当前位置: 仪器信息网 > 行业主题 > >

纳米图像束曝光系统

仪器信息网纳米图像束曝光系统专题为您提供2024年最新纳米图像束曝光系统价格报价、厂家品牌的相关信息, 包括纳米图像束曝光系统参数、型号等,不管是国产,还是进口品牌的纳米图像束曝光系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米图像束曝光系统相关的耗材配件、试剂标物,还有纳米图像束曝光系统相关的最新资讯、资料,以及纳米图像束曝光系统相关的解决方案。

纳米图像束曝光系统相关的论坛

  • 【分享】科学家扫描出的纳米级图像简直就是艺术品

    【分享】科学家扫描出的纳米级图像简直就是艺术品

    1、在不久前的国际探针显微镜图像竞赛上,科学家向公众展示了一组最佳的隧道扫描显微镜图像。这些纳米级图像是科学家制作的艺术品。1、量子森林 由德国实验室的这一图像显示了一片GeSi量子点“森林”,其实,它们只有15纳米高,直径也只有70纳米。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802201437_79288_1638240_3.jpg[/img] 2、蓝宝石 此蓝宝石是通过飞秒级激光脉冲击打其表面而受热的,在此过程中,蓝宝石喷射出原子而留下一个浅浅的弹坑。此晶体经再加热和再次喷射,形成了这里所展示的内部深层结构。1飞秒是千万亿分之一秒。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802201437_79289_1638240_3.jpg[/img] 3、大肠杆菌 此大肠杆菌展示了其保存完好的仅仅30纳米长的鞭毛。科学家是用原子力显微镜来拍摄到此图像的。原子力显微镜与扫描隧道显微镜最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力作用来呈现样品的表面特性。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802201438_79290_1638240_3.jpg[/img]

  • 美首次获得纳米粒子内单原子三维图像

    科技日报 2012年03月24日 星期六 本报讯 据美国物理学家组织网3月21日报道,美国科学家在3月22日出版的《自然》杂志上表示,他们发明了一种直接测量纳米材料原子结构的新方法,让他们首次得以看见纳米粒子内部的情况,并获得其单个原子及原子排列的三维图像。最新研究有望大大改进医学和生物学等领域广泛使用的X射线断层照相术获得图像的清晰度和质量。 加州大学洛杉矶分校物理学和天文学教授兼加州纳米系统研究所研究员苗建伟(音译)领导的团队使用一个扫描透射电子显微镜,在一个直径仅为10纳米的微小金粒子上方扫射了一束狭窄的高能电子。这个金纳米粒子由成千上万个金原子组成,每个金原子的大小仅为人头发丝宽度的百万分之一,它们与通过其上的电子相互作用,产生的阴影包含有金纳米粒子内部结构的信息,这些阴影被投射到扫描镜下方的一个探测器上。 研究小组从69个不同的角度进行测量,将每个阴影产生的数据聚集在一起,形成了一个纳米粒子内部的三维结构图。使用这种名为电子断层摄影术的方法,他们能直接看到单个原子的情况以及单个原子在特定的金纳米粒子内的位置。 目前,X射线晶体照相术是让分子结构内的原子三维可视化的主要方法。然而,这一方法需要测量很多几乎完全一样的样本,然后再将得到的结果平均。苗建伟说:“一般平均需要扫描数万亿个分子,这会导致很多信息丢失。而且,自然界中的大部分物质都是结构不如晶体结构那么有序的非晶体。”他表示:“现有技术主要针对晶体结构,目前还没有直接观察非晶体结构内部原子的三维情况的技术。探索非晶体材料的内部情况非常重要,因为结构上一点小小的变化都会大大改变材料的电学属性。例如,半导体内部隐藏的瑕疵会影响其性能,而新方法会让这些瑕疵无所遁形。” 苗建伟和他的同事已经证明,他们能为一个并非完美的晶体结构(比如金纳米粒子)摄像,晶体可小至0.24纳米,一个金原子的平均大小为0.28纳米。实验中的金纳米粒子由几个不同的晶粒组成,每个晶粒形成一块拼图,其中的原子采用些许不同的模式排列。纳米结构具有隐藏的晶体断片和边界,同由单一晶体结构组成的物质不同,新方法首次在三维层面实现了纳米粒子的内部可视化。 (刘霞)

  • 纳米医学畅想

    纳米医学畅想 纳米医学的研究内容十分广泛,最引人注目的是扫描隧道显微镜(STM)。这一非凡的仪器于80年代初研制成功,可以在纳米尺度上获取生命信息,研究者相继得到了左旋DNA、双螺旋DNA的碱基对、平行双螺旋DNA的STM图像。我国科学家利用STM成功的拍摄到表现DNA复制过程中一瞬间的照片。目前,研究已涉及到氨基酸、人工合成多肽、结构蛋白和功能蛋白等领域。 纳米使单位体积物质储存和处理信息的能力提高百万倍以上,人类有可能将存储了全部知识的纳米计算机安放在人脑中,或许有一天,图书馆就在我们的头脑内,每一个人都可能成为爱因斯坦、牛顿,老年性痴呆、记忆丧失等病症将会得到彻底治愈。纳米计算机可能用来读出人脑内的内容及品性,将一个脑内的信息转录到另一个脑内,这个脑可以是人脑,也可以是电脑。纳米医学也有可能改变人类自身,让人类成为能在天上飞、水中游,能进行光合作用或能在恶劣环境下生存的“超人”。将来,掌握纳米医学技术的医生,不仅能够“修理人”——治病,而且能够“改造人”——使其具有特殊功能。虽然这些设想有些离奇,但决非是毫无科学根据的幻想。即将进入临床应用的有:利用纳米传感器获取各种生化信息和电化学信息。已经取得重大成果的还有DNA纳米技术,主要应用于分子的组装。 已经在医药领域得到成功的应用。人们已经能够直接利用原子、分子制备出包含几十个到几百万个原子的单个粒径为1-100纳米的微粒。最引人注目的是作为药物载体,或制作人体生物医学材料,如人工肾脏、人工关节等。在纳米铁微粒表面覆一层聚合物后,可以固定蛋白质或酶,以控制生物反应。由于纳米微粒比血红细胞还小许多,可以在血液中自由运行,因而可以在疾病的诊断和治疗中发挥独特作用。 当把二氧化肽做到粒径为几十纳米时,在它的表面会产生一种叫自由基的离子,能破坏细菌细胞中的蛋白质,从而把细菌杀死。例如用二氧化肽处理过的毛巾,只要有可见光照射,上面的细菌就会被纳米二氧化肽释放出的自由基离子杀死,具有抗菌除臭功能。 将药物粉末或溶液包埋在直径为纳米级的微粒中,将会大大提高疗效、减少副作用。纳米粒可跨越血脑屏障,实现脑位靶向。另外,纳米粒脉管给药,可降低肝内蓄积,从而有利于导向治疗。纳米粒中加入磁性物质,通过外加磁场对其导向定位,对于浅表部位病灶治疗具有一定的可行性。在影像学诊断中,纳米氧化铁在病灶与正常组织的磁共振图像上,会有较大的对比度。 纳米粒用作药物载体具有下述显著优点:(1)可到达网状内皮系统分布集中的肝、脾、肺、骨髓、淋巴等靶部位;(2)具有不同的释药速度。(3)提高口服吸收药物的生物利用度。(4)提高药物在胃肠道中的稳定性。(5)有利于透皮吸收及细胞内药效发挥。如:载有抗肿瘤药物阿霉素的纳米粒,可使药效比阿霉素水针剂增加10倍。目前已在临床应用的有免疫纳米粒、磁性纳米粒、磷脂纳米粒以及光敏纳米粒等。 医用纳米机械或纳米微型机器人可潜入人体的血管和器官,进行检查和治疗,使原来需要进行大型切开的手术成为微型切开或非手术方式,并使手术局部化。纳米医用机器甚至可以进入毛细血管以及器官的细胞内,进行治疗和处理。这类机器可以将对人体的伤害减小到最低程度。含有纳米计算机的、可人机对话的、有自身复杂能力的纳米机器人一旦制成,能在一秒钟内完成数十亿个操作动作。如果数量足够多,就可以在几秒或几分钟内完成现今需几天或几个月甚至几年、几十年才能完成的工作。 和细胞一样,作业中坏了的微型机械可以随时被更换或修理。微型机械发展的顶峰,或许是可以自己增殖繁衍的纳米机器人。别以为以上设想不可思议。纳米科学家们相信这种愿望能够实现。 不难想象,倘若人类能直接利用原子、分子进行生产活动,这将是一个“质”的飞跃,将改变人类的生产方式和空前地提高生产能力,并有可能从根本上解决人类面临的诸多困难和危机,开创医学新纪元。

