当前位置: 仪器信息网 > 行业主题 > >

纳米图像束曝光系统

仪器信息网纳米图像束曝光系统专题为您提供2024年最新纳米图像束曝光系统价格报价、厂家品牌的相关信息, 包括纳米图像束曝光系统参数、型号等,不管是国产,还是进口品牌的纳米图像束曝光系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米图像束曝光系统相关的耗材配件、试剂标物,还有纳米图像束曝光系统相关的最新资讯、资料,以及纳米图像束曝光系统相关的解决方案。

纳米图像束曝光系统相关的方案

  • 细胞表面增强拉曼散射信号与LA-ICP-MS测得的金纳米粒子聚集的关联研究(英文原文)
    细胞对暴露的纳米颗粒反应在各种环境中都是必不可少的,尤其是在纳米毒性和纳米医学中。这里,14纳米金纳米粒子在3T3成纤维细胞在一系列脉冲追踪实验研究了30分钟孵化脉冲和追逐时间从15分钟到48小时。里面的金纳米粒子及其聚合量化细胞超微结构的激光烧蚀电感耦合等离子体质谱法,可以用于评估表面增强拉曼散射(SERS)信号。通过这种方法,可以分别获得它们在微米尺度上的定位信息和它们的分子纳米环境,并且可以将它们联系起来。因此,纳米颗粒从细胞内摄取、细胞内加工到细胞分裂的路径是可以遵循的。结果表明,细胞内纳米粒子及其积聚和聚集支持高SERS信号的能力与纳米粒子的数量和高局部纳米粒子密度没有直接关系。SERS数据表明,细胞内聚集的几何形状和粒间距离必须在内体成熟过程中发生变化,并对特定的金纳米粒子类型起关键作用,才能成为高效的SERS纳米探针。这一发现得到了TEM图像的支持,它只显示了一小部分具有小颗粒间距的团聚体。经过不同的捕集时间后得到的SERS光谱显示,金纳米粒子内体加工后,其生物分子电晕的组成和/或结构发生了变化。
  • 315 曝光防腐剂超标,纳鸥科技推出了防腐剂检测的整体解决方案
    315晚会上,央视曝光了插旗菜业老坛酸菜”乱象。纳鸥科技密切关注食品安全,针对防腐剂超标乱象,纳鸥科技第一时间快速推出了防腐剂检测的整体解决方案。
  • 纳米力学测试系统在生物材料方面的应用
    NanoTest 纳米力学测试系统的液体池模块能对生物材料、组织、细胞器、细胞层、软骨、静电支架、牙釉质等在液体环境中进行力学性能表征,不仅为生物材料以及组织研究人员和工程师提供完美的解决方案,也是组织工程和再生医学的研究者衡量他们感兴趣材料刚度的良好选择。
  • 纳米颗粒与磁控溅射综合系统在1纳米颗粒膜制备中的应用
    日前,由英国著名的薄膜沉积设备制造商Moorfield Nanotechnology公司生产的套纳米颗粒与磁控溅射综合系统在奥地利的莱奥本矿业大学Christian Mitterer教授课题组安装并交付使用。该设备由MiniLab125型磁控溅射系统与纳米颗粒溅射源共同组成,可以同时满足用户对普通薄膜和纳米颗粒膜制备的需求。
  • 在反应流中产生的纳米颗粒表征
    用LaVision的图像增强器IRO,Imager Intense 相机和染料激光器构成了一套OH PLIF 自由基测量系统。对在反应流中产生的纳米颗粒特性进行了表征。
  • 使用单细胞-ICP-MS 法 定量癌症细胞对金纳米粒子的摄取率
