当前位置: 仪器信息网 > 行业主题 > >

纳米胶体颗粒制备仪

仪器信息网纳米胶体颗粒制备仪专题为您提供2024年最新纳米胶体颗粒制备仪价格报价、厂家品牌的相关信息, 包括纳米胶体颗粒制备仪参数、型号等,不管是国产,还是进口品牌的纳米胶体颗粒制备仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米胶体颗粒制备仪相关的耗材配件、试剂标物,还有纳米胶体颗粒制备仪相关的最新资讯、资料,以及纳米胶体颗粒制备仪相关的解决方案。

纳米胶体颗粒制备仪相关的论坛

  • 分离纳米颗粒的HPLC柱

    Sepax CNT Size Exclusion Phases用于分离碳钠米管和碳纳米纤维 分离纳米管的先驱     质量最优产品概述  利用独特的表面技术, Sepax CNT SEC固定相由特殊涂布的多孔硅胶物质组成。硅胶纯度高,且具有增强的机械稳定性。 Sepax CNT SEC经过革新后,特别对纳米管(如纳米碳管和纳米碳纤维)的分离具有最高的分辨率及最大回收率。 Sepax 独特的表面技术使柱与柱之间具有很好的重现性及稳定性。 Sepax CNT 体积排阻柱固定相颗粒均匀,球形颗粒孔径有 300Å , 500Å , 1,000Å , 和 2,000Å ,孔体积为 1.0 mL/g 。 Sepax CNT SEC 固定相 用特殊技术填充,使其均一稳定,从而具有最高柱效。 Sepax CNT SEC 柱主要用于缓冲溶液和普通有机溶剂(如乙腈、甲醇和四氢呋喃)中纳米管的分离。 应用  根据长度分离碳纳米管  根据长度分离纳米纤维  根据直径分离纳米粒子  分析、半制备、制备型分离 详情请查询:www.sepax-tech.cn

  • 壳聚糖季铵盐基载药纳米颗粒的制备及抗肿瘤活性研究

    【序号】:1【作者】:宓英其【题名】:壳聚糖季铵盐基载药纳米颗粒的制备及抗肿瘤活性研究【期刊】:中国科学院大学(中国科学院烟台海岸带研究所)【年、卷、期、起止页码】:2021【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whFuPQ0yKi4pXSQlJ_W8wBD9JRPlAs_d8B08_Rb1JUznAFb2v97acEb09IrgYlNXMTwfPMLqRO91a&uniplatform=NZKPT

  • 【资料】金纳米颗粒微观结构首次得到揭示

    [B]“这是一项应该被写入教科书的重要发现” [/B]纳米颗粒的广泛应用并不意味着科学家对它们的微观结构了如指掌。美国科学家的一项最新研究,首次揭开了科研中经常用到的一种金纳米颗粒的神秘面纱。相关论文以封面文章的形式发表在10月19日的《科学》杂志上。 由于金的活动性弱且对空气和光线都不敏感,实验室中经常用金纳米颗粒作为示踪剂,比如探测样本中是否存在某种DNA或者蛋白质。为了防止不同金纳米颗粒的原子之间形成化学键,科学家经常在金纳米颗粒表面覆盖一层保护性分子层,最常用的是含硫的分子团。如果改造这些含硫分子团,使其具有特殊的绑定位点或者荧光标记,观察和区分金纳米颗粒将更加容易。 尽管如此,科学家对金纳米颗粒的结构却没有清晰的认识,有认为金纳米颗粒是胶质的,形状杂乱,大小不一,还有认为它们是具有同一尺寸和结构的离散分子。 在最新的研究中,美国斯坦福大学Roger Kornberg领导的小组成功制备出了有单层硫醇保护的金纳米颗粒晶体,并利用X射线结晶学技术,首次对它们的精确结构进行了成像。值得注意的是,制备晶体和确定结构一样,都是突破性的进展。

