皮米精度激光干涉仪

仪器信息网皮米精度激光干涉仪专题为您提供2024年最新皮米精度激光干涉仪价格报价、厂家品牌的相关信息, 包括皮米精度激光干涉仪参数、型号等,不管是国产,还是进口品牌的皮米精度激光干涉仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合皮米精度激光干涉仪相关的耗材配件、试剂标物,还有皮米精度激光干涉仪相关的最新资讯、资料,以及皮米精度激光干涉仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

皮米精度激光干涉仪相关的厂商

  • 400-860-5168转0809
    美国自动精密工程公司(API公司)是刘锦潮博士在自主**技术的基础上,于1987年创建的,总部位于美国马里兰州的洛克威尔城。API公司自成立以来, 始终致力于机械制造领域精密测量仪器和高性能传感器的研发和生产,产品已广泛应用于美国及世界各国的先进制造领域,并在坐标测量和机床性能测试的高精度标准方面处于领先地位。API公司拥有一支经验丰富、能力卓著的工程师队伍,不断开发出先进的创新性产品,以满足快速发展的工业技术的需要。在美国联邦政府、企业及科学研究的诸多项目中,API公司都是积极参与者和关键技术伙伴。迄今为止所取得的成就使其在国际精密测量领域享有很高的声誉。 刘锦潮博士于八十年代初率先开展激光跟踪干涉测量技术的研究,持有激光测量系统的多项**,是世界公认的激光跟踪干涉技术之父。API公司不仅推出了国际上第一台商业化激光跟踪仪,而且是目前世界上唯一生产六维激光跟踪仪和六维激光干涉仪的厂家。API激光干涉仪已经连续三年获得美国年度25种最新产品奖、年度新产品最重要技术奖和商业技术奖。 为了让更多的国内用户了解这些技术,API公司于2001年进入中国市场,相继在北京、上海、武汉、重庆等地设立办事机构,同时在上海成立了售后维修中心及保税库,以便为更好的为用户提供技术服务支持。经过几年的努力,API公司在国内众多行业中以其优良的产品特性、周到快速的服务反馈得到了业内用户的广泛认可及好评,取得了良好的口碑。 API公司仍将一如既往地致力于精密激光测量仪器的研发和生产来回报广大用户对我们的信任与支持。
    留言咨询
  • 华日激光坚持以市场需求引领新产品的研发,为客户提供纳秒、皮秒、飞秒等多种脉冲宽度,红外、绿光、紫外、深紫外等多种波长的激光器产品,所有产品均具备自主产权,同时产品通过欧盟CE质量安全认证,完全满足严苛条件下的工业加工要求,是超精细加工领域的理想光源。同时通过与全球高端激光设备制造商在电子电路、硬脆材料、半导体、新能源、生命科学等领域开展紧密合作,为用户提供全面的激光技术解决方案。
    留言咨询
  • 联合光科技(北京)有限公司创立于2016年, 由国内多家知名光学企业联手创办, 致力于为用户提供优质激光光学元件、工业成像镜头、进口高精度光学检测系统和快捷、专业的解决方案。我们的产品涵盖了大多数光学领域,包括元件类,机械类,光学检测服务,光学冷加工及镀膜,并提供光学产品的定制服务,在高功率激光和特殊镀膜应用尤为突出。总部位于北京,在深圳和香港设有分公司,在济南、上海设有办事处,并且在长春,锦州,昆明和重庆设有工厂。为了将更好的产品提供给用户,我们在北京建立了先进的检测实验室和较完善的检测体系,并且采用国际知名品牌检测仪器。 主要产品:l 光学元件(标准光学镜片、高功率激光窗口镜片、定制光学元件、偏振元件)l 英国ULO CO2红外光学材料、镜片、光学器件l 光机械部件(压电电控平台,光学防震桌,光学调整架,手动位移台,光机组件,光桥系统)l 全系列高品质工业成像镜头(定焦/远心/线扫/变焦变倍/特殊定制镜头)、照明光源l 光学测量仪器? 德国MarOpto- 轮廓仪、干涉仪(倾斜波干涉仪、斐索干涉仪、动态干涉仪、干涉测量软件、断面检测、表面检测)? 德国Dioptic- ARGOS 表面疵病检测仪、光纤端面缺陷检测? 日本壶坂Tsubosaka-镜头/相机鬼影、杂散光测试系统;可调色温、亮度光源;镜头焦点偏差、光圈、闪光灯、快门测量、手机防抖测试系统;太阳灯? 美国 Bristol- 非接触式测厚仪? 美国Optometrics- 衍射光栅、分光器件、线栅偏振片、Minichrom? 单色仪等? 德国Artifex-光功率计、跨阻抗放大器、门控积分放大器、LIV激光二极管和LED特性测试系统、积分球、激光二极管驱动器? 波兰inframet-可见光电视相机测试系统(TVT)、红外热像仪测试系统(DT、LAFT、SAFT)、夜视仪测试系统(NVT、NVS、NVB)、激光测距机测试系统(LT、LTF、LTE)、二代像管像增强器测试系统(ITS-I、ITS-P、ITS-R)、条纹管测试系统(SPT、STT)、多传感器测试系统(JT、MS)、被动式THz成像仪测试系统(THP)、短波成像仪测试系统(ST)、紫外成像仪测试系统(UT)以及红外热像仪计算机模拟器(Simterm)等? 美国Headwall -高光谱成像、拉曼光谱仪、衍射光学元件? 其他-SPF防晒指数测试仪;大气测量辐射计/光度计;Mini-Chrom单色仪;激光二极管测试分析系统;积分球;激光功率探测器;光伏测试太阳模拟器;固态光电倍增管等等
    留言咨询

