当前位置: 仪器信息网 > 行业主题 > >

纳米光电生化检测仪

仪器信息网纳米光电生化检测仪专题为您提供2024年最新纳米光电生化检测仪价格报价、厂家品牌的相关信息, 包括纳米光电生化检测仪参数、型号等,不管是国产,还是进口品牌的纳米光电生化检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米光电生化检测仪相关的耗材配件、试剂标物,还有纳米光电生化检测仪相关的最新资讯、资料,以及纳米光电生化检测仪相关的解决方案。

纳米光电生化检测仪相关的论坛

  • 纳米材料诱发的化学发光(一)

    以下是我写的综述的部分内容,望得到大家的指教4 纳米体系化学发光4.1纳米材料参与的电致化学发光广义的化学发光也包括电致化学发光(ECL),电致化学发光是指对电极施加一定的电压进行电化学反应,电极反应的产物之间或与体系中的某种组分发生化学反应,产生激发态物质,激发态物质回到基态时产生的发光[42,43]。它不但具有化学发光分析的许多优点,还具有电化学方法的一些特点,如电发光反应过程控制性强,选择性好等优点[44,45]。近年来,将纳米材料引入分析化学研究中已成为分析化学的一个研究热点,并取得许多创新性研究成果[46,47]。4.1.1半导体纳米粒子电致化学发光机理4.1.1.1半导体纳米粒子直接接受电极提供的能量生成激发态传统ECL是利用电极原位(in situ)产生试剂,这些试剂在溶液中反应,完成较高能量的电子转移而生成激发态的分子,不稳定的激发态分子回到基态过程中以光辐射形式释放能量[48-50]。同理,当电极施加双阶跃正负脉冲(或电位循环)时,半导体纳米粒子(A)在正电位阶跃时被氧化为A+,接着在负电位阶跃时被还原为 A-,A+ 与 A- 反应生成激发态的 A*,激发态的 A* 回到基态过程中时产生了化学发光[24,51-55]。对应的反应过程可以用(4.1)—(4.3)式表示。值得注意的是通过该机理产生发光的必要条件是:产生的还原态 A- 或氧化态 A+ 在溶液中,要能够稳定存在一定时间,从而使得A+ 能够与 A- 相遇、碰撞并产生激发态的 A*[24]。 A → A+ + e- (4.1) A + e- → A- (4.2) A+ + A- → A* (4.3) A* → A + hv (4.4)较典型的例子是He气氛下,在含有0.1mol/L THAP乙腈溶液中,对Pt电极施加双阶跃正负脉冲电位,并在 +2.7 V 和 -2.1 V循环阶跃,在正电位阶跃时,粒径为2-4nm的Si纳米半导体被氧化成稳定的 Si(NCs)+,接着电位阶跃负方向产生Si(NCs)-,并与Si(NCs)+ 碰撞产生激发态的Si(NCs)*,Si(NCs)* 回到基态时产生640nm的光发射[24]。4.1.1.2 半导体纳米粒子电化学产物与共反应物(coreactant)发生ECL反应若体系中含有共反应物(还原性或氧化性物质)时,仅在工作电极上施加正或负电压,即可生成激发态的A*而发光[24,53,56-58]。其反应过程可以用(4.1)—(4.3)式表示。产生的还原态 A- 或氧化态 A+也要能够稳定存在于溶液中一定时间,才能发生发光[24]。 A → A+ + e- (4.1)A+ + Re → A* + Ox (4.5)A* → A + hv (4.4)或 A + e- → A- (4.2)A- + Ox → A* + Re (4.6) 其中较为典型的例子是Zou[56]等将纳米CdSe沉积在石墨充蜡电极表面上并成膜,纳米CdSe膜在循环伏安下产生两个ECL通道(ECL-1和ECL-2)。并用ECL-1,在事先通N2 25min 含有0.1mol/L KNO3 pH 9.3 磷酸缓冲溶液中,扫描速率为0.06V/S 下,对H2O2进行了测定,线性范围: 2.5×10-7 ~ 6×10-5 mol/L,检测限: 1.0×10-7 mol/L。他们也提出了ECL的机理(式4.7—4.11)。CdSe NCs + ne → nR• - (4.7)O2 + H2O2 + 2e → OOH- + OH- (4.8)2R• - + OOH- +H2O → 3OH- + 2R* (4.9)or2R• - + H2O2 → 2OH- + 2R* (4.10) nR* → CdSe NCs + hv (4.11) 4.1.2 纳米金粒子对电致化学发光体系的催化作用 因纳米具良好的“生物相容性”和高的催化特性,近来人们对纳米金催化等特性的研究进展迅速[59]。崔华[60]研究小组,已将纳米金用于化学发光体系研究,报道了纳米金粒子的催化作用对液相电致化学发光的影响,发现纳米金的催化作用和电化学活性既可以增强两个阳极ECL发光通道,又导致了两个新的阴极ECL发光通道的产生。最近,Liu[61]等发现纳米金可以催化Ru(bpy)32+- pentoxyverine (喷托维林)体系的电致化学发光,将电致化学发光分析法与毛细电泳技术联用,在毛细电泳柱端成功测定了喷托维林,检测限为:6nmol/L;并将该方法用于喷托维林和人血清白蛋白结合常数的测定,测定值为:1.8×103 L/mol。4.1.3 纳米材料作为化学发光试剂的固载。钱柯君[62]等用反胶束法水解正硅酸乙酯(TEOS)合成球形luminol/ SiO2复合纳米微粒;再用壳聚糖修饰已合成的纳米微粒并标记DNA作为DNA探针,构建的DNA探针与固定在聚吡咯修饰电极上的靶DNA杂交。用ECL法对DNA杂交情况进行评估,仅互补序列DNA才可以与DNA探针形成双链DNA(dsDNA)并产生强的ECL。发现3个碱基错配互补靶序列和非互补靶序列产生的ECL可以被忽略,ECL强度与互补序列DNA的浓度在5.0×10-12~1.0×10-9 mol/L范围内呈线性关系,对互补序列DNA的检测限为:2.0×10-12 mol/L。4.2 纳米材料参与的化学发光传统的化学发光研究一般仅限于分子和离子体系。最近,纳米粒子在化学发光中的行为研究已经引起了人们的重视:无论是半导体纳米粒子还是金属纳米粒子在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应中都表现出特殊的活性。4.2.1纳米金参与的液相化学发光4.2.1.1 纳米金作为化学发光反应的微尺度平台Cui[26]等首次报道了,粒径为68-nm 的纳米金与KIO4—NaOH—Na2CO3之间的反应能够产生化学发光现象,该化学发光的光谱具有三个明显的发射带,分别位于380—390 nm, 430—450 nm和490—500 nm;该体系的化学发光强度随着溶液中

  • 特殊的化学发光现象之三:纳米化学发光和电致化学发光

    如前所述,对于化学发光的研究一般仅局限于分子和离子水平以及简单的分子聚集体如胶束和微乳液等。纳米材料作为一种微尺度的物质构成单元,其特殊的Kubo 效应、小尺寸效应、表面效应及量子隧道效应使其呈现许多奇异的物理、化学性质。近年来,有关纳米材料参与的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应体系受到了越来越广泛的关注。对于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光反应,张兴荣课题组从2002 年开始利用纳米材料优良的催化性能发展了一系列基于纳米材料的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光传感器,主要用于易挥发性有机物的测定。例如,乙醇和丙酮蒸气在7 种金属氧化物纳米材料的催化氧化作用下具有化学发光现象,其中纳米TiO2 催化作用下的化学发光信号最强,其可能的发光中间体被认为是氧化生成的激发态乙醛分子,并具有很高的选择性。其它易挥发的有机物如丁酮和乙醛也能够在纳米材料的催化氧化作用下产生[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光。而挥发性氯代有机物在纳米TiO2 的作用下转化为Cl2;生成的Cl2 被富集在填充纳米TiO2 的管中,可以用柱后化学发光法检测。Bard 等于2002 年在Science 上发表第一篇有关纳米粒子的液相电致化学发光的报道以来,纳米粒子参与的液相电致化学发光和化学发光行为也已经引起了人们的关注。Bard 等报道半导体纳米粒子如Si,CdS,CdSe,CdSe/ZnSe,Ge 以及CdTe 等都可以产生电致化学发光。Poznyak 等报道了半导体CdSe/CdS 纳米粒子与H2O2 反应可以产生液相化学发光,其中CdSe/CdS半导体纳米粒子被鉴定为发光体。Corrales 等人报道了纳米TiO2 型着色剂,其化学发光特性可用于聚合物热稳定性的表征。在半导体纳米粒子参与的化学发光或电致化学发光反应中,半导体纳米粒子的表面缺陷以及量子尺寸效应是产生化学发光的基础。总之,纳米材料作为一种新型化学发光响应单元对于提高化学发光反应的效率以及开发新的化学发光反应体系具有重要意义

  • 【原创】激光粒度仪中亚微米及纳米的粒度检测

    在激光粒度仪的性能指标中测试下限标称为0.1甚至为0.02等,那么这部分粒度是怎么检测出来的呢?如果下限为0.1微米,那么探测器所能接收的前向角度至少要达到70度,或是有后向探测器.如果下限为0.02微米必须要应用后向散射技术,而且还要看后向激光器的波长,如果是普通的红光激光器,波长范围大概为600-800nm的激光器将无法区分纳米级颗粒后向的散射信号区别.所以必须采用波长更短的激光器,比如蓝光激光器,波长405nm等,这样纳米颗粒的后向信号区别会比较明显,但还要有特殊的采样与处理方式,否则测量下限0.02也是无法做到的.具体的方法不便说出,但用户可以采用纳米级颗粒去验证,最好中位径范围在0.05um以下的几种颗粒,比如中位径分别为0.02,0.03,0.04,0.05等几种接近单分散样品,确实在实际中这种验证比较困难,这里只是建议方法而已,希望用户能选择到一款性价比较高的仪器!尤其是检测中位径在0.2-0.02um的用户尤其要注意!