  • 单细胞“纳米生物间谍”技术能进入活细胞取样

    原标题 “纳米生物间谍”技术能进入活细胞取样 可用于深入揭示线粒体基因组变异的重要性 科技日报讯 据物理学家组织网近日报道,美国加利福尼亚大学圣克鲁兹分校(UCSC)研究人员开发出一种机器人式的“纳米生物间谍”系统,能从单个活细胞内提取出微量样本,进行RNA或DNA测序,而不会杀死细胞。研究人员表示,这种单细胞“纳米生物间谍”技术是一种了解活细胞内部动态过程的有力工具。相关论文发表在最近出版的美国化学协会《纳米》杂志上。 “我们能从活细胞中拿走一个‘生物间谍’,再把它送回该细胞,在几天内这样重复多次而不会杀死细胞。如果用其他技术,你不得不牺牲这个细胞才能分析它。”该生物传感与生物电技术小组负责人、UCSC巴斯金工程学院生物分子工程教授内德·波曼德说。 “纳米生物间谍”平台是研究小组用纳米吸液管开发的最新设备。纳米吸液管是一种小玻璃管,取液端越来越细,至尖端直径仅50到100纳米。波曼德说:“我能在实验室造出纳米吸液管,这不需要昂贵的纳米制造设备。但要进入一个细胞,问题是即使在高倍显微镜下,你也看不见吸液管尖端,不知道它偏离了细胞有多远。” 实验室博士后研究员亚当·赛格尔解决了这一问题。他基于在一台改造过的扫描离子电导显微镜(SICM),开发出一种反馈控制系统。该系统能利用通过纳米吸液管尖端的离子流作为反馈信号,在尖端接近细胞表面时探测其中的液滴。在尖端进入细胞之前,一种自动控制系统能定位它在细胞上面的位置,然后尖端很快插入穿透细胞膜,通过操控电压有控制地提取一小点细胞内物质。由于吸液管尖端极精细,对细胞造成的损害极微小。 研究小组用这种系统从活细胞中提取的微量细胞物质,估计只有50毫微微升(千万亿分之一升),约一个人体细胞百分之一的量。他们从单个人体癌细胞中提取物质并进行RNA测序,还从人类成纤维细胞中提取了线粒体并对其进行了DNA测序。“人们已经知道,线粒体和多种神经退化疾病有关。该技术可用于深入揭示线粒体基因组变异的重要性。”波曼德说。 该技术应用前景广阔。波曼德希望能与其他研究人员合作,探索其更多用途。“对于癌症生物学家、干细胞生物学家等想要了解细胞内部情况的科学家来说,这是一种多功能的平台。”(常丽君)来源:中国科技网-科技日报 2014年01月20日

  • 【分享】艺术科学大奖的精彩纳米图片:从爆炸到色子

    【分享】艺术科学大奖的精彩纳米图片:从爆炸到色子

    纳米爆炸 纳米爆炸在07-08年的科学与艺术大赛当中获得了第一名,该图是在电子显微镜下拍摄到的,CoFeB电子磁性列阵溢出时的画面。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802201408_79280_1638240_3.jpg[/img]竹型振动控制 这是从Ni-Mn-Ga溶化物中提取的纤维结构,我们看到这个东西就好似竹子。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802201409_79281_1638240_3.jpg[/img] 自己组装的200微米大小镍色子,图像使用电子显微技术,图中色子的颜色是用Photoshop后期制作上去的。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802201409_79282_1638240_3.jpg[/img]

  • 【原创】我的电镜生活--透射电镜之纳米粉体观察

    由于没有购买制样设备,而且本系的样品大致都是纳米粉体、中孔材料等,所以也没有专门去学习透射电镜的块状制样,只是简单的跟本校两个做透射的老师学了做铜网上的有机膜,削碳棒喷碳的大致过程,练习了两三次就开始上马了,现在想想这工程蛮粗糙的,呵呵。一般的纳米粉末分为纳米粒子,纳米棒,纳米线,纳米飘带,纳米纤维,纳米薄片等等,稍微做过一点纳米的同行应该都知道,这个应该是制样里面最方便的了,不过在选择铜网类型的时候有讲究:简单来说,一般的纳米粒子都比较均匀,用乙醇超声分散之后或者用滴管、毛细管滴加一滴到铜网上,或者用镊子夹了铜网到分散好的悬浊液里面提拉一下,就应该能保证有足够的粒子挂上。然后用红外灯烘烤一下,尽量除去乙醇,以保护机械泵的油少被污染,一般我建议烘烤5-10分钟,预抽真空的时间要10-15分钟最好(场发射的灯丝更要长,一般要半小时以上)。注意有些样品的烘烤是会损毁样品形貌的,这个就要较长时间的晾干,或者用反向镊夹住,用电吹风的冷风吹干。有人或许会建议用丙酮,但我觉得丙酮是一种诱癌物质,味道很大,同时因为丙酮对火棉胶或多或少的有溶解性,会影响观察。也有人说他们的样品如果用乙醇会团聚,观察效果不佳,必须用水或者THF来做,我们试验过是可行的。水的分散因为一般的铜网都不浸润,所以挂的时候要多捞几次,或者用反向镊子提拉几次看到上面有水滴即可,实在捞不到水滴,其实也应该吸附了不少纳米粒子了。不过水分散的样品要长时间烘烤,否则抽真空的时间就会很长,而且会影响泵油的寿命。THF常用来分散CNT等碳材料,这个倒是没什么,只是要注意不要太多,另外也需要加大烘烤时间。还有分散效果,多数样品如上处理就可以很容易找到分散比较好的区域,但是团聚比较厉害的样品如何处理呢?有做过的朋友建议使用少量聚乙二醇来分散,据说效果很好,不过需要考虑高分辨的衬度还有污染。刚才讲了要注意选择铜网的类型。因为普通的纳米粒子因为很小,而微栅特别是用国产的微栅是不合适的,由于国产微栅的孔看起来是方华膜收缩得到的,只有边缘比较薄,而进口的微栅才能保证每个地方的厚度一样。这个时候建议使用普通铜网,也就是没有微栅孔的那种,一般的高分辨用这个也能做的比较好了,有公司提供微栅上面再覆盖一层超薄碳膜的,但价格比较贵,觉得不如这个方便。观察的时候最怕的就是样品漂移,尤其是用底片,如果碰到漂移那就是浪费胶片的代名词,10张里能挑一张就算不错了,这个时候就必须耐心等待,因为样品漂移应该会慢慢减缓,稍微时间长点就行,还有可以提前加液氮到防污染罐,也是一种稳定样品的方法。但如果用CCD相机就很方便,直接修改曝光时间,连续拍照,等到最佳状态时记录即可。对于一维的纳米材料比如棒、线之类的样品,微栅是必选的,因为可以让棒搭在孔上方,让高分辨的图片更加漂亮,同时建议您选择拍摄对象的时候尽量选取两头搭得或者搭的部分占整个比例较少的部位,否则样品在拍摄的时候容易发生抖动甚至倾斜,让本来转好的晶轴偏离,不仅加大了观察时间,还容易损伤样品的表层结构。不过要是用CCD相机记录,倒是可以有一个方法可以在抖动的情况下也能很好的记录高分辨图像。我用的是Gatan相机,里面有个shutter的选项,一般默认是0秒,你改成1s,应该就会比较好(道理或许跟拍照的快门优先差不多吧,欢迎指教),不过需要耐心等待最佳时机。两维的纳米材料一般就是薄片,寻找适当的薄区拍照即可,而且样品比较稳定,容易拍摄高分辨。还有一种是高分子的纳米颗粒,这个一般因为衬度问题很难观察,建议染色以后再看。不过如果能适当降低电压来增加衬度也不失为一种选择。最后要讲讲如果样品尤其是一些纳米合金容易发生辐照损伤该如何呢?大家知道有些合金熔点比较低,而电子束可以在局部产生很高的温度,尤其是纳米材料,有更多种类的样品因为纳米效应而降低了熔点,不容易观察。那么这个时候如何处理易变形或者损坏的样品呢,我问过几个老师,如果是用CCD相机,都是采用低曝光慢扫描记录。如果是底片,这个就要求技术高的多,需要在旁边的位置低亮度下调节好高压中心和象散,然后迅速到观察点,加大亮度,快速拍照。不过我倒是没有这么做过,这些都是30年经验的老师,心到手到的境界,我们还要继续修炼啊,呵呵。

