、厂家品牌的相关信息, 包括纳米多层沉积自动机参数、型号等,不管是国产,还是进口品牌的纳米多层沉积自动机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米多层沉积自动机相关的耗材配件、试剂标物,还有纳米多层沉积自动机相关的最新资讯、资料,以及纳米多层沉积自动机相关的解决方案。

纳米多层沉积自动机相关的论坛

  • 求教一下电化学沉积纳米颗粒

    有那位大侠作这方面的:用电化学工作站CHI660沉积铂纳米颗粒的,在玻碳电极上。指导一下啊,或者相关的资料介绍一下》QQ:469387067。laomao007@sina.com

  • 在电极表面电沉积金属纳米颗粒

    要在金电极或者是玻碳电极表面电沉积纳米金属颗粒,文献上给出的方法是: 5s potential step from 1.0V to 0.0V请问这个操作具体怎么实现?我用的是CHI660 A

  • 回顾:复亚智能无人机自动机场高低温测试及结露测试

    回顾:复亚智能无人机自动机场高低温测试及结露测试

    复亚智能智方A30固定式机场及S10小型机场通过专业测试,获得专业机构认证,以科学、准确的实验数据证明复亚智能自动机场具备很强的耐寒、耐热能力,可以在高湿环境下运行。  目前,工业无人机市场呈爆发式增长趋势,与无人机机场相结合的自动飞行系统已被大量应用于电力巡检、光伏巡检、水务巡逻、交通巡逻等场景,不断深入实际应用。无人机自动巡检作业都在户外进行,无人机机场作为无人化巡检应用的载体,大多部署在人烟稀少的郊野,环境恶劣,气候多变,很大地考验着无人机机场的稳定性和安全性。复亚智能委托第三方专业检测机构,通过实验舱模拟极高温、极低温以及高湿度环境,仿真还原户外恶劣条件,确保自动机场的电子器件在极端环境下的稳定运行。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/05/202205091656013559_379_1385_3.jpg!w600x600.jpg[/img][/align]  [b][url=http://www.instrument.com.cn/netshow/SH101384/]高低温测试[/url][/b]:  我国幅员辽阔,气候差异较大。在东北三省,零下十几摄氏度的冰雪期持续4~6个月,在这样的环境下,户外设备元器件容易出现冻坏、冻裂、故障失效等问题,导致设备无法使用。而在华中、华南地区的夏季正午,室外直射温度超过50℃,对设备运行的耐温性提出了严苛要求,长时间高温容易导致设备元器件加速老化,出现故障。  在高温测试中,实验舱内迅速升温至50℃,对自动机场进行持续高温烘烤,同时自动机场还不间断地进行机身启动、停机坪起降、舱门关合等全流程运行工作,还原机场在夏季高温环境中持续工作的情况。  在长时间高温测试中,无人机机场内置的大功率工业空调发挥了作用,其很大的热管理系统,根据实验舱内的实时温度,采用隔热、风冷、温度补偿等措施,实现智能化调节,保持机场温度恒定。实验结束后,无人机自动机场仍能正常运行工作。  在低温测试中,实验舱内降温至-40℃,考验自动机场在严寒天气下的抗冻性。  实验舱温度降至-40℃:  高低温实验证明了复亚智能自动机场具备很强的耐寒、耐热能力。  结露实验:  在珠三角、长三角等沿海地区,由于沿海及近海的空气潮湿,水汽中还夹杂着悬浮的粉尘颗粒、盐雾颗粒,形成具有较强的腐蚀性露珠,凝结在机场外壁,对机械、电子设备的寿命影响较大。同时,潮湿的环境导致空气电阻骤然下降,电子器件发生击穿打火,从而短路损坏,导致无法开机。因此,结露实验对于精密的机械设备而言,更是很大挑战。  机场在高湿度环境下工作:  在机身设计之初,复亚智能充分考虑到了水汽与灰尘、盐雾等因素,为避免其对主板、电机、工控机等重要零部件造成侵蚀,专门采用防盐雾、防附着的涂层工艺,使机身耐受时间长、抗腐蚀性强。同时,机场防潮防水结构抵御了水汽对机舱内部的入侵,机场空调启动了抽湿程序,避免了内外壁温差导致舱内水汽凝结,保证电子设备正常运行。  结露实验须在相对湿度为95%的初始环境中进行,快速升温、降温,让水蒸气充分凝结,以形成高低温交变、高湿度的环境。在结束长时间的结露实验后,机场主板、电机、工控机等重要部件未发生腐蚀或短路的现象,机舱外部涂层完好无损,机场正常运行。  结露实验结束后,水汽从实验舱冒出:  对于用户而言,产品的可靠性和稳定性压倒一切,否则,一起小故障可能就是一起生产大事故。因此,toB市场的角逐,本质上就是产品品质的角逐,是核心技术的角逐。复亚智能始终将产品质量作为高质量发展的根本,不断深入行业需求,持续打造高品质无人机自动机场,解放人工,提升效率,拓展无人机的应用范围。

  • [求助]我的样品是沉积在模板中的纳米线,怎么做红外啊,谢谢老大们

    我的样品是沉积在模板中的纳米线,怎么做红外啊,谢谢老大们纳米线的外面有有机物,主要是看有机物和纳米线结合后,相应的官能团有没有移动1.模板溶解需要氢氧化钠或磷酸溶解(多孔氧化铝),然后作液体中纳米线的红外,老师说样品池会被腐蚀掉,我可不可以这样:先用碱溶解,然后用磷酸调PH到中性?2.我可不可以这样:把带有纳米线的模板研碎,然后压片作固体的红外?多谢各位了,

  • 在硅片上电泳沉积的碳纳米管薄膜,做sem之前要怎么清洗?

    沉积完后的薄膜跟基底结合力不是很好,用手用力刮一下就会下来,但致密度、均匀度都挺好的,所以我猜想是不是别人做得碳纳米管薄膜也是这样的?一般做sem前样品都要超声清洗的,但这类沉积薄膜一超声就从基底上脱落了。想问一下拿去做sem之前把样品薄膜在酒精里泡一会儿算不算清洗?

  • 全自动机器人点胶机在汽车零部件方面使用

    全自动机器人点胶机在汽车零部件方面使用

    [font='微软雅黑','sans-serif']全自动机器人点胶机在汽车零部件方面使用[/font][align=left][b][font='微软雅黑','sans-serif']机器人点胶机[/font][/b][font='微软雅黑','sans-serif']应用于汽车喇叭。电声换能器是一种非常常用的换能器,在发声的电子电器设备中都可以看到。一般使用的扬声器多为圆形,也有椭圆形、方形等异形。声音是扬声器的一个重要组成部分。假如音圈有什么小问题,就会影响音箱的质量。功率音圈和磁铁驱动振膜声时,音圈的振动效应会影响扬声器的音质,牢固的连接音圈有助于喇叭改善效果,达到[b]IP68级强度[/b]。因此音圈的点胶质量决定音箱的质量。因此全自动机器人音箱点胶机起着重要作用。[/font][/align][align=left][font='微软雅黑','sans-serif']机器人点胶机可实现对点胶点、线、面的各种不规则组合,操作人员可根据不同的胶水性质,在全自动点胶过程中,根据点胶的数量,点胶的时间,点胶的速度等因素,操作简便,功能齐全,适用于自动点胶过程中,可同步提高产量和质量。[/font][/align][align=left][font='微软雅黑','sans-serif']在扬声器点胶过程中,全自动机器人点胶机将胶水涂在产品表面,从而使音圈能长期保持扬声器零件[b]不脱落,不掉焊,不掉尘,不掉水[/b]。喇叭行业对不同音圈的点胶要求也各不相同,有的要求点胶精度高,有的要求出胶量大。[/font][/align][align=left][font='微软雅黑','sans-serif'][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/05/202105060919431048_2279_4017671_3.jpg!w500x500.jpg[/img][/font][/align]

  • 复纳科学仪器(上海)有限公司今日正在招聘,销售经理/工程师(原子层沉积),坐标,高薪寻找不一样的你!