  • 深入探索纳米流式检测技术的核心原理与应用领域

    [b][font=宋体]一、纳米流式检测技术的原理[/font][/b][font=宋体] [/font][font=宋体][font=宋体]纳米流式检测技术的原理主要基于纳米流式检测仪([/font][font=Calibri]Flow NanoAnalyzer[/font][font=宋体],[/font][font=Calibri]FNA[/font][font=宋体])。这种技术能够覆盖传统流式细胞仪在[/font][font=Calibri]200[/font][font=宋体]纳米以下粒径检测的盲区,包括纳米颗粒以及亚细胞结构、细菌、病毒、外泌体等天然生物纳米颗粒的表征。其检测原理是利用流体聚焦和激光聚焦技术,减小探测区体积、延长被测颗粒穿越激光探测区的时间、降低散射背景、提高激光功率等措施,实现[/font][font=Calibri]200[/font][font=宋体]纳米以下颗粒的检测。[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术的工作原理是:当被测颗粒通过激光检测区时,颗粒被激光照射产生散射光和荧光信号。通过一系列光学元件收集并分离散射光和各波段的荧光信号,经过电学系统中的信号转换和数据处理,获得样品的各种理化信息。其中,散射光信号可以用来表征颗粒的大小和粒度,染色后的荧光可以用来表征细胞内特定蛋白的表达水平、细胞的生理状态和分裂周期等。通过对检测到的颗粒进行计数,可以实现颗粒浓度的无标样定量检测。[/font][font=宋体] [/font][font=宋体]总之,纳米流式检测技术结合了流式细胞术和纳米技术,具有高灵敏度、高分辨率和高通量等优点,为生物医学研究提供了新的工具,有助于深入研究和了解生物纳米颗粒的特性和功能。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]二、纳米流式检测技术的应用[/font][/b][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])肿瘤诊断[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米流式检测技术可以对肿瘤细胞进行快速、敏感的检测,并且可以在单细胞水平上进行分析,从而实现早期肿瘤诊断。同时,纳米流式检测还可以检测循环肿瘤细胞([/font][font=Calibri]CTC[/font][font=宋体]),这是一种正在被广泛研究的肿瘤诊断手段,可以极大地提升肿瘤治疗成功的概率。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])细胞免疫学[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术可以通过检测细胞表面和内部的特定蛋白质、抗原或基因,实现对细胞的免疫学分析。这种方法可以在单个细胞水平上对细胞进行分类和排序,同时也可以在细胞群体中进行比较分析。这对于了解免疫系统的正常和异常状态,以及研究免疫治疗等方面都有着重要的意义。[/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])病毒学研究[/font][/font][font=宋体] [/font][font=宋体][font=宋体]病毒是一种纳米尺度的微生物,纳米流式检测技术可以用于病毒的检测和计数,包括流感病毒、[/font][font=Calibri]HIV[/font][font=宋体]病毒、疱疹病毒等。这种技术还可以用于病毒分型和病毒载量测定等方面。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]4[/font][font=宋体])生物分子检测[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术可以用于生物分子的检测,包括蛋白质、核酸、糖类等。这种技术可以用于生物标志物的检测和诊断,以及生物分子相互作用的研究。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]三、总结[/b][/font][font=宋体] [/font][font=宋体]纳米流式检测技术是一种应用前景广阔的单细胞分析技术。它具有高灵敏度、高通量、高精度的特点,能够针对不同细胞类型和样品进行分析和检测。随着技术不断发展和完善,纳米流式检测技术将有望在医疗诊断、新药开发等领域得到更广泛的应用。[/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以查看义翘神州[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测服务[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 俄科学家合成出一种光控纳米复合材料

    中国科技网讯 据俄罗斯科技网近日报道,莫斯科国立大学精细化工技术学院、俄罗斯科学院生化物理研究所和化学物理问题研究所的三个顶尖科研小组宣布,他们利用光敏配合基和硒化镉,成功合成了一种光控纳米复合材料。这种复合材料的性能可以通过改变特定波长的光照射而发生变化,可用于“智能”光敏控制设备。相关论文发表在《俄罗斯纳米技术》杂志上。 通过光线照射使光敏配合基的性能发生有针对性的变化,这是当前非常热门的研究领域。通常,这一研究领域的成果将有助于建立一些智能设备的原型,如分子光开关、光控逻辑模块、检测离子的传感器设备等等。研制出的最终产品将应用于生物信息学、纳米医学和其他一些应用科技领域。 科学家们成功地将配合基分子固定在硒化镉纳米粒子的表面,从而形成了复合连接。其中无机纳米硒化镉(科学家称之为量子点)具有荧光控制的特点。所谓荧光控制,是指一些原子和分子具有吸收较高能量的光子,然后释放能量较低光子的特殊能力,例如一些荧光染料,它们能够吸收太阳辐射出的不可见紫外线,然后自身发出可见光。这种光线的颜色很饱和,我们在舞厅里常常会看见这种荧光灯发出的光芒。硒化镉量子点的荧光特性毫不逊于有机荧光分子,后者在生物学和医学上广泛得以使用。例如,量子点发出的波长取决于纳米粒子的大小,通过改变纳米粒子的大小就可以指定它们发出波长的频谱区域,这一特性有助于建立具有良好灵敏度和清晰度的单分子光敏系统,其在纳米级无机量子点的研究中被广泛应用。 在此项研究中,科学家使用一个直径为3.7纳米的硒化镉粒子,这种纳米粒子尤其善于吸收最大波长为585纳米的可见光。光敏配合基根据光的影响而改变其配置能力,进而改变硒化镉量子点的荧光光谱和大小。在原始复合材料中可明显观察到波长598纳米的量子点荧光。用短波照射复合材料后,材料的配置发生变化,开始发出波长为670纳米的荧光。如果把复合材料放置在黑暗中或用可见光照射一段时间,配合基分子会自动恢复到原始状态,而复合材料也趋于最初的荧光特点。基于此原理,他们获得了这种通过改变特定波长的光照射来控制属性的复合材料。此外,这种变化是可逆的,复合材料可以很容易地返回到其原始状态。这一研究结果对构建光敏智能控制系统原型具有良好前景,可用于特殊领域的光敏开关。(记者 曲键) 《科技日报》(2012-05-26 二版)

  • 纳米压电检测

    最近纳米压电材料比较热,大家说说除了原子力以外,纳米压电检测的手段还有什么?怎么把压电和摩擦发电区别开来?

