当前位置: 仪器信息网 > 行业主题 > >

普朗克常量实验装置

仪器信息网普朗克常量实验装置专题为您提供2024年最新普朗克常量实验装置价格报价、厂家品牌的相关信息, 包括普朗克常量实验装置参数、型号等,不管是国产,还是进口品牌的普朗克常量实验装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合普朗克常量实验装置相关的耗材配件、试剂标物,还有普朗克常量实验装置相关的最新资讯、资料,以及普朗克常量实验装置相关的解决方案。

普朗克常量实验装置相关的资讯

  • “量子力学与计量关系研究”研讨会召开
    2018年第26届国际计量大会上,七个计量基本单位已全部实现用自然物理常数定义。质量单位千克通过“质能公式”和电磁力与量子力学范畴下的普朗克常量联系在一起,说明量子力学已开始逐步渗入力学计量领域。   近日,浙江省计量科学研究院量子重力加速度及微小力值研究课题组一行赴京参加由中关村检验检测认证产业技术联盟国际合作专委会举办的“量子力学与计量关系研究”研讨会,积极参与国内量子计量、量子测量相关技术交流。研讨会云集国家、省级计量机构及其它单位计量相关人士共计80余位,其中不乏新加坡工程院洪明辉院士等著名专家学者。   会上,多位资深专家学者就量子力学的背景及其与计量发展的关系进行了介绍和探讨。会议同时公布了《量子力学与计量关系研究国际合作报告项目》项目组织及其实施方案,并征求编写意见。此次研讨会描绘了量子计量的发展远景,指明量子计量的先进性及其在未来计量发展中的核心地位,其发布的国际合作项目将借助CIPM平台,联合国际计量专家对量子力学和计量关系提出共识,具有深远的意义。 用于测量普朗克常数的能量天平装置   会后,省计量院一行前往中国计量科学研究院昌平园区参观学习用于测量普朗克常数的能量天平装置。该装置由真空隔离系统、主动气浮隔振系统、质量比较器、感应及主激励线圈、主激励线圈驱动系统、激光干涉测量系统等部分组成,对普朗克常数的测量不确定度可达10-8级别,处国际先进水平。期间,省计量院就量子力学在力学计量领域的应用研究与国家院能量天平研究团队、力声所力值计量团队展开合作意向交流,为后续标准装置研制、科研项目申报等方面深入合作奠定基础。
  • 重新定义千克试验经多年努力达成一致
    p style="text-align: center "img width="500" height="376" title="2015102095244880.jpg" style="width: 500px height: 376px " src="http://img1.17img.cn/17img/images/201510/insimg/00933915-9f95-45da-9a76-39ce8e934218.jpg" border="0" vspace="0" hspace="0"/ /pp style="text-align: center "“国际千克原器”的复制品 图片来源:Andrew Brookes/pp  几十年来,计量学家一直试图停止使用“国际千克原器”。这是一个由铂铱合金制成的圆柱体,126年在从法国巴黎郊外一个戒备森严的地下室里对千克进行着定义。如今,看上去计量学家至少掌握了用基于数学常数的定义替代该圆柱体所需的数据。/pp  这一突破的到来恰逢其时。科学家原定于2018年对包括安培、摩尔和开尔文在内的多个单位进行重新定义,千克也包括在内。近日,国际计量委员会(CIPM)在巴黎会面,探讨了下一步要采取的举措。/pp  “这是一个激动人心的时刻。”美国国家标准与技术研究院(NIST)物理学家David Newell说,“它是全球科学家长时间不懈努力的结果。”/pp  千克是唯一一个仍基于实物的国际单位制。尽管从基本常数的角度对其进行定义的试验在上世纪70年代便有描述,但直到去年,才有研究团队利用两种完全不同的方法均获得了足够精确的结果,而两种结果的一致程度足以推翻千克的实物单位定义。/pp  虽然重新定义不会使千克变得更加精确,但将使其更加稳定。实物会随着时间的流逝失去或获得原子,甚至被破坏,而常数能保持不变。国际计量局(BIPM)质量工作组前负责人Richard Davis表示,基于常数的定义至少从理论上,将使地球上任何地方的人都能进行精确的千克测量,而不是只有那些在法国“保险柜”的人才能做到。/pp  2011年,CIPM正式同意从普朗克常数的角度表达千克。普朗克常数将粒子的能量同其频率并且通过E=mc2等式在同其质量关联起来。这意味首先要利用基于现有千克参考量的试验设定普朗克数值,然后利用这一数值定义千克。