皮米精度激光干涉仪相关的仪器

  • 皮米激光干涉仪 德国attocube公司在皮米精度位移激光干涉仪FPS的基础上,新推出了体积更小、适合集成到工业产品与同步辐射应用中的IDS型号皮米精度位移激光干涉仪。与FPS型号干涉仪相似,IDS型号同样适用于端环境如高真空与高辐射环境并且具有高精度与高采样速率。IDS产品是适合工业集成与工业网络无缝连接的理想产品。产品在工业应用中具有广泛范围前景,包括闭环位移反馈系统搭建、振动测量、轴承误差测量,实时位移测量等。 德国计量院(PTB)对IDS3010激光干涉仪的精度进行了认证。值得指出,在0-3米的工作距离内, IDS激光干涉仪的的测量数据与德国计量院激光干涉仪数据完全一致。德国计量院的认证使得IDS激光干涉仪的测量数据满足德国标准,使得IDS更加理想的成为位移台鉴定与机器加工等领域的测量工具。IDS3010激光干涉仪主机尺寸与接口IDS3010激光干涉仪应用领域IDS3010充分满足高分辨位移于定位的工业和科研需要,可应用于长度测量、同步辐射、精密仪器、半导体工业以及显微镜。IDS3010激光干涉仪产品特点 + 设计紧凑(50mm x 55mm x 195mm),适合工业集成+ 工业化界面,含HSSL、AquadB、CANopen、Profibus、EtherCAT、等界面+ 测量速度快,定位样品采样带宽10MHz+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 校正简单,配备可见激光(650nm)用于校正测量激光(1530nm)+ 测量精度高,探测器分辨率高达1 pm设备选件光纤式激光探头 IDS系列激光干涉仪可提供不同型号探头(探头尺寸,光斑大小不同)。探头直径范围:1.2mm – 22mm。典型准直激光光斑:1.6mm, 典型聚焦激光光斑:70 mm。低工作温度:10mK, 1E-10mBar超高真空适用, 10MGy强辐射环境适用。激光探头技术参数表激光探头型号尺寸mm (直径与长)工作距离(低反射,高反射材料)激光类型(聚焦、准直) 光斑大小D1.2/F7Ф 1.2 7.55-9 mm30-45 mm聚焦,焦距7mm70μm@7mmD4/F8Ф 4 11.56-10 mm15-30 mm聚焦,焦距8mm70μm@8mmD4/F13Ф 4 11.511-15 mm30-45 mm聚焦,焦距13mm70μm@13mmD12/F2.8Ф 12 32.32.8 mm聚焦,焦距2.8mm2μm@2.8mmM12/C1.6Ф 14 17.40-1000 mm准直1.6mmM15.5/C1.6Ф 22 20.60-1000 mm准直1.6mmM12/C7.6Ф 14 49.30-5000 mm准直7.6mm应用案例■ IDS3010在航天飞行器形变检测上的应用德国卫星制造商OHB公司(德国OHB-System 是一家专门从事小卫星系统、分系统研制工作的企业,在小型商业卫星、小型研究卫星及相关分系统的研制、制造和操作方面具有丰富的经验)采用attocube的激光位移传感器IDS3010,对三代气象卫星(MTG)柔性组合成像仪进行了高真空光-热-力学模型试验。该试验包括在仪器的不同区域,并监控其后续光学元件相对位移测量哈特曼传感器。在真空环境中通过IDS3010激光干涉仪以小于1角秒的精度对平面基准相对位置的稳定性进行了一个多星期的持续测试。为了校准IDS3010不同探头之间的距离,需要进行初步测试(每个传感器探头与用于角度计算的距离,名义上为100 mm)。为此,平面参考镜的电动框架被用来产生任意角度的运动。这些角度是由IDS3010激光干涉仪和校准的自准直仪测量得到。IDS3010激光干涉仪在±720角秒范围内表现出良好的线性(0.1%),并且非常容易校准。再与MTG柔性组合成像仪对齐之后,即在Shack-Hartmann传感器和IDS3010传感器之间执行另一个交叉校准,以补偿IDS3010传感器相对于Shack-Hartmann传感器的时钟。三代气象卫星的柔性组合成像仪(MTG-FCI)的实验装置。紫色表示激光干涉仪组件:传感器探头支架和角角锥棱镜支架。以上信息由OHB System AG提供结果此次测量的目的是在一周多的时间内连续监测参考镜相对于卫星的稳定性,精度小于1角秒。使用如上所述attocube公司的激光干涉仪得到的测试得到角度精度甚至比一个角秒还要好。理论计算表明,其测试分辨率可以到达0.021角秒(等于5.8u°),但实际读数受试验装置振动的限制。■ IDS3010激光干涉仪在自动驾驶高分辨调频连续波(FMCW)雷达上的应用自动驾驶是目前汽车工业为前沿和火热的研究,而自动驾驶尤为重要的是需要可靠和高分辨率的距离测量雷达。德国弗劳恩霍夫高频物理和雷达技术研究所(Wachtberg,D)Nils Pohl教授和波鸿鲁尔大学(Bochum,D)的研究小组提出了一种全集成硅锗基调频连续波雷达传感器(FMCW),工作频率为224 GHz,调谐频率为52 GHz。通过使用德国attocube公司的皮米精度激光干涉仪FPS1010(新版本为IDS3010)证明了测量系统在-3.9μm至+2.8μm之间达到了-0.5-0.4μm的超高精度。这种全新的高精度雷达传感器将会应用于许多全新的汽车自动驾驶领域。图一 紧凑型FMCW传感器的照片图二 雷达测距示意图,左边为雷达,右边为移目标,attocube激光干涉仪用来标定测量结果参考文献S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019).■ IDS3010激光干涉仪在半导体晶圆加工无轴承转台形变的测量上的应用半导体光刻系统中的晶圆轻量化移动结构的变形阻碍了高通量的半导体制造过程。为了补偿这些变形,需要的测量由光压产生的形变。来自理工大学荷兰Eindhoven University of Technology 的科学家设计了一个基于德国attocube干涉仪IDS3010的测量结构,以此来详细地研究因为光压而导致的形变特性。图一所示为测量装置示意图,测量装置由5 x 5 共计25个M12/F40激光探头组成的网格,以此来实现监测纳米的无轴承平面电机内部的移动器变形。实验的目的是通过对无轴承的平面的力分布进行适当的补偿,从而有效控制转台的变形。实验测得大形变量为544nm,小形变量为110nm(如图二所示)。