  • 生化检测仪器主要应用

    生化检测仪器在医药上主要用来检测人体生化指标,如 1.肝功类   GPT/ALT(谷丙转氨酶) ALP(碱性磷酸酶) Alb(白蛋白)   GOT/AST(谷草转氨酶) T-Bil(总胆红素) CHE (胆碱脂酶)   TTT (麝香草酚浊度) D-Bil(直接胆红素) FB(纤维蛋白原)   NH3 (血氨) TP(总蛋白)   2.肾功离子   BUN(尿素氮) K(血清钾) Na(血清钠)   Cr(肌酐) Fe(血清铁) Ca(血清钙)   UA(尿酸) Mg(血清镁) Cl(血清氯)   CO2-Cp(二氧化碳结合力) Zn(血清锌) P(血清磷)   血糖血脂 T-CHO(总胆固醇) HDL-C(高密度脂蛋白胆固醇)   TG(甘油三脂) LDL-C(低密度脂蛋白胆固醇)   GLU(血糖)   心肌酶谱   CK(肌酸激酶)   LDH(乳酸脱氢酶)   GOT(谷草转氨酶) 等

  • 纳米材料诱发的化学发光(二)

    望得到大家的指导纳米金粒子浓度的增大而线性增加,并且当纳米金粒子表面柠檬酸根离子被SCN—离子取代时,体系化学发光的强度显著增加;实验采用紫外可见吸收光谱、透射电镜(TEM)和X-射线光电子能谱(XPS)技术研究了CL反应前后纳米金的形貌、粒径和氧化态,在此基础上提出体系化学发光的机理可能是纳米金作为化学发光反应的微尺度反应平台,与反应过程中生成的CO3• 一和O2• 一自由基相互作用,在纳米金表面生成了Au(Ⅰ)络合物、二氧化碳双分子对、单线态氧分子对的激发态而产生化学发光(图4-2(a,b))。 图 4-2a 二氧化碳双分子以及单线态氧分子对参与的化学发光机理Figure 4-2a Mechanism of the chemiluminescence involving carbon dioxide dimer and singlet oxygen molecular pair 图 4-2b 与纳米金表面原子氧化相关的化学发光机理Figure 4-2b Mechanism of the chemiluminescence involving the oxidation of surface gold atoms.4.2.1.2 纳米金催化液相化学发光随后,Zhang[63]等发现不同粒径的纳米金于鲁米诺—H2O2液相化学发光体系具有不同程度的增强作用,其中粒径为38 nm的纳米金对于体系的化学发光具有最大的增强作用;提出了纳米金对该体系化学发光的增强作用可能的机理是由于纳米金对于反应过程中自由基的生成以及后续电子转移反应具有良好的催化作用;发现含有-OH、-NH2和-SH的有机化合物对于鲁米诺—H2O2—38 nm纳米金化学发光体系具有明显的抑制作用,在此基础上,进一步研究了鲁米诺—H2O2—38 nm纳米金化学发光体系测定含有-OH、-NH2和-SH的有机化合物分析应用潜力,取得了很好的结果。4.2.1.3 纳米金作为能量接受体诱导液相化学发光 Cui[64]等报到了粒径为2.6~6.0nm 的纳米金可以接受双(2,4,6-三氯苯基)草酸酯(TCPO)与过氧化氢(H2O2)的反应释放的能量产生间接化学发光,其最大发射波长位于~415nm;发现化学发光的强度与纳米金粒子的浓度(在9.1×10-10—3.3×10-8 mol/L)之间存在良好的线性递增关系;提出该化学发光可能的机理: TCPO被H202氧化生成高能量的中间体过氧环乙烷双酮(1,2-dioxetanedione),该中间体将能量传递给体系中共存的纳米金粒子而使纳米金被激发,激发态纳米金粒子在弛豫回到基态的过程中产生化学发光(图4-3)。 图 4-3 纳米金—TCPO—H2O2-体系的化学发光机理Figure 4-3. CL Mechanism for TCPO-H2O2-Gold Colloid System4.2.1.4 纳米金作为高效还原剂参与液相化学发光Zhang[65]等采用流动注射化学发光法(FIA-CL)研究了纳米金微粒对酸性KMnO4化学发光体系的影响,发现在2.0 mol/L H2SO4介质中纳米金可以与KMnO4发生氧化还原反应;对于粒径为2.6和6.0 nm的纳米金,它们与酸性KmnO4的反应速度快,可以在640 nm左右产生化学发光,并且化学发光的强度与纳米金粒子浓度(在4.6×10-6~2.94×10-4 mol/L浓度范围内)之间存在良好的线性递增关系;对于粒径大于6.0 nm的纳米金,由于与KMnO4的反应速度较慢,反应过程中并不伴随化学发光现象;提出化学发光反应的机理可能是酸性条件下KmnO4被纳米金还原生成激发态Mn(Ⅱ)*而产生化学发光。4.2.2 纳米半导体(NCs)参与的液相化学发光Talapin[66]等首次在碱性H2O2水溶液中,观察到CdSe/CdS 核-壳结构纳米半导体晶体膜的化学发光现象,并认为该化学发光性质与量子约束轨道相关。随后, Wang[67]等发现碱性H2O2和碱性高锰酸钾,可以直接氧化CdTe NCs 产生强的化学发光,化学发光强度与粒度相关,随着粒度的增大而增强。采用流动注射化学发光法(FIA-CL), 在 3.33-nm CdTe NCs浓度为:1×10-3 mol/L,0.1 mol/L NaOH 条件下,考察了发光系统对不同浓度H2O2的响应,CL强度对H2O2 在1×10-4~1 ×10-2 mol/L浓度范围内呈线性增强;同时也考察了表面活性剂对发光体系的影响。通过光致发光光谱法, CL光谱法和透射电镜法探究了可能的氧化化学发光机理(式4.12—4.16)。RSH + O2 + OH- → O2- + RS + H2O (4.12)O2- + CdTe → CdTe(e-1Se) + O2 (4.13)O2- + H2O2 → OH• + 1O2 (4.14)OH• + CdTe → OH- + CdTe(h+1Sh) (4.15)CdTe(h+1Sh) + CdTe(e-1Se) → (CdTe NCs)* → hv (4.16)5 结论与展望目前,半导体纳米粒子和金属纳米粒子的电致化学发光和化学发光行为己经引起了人们的关注。从Bard[24,50-54]、崔华[26,59,62-64]、张新荣[25,68-71]等研究组报道的工作表明,纳米粒子诱导化学发光反应的研究刚刚起步。从他们报道的研究工作可以看出,纳米粒子可以作为能量接受体、微尺度反应平台、还原剂、催化剂等参与化学发光反应。能量接受体:纳米粒子在量子效应的作用下可能使纳米粒子具有块体材料所没有的特殊能级结构而产生良好的荧光特性。这些具有荧光特性的纳米粒子可以被化学反应释放的能量所激发从而产生化学发光。发光体:通过电化学法和化学法可以向纳米粒子注入电子(electron)和空穴(hole),电子和空穴再结合(recombination)之后便形成激发子(exciton),形成的激发子能产生特定波长的光。微尺度反应平台:纳米粒子虽然可以均匀分散在液相,但是纳米粒子与液相本体之间仍然存在固/液界面,从而导致在纳米粒子表面进行的化学反应处于一个固/液界面微尺度反应平台,从而改变了化学发光反应的物理化学过程。还原剂:对纳米粒子液相电化学行为的研究已经表明,在量子尺寸效应的诱导下产生了一定能级分裂的纳米粒子簇,可能作为一个整体接受电子或空穴的注入[72]。另外,组成纳米粒子的活性基本单元(如配位不足的表面原子)也可能独立参与氧化还原反应。故这些具有较高的氧化还原活性的纳米粒子可以作为化学反应的氧化剂或还原剂诱导化学发光。催化剂:纳米粒子可以作为催化剂充当氧化还原过程中电子转移的中介。液相化学发光反应涉及一系列活泼的中间产物如自由基和激发态产物,纳米粒子高的表面活性可能会与参加化学发光反应的初始物质、中间体和激发态物质发生相互作用,从而改变了化学发光反应历程以及化学发光反应的速率。总之,纳米材料作为一种新型化学发光响应单元对提高化学发光反应的效率以及开发新的化学发光反应体系具有重要意义。而且,已报道的一系列基于纳米材料的新的化学发光体系在生命科学、环境科学和分析化学等领域可能具有广阔的应用前景。

  • 癌症检测新技术知多少——神奇的纳米追踪技术

    http://i1.sinaimg.cn/IT/2012/0710/U5385P2DT20120710181155.jpg癌症早期检测  生物工程师正在开发微小的纳米颗粒,用来检测早期癌症。  一些微小的颗粒可能会解决医学上的一个重大问题。这些所谓的纳米颗粒,直径只有几纳米(一纳米为十亿分之一米),500个这样大小的颗粒排列在一起,才有一根头发丝那么宽。科学家正在对它们进行改造,希望能完成多种任务:将药物输送到人体的特定部位;获取更清晰的器官影像……现在,它们又多了一种用途,科学家想用这些微小颗粒来探测癌细胞,不论它们藏在哪里。  目前,只有当肿瘤大到在扫描图上看得见时,常用的成像工具才能检测到它们。而纳米颗粒,则可以在一个由1 000万个正常细胞组成的样本中发现单个癌细胞。例如,实验性的纳米医学乳腺癌检测,能够发现比乳房X射线所能发现的小100倍的肿瘤。在包裹上肿瘤细胞特有的蛋白质或遗传物质后,纳米颗粒还可以帮助医生区分肿瘤是在恶性生长,还是进行性炎症,或是良性病灶。  美国华盛顿大学圣路易斯分校的生物医学工程教授格里高利•兰萨(Gregory Lanza)和同事正在研制一种纳米颗粒,能够追踪并标记新形成的、专为肿瘤供血的血管,而这类血管的产生,是结肠癌、乳腺癌和其他癌症发生过程中的关键步骤。在非肿瘤的组织中,通常不会有这样的血管。理论上,通过这项技术,医生还可以知晓癌症生长的速度,应该采取怎样的治疗措施。  美国斯坦福大学的诊断放射学教授桑吉夫•萨姆•甘姆希尔(Sanjiv Sam Gambhir)和同事正在研究大肠癌,希望能发现常规结肠镜检查发现不了的轻微恶性病变。研究小组用金和硅制成纳米颗粒,然后添加上一些分子,用来引导纳米颗粒,让它们附着在特定癌细胞上。当附着到结肠或直肠中的肿瘤上时,用一种特殊的内窥镜照射,纳米颗粒就会散射其所发出的光,显示癌细胞的存在。