    研究表明,通过采用SC-ICP-MS 方法,能够测定细胞内金属成分、定量分析金属及金属掺杂药物、纳米粒子的细胞摄取率。在本文中,我们证明了,在单个细胞基础上通过PerkinElmer 的NexION® 2000 单细胞ICP-MS 解决方案来量化癌细胞的金纳米粒子摄取量。该技术能够准确定量出含金纳米粒子(AuNP)的细胞数,还能够分析每单个癌细胞中的AuNP 数,给出细胞群的摄取分布。
  • 纳米级尺寸电子束斑测量
    阿米精控科技(山东)有限公司专注于纳米运动控制及超精密机电系统领域的创新设计及产品研发,是一家集研发设计、制造、销售于一体,拥有全自主知识产权的微纳测控及超精密自动化“系统级硬科技”公司。阿米精控纳米运动平台基于微纳柔性机构和压电执行器实现超高分辨力纳米运动,内置光栅/电容微位移传感器,通过高性能纳米伺服系统实现闭环控制,具有亚纳米级运动分辨率、纳米级运动精度和高速、高动态轨迹扫描功能。
  • 微纳米气泡的直观表征方法
    微纳米气泡因其自身体积小、比表面积大、自身增压溶解等特点,具有广泛的应用价值。但微纳米气泡受气泡发生条件的影响很大,需要依靠准确的检测方法去优化气泡发生条件,检测微纳米气泡的性质。本文借助动态图像法和纳米颗粒跟踪分析技术,分别检测了微米气泡和纳米气泡:通过动态图像法,测得微米气泡的粒径分布、气泡数量、球形度等信息,用于表征、鉴别微米气泡;通过纳米颗粒跟踪分析技术,测得纳米气泡的粒径分布、浓度、电位等信息,用于全面表征纳米气泡的性质。
  • 多功能磁性SERS纳米粒子的生物分子环境、定量和细胞内相互作用研究(英文原文)
    将氧化铁纳米粒子与银纳米粒子、金纳米粒子、银磁铁矿和金磁铁矿分别通过内吞作用引入到成纤维细胞中,形成多功能复合纳米粒子。含有无毒纳米粒子的细胞在外部磁场中是可置换的,可以在微流控通道中进行操作。在表面增强拉曼散射(SERS)映射、激光消融电感耦合等离子体质谱(LA-ICP-MS)微研磨和低温软x射线断层扫描(cryo soft- xrt)的基础上,得到了内体系统中复合纳米结构的分布。完整的玻璃化细胞冷冻软x光检查显示复合纳米粒子包裹体形成内聚体。纳米粒子提供了内质网环境中表面生物分子组成的SERS信号。SERS数据表明,纳米粒子在内质粒和溶酶体的恶劣环境中具有较高的稳定性和等离子体性质。该光谱指向银磁铁矿和金磁铁矿纳米结构表面的分子组成,与其他复合结构非常相似,但不同于研究细胞内纯银和金SERS纳米组成所得到的结构。由LA-ICP-MS数据可知,磁铁矿复合材料的吸附效率大约是纯金、银纳米颗粒的2 - 3倍。
  • 纳米力学测试系统在新能源领域的应用
    是德科技纳米压痕仪的特点和优势–– 广受赞誉的快速测试选项可以和所有G200型纳米压痕仪配合使用,包括DCMII和XP模块以及样品台–– 快速进行面积函数和框架刚度校对–– 精确和可重复的结果,完全符合ISO 14577标准–– 通过电磁驱动,可在无与伦比的范围内连续调整加载力和位移–– 结构优化,适合传统测试或全新应用–– 模块化设计,可以进行适合划痕测试,高温测试和动态测试–– 强大的软件功能,包括对试验进行实时控制,简化了特殊测试方法的开发––全自动的热漂移效应实时扣除功能
  • 纳米力学测试系统在生命科学领域的应用
    是德科技UTM T150 纳米力学测试系统适用于对多种材料的微纳米力学特性进行表征。T150系统对样品进行精确加载,在设计范围内对样品的静态和动态微拉伸和压缩性能进行精确测试与分析。T150系统支持行业内最大的动态载荷范围(500mN),和市场上最高的测试精度(储存模量和损耗模量的测试范围横跨5个数量级),通过对各点进行精确测量,可对多种材料的动态性能进行分析。此外,T150系统也广泛用于对生物材料的拉伸/压缩性能进行测试。