图一 左侧5X5排列探头测量装置示意图,右图为实物图图二 无轴承磁悬浮机台形变量的测量结果,大形变量为544nm参考文献Measuring the Deformation of a Magnetically Levitated Plate displacement sensor.■ IDS3010在X射线成像中提高分辨率的应用在硬X射线成像中,每个探针平均扫描时间的减少对于因为束流造成的损伤是至关重要的。此外,系统的振动或漂移会严重影响系统的实时分辨率。而在结晶学等光学实验中,扫描时间主要取决于装置的稳定性。Attocube公司的皮米精度干涉仪FPS3010(升之后的型号为IDS3010),被用于优化由多层波带片(MZP)和基于MZP的压电样品扫描仪组成的实验装置的稳定性的测量。实验是在德国DESY Photon Science中心佩特拉III期同步加速器的P10光束线站上进行的。Attocube公司的激光干涉仪PFS3010用来检测样品校准电机引起的振动和冲击产生的串扰。基于这些测量,装置的成像分辨率被提高到了±10nm。 图一 实验得到的系统分辨率结果参考文献Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)■ IDS3010激光干涉仪在微小振动分析中的应用电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。全球研究机构苏黎世邦理工大学的Sebastian Huber教授课题组巧妙的利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上(doi:10.1038/nature25156)。研究人员通过测试了一种机械超材料的体,边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。德国attocube公司的激光干涉仪IDS3010被用于超声-空气转换器激励后的机械超材料振动分析。IDS3010能到探测到机械超材料不同位置的微小振动,以识别共振频率。终实现了11.2pm的系统误差,为声子四拓扑缘体的实验分析提供了有力的支持。图一 实验中对对机械超材料微小振动的频率分析参考文献Marc Serra-Garcia, et al. Nature volume 555, pages 342–345 (2018)■ IDS3010激光干涉仪在快速机床校准的应用德国亚琛工业大学(Rwth Aachen University,长久以来被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时、需要中断生产过程、安装和卸载校准设备的手动校准变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪,其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较:六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性,值得指出的是:使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而通过保持相同的精度水平提高了生产率。参考文献Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)■ IDS3010激光干涉仪在工业C-T断层扫描设备中的应用工业C-T断层扫描被广泛用于材料测试和工件尺寸表征。设计一个的锥束C-T系统的挑战之一是它的几何测量系统。近,瑞士联邦计量院(METAS)的科学家将德国attocube公司的IDS3010皮米精度激光干涉仪用于X射线源、样品和探测器之间的精密位移跟踪。实验共有八个轴用于位移跟踪。除了测量位移之外,该实验装置还能够实现样品台的角度误差分析。终实现了非线性度小于0.1μm,锥束稳定性在一小时内优于10ppb的高精度工业C-T。参考文献Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU■ IDS3010激光干涉仪在增材制造3D打印方面的应用微尺度选择性激光烧结(μ-SLS)是制造集成电路封装构件(如微控制器)的一种创新方法。在大多数的增材制造中需要微米量的精度控制,然而集成电路封装的生产尺寸只有几微米,并且需要比传统的增材制造方法有更小的公差。德克萨斯大学和NXP半导体公司开发了一种基于u-SLS技术的新型3D打印机,用于制造集成电路封装。该系统包括用于在烧结站和槽模涂布台之间传送工件的空气轴承线性导轨。由于该导轨对定位精度要求很高,所以采用德国attocube公司的皮米精度干涉仪IDS3010来进行位置的跟踪。参考文献Nilabh K. Roy, Chee S. Foong, Michael A. Cullinan: "Design of a Micro-scale Selective Laser Sintering System", 27th Annual International Solid Freeform Fabrication Symposium, At Austin, Texas, USA ■ IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用在搭建具有纳米分辨率的X射线显微镜时,对于系统稳定性的要求提出了更高的要求。在整个过程中实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,表现出优异的性能。IDS3010在40小时内具有优于1.25nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300pm的分辨率。因此,IDS3010是对所述X射线显微镜装置中使用的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45nm。参考文献Characterizing a scanning fluorescence X ray microscope made with the displacement sensor■ 皮米精度激光干涉仪IDS3010在相位调制器的精密调制和控制上的应用相位调制器是相干合成孔径望远镜中光束合成机构的关键部件。提高相位调制器的调制精度和控制带宽有助于提高合成孔径望远镜的成像分辨率。相位调制器运动信息包括俯仰角、方位角和轴向位移3个自由度。目前3个或者多个自由度的实时测量还处于发展阶段。