  • 【2014诺奖回顾】光学显微纳米新时代

    【2014诺奖回顾】光学显微纳米新时代

    http://ng1.17img.cn/bbsfiles/images/2014/12/201412191620_527962_2972800_3.jpg 1873年,显微学家厄恩斯特•阿贝提出“传统光学显微镜分辨率为不会超过0.2微米”的物理限制。大约一个半世纪之后,来自美国的埃里克•白兹格(Eric Betzig)和威廉姆•莫尔纳尔(William Moerner)以及德国的斯特凡•赫尔(Stefan Hell)成功突破了这一限制,他们利用荧光分子,发明了一种超级分辨率荧光显微镜,从此开启了光学显微镜的纳米时代,正因如此,三人荣获2014年诺贝尔化学奖。 该显微镜融合了另外两种显微镜的成像原理,其一是2000年斯特凡•赫尔发明的受激发射损耗(STED)显微镜,其原理是利用两条激光束,一条激发荧光分子使其发出荧光,另一条抵消除纳米级荧光外的所有荧光;这样一纳米一纳米地扫描样品,所得图像的分辨率突破了阿贝的物理限制。其二是2006年埃里克•白兹格和威廉姆•莫尔纳尔发明的单分子显微镜,其工作原理是开关单分子荧光,科学家们反复多次对扫描同一样品,每次只让几个分子发出荧光,叠加所有图像后得到的致密图像就有纳米级分辨率。如今,纳米显微学已经广泛用于全世界,深入人们生活的各个方面,科学家们从此能了解更多活细胞中分子的细节,从而为改善人类生存环境做出更大贡献。

  • RNA递送纳米粒子系统能关闭特殊基因 抗癌药物开发中的瓶颈问题或找到克服途径

    中国科技网讯 据物理学家组织网近日报道,美国麻省理工大学和哈佛大学达纳—法伯癌症研究所、布罗德研究所合作,利用RNA介入(RNAi)方法开发出一种RNA递送纳米粒子系统,能大大加快筛选抗癌药物标靶进程。首个小鼠试验显示,一种以ID4蛋白为标靶的纳米粒子能缩小卵巢肿瘤。相关论文在线发表于《科学·转化医学》上。 通过对癌细胞基因组进行测序,科学家发现了大量基因变异或被删除。这对寻找药物标靶来说是个福音,但对测试标靶来说,却几乎成了不可能的任务。论文高级作者、麻省理工大学卫生科学与技术教授桑吉塔·巴蒂雅说,这种纳米粒子系统克服了抗癌药物开发中的瓶颈问题。“我们所做的是努力建设一条管线,在这里你可以测试所有的标靶,然后通过小鼠模型筛选出重要标靶。你可以用RNA介入的方法,确定想要进入临床试验的标靶的优先顺序,或者开发抵抗它们的药物。” 通常筛选出药物标靶后,下一步是通过基因技术让小鼠缺乏该基因(或该基因过度表达),观察肿瘤长出来以后它们有什么反应。但还有一种更快的方法,就是在肿瘤出现后简单地将它们关闭,RNA介入法为此提供了广阔前景。在自然的RNA介入中,RNA短链与信使RNA(mRNA)结合,负责递送怎样构建蛋白质的指令。如果mRNA被破坏,就无法造出相应的蛋白质。 自上世纪90年代末发现RNA介入以来,科学家一直在研究怎样利用这一过程来治疗癌症。但要找到一种安全有效地瞄准肿瘤的方法,尤其是让RNA进入肿瘤,还有很多困难。 在实验中,研究人员将目标集中在ID4蛋白,因为在约1/3的高侵略性卵巢肿瘤中,这种蛋白都被过度表达。该基因显示出与胚胎发育有关:它在生命早期已经关闭,不知什么原因在卵巢肿瘤中被重新激活。 他们设计了一种以ID4为标靶的RNA递送纳米粒子,能同时瞄准并进入肿瘤,这是以往的RNA介入方法做不到的。其表面标记有一种短链蛋白片断,这让它们能进入肿瘤细胞,这些蛋白片断会被拉向肿瘤细胞中一种特殊蛋白p32。研究人员还发现了许多这类片断。纳米粒子外面有一层膜,内部是RNA链与蛋白质的混合。粒子进入肿瘤细胞后,蛋白质—RNA混合物能穿过膜层进入细胞内部,开始破坏mRNA。经过对卵巢肿瘤小鼠的实验,研究人员发现,通过RNAi纳米粒子治疗,能消除大部分的肿瘤。 在潜在标靶中,有许多蛋白无法与传统药物结合,而新粒子能递送RNA短链关闭特殊基因,使科学家能继续“追捕”这些“没有可能”的蛋白。达纳—法伯研究所癌症基因组发现中心主任哈恩说:“如果这一方法能在人体内发挥作用,将再打开一类全新的药物标靶。” 联合研究的目标是开发一种“混合与剂量”技术,通过混合不同的RNA递送粒子,瞄准特殊基因。目前,研究人员正在用纳米粒子系统测试其他可能的卵巢癌标靶和包括胰腺癌在内的其他类型癌症,并在研究将ID4—标靶粒子开发为一种卵巢癌疗法的可能性。(记者 常丽君) 《科技日报》(2012-09-17 二版)