  • 【转帖】电极用β-Ni(OH)2纳米材料的制备

    电极用β-Ni(OH)2纳米材料的制备概述纳米材料是关于原子团簇和微粉之间的一种新型材料,它是指尺寸介于0.1~100nm范围内的超细颗粒(缉纳米颗粒),包括金石、非金属、有机、无机和生物等多种颗粒材料。随着物质的超细化,其表面电子结构和晶体结构发生变化,产生宏观物体所不具有的特性,如表面效应、小尺寸效应和量子尺寸效应等,因此,纳米材料与常规颗粒材料相比具有一系列优异的电、磁、光、力学和化学等宏观特性,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前,世界各国对纳米材料的研究主要包括制备、微观结构、宏观物性和应用等四个方面。其中超微粉的制备技术是关键。纳米材料的制备途径大致有两种:一是粉碎法,即通过机械作用将粗颗粒物质逐步粉碎而获得纳米颗粒 另一种是造粉法,利用原子、离子或分子通过成核和长大两个阶段合成纳米颗粒。如以物料状态来分,则可归纳为固相法、液相法和[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]法三大类,但随着科技的不断发展以及对不同物理化学特性纳米材料的需求,在上述方法的基础上衍生出许多新的制备技术,如配位沉淀法、微乳法等。90年代以来,纳米科学技术已经应用到电化学领域。纳米态活性物质β-Ni(OH)2.作为添加物掺杂到常规用球形β-Ni(OH)2,可提高填充密度,进而提高放电容量,由此制面的β-Ni(OH)2电极,单电极放电容量大大提高。氢氧化镍正极在粘结式碱性二次电池中的应用十分广泛。US Nanoclrp.Inc公司的科研人员利用湿化学合成方法制备出纳米级Ni(OH)2粉未,具有β-Ni(OH)2的结构,是高度纳米孔隙的纤维和等轴晶粒的混合物,纤维直径2~5nm,长150~50nm,晶粒尺寸约5nm,由其团聚后制成的正极放电容量可提高20%。本实验采用均相沉淀法制成β-Ni(OH)2纳米粉,供后续的电化学实验制备电极,测其正极比容量。制备原理Ni(NO3)2 + 2en =[Ni(en)2](NO3)2[Ni(en)2](NO3)2 + 2NaOH = Ni (OH)2 (s) +2en +2NaNO3 由于乙二胺(en)的加入,与Ni2+形成配合物,降低了溶液中Ni2+的浓度。而不断生成的配合物与滴加的NaOH溶液在搅拌条件下,可制备出纳米级的Ni (OH)2。实验内容1. 准确移取200.00 ml 0.1000 mol/L Ni(NO3)26H2O溶液,水浴加热到50℃,保持恒温。2. 按物质的量比[en]:[Ni2+] = 2:1,准确量取乙二胺2.70ml,加入Ni(NO3)26H2O溶液中,并轻微搅拌。此时液体呈深蓝色,搅拌20分钟。3. 滴加NaOH溶液并控制滴速每分钟100滴左右,与此同时开始增加搅拌力度。反应过程中随时用精密pH试纸测定溶液pH值,当溶液pH值为12.5时,停止滴加NaOH溶液。此时溶液为蓝灰色,继续搅拌1小时。4. 反应完成后,将产物离心分离(1000 rmin-1),沉淀分别用蒸馏水、丙酮洗涤。5. 蒋沉淀物在80℃真空干燥8小时以上,即得所要制备的β-Ni(OH)2纳米粉末。

  • 【求助】关于溶液中纳米颗粒的TEM时影响因素

    【求助】关于溶液中纳米颗粒的TEM时影响因素

    实验中通过沉淀法制备一种纳米氧化物粉末,含有2%的有机物(质量比),形成水溶液,纳米颗粒存在于这种体系中,SEM结果如附件。打算进行TEM,采用常规方法制样(颗粒在实验体系中未取出),发现干燥后有一层膜存在。现在的问题是:打算进行TEM,考察晶型,晶胞参数测量的研究,请问采用什么方法能够得到较清晰的TEM图象和后续晶胞参数测量等工作[img]http://ng1.17img.cn/bbsfiles/images/2007/12/200712241050_74234_1761152_3.jpg[/img]

  • 【原创大赛】【微观看世界】趣味TEM实验之金纳米颗粒构成麻将筒子排列

    【原创大赛】【微观看世界】趣味TEM实验之金纳米颗粒构成麻将筒子排列

    前言纯粹的电镜检测工作是有些枯燥乏味的,所以平时工作时要寻找乐趣,维持兴趣,不放弃提高水平。这次的样品是金纳米颗粒,在测样的过程中,偶然发现有些颗粒的排列似乎有规律,于是萌生了将这些排列都找齐的想法!样品的合成和制备在水相中制备球形金纳米颗粒的方法有很多种,如白磷还原法、抗坏血酸还原法、梓檬酸三钠还原法、硼氧化钠还原法、乙醇超声波还原法、鞣酸-梓檬酸三钠还原法等。通过这些方法的应用能够成功制备出尺寸在几纳米至数百纳米范围内各种尺度、分散性较好的球形金纳米颗粒。制备出生长有金纳米颗粒的水溶液之后,将溶液离心使催化剂等分层,取金纳米颗粒溶液层稀释,滴管取少部分,滴1~2滴在直径3mm的碳膜上。干燥后即可上TEM观察。图片展示http://ng1.17img.cn/bbsfiles/images/2013/11/201311181533_477888_2193245_3.jpg图1 麻将之筒子示意图(来自百度百科)http://ng1.17img.cn/bbsfiles/images/2013/11/201311181534_477890_2193245_3.jpg图2 一筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181534_477891_2193245_3.jpg图3 二筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181536_477893_2193245_3.jpg图4 三筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181537_477894_2193245_3.jpg图5 四筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181539_477895_2193245_3.jpg图6 五筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181540_477896_2193245_3.jpg图7 六筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181540_477897_2193245_3.jpg图8 七筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181541_477898_2193245_3.jpg图9 八筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181541_477899_2193245_3.jpg图10 九筒