    [b]职位名称:[/b]销售经理/工程师(原子层沉积)[b]职位描述/要求:[/b]你的日常工作包括(岗位描述)1、负责Forge Nano原子层沉积(ALD)相关产品在在中国市场的推广及销售工作 2、参加各种学术会议及研讨会,为客户介绍ALD表面工程的优点,普及ALD知识;3、与客户保持密切沟通,并将客户需求传达给技术团队,协助完善产品定制并提供客户反馈以进行改进 4、与管理团队沟通客户需求、产品开发和生产需求,并快速解决客户的技术问题5、开发潜在客户、跟进有效意向客户、制定方案、发布报价转化订单;6、维护既有用户关系、提供相关技术支持。我们希望你(任职资格):1、化工、材料或相关专业的硕士或者博士毕业;2、愿意接受新事物,有开创精神,乐于奉献;3、卓越的沟通能力和客户服务意识;4、出色的研究和提出解决方案的能力;5、优秀的团队意识,是可靠的团队成员;6、精通英语书面和口语;7、能够接受频繁出差和年度出国。优先招聘:1、具有原子层沉积(ALD)设备销售经验最佳;2、具有向汽车、电池、催化剂、3D打印或其他化学行业中的实验室、大学、一级供应商和OEM销售过研发服务、收费制造服务以及实验室或工业规模设备的经验。产品简介Forge Nano Inc.是使用原子层沉积(ALD)进行表面工程和工业级高精纳米涂层的全球领导者,创始之初便获得了大众集团以及LG集团总计2000万美金的初始投资。Forge Nano致力于通过纳米技术为工业带来突破性的技术革新。我们正在寻找杰出的人才以担任技术销售经理这一重要的角色!技术销售经理将负责目标市场的销售和业务开发工作——识别新客户、新业务机会并与我们的客户保持长期关系。你将与营销和技术团队紧密合作,以成功执行、开发和完善公司的销售计划。该重要角色主要负责为中国市场客户原子层沉积表面工程技术的前景、积极确保健康的销售渠道,并使用公司CRM软件在所有阶段跟踪销售过程。[b]公司介绍:[/b] 复纳科学仪器(上海)有限公司,2012 年成立于上海,为高校、研究所、政府和企业单位提供荷兰 Phenom-World (现所属赛默飞集团)研发生产的飞纳台式扫描电子显微镜。该产品技术领先,市场占有率为80%,目前在中国拥有1000多名用户,包括:清华、北大等几百家高校;中科院等各类研究院所;海关、公安局等各种政府机构;以及新能源、生命科学、半导体等各类企业单位。2017年,复纳与荷兰 Sioux...[url=https://www.instrument.com.cn/job/user/job/position/73221]查看全部[/url]

  • 复纳科学仪器(上海)有限公司刚刚发布了销售工程师(原子层沉积)-上海市职位,坐标上海市,速来围观!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-85188.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]销售工程师(原子层沉积)-上海市[b]职位描述/要求:[/b]你的日常工作包括(岗位描述)1、负责Forge Nano原子层沉积(ALD)相关产品在在中国市场的推广及销售工作 2、参加各种学术会议及研讨会,为客户介绍ALD表面工程的优点,普及ALD知识;3、与客户保持密切沟通,并将客户需求传达给技术团队,协助完善产品定制并提供客户反馈以进行改进 4、与管理团队沟通客户需求、产品开发和生产需求,并快速解决客户的技术问题5、开发潜在客户、跟进有效意向客户、制定方案、发布报价转化订单;6、维护既有用户关系、提供相关技术支持。我们希望你(任职资格):1、化工、材料或相关专业的硕士或者博士毕业;2、愿意接受新事物,有开创精神,乐于奉献;3、卓越的沟通能力和客户服务意识;4、出色的研究和提出解决方案的能力;5、优秀的团队意识,是可靠的团队成员;6、精通英语书面和口语;7、可接受频繁的业务出差。优先招聘:1、具有原子层沉积(ALD)设备销售经验;2、具有向汽车、电池、催化剂、3D打印或其他化学行业中的实验室、大学、一级供应商和OEM销售过研发服务、收费制造服务以及实验室或工业规模设备的经验。产品简介Forge Nano Inc.是使用原子层沉积(ALD)进行表面工程和工业级高精纳米涂层的全球领导者,创始之初便获得了大众集团以及LG集团总计2000万美金的初始投资。Forge Nano致力于通过纳米技术为工业带来突破性的技术革新。我们正在寻找杰出的人才以担任技术销售经理这一重要的角色!技术销售经理将负责目标市场的销售和业务开发工作——识别新客户、新业务机会并与我们的客户保持长期关系。你将与营销和技术团队紧密合作,以成功执行、开发和完善公司的销售计划。该重要角色主要负责为中国市场客户原子层沉积表面工程技术的前景、积极确保健康的销售渠道,并使用公司CRM软件在所有阶段跟踪销售过程。[b]公司介绍:[/b] 聚焦台式电镜,致力电镜普及为研发工作者赋能,让我们一起 Free to Achieve复纳科学仪器(上海)有限公司于2012年成立,为高校、科研院所、政府和企业提供荷兰飞纳Phenom(现所属Thermo Fisher Scientific 赛默飞世尔科技)台式扫描电子显微镜(SEM)。该产品技术先进,市场占有率达80%,目前在中国拥有1000多家用户。2017年起,复纳与荷兰 S...[url=https://www.instrument.com.cn/job/position-85188.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 【原创大赛】纳米阵列电极简述