  • 【原创大赛】探访中国科学院纳米标准与检测重点实验室

    【原创大赛】探访中国科学院纳米标准与检测重点实验室

    中国科学院纳米标准与检测重点实验室依托于国家纳米科学中心,实验室拥有先进的大型检测仪器设备,主要包括扫描隧道显微镜、扫描电子显微镜、透射电子显微镜、金相显微镜等微观分析仪器,接触角测量仪、比表面积和孔隙度分析仪、热重/差热分析仪等物性分析仪器,此外还有光谱类仪器、X射线衍射仪等其他材料表征仪器。http://ng1.17img.cn/bbsfiles/images/2011/12/201112301142_342754_2086240_3.jpg另外,据介绍实验室以开放共享为原则,向各界提供纳米检测技术服务,并根据用户的仪器操作能力及分析检测要求提供以下5种服务模式:自助服务模式、技术员指导模式、技术员操作模式、委托测试模式及合同研究模式。由于当时去拜访时很多实验室都没有人,所以未能拍到仪器图片,只拍到了楼道里的仪器简介,也一并发上来吧,希望对大家有用。http://ng1.17img.cn/bbsfiles/images/2011/12/201112301138_342736_2086240_3.jpg日本日立S-4800冷场发射扫描电子显微镜(该仪器的主要附件是Horiba X射线能谱仪。可用于各种固态样品表面形貌的二次电子像及背散射电子像的超高分辨观察,以及样品表面微区成分的定性和定量分析。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301138_342739_2086240_3.jpg日本理学D/max-2600/PC全自动X射线衍射仪(该仪器可用于粉末样品的物相定性分析与定量分析,确定纳米材料的粒径分布、晶体的晶系、晶粒大小和畸变等。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301142_342753_2086240_3.jpg美国FEI公司Tecnai G2 F20 U-TWIN 场发射透射电子显微镜(该仪器主要配置的附件有美国Gatan公司的GIF Tridiem能量过滤成像系统及2K×2K CCD相机、美国EDAX公司的X射线能谱仪、数字化扫描附件及高角环形暗场探头。可用于观察各种材料的微观结构并对样品进行纳米尺度的微区分析,如高分辨电子显微学研究、电子能量损失谱分析及能量过滤成像等。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301140_342745_2086240_3.jpg德国Leica DM4000M智能数字式金相显微镜及热台(金相显微镜可用于钢铁、金属、化工材料分析,可用于研究金属内部结构组织,是金属学研究金相的重要仪器。热台的加热温度为室温至300℃,主要用于观察高分子、聚合物、液晶、纤维材料等样品的熔点、相变、形态和晶格变化。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301141_342746_2086240_3.jpg美国珀金埃尔默Diamond TG/DTA热重/差热综合分析仪(该仪器适用于分析无机材料、有机高分子材料、食品、药物等各种固液态试样,可以获得热稳定性、分解温度、氧化诱导期、熔点、反应热等信息。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301141_342747_2086240_3.jpg美国麦克 ASAP2020(M+C)比表面积和孔隙度分析仪(该仪器可以进行单点、多点BET比表面积、Langmuir比表面积、BJH中孔孔分布、孔大小及总体积和面积、平均孔大小等多种数据分析,通过化学吸附的分析可以了解材料上活性金属分散度及其面积、活性颗粒尺寸和数目、材料酸密度、微晶尺寸等信息。)http://ng1.17img.cn/bbsfiles/images/2011/12/201112301142_342749_2086240_3.jpg[/a

  • 【资料】DelsaNano C 纳米级激光粒径仪

    我们公司新买台DelsaNano C 纳米级激光粒径仪,不知各位有没有用过引仪器,我们交流下注意、关键点:1,测粒径时,与稀释用的纯水,溶剂的粘度,屈折率有很大的关系,2,最好把稀释用的纯水,溶剂温度调整到所需的温度,如25度,更能检测出准确的结果,3,样品光强调到蓝色标,如果各位有更好的、更多的心得,希望能大家交流下,

  • 【每日分享一篇解决方案】BeNano 180 检测脂质纳米粒LNP的粒径

    【每日分享一篇解决方案】BeNano 180 检测脂质纳米粒LNP的粒径

    [align=center][font='arial'][size=21px][color=#548dd4]#[/color][/size][/font][font='arial'][size=21px][color=#548dd4]每日一篇分享一篇解决方案:[/color][/size][/font][/align][align=center][font='arial'][size=21px][color=#548dd4]今日行业领域:[/color][/size][/font][font='arial'][size=21px][color=#548dd4]制药[/color][/size][/font][/align][align=center][font='等线 light'][size=13px][color=#548dd4]BeNano[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4] 180 [/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]检测脂质纳米粒[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]LNP[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]的粒径[/color][/size][/font][/align][align=center]关键词:粒径、LNP、药物输送体系[/align]脂质纳米粒(Lipid Nanoparticles,LNP)是使用脂质形成纳米微粒的一种,作为一种高效、安全的药物递送体系,被广泛研究和应用,成为近年来发展最为迅速的制剂剂型之一,由于其制备过程需要进行特殊的工艺化定制,故而脂质纳米粒类制剂也被称为“高端复杂注射剂”。 在基因治疗领域,已经开始使用脂质纳米粒包裹核酸,如mRNA、siRNA、pDNA等,称为核酸脂质纳米粒。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333444187_1210_5996718_3.jpeg[/img][/align]在这篇应用报告中,我们使用丹东百特仪器公司最新推出的BeNano 180纳米粒度电位仪检测了分散在水性环境中的LNP的粒径。原理 [size=13px] [/size][size=13px] [/size][size=13px]我们[/size]采用丹东百特公司的BeNano 180纳米粒度仪进行测试。仪器使用波长671 nm,功率50 mW激光器作为光源,设置在173[font='arial']°[/font]角的背向检测器进行散射光信号采集,测试过程中,BeNano 180根据样品的散射特点自动确认检测点位置。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333446515_3271_5996718_3.jpeg[/img][/align]样品制备和测试条件该应用中检测了两个LNP采用微流控混合技术来制备核酸脂质纳米粒,该方法相对简便快速,条件温和,同时容易实现生产放大。1#和2#均为悬浮液,通过[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]注入样品池后直接进行检测。通过BeNano 180内置的温度控制系统开机默认测试温度控制为25℃[font='宋体']±[/font]0.1℃,测试样品的光强、检测点位置、测试时间均通过预测试程序自动进行调节。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论表1. 动态光散射检测脂质体样品结果[table][tr][td]样品[/td][td]Z-均粒径[/td][td]PDI[/td][/tr][tr][td]1#[/td][td]215.9 [font='宋体']± [/font]3.54 nm[/td][td]0.303[/td][/tr][tr][td]2#[/td][td]144.6 [font='宋体']± [/font]0.43 nm[/td][td]0.129[/td][/tr][/table][align=center][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333450955_6423_5996718_3.png[/img][/align]图1. 1#样品和2#样品多次测试的粒径分布曲线通过使用动态光散射技术,得到了样品的粒径和粒径分布信息。通过表1中结果可以看到所有样品的粒径都在100-250 nm范围内,粒径结果重复性良好。PDI均在0.1-0.7范围内,说明两个样品均为适中分布。1#样品明显粒径更高,PDI更大,检测的标准偏差也相对较高,说明1#样品的均匀度不如2#样品。[font='宋体'][size=20px][color=#4f5862]产品配置单:[/color][/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333451551_79_5996718_3.jpeg[/img][/align][align=center][url=https://www.instrument.com.cn/show/C476061.html]百特纳米 粒度仪BeNano 180[/url]([url=https://www.instrument.com.cn/netshow/SH100350/]丹东百特仪器有限公司[/url])[/align][align=center][/align][url=https://www.instrument.com.cn/application/Solution-949709.html][font='宋体'][size=16px]点击这里[/size][/font][/url][font='宋体'][size=16px][color=#000000]浏览[/color][/size][/font][font='宋体'][size=16px][color=#000000]或[/color][/size][/font][font='宋体'][size=16px][color=#000000]下载原[/color][/size][/font][font='宋体'][size=16px][color=#000000]文档,更多解决方案内容请浏览[/color][/size][/font][url=http://www.instrument.com.cn/application/][font='宋体'][size=16px][color=#0081d7]行业应用[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]栏目:[/color][/size][/font][align=left][url=http://www.instrument.com.cn/application/][font='宋体'][size=13px][color=#0081d7]http://www.instrument.com.cn/application/[/color][/size][/font][/url][font='宋体'][size=13px][color=#000000]行业应用栏目简介:[/color][/size][/font][font='宋体'][size=13px][color=#000000] [/color][/size][/font][font='宋体'][size=13px][color=#000000] [/color][/size][/font][font='宋体'][size=13px][color=#000000]【行业应用】[/color][/size][/font][size=13px][color=#333333]是仪器信息网[/color][/size][size=13px]专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。[/size][/align]