  • 纳米级尺寸电子束斑测量

    纳米级尺寸电子束斑测量

    [b]1. [font=黑体]电子束尺寸测量的意义[/font][/b][font=宋体]通常电子束光刻([/font]EBL[font=宋体],[/font]Electron BeamLithography[font=宋体])的曝光工艺,需要根据电子束的辐照密度确定曝光时间,准确测量聚焦电子束的尺寸才能得到准确的电子束辐计量。[/font][font=宋体]电子束斑测量可作为扫描电子显微镜([/font]SEM[font=宋体],[/font]Scanning ElectronMicroscope[font=宋体])、透射电子显微镜([/font]TEM[font=宋体],[/font]Transmission Electron Microscope[font=宋体])电子光学参数调校依据,可作为[/font]EBL[font=宋体]关键工艺参数。[/font][img=,364,266]https://ng1.17img.cn/bbsfiles/images/2023/12/202312271753391454_3326_5849699_3.gif!w364x266.jpg[/img][font=黑体]电子束光刻[/font][b]2. [font=黑体]电子束尺寸测量的方法[/font][/b][font=宋体]([/font]1[font=宋体])成像法[/font][font=宋体]使用电子轰击荧光屏,通过观察荧光屏判断电子束尺寸,考虑到光学传递误差,通常可观察最小电子束斑约[/font]10um[font=宋体]。[/font][img=,126,191]https://ng1.17img.cn/bbsfiles/images/2023/12/202312271753446949_597_5849699_3.png!w157x239.jpg[/img][font=宋体]([/font]2[font=宋体])扫描法[/font][font=宋体]利用法拉第杯来测量电子束电流,挡板水平运动遮挡电子束流,同时监测法拉第杯中电流变化,根据电流的微分曲线可以直接定量测量电子束的宽度,对于系统的分辨率具有较高要求。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image005.jpg[/img][b]3. [font=黑体]阿米精控测量方案[/font][/b][font=宋体]阿米精控科技(山东)有限公司专注于纳米运动控制及超精密机电系统领域的创新设计及产品研发,是一家集研发设计、制造、销售于一体,拥有全自主知识产权的微纳测控及超精密自动化“系统级硬科技”公司。[/font]AttoMotion[font=宋体]纳米运动平台基于微纳柔性机构和压电执行器实现超高分辨力纳米运动,内置光栅[/font]/[font=宋体]电容微位移传感器,通过高性能纳米伺服系统实现闭环控制,具有亚纳米级运动分辨率、纳米级运动精度和高速、高动态轨迹扫描功能。[/font][img=,137,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image007.jpg[/img][img=,185,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg[/img][img=,133,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg[/img][font=宋体]技术特点:超高定位精度、多轴高动态协同联动、高刚度高负载、紧凑型结构设计、轴间运动学解耦设计、多运动模式(定位[/font]/[font=宋体]扫描)、可实现正置倒置的灵活应用、真空兼容性温度使用范围广、运动行程[/font]50~200[font='Cambria Math',serif]μ[/font]m[font=宋体]。[/font][font=宋体]应用领域:扫描电子显微镜、同步辐射光源、纳米操作、光纤定位和对准。[/font][b]3.1 [font=黑体]测量装置搭建[/font][/b][font=宋体]([/font]1[font=宋体])选用[/font]SEM[font=宋体],测试过程中拔掉偏转线圈控制线或者采用点扫模式,使得电子束位置固定。[/font][img=KYKY-EM8100场发射扫描电子显微镜,383,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg[/img] [table][tr][td=2,1] [align=center][font=宋体]扫描电镜([/font]SEM[font=宋体])详细参数[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]分辨率[/font][/align] [/td][td] [align=center]3.0nm@1KV[font=宋体]([/font]SE[font=宋体])[/font][/align] [align=center]2.5nm@30KV[font=宋体]([/font]BSE[font=宋体])[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]放大倍率[/font][/align] [/td][td] [align=center]6[font=宋体]倍[/font]-1000000[font=宋体]倍[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]电子枪[/font][/align] [/td][td] [align=center][font=宋体]肖特基场发射电子枪[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]加速电压[/font][/align] [/td][td] [align=center]0[font=宋体]~[/font]30kV[/align] [/td][/tr][/table][font=宋体]([/font]2[font=宋体])三轴并联压电扫描平台[/font][img=,202,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg[/img][img=,258,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png[/img] [img=,230,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png[/img][img=,401,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg[/img][font=宋体]([/font]3[font=宋体])弱电流放大器[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png[/img][font=黑体]可变增益弱电流放大器[/font][img=,481,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png[/img][font=宋体]([/font]4[font=宋体])位移台安装[/font][font=宋体]位移台与转台绝缘,与大地相接,法拉第杯与转台相连,接弱电流前放。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image027.jpg[/img][font=宋体]([/font]5[font=宋体])控制采集系统[/font][font=宋体]采用高动态数字微纳运动伺服器,电流和位置信息同步采集,采样率为[/font]10K/S[font=宋体],采集时间[/font]10s[font=宋体],纳米扫描台运动一个往复周期。[/font][img=,303,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image029.jpg[/img] [img=,177,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image031.jpg[/img][font=宋体]([/font]6[font=宋体])数据采集[/font][img=,512,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image033.jpg[/img][font=宋体]([/font]7[font=宋体])测试效果[/font][font=宋体]上方横线为硅片挡板边缘,中部方框为二次电子探测器信号。变亮时,电子被硅片挡住,增加了散射电子信号;变暗时,电子束落入法拉第杯,散射电子减小。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image034.gif[/img][b]3.2 [font=黑体]测量结果[/font][/b][font=宋体]平台拥有极高的运动精度,往复运动电流和位置曲线完美重合。利用电流和位移的微分曲线,进行高斯拟合可以直接得到电子束的测量宽度。如图所示:加速电压[/font]5kV[font=宋体],聚光镜值[/font]850[font=宋体],束斑半高宽[/font]32.4nm[img=,348,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image036.jpg[/img][img=,344,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image038.jpg[/img][font=宋体]此外,由于单次采集时间小于[/font]5[font=宋体]秒,还可以监控电子束的稳定性。如下图所示,来回测量过程中电子束发生漂移情况。[/font][img=,359,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image040.jpg[/img]

  • 纳米钻石“温度计”测量活细胞温度更精准

    有望提供一种新的治疗癌症的方法2013年08月01日 来源: 科技日报 作者: 陈丹 科技日报讯(记者陈丹)据《自然》杂志网站8月1日(北京时间)报道,纳米钻石可用于量子计算机中处理量子信息,而哈佛大学的研究人员利用纳米钻石的量子效应,将其变为“温度计”,测量出了人类胚胎干细胞内部的温度变化,精确度是现有技术的10倍。通过加入金纳米粒子,研究人员还能够利用激光对细胞的特定部分加热甚至杀死细胞,这有望提供一种新的治疗癌症而不损害健康组织的方法,以及研究细胞行为的新手段。研究论文发表在本周的《自然》杂志上。 在这项最新研究中,研究人员使用纳米线将直径约100纳米的钻石晶体注入一个人类胚胎干细胞中,然后用绿色激光照射细胞,使氮杂质发出红色荧光。当细胞内局部温度出现变化时,红色荧光的强度会受到影响。通过测量荧光的强度,便可以计算出相应的纳米钻石的温度。由于钻石具有良好的导热性,就可以像温度计一样显示出其所处细胞内部环境的即时温度。 研究人员同时还将金纳米粒子注入细胞内,然后用激光来加热细胞的不同部位,加热点的选择和温度升高多少都可由纳米钻石“温度计”来精确控制。“现在我们有了一个可以在细胞水平上控制温度的工具,让我们能够研究生物系统对温度变化的反应。”参与该研究的哈佛大学物理学家彼得·毛瑞尔说。 他指出,基础生物学涉及到的很多生物过程,从基因表达到细胞新陈代谢,都会受到温度的强烈影响,纳米钻石“温度计”将是一个有用的工具。例如,通过控制线虫的局部温度,生物学家可以了解简单有机体的发育。“你可以加热单个细胞,研究其周围的细胞是否会减慢或者加快它们的繁殖率。”毛瑞尔说。 目前也有一些其他测量细胞温度的方法,比如利用荧光蛋白或碳纳米管,但这些测量手段在敏感性和准确度方面都有欠缺,因为其中的一些成分会和细胞内的物质发生反应。毛瑞尔说,他们的纳米钻石“温度计”的敏感度至少提高了10倍,能够检测出细微到0.05开的温度波动。而且其还有改进的余地,因为在活细胞外部,该“温度计”的敏感度已经达到0.0018开的温度波动。 总编辑圈点 这样的“温度计”应该造价不菲,好在钻石是纳米级的。而其能够检测出细微到0.05开的温度波动,让其他测量细胞温度的方法难以望其项背,我们有理由相信,这项技术不仅仅只应用于医学领域。目前晶体管已经达到极小量度,在20或30纳米级别,离原子级别已经不远。然后,最重要的事情就是要理解热量散播和设备电子结构之间的关系,只有掌握这方面的知识,才能真正操控原子级设备,而纳米钻石“温度计”或许能派上大用场。 《科技日报》(2013-08-02 一版)