    【原创大赛】纳米阵列电极简述

    纳米阵列电极是多个纳米电极的集合体。根据单个纳米电极的组合方式,纳米阵列电极可分为有序纳米阵列电极(nanoelectrode arrays) 和无序纳米阵列电极( nanoelectrode ensembles) 。纳米阵列电极不仅具有单个纳米电极高传质速率、低双电层充电电流、小时间常数、小IR 降及高信噪比等优势,而且由于成千上万个单个纳米电极集中在一个基体上,克服了单个纳米电极响应信号过小、易受干扰和难以操作等缺点,能极大地提高测量的灵敏度和可靠性,降低操作难度和测量成本。特别是作为人工组装的纳米结构体系,纳米阵列电极更能突出研究者的设计和创新理念。人们能够通过设计和组装实现对纳米阵列组成、结构和性能的有效控制。因而,纳米阵列电极自20 世纪80 年代诞生起就受到人们的普遍关注。迄今为止,人们已相继设计制作出如圆盘状、井状、叉指状、圆柱形、圆锥形、截锥形、球形和半球形等多种形状的纳米阵列电极,所用电极材料包括金属、半导体、高聚物和碳纳米管等多种材料。其在电化学分析、微型生物传感器、电催化和高能化学电源等领域已日益显示出广阔的应用前景。1、纳米阵列电极的制备方法1. 1 模板法模板法是选择具有纳米孔径的多孔材料作为模板,在模孔内合成纳米阵列,然后组装成纳米阵列电极。此方法通过调整模板的参数,可以实现对纳米电极结构和尺寸的有效控制。可采用纳米阵列孔洞膜做模板,通过电化学沉积法、溶胶一凝胶法、溶胶一凝胶一聚合法、化学气相沉积法等技术将纳米结构基元组装到模板孔洞中而形成纳米管或者纳米线的方法。常用的模板主要是有序孔洞阵列氧化铝模板(AAO)和含有孔洞有序分布的高分子模板。多孔阳极氧化铝模板是通过高纯铝片在适当温度的酸性溶液中阳极氧化制得。依阳极氧化时所加的氧化电压、电解液类型、电解温度及电解时间的不同,可得到不同孔径、孔深和孔间距的膜,这种膜是典型的具有纳米孔阵列的自组装微结构。Keller等在1953年报道了多孔阳极氧化铝的理想结构模型如图1所示,该模型指出多孔层是由许多六角柱形结构单元紧密有序地排列而构成的。Martin等在模板法制备纳米线方面做了开拓性工作,1989年他们在阳极氧化铝模板的孔道内合成了金纳米线,并研究了它的透光性能。此后,模板法得到了迅速发展。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251646_567915_3043450_3.jpg图1 多孔阳极氧化铝的理想结构模型纳米阵列电极的模板法制作过程如图2所示,大致是先在通孔的模板膜的一面用各种方法覆盖一层金属。这层金属膜较厚是为了保证电极能覆盖所有的孔。然后将覆有金属的一面与导电基体接触或者直接将金属膜作为导电基体进行电沉积。通过溶解或部分溶解模板控制纳米线的长度,可得到不同类型的纳米阵列电极。如图2b为纳米孔阵列电极,图2c为纳米盘阵列电极,图2d、e为纳米线阵列电极。用化学沉积的方法填充模板时不需事先镀覆金属膜。例如,在金属已充满膜的纳米孔洞之后继续沉积,可在模板膜的两面均得到一层金属膜,去除其中的一层,另一层留作阵列电极的基体,则得到典型的纳米盘阵列电极。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251646_567916_3043450_3.jpg图2 纳米阵列电极的模板法制作过程示意图1.2 刻蚀法刻蚀法是基于化学腐蚀或光化学反应,对材料进行加工的一种方法。在纳米阵列电极制备过程中,主要通过对电极覆盖层、阵列模板或电极材料进行加工,从而制备出各种立体形状的电极,是目前制备形状可控的纳米阵列电极较为有效的方法。目前主要的刻蚀方法有化学刻蚀法和光刻法。化学刻蚀操作简便,只要控制得当就能得到理想的纳米阵列电极。Crooks等报道了通过刻蚀覆盖在平面电极上的绝缘层来获得纳米孔阵列电极的方法。他们制得直径为60~80 nm 的Au (111) 有序凹进并且高度对称的六边形纳米阵列。具体做法是:选择一定面积的Au(111),其余部分用蜡覆盖,电化学方法纯化45 min 后,欠电位沉积单层铜;再将硫醇化学吸附在上层的铜上形成硫醇自组装层;最后在氰化物溶液中用化学刻蚀的方法扩大硫醇自组装层的缺陷,以制成凹进的Au (111) 纳米阵列电极。光刻法在制备有序带状纳米阵列电极方面具有特殊的优势。典型的制作过程如下:首先设计阵列的形状,采用气相沉积在绝缘基体上沉积厚度约为100 nm的薄层金属,再涂上一层光刻胶,然后在其上覆盖光刻模板,通过光照和选择性化学溶解得到阵列。Finot等采用电子束光刻及离子刻蚀的方法得到纳米插指阵列电极。其中单个插指电极的宽度为100 nm、电极间距离为200nm、电极面积为100 m×50 m,如图3所示。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251646_567917_3043450_3.jpg图3 金插指阵列电极SEM图(1000×)1.3 自组装法自组装法通过非共价键之间的相互作用使纳米粒子聚合在一起,自发地在基底表面形成有序纳米结构薄层的一种方法,是近年来非常活跃的研究方法之一。在纳米阵列电极制备过程中,自组装层可作为电极反应的活性部分,也可作为惰性覆盖层。汪尔康等采用自下而上自组装法制成金纳米粒子阵列电极。他们首先将云母基体在巯基的作用下表面功能化,再将云母浸入到金胶溶液中,云母表面的硫醇基团将12 nm的金颗粒固定。不同的浸入时间获得的金阵列的密度不同,时间越长,得到的纳米金粒子阵列的密度越高。Radford等采用自组装法将氧化还原活性物质单层膜固定在以金为基体的单层十二烷基硫醇自组装膜上,制成纳米阵列电极。其中活性部分是固定在直链硫醇自组装层终端的氧化还原类物质,每个活泼的氧化还原分子相当于单个纳米电极。这种电极灵敏度高,可用来研究以氧化还原介质作电子传递媒介的生物大分子氧化还原反应机理。2、前人相关纳米阵列制备的研究高度取向的纳米阵列是以纳米颗粒、纳米线、纳米管为基本单元,采用物理和化学等方法在二维或三维空间构筑的纳米体系。高度取向的纳米阵列结构除具有一般纳米材料的性质外,它的量子效应突出,具有比无序的纳米材料更加优异的性能。纳米阵列结构很容易通过电、磁、光等外场实现对其性能的控制,从而使其成为设计纳米超微型器件的基础。目前,有序纳米结构材料已经在垂直磁记录、微电极束、光电元件、润滑、传感器、化学电源、多相催化等许多领域开始得到应用。2.1TiO2纳米管阵列的制备及其研究目前TiO2纳米管的制备方法主要有包括利用多孔氧化铝、有机聚合物和表面活性剂作为模板的模板合成法和利用TiO2纳米粉在碱性条件反应的水热合成法。其中最主要的方法是多孔氧化铝模板法和碱性条件下的水热合成法。在多孔氧化铝模板合成法中,通过调节工艺参数来控制,不同模板的孔径尺寸,可以制备出不同管径的纳米管,但难以合成直径较小的纳米管;而水热合成法虽然操作简单,且可以制得管径较小的纳米管,但纳米管的特征却严重依赖于颗粒的尺寸和晶相。同时这两种方法制备的纳米管是一种分散状态,不能直接固定在电极的表面。从高级氧化技术应用角度来看,TiO2固定薄膜比悬浮颗粒更为实用。美国科学家Grimes利用电化学阳极氧化的方法制备了TiO2纳米阵列材料,采用阳极氧化技术制备的TiO2纳米管分布均匀,以非常整齐的阵列形式均匀排列,纳米管与金属钛导电基底之间以肖特基势垒直接相连,结合牢固,不易被冲刷脱落。TiO2纳米阵列材料是制备工艺流程如表1所示。表1 TiO2纳米阵列材料是制备工艺流程 步 骤操 作 工 艺Ⅰ金属钛在含有F-的酸性电解质中迅速阳极溶解,阳极电流很大,并产生大量Ti4+离子(反应式(1))。接着Ti4+离子与介质中的含氧离子快速相互作用,并在Ti表面形成致密的TiO2薄膜,电流急剧降低(反应式(2))。Ⅱ多孔层的初始形成阶段,随着表面氧化层的形成,膜层承受的电场强度急剧增大,在氟离子和电场的共同作用下,在TjO2阻挡层发生局部蚀刻,形成许多不规则的微孔凹痕(反应式(3)),此时,电流呈轻微增大趋势。Ⅲ多孔膜的稳定生长阶段,电流完全由发生在阻挡层两侧的离子迁移提

  • 【原创大赛】Ni基纳米阵列的制备

    【原创大赛】Ni基纳米阵列的制备

    1、实验步骤(1)AAO模板前处理依次用丙酮,乙醇,去离子水对模板进行清洗,以除去表面油污和灰尘等杂质,以防阻塞纳米孔。然后,在模板的一侧进行喷金处理,根据本实验要求,选择喷黄金,喷金在真空条件下进行,时间为5min。前处理后,测得AAO模板喷金侧具有良好的导电性。 (2)电镀液的选取主要选用Ni的盐溶液作为电镀液使用,考虑到AAO模板易被腐蚀的特性,配制了酸性和中性两种电镀液配方进行实验。(3)电镀实验预处理用循环水泵抽真空,使电镀液充满氧化铝模板的孔洞。抽真空时间为12h左右,至溶液内不再有气泡冒出为止。 (4)电沉积 在室温条件下,采用两电极体系,Pt作为对电极。直流电源下电流密度恒定在8mA/cm2条件下制备得到了金属Ni纳米线。将所制备的样品用3MNaOH溶液进行充分溶解,除去多孔氧化铝膜,用去离子水反复长时间冲洗,将残留的NaOH去除干净。2、 结果与讨论2.1模板的微观形貌图1为AAO模板的电镜形貌图。AAO模板孔径为80~100nm。孔隙率,模板中孔洞的体积之和占模板总体积的百分比,用P表示。因模板孔洞平行排列,故孔隙率的大小可用垂直于模板孔洞生长方向的平面上,孔洞面积与总面积的比值来计算。所用模板孔隙率计算如下:α(孔密度)=n÷S总 (2·1)P(孔隙率)=S孔÷S总 (2·2)其中,n(孔数)应按选定的分析面积内完整孔洞的数目来计算。由于孔洞数目较多,且实际模板的孔洞并非理想的圆形,因此,可以考虑借助专门的图形分析处理软件对一些结构参数进行辅助分析计算,一方面可以提高工作效率,另一方面,结构参数分析的准确率也可以得到很好的保证。经计算得,实验所用AAO模板孔隙率约1011个孔/cm2。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567922_3043450_3.jpg图1 AAO模板的SEM图2.2制备Ni纳米阵列在室温下恒流电镀9h后,将AAO模板置于3M的NaOH中50min,进行模板的去除后,用SEM观察其微观形貌。图2为去除AAO模版后的纳米线的SEM图。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567923_3043450_3.jpg图2 Ni纳米线的SEM图从图2可以看出, Ni纳米线呈束状,有较大的长径比,大量纳米线互相接触,这是由于溶解时间过长,AAO模板全部被除去后,单独的纳米线无法独立支撑,未形成规整的阵列结构。Ni纳米线直径在80-100nm之间,这与AAO模板孔洞直径分布有关。AAO模板的制备过程中会因降压引起纳米孔洞底部变细小,镍纳米线的外形与氧化铝模板具有相似性,因此镍纳米线的根部会有分支、变细的现象。还可能是电沉积过程中,导电性能好的区域生长较快形成的。纳米线表面不光滑则说明Ni纳米线的生长为单晶结构,生长速度有一定的不可控性。图3为所制备的Ni基纳米线的俯视图,AAO模板全部去除,纳米线互相接触。可以看出,Ni纳米线具有很好的取向性且未发生断裂,表明纳米线刚性较好。在模板全部被去除的情况下,仍保持有一定的有序性。纳米线生长长度基本一致。纳米线呈束状集中也有可能是电沉积时间过长,导致所沉积的纳米线长度超过模板而在模板表面沉积而形成的。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567924_3043450_3.jpg图3 Ni基纳米阵列将AAO模板的去除时间缩短为35min,电沉积时间仍为9h,对制得的样品进行微观表征,如图4的a、b、c、d所示。由图4可知,模板部分去除后得到的Ni基纳米阵列,呈排列整齐的阵列结构,可用于下一步的纳米阵列电催化性能的研究。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567925_3043450_3.jpg图3·5 Ni基纳米阵列的SEM图依据上面的分析结果可知,为得到排列规整的Ni基纳米阵列,需对电镀时间和模板溶解时间进行调整。缩短模板溶解时间,使Ni纳米线底部不与基体脱离,使纳米线之间相互独立,保持模板去除前的间距,从而得到Ni基纳米阵列电极。3、结论通过AAO模板电沉积法制备的Ni基纳米线平行排列,高度有序,镍基纳米阵列中镍纳米线直径为80~100nm。