同时实现多自由度测量更是少之又少。来自中国科学院光电技术研究所光束控制重点实验室的方国明课题组采用德国attocube system AG公司的三轴皮米精度激光干涉位移传感器IDS3010通过获取待测目标平面内3个不共线点的位移量,而3个不共线的点可确定平面的法线,基于平面法线的性可解,从而可以获得目标的3个自由度运动信息,包括方位角、俯仰角和轴向位移。成功实现了三自由度的同时实时测量。图示: 三自由度测量原理示意图■ 皮米精度位移测量激光干涉仪助力声子四拓扑缘体观测电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。图示:实验装置示意图参考文献Observation of a phononic quadrupole topological insulator.Nature volume 555, pages342–345(2018)■ 激光干涉仪检测纳米精度位移台误差在实际生产中的存在可能导致损失以及客户对产品信心的丢失。光学传感器可以在质量检测中帮助减少误差产生提高成品率。attocube激光干涉仪是理想的可在各个领域提供高精度探测来减少误差的一种光学传感器。作为纳米精度位移台供应商的德国attocube公司,对位移台的精密移动的测量与鉴定是一个非常重要的任务。例如,下图左,ECS3030型号的线性位移台可在真空中进行位移。ECS3030位移台的行程是20mm。技术参数要求的是可重复精度小于50nm。利用attocube激光干涉仪对位移台上样品进行测量,位移台被程序控制来回往复移动1mm,在20mm的行程内在多个不同地点进行来回往复移动。测量结果如下图中所示。通过分析,左图中的数据提取的偏差值是13.2nm,下图右数据的直方图显示标准差是13nm。因此,位移台的可重复性技术指标是合格的。通过使用attocube激光干涉仪可以实施对于纳米精度位移台ECS3030的全自动测量。这已经是德国attocube公司对于位移台的质量检测手段。并且,这样一个简便与实用的传感器可以直接集成到生产线中去提供高产出的质量检测。■ 激光干涉仪组建高精度X射线显微镜同步辐射中心具有广泛的应用领域,生物科技(蛋白质结构),医学研究(微生物),工程研究(裂纹的变化观测),先进材料(纳米结构测量)等。以上应用需要高精度去驱动聚焦镜,样品,光学狭缝等物品(下图左),这样的机械结构需要减少热漂移与定位误差。德国attocube公司的激光干涉仪具备皮米精度分辨率,激光探头可在真空环境中使用,是同步辐射研究的良好选择。在现有激光探头中,标准激光探头M12是已经被证实可以在辐射环境中使用(大10MGy)。美国布鲁克海文实验室E. Nazaretski等人结合attocube激光干涉仪与纳米精度位移台搭建了X射线扫描成像显微镜(下图中)。通过attocube激光干涉仪作为实时检测与反馈位移台移动的工具,科学家实现了0.5nm的步进扫描(下图右)。并且,在真空环境中,系统的热漂移达到了2nm/h。综上所述,高精度的X射线显微镜可以实现纳米精度扫描成像,是实现硬X射线区域光学研究的有力工具。该显微镜使得X射线荧光光谱纳米精度成为了现实。参考文献E. Nazaretski , et.al. J. Synchrotron Rad. (2015). 22, 336–341 ■ 激光干涉仪无损探测轴承误差旋转物体的运动误差分析是高精度机械工程领域的一个主要兴趣之一。如果是高速旋转的转子,甚至1纳米的误差就会产生不想要的振动与运动误差。因此,纳米精度的运动误差监测是机械工程领域前沿的重要研究课题。一个主要的难题是:如何减小运动误差?为了减小误差,先需要测量误差。德国attocube公司的激光干涉仪可以提供一个无损,紧凑并且一插即用的解决方案。通常的线性位移测量需要一个平整的表面,而旋转运动的时候,遇到的是一个曲面(右图上)。attocube激光干涉仪测量的是一个直径为10mm的电动转子。由于attocube激光干涉仪的探头具有较大的容忍角度,激光探头很容易完成了校准并开始进行测量。转子转速为2160转每秒,两个激光探头对转子的运动误差进行了测量。右图下显示的为测量结果,红色实线为平均位置,而虚线显示了误差为5微米的两个圆环。黑色实现为实际测量数据。德国attocube公司的激光干涉仪软件使用界面友好,可提供亚纳米别的运动误差校正方案。即使是新用户,对于其激光干涉仪的使用也会很快熟悉。参考文献 Review of scientific instruments, 84, 035006 (2013) ■ 激光干涉仪校正低温非线性扫描通常扫描台在室温下扫描50微米 x 50微米的范围时候不会有显著的非线性效应。但是当在低温环境(4K或更低)中,压电陶瓷本身的性能发生变化,会产生下图右中的非线性扫描现象。通过德国attocube公司的激光干涉仪,可以在低温环境下使用激光探头对扫描台的扫描运动进行实时检测(高速扫描)。结合对扫描台的施加电压进行实时反馈控制,可解决低温下非线性扫描问题。测试数据■ 实验数据,皮米精度的稳定性图1 77mm长的腔在20个小时内的实验测量数据表明数据误差范围在55pm■ 测量速度快,定位样品采样带宽10MHz图2 样品移动速度2米/秒,移动范围1m发表文章1. Stability investigation of a cryo soft x-ray microscope by fiber interferometry Rev. Sci. Instrum. 91, 023701 (2020) 2. Vibration-heating in ADR Kevlar suspension systems James Tuttle et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 755 0120153. S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019).4. Observation of a phononic quadrupole topological insulator.Nature volume 555, pages342–345(2018)5. Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU6. Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)7. In situ contrast calibration to determine the height of individual diffusing nanoparticles in a tunable confinement S. Fringes et al. J. Appl. Phys. 119 024303 (2016)8. Interferometric characterization of rotation stages for X-Ray nanotomography T. Stankevi? et al. Rev. Sci. Instrum. 88 053703 (2017)9. Measurement of forces exerted by low-temperature plasmas on a plane surface T. Trottenberg and H. Kersten Plasma Sources Sci. Technol. 26 055011 (2017)10. Mesh-type acoustic vector sensor M. K. Zalalutdinov et al. J. Appl. Phys. 122 034504 (2017)11. Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)用户单位attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定,在全球范围内有超过了130多位低温强磁场显微镜用户。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎.....国内部分用户北京大学中国科技大学中科院物理所中科院武汉数学物理所中科院上海应用技术物理研究所复旦大学清华大学南京大学中科院半导体所上海同步辐射中心北京理工大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所……国外部分用户
    留言咨询
  • 皮米精度位移激光干涉仪(可试用)姓名:谷工(Givin)电话:(微信同号)邮箱: 昊量光电推出的皮米精度位移干涉测量仪quDIS是对纳米级别的位移波动进行量测的理想仪器,基于其独特的测量原理,相对距离的重复精度达到了前所未有的50皮米。quDIS可同时支持三个测量通道,使其可以适用于任意的多轴测量中。quDIS在原理上同样采用激光干涉法,不过与传统激光干涉仪相比,其集成了法珀腔(Reference cavity)及饱和吸收气室(GC)作为频率校准参考,通过激光波长调谐扫描,比较两种不同的干涉图样,可以实现其它设备所不具有的绝对距离测量,基于这种测量方式,使得quDIS相对其他产品测量距离可以达到20M的同时保持高精度,且与信号对比度和强度无关,由于使用整个干涉模式来提取位移信息,因此不存在非线性误差。此外,quDIS不仅可以获得位置、速度和加速度等信息,折射率、反射率或表面倾斜度等信息也可以从实时信号中提取得到。独特的法珀腔+饱和吸收气室构造 波长的线性变化的引入在此构造下使得绝对距离的测量成为可能!干涉传感头 激光束的成型是通过不同的传感器头来实现的,根据反射目标的不同,不同的应用都需要不同的准直、聚焦和光束剖面约束。quDIS的传感器头均基于光纤设计。quDIS为常规情况下的使用提供标准准直仪和定焦传感头,同时根据具体的需要以及恶劣环境下的应用,也设计了响应的特殊传感头。 用于测量高温漂移物体的传感器头的设计 镍铁合金制造的低热膨胀系数准直头产品特点: 多维度多通道位移干涉器,操作简单,即插即用 相对距离和绝对距离测量 完善的全套系统配置 实时输出数字化图像 针对不同应用提供各种传感接头及反射模块组合解决方案 长期使用保证稳定性 兼容真空与各种恶劣环境独特优势: 绝对距离高精度测量! 不存在非线性及周期性误差! 相对距离信号稳定性0.05nm! 工作距离最大20m(与传感头相关) 目标最大速度1m/s 三个传感接口,可实现多设备同步 探测器分辨率达到1pm应用领域: 极限环境下振动分析 缓慢漂移及热膨胀检测 精密设备位置控制 纳米级位移测量 层状结构中间隙和边缘的测量 位移和振动精度评估皮米精度位置测量仪参数列表:干涉仪传感头光源DFB激光器分辨率1pm功率400uW相对距离稳定性 0.05nm波长1535nm绝对距离精度0.2nm/mm线宽5MHz带宽25kHz传感器通道3工作距离0.1—20m光纤输入端口FC Narrow-Key-Slot目标速度1m/sMating Sleeves传感头真空同步多台设备同步低温
    留言咨询
  • 法布里珀罗干涉仪 FPI 法布里珀罗干涉仪(Fabry-Perot Interferometer,FPI 100)是一款共聚焦扫描 FPI,它自带光电探测器单元,设计用于测量和控制连续波激光器的模场分布。其主要特点有: 激光模式分析简单方便可选八种反射镜用于波长范围 300 到 3000 纳米自由光谱范围 1GHz 或 4GHz标准反射镜反射率 99.8%,对应 finesse 大于 400可选配光纤耦合器套件 – 方便使用 FC/APC 光纤接头进行耦合光电二极管更换套件 – 可见光/近红外/红外,通过内置聚焦透镜自动对准用户规定 finesse 值扫描选项 – 集成光电二极管放大器的独立扫描发生器 miniScan 杭州谱镭光电技术有限公司(HangzhouSPL Photonics Co.,Ltd)是一家专业的光电类科研仪器代理商,致力于服务国内科研院所、高等院校实验室、企业研发部门等。我们代理的产品涉及光电子、激光、光通讯、物理、化学、材料、环保、食品、农业和生物等领域,可广泛应用于教学、科研及产品开发。 我们主要代理的产品有:微型光纤光谱仪、中红外光谱仪、积分球及系统、光谱仪附件、飞秒/皮秒光纤激光器、KHz皮秒固体激光器、超窄线宽光纤激光器、超连续宽带激光器、He-Ne激光器、激光器附件及激光测量仪器、光学元器件、精密机械位移调整架、光纤、光学仪器、光源和太赫兹元器件、高性能大口径瞬态(脉冲)激光波前畸变检测干涉仪(用于流场、波前等分析)、高性能光滑表面缺陷分析仪、大口径近红外平行光管、Semrock公司的高品质生物用滤波片以及Meos公司的光学教学仪器等。 拉曼激光器,量子级联激光器,微型光谱仪,光机械,Oceanoptics,Thorlabs 。。。热线电话: / 传真:网址: /邮箱:
    留言咨询