  • IRIS INTREPID ICP-AES的两次曝光的技术说明

    IRIS INTREPID ICP-AES的两次曝光的技术说明

    关于IRIS采用UV(紫外)/VIS(可见)分开曝光的技术说明1.由于IRIS Intrepid采用了高分辨分光系统和最宽的波长范围(165-1050nm),扩展的波长范围超出了CID检测器的感光面,因此采用UV(紫外)/VIS(可见)两次曝光的方式。采用UV(紫外)/VIS(可见)分开曝光的方式也更有利于两个波段各自的最佳聚焦。2.由于ICP光谱在450nm以上波段会产生很强的氩(Ar)背景,在VIS(可见)谱段的谱线测量只需很短的曝光时间(一般为5秒),因此IRIS光谱仪尽管比一次曝光多了一次VIS(可见)波段的曝光,但时间很短(5秒钟左右),且在分析过程中全自动进行。如果样品中不测K、Na,Ba,Sr等长波元素,该仪器也只需一次UV(紫外)曝光。3.UV(紫外)/VIS(可见)间的切换采用了专利技术(如图)。利用狭缝前的棱形镜的切入和切出,使光分别经过狭缝1(对应测量UV波段)和狭缝2(对应VIS波段)。由于该光线平移的距离只决定于棱形镜的形状,而与机械定位无关,因此有非常好的重复性。这样的切换无需整个光路的移动,稳定性好。[img]http://ng1.17img.cn/bbsfiles/images/2005/09/200509271136_8109_1639048_3.jpg[/img]相比之下:PE的4300DV由于采用的是SCD(分段CCD)检测器,为了解决“溢出”问题,在每次测定前必须要增加一次“预曝光”以确定不同强度谱线的不同曝光时间(分4组),且不同的曝光时间组是顺序进行(group sequence)的,即在其每次样品测定时,实际上经历:预曝光+第1组的曝光时间(最强谱线)+第2组的曝光时间(较强谱线)+第3组的曝光时间(较弱谱线)+第四组的曝光时间(很弱的谱线)。当然如果样品中各测量元素的谱线强度相近时,可能只需1-2组曝光时间,但“预曝光”是无法省略的。由此可见,4300DV的每次样品测定同样需要多次的曝光,无非它是软件控制进行,表观上不易察觉而已。另外4300DV本身是双向观察,经常需要垂直方式测一次,水平方式再测一次。由于4300DV 的SCD检测器之检测单元较大,无法拟合出很好的谱线谱峰,其狭缝是要移动的,在其MSF扣干扰时,必须移动狭缝四次,分别曝光四次,以实现元素干扰校正。此狭缝的移动是真正的机械移动,要引起整个光路移动,相对而言,重复性难于永久保证。Varian的Vista也是采用CCD检测器,在每次测定时同样也要增加一次“预曝光”,然后分成很多组曝光时间依次顺序曝光(特别是MPX型)。Vista的光栅面积是最小的,其所用级次范围最少(是IRIS和OPTIMA4300的一半),因此其每个级次必须覆盖较宽的波长范围,这就使很多谱线落在中阶梯分光系统的闪耀区之外(中阶梯分光系统的闪耀区域仅在每个级次的中央位置),这些边缘谱线的聚焦和能量均会变差,因此Vista的总体聚焦效果较差,边缘谱线的光学分辨、强度也较差,当然Varian提供的一些谱线的分辨率和检出限均很好,因为这些谱线均是那些“精心挑选”的落在中阶梯分光系统的中央位置的“最佳”谱线。

  • 深圳先进院碳纳米X射线成像技术取得进展

    中国科学院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜成功地获取首张X射线二维成像图。1月17日,科技部组织的专家组在先进院听取了团队工作汇报并现场考察了该成像装置,对该技术表示了充分肯定,这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。 碳纳米管X射线源是最近几年发展起来的被认为是具有革命性的新型X射线源。具有一百年历史的传统X射线源基于热电子发射阴极,而碳纳米管X射线源创新性的用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,有望提高CT扫描的图像精度。 先进院医工所劳特伯医学成像中心研究团队,经近2年的技术攻关,制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。 据悉,作为该课题承担单位的深圳先进院在注重自主研发的同时,也重视与国际前沿单位的密切合作。项目团队所在研究影像中心及国家地方联合高端影像工程实验室在CT系统研制方面具有重要的经验和基础,曾成功研发了高分辨显微CT和低剂量口腔CT,显微CT已经成功应用到中国科学院动物研究所,口腔CT已经进入产业化阶段。正在研发的碳纳米管X射线CT作为一项前瞻性的科学研究,为开发新一代的CT系统储备技术,形成自主知识产权。http://www.cas.cn/ky/kyjz/201301/W020130122537020414424.png左:成像装置图              右:成像图

  • 包覆纳米金属颗粒的中空碳纳米管

    包覆纳米金属颗粒的中空碳纳米管

    两个问题,大家讨论:仪器:Zeiss场发射扫描电镜Merlin(1)如图所示为包覆纳米Fe的中空碳纳米管,5kV加速电压下SE检测器下能看到包覆的纳米Fe,In-lens检测器为什么含有Fe的部位呈现暗黑色?http://ng1.17img.cn/bbsfiles/images/2014/08/201408032120_508940_1872735_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/08/201408032120_508941_1872735_3.jpg(2)提高加速电压后,In-lens检测器下能很好的分辨出Fe在纳米管中的包覆情况。 http://ng1.17img.cn/bbsfiles/images/2014/08/201408032122_508943_1872735_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/08/201408032122_508942_1872735_3.jpg(3)SE检测器和ESB检测器的效果比较http://ng1.17img.cn/bbsfiles/images/2014/08/201408032129_508944_1872735_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/08/201408032129_508945_1872735_3.jpg

  • 【转帖】欧盟提议将纳米材料纳入Reach系统

    近日,欧盟提议,将纳米材料划入欧盟的“REACH”系统(负责化学物质的注册、评估、批准、限制)中,并要求在纳米产品的使用标签上,标明其含有纳米材料。比利时消费者保护和环境保护的部长PaUL Magnette在本周举行的关于纳米材料的可追溯性会议上称,消费者日常生活中使用的纳米材料的数量正在呈上涨的趋势,但消费者对纳米材料并不了解。当前的法律法规中,并没有关于纳米材料的使用标签要求以及它可能会给消费者带来的潜在危险,这一点是不能被民众接受的。此外,Magnette表示,使纳米材料被人们普遍接受和认可的唯一途径是,减少其使用功效中的不确定因素。据了解,到目前为止,全球并未有任何国家制定出关于纳米科技的详细法规。

  • 国家纳米中心等提出的新型纳米药物设计有望突破经典理论

    中科院纳米生物效应与安全性重点实验室(国家纳米科学中心和中国科学院高能物理研究所共建)的赵宇亮、陈春英等科研人员的实验研究工作与IBM周如鸿研究员的理论模拟相结合,在肿瘤高效低毒纳米药物的研究方面,取得重要的进展(PNAS, 109, 15431, 2012)。这是继2010年和2011年后,该研究组在《美国国家科学院院刊》发表的又一研究成果。 该研究组在2004年发现,原来设计为新一代MRI医学造影剂的含Gd金属富勒烯具有高效抑制肿瘤生长的功能。通过表面化学修饰,研究人员得到了几乎没有毒副作用的Gd@C82(OH)22。它不杀死肿瘤细胞,而是通过调节肿瘤细胞周围的微环境(改善肿瘤细胞生长的“土壤”),把肿瘤细胞“监禁”起来。通过近9年的动物实验和细胞实验研究发现,这种新的方法,不仅抑制肿瘤生长,也高效抑制肿瘤转移。 进一步的动物实验和分子动力学模拟研究发现,Gd@C82(OH)22纳米药物与靶分子的相互作用过程与药物设计的经典理论不同,Gd@C82(OH)22纳米颗粒并不作用于靶分子基质金属蛋白酶(MMP)的活性位点。Gd@C82(OH)22分子首先自身通过氢键相互作用形成棒状排列的纳米颗粒,然后通过纳米颗粒扩散运动接近靶分子的疏水区域,产生非特异性的疏水相互作用,而这只是一个过渡态。最终纳米颗粒和靶分子MMP之间通过氢键作用和疏水作用形成特异性结合。这种特异性结合区域在MMP的疏水区域,而不是传统的活性位点。 该研究结果第一次提出的新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供更为广阔的结合区域。这大大拓展了设计新型药物的可能性。 目前全世界在纳米药物领域的研究主要用纳米颗粒作为载体载带现有的药物,而把Gd@C82(OH)22纳米颗粒直接作为肿瘤治疗药物(不需要载带传统药物),到目前为止还是第一次。该实验室通过近9年的系统研究,已经完成8个肿瘤模型的动物实验。除了深入开展该研究中的抑制肿瘤新机制外,2012年高能所已建成一条中试生产线,并正在推进临床前研究的相关工作。http://www.cas.cn/ky/kyjz/201211/W020121123539967315650.jpg 图:新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供有更为广阔的结合区域。这大大拓展了设计新型药物的可能性。