  • XRD、XRF看过来!10月14日马尔文X射线技术培训(纳米、多晶、涂层镀层、半导体薄膜测量)

    XRD、XRF看过来!10月14日马尔文X射线技术培训(纳米、多晶、涂层镀层、半导体薄膜测量)

    [font=&][color=#000000]马尔文帕纳科联合仪器信息网将于10月14日举办微观丈量“膜”力无限——X 射线分析技术应用于薄膜测量主题活动,特邀高校资深应用专家及马尔文帕纳科技术专家分享薄膜表征技术与应用干货,全面展示马尔文帕纳科针对薄膜材料测量的解决方案。此外,活动直播间还特别设置了答疑及抽奖多轮福利环节。[/color][/font][b][color=#006600]点击报名 [url=https://www.instrument.com.cn/webinar/meetings/malvernpanalytical2022/]微观丈量 膜力无限——马尔文帕纳科 X 射线分析技术应用于薄膜测量_网络讲堂_仪器信息网 (instrument.com.cn)[/url][/color][/b][font=&][color=#000000][b]背景介绍:[/b][/color][/font][font=&][color=#000000]薄膜,通常是指形成于基底之上、厚度在一微米或几微米以下的固态材料。薄膜材料广泛应用于不同的工业领域,譬如半导体、光学器件、汽车、新能源等诸多行业。沉积工艺是决定薄膜成分和结构的关键,最终影响薄膜的物性;对薄膜成分、厚度、微结构、取向等关键参数进行测量可以为薄膜沉积工艺的调整和优化提供依据,改善薄膜材料性能。[/color][/font][font=&][color=#000000][/color][/font][font=&][color=#000000][b]活动日程:[/b][/color][/font][table][tr][td=1,1,99]时间[/td][td=1,1,280]环节[/td][td=1,1,256]报告人[/td][/tr][tr][td=1,1,99][color=#000000]14:00-14:10[/color][/td][td=1,1,280][color=#000000]开场致词,公司介绍与薄膜应用概述[/color][/td][td=1,1,261][color=#000000]程伟,[/color][color=#000000]马尔文帕纳科 先进材料行业销售经理[/color][/td][/tr][tr][td=1,1,99][color=#000000]14:10-14:50[/color][/td][td=1,1,280][color=#000000][b]X射线衍射仪在纳米多层薄膜表征中的应用[/b][/color][/td][td=1,1,261][b][color=#000000]朱京涛,[/color][color=#000000]同济大学 教授[/color][/b][/td][/tr][tr][td=1,1,99][color=#000000]14:50-15:00[/color][/td][td=1,1,280][color=#000000]答疑 & 第一轮抽奖[/color][/td][td=1,1,261][color=#000000]定制马尔文帕纳科公仔一对[/color][/td][/tr][tr][td=1,1,99][color=#000000]15:00-15:30[/color][/td][td=1,1,280][color=#000000][b]多晶薄膜应力和织构分析[/b][/color][/td][td=1,1,261][b][color=#000000]王林,[/color][color=#000000]马尔文帕纳科 中国区XRD产品经理[/color][/b][/td][/tr][tr][td=1,1,99][color=#000000]15:30-15:40[/color][/td][td=1,1,280][color=#000000]答疑 & 第二轮抽奖[/color][/td][td=1,1,261][color=#000000]定制午睡枕[/color][/td][/tr][tr][td=1,1,99][color=#000000]15:40-16:25[/color][/td][td=1,1,280][color=#000000][b]X射线衍射及X射线荧光分析技术在半导体薄膜领域的应用[/b][/color][/td][td=1,1,261][b][color=#000000]钟明光,[/color][color=#000000]马尔文帕纳科 亚太区半导体销售经理[/color][/b][/td][/tr][tr][td=1,1,99][color=#000000]16:25-16:35[/color][/td][td=1,1,280][color=#000000]答疑、课程评价有礼[/color][/td][td=1,1,261]电脑包、公仔1对[/td][/tr][tr][td=1,1,99][color=#000000]16:35-16:55[/color][/td][td=1,1,280][color=#000000][b]X射线荧光光谱在涂层镀层分析中的应用[/b][/color][/td][td=1,1,261][b][color=#000000]熊佳星,[/color][color=#000000]马尔文帕纳科 中国区XRF产品经理[/color][/b][/td][/tr][tr][td=1,1,99][color=#000000]16:55-17:00[/color][/td][td=1,1,280][color=#000000]答疑 & 第三轮抽奖&结束语[/color][/td][td=1,1,261][color=#000000]倍思车载无线充电器[/color][/td][/tr][/table][img=,690,335]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091517508512_6104_5138539_3.png!w690x335.jpg[/img][b][/b][font=&][color=#000000][b]重要内容抢先看:[/b][/color][/font][font=&][color=#000000]【同济大学,朱景涛教授】将分享[b]X衍射仪在纳米多层薄膜表征中的应用[/b],主要采用掠入射X射线反射、X射线衍射、X射线面内散射等测试方法,表征周期、非周期、梯度多层膜,以及膜层厚度、界面宽度、薄膜均匀性、结晶特性、粗糙度等信息;[/color][/font][color=#000000]【马尔文帕纳科中国区,XRD产品经理 王林】将分享X射线衍射法测量[b]多晶薄膜的残余应力和织构分析方法[/b];【马尔文帕纳科亚太区,半导体销售经理 钟明光】将展示马尔文帕纳科在[b]半导体薄膜领域[/b]的专业分析解决方案;【马尔文帕纳科中国区,XRF产品经理 熊佳星】将分享X射线荧光光谱在[b]涂层镀层无损分析[/b]中的应用。[b][color=#336666]专题页面:[url=https://www.instrument.com.cn/topic/malvernpanalytical.html][font=宋体]https://www.instrument.com.cn/topic/malvernpanalytical.html[/font][/url][/color][/b][/color]

  • 【求助】多层薄膜能测出每一层的拉曼普吗

    大概有十多层,薄的有几十纳米,厚的几百纳米,半导体量子井结构,薄膜之间因掺杂或载流子密度有所不同,载流子振荡可能会产生等离子激元与晶格震动的耦合,这样有没有可能分别测出每一层的拉曼光谱,或在拉曼光谱中找出每一层的特征峰?以前没做过拉曼测量,刚要接触,很多都不懂,谢谢回答!

  • 【原创大赛】纳米材料的潜在毒性

    当今,纳米材料已成为高科技的卖点,纳米化妆品、纳米药物、纳米羽绒服等目前都被炒得火热。比如添加纳米材料的化妆品,防晒功能更强,可有效杀灭隔绝有害菌等。但是越来越多的研究表明,大小只有十亿分之一米的纳米颗粒有可能穿过皮肤,进入人类的血液循环系统,并被传送到大脑、肺部等人体器官当中。最早是2004年,英国的一位学者指出纳米材料的危害性,文章发表在《科学》上。认为这种尺寸级别的颗粒,能够直接进入人体,穿透人体的安全屏障。最近,A. Sood等在Nature Nanotechnology上发表了一篇 Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness。 文章介绍说,随着纳米材料越来越多的应用在医药、电子、航空等领域,人体与纳米材料的接触也不可避免的增加,从外部来说,周围环境中有很多非常细微的纳米颗粒;从内部来说,纳米颗粒用于体内成像及肿瘤治疗等。研究表明,纳米颗粒可以产生活性氧进而引发氧化损伤,因此,纳米颗粒应用在消费品方面之前应该对其潜在的毒性进行仔细的评估。 细胞屏障以各种形态存在于身体内,在抵御外界纳米颗粒侵犯,在保护细胞方面起到很重要的作用。比如,与泪膜在一起的角膜上皮细胞屏障是多层的,可以阻止病原体、过敏原、刺激物等进入眼睛。但是,限制微小物体如细菌等向脑脊液的扩散的血脑屏障是由内皮细胞的单分子层屏障组成的。胎盘屏障可以调节母体和胎儿之间的物质交换,其结构会在妊娠期间发生变化,早期妊娠阶段,胎盘绒毛被多核合胞体滋养层细胞组成的双分子层细胞覆盖,直接依赖细胞滋养层。之后,胎盘屏障会变的明显一些,但也不是完全的单分子层,还是有一层不完全的细胞滋养层。 我们之前的研究发现钴铬纳米颗粒不需要穿过细胞屏障,就可以引起多层细胞屏障另一侧细胞染色体中DNA的损伤和畸变,这种间接的损伤是由屏障中缝隙连接蛋白之间的细胞的信号传递导致的,其中以ATP和Ca2t作为信使。那么,纳米颗粒的这种间接效应是否会因为不同类型的细胞屏障而发生改变?这是一个很值得研究的领域。我们通过体内、体外以及体内模型的研究发现,纳米颗粒的这种间接效应取决于细胞屏障的厚度,双分子层或者多分子层屏障可以导致DNA损伤,引起间接毒性,但是单分子层屏障不会产生类似的作用。研究发现,胚胎滋养层以及角膜屏障都可以产生这种间接的损伤信号,并且已经在小鼠以及人体胚胎的体外组织培养中得以证实。如果这种基于屏障厚度的信号传导是所有屏障的一个共同特点,那么我们的研究结果可以为如何减少纳米材料负面作用提供很重要的帮助,并可能提供新的治疗方法。

  • 【求助】在石英基底上沉积的薄膜断面能看TEM吗?