  • 基于黑磷纳米片的自供电光探测器构筑与性能

    基于黑磷纳米片的自供电光探测器构筑与性能

    光探测器是一种能够将光信号转换为电信号的装置,其在诸多领域都有着广泛的应用。与此同时,低维材料在线提供的二维层状材料因其优异的内秉光电特性而常常被用于光电探测的研究。全国纳米技术标准化技术委员会低维材料工作组的专家介绍,黑磷作为一种新的二维层状半导体材料,具有较高的载流子迁移率、各向异性的光电性质、可调控的直接带隙以及高的开关比,因而被人们认为是制造高性能光电探测器的理想材料之一。与此同时,研究表明减小层状材料的厚度能够有效提高材料的电输运性能,改善能带结构并有利于提升材料的光探测能力,所以少层黑磷纳米片在光电领域具有极大的应用价值。然而,二维黑磷纳米片在外界条件下暴露时会遭受严重的氧化,这极大地阻碍了其开发应用的开展。近日,湘潭大学钟建新教授团队的祁祥副教授课题组和深圳市黑磷光电技术工程实验室主任深圳大学张晗教授课题组采用KOH作为电解液,在溶液的环境下测试了少层黑磷纳米片的自供电光探测性能并研究了其稳定性情况。从图中可看出,基于二维黑磷纳米片的自供电光探测器展现出优异的光响应性能以及良好的环境稳定性,不同入射光强度下二维黑磷纳米片光响应率在1.9到2.2μAW[sup]-1[/sup]的范围内波动,表现出较为稳定的敏感度。同时,光探测器的电流密度随着入射光的强度增强而线性增加,也符合光电化学型光探测器的特性。除此之外,研究结果还表明碱性电解液的存在有助于维持黑磷纳米片的稳定性。黑磷纳米片在0.1MKOH电解液中的光电流能达到265nA/cm[sup]2[/sup],24个小时后光电流密度从265 nA/cm[sup]2[/sup]略微衰减到243nA/cm[sup]2[/sup],这也就意味着黑磷纳米片在KOH电解液中具有优异的光探测能力以及良好的稳定性。不仅如此,通过对KOH电解液的浓度和外界偏压进行调控,他们还进一步的优化了黑磷纳米片的光探测性能。该工作不仅研究了黑磷纳米片光探测性能和电解液浓度的关系,还表明黑磷纳米片作为低功耗光探测器件的良好性能与潜力。综上所述,黑磷在碱性溶液中所表现出来的高稳定性和光响应性能,使得光电化学型光探测器结构具有极大的研究意义以及潜在的应用价值。在这个工作中,他们研究了黑磷纳米片光探测器的基本性能,为进一步研发基于黑磷纳米片的光探测器提供研究基础以及技术路线。目前巨纳集团低维材料在线商城91cailiao.cn,提供的各类二维材料,一维材料,零维材料,如黑磷BP,石墨烯,纳米管,HOPG,天然石墨NG,二硫化钼MoS2,二硫化钨WS2,hBN氮化硼晶体,二碲化钨WTe2,二硫化铼ReS2,二硒化铼ReSe2等,受到了科研工作者的一致好评。[img=,690,642]http://ng1.17img.cn/bbsfiles/images/2017/07/201707141029_01_2047_3.png[/img]

  • 水果成熟度检测仪的几点疑问

    催熟技术的广泛使用,使得消费者在购买水果时经常买到外表光鲜里面却根本没熟的水果。麻省理工学院的一位化学家发明了一款廉价且方便的检测仪器,工作原理就是使用嵌有铜原子的碳纳米管来测量乙烯(成熟度越高的水果含量越大)含量:正常状态下,铜原子的电子会在纳米管内流动,而当乙烯和其粘合后,则会让电子流动变慢。通过检测流动变慢的电子数量便可以推算出乙烯含量。我的疑问是:1、水果的成熟都是依赖于乙烯吗?如果水果成熟过程中不成熟乙烯呢?2、如果催熟剂中含乙烯,那也无法准确检测呀?

  • [研究进展] 龙亿涛小组借助纳米光谱实现生物分子实时追踪

    华东理工大学研究人员利用自主搭建的多通道光谱仪器,观测到单个纳米粒子的光学信号,并通过将单粒子光谱技术与多种调控手段相结合,成功在线监测到单个金、银、铜纳米粒子的生长过程,同时将其应用于生物分子的实时追踪。相关成果已被德国《应用化学》杂志以“热门文章”接收,将在2012年首期杂志以内封面形式发表。文章的通讯作者是华东理工大学教授龙亿涛,第一作者为博士研究生秦利霞,以色列耶路撒冷希伯来大学参与了该项研究。该研究得到国家自然科学基金重大研究计划的资助。金、银、铜等贵金属纳米粒子具有等离子共振散射性质,这种散射光谱比现有的荧光光谱强度高且更稳定,已被广泛应用于生物传感、分子识别等领域。目前,单纳米颗粒水平的散射光谱仍处于新兴阶段,其在活细胞代谢的实时监测应用及物理学探究成为研究热点。此前,该课题组利用这一光谱仪器平台已成功捕获活细胞内NADH的分布图像并应用到抗癌药物的筛选。他们与中科院上海应用物理所合作,在DNA检测中也取得了创新性的成果。目前,该课题组在纳米光谱方面正开展更多的工作,以期实现单分子水平的生物分子检测追踪,获得更多生命活动的微观信息。《科学时报》 (2011-12-22 A2 综合)http://simg.instrument.com.cn/bbs/images/brow/em09510.gif