  • 紫外光刻胶制备微米级粉末颗粒

    各位老师,同学。文献介绍说金属粉末颗粒分散在photo-resist solution AZ135O中,80℃+5h的加加热条件,然后凝结,光刻胶可以包裹颗粒。用于制备微米级粉末的TEM试样。在网上查了一下,紫外光刻胶,说AZ系列是国外的,所以请问各位,为了实现我的目的,是否有同类型的国产的紫外光刻胶可以代替AZ135O。谢谢

  • 纳米颗粒的粒径问题

    一直在做Au的纳米颗粒方面的东西,有个问题一直比较困扰。我的颗粒理论是0.8-1 nm的,粒径分布比较均匀,但是观察时有这么一个问题:如果简单分散到碳膜上(普通碳膜,非超薄),那么颗粒在1.0 -1.1nm左右,但如果分散到纳米线上,悬空观察,则是0.9 nm左右。后者应该比较可信,因为纳米线有特征晶格条纹做内标。前者应该也可以,是用金标样做过校正的。那么是不是碳膜的厚度影响了纳米颗粒的粒径测量?还是说在分散到纳米线上和分散到碳膜上,颗粒发生了一定的形变?多谢!

  • 【求助】关于纳米颗粒粒度仪

    由于工作的关系,需要了解一下有关测量纳米颗粒的粒度仪,以前在德国新帕泰克有限公司的报告会,其中介绍到他们公司的光子交叉相关光谱法来纳米颗粒的,另外好像电镜也可以,那么除此之外还有别的信息吗?我想知道的更多一些,哪位知道的还请不吝赐教,谢谢!

  • 【求助】纳米颗粒洗涤

    本人做出的是纳米银粉,要过滤,然后把杂志离子等洗涤。现在的问题是:我抽滤时,有一些银粉随水一起过滤出去了,损失了一部分产品,而我又要算银粉的产率。我想请教一下各位做纳米颗粒的大虾,你们在做纳米颗粒时,是怎么洗涤纳米颗粒的呢?又是怎么过滤的?

  • 【转帖】无机纳米粒子复合乳液的研究进展!