    对TEM不是很了解,我做的是两种组分在一起组装的多层超薄膜,一种无机组分一种高聚物组分。每层的厚度都在零点几个纳米,想知道能不能做断面的高分辨TEM,得到一层一层组装的信息,请教一下各位能看到不?能的话该怎么制样?

  • 纳米气敏传感器研究进展

    转载一篇文章[url=http://www.instrument.com.cn/download/search.asp?sel=admin_name&keywords=quanbaogang]欢迎到我的资料库下载[/url][color=blue][b]纳米气敏传感器研究进展[/b][/color]1引言纳米技术是研究尺寸在01~100nm的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术[1]。纳米技术的发展,不仅为传感器提供了优良的敏感材料,例如纳米粒子、纳米管、纳米线、纳米薄膜等,而且为传感器制作提供了许多新型的方法,例如纳米技术中的关键技术STM,研究对象向纳米尺度过渡的MEMS技术等。与传统的传感器相比,纳米传感器尺寸减小、精度提高等性能大大改善,更重要的是利用纳米技术制作传感器,是站在原子尺度上,从而极大地丰富了传感器的理论,推动了传感器的制作水平,拓宽了传感器的应用领域。纳米传感器现已在生物、化学、机械、航空、军事等方面获得广泛的发展。湖南长沙索普测控技术有限公司研制成功电阻应变式纳米压力传感器,这种电阻应变式纳米膜压力传感器,测量精度和灵敏度高、体积小、重量轻、安装维护方便,是一种稳定和可靠的测量压力参数的科技创新产品。利用一些纳米材料的巨磁阻效应,科学家们已经研制出了各种纳米磁敏传感器[2]。在生物传感器中,用纳米颗粒、多孔纳米结构和纳米器件都获得了令人满意的应用[3]。在光纤传感器基础上发展起来的纳米光纤生物传感器,不但具有光纤传感器的优点,而且由于这种传感器的尺寸只取决于探针的大小,大大减小了测微传感器的体积,响应时间大大缩短,满足了单细胞内测量要求实现的微创实时动态测量[4]。 2纳米气敏传感器的研究现状随着工业生产和环境检测的迫切需要,纳米气敏传感器已获得长足的进展。用零维的金属氧化物半导体纳米颗粒、碳纳米管及二维纳米薄膜等都可以作为敏感材料构成气敏传感器。这是因为纳米气敏传感器具有常规传感器不可替代的优点:一是纳米固体材料具有庞大的界面,提供了大量气体通道,从而大大提高了灵敏度;二是工作温度大大降低;三是大大缩小了传感器的尺寸[5]。2.1基于金属氧化物半导体纳米颗粒的纳米气敏传感器 在气敏传感器的研究中,主要方向之一是在气体环境中依靠敏感材料(例如金属氧化物半导体气敏材料以SnO2,ZnO,TiO2,Fe2O3为代表)的电导发生变化来制作气敏传感器。目前已实用化的气敏传感器由纳米SnO2膜制成,用作可燃性气体泄漏报警器和湿度传感器。在这些纳米敏感材料中加入贵重金属纳米颗粒(例如Pt和Pd),大大增强了选择性,提高了灵敏度,降低了工作温度。其性能的具体改善程度与加入贵重金属纳米颗粒的晶粒尺寸、化学状态及分布有关。北京大学王远等人[6]制成一种TiO2/PtOPt双层纳米膜作为敏感材料探测氢气的气敏传感器。其敏感材料的制备方法是先在玻璃衬底上覆盖上一层由Pt纳米颗粒构成的表面氧化的多孔连续膜,其中Pt的纳米颗粒直径大约13 nm,膜厚大约100 nm,然后在PtOPt膜上覆盖TiO2膜,其中TiO2纳米颗粒的直径尺寸从34 nm到54 nm,平均直径41 nm。传感器的工作温度在180~200 ℃,PtOPt多孔膜作为催化剂使TiO2纳米膜对氢气产生部分还原作用,从而使传感器在空气中,甚至在CO、NH3、CH4等还原性气体存在的情况下,对氢气都表现出很高的灵敏度和选择性,比较以前的钛基探测氢气的传感器有显著的提高。Raül Dìaz等人[7]用非电镀金属沉积法沉积Pt在SnO2纳米颗粒的表面,结果证明这种方法对改善气敏传感器催化剂的性能有很大帮助。Pt和Pd作为两种主要的贵重金属添加物,它们与衬底有不同的相互作用,Pd倾向于嵌入纳米SnO2晶粒中,而Pt倾向于形成大的金属颗粒团簇。与传统方法相比,用非电镀沉积法形成的催化剂的不同化学状态,为研究催化剂对气体探测机制的影响提供了一种新的方法。2.2用单壁碳纳米管制作气敏传感器碳纳米管具有一定的吸附特性,由于吸附的气体分子与碳纳米管发生相互作用,改变其费米能级引起其宏观电阻发生较大改变,通过检测其电阻变化来检测气体成分,因此单壁碳纳米管可用作气敏传感器。J.kong等人[8]用化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法在分散有催化剂的SiO2/Si基片上可制得单个的单壁碳纳米管,如图1(a)所示,两种金属被用来连接一SSWNT时,形成金属/SSWNT/金属结构,呈现出p型晶体管的性质。气体探测试验是把SSWNT样品放在一个带着电引线的密封的500 mL的玻璃瓶中,通入在空气或者氩气中稀释的NO2((2~200)×10-6)或者NH3(01%~1%),流速700 mL/min。检测SSWNT的电阻变化,得到的I/V关系曲线如图1(b)和(c)所示,在NH3气氛中其电导可减小两个数量级,而在NO2气氛中电导可增加3个数量级。其工作机理是半导体单壁碳纳米管在置于NH3气氛中时,使价带偏离费米能级,结果使空穴损耗导致其电导变小;而在NO2气氛中时,使价带向费米能级靠近,结果使空穴载流子增加从而使其电导增加。由于金属/SSWNT/金属结构类似于空穴作为主要载流子的场效应管,所以在源极和漏极之间的电压一定时,电流随着栅极电压增大而减小(如图2所示)。图2中,b曲线是未通入任何气体的栅电压电流关系曲线,曲线a和c的栅电压电流关系曲线分别是NH3和NO2气氛中测得的。未通入任何气体时,在栅电压为0 V时,电流是15 μA,若通入有NH3的气氛中时,电流则几乎变为0 A。那么,如果测NH3气,我们就将初始栅电压设置在0 V,则由上图可知样品的电导将减小两个数量级。若测NO2气体,先将栅电压设置在+4 V,未通入NO2气体前则电流几乎为零,NO2通入后,电流大大增加,则其电导增加了3个数量级。这样可以使传感器在复杂的气体环境中具有选择性。

  • 发现利用碳纳米管新发电现象

    美国麻省理工学院(MIT)宣布,发现了利用碳纳米管的新发电现象——“热力波”(Thermopower Wave)(英文发布资料)。麻省理工学院在《自然—材料学》([i]Nature Materials[/i])上发表了有关详细内容。发现这一现象的麻省理工学院化学工程副教授Michael Strano称,热力波是一种当热波在碳纳米管上高速传播时,会同时搬运电子或空穴(Hole)的现象。比如用环三次甲基三硝铵(RDX,塑料炸弹的主要材料)对多层碳纳米管(MWCNT)进行涂层,并在其一端通过激光器半导体点“火”。热波就会像导火线似的在多层碳纳米管上高速移动。其移动速度在2860K温度下超过2m/s,“是普通化学反应速度的1万倍”(麻省理工学院)。Strano等人发现,在这种波传递的同时能够形成非常大的电力。论文中的输出密度为7kW/kg。麻省理工学院表示,“论文发表之后开发工作仍在继续,现在已经实现了相当于锂离子充电电池100倍的输出密度”。Strano称,这种现象无法通过在热电转换元件中广为人知的“塞贝克效应”(Seebeck Effect)进行合理解释。“虽然被称作‘燃烧波’(Combustion Wave)的现象从100多年前就已经能够从理论上加以解释,但在碳纳米管上产生燃烧波、而且燃烧波还会产生电流,却是此前一直不为人知的现象”(Strano)。虽然利用这种现象的具体应用实例尚未出现,不过Strano表示“有望用于米粒大小的超小型传感器和可嵌入体内的电子产品等,或是散布在空气中使用的环境传感器”。上述现象为不可逆反应,因此无法用于充电电池,不过Strano表示“能够制造出不漏电不放电、可半永久性保存的(一次)电池”。资料来源:[url]http://paper.sciencenet.cn//htmlpaper/20104231042214218903.shtm[/url]