  • 浅谈拒水拒油纳米技术处理服装的功能检测

    浅谈拒水拒油纳米技术处理服装的功能检测Discussion on the Testing of Water-repellent and Oil-repellent Nano-functionalApparel 杨志敏,何玉兰,叶毓辉,董晶泊(深圳市计量质量检测研究院,广东 深圳 518139)摘要:简要介绍拒水拒油纳米处理服装,及通过接触角、沾水等级、拒油等级对其性能的检测。关键词:纳米;拒水;拒油;接触角Abstract:This paper briefly introduces the nano-functional apparel ,and the test method of the water-repellent and oil-repellent.Key words: nano;water-repellent;oil-repellent;contact angle拒油原理和拒水原理极为相似,都是改变纤维表面性能,使其临界表面张力降低,水和油与其产生较大的接触角,达到拒水拒油的目的,而又不影响织物的透气性。拒水拒油纳米服装就是利用纳米技术处理过的面料制成的功能性服装。目前常用有两种方法:一种是利用涂层或浸渍,对纤维或面料进行表面处理,最终在织物表面形成一种功能性的涂层;另一类是利用化纤改性技术,将纳米材料作为添加剂加入到纺丝液中,复合纺丝,制备功能面料。目前市场上纳米服装局面混乱,鱼目混珠的“纳米”产品一哄而上,有些只是不透气涂层织物,引来众多的非议。如何鉴定纳米结构,评估和检测服装的拒水拒油功能,从而判定是否为拒水拒油纳米处理服装是目前面临的问题。本实验通过扫描电镜(SEM)鉴定织物表面的纳米结构,并通过测量液体在织物表面的接触角,沾水等级,拒油等级来检测纳米处理服装的拒水拒油性能,简要介绍拒水拒油纳米处理服装的检测。1纳米结构的鉴定确定是否具有纳米结构单元是判断该服装是否为纳米技术处理服装的前提。目前纳米结构的表征方法有很多,如扫描电镜(SEM)、透射电镜(TEM)、扫描隧道电镜(STM)、原子力显微镜(AFM)、X射线小角散射法(SAXS)等等,但涉及到服装一类最终产品上,取样、制样方法一直是难题。结合试验条件,本试验采用扫描电子显微镜测定织物表面纳米结构单元。仪器:扫描电子显微镜(分辨率2 nm),哈氏切片器,镀膜仪(金属膜)。在服装上的有效部位随机剪取5块5 mm×5 mm的试样,用镊子夹取试样固定在贴有导电胶布样品台上,将载有样品的试样台移至镀膜仪,镀膜为金属导电膜,膜的厚度宜在5~20 nm的范围内。然后送入扫描电镜样品室,抽真空直至可以进行电镜测试。在使用扫描电镜测试时,每个试样随机选择四个区域进行观测,放大倍数以有利于观测纳米结构为宜。结构单元的短径≤100 nm则为纳米结构单元,结构的短径>100 nm则为非纳米结构单元。测试所有试样,并计算纳米结构单元总数和非纳米结构单元总数(如图1所示)。图1 纤维表面形貌从图1中可以看出,纤维表面附有较多纳米颗粒。部分纳米颗粒因发生团聚,颗粒直径明显大于100 nm。整个区域以直径≤100nm的纳米颗粒为主,完全符合纳米技术处理服装的要求。2表面接触角测定当一滴液体滴在织物表面上时,有可能完全润湿织物,在表面形成一层水膜,有可能形成水滴状,液滴边缘与固体表面形成一个夹角θ,这个角就称为接触角。当0°<θ<90°时,液体部分润湿织物,并在极短的时间内,液滴向四周扩散并渗入织物中,90°<θ<180°时,液体不能润湿织物表面而形成液珠,倾斜时液滴滚落。如图2所示。 图2 接触角θ要达到拒水的目的,就要使接触角θ越大越好。根据著名的Young方程:γS=γSL +γLcosθ,液体在固体表面形成的接触角和界面张力之间的关系可知,由于液体表面张力不变,要达到拒水的目的,就必须减小固体表面张力或使固液表面张力变大。由于在纳米尺寸低凹的表面可以吸附气体分子,并且使其稳定附着存在,所以在宏观织物表面上形成了一层稳定的气体薄膜,使得油或水无法与织物的表面直接接触,纤维表面张力减小,水滴或油滴与界面的接触角趋于最大值,实现纤维织物拒水拒油功能。 水的表面张力为72.6 mJ/m2,而一般油类的表面张力为20~40 mJ/m2,润湿能力远大于水,所以拒油的物质一定拒水,故这里只测量油滴的接触角。取5个样品,在同一个样品上不同位置测量5次,取平均值。然后使用标准洗涤剂按5A程序洗涤5个循环,再测试洗后织物表面接触角。仪器:JC2000C1静滴接触角/界面张力测量仪,微量注射器,玻璃载片,A形全自动洗衣机。试剂:食用油,标准洗涤剂WOB。 图3 油滴在织物表面形态 调整好仪器之后,通过垂直固定的微量注射器往织物表面上滴2~3 μL食用油,油滴未渗入织物中,在织物表面形成近似圆形液滴,见图3。冻结图像之后,计算每个油滴的接触角,结果见表1。表1 油滴表面接触角试样编号接触角/o洗前洗后1#144.8138.22#141.6145.13#149.7142.24#153.4137.45#145.2148.8平均值146.9142.3从表1可以看出,洗前油滴在织物表面的平均接触角为146.9 o,远大于90 o;洗后油滴在织物表面的平均接触角为142.3 o,不仅说明该服装洗后仍使油滴在其表面有较大的接触角,具有良好的拒油效果,亦说明该服装具有一定的耐洗性能。3拒水级别测试在日常检测中,对织物的拒水级别测试,一般用淋水性能测试方法。按照GB/T4745—1997《纺织织物表面抗湿性测定沾水压试验》中要求的取样、操作程序、评定进行,织物的经向与水流方向平行,分别测试洗前、洗后试样的拒水级别,结果见表2。表2 拒水等级试样编号沾水等级/级洗前洗后1#552#553#55[/tr

  • 纳米压印设备商光舵微纳完成近亿元B+轮融资

    据致道资本官微消息,近日,致道资本已投项目——苏州光舵微纳科技股份有限公司(简称:光舵微纳)完成由国投创合投资的近亿元B+轮股权融资。作为国内领先的纳米压印技术完整方案提供商,光舵微纳经过多年的研发及市场应用推广,制造出了多款研发型纳米压印设备及全自动量产型纳米压印设备,实现了设备、耗材及工艺的全方位突破。纳米压印技术是微纳加工领域的一项关键底层技术,在国际半导体蓝图(ITRS)中,该技术被列为下一代半导体加工技术的重要代表之一。[img=图片]https://img1.17img.cn/17img/images/202401/uepic/35f3a9bc-4344-456c-bb7c-169186c68048.jpg[/img]光舵微纳在LED图形化衬底产业(LED-PSS)处于绝对的技术及市场领先地位,纳米压印设备及耗材已在客户端实现超过4000万片LED-PSS的大规模稳定量产,在此应用场景上实现了对尼康光刻机的产业化替代,并处于快速扩张阶段。同时,积极拓展纳米压印技术在高端半导体、AR衍射光波导、生物检测器件、消费电子等诸多重大[color=#686868]领域的产业化应用,并取得了重要进展。[/color][img=图片]https://img1.17img.cn/17img/images/202401/uepic/a55665c3-16b9-45c4-ad33-6ace1d7108bf.jpg[/img]此次融资完成后,光舵微纳将继续提升其核心研发团队的技术实力,积极研发应用于多个重要场景的高端纳米压印设备并进行广泛的市场开拓,进行产线扩充,推进纳米压印技术在更多应用领域的导入,打造从产品、系统到整体解决方案的商业模式,助力我国半导体制造产业的高速发展。[来源:致道资本][align=right][/align]

  • 提高纳米材料研究及应用水平、尽在第二届“纳米表征与检测技术”主题网络研讨会

    [align=left][b][color=#ff0000][b][b][size=16px]第二届“纳米表征与检测技术”主题网络研讨会盛大开幕[/size][/b][/b][/color][/b][/align][align=left][b]举行时间:[color=#ff0000]2019[/color]年[color=#ff0000]12[/color]月[color=#ff0000]18[/color]日[color=#ff0000] 早9:30[/color][/b][/align][align=left][b][color=#990000]嘉宾:[/color][/b][/align][align=left][b]谭平恒(中国科学院半导体研究所)[/b][/align][align=left][b]解德刚(西安交通大学)[/b][/align][align=left][b]胡学兵(景德镇陶瓷大学)[/b][/align][b]蔡小舒(上海理工大学)马书荣(赛默飞)毛晶(天津大学)陈强(岛津)彭开武(国家纳米科学中心)[/b][size=16px]纳米材料是纳米科技的基础和主要研究内容,而适合于纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。[/size][size=16px]基于此,仪器信息网[/size][size=16px]将于2019年12月18日组织举办第二届“纳米表征与检测技术”主题网络研讨会,邀请该领域专家,围绕纳米材料常用分析和表征技术,从成分分析、形貌分析、粒度分析、结构分析以及界面表面分析等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流。共同提高纳米材料研究及应用水平。[/size][align=left][color=#333333]戳链接[/color][size=24px][color=#ff0000][b]免费[/b][/color][/size][color=#333333]报名~[/color][/align][url]https://www.instrument.com.cn/webinar/meetings/nano2/[/url]