皮米精度激光干涉仪相关的资讯

  • 应用解读:皮米精度激光干涉仪如何实现高精度实时位移反馈?
    “坐标”这个概念源于解析几何,其基本思想是构建坐标系,将点与实数联系起来,进而可以将平面上的曲线用代数方程表示。坐标的概念应用到工业生产中解决了大量实际问题,例如,坐标测量机可采集被测工件表面上的被测点的坐标值,并投射到空间坐标系中,构建工件的空间模型等诸多案例。坐标测量机还被用于产品质量控制,测量磨损,制造精度,产品形貌,对称性,角度等工业产品参数,因此需要非常高的移动精度,才能确保测量的准确性。德国attocube公司推出的IDS3010皮米精度位移测量激光干涉仪就是辅助坐标测量机提高测量精度的有力手段。图1 皮米精度位移测量激光干涉仪IDS3010IDS3010皮米精度位移测量激光干涉仪是如何帮助坐标测量机实现高精度的呢?图2 IDS3010激光干涉仪集成到坐标测量机探测臂上通常坐标测量机要求探测臂位移精度高于1微米,现在坐标测量机位移反馈大多是通过玻璃分划尺来实现的。玻璃分划尺是常用的一种位置测量的方法,分划尺在坐标测量机上位于龙门处,一般情况下,采用玻璃分划尺探测的不是探测臂本身,而是坐标测量机龙门处的位置变化。实际上, 坐标测量机的探测臂与龙门之间有一定长度的距离,它们的位置变化会因存在例如振动、位置差等而有所不同,因此只凭借龙门处位置变化来判断真实的位移反馈是不准确的,影响到实际样品的测量精度。图3 IDS3010激光干涉仪集成到坐标测量机上。坐标测量机通过干涉仪探头的配合,可反馈探测臂的位移。德国attocube公司的IDS3010皮米精度位移测量激光干涉仪通过非接触式方法测量,可以直接测量探测臂的运动,避免龙门处探测误差,实现高精度测量。如图3,激光探头位于坐标测量机侧边,M12/C7.6激光探头出射的激光可以被探测臂上的反射镜(直径3mm)反射回激光探头,IDS3010干涉仪通过分析干涉信号从而进行位置测量。探测臂能够移动0.8米距离,移动精度达到10微米。干涉仪能够实时测量该探测臂的位移以及振动等信息。图4 IDS3010实时位置测量软件WAVE测量数据。扩展图为中间区域的数据放大。IDS3010配置的软件WAVE可以实时观测与保存测量数据。如图4,坐标测量机的运动数据被测量并记录。图中所示,前15秒与终10秒间的数据是0.8m距离的往复运动。中间时间的数据看似没有变化,但通过WAVE软件的放大功能,我们发现中间时间的探测臂其实进行了10微米的步进运动。同时,通过WAVE软件我们也可以观测到步进运动的详细变化过程。每一个步进大约2秒,在运动初始的时候位移有超过,在大约0.4秒的短时间内位移被调整为10微米的步进长度。而在步进的末尾,也有小幅的位置噪音,该噪音一般是由于振动引入。这对于探测样品位移以及振动信息具有重大意义。IDS3010技术特点:IDS3010皮米精度位移测量激光干涉仪具有体积小、适合集成到工业应用与同步辐射应用中的特点,同时,测量精度高,分辨率高达1 pm,是适合工业集成与工业网络无缝对接的理想产品。除与坐标测量机结合使用外,在工业中的其他应用实例也非常广泛,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等等。+ 测量精度高,分辨率高达1 pm+ 测量速度快,采样带宽10MHz+ 样品大移动速度 2m/s+ 光纤式激光探头尺寸小,灵活性高+ 兼容超高真空,低温,强辐射等端环境+ 其可靠与稳定+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 多功能实时测量界面,包含HSSL、AquadB、CANopen、Profibus、EtherCAT、Biss-C等界面相关产品及链接:1、皮米精度位移激光干涉器attoFPSensor:http://www.instrument.com.cn/netshow/C159543.htm2、EcoSmart Drive系列纳米精度位移台:http://www.instrument.com.cn/netshow/C168197.htm3、低温强磁场纳米精度位移台:http://www.instrument.com.cn/netshow/C80795.htm
  • 德国attocube公司IDS3010皮米精度激光干涉仪荣获iF设计大奖
    德国attocube公司推出的皮米精度激光干涉仪IDS3010凭借其特的设计原理、超高的稳定性并且可在端环境中使用的特点,获得了全球工业设计奖项之一的“iF设计奖”。图1:德国attocube公司IDS3010皮米精度激光干涉仪“iF Design Award”由德国设计协会创立,与德国“Red dot奖”、美国“IDEA奖”并称为三大设计奖。这个让人梦寐以求的奖项次授予了激光位移传感领域,具有非常重大的意义,这也是对IDS3010皮米精度激光干涉仪这一颠覆性产品的认可。IDS3010皮米精度激光干涉仪分辨率高达1pm,采样速率达到10MHz,样品大移动速度2m/s,小激光探头为1.2mm。广泛应用于闭环扫描器校准、纳米精度位移标定、无损测量振动频率及轴承误差、精密仪器制造、角度测量以及同步辐射光路准直等领域。图2:IDS3010皮米精度激光干涉仪应用领域:计量学研究、显微镜控制、超精密加工、同步辐射应用、真空/低温系统、加工机床校准值得指出的是,IDS3010皮米精度激光干涉仪获得了德国PTB的认证,大程度地保证了其测量的可靠性和准确性。图3:德国PTB计量证书德国attocube公司的皮米精度激光干涉仪IDS3010在国内已经拥有清华大学、天津大学、中国计量科学院、中科院高能物理研究所、中科院应用物理研究所、南方科技大学等用户,并在国际上受到广泛青睐,用户包括哈佛大学、斯坦福大学、耶鲁大学等科研单位。
  • 皮米精度激光干涉仪如何在众多前沿领域中大显神通?
    1.IDS3010激光干涉仪在自动驾驶高分辨调频连续波(FMCW)雷达中的应用自动驾驶是目前汽车工业为前沿和火热的研究,其中可靠和高分辨率的距离测量雷达的开发是尤为重要的。德国弗劳恩霍夫高频物理和雷达技术研究所(Wachtberg,D)Nils Pohl教授和波鸿鲁尔大学(Bochum,D)的研究小组提出了一种全集成硅锗基调频连续波雷达传感器(FMCW),工作频率为224 GHz,调谐频率为52 GHz。通过使用德国attocube公司的皮米精度激光干涉仪FPS1010(新版本为IDS3010),该雷达测量系统在-3.9 um至+2.8 um之间实现了-0.5-0.4 um的超高精度。这种新型的高精度雷达传感器将会应用于许多全新的汽车自动驾驶领域。更多信息请了解:S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019)图1.1 紧凑型FMCW传感器的照片图1.2 雷达测距示意图,左边为雷达,右边为移目标,attocube激光干涉仪用来标定测量结果 2. IDS3010激光干涉仪在半导体晶圆加工无轴承转台形变测量上的应用半导体光刻系统中的晶圆轻量化移动结构的变形阻碍了高通吐量的半导体制造过程。为了补偿这些变形,需要的测量由光压产生的形变。