  • 锐拓溶出系统应用研究案例——纳米注射剂的体外释放度研究
    纳米注射剂可显著改善药物不良的理化性质和药代动力学特征,提高药物稳定性,增加药物在靶组织的有效积累和靶向释放,是近年来药物研发的热点。纳米注射剂的类型主要有:脂质体、纳米胶束、纳米混悬剂、纳米乳等。目前,共有29种纳米注射剂经美国 FDA或欧洲药品管理局批准用于癌症、贫血、真菌感染、黄斑变性等疾病的治疗和诊断。根据《化学药品注射剂(特殊注射剂)仿制药质量和疗效一致性评价技术要求》,体外释放度是一项关键质量属性。纳米注射剂的体外释放试验通常从透析膜法、流池法、Franz 扩散池法、样品分离法、连续流动法等体外释放测试方法中选择合适的方法进行研究。本文将分享某种纳米注射剂的体外释放度研究结果,希望能跟您带来启发和帮助。
  • 单粒子-ICPMS分析血中金和银纳米粒子
    纳米技术及其潜在应用在临床研究中的快速发展,引起了纳米粒子(NPs)对人类健康方面负面影响的顾虑。小尺寸的纳米粒子由于其单位体积里具有更大的表面积而意味着具有增强的反应性。在这种属性可以加强预期效果的同时,也有引入新的、未知的有害的影响的可能性。两种金属纳米粒子--金和银粒子,金粒子由于其具有高化学稳定性、易于控制颗粒大小和实现表面功能化被广泛应用于研究,银粒子具有抗菌效果经常被用于伤口灭菌、医学部件和假体涂层,以及商品化的纺织品、化妆品和日用商品2。由此,越来越多的银纳米粒子将经过绷带或医疗部件被引入开放性创口,直至迁移进入血液循环系统。近期的论文已经开始考虑纳米粒子被暴露性接触的器官直接吸收,并经由血液系统至第二级器官,例如中枢神经系统,可能影响到胚胎神经前驱细胞的生长特性3。因此,科研人员需要检测和测量血中纳米粒子的分析方法。本文研究了单粒子ICP-MS(SP-ICP-MS)测定血中金和银纳米粒子的分析能力。
  • 用STORM成像揭示细胞间隧道纳米管(TNTs)的结构和组织
    隧道纳米管(TNTs)是一种纳米级的、富含肌动蛋白的、用于细胞间通讯的瞬时细胞间管。结构的复杂性和空间组织所涉及的组成部分的TNTs仍然未知。在本次研究中,STORM超分辨率成像技术被运用到结构组织的微丝和微管在细胞间的TNT在纳米尺度上。作者的研究结果揭示了不同的分布的微丝和交织结构的微管在TNT,促进TNT通信。
  • 高分辨纳米粒度仪助力脂质纳米粒(LNP)精准粒度检测
    脂质纳米粒(Lipid Nanoparticles)作为一种高效、安全的药物递送体系,已经被各大企业及科研院所广泛研究,成为近年来发展最为迅速的制剂剂型之一,由于其制备过程需要进行特殊的工艺化定制,故而脂质纳米粒类制剂也被称为“高端复杂注射剂”。脂质纳米粒的制备过程中,其粒径控制是脂质纳米粒制备过程中的基础,因为粒径的大小和分布情况对药品后续的稳定性、包封率都具有非常重要的影响。
  • 利用单细胞ICP-MS 监测淡水藻类对金纳米颗粒和金离子的摄入行为