    无机纳米粒子复合乳液的研究进展 王玉玲,邓宝祥 (天津工业大学材料科学与化学工程学院,天津300160) 摘要:对纳米SiO2复合乳液的合成制备作了详细的综述,介绍了共混法、插层法、溶胶-凝胶法和原位分散聚合法,概述了纳米SiO2对复合材料性能的影响及其特性和发展。 关键词:纳米粒子 SiO2 聚丙烯酸 复合乳液 0引言 乳液型复合材料具有价廉、安全无污染及使用方便等特点,在胶粘剂、涂料、皮革、纸张、纤维、纺织等领域已得到广泛应用。但是乳胶膜在某些性能上存在缺点,例如,耐候性差、硬度低、胶膜冷脆热粘等,这样其应用性就会受到限制。如果在聚合物乳液中加入无机纳米粒子制成无机纳米粒子复合乳液,利用纳米材料的特性制备性能优异的复合乳液,则在乳液性能上会有很大的提高,使这种复合乳液比单纯的有机乳液具有更好的应用前景。 这种复合乳液属于有机-无机复合材料,它并非是无机相与有机相的简单加合,而是由无机相与有机相在纳米范围内结合而成,在这两相的界面上有着或强或弱的各种物理键和作用(范德华力、氢键等),这种作用赋予材料各种优异的特性。纳米级材料本身具有的特性效应,SiO2表面具有不饱和的残键及不同键合状态的—OH,促使分子呈现出三维结构形态。同时,也是由于这种三维硅石结构,庞大的比表面积和纳米效应,表面严重的配位不足,表现出极强的活性,所以,对色素粒子的吸附力很强,紧紧包裹在色素粒子的表面,形成屏蔽作用,大大降低了因紫外光的照射而造成的色素衰减,这样就能大大提高涂料的附着力与耐候性。 1纳米粒子的分散方法 纳米粒子由于颗粒小,其表面原子比率很高,比表面积大,所以颗粒间往往会通过范德华力、氢键以及一些共价键的作用而互相吸引,形成二次粒径,三次粒径,即团聚体。这种团聚现象就会使纳米粒子失去其独特性,因此合理经济的分散方法十分重要。 1.1物理机械分散法 利用机械搅拌或超声波的方式使纳米粒子均匀分散。 1.2化学试剂添加法 通过加入表面活性剂等化学试剂降低界面之间的张力,添加吸附稳定剂形成界面膜包覆纳米颗粒,即立体保护作用。 2纳米粒子复合乳液的合成方法 有关纳米复合乳液的制备方法,文献报道最多的有:共混法、插层法、溶胶-凝胶法和原位分散聚合法。 2.1共混法 这种方法是先制备出各种形态的纳米粒子,再通过各种方法(例如机械搅拌、超声波等)将其与制备好的乳液直接共混,是制备纳米杂化材料最简单的方法。为防止纳米粒子团聚,需对其表面进行处理。张宝华等通过超声分散仪将纳米SiO2直接与制备好的PUA离聚物乳液共混制得了复合乳液。用激光粒度分布仪检测表明SiO2在复合乳液中呈现纳米尺寸分布,且发现共混法制得的复合乳液能显著改善涂膜的紫外光吸收性能、热学性能及机械性能。曾丽娟等以无机系硅溶胶为主,有机高分子乳液为辅,二者共混改性硅溶胶苯丙复合涂料,所得的涂料具有无机涂料和有机涂料的特性,又弥补了两者的不足,是非常有前途的环保涂料。并在这篇文章中介绍了最佳共混条件的优化选择,以及颜填料、助剂的选用对涂料性能的影响。 2.2插层法 插层复合法是制备聚合物基无机杂化材料的一种重要方法。利用层状无机物(如硅酸盐类粘土、石墨、V2O5、Mn2O3、二硫化物等)作为无机相主体,将单体或聚合物作为客体插入主体的层间,制得插层型杂化材料。用这种方法制备无机纳米粒子复合乳液主要又分为下面3种。 2.2.1嵌入原位聚合方法 先将高分子单体和层状无机物分别溶解到某一种溶剂中,然后单体在外加条件(如氧化剂、光、热、电、引发剂等)下发生原位聚合,利用聚合时放出的热量克服硅酸盐片层间的库伦力而使其剥离,从而使纳米尺度硅酸盐片层与高分子物基体以化学键的方式结合。王一中、李同年分别以此法制备了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)和聚苯乙烯(PS)/蒙脱土(MMT)嵌入混杂材料 LeewookJang和范宏制备了苯乙烯-丙烯腈(SAN)/MMT纳米复合材料 官同华等合成了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)纳米材料,并对其性能进行了表征 金星等采用双-苯基二甲基十八烷基溴化铵(TBDO)作为有机插层剂对钠基蒙脱土进行了有机化处理,该有机化的蒙脱土粒子在苯乙烯单体中很容易地分散并形成稳定的胶体溶液。通过对分散由蒙脱土的苯乙烯进行自由基聚和制备了聚苯乙烯-蒙脱土纳米复合材料,X衍射和透射电镜研究表明形成了原位插层型和部分插层部分剥离型纳米复合材料。且其与纯聚苯乙烯相比,具有更高的相对分子质量,较低的玻璃化转变温度(Tg)和优良的热稳定性。