来自理工大学荷兰Eindhoven University of Technology 的科学家设计了一种基于德国attocube干涉仪IDS3010的测量结构,以此来详细地研究由光压导致的形变特性。图2.1所示为测量装置示意图,测量装置是由5 x 5 共计25个M12/F40激光探头组成的网格,用于监测纳米的无轴承平面电机内部的移动器变形。实验目的是通过对无轴承平面的力分布进行适当的补偿,从而有效控制转台的变形。实验测得大形变量为544 nm,小形变量为110 nm(如图2.2所示)。更多信息请了解:Measuring the Deformation of a Magnetically Levitated Plate displacement sensor图2.1 左侧为5X5排列探头测量装置示意图,右图为实物图图2.2 无轴承磁悬浮机台形变量的测量结果,大形变量为544 nm 3.IDS3010在提高X射线成像分辨率中的应用在硬X射线成像中,每个探针平均扫描时间的减少对于由束流造成的损伤是至关重要的。同时,系统的振动或漂移会严重影响系统的实时分辨率。而在结晶学等光学实验中,扫描时间主要取决于装置的稳定性。attocube公司的皮米精度干涉仪FPS3010(升后的型号为IDS3010),被用于测量及优化由多层波带片(MZP)和基于MZP的压电样品扫描仪组成的实验装置的稳定性。实验是在德国DESY Photon Science中心佩特拉III期同步加速器的P10光束线站上进行的。attocube公司的激光干涉仪PFS3010用来检测样品校准电机引起的振动和冲击产生的串扰。基于这些测量,装置的成像分辨率被提高到了±10 nm。更多信息请了解:Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)图3.1 实验得到的系统分辨率结果 4.IDS3010激光干涉仪在微小振动分析中的应用电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。全球研究机构苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在Nature上(doi:10.1038/nature25156)。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。德国attocube公司的激光干涉仪IDS3010被用于超声-空气转换器激励后的机械超材料振动分析。IDS3010能到探测到机械超材料不同位置的微小振动,以识别共振频率。终实现了11.2 pm的系统误差,为声子四拓扑缘体的实验分析提供了有力的支持。更多信息请了解:Marc Serra-Garcia, et al. Nature volume 555, pages 342–345 (2018)图4.1 实验中对对机械超材料微小振动的频率分析5. IDS3010激光干涉仪在快速机床校准中的应用德国亚琛工业大学(Rwth Aachen University,被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这又将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时且需要中断生产过程的安装和卸载校准设备变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪。其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较,六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性。值得指出的是,使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而在保持相同的精度水平下大的提高了生产率。更多信息请了解:Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)图5.1 自动校准激光探头安装示意图6.IDS3010激光干涉仪在工业C-T断层扫描设备中的应用工业C-T断层扫描被广泛用于材料测试和工件尺寸表征。几何测量系统是设计的锥束C-T系统的一大挑战。近期,瑞士联邦计量院(METAS)的科学家采用德国attocube公司的IDS3010皮米精度激光干涉仪用于X射线源、样品和探测器之间的精密位移跟踪。该实验共有八个轴用于位移跟踪。除了测量位移之外,该实验装置还能够进行样品台的角度误差分析。终实现非线性度小于0.1 um,锥束稳定性在一小时内优于10 ppb的高精度工业C-T。更多信息请了解:Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU6.1激光干涉仪在系统中的测量定位示意图7.IDS3010激光干涉仪在增材制造3D打印中的应用微尺度选择性激光烧结(u-SLS)是制造集成电路封装构件(如微控制器)的一种创新方法。在大多数的增材制造中需要微米量的精度控制,然而集成电路封装的生产尺寸只有几微米,并且需要比传统的增材制造方法有更小的公差。德克萨斯大学和NXP半导体公司开发了一种基于u-SLS技术的新型3D打印机,用于制造集成电路封装。该系统包括用于在烧结站和槽模涂布台之间传送工件的空气轴承线性导轨。为满足导轨对定位精度高的要求,该系统采用德国attocube公司的皮米精度干涉仪IDS3010来进行位置的跟踪。更多信息请了解:Nilabh K. Roy, Chee S. Foong, Michael A. Cullinan: "Design of a Micro-scale Selective Laser Sintering System", 27th Annual International Solid Freeform Fabrication Symposium, At Austin, Texas, USA 7.1系统示意图,其中激光干涉仪被用作位移的测量和反馈8. IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用在搭建具有纳米分辨率的X射线显微镜时,对系统稳定性提出了更高的要求。在整个实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,在40小时内表现出优于1.25 nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300 pm的分辨率。因此,IDS3010是对上述X射线显微镜装置的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40 nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45 nm。更多信息请了解:Characterizing a scanning fluorescence X ray microscope made with the displacement sensor 8.1荧光X射线显微镜的高分辨成像结果