  • 纳米表征技术的新突破

    纳米表征技术的新突破 在“纳米”技术愈来愈广泛地开发应用的同时,人们可能会提出这样的问题∶如此微小的“纳米”是用何种科学手段检测的?北京科技大学方克明教授经过20多年的研究,探索出了一种新的方法———  “纳米”这个名词越来越引起人们的兴趣。大家知道“纳米”是一个非常微小的长度单位。具体地说,一纳米约一根头发粗细的万分之一。纳米技术应用到传统产品中,会极大地改善产品的性能。例如,碳纳米管是由一层或若干层碳原子卷曲而成的管状“纤维”,直径只有几到几十纳米。比重只有钢的六分之一,而强度却是钢的100倍。如果把碳纳米管制成绳索,是从月球上挂到地球表面而惟一不被自身重量所拉断的绳索。  在“纳米”技术愈来愈广泛地开发应用的同时,人们可能会提出这样的问题∶如此微小的“纳米”是用何种科学手段检测的?据了解,目前我国用来检测纳米的纳米表征技术正日趋成熟并取得了新的突破。  记者日前在采访中了解到,北京科技大学冶金学院博士生导师方克明教授经过20多年的研究,在纳米表征技术方面取得了新的突破,探索出了用透射电镜或高分辨电镜对纳米材料进行表征的新方法。该技术采用金属包埋法可以从纳米材料中切取纳米尺度的薄膜,然后用透射电镜或高分辨电镜研究纳米材料的微观形貌和微观结构。该技术的成功为我国纳米技术的发展提供了一种重要的检测手段,它荣获第十二届全国发明展览会金牌奖并取得了国家专利,目前在国内外处于该领域的领先水平。  纳米材料包括纳米颗粒及其以纳米颗粒为基础的材料;纳米纤维及其含有纳米纤维的材料;纳米界面及其含有纳米界面的材料。纳米材料的性能与其微观结构有着重要的关系。因此研究纳米材料微观结构的表征对认识纳米材料的特性,推动纳米材料的应用有着重要的意义。  透射电镜是研究材料的重要仪器之一,在纳米技术的基础研究及开发应用中也不例外。但是用透射电镜研究材料微观结构时,试样必须是透射电镜电子束可以穿透的纳米厚度的薄膜。单体的纳米颗粒或纳米纤维一般是透射电镜电子束可以直接穿透的。研究者通常把试样直接放在微栅上进行透射电镜观察。但是由于纳米颗粒或纳米纤维容易团聚,因此,用这种方法常常得不到理想的结果,有些研究内容也难以实施。比如∶纳米颗粒的表面改性的研究,纳米纤维的横切面研究都比较困难,研究界面问题则有更大的难度。因此,纳米材料的透射电镜研究,其样品制备问题是一个值得探讨的重要课题。对此,方克明教授进行了研究,探索了一种比较适用的制样方法。该方法可以从纳米颗粒或微米颗粒中直接切取可以进行透射电镜研究的薄膜,对进行纳米纤维横切面观察或纳米界面观察的制样也有很高的效率。  这一技术的特点是从纳米或微米尺度的试样中直接切取可供透射电镜或高分辨电镜研究的薄膜。试样可以为简单颗粒或表面改性后的包覆颗粒,对于纤维状试样,既可以切取横切面薄膜也可以切取纵切面薄膜。对含有界面的试样或纳米多层膜,该技术可以制备研究界面结构的透射电镜试样。技术的另一重要特点是不损伤试样的原始组织。制膜过程中不使用高温,不接触酸碱,必要时也可以不接触水或水溶液。  目前上述技术已应用于多项课题研究,如:沸石颗粒中半导体纳米团簇组装过程的研究;纳米碳纤维微观结构的高分辨电镜研究;纳米颗粒微观结构与尺寸的表征;多层膜层间结构的透射电镜研究;粉体颗粒表面改性的研究;电容钽粉颗粒渗氧层及介质膜的研究;铸铁中各种石墨微观结构的研究等。  该技术在全国已经获得了广泛应用,为北大、清华、中科院等上百个新材料科研课题组和企业提供了技术支持。为我国高新材料的深入研究提供了一种重要方法,引起了国内外的关注。  纳米表征技术是高新材料基础理论研究与实际应用交叉融合的技术。对我国高新材料产业的发展有着重要的推动作用。我们希望这项新技术能得到有关部门的关注并在全国更广泛地推广应用,以加速我国高新材料研究的进程,为我国高新技术产业的发展作出更大的贡献

  • 【求助】求购测量纳米薄膜的衍射仪

    我们准备搞纳米薄膜测量(单层、多层和混合层),想了解它的厚度和物质组成等,据说需要掠入射光的表面衍射,不知国内XRD经销商的产品是否成熟?以及这种技术的发展是否成熟,有何利弊?肯请各位高手给与指点,谢谢!

  • 【求助】纳米线阵列是否可以用XPS分析?

    在基底上沉积的膜(10几纳米左右,有孔洞)+纳米线阵列(1微米左右),想分析纳米线的成分,可否用xps?xps能够反映表面以内多深的信息?基底的信息会造成干扰么?膜呢?菜鸟一只,不要见笑。

  • 涂层纳米珠可向脑组织深处递药

    中国科技网讯 众所周知,脑部疾病很难治疗。据物理学家组织网近日报道,约翰·霍普金斯大学研究人员报告称,他们对运载药物的纳米粒子进行了改良,使其能按照预期,安全定量地渗透到脑组织深处。研究人员指出,这一改进在制造灵活药物递送系统、克服脑癌及其他器官疾病障碍方面迈进了一大步。相关论文在线发表于《科学·转化医学》上。 在做完脑肿瘤摘除手术后,标准治疗方案还需要进行化疗,以杀死病灶部位无法手术摘除的残留细胞。但化疗药物剂量很难控制,既要够大才能穿透组织,又要够小才能保证病人安全。这种方法预防肿瘤复发成功率并不高。 为了克服剂量难题,研究小组设计出一种纳米粒子,能在一段时间内持续、稳定地将小剂量药物递送到病灶部位,而且能顺利地一次性就到达大脑,不会被组织环境黏住。约翰·霍普金斯大学病理学家查尔斯·埃伯哈特说,传统的纳米粒子是用像绳子似的分子将药物紧紧缠裹成小球,遇水后缓慢分解,但递送效果并不理想,因为纳米粒子会黏在注射部位的细胞上,不向组织内部移动。 为此,该校化学与生物分子工程研究生、霍普金斯神经外科医生伊丽莎白·南希将聚乙二醇(PEG)涂在大小不同的纳米塑料珠上,稠密的PEG涂层让纳米珠变得更光滑,减小了其与周围环境的相互作用,而且涂层能保护纳米粒子免受机体防御系统攻击。 在组织实验中,他们给涂层纳米珠作了荧光标记,注射进小鼠和人的脑组织切片中,跟踪它们的运动情况,结果发现PEG涂层让较大的纳米珠也能透过组织,有些甚至接近了以往认为的透过脑组织最大限度的2倍。动物实验效果也相同。 随后,他们给一种携带化疗药物紫杉醇的生物降解纳米粒子涂上了PEG。在小鼠脑组织中,没有PEG涂层的纳米粒子运动非常慢,而有涂层的顺利扩散到组织中。南希说,现在纳米粒子能运载的药物量是以前的5倍,在脑组织中的运输距离是以前的3倍。下一步研究将看它们能否减缓动物体内肿瘤的生长。 研究人员指出,他们还希望进一步优化纳米粒子,将其与药物匹配以治疗其他脑部疾病,如多发性硬化症、中风、脑外伤、老年痴呆症和帕金森症等。(常丽君) 《科技日报》(2012-10-15 二版)