    对于人类健康和环境安全来说,监测单细胞对于金属离子和纳米颗粒(NPs)的摄入都是非常重要的。目前,利用ICP-MS 对于细胞内金属含量的常规测定方法为:通过离心或过滤将细胞从其天然培养介质中分离出来,再用新鲜介质进行清洗,然后用酸消解后上机检测。采用这种方法可以得到一定数量细胞中金属的总量,而无法获得单个细胞的相关数据,单个细胞内金属的含量只能通过假定所有细胞内含有的金属颗粒或离子浓度相同,通过计算获得。而通过透射电子显微镜(TEM)、扫描电子显微镜(SEM) 或荧光示踪法的辅助表征,证明利用这种方法获得的单细胞数据并不准确。如果利用上述显微方法对细胞摄入纳米颗粒进行表征,又存在耗时长、人为误差大的缺点。而且,TEM 和SEM 法只能定性,也容易由于纳米颗粒标示物化学性质不稳定而导致假阳性结果。相比于这些常规方法,全新的基于单颗粒ICP-MS(SP-ICP-MS)的单细胞ICP-MS(SC-ICP-MS)具有可以精确地对单个细胞中金属离子或纳米颗粒进行定量的优势,一次性检测的细胞数量也大于显微镜方法。与SP-ICP-MS类似,SC-ICP-MS 是基于利用等离子体将单个细胞完全离子化后对离子含量进行测定来获得结果的。SC-ICP-MS 的优势在于可以在更短的时间内分析更多的细胞数量;具有快速的数据采集速率,低于100μ s 的驻留时间保证数据具有更高的精密度。NexION ICP-MS 独特的单细胞检测能力可用于研究细胞内部在其自然环境中固有的金属含量和对于金属的摄入行为,从而对生物曝露风险进行研究和评估。本文介绍了利用SC-ICP-MS 技术监测单个淡水藻类(Cyptomonas ovata)对金离子和纳米颗粒的摄入行为。
  • 使用Nicomp?系统的金纳米颗粒
    金纳米颗粒的大小是一个关键的物理参数4,需要仔细测量。颗粒大小影响吸光度波长(尺寸增大=波长更长)、表面等离子体共振(SPR)峰值、细胞内摄取、血液半衰期和生物分布特征(尺寸减小=血液半衰期增加)等特性。颗粒的大小和分布宽窄可以作为悬浮稳定性的指标。表面电荷(zeta电位)测量也被用作悬浮稳定性的指示。
  • 激光剥蚀ICP-MS定量成像单个真核细胞中的金、银纳米颗粒(英文原文)
    利用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)对不同实验条件下培养成纤维细胞中金、银纳米颗粒分布进行空间分辨生物成像。通过优化扫描速度、剥蚀频率和激光能量,获得了较高的空间分辨率。纳米颗粒相对于细胞的子结构是可见的,并且随着孵育时间的增加,纳米颗粒会在核周区域聚集。在矩阵匹配标定的基础上,提出了一种在单细胞水平上定量测定金属纳米颗粒数量的方法。这些结果提供了纳米颗粒/细胞相互作用的见解,并对组织诊断和治疗中分析方法的发展具有启示意义。
  • 化合物半导体核壳结构纳米金属线的低加速电压SEM/STEM观察/EDX分析
    半导体纳米金属线,因其物理特性可控,所以未来有望应用于光学器件上。尤其是异相聚合机构或者核壳结构的材料,富有多重物理特性,应用范围也会变得更广泛。图1是化合物半导体核壳结构纳米金属线的SE/STEM观察结果。图1(a)是二次电子图像显示了纳米金属线的表面形貌。图1(b)(c)的BF-STEM/DF-STEM图像,可以清楚观察到纳米金属先端的内部构造,可以确认核,内壳层和外壳层的三层结构。图2是化合物半导体核壳结构纳米金属线的EDX面分布。核壳层和外壳层检测到Ga和As,内壳层检测到Al和As,能够清楚地分离出三层的结构的各种成分分布。SU9000与大立体检测角的X-MaxN 100TLE相结合,可实现超高空间分辨率的EDX面分布。
  • 超细纳米颗粒粒度检测面临的挑战及解决方案之一 ——纳米颗粒检测技术概述