皮米精度激光干涉仪相关的方案

皮米精度激光干涉仪相关的资料

皮米精度激光干涉仪相关的论坛

  • 激光干涉仪的特征及作用

    激光干涉仪是以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。测量长度的激光干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。 激光干涉仪采用一个双光束激光头和一个双通道的处理器,采用飞行采样方式,在测量过程中无须停机采样检测,节约了测量时间和编程时间;利用RENISHAW动态特性测量与评估软件,可进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析。激光干涉仪的激光头和靶标反射镜二件之间只要发生相对位移就能进行测量,测量系统中无须分光镜、所以对光极其方便。 激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。激光干涉仪可用来精确测量和校准机床、三座标测量机和X-Y平台的机械精度,也测量轴的定位精度、重复定位精度及反向间隙,测量轴的角偏、直线度,测量平台的平面度。

  • 【资料】求助--激光干涉仪

    [em10] 用于机床定位精度检测和重复定位精度检测的激光干涉仪什么牌子的好呀?在Renishaw和API之间徘徊,那位前辈能给指点一二?

皮米精度激光干涉仪相关的耗材

  • TYDEX太赫兹扫描法布里 - 珀罗干涉仪
    太赫兹扫描法布里 - 珀罗干涉仪太赫兹扫描法布里 - 珀罗干涉仪(TSFPI)设计用于测量窄带THz辐射的波长和强度。 TSFPI可以与脉冲以及连续的窄带THz辐射源一起使用。TSFPI由两个半透明的平行硅镜组成,其中一个安装在电机驱动的线性驱动器上。THz辐射参数的测量是通过移动反射镜的平移(扫描)来完成的,如图2所示。1。图1. TSFPI的原理图。TSFPI可与以下来源一起使用:?回旋管 ?光泵浦亚毫米波激光器 ?返波振荡器 ?自由电子激光器 ?差频THz发生器 ?混频太赫兹发生器 量子级联激光器 ?p-Ge激光器 ?新型太赫兹源。太赫兹扫描法布里-珀罗干涉仪还能够测量宽带太赫兹源的波长和强度,以及根据法布里-珀罗干涉仪透射光谱(图2)过滤太赫兹辐射。TSFPI支持许多镜像转换模式,例如将镜像移动到给定位置,将镜像转换为给定的距离、连续的和循环的转换。镜像转换速度,转换的间隔,开始和结束位置也可以调整。图2.TFP光谱仪测量的镜面间距为500μm的TSFPI透射光谱Menlo Systems TERA K8。图3示出了由TSFPI执行的光泵浦超声波波长激光器的振荡波长的测量结果。 从图中可以看出,相邻TSFPI透射zui大值之间的距离约为216μm(433μm-216μm=217μm 647μm-433μm=214μm 865μm-647μm=218μm),其对应于 一半的激光波长。 此结果与理论TSFPI透射zui大值一致:λ= 2 * d / m,其中d是TSFPI反射镜之间的间距,单位为μm,m是干涉级数,λ是以μm为单位测量的波长。图3.光声探测器Tydex GP-1P与TSFPI反射镜间距的信号幅度。 太赫兹辐射是由光泵浦的亚毫米波激光器产生的,λlas=432μm。规格规格Value工作频率范围THz0,1-15自由光谱范围,太赫兹0,01-1,8毫米镜之间的间距0-9,5间距设置精度,μm± 1.25光轴高度,毫米110自由孔径,毫米52尺寸(长x宽x高),毫米232х151х120质量,公斤5,0主要特征:?TSFPI广泛操作范围,0.1 - 15 THz ?高击穿阈值 ?大光圈,52毫米 ?镜面定位精度高,±1.25μm?易于使用。TSFPI包包括以下内容:?TSFPI干涉仪装置 ?电源和控制装置 ?镜像转换控制软件 ?电缆 ?用户指南。TSFPI以下配件可以单独提供:?光声Golay探测器GC-1P / T / D ?0.1-15 THz范围内指定波长的BPF(带通滤波器) ?低通滤光片(LPF)过滤IR辐射,其截止频率分别为:23.4 THz,23.3 THz,23.1 THz,14.3 THz,10.9 THz,8.8 THz,5.5 THz,4.3 THz,4 THz,3.2 THz ?一组透射率为1%,3%,10%和30%的衰减器 ?TPX和HRFZ-Si镜片。
  • 全光纤麦克尔逊干涉仪MFI
    全光纤迈克逊干涉仪-MFI Michelson Fiber Interferometer产品介绍:量青光电提供的美国Optiphase公司全光纤迈克逊干涉仪(Fiber Michelson Interferometer)不但可以用来作为精密的测试测量仪器,还可以应用在精密的干涉传感系统。光纤干涉仪内部采用PZ1小尺寸光纤拉伸器(参见PZ1光纤拉伸器产品资料),内置的PZT通过前面板的BNC连接器驱动。全光纤迈克逊干涉仪标准产品的工作波长从1064nm到1550nm。每个光纤干涉仪都具有“零米”光路偏差的设计,用于方便用户根据不同的测试应用来改变光路延迟长度。标准产品的延迟光纤长度为50米,我们能够根据用户的实际要求提供各种定制的光纤干涉仪,请联系我们的销售人员.产品参数:参数单位指标产品型号MFI-10-50MFI-13-50MFI-15-50工作波长nm106413101550调制常数rad/V2.52.01.6两臂光路失配长度(无延迟)m0m0m0m两臂光路失陪长度偏差cm+/-10cm+/-10cm+/-10cm调制器接口BNCBNCBNC光纤类型HI-1060(或指定)SMF-28eSMF-28e光路接口FC/APCFC/APCFC/APC最大功率承受能力mW250250250封装尺寸(长x宽x高)mm260x160x90260x160x90260x160x90重量kg~2.7~2.7~2.7可定制的延迟范围m0.5m~1000m标准产品的延迟长度m50光纤连接器FC/APC产品应用:激光器相位噪声测试激光器频率噪声测试干涉型光纤传感系统模拟科研实验室应用应用列举:1.激光器相位/频率噪声测试(1)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。OPD-4000解调输出电压应用到PZ1光纤拉伸器的BNC接口上,作为PZ1光纤拉伸器的驱动电压。OPD-4000的相位解调输出可以选择数字信号输出或者模拟信号输出,数字信号输出通过PC进行后续处理,模拟信号通过信号分析仪进行分析。2.激光器相位/频率噪声测试(2)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。通过为PZ1型光纤拉伸器BNC接口提供控制电压保持其处于正交偏置(Quadrature Bias)。输出光信号由光接收机接收处理,输出信号进一步处理。3.光纤干涉仪传感器模拟(3)输入光信号代表干涉型光纤传感器的光源。选择合适的延迟光纤线圈,延迟长度作为需要模拟的传感器的长度。输出光信号通过光接收器件到信号分析仪进行处理分析。订货信息:MFI-10-50:1064nm光纤迈克逊干涉仪MFI-13-50:1310nm光纤迈克逊干涉仪MFI-15-50:1550nm光纤迈克逊干涉仪
  • 中红外法布里-珀罗F-P干涉仪( F-P标准具/多光束干涉仪 2.5-14um)
    总览法布里-珀罗干涉仪(英文:Fabry–Pérot interferometer),是一种由两块平行的玻璃板组成的多光束干涉仪。其中两块玻璃板相对的内表面都具有高反射率。当两块玻璃板间用固定长度的空心间隔物来间隔固定时,它也被称作法布里-珀罗标准具或直接简称为标准具。F-P(法布里-珀罗)标准具因为平板反射率高,多光束等倾斜干涉条纹极窄,所以是一种高分辨率的光谱仪器。可用于高分辨光谱学,和研究波长非常靠近的谱线,诸如元素的同位素光谱、光谱的超精细结构、光散射时微小的频移,原子移动引起的谱线多普勒位移,和谱线内部的结构形状;也可用作高分辨光学滤波器、构造精密波长计;在激光系统中它经常用于腔内压窄谱线或使激光系统单模运行,可作为宽带皮秒激光器中带宽控制以及调谐器件,分析、检测激光中的光谱(纵模、横模)成分.技术参数产品特点适用于中红外平行度好端面平整度高表面质量好产品应用波长锁定器 波分复用电信网 手持光谱分析仪 光纤光栅传感系统 可调谐滤波器激光器 可调谐滤光片技术参数技术参数技术指标工作波段近红外1.3-2.0um,中红外2.5-14um直径25.4mm+/-0.05mm通光孔径22.9mm长度100mm+/-0.2mm平行度5-10 arc sec端面平整度中红外 1/4 lambda;近红外 1/10 lambda表面质量中红外80-50;近红外60-40管壳铜精细度(FSR)0.012cm-1实验测试:测试步骤:1,安装1532nm激光器,连接电源,USB线2,激光器输出连接到光纤准直器3,用BNC转BNC线连接信号发生器到激光器驱动的低频调制端口4,用BNC转BNC线连接探测器到示波器的通道2端口5,打开激光器,打开信号发生器(三角波调制,频率1KHZ,电压幅值500mW)6,激光器发出的光通过标准具,打在探测器光敏面上,通过调整标准具的角度,在示波器上查看调制波形测试结果:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制