  • 纳米材料综述

    1,概述一纳米等于十亿分之一米,相当于人的头发丝直径的八万分之一。纳米材料被誉为“21一世纪最具有前途的材料”,与信息技术和生物技术并成为21世纪社会经济发展的三大支柱之一和战略制高点。材料的结构决定材料的性质,纳米材料的特殊结构决定它具有一些特异性质,从而纳米材料具有常规材料没有的性质,从而使纳米材料得到更广泛的应用。纳米材料在化工,工程材料,信息,生物医学,军事等领域都得到了充分的应用。现在纳米技术尚在初期阶段,但于社会效益与经济效益都产生的巨大的影响,在未来纳米材料必定大显身手。纳米科技是研究结构尺度在1(0.1)~100nm范围内材料体系的运动规律,相互作用及实际应用的科学技术。其基本内涵是在纳米尺寸范围内认识和改造自然,通过直接操作原子,分子创造新的物质。纳米技术在材料学,生物学,电子学,化学,物理学,测量学,力学的若干领域得到应用。纳米技术是许多基础理论,专业工程理论与当代高新技术的结晶。以物理学,化学的微观理论为基础,以现代高精密检测仪器和先进的分析技术为手段。美国IBM首席科学家曾经说到:“正像微电子技术产生了信息革命一样,纳米技术将成为下一代信息的核心。”我国著名科学家钱学森也指出:“纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而引发21世纪的一次新的产业革命。”纳米技术具有极大的战略意义,世界上许多国家都将其纳入重点发展项目。本文将从纳米材料的现状,发展趋势及应用三方面加以主要叙述。2,定义 纳米材料是指特征尺寸在纳米数量级(1~100nm)的极细颗粒组成的固体材料。广义上讲,纳米材料指三维空间尺寸中至少有一维处于纳米量级的材料。发展历史纳米材料的概念可以追溯到1959年,诺贝尔奖获得者理查德·费曼(Richard Phillips Feynman)_在一次名为“There is plenty of room at the bottom”演讲中提到的。他构想人类可以使用宏观上的机器制造比其体积小的机器,进而制造更小的机器,这样一步步缩小生产装置,逐步达到分子尺度,到最后人类可以按照自己的意愿来排列原子,制造产品。尽管当时的科学界抱以普遍的怀疑态度,但不久之后,他的理念得以证实, 1980年H·Gleiter教授在一次穿越澳大利亚的沙漠旅行时引发的构想,他不同于当时的常规想法,即具有完整空间点阵结构的实体即晶体视为主体,而将空间点阵中的空位,置换原子,间隙原子,相界,位错和晶界视为晶体材料中的缺陷。他将“缺陷”视为主体,制造出一种晶界占有极大体积比的材料。1984年,他领导的研究组用惰性气体凝聚法制备了具有具有清洁表面的黑色纳米金属粉末粒子,并以它为结构单元制成了纳米块体材料。 1987年美国国家实验室的西格尔(Siegel)等人使用气相冷凝法制备纳米陶瓷材料TiO2,并观察到纳米材料在室温和低温下具有良好的韧性。1990年7月,在美国巴尔的摩召开国际第一届纳米科技学术会议,正式把纳米材料科学作为材料科学的一个新的分支公布于世,表明了纳米材料科学已经成为一个比较独立的学科。1994年在美国波士顿召开的MRS秋季会议上正式提出了纳米材料工程。是纳米材料的新领域,是纳米材料研究的基础上通过纳米合成,纳米添加发展新型的纳米材料,并通过纳米添加对传统材料进行改性,扩大纳米材料的应用范围,开始形成了基础研究与应用研究并行的局面。纳米材料发展有三个阶段:第一阶段(1990年之前)主要是在实验室探索,用各种手段制造各种材料纳米颗粒粉体,合成块体,研究表征方法,探索纳米材料的性能。第二阶段(1990~1994年)。人们

  • 碳纳米管“鱼叉”能捕获单个脑细胞信号

    科技日报讯(记者常丽君)据美国物理学家组织网6月20日(北京时间)报道,美国杜克大学科学家开发出一种碳纳米管制成的“鱼叉”,可用于捕获单个脑细胞发出的信号。相关论文发表在6月19日的《公共科学图书馆·综合》上。 目前用于记录脑细胞信号的电极主要有两种:金属和玻璃。金属电极可用在活动物中,记录脑细胞群体活动峰值及其工作情况;玻璃电极既可用于检测峰值,也能检测单个细胞活动,但却脆弱易碎。以往实验中曾用过碳纳米管探针,但那种电极要么太厚会造成组织损伤;要么太短而限制了电极穿透深度,无法探测到内部的神经元。 最新研制出的碳纳米管“鱼叉”只有一毫米长、几纳米宽,可利用碳纳米管卓越的机电性能来捕获单个脑细胞的电信号。杜克大学神经生物学家理查德·穆尼和该校计算机科学与生物化学教授布鲁斯·唐纳德5年前开始合作,研究用纳米材料来缩小机械并改良探针。他们先以电化技术处理过的钨丝为基础,用自缠多壁碳纳米管延长它,制成了一毫米长的小棒,然后用聚焦离子束将纳米管磨锋利,使其一端逐渐变细到只有一根碳纳米管粗细,就像微小的“鱼叉”。杜克大学神经生物学家迈克尔·普拉特说:“这种碳纳米管‘鱼叉’结合了金属和玻璃电极的优点,无论是在脑细胞内外,它们都能记录良好,非常灵活而且不会碎,可以用来记录活动物的单个脑细胞信号。” 在穆尼的实验室,他们把“鱼叉”分别刺入小鼠脑组织切片和麻醉小鼠大脑中来实验,结果显示探针能传输脑信号,而且有时比传统的玻璃电极效果更好,信号中断的可能性更小。 新探针还能刺穿单个神经元,记录单个细胞的信号,而不是附近的一群神经元。唐纳德强调,这被称为细胞内记录,应是人们首次用碳纳米管在脑切片或完整脊椎动物大脑中记录单个神经元信号。 总编辑圈点 碳纳米管可用于研究单个神经细胞发出的信号,如今的成果就是极好的理论证明。这种对单个神经元信号及神经元之间相互作用的进一步挖掘,将会帮助我们更好地理解大脑的计算功能,从而弥补人类对自身“司令部”认知上的缺陷。从另一个角度看,杜克大学此次所采用的探针技术也十分有前途,可在多领域——包括从基础科学到人脑计算接口、脑组织假体等等方面都有着广泛应用,亦因此其进一步开发备受业界期待。 《科技日报》(2013-06-21 三版)

  • 大家都是做与粒度有关的工作的,为了健康,请警惕纳米材料成为石棉第二!