  • 纳米抗体的优缺点及制备方法详解

    [font=宋体][font=宋体]纳米抗体([/font][font=Calibri]nanobody, Nb[/font][font=宋体])是一种人工设计的抗体分子,又称为单域抗体([/font][font=Calibri]single-domain antibodies, sdAbs[/font][font=宋体])、[/font][font=Calibri]VHH[/font][font=宋体]抗体或[/font][font=Calibri]camelid[/font][font=宋体]抗体,是发现于羊驼、单峰驼等驼科以及鲨鱼、鳐鱼等软骨鱼中的一种天然缺失轻链的重链抗体([/font][font=Calibri]heavy-chain antibodies, HCAbs)[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]纳米抗体分子量仅为传统抗体的[/font][font=Calibri]10%[/font][font=宋体],保留了[/font][font=Calibri]HCAbs[/font][font=宋体]完整的抗原结合能力,特异性强、亲和性好、稳定性高,广泛用于生化机制研究、结构生物学及肿瘤等疾病诊疗。[b]纳米抗体的优缺点具体如下:[/b][/font][/font][b][font=宋体]纳米抗体的优点:[/font][/b][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])在高温和[/font][font=Calibri]pH[/font][font=宋体]下的稳定性;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])[/font][font=Calibri]VHH[/font][font=宋体]可以识别通常不被常规抗体识别的抗原位点;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])它们的小分子片段有助于快速组织渗透和标记应用,包括跨越血脑屏障;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]4[/font][font=宋体])用于大规模生产节约成本的替代品。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体的缺点:[/b][/font][font=宋体][font=宋体]由于纳米抗体的半衰期短,限制其临床应用,因此可将[/font][font=Calibri]VHH[/font][font=宋体]抗体与抗血清白蛋白或抗体的[/font][font=Calibri]Fc[/font][font=宋体]段融合表达以延长其在血液中的半衰期。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体的制备主要分为两个方向:基于蛋白工程的方法和基于化学合成的方法。[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][font=宋体]基于蛋白工程的方法:在[/font][font=Calibri]20[/font][font=宋体]世纪[/font][font=Calibri]80[/font][font=宋体]年代晚期和[/font][font=Calibri]90[/font][font=宋体]年代初期,科学家提出了单链抗体[/font][font=Calibri](scFv)[/font][font=宋体]的概念,并使用噬菌体显示技术实现了单链抗体的制备。随后,研究人员进一步改进了单链抗体的设计和优化,使其具有更好的稳定性和亲和力。这些单链抗体通过基因工程手段制备,可以实现在细菌或哺乳动物细胞中大规模生产。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]基于化学合成的方法:随着化学合成技术的发展,科学家们开始探索利用化学合成方法制备纳米抗体。在[/font][font=Calibri]2003[/font][font=宋体]年,研究人员开发出了一种称为[/font][font=Calibri]DNA[/font][font=宋体]导向的抗体组装的方法,通过[/font][font=Calibri]DNA[/font][font=宋体]纳米结构的设计和组装,实现了纳米级抗体的制备。这种方法利用[/font][font=Calibri]DNA[/font][font=宋体]的互补配对性质将抗体片段组装在一起,形成稳定的纳米抗体结构。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3. [/font][font=宋体]其他制备方法的发展:随着纳米科技和纳米材料的发展,研究人员还尝试了其他制备纳米抗体的方法。例如,利用核酸适配体技术结合纳米材料,实现了纳米级别的适配体抗体复合物。此外,还利用纳米粒子和纳米材料作为载体,将传统抗体修饰在其表面,形成纳米抗体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]总的来说,纳米抗体的制备方式相对来说并不是特别的困难,但是和传统抗体的生产过程一样,它需要注意到的细节问题有很多。值得注意的是,纳米抗体的制备技术依然在飞速发展和创新中,并取得了不错的进展,也让我们制备抗体的时候,有了更多选择。更多详情可以关注义翘神州[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]纳米抗体[/b][/url]页面:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

  • 纳米颗粒追踪表征的工作原理

    [b]纳米颗粒追踪表征的工作原理:分析原理:[/b]纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。

  • 【资料】中美科学家首次制备二十四面体铂纳米晶体

    催化活性是目前商业铂纳米催化剂的4倍科技日报2007年5月10日讯:厦门大学化学化工学院孙世刚和美国佐治亚理工学院王中林等科学家采用新的电化学方法,首次制备出具有高表面能的二十四面体铂纳米晶粒催化剂,显著提高了铂纳米催化剂的活性和稳定性,在能源、催化、材料、化工等领域具有重大意义和应用价值。5月4日出版的美国《科学》杂志以长篇报道刊登了这项最新成果。 二十四面体是一种十分罕见的晶体形状,在自然界中,仅金刚石、萤石和铜矿等极少数矿物能以不完美的二十四面体形式存在。 上述研究发展了一种新的电化学方法,能够控制纳米晶体的表面结构和生长,合成具有高表面能的金属纳米晶体。 中美团队的电催化研究证实,所制备的二十四面体铂纳米晶体对甲酸、乙醇等有机小分子燃料电氧化的催化活性是目前商业铂纳米催化剂的2到4倍,在燃料电池、电催化等领域中具有重大应用价值。 孙世刚和王中林认为该研究的重大意义在于:所发展的表面结构控制生长的电化学方法可以拓展到其他铂族金属,如钯、铑等,也可以运用到制备其他高指数晶面组成的不同形状的金属纳米晶体。这将丰富纳米晶体表面结构控制生长的内涵,深化对金属晶体生长规律的认识,不仅开辟了一条通过控制纳米粒子表面原子排列结构提高催化剂性能的崭新途径,也将模型电催化剂的基础研究推进到实际催化剂设计和研制过程中的一个重大进展。 《科学》杂志的3位评审人认为,这一科研成果不仅指明了一种控制纳米粒子生长使高指数晶面暴露在外的新思路和新方法,而且将导致异相催化中的新发现。