    纳米材料是指在三维空间中至少有一维处于纳米尺寸(1-100 nm)或由它们作为基本单元构成的材料。由于它的尺寸很小,会产生很多特殊的效应,比如小尺寸效应、隧道效应以及大的比表面积效应等,因此使得纳米材料表现出不同的物理化学特性,例如熔点、磁性、光学、导热、导电特性等等,因而现在纳米材料被广泛应用于医药、化工、冶金、电子、机械、轻工、建筑及环保等行业。但由于其颗粒非常小,因此颗粒大小的检测也就成为了挑战,国际上对于超细颗粒的粒度测试一般有三种方法,即电子显微镜、动态光散射以及激光衍射。
  • 使用高效进样系统进行单纳米颗粒样品检测
    近些年来,纳米颗粒材料被越来越广泛的应用于衣食住行等各领域内,由此带来的潜在的纳米颗粒污染问题,逐渐引起了人们的重视。单颗粒电感耦合等离子体质谱(spICP-MS)技术是近年来发展起来的可用于进行纳米颗粒表征的方法。使用此方法,可实现一次进样同时完成颗粒粒径、数量浓度、元素含量及粒径分布的分析。
  • 采用升级Olympus共焦显微镜升级实现单分子跟踪和三维纳米成像
    耦合ISS的SMT系统到奥林巴斯共焦显微镜,激光扫描成像基于反馈算法,在扫描期间,根据要成像的物体的形状,连续地调整和确定激光束跟随的路径。该算法将激光光斑移动到离物体表面一定距离的位置,由于激光光斑的位置和离物体表面的距离是已知的参数,所以利用这些参数来重建物体的形状。三维细胞结构可以在几秒钟内分辨率达到20-40纳米,精度为2纳米。
  • 脂质覆盖疏水纳米粒子通过磷脂双层自发迁移的直接证明
    采用LaVision公司的PIV系统,配置使用Imager Pro X 型CCD相机,测量脂质覆盖疏水纳米粒子通过磷脂双层自发迁移的速度矢量场
  • 日立纳米尺度3D光学干涉测量系统 ----多层膜无损测量分析
    对于材料和加工工业中广泛使用的纸制品、树脂产品、金属镀膜等,表面形貌和表面粗糙度测量在防止故障或质量控制中起重要作用。尤其,当多层薄膜出现不良产品时,需要确定是表面,界面或是层内哪个部位出现了问题。在大多数情况下,是进行切割以确定异常部位。但是,某些样品是不能进行切割的,无损检测就变得极为重要。纳米尺度3D光学干涉测量系统VS1800,可同时满足上述高精度的表面形貌测量及对多层膜的无损测量,在材料和加工工业中实现了广泛的应用。
  • 使用ICP-MS对纳米颗粒进行表征:食品中纳米颗粒的优势和挑战
    由于工程纳米颗粒 (EN) 在各行业中的使用不断增加以及对环境和消费者风险开展的后续研究也在不断增加,对纳米颗粒 (NP) 表征的需求在近年呈现爆炸式增长的趋势。
  • 使用全基体进样系统和单颗粒ICP-MS 快速测定海水中纳米颗粒
    单颗粒ICP-MS(SP-ICP-MS)已成为分析各种环境样品中纳米颗粒(NPs)的重要工具。该方法能够在单次分析中快速、准确地分析粒径、颗粒浓度和溶解离子浓度,从而成为跟踪纳米颗粒在自然系统中的行为(溶解和聚合)的首选技术。然而,纳米颗粒在环境样品中的溶解和聚合取决于基体,且样品基体组成和浓度对其具有极大影响。使用NexION? ICP-MS的全基体进样系统(AMS)进行分析,可以提供在线地利用气体对雾室中气溶胶进行稀释的功能,从而避免人为稀释样品。
  • 电泳沉积制备临床应用电极纳米涂层的机械稳定性