    石棉危害不断曝光,警惕纳米材料成为石棉第二!   【日经BP社报道】 笔者曾于7月13日在日本的博客网站上发表过一篇题为“石棉会在体内残留,那个热门新素材岂不如此?”的帖子,在读者中间引起了巨大反响。其中回帖最多的就是“请公开这种新素材的名字!”。这种要求在正常不过了,只是当时采访的对象不是研究该材料对健康具有哪些影响的专业人员,所以没有公开素材的名称。最近笔者得到了一个与该材料的研究人员直接接触的机会,因此借此机会向大家做一次汇报。   采访对象是位于茨城县筑波市的日本国立环境研究所。该研究所对粒径50nm以下的“纳米粒子”和具有纳米尺寸而被赋予新功能的“纳米材料”进行健康风险评估。其中包括以柴油尾气排放的粒子为代表的大气粒子物质在内的,氧化钛和氧化锌等物质,纳米材料则包括富勒烯和碳纳米管等。   在上次的博客帖子中,笔者所写的“纳米科技材料”针对的是碳纳米管。据环境研究所称,由于碳纳米管为纤维状,因此有可能像石棉一样从肺部到达胸膜。数年前,在美国毒性学会上就曾发表过一项研究报告,指出使用大白鼠和小鼠所做的动物实验已经证实碳纳米管具有比可导致矽肺病的硅石更强的毒性。“这项研究成果极具冲击性,不过,经过充分分析以后我们发现,实验中是将碳纳米管凝聚后使用的。而要想准确地进行评价,必须要使碳纳米管处于分散状态,因此目前真实的结果还不是十分清楚”。环境研究所在对上述实验方法持怀疑态度的同时,也指出:目前使用碳纳米管时必须考虑到这种风险的存在。   不过,能够“达到大脑”的并非碳纳米管。环境研究所表示“碳纳米管再小,应该无法通过血脑屏障(blood-brain barrier)。当然,不能说可能性为零”。笔者在此再次强调,目前尚无碳纳米管到达大脑的报告。   但是,目前已经证实有其他材料是能够到达大脑的。这就是在锰电池生产车间中吸入的氧化锰中的锰。听说锰电池制造工人中已经有人出现了类似帕金森氏病的症状。其致病机理已经从医学上得到阐明,即在工作中吸入锰粒子后,锰会滞留在大脑而发病。锰达到大脑的途径业界分析有2种,一种是从肺进入循环系统,然后到达大脑。另一种是形成溶液后从嗅觉神经末梢,通过神经系统进入大脑。可能性较高的是后一种途径。   环境研究所敲响警钟:“假如因为使用方便,便无节制地使用纳米粒子或纳米材料的话,石棉悲剧就有可能再次上演”。纳米粒子和纳米材料之所以令人担心,原因就在于其尺寸非常小。尤其是纳米粒子和富勒烯,据说恐怕具有能透过细胞等物质的组织透过性。一旦透过细胞,就可能对组织本身造成伤害,并可能向其他脏器运动。在德国使用大白鼠进行了粒径90nm的碳粒子吸入实验,结果在血管的内皮细胞中就发现了碳粒子。也就是说,碳粒子通过肺泡到达血管细胞的可能性非常高。   所以材料的有害性,不仅是指材料的化学性质,材料的尺寸、形状、溶解性、面积等物理性质也与有害性有很大关系。石棉很危险,但是如果使用的是在尺寸和形状上与石棉类似的物质的话,也存在与石棉相同的危险。如果对这一点未能充分认识的话,危害程度可能会有所不同,但将来难免不会发生第二、第三个石棉公害问题。而且同样的问题不仅限于类似石棉的细纤维材料,同样还存在于纳米级别的超微材料中。不过,在这里希望不要误解的是,笔者并不是想说“这些材料危险,所以请停止使用”。而笔者恰恰认为,这些都是有用的材料,所以必须充分利用通过巨大的付出才得到的知识,研究出安全的使用方法。   正像上次在博客网站上所讲述的那样,事实未经确认的物质名称决定不予公开(透露这条消息的尽管并不是纳米粒子和纳米材料的研究人员,但却是一位值得信赖的公共卫生专家)。这样一来估计会有人指责“应该在得到证实后再刊载”。但笔者之所以没有这样做,是因为希望尽快地向大家透露纳米类材料的危险性。   原因在于笔者认为,要想小心地安全使用,还是越快越好。另一个理由就是这个栏目并非专业报道,而是博客论坛。在这个栏目中登载的都是一些记者平日里通过采访所感受的、所思考的、或心中感到困惑的与物质生产有关的内容。尽管如此,对于上次的博客帖子,笔者曾经困惑过。经过与木崎主编一同探讨,根据信息的重要性和栏目的特点,最终还是决定“刊登”。(记者:获原 博之) ■日文原文 アスベストが体内に残るなら,あの???}の新素材だって…の「物?|名」お?护à筏蓼?

  • 关于纳米区域电子衍射(NAED)和纳米束电子衍射的区别?

    这个纠结我很久了!哪位高手给点指点文献中提到的NAED是通过用很小的C2光阑来减小束斑(比如10um),同时保持电子束平行入射,因此可以得到几十纳米区域的锐利的衍射斑。但是我们的FEI电镜C2的最小尺寸都是50um,没法实现那种情形。于是我尝试用纳米束衍射来做。我在Spot Size7, Gun lens3的情形下做纳米衍射,我通过调整C2(Intensity),可以改变衍射斑的直径大小,并且在一定的束斑大小下也可以得到衍射斑而不是衍射盘。我想问的是:这两种情形下得到的锐利的衍射斑有什么区别,因为感觉第一种肯定是平行束入射,第二种却是在会聚束情形下得到的(但也有可能改变C2的过程中能得到近平行的电子束)。

  • 纳米原子尺度,衬度成像机制,信息提取

    应用透射电子显微镜观察纳米结构在纳米-原子尺度的细节,需要采用何种衬度成像机制;在霍地图像信息的同时,在纳米尺度综合分析方面,还有哪些信息可以同时提取出来?

  • 新型纳米药物设计有望突破经典

    新型纳米药物设计有望突破经典新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供有更为广阔的结合区域。这大大拓展了设计新型药物的可能性。中科院纳米生物效应与安全性重点实验室(国家纳米科学中心和中国科学院高能物理研究所共建)的赵宇亮、陈春英等科研人员的实验研究工作与IBM周如鸿研究员的理论模拟相结合,在肿瘤高效低毒纳米药物的研究方面,取得重要的进展(PNAS,109,15431,2012)。这是继2010年和2011年后,该研究组在《美国国家科学院院刊》发表的又一研究成果。 该研究组在2004年发现,原来设计为新一代MRI医学造影剂的含Gd金属富勒烯具有高效抑制肿瘤生长的功能。通过表面化学修饰,研究人员得到了几乎没有毒副作用的Gd@C82(OH)22。它不杀死肿瘤细胞,而是通过调节肿瘤细胞周围的微环境(改善肿瘤细胞生长的“土壤”),把肿瘤细胞“监禁”起来。通过近9年的动物实验和细胞实验研究发现,这种新的方法,不仅抑制肿瘤生长,也高效抑制肿瘤转移。 进一步的动物实验和分子动力学模拟研究发现,Gd@C82(OH)22纳米药物与靶分子的相互作用过程与药物设计的经典理论不同,Gd@C82(OH)22纳米颗粒并不作用于靶分子基质金属蛋白酶(MMP)的活性位点。Gd@C82(OH)22分子首先自身通过氢键相互作用形成棒状排列的纳米颗粒,然后通过纳米颗粒扩散运动接近靶分子的疏水区域,产生非特异性的疏水相互作用,而这只是一个过渡态。最终纳米颗粒和靶分子MMP之间通过氢键作用和疏水作用形成特异性结合。这种特异性结合区域在MMP的疏水区域,而不是传统的活性位点。 该研究结果第一次提出的新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供更为广阔的结合区域。这大大拓展了设计新型药物的可能性。 目前全世界在纳米药物领域的研究主要用纳米颗粒作为载体载带现有的药物,而把Gd@C82(OH)22纳米颗粒直接作为肿瘤治疗药物(不需要载带传统药物),到目前为止还是第一次。该实验室通过近9年的系统研究,已经完成8个肿瘤模型的动物实验。除了深入开展该研究中的抑制肿瘤新机制外,2012年高能所已建成一条中试生产线,并正在推进临床前研究的相关工作。

  • 高速实时非接触3D测量技术——0.001秒实时非接触动态测量,亚纳米精度

    高速实时非接触3D测量技术——0.001秒实时非接触动态测量,亚纳米精度

    数字全息显微镜DHM测量材料动态的3D形貌,亚纳米分辨率,基于菲涅尔衍射的数字全息重建技术 [table=100%][tr][td][img=动态3D细胞监测,690,138]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241018_01_1546_3.jpg!w690x138.jpg[/img]仅0.001秒即可测出物体三维形貌,并且是亚纳米的分辨率。不同于传统白光干涉仪、共聚焦显微镜、扫描探针轮廓仪等需要扫描的成像方式,DHM仅需0.001秒采集单张全息图即可测出物3D形貌信息,做到了快速动态监测。 和传统全息术不一样的是没有采用干板而是采用CCD记录全息图,全息图中 光强图:提供与传统显微镜一样对比度的图像 相位图:提供量化数值,得以对被测物体进行精确三维测量 该系统为预放大全息显微镜,其中的相位图解析中用到了大量的算法,实时相位解包裹技术 实时形貌测量的案例二:石墨烯薄膜受力形变实时测量[img=石墨烯薄膜受力形变,384,216]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241017_02_1546_3.gif!w384x216.jpg[/img][img=MEMS跟踪测量,690,389]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241017_03_1546_3.gif!w690x389.jpg[/img][/td][/tr][/table]