  • 【分享】微结构决定的具有均一米状形貌的新奇银纳米颗粒的高产率合成

    金属纳米颗粒由于其良好的电学、光学、热导、催化以及磁学性质而得到广泛的研究。近年来,金属纳米颗粒奇异的光学性质引起人们极大的兴趣。其中,金银纳米颗粒由于在可见和红外光频区有着很好的表面等离子体共振性质而格外引人注目,在表面增强光谱、生物检测等方面具有巨大的应用前景。通过控制纳米颗粒的形貌可以有效的调制金属纳米颗粒的表面等离子体共振性质。因此,获得不同形貌的金属纳米颗粒是最近兴起的表面等离子体光子学研究领域中重要的研究方向之一。 最近,中国科学院物理研究所/北京凝聚态物理国家实验室徐红星研究员研究组的梁红艳同学和王文忠教授首次用多羟基醇还原法合成了一种外形为纺锤状的银纳米颗粒(Ag Nanorice),并与李建奇研究员研究组的杨槐馨副研究员合作,发现这种银纳米颗粒为六方相和立方相交生形成,内部存在孪晶,堆垛层错,多重调制等多种缺陷结构,并且缺陷密度在银纳米颗粒的不同部位有着明显区别,这种微结构突破了传统银纳米颗粒常规的单晶、孪晶特性,决定了具有均一米状形貌的新奇银纳米颗粒的高产率合成。该项研究的意义不仅在于为有效调制表面等离子体共振特性提供新的纳米结构,还在于这种堆垛结构可能打破晶体生长时晶体结构对形貌的限制,为设计合成所需形貌晶体带来曙光。这将丰富纳米晶体结构控制生长的内涵,深化对金属晶体生长规律的认识,拓展金属纳米结构在光谱分析、超灵敏检测等方向的应用,因而具有十分重要的实际意义。 该工作发表于近期的J. Am. Chem. Soc. 131,6068-6069(2009)上。此项研究获得国家自然科学基金委杰出青年基金,科技部重大项目,中科院知识创新工程和教育部的“985”和“211”等项目的资助。

  • 【求助】如何测定纳米颗粒负载在电极上的量(或厚度)?如何确保纳米颗粒不从电极上脱落?

    我在电化学实验中需要将悬浮在乙醇中的纳米颗粒(5纳米左右)做在FTO导电玻璃电极或铂片电极上测定其电催化性能。但在实验中发现纳米颗粒极其容易从电极上脱落下来,请问有什么方法可以确保纳米颗粒不从电极上脱落(同时不影响其电催化性能的测试)?另外一个问题是将悬浮在乙醇中的纳米颗粒做到电极上时,很难对电极上的纳米颗粒定量,请问如何确定纳米颗粒在电极上的量?文献中多用“等价单层”(ML:monolayer)来定量,请问ML值一般是如何测定的?