    涂层的机械稳定性对于医疗批准和临床应用至关重要。在这里,电泳沉积(EPD)是一种多用途的涂层技术,先前已显示其可显著降低脑刺激铂电极的术后阻抗。然而,前人很少系统地研究所得涂层的机械稳定性。在这项工作中,对Pt基底上由激光生成的铂纳米颗粒(PtNP)的脉冲直流电泳沉积,进行3D神经电极检测,并使用琼脂糖凝胶、胶带和基于超声的应力测试检查体外机械稳定性。EPD生成的涂层在琼脂糖凝胶测试以及体内刺激实验代表模拟大脑环境中高度的稳定。通过循环伏安法,对NP改性表面的电化学稳定性测试,多次扫描可以提高涂层稳定性,这可以通过高侵入性胶带应力测试后更高的信号稳定性来证明。通过激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)分析大鼠神经刺激后的脑切片。测量显示,与未涂覆的对照相比,涂覆电极刺激区域附近的Pt水平更高。尽管植入电极附近的局部浓度升高,但发现的总铂质量低于系统毒理学相关浓度。大鼠脑内4周DBS后Pt的生物分布:a)用无涂层和PDC涂层电极刺激的脑切片的光学显微镜和LA-ICP-MS叠加图像;和b)注射Pt-NPs的脑切片的光学显微镜和LA-ICP-MS叠加图像。比例尺为2mm。在叠加图片中,红色信号表示磷的强度,绿色信号表示铂的浓度。
  • 定量评价纳米颗粒的溶解动力学--利用单粒子质谱进行纳米银的研究
    通过准确获取应用于工程新型材料纳米颗粒的环境行为和颗粒大小、溶解率、颗粒团聚以及与样品基体的相互作用的准确数据来对这些新材料可能对环境健康造成危险的情况进行适当的描述。单粒子质谱技术的突破给自然生态系统对ppb级(ng/L)浓度纳米颗粒对环境影响的研究带来非常大的便利。本文使用syngistix™ 纳米应用模块颗粒测量/检测和自动数据处理,传输效率的测定(即颗粒的检测,在溶液百分比)是关键使用校准时确定ENP规模的基础上溶解标准。为了避免重合(即两个粒子在相同的脉冲被检测到),调整粒子浓度,使得在60s的检测时间内不多于1500个粒子被采集。溶解电势不同可能是区分粒子溶解过程和离子溶解过程的一个关键因素。这项研究在表明在各种各样交宽泛的条件下可以通过SP-ICP-MS定量计算Ag粒子的溶解率是可行的。而该方法在只有有限的方法可直接应用于水样的分析,特别是还要考虑ENP预期的溶解情况下显得尤为重要
  • 锐拓溶出系统应用案例——桨法、流池法纳米晶片剂的体外释放度测试
    在纳米晶片剂中,原料药一般会被纳米化成为粒径小于1μ m的药物颗粒。通过将原料药进行纳米化,可以达到增加溶解度和溶出度、增大对生物膜的黏附性、降低食物干扰等目的。例如,西罗莫司(Sirolimus)是一种新型高效的第三代免疫抑制剂,是目前为止发现的低毒性有巨大应用潜力的免疫抑制剂。但西罗莫司水溶性差、溶出度低,导致其难以被人体吸收、生物利用度不佳。而将其进行纳米化处理后,则能有效改善其溶解度低和药物生物利用度低等问题。而相对地,由于原料药会被纳米化成为粒径小于1μ m的颗粒,某些纳米晶片剂在传统溶出方法下会表现出很快的释放速度。而受到传统溶出方法的限制,其获得的体外释放度测试数据可能并不理想。本文将分享使用桨法和流池法对某纳米晶片剂进行体外释放度测试的案例,对比传统溶出方法(桨法)与更现代的溶出方法(流池法)在测定纳米晶片剂方面的差异。
  • 德国应用化学收录文章:在全PH值范围内的纳米结构化碳膜的超疏水性
    德国应用化学收录文章:在全PH值范围内的纳米结构化碳膜的超疏水性
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制