  • 【原创大赛】纳米材料的潜在毒性

    当今,纳米材料已成为高科技的卖点,纳米化妆品、纳米药物、纳米羽绒服等目前都被炒得火热。比如添加纳米材料的化妆品,防晒功能更强,可有效杀灭隔绝有害菌等。但是越来越多的研究表明,大小只有十亿分之一米的纳米颗粒有可能穿过皮肤,进入人类的血液循环系统,并被传送到大脑、肺部等人体器官当中。最早是2004年,英国的一位学者指出纳米材料的危害性,文章发表在《科学》上。认为这种尺寸级别的颗粒,能够直接进入人体,穿透人体的安全屏障。最近,A. Sood等在Nature Nanotechnology上发表了一篇 Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness。 文章介绍说,随着纳米材料越来越多的应用在医药、电子、航空等领域,人体与纳米材料的接触也不可避免的增加,从外部来说,周围环境中有很多非常细微的纳米颗粒;从内部来说,纳米颗粒用于体内成像及肿瘤治疗等。研究表明,纳米颗粒可以产生活性氧进而引发氧化损伤,因此,纳米颗粒应用在消费品方面之前应该对其潜在的毒性进行仔细的评估。 细胞屏障以各种形态存在于身体内,在抵御外界纳米颗粒侵犯,在保护细胞方面起到很重要的作用。比如,与泪膜在一起的角膜上皮细胞屏障是多层的,可以阻止病原体、过敏原、刺激物等进入眼睛。但是,限制微小物体如细菌等向脑脊液的扩散的血脑屏障是由内皮细胞的单分子层屏障组成的。胎盘屏障可以调节母体和胎儿之间的物质交换,其结构会在妊娠期间发生变化,早期妊娠阶段,胎盘绒毛被多核合胞体滋养层细胞组成的双分子层细胞覆盖,直接依赖细胞滋养层。之后,胎盘屏障会变的明显一些,但也不是完全的单分子层,还是有一层不完全的细胞滋养层。 我们之前的研究发现钴铬纳米颗粒不需要穿过细胞屏障,就可以引起多层细胞屏障另一侧细胞染色体中DNA的损伤和畸变,这种间接的损伤是由屏障中缝隙连接蛋白之间的细胞的信号传递导致的,其中以ATP和Ca2t作为信使。那么,纳米颗粒的这种间接效应是否会因为不同类型的细胞屏障而发生改变?这是一个很值得研究的领域。我们通过体内、体外以及体内模型的研究发现,纳米颗粒的这种间接效应取决于细胞屏障的厚度,双分子层或者多分子层屏障可以导致DNA损伤,引起间接毒性,但是单分子层屏障不会产生类似的作用。研究发现,胚胎滋养层以及角膜屏障都可以产生这种间接的损伤信号,并且已经在小鼠以及人体胚胎的体外组织培养中得以证实。如果这种基于屏障厚度的信号传导是所有屏障的一个共同特点,那么我们的研究结果可以为如何减少纳米材料负面作用提供很重要的帮助,并可能提供新的治疗方法。

  • 纳米碳管的透镜衍射

    纳米碳管的透镜衍射的的图像与多晶衍射一样呈现环状,那么可以用多晶指数化的方式对纳米量级的颗粒进行指数化么?

  • 【转帖】纳米限域研究取得新进展

    分子在纳米孔道限域环境中扩散和反应显示了非常独特的物理化学特性,理论工作者已经进行了大量的计算和模拟。近日,中科院大连化学物理研究所包信和研究员带领的“界面和纳米催化”研究组(502组)在自行研制的一套与固体核磁共振仪耦合的动态催化反应系统中,采用激光诱导超极化129Xe技术,首次在模拟催化反应条件下直接观察到了甲醇分子在孔径为0.8nm的CHA分子筛孔道扩散和脱水过程,并精确获得了分子扩散和反应的动力学参数。相关方法和实验结果以研究论文形式(Article)发表在最近一期的《美国化学会志》(J. Am. Chem. Soc., 131(2009)13722-13727),被认为是“一种对纳米孔催化反应研究具有重要意义”的发明。  纳米限域效应在光学、电子器件以及催化反应等领域具有很大的应用前景,分子在纳米限域空间中的吸附和反应动力学一直受到理论和实验研究者的广泛关注。理论研究已经预示,限域在纳米空间中物质将会显示出与自由状态下明显不同的物理化学特性,但是,由于在真实条件下分子的扩散速度很快,而且纳米孔道中分子浓度极低,实验研究需要发展原位-动态和高灵敏的检测手段。该研究组张维萍、包信和和博士研究生徐舒涛等对商用核磁共振“魔角旋转”(Magic Angle)的探头进行改进,自行研制了一套与固体核磁共振仪器相耦合、适合于分子扩散和催化研究的高温原位-动态研究系统,并将国际上已广泛采用的激光诱导超极化129Xe技术引入动态反应过程的研究,使NMR的检测灵敏度提高了1万多倍,从而使固体核磁采谱时间缩短到10秒以内。将该技术成功用于研究甲醇在CHA纳米分子筛笼内的吸附、扩散和脱水反应过程,首次获得了接近真实反应条件下纳米孔道中活性位在反应过程中的动力学参数,大大加深了对甲醇在分子筛孔道中酸助脱水和转化过程机理的理解和认识。  近年来,该研究组系统地将高灵敏核磁共振技术用于催化反应过程和材料合成过程的原位-动态研究,不断取得重要进展 (J. Am. Chem. Soc., 130(2008)3722,J. Am. Chem. Soc., 131(2009)10127)。

  • 纳米粒子递送药物技术有新进展

    蛋白质“通行证”让纳米粒子通过免疫系统2013年02月25日 来源: 中国科技网 作者: 常丽君 中国科技网 讯人体免疫系统能识别并摧毁外来物。除了细菌、病毒,递送药物的纳米粒子、植入的起搏器和人工关节等也是外来物,同样会引发免疫反应,导致药物失效、排斥或发炎。据物理学家组织网2月21日报道,美国宾夕法尼亚大学科学家开发出一种新方法,给这些治疗设备贴上蛋白质“通行证”,让它们能顺利通过人体的防御系统。相关论文发表在最近的《科学》杂志上。 “身体对入侵的外来物会一视同仁地加以排斥。”论文第一作者、宾夕法尼亚大学分子与细胞生物物理学实验室研究生派尔·罗德里格斯说,这是由身体天然免疫系统所引发的。这一过程涉及多种细胞,如巨噬细胞能发现、吞掉并破坏入侵者;血清蛋白会黏在目标物上,引起巨噬细胞注意,一旦巨噬细胞确定黏住的是外来物就会吞掉它,或发信号召集其他巨噬细胞一起来包围它。 为避免纳米粒子引发天然免疫反应,早期的办法是给它们涂一层高分子的“刷子外衣”,这些“刷子”从纳米粒子中伸出来,阻止各种血清蛋白黏在它表面。但这只能暂缓一时而不能最终解决问题。宾夕法尼亚大学工程与应用科学学院化学与生物分子工程教授丹尼斯·迪斯科和研究小组另辟蹊径:让巨噬细胞相信纳米粒子是“自己人”而放过它们。 早在2008年,迪斯科小组发现人体细胞膜上有一种叫做CD47的蛋白,它能与巨噬细胞受体SIRPa结合。就像巡警检查人们的通行证,CD47蛋白会告诉巨噬细胞是“自己人,别吃我”。随后有其他研究人员破解了CD47和SIRPa的连接结构。 利用这些信息,迪斯科小组绘制出了执行类似CD47蛋白功能所需的最小氨基酸序列,并将这种“小肽”折叠起来作为固体“通行证”。他们用化学方法合成了这种小肽,将其黏附在抗癌药物递送粒子上,然后注射到小鼠体内检验其功效。这些小鼠经过基因改造,其巨噬细胞具有和人类相同的SIRPa受体。 研究人员给小鼠注射了两种纳米粒子:一种携带小肽通行证,另一种没有,然后检测小鼠免疫系统要多久能识别出来。“我们每10分钟抽一次血,检测两种纳米粒子各剩下多少。”罗德里格斯说,“最初注射两种粒子的比例是1∶1,20分钟到30分钟后,有小肽的粒子数是没有小肽的4倍。” “这证明小肽确实抑制了巨噬细胞的反应。我们引起它们之间的互动,然后又克服了它。”迪斯科说。对治疗用的纳米粒子而言,它们只需活到发现目标,不必无限期地留在体内,即使多出半小时时间已能带来很大利益;而对起搏器之类的长久植入体内的设备来说,则需要另外的表面蛋白结合物,让它们能和免疫系统长期和平共处。 研究人员还指出,这些小肽在进入实际应用前,还需进一步研究,将其减少到只有几个氨基酸。这一步很关键,通行证分子越简单,就越容易合成。如果能在一台机器上统一制造,并能方便地修改以适应多种植入物和注射剂,就能粘黏在多种药物递送工具上,也能黏在专门抗体上瞄准癌细胞或其他疾病组织。(常丽君) 《科技日报》 2013-02-25 (二版)

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091358_531780_2972800_3.jpg 科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制