  • 义翘神州纳米抗体制备服务详解

    [font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/nanobody][b]纳米抗体[/b][/url]是一种非常有前景的下一代治疗性抗体技术,受到越来越多的研究机构和制药公司的关注。为支持纳米抗体药物的早期发现,义翘神州利用噬菌体抗体库技术自主研发了纳米抗体开发平台,已成功开发了多个纳米抗体候选分子。另外,我们的高通量纳米抗体表达平台,已成功表达和生产了多种纳米抗体形式,包括单价、多价或多特异性[/font][font=Calibri]VHH[/font][font=宋体],满足客户的各种定制需求。[/font][/font][font=宋体] [/font][font=宋体][b]①纳米抗体开发服务[/b][/font][font=宋体][font=宋体]不同于经典的杂交瘤技术制备单克隆抗体,纳米抗体开发的整个流程主要包括羊驼免疫、噬菌体文库构建、抗体筛选、表达纯化及验证等阶段。羊驼免疫后,从羊驼外周血分离[/font][font=Calibri]B[/font][font=宋体]淋巴细胞,提取总[/font][font=Calibri]RNA[/font][font=宋体],反转录为[/font][font=Calibri]cDNA[/font][font=宋体],以[/font][font=Calibri]cDNA[/font][font=宋体]为模板[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]扩增获得多样化的纳米抗体基因片段,然后将其连接到载体上,从而构建噬菌体文库。随后进行多轮淘洗步骤获得抗原特异性纳米抗体,并对其进行测序、表达和验证。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州建立了纳米抗体开发平台,可提供一站式的纳米抗体定制服务,主要包括抗原设计与制备、羊驼免疫、文库构建、淘洗、单克隆鉴定、测序以及活性分析等实验步骤,已成功交付多个纳米抗体开发项目。获得的纳米抗体需要进行进一步的人源化改造,以降低其免疫原性,实现最佳的治疗效果。义翘神州提供的纳米抗体人源化服务,利用[/font][font=Calibri]CDR[/font][font=宋体]置换技术及计算机辅助结构模拟设计可对羊驼纳米抗体进行人源化改造,保证人源化程度 [/font][font=Calibri]95%[/font][font=宋体],成功率[/font][font=Calibri]100%[/font][font=宋体]。我们也提供体外药效评价解决方案,满足纳米抗体成药性评估、生物学活性测定等应用场景。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]②高通量纳米抗体表达服务[/b][/font][font=宋体][font=宋体]义翘神州自主研发的高通量重组抗体表达平台,结合了专业的高通量引物合成和载体构建等,可实现高通量抗体表达。除全长[/font][font=Calibri]IgG[/font][font=宋体]抗体外,义翘神州可表达多价[/font][font=Calibri]VHHs[/font][font=宋体]以及[/font][font=Calibri]VHH-Fc[/font][font=宋体]融合型抗体等多种形式,成功率很高,满足客户不同的个性化需求。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]具体流程如下:获得纳米抗体序列文库之后,通过高通量引物合成和载体构建建立纳米抗体表达文库,转至[/font][font=Calibri]HEK293[/font][font=宋体]细胞进行摇瓶培养,通过[/font][font=Calibri]Protiein A[/font][font=宋体]或[/font][font=Calibri]Ni[/font][font=宋体]亲和层析一步纯化,得到纯度大于[/font][font=Calibri]90%[/font][font=宋体]的纳米抗体,纯化后抗体均通过功能验证再进行放大生产。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]③无细胞系统纳米抗体表达服务[/b][/font][font=宋体][font=宋体]除了利用[/font][font=Calibri]HEK293[/font][font=宋体]细胞表达纳米抗体外,义翘神州还自主研发了[url=https://cn.sinobiological.com/services/cell-free-protein-synthesis-service][b]无细胞表达系统[/b][/url],也可实现纳米抗体高通量表达。该系统以外源[/font][font=Calibri]DNA[/font][font=宋体]或[/font][font=Calibri]mRNA[/font][font=宋体]为模板,通过在细胞抽提物的酶系中添加氨基酸、能量物质等实现纳米抗体的体外合成,将原本需要几天的表达过程缩短至几小时,更加快速、高效。义翘神州可提供优质的[/font][font=Calibri]VHH[/font][font=宋体]及[/font][font=Calibri]scFv[/font][font=宋体]快速表达服务,加速您的研发进程。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]具体服务流程如下:首先合成基因、构建载体[/font][font=Calibri]([/font][font=宋体]可选[/font][font=Calibri])[/font][font=宋体],接着利用无细胞合成系统合成纳米抗体,再经纯化以及可行性分析,得到可交付的高质量抗体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]原文出自:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/nanobody[/font][/font]

  • 44.10 紫杉醇PLGA口服纳米粒的制备及生物利用度的研究

    44.10 紫杉醇PLGA口服纳米粒的制备及生物利用度的研究

    【作者】 吉顺莉;【导师】 戈延茹;金一;【作者基本信息】 江苏大学, 药剂学, 2010, 硕士【摘要】 紫杉醇(Paclitaxel,TAX)是抗肿瘤药物,在临床上已得到广泛应用,特别是对乳腺癌、卵巢癌的治疗作用明显。由于其水溶性差,临床使用的紫杉醇注射液中的紫杉醇是靠聚氧乙烯蓖麻油(CremophorEL)与无水乙醇以1:1的混合液来稳定和溶解。但聚氧乙烯蓖麻油可促进组胺释放,常引起严重的过敏反应和其他不良反应。为了解决上述问题,研究不含Cremophor EL并能提高紫杉醇生物利用度的制剂成为当前的热点。把紫杉醇制备成口服纳米给药系统后,则不仅能减少毒副作用,增加其稳定性,而且方便储存和运输。本文制备了紫杉醇纳米粒(TAX-NPs),优化了其处方和制备工艺,并对其进行了体内外评价。主要内容和结果如下:1.建立了紫杉醇样品HPLC测定方法,并对其线性范围、精密度、回收率等进行了验证,结果表明该方法符合分析要求。以生物可降解聚合物——聚丙交酯乙交酯共聚物(PLGA)为载体,采用乳化-分散法制备了TAX-NPs;以纳米粒的粒径和包封率为评价指标,考察了处方及其工艺因素对制剂质量的影响;对TAX-NPs的基本性质,体外稳定性和释药特征进行了考察;用差示扫描量热法(DSC)及X射线粉末衍射(X... 更多还原http://ng1.17img.cn/bbsfiles/images/2012/08/201208131346_383475_2379123_3.jpg