  • 纳米碳粉中位粒径的激光粒度检验方法研究

    纳米碳粉中位粒径的激光粒度检验方法研究

    抽空看看我的未发文中还有些啥,发现了这篇文章,发一下供大家试验中参考!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[align=center]纳米碳粉中位粒径的激光粒度检验方法研究[/align][align=center][b]李学哲[sup]1*[/sup],廖杰[sup]2[/sup],马彩云[sup]2[/sup][/b][/align][align=center][b]1 山西省产品质量监督检验研究院 山西太原030012[/b][/align][align=center][b]2 哈尔滨工大集团山西华农纳米科技有限公司 山西长治 047500[/b][/align][b]【摘要】[/b]应用激光粒度分析仪检测纳米碳粉的中位粒径范围是纳米材料粒度检验的方法之一。由于纳米碳粉在生产过程及存放期间,存在纳米粒子的团聚效应,电子显微镜镜检纳米碳粉可以明显看到纳米团聚粒子,用纳米激光分析仪检验直接溶解后的纳米碳粉已不可能。实验选择6种表面活性剂,消除溶解过程中粒子间的表面张力;用三个不同类型的小型搅拌机,搅拌中高速剪切团聚粒子,其结果:表面活性剂K12和一种双向内切式搅拌的搅拌机两种条件进行样品前处理,可以满足用激光粒度分析仪检测纳米碳粉的中位粒径范围的目的。 纳米碳粉作为纳米材料的一类,广泛应用于医药医疗、材料改性、提高肥效等不同行业领域[sup][/sup]。纳米碳粉生产工艺主要有石墨电解法、常压微波等离子射流脱碳法,激光辐照溶液中固体靶法等[sup][/sup]。其中,石墨电解法已基本实现工业化生产。不同材料的粒度检验方法,根据粒度大小、检验的目的等有很多方法。常见的粒度检验方法有筛分法、沉降法、超声波法、图像法、光散射法等。纳米材料由于粒径为纳米级,一般多用图像法的电子显微镜法和激光动态光散射法的激光粒度分析仪法。纳米碳粉产品有溶胶、粉剂、复配等产品已投放市场。纳米碳粉无论团聚与否,均可用电子显微镜分析纳米碳粉。但电子显微镜本体成本高、运行成本高等原因,会出现无法日常控制系列纳米碳粉产品的质量的情况;由于纳米碳粉在存放期间的团聚效应,用较为经济的、直接复溶的方法样品制备,再用激光粒度分析仪测定粒度指标的中位粒径已不可能。若想用激光粒度分析仪检测粒径,较为简单的办法就是采用样品前处理技术,减弱、破坏已团聚的纳米颗粒的团聚力,使其尽可能恢复到原来的未团聚的状态,实际也就是找出一种复原纳米胶液的一种方法,以此证明所检验的纳米碳粉产品来源于纳米材料,是纳米类产品。1 实验1.1材料及仪器1.1.1 材料1.1.1.1纳米碳粉 [img=,482,486]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101554198802_1138_2345874_3.jpg!w482x486.jpg[/img]图1 团聚纳米碳粉的电子显微镜扫描图[img=,690,436]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101554499432_2417_2345874_3.jpg!w690x436.jpg[/img] 图2 碳纳米粉胶液团聚的激光粒子分析过渡图碳纳米粉胶液在生产储存过程中会有团聚伴生,生产之初纳米颗粒范围小于25纳米,放置10天左右已有部分接近50纳米,再过20天左右可以看到部分团聚颗粒粒度已超过100纳米。此后,会形成一定的稳定期,团聚速度放缓。纳米碳粉则不同,团聚分子较稳定,储存过程中团聚的现象变化不大。1.1.1.2表面活性剂种类 表1 不同类型的六种表面活性剂 [table][tr][td] [align=center]序号[/align] [/td][td] [align=center]名称[/align] [/td][td] [align=center]代号[/align] [/td][td] [align=center]类型[/align] [/td][td] [align=center]形态[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td]十二烷基硫酸钠[/td][td] [align=center]K12[/align] [/td][td]阴离子表面活性剂[/td][td] [align=center]固体[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td]椰油酰胺丙基羟磺基甜菜碱[/td][td] [align=center]CHSB[/align] [/td][td]两性离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td]十二烷基苯磺酸[/td][td] [align=center]AS[/align] [/td][td]阴离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td]a-烯基磺酸钠[/td][td] [align=center]AOS[/align] [/td][td]阴离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td]烷基醇聚氧乙烯醚硫酸钠[/td][td] [align=center]AES[/align] [/td][td]碱性阴离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td]烷基醇聚氧乙烯醚[/td][td] [align=center]AEO-9[/align] [/td][td]非离子表面活性剂[/td][td] [align=center]液体[/align] [/td][/tr][/table]1.1.2 仪器1.1.2.1搅拌机 [img=,690,296]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101555201839_4663_2345874_3.jpg!w690x296.jpg[/img] 打蛋机:转速 500~1000转/分钟;料理机:转速≥20000转/分钟;豆浆机:转速≥10000转/分钟。1.1.2.2马尔文激光粒度分析仪(nano 90S 绿标型型号ZEN1590)1.1.3 其他离心机:转速 ≥10000 转/分钟。(使用时转速为6000 转/分钟);电子称:感量0.01克,最大称量不限;量 筒:1000mL;其他玻璃器皿1套。1.2检验方法1.2.1 样品初溶样品称量(0.1~1克) → 加少量水预溶 → 称量表面活性剂 → 加约300 mL水溶解 →溶解后加水至1000 mL→ 备用样品11.2.2 搅拌互溶备用样品1 → 倒入搅拌池搅拌 → 搅拌中若气泡过多自然消泡 → 继续搅拌10分钟→ 放置自然消泡 → 备用样品2互溶是指样品在机械搅拌的外力作用下,实现水、样品和表面活性剂的互溶。1.2.3 样品制备分析备用样品2→ 离心分离6000/rpm/10分钟 → 取上清液 → 激光粒度分析仪分析2 结果与讨论2.1 达不到激光粒度分析仪测试条件的情况 当粒度大于2000 nm时,激光粒度分析仪不能正常分析。这一情况是0.3 % 样品浓度,不加表面活性剂时的测试情况。2.2 选择表面活性剂的分析结果2.2.1样品浓度相同,不同浓度的表面活性剂的分析结果选择的表面活性剂是十二烷基硫酸钠(K12)。样品浓度0.3%;K12浓度范围:0.1%、0.2%和0.5%。未离心分离,直接取静止10min的上清液,测试结果见图4不同浓度的表面活性剂对测试结果的影响。从图中观察无影响。[img=,690,460]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101556184757_9033_2345874_3.jpg!w690x460.jpg[/img]2.2.2样品浓度不同,表面活性剂浓度相同的分析结果 样品浓度0.1%,0.2%,0.3%,0.5%;表面活性剂浓度0.2%,分析结果见图5 。选择的表面活性剂是十二烷基硫酸钠(K12)浓度为0.2%。样品浓度范围:0.1%、0.2%、0.3%和0.5%。未离心分离,直接取静止10min 的上清液,测试结果见图5不同浓度的表面活性剂对测试结果的影响。从图中观察几乎无影响。[img=,690,481]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101557091515_2005_2345874_3.jpg!w690x481.jpg[/img]2.2.3 不同搅拌机、不同表面活性剂的影响 不同搅拌机见下图6的上面2个图;不同表面活性剂见图6。不同搅拌机发现打蛋机的处理结果较为理想,基本可以判定在纳米范围(图6 最上方的左图)。不同表面活性剂影响不大,从测试结果,使用上看,以及K12是固体,倾向于选择K12较为理想。[img=,583,582]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101558527759_2242_2345874_3.jpg!w583x582.jpg[/img]3 结论 碳纳米粉的粒径检测,简单的办法就是采用样品前处理技术,减弱、破坏已团聚的纳米颗粒的团聚力,使其尽可能恢复到原来的未团聚的状态,以此证明所检验的纳米碳粉产品来源于纳米材料,是纳米类产品。本实验选择6种表面活性剂,消除溶解过程中粒子间的表面张力;用三个不同类型的小型搅拌机,搅拌中高速剪切团聚粒子,其结果:选择表面活性剂K12和一种双向内切式搅拌的搅拌机打蛋机的两个样品前处理条件进行样品处理,可以满足用激光粒度分析仪检测纳米碳粉的中位粒径范围的目的。参考文献(略)

  • MPI-E型电致化学发光检测仪

    技术参数 1.MPI-E型电致化学发光检测仪—多功能化学发光检测仪: * 测量动态范围:大于5个数量级 * 测量精度优于0.05% 2.MPI-A/B型多功能化学发光检测器: * 波长范围:300—650nm * 灵敏度:SP1000A/Lm 3.MPI-E型电致化学发光检测仪—电化学分析仪: * 电位范围:-10V—10V * 电流范围:±250 mA * 参比电极输入阻抗:10E12Ω * 灵敏度:1x10E-12—0.1A 共16个量程 * 输入偏置电流:50pA * 电位增量:1mV * 扫描速率:0.0001—200V/S * 测试方法:循环伏安法(CV),线性扫描伏安法(LSV),计时电流法(CA)计时电量法(CC),控制电位电解库伦法(BE),开路电压—时间曲线(OCPT) 技术文章 此仪器没有任何技术文章 主要特点 应用领域: * 药物、氨基酸、多肽、蛋白质及核酸检测分析 * 蛋白质与药物、核酸相互作用研究。 仪器介绍 电化学发光检测是近几年发展迅速的一种新型检测方法,它将电化学分析与化学发光检测相结合,可用于临床检验分析及医药、病毒、免疫等科学试验。 MPI-E型电致化学发光检测仪系结合电化学分析与化学发光检测于一体的多测试界面、多分析参数、多控制部件系统集成仪器。它可同时对被测样品实现电致化学发光实时检测,并同步显示化学发光信号、电化学分析信号并对其进行详细分析。