  • 【转帖】解放军用纳米电刷镀技术修复受损战机发动机

    解放军用纳米电刷镀技术修复受损战机发动机新闻背景   装备再制造工程是以提高废旧装备性能为目标,以先进技术和产业化生产为手段,修复、改造废旧装备的工程活动。装甲兵工程学院经过长期探索和实践,在我国首家发展了较为完善的装备再制造工程学科体系。2003年,《机械装备自修复与再制造》被列入国家2020年中长期科技发展规划。同年,全国第一个国家级“装备再制造技术国防科技重点实验室”在该院落成。   一台服役期满的旧发动机,经过再制造流水线技术处理,各项指标焕然一新;   一扇即将报废的飞机发动机叶片,经过纳米电刷镀,助战鹰重返蓝天;   一个意外受损的坦克水箱,经过无电焊笔应急抢修,破裂的部位完好如初……   这些魔术般的场景,你相信吗?   近日,笔者在装备再制造技术国防科技重点实验室,亲身感受到了由中国工程院院士徐滨士教授引领发展再制造技术,为我军装备维修带来的神奇变化。   “小作坊”里诞生国家大奖   早在上世纪五十年代,还是教员的徐滨士在下部队调查时发现,许多局部磨损的坦克零部件因不能修复,整机报废,浪费很大。徐滨士下决心解决这一难题。   当时,既无经费又无场所,实验研究只能在一间堆放工具的小房子内进行,十分简陋。在这间被称作“小作坊”的实验室里,他和战友们经过100多个日日夜夜的苦干,在国内首次研制成功了振动电弧堆焊设备,摸索出了新工艺,解决了薄壁零件修复的难题,突破了部分坦克薄壁零件不能修复的禁区。   创新的成功更加激发了课题组的科研热情。此后,他们又提出了采用等离子喷涂技术修复坦克磨损零件,以提高零件耐磨性的设想。经过近百次的实验,突破国外标准的限制,成功地研制出等离子喷涂修复坦克零件的设备和技术。   在院党委的支持下,他们综合集成维修工程、材料工程和机械工程等学科,建起了我国第一个表面工程研究所,在国内率先开发出电刷镀一系列关键技术,获国家科技进步一等奖。   半个世纪过去了,从当年的“小作坊”到今天的综合集成,我军装备维修事业实现了质的飞跃。   “百宝箱”里装进“陆海空天”   针对我军装备维修的需求,他们跟踪国际维修理论的发展,论证了维修工程的内涵、学科体系,开展了装备维修工程的研究,研发了维修关键技术,深入部队解决了装备薄壁零件维修等多项重大修复难题。   在装备再制造技术国防科技重点实验室,笔者见到一个被称为“百宝箱”的战场应急维修工具箱。里面的工具精小细致,神奇无比。无电焊笔,可以在没电的情况下用打火机点燃后进行焊修;电子装备快速清洗喷枪,在电子装备不拆卸、不停机的情况下快速清洗……   为了让成果服务于部队战斗力,他们把研究的技术和设备浓缩在一起,研制出重量轻、方便快捷、检测维修集一体的“战场应急维修工具箱”,让再制造技术直通战场,发挥其巨大的神奇威力,取得令人惊叹的成效:   ——波涛汹涌的南海之滨,长期服役的战舰钢结构出现腐蚀。他们利用自行研制的电弧喷涂防腐新材料进行处理,使南海地区高温、高湿、高盐雾环境下的钢结构防腐年限从原来的4至5年延长到15年以上;   ——某新型战机,发动机压气机叶片出现损坏,每修复一台需要50多万元,采用他们首创的纳米电刷镀技术,仅用几个小时就将叶片修复如新,所需费用仅是原品的十分之一;   ——茫茫川藏线上,恶劣的自然环境,常常使装备的发动机不到年限就濒临报废。经过拆卸、清洗、再制造技术处理,很快焕发生机,寿命超过新品,费用仅为新品的一半。   科研就要为战斗力服务,创新就要经受住战场的考验。这是再制造实验室的追求和宗旨。在徐院士的带领下,他们创造了一个又一个奇迹:   ——研发的具有自主知识产权的纳米自修复添加剂,实现了装备零部件的“自修复”,成功应用于军用车辆的润滑系统;   ——研究的两栖装甲车辆车体裂纹发生规律和应力集中检测机理,解决了某式水陆坦克、某式履带装甲输送车车体裂纹修复的难题。发明的新型坦克履带板材料,使我国履带板的平均寿命提高了2倍,这项成果获国家技术发明二等奖;   ——某型坦克发动机经过再制造技术修复,使发动机寿命由500摩托小时延长到1000摩托小时……   院长连线   -装甲兵工程学院院长梁永生   在自主创新中谋发展   科技强军的实践表明,坚持自主创新是占领新一轮军事变革制高点的战略举措,也是实现军队跨越式发展的必由之路。在国际军事竞争日趋激烈的今天,只有站在时代发展和军事变革的最前沿,以强烈的使命感、紧迫感,在自主创新中谋发展、求突破,才能在新军事变革的大潮中赢得先机。   装备再制造工程学科正是沿着一条自主创新的发展轨迹,从一个“小作坊”白手起家,建设成为国家科技重点实验室,成为学院乃至全军、全国的品牌特色学科。他们坚持为军队装备保障建设服务,坚持以恢复和提升装备保障能力和装备作战能力为牵引,实现了再制造关键技术的一系列突破,取得了一大批重大科技成果,为提高装备保障能力、实现现役装备跨越式发展提供了有力的技术支撑。   几年来,实验室本着“开放、流动、联合、竞争”的方针,广泛开展学术交流活动。先后与波兰华沙理工大学、英国伯明翰大学、国际摩擦学联合会、美国金属学会等国际知名科研院所建立广泛的联系与合作。多次派科研人员到国外攻读博士学位或做访问学者,并邀请国外专家来实验室访问;多次承办学术研讨会和国际会议,这些学术交流活动使实验室的学科建设一直处于国际前沿。

  • 【转帖】研究提出金属纳米线制备新方法

    金属纳米线具有优异的电、光、磁与热学性能,在微电子、光电子、催化与传感器等领域具有诱人的应用前景。目前,基于多孔模板合成金属纳米线的实验室方法主要有电沉积法与无电沉积法。然而,这两种方法都有其不可克服的缺点。前者在制备过程中需要消耗电能 后者在合成过程中必须添加有机表面活性剂或需要对模板的孔壁进行敏化与活化处理,不仅实验过程复杂繁琐,而且会造成一定的环境污染。  最近,中国科学院固体物理研究所许巧玲博士发明了一种简单、经济、绿色、普适的金属纳米线制备方法,实现了单一金属纳米线的成分、异质纳米线的段数与成分以及纳米线形貌的可控生长。该方法既不需要使用电源,又不需要添加任何有机表面活性剂,也不需要对模板孔壁进行复杂的敏化与活化处理,而只需将一面蒸金、周围带铝的阳极氧化铝模板浸泡在金属氯化物的水溶液中,借助原电池原理,便可在氧化铝模板的纳米孔道里形成相应金属的纳米线。  采用该方法,获得了多种具有不同成分或结构的金属纳米线,包括金属单质纳米线(如Au、Pt、Pd、Cu、Ni与Co纳米线)、金属合金纳米线(如AuPt合金纳米线)、由具有不同性能的金属或合金组成的纳米线异质结(如两段的Au-Ni与三段的Au-Ni-Au纳米线异质结等)以及分支形貌的金属型纳米线(如Y分支形)。这些成分与形貌可控的金属纳米线在纳米科技的许多方面具有广泛的应用前景。这种方法可以进一步开发与拓宽,用于大批量合成人们所需要的各种金属型纳米线。相关研究结果申请了中国发明专利,撰写的论文发表在材料化学领域重要期刊《材料化学》(Chem.Mater)(21,2397–2402,2009)上。  该工作得到国家科技部“纳米研究”重大科学研究计划(No.2007CB936601)、国家自然科学基金杰出青年基金(No.50525207)和中科院百人计划资助。(来源:中国科学院固体物理研究所)

  • 【国产好仪器讨论】之济南海能仪器股份有限公司的SPE100/SPE400全自动机械臂固相萃取仪 (SPE100/SPE400)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C230846%2Ejpg&iwidth=200&iHeight=200 济南海能仪器股份有限公司 的 SPE100/SPE400全自动机械臂固相萃取仪 (SPE100/SPE400)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: SPE100/SPE400全自动机械臂固相萃取仪是海能仪器专门针对目前实验室前处理样品量大、自动化程度要求高等特点按照现代实验室的要求而设计的系列全自动机械臂固相萃取系统,主要用于食品、药品、饮料、土壤、水样、血液、尿液等样品提取液中痕量有机物的萃取、分离和净化。整套系统可自动完成固相萃取柱的活化、进样、淋洗、干燥、洗脱、定容等操作,处理样品量大,自动化程度高;系统密封环保。广泛应用于农药残留、兽药残留、食品添加剂、司法检测、药物和生物样品等分析领域,是气相色谱、液相色谱或质谱仪器理想的样品前处理系统。仪器主要性能特点:·使用新的设计语言和色彩搭配,符合现代化实验室整体设计品质·较强的连续处理能力,增加相应选配模块后,最大连续处理能力可达108位(1mL SPE柱)·具备液位追随功能,进样针随着液位下降而下降,始终保持较少面积与溶剂接触,避免溶剂间的交叉污染·具备溶剂扩展功能,除了标配的溶剂池外,还可以利用空余样品区作为容积扩展区,最大扩展能力为108位,在不增加配件的情况下,就可以解决因新方法开发需求更多溶剂的问题·具备溶剂剩余容量提示功能,分五档显示,当溶剂容量不足本次实验时,提示科研工作者添加试剂,避免因为溶剂不足而造成实验停止,耽误实验进程·专利密闭技术,最大化减少试剂挥发,无需占用有限的通风橱空间·独立外置式注射泵,按需配置,更多选择方案·溶液通过进样针和机械臂实现快速精准进样,机械臂控制精度在±0.01mm以内·支持多组分分步收集,1mL萃取套件支持2-9种组分,3mL萃取套件支持2-5种组分,6mL萃取套件支持2-4种组分·支持废液多路收集,实现废液无害化收集处理·具备气路接口,可用于管路清洗和干燥、浓缩·可以使用1mL、3mL、6mLSPE柱,可根据科研工作者需求定制其它规格SPE柱或萃取盘·具备多种清洗模式,清洗更彻底,避免交叉污染·采用新的UI和交互设计,模块化风格、拖曳式操作,简单快速设置实验方案·控制软件具备完善的自检、预警功能,便于科研工作者及时发现运行故障·提供海能云服务,实现云端存储和下载·选配大体积上样模块,可以实现大量水样快速萃取·选配定容模块实现在线快速精准定容·模块化萃取套件,科研工作者可根据实际使用情况自选套件·支持样品管架、接收架等定制,满足科研工作者实际实验需求;表格参数产品型号SPE100SPE400并行处理样品量14....【了解更多此仪器设备的信息】