  • 甲壳素/壳聚糖纳米凝胶基材料的制备及其在生物材料中的应用

    【序号】:6【作者】: 张建伟【题名】:甲壳素/壳聚糖纳米凝胶基材料的制备及其在生物材料中的应用【期刊】:武汉大学【年、卷、期、起止页码】:2019【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2022&filename=1019608273.nh&uniplatform=NZKPT&v=FYnTMcffN8zNReKOZBE-WtweXD7BByD9lEARuC4ugEZC3m7T4UmH2EjjeQPgHVLO

  • 脂质体包覆的COX-2抑制剂纳米颗粒的靶向化疗

    脂质体包覆的COX-2抑制剂纳米颗粒的靶向化疗脂质体确 (liposome) 是一种磷脂和胆固醇组成的双层膜球形囊泡. 脂质体可以用天然的磷脂和磷脂乙醇胺 (phosphatidylethanolamine, 源于鸡蛋) 或纯表面活性剂, 如 DOPE (dioleolylphosphatidylethanolamine) . 脂质体通常含有一个核心的水溶液 (但这并非脂质体定义). 不含有水溶性物质的脂质双膜体被称为胶束(miscell).脂质体 (Liposome) 是由两个希腊词'脂'和 '体' 的意思构成. 脂质体本身并不表明任何大小之特点, 因此不同于纳米体 (nanosome). 1961年英国剑桥大学巴巴拉汉姆学院血液学家Bangham先生首次描述脂质体. Bangham先生与其同事Horne为了测试研究所新到的电子显微镜, 加负染色剂(三氯醋酸,TCA)于干磷脂中, 随后他们观察到一种类脂双层结构, 酷似质膜, 这就是首次显微镜照片展示的细胞膜实质性证据. 由于其独特的性能脂质体可用于药物载体, 这是由于亲水溶解溶质不能轻易通过脂质双膜, 而疏水性化学物质,可以溶解到脂质体膜内, 所以脂质体既可携带疏水性分子, 也可亲水性分子. 脂质体双层可以与其他细胞膜双层融合, 从而传递携带内含物. 用脂质体来投递DNA (lipofection) 比 单独用DNA感染细胞要有效的多. 低(或高) pH脂质体中的水溶解药物都带有电荷 (即pH值是药物的等电点范围以外) . 随着pH值自然抵销 (质子能通过膜), 因药物能自由穿过细胞膜, 中和后的脂质体药物也会自由扩散, . 这一投递是借脂质体双层膜与细胞接触来扩散脂质体药物, 而不是直接的融合. 所以这种脂质体药物的生产与使用受到时间上的限制.另一种脂质体药物投递的方式是借巨吞噬细胞作用. 一定大小范围内的脂质体可被人体中巨噬细胞吞噬. 脂质体药物在脂质体被巨噬细胞的胞溶体溶解后释放出来.加上陪体 的脂质体更易激活这种内吞噬作用.另一脂质体的好处是它的癌细胞靶向能力, 所有健康人的血管内皮都是由内皮细胞所包裹, 严密阻止任何大颗粒从血液中漏出. 但肿瘤血管则不具有相同水平的密封效果,通常小于400nm的脂质体可可迅速从患者的血液进入肿瘤. 抗癌药物如阿霉素(Doxorubicin, Doxil) 和柔红霉素 (Daunorubicin, Daunoxome ) 就是利用脂质体给药系统. 脂质体可用磷脂水经超声波而制成. 低剪切率超声波制成像洋葱多层状脂质体, 如持续用高剪切超声波则倾向于形成较小的单层脂质体 (unilamellar). 超声波法被普遍认为是"毛, 粗"的制备方法, 较新的方法, 如挤出法(extrusion)制成的脂质体药物可供人类使用.当前研究已经能够使脂质体能躲避人体的免疫系统, 成为"隐形脂质体", 即脂质体外挂上惰性聚乙二醇( PEG ), PEG脂质体延长循环中的药物运送. 但是 目前的困难是PEG涂的厚度. 太厚则阻止脂质体与细胞的接合. 为了特异性接合脂质体可挂上单克隆抗体, 或特异性抗原. 这样脂质体药物只送到病变组织.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制