  • 粒径和zeta电位检测标准粒子,mRNA纳米脂质颗粒zeta电位检测稀释剂

    刚接触这个检测项目,用的马尔文的仪器,请问大家符合药典规定的粒径和zeta电位检测标准粒子用什么,大家购买的什么品牌的,标准粒径和电位是多少?做mRNA纳米脂质颗粒zeta电位检测大家用什么稀释剂,因为没有测物理常数的仪器,所以用不了较优的产品背景溶液,有什么别的稀释剂可以代替,使检测结果与真实值偏差较小。

  • 纳米软件案例之锂热电池检测设备

    [size=16px][b][font=微软雅黑]项目需求[/font][/b][/size][font=微软雅黑][size=16px]用户希望纳米Namisoft帮他们设计开发一款系统,要求系统软件安装在PC控制装置上,系统通过使用USB、RS232、LAN通讯接口实现对锂电池测试过程中所用到的仪器(内阻测试仪、扫码枪、触摸显示器和电源模块等)进行软件控制,实现对锂电池的测试。可把测试结果与原厂电阻值对比,设置误差范围,超出范围提示被测产品不符合要求,测试结束后可以自动生成测试报告,并同步实时保存测试报告于客户指定保存路径。[/size][/font][font=微软雅黑][size=16px] [/size][/font][size=16px][b][font=微软雅黑]系统特点[/font][/b][/size][font=微软雅黑][size=16px]1、稳定性:软件可持续可靠运行,且能够确保数据的准确性和数据的稳定性。[/size][/font][font=微软雅黑][size=16px]2、易维护性:为保证系统长期稳定的运行,在发生故障时,可以迅速的找到原因,并可以在最短的时间内恢复运行,减少用户损失。[/size][/font][font=微软雅黑][size=16px]3、易用性:系统界面友好,并严格按照易用性原则进行测试。为避免用户重复操作,系统嵌入智能记忆功能,如自动保存和载入默认配置。且相同的信息不会让用户在系统中多处或多次录入,保证入口的唯一性。[/size][/font][font=微软雅黑][size=16px] [/size][/font][size=16px][b][font=微软雅黑]基于硬件[/font][/b][/size][align=center][font=微软雅黑][size=16px] [img=锂电池检测仪系统拓扑图,650,275]http://www.namisoft.com/UserFiles/Article/image/6377172841622820008122069.png[/img][/size][/font][/align][align=center][font=微软雅黑][size=16px]锂电池检测仪系统拓扑图[/size][/font][/align][font=微软雅黑][size=16px][color=#4f81bd]1、工控机[/color][/size][/font][font=微软雅黑][size=16px]用于安装测试系统控制软件。[/size][/font][font=微软雅黑][size=16px][color=#4f81bd]2、扫码枪[/color][/size][/font][font=微软雅黑][size=16px]用于读取条码所包含信息的设备,可分为一维、二维条码扫描器。[/size][/font][font=微软雅黑][size=16px][color=#4f81bd]3、电池内阻测试仪[/color][/size][/font][font=微软雅黑][size=16px]电池内阻测试仪用于测量电池内部阻抗和电池酸化薄膜破损程度的仪器,用于检测锂电池内阻值。[/size][/font][font=微软雅黑][size=16px][color=#4f81bd]4、测试机箱[/color][/size][/font][font=微软雅黑][size=16px]集成了各个测试仪器,一体化机箱便于测试人员对设备的测试和操作,能够更加节省测试时间。[/size][/font][size=16px][b][font=微软雅黑][/font][/b][/size][size=16px][b][font=微软雅黑]软件功能[/font][/b][/size][align=center][font=微软雅黑][size=16px] [img=纳米软件案例之锂热电池检测设备软件流程图,650,1147]http://www.namisoft.com/UserFiles/Article/image/6377171928798160335239755.png[/img][/size][/font][/align][align=center][font=微软雅黑][size=16px]软件流程图[/size][/font][/align][size=16px][b][font=微软雅黑]软件主界面[/font][/b][/size][font=微软雅黑][size=16px]打开软件后,进入软件的主界面,该界面上方显示参数配置的数值、中间部分为当前试验测试部分、下方为测试数据显示表格。下方显示当前锂电池测试的送工数、合格数与不合格数。[/size][/font][font=微软雅黑][size=16px][/size][/font][align=center][font=微软雅黑][size=16px] [img=软件主界面,650,358]http://www.namisoft.com/UserFiles/Article/image/6377171972865629862410416.png[/img][/size][/font][/align][font=微软雅黑][size=16px][/size][/font][size=16px][b][font=微软雅黑]参数设置界面[/font][/b][/size][font=微软雅黑][size=16px]参数设置页面根据需求分为两个部分:标准测试项目所需的参数以及进行连续性测试电池项目时所需参数。[/size][/font][font=微软雅黑][size=16px][/size][/font][align=center][font=微软雅黑][size=16px] [img=参数设置界面,650,439]http://www.namisoft.com/UserFiles/Article/image/6377171975896899264917357.png[/img][/size][/font][/align][font=微软雅黑][size=16px][/size][/font][size=16px][b][font=微软雅黑]测试界面[/font][/b][/size][font=微软雅黑][size=16px]点击“进行测试”按钮,重新返回到测试界面,同时软件对设置的参数进行保存,软件把设置好的参数读取到测试界面的对应位置,测试人员操作扫码器扫描电池二维码,软件自动识别二维码信息,触发内阻测试仪对扫描电池进行测试。[/size][/font][font=微软雅黑][size=16px][/size][/font][align=center][font=微软雅黑][size=16px] [img=测试界面,650,354]http://www.namisoft.com/UserFiles/Article/image/6377171979567235251104117.png[/img][/size][/font][/align][font=微软雅黑][size=16px][/size][/font][size=16px][b][font=微软雅黑]历史查询界面[/font][font=微软雅黑]及数据导出[/font][/b][/size][font=微软雅黑][size=16px]点击“历史查询”按钮,进入历史查询界面,可以通过电池批次、电池编号进行模糊查询,或者通过测试日期进行查询。点击导出按钮可以将查询到的测试数据以 CSV 格式导出到指定路径下。[/size][/font][font=微软雅黑][size=16px][/size][/font][align=center][font=微软雅黑][size=16px] [img=历史查询界面及数据导出,650,359]http://www.namisoft.com/UserFiles/Article/image/6377171982393815848969495.png[/img][/size][/font][/align][font=微软雅黑][size=16px][/size][/font][size=16px][b][font=微软雅黑]项目成果展示[/font][/b][/size][align=center][img=锂热电池检测设备成果展示,433,701]http://www.namisoft.com/UserFiles/Article/image/6377171985400085081317652.png[/img][/align][align=center][size=16px] [/size][img=锂热电池检测设备成果展示,435,748]http://www.namisoft.com/UserFiles/Article/image/6377171990125115326682511.png[/img][/align][font=微软雅黑][size=16px]以上内容由Namisoft分享的锂热电池检测设备的介绍。如您要了解更多,关注公众账号或官网咨询:www.namisoft.com[/size][/font][font=微软雅黑][size=16px] [/size][/font]

  • Winner801光相关纳米粒度仪

    Winner801光相关纳米粒度仪Winner801是我公司最新推出的基于动态光散射原理的纳米粒度仪,也是国内首款采用光子相关光谱(PCS)技术的纳米粒度仪。它采用我公司自主研制的高速数字相关器和专业的高性能光电倍增管作为核心器件,具有快速、高分辨率、重复及准确等特点,是纳米颗粒粒度测定的首选产品。主要性能特点:先进的测试原理:本仪器采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高的特点,从而保证了测试结果的真实性和有效性;是纳米激颗粒粒度测定的首选仪器。高灵敏度与信噪比:本仪器的探测器采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比,从而保证了测试结果的准确度;极高的分辨能力:使用PCS技术测定纳米级颗粒大小,必须能够分辨纳秒级信号起伏。本仪器的核心部件采用微纳公司研制的CR140数字相关器,具有识别8ns的极高分辨能力和极高的信号处理速度,因此可以得到准确的测定结果。超强的运算功能:本仪器采用自行研制的高速数字相关器CR140进行数据采集与实时相关运算,其数据处理速度高达125M,从而实时有效地反映颗粒的动态光散射信息。稳定的光路系统:采用短波长LD泵浦激光光源和光纤技术搭建而成的光路系统,使光子相关谱探测系统不仅体积小,而且具有很强的抗干扰能力,从而保证了测试的稳定性。高精度恒温控制系统:样品测试区域设计有半导体恒温装置,温控精度高达0.1℃,保证测试样品温度恒定,消除因温度的变化导致介质的折射率、粘度的变化以及布朗运动突变等因素,从而保证测试结果的准确度和稳定性。 适用测试对象:各种纳米级、亚微米级固体颗粒与乳液。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制