  • 利用高速分散机分散太阳能电池耐刮涂层的纳米复合型材料

    工作原因,最近翻译了一份稿件,发出来分享一下,原文附在最后,欢迎大家批评斧正!摘要柔性太阳能电池的表面涂层要求是高性能的紫外固化丙烯酸酯纳米复合材料。他们的合成不仅是一个微调的化学步骤,同时要求分散和研磨的过程。已申请专利的气相二氧化硅原位硅烷化在德国VMA公司的TORUSMILL®研磨分散机的帮助下表现得最好。从VMA实验室系列分散研磨机参数的可比性更简单方便的帮助从实验室试样放到规模生产。简介非凡的挑战要求非凡的解决方案:柔性太阳能电池要受到阳光、风力和各种外界因素几十年的摧残。要承受这些极端的要求,表面涂层必须柔韧,耐磨和耐划伤。当然,高透明度,成本效益和避免底材温度过高这些性能也是需要的。由于同时要求高的生产效率和低的工艺温度,优异性能的紫外光固化丙烯酸酯系统是首选。通过加入无机粒子,可使得丙烯酸酯配方的耐刮性和耐磨性可以进一步提高。只要填充度低于的阈值为25%体积(大约与40%质量百分比一致,因为无机颗粒的密度更高)则被认为是表面硬度与填充度呈线性过程。涂料表面硬度的提高比期望的颗粒硬度要低(图1)。直到超过渗流阈值,即颗粒不能再滑动,总硬度成为颗粒和基体的加权和。超过了渗流阈值,另一方面也就意味着这个系统不再搅动。插图1很明显地显示了理论状况,这就是众所周知的冶金过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061742_165.gif图1: 提高填充度的紫外光固化纳米复合材料的微硬度的改善随质量百分比显示。插图显示了硬度和填充度的体积百分比在整个范围内的理论关系。突出的区域对应于主图中显示的数据。分散技术如果不是粒子本身的硬度,那是什么决定了不同填充度的硬度变化呢?这是由颗粒与基体之间的相互作用及矩阵,这受到粒子的表面处理,也即分散技术相互作用的控制。最不理想的情况是,微硬度随填充度的增加而降低,我们最近在实验室研究的一个水性纳米粒子丙烯酸酯系统(数据未显示)就是这种情况。另一方面,为了实现最大的颗粒基质相互作用的原位表面改性的硅烷化是在莱布尼茨研究所研发的。这一专利的概念是基于著名的化学反应与一个新过程的组合。颗粒表面硅烷化包括前体步骤(通过相应的烷氧基硅烷的水解形成的硅醇基取代)和硅烷醇与表面羟基缩合来结合扩散,从而提供表面活性。因为这些过程是丙烯酸酯基的自身反应,并不需要不确定的反式扩散。最后,每个颗粒都有了自己的硅烷均匀包裹,再交联与基体形成坚硬的质膜。如太阳能电池所用的透明薄膜,就需要非常精细的纳米颗粒。操作会产生气相二氧化硅纳米粒子(Degussa的气相二氧化硅比表面积至少200m2/g,即Aerosil200和Aerosil380)未经表面处理的这些粒子通常作为一种触变剂,百分之几的质量足以将清漆变成高粘度的腻子。这种效果当然也发生在中纳米复合材料的合成过程:纳米颗粒必须计量并慢慢加到有丙烯酸酯的TORUSMILL® 研磨分散机 中,该型号的分散机具有高扭矩力的引擎,并能满负荷运转。随着分散的开始并在表面反应的辅助下,纳米复合材料的粘度再次下降。当降低转矩力,机器上会显示出综合数值,告知操作员什么时候恢复供给二氧化硅纳米颗粒。一个完全自动化的耦合转矩控制和粒子计量已经应用在TORUSMILL® TM500中。透明清澈的纳米复合材料——使用TORUSMILL®使用传统的分散机是不可能得到完全透明清澈的清漆而且完全没有附聚物的。这就是TORUSMILL®专利系统的关键之处,分散机的预分散与研磨砂的创新结合,能有效地对基料先作预分散,之后用高性能的珠磨作研磨,不再需要转移基料:已经合成了纳米粒子超过20%质量百分比的透明清澈的纳米复合材料。透明清澈的意思是通过半米厚的纳米复合材料,仍能看到放在桶底的硬币上的字母。TORUSMILL®系列为纳米复合材料的合成线路的发展提供了极大的便利。 TORUSMILL® TM 10已经大批量运用在10L的规模原料下,也已经有了一些经验,更大的机器通常需要用更多的时间。很快将会大批量生产100L的型号 (图2是TM100) 或者是半吨规模的(TM500)。这种方式就是购买原材料从实验室小样到试生产到扩大规模生产的时理步骤。最终的产品通过在TORUSMILL®上的IOM系统生产的丙烯酸酯纳米复合材料表现出令人惊讶的低粘度,使我们制造出高填充度且涂层柔韧耐磨的太阳能电池。柔性太阳能电池还在试生产阶段,而丙烯酸酯纳米复合材料已经由莱比锡的Cetelon Nanotechnik成吨大批量生产并由WKP Unterensingen进一步加工成了耐受性极强、超细克拉级的箔。VMA TM砂磨分散机http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_427.gif图2: 来自VMA Getzmann的TORUSMILL®TM100安装在能在IOM研制纳米合成材料的AFM扫描仪前面,这台扫描仪能展示颗粒被碾磨成坚硬骨料(70nm)的合成过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_367.gifFig. 3:柔性电池和尺子比较.

  • 【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:纳米尺度下的力学性能:见微知著【讲座时间】:2015年09月23日 14:00【主讲人】:魏伯任学历:成功大学机械工程学博士,现职:海思创公司应用科学家研究领域。【会议介绍】纳米尺度下力学性质的测试一直是科研界与工业界关注的重要问题。随着测试技术往与其他性质相互串连的方向发展,其应用层面更是不断地朝不同领域扩展。今日的纳米压痕早已不再只是硬度与弹性模量的测试,在结合相对应技术架构的搭配之下,已经能够针对接口特性、破裂韧性、高温蠕变、残余应力等进行高精度与高分辨率的测试。 现阶段的复合技术已经够在多方面获得进展,如接口附着能、表面能、多层膜的破裂韧性等等。除了在学术理论技术方面的进展之外,在工业应用方面也因应各种生产需求,朝针对产品整体面向的质量管控与良率监控的自动化方向发展。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月23日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16665、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 【资料】纳米新技术(共3讲)

    [B][center]什么是纳米技术 [/center][/B] 纳米是长度单位,原称"毫微米",就是10-9(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。  从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。  纳米技术包含下列四个主要方面:   第一方面是纳米材料,包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。用超微粒子烧成的陶瓷硬度可以更高,但不舱裂:无机的超微粒子灰分在加入橡胶后,将粘在聚合物分子的端点上,所做成的轮胎将大大减小磨损和处长寿命。   第二方面是纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。   第三方面是纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定 DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。   第四方面是纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。"更小"是指响应速度要快。"更冷"是指单个器件的功耗要小。但是"更小"并非没有限度。  纳米技术是建设者的最后疆界,它的影响将是巨大的  在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技。"大挑战"机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括:   把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。  由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。  生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。  通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾Ⅲ 处理器已经显得十分慢了。   运用基因和药物传送纳米级的MRI对照剂来发现癌细胞或定位人体组织器官   去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。  提高太阳能电池能量效率两倍。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制