CIPM质量咨询委员会建议,普朗克常数3个独立的测量值应当一致,并且其中两个应利用不同方法。/pp  一种方法由名为阿伏伽德罗项目的国际团队首创。它涉及在两个硅-28球体中对原子进行计数,其中每个球体的重量和千克参照量相同。这使其得以计算出一个阿伏伽德罗常数,而研究人员会将其转化成普朗克常数值。另一种方法利用的是一台被称为瓦特天平的设备,通过称重测试质量产生普朗克常数值,而测试质量根据千克参考量和电磁力的对照进行了校正。/pp  事实证明,达成一致非常困难。“我认为,每位计量学家都在担心,‘如果两个数值永远不一致,该怎么办?’”Davis说。/pp  然而,在协调阿伏伽德罗项目的德国国家计量研究院(PTB)院长、CIPM单位咨询委员会主席Joachim Ullrich看来,经过3年的不懈努力,这种担心被证明是没有必要的。在隶属于加拿大国家研究委员会(NRC)的测量科学和标准实验室购买并重建了原建于英国国家物理实验室的瓦特天平后,首个进展的迹象出现了。/pp  在一个新的实验室中,全新的NRC团队将一些被预测过但尚未予以解释的系统误差考虑进来。2012年1月发表的相关成果同阿伏伽德罗项目的硅球体试验结果更加接近。/pp  不过,国际科技数据委员会(CODATA)基本常数工作组组长Newell表示,这仍然使来自NIST的试验结果保持着异常值。每4年,该工作组会通过将迄今所获得的全部试验结果考虑在内,为普朗克常数等提供一个最好的数值。“我们带来了一个全新的研究团队,仔细检查每个部件,并且查看了每个系统。”然而,他们从未发现导致结果不一致的原因。2014年年底,NIST团队终于同其他两个团队实现了匹配。与此同时,他们将试验结果的不确定性缩小到规定水平以内。/pp  今年8月,当CODATA发表其关于普朗克常数的最新值时,数值的不确定度为12ppb(1ppb为十亿分之一),仅超过CODATA此前所报告数值的四分之一,并且在CIPM的要求范围之内。/pp  在10月15日~16日于BIPM举行的会议上,CIPM探讨了下一步举措。这包括对在2018年国际计量大会上有望重新定义安培、摩尔、开尔文和千克的决议草案的讨论。BIPM仍在忙于起草一份将使无法利用瓦特天平或硅球体装置的团队利用新的千克定义的协议。/pp  不过,目前仍有一些烦心事。各团队不得不在2017年7月1日,即普朗克常数值被修正前发表进一步的数据。在这个截止日期前,Ullrich团队计划在试验中利用一批来自俄罗斯的新球体装置。他希望,这将产生更加精确的普朗克常数值,但可能会使试验结果再次出现分歧。“然后,我们将陷入麻烦当中。”Ullrich说,“但我非常有信心,这不会发生。”Newell对此表示赞同。/pp  如果他们被证明是正确的,那么2018年,国际千克原器将成为珍藏品。“我们会保留着它。”Davis说,“只是它不会再定义任何事情。”/pp/ppbr//p
  • 研究透视:中国的大科学装置 | Nature
    中国江门中微子实验站,工作人员的施工现场工作。  中国南部广东附近的江门中微子实验站(JUNO) 无疑是大科学装置。中心是一个巨大的球体,里面装满了2万吨液体,并安置在约700米深的地下实验室里,旨在回答粒子物理学中的基本问题。这是迄今为止建造的同类仪器中,最大、最灵敏的大科学仪器。  中国西南部四川省的中国锦屏地下实验室(China Jinping Underground Laboratory)也有类似规模。寻找暗物质的实验,最近已经扩大到世界上最大和最深的地下实验室,位于锦屏山下2400米处。地球系统数值模拟装置(EarthLab)位于北京,是模拟地球气候系统的高性能虚拟实验室 高海拔宇宙线观测站(LHAASO)位于四川,使用遍布青藏高原的探测器阵列,以扫描高能宇宙射线和γ射线,这是中国在过去两年中推出的另外两个大型基础设施科学设施。还有其他设施正在建设中,包括北京的高能光子源,这是中国第一个高能同步辐射设施,将于2025年投入使用。  华盛顿特区非营利组织中美研究所(Institute of China-America Studies)的杰出研究员丹尼斯西蒙(Denis Simon)说,中国在全球研究领域迅速崛起的下一个阶段,将是关注大科学。在2022年自然指数中,中国的自然科学产出已经超过了美国,现在领先了近5000个份额。西蒙说,建造和运营大型设施的声望,会进一步巩固中国作为科学超级大国的地位,这些大科学装置旨在产生大量数据和见解,可用于多个领域和行业。  大科学附带了机遇是中国的一大吸引力。例如,从欧洲核子研究组织(CERN)的大型粒子加速器中衍生出来的技术,已经彻底改变了医学成像,并引发了万维网的发展。现在广泛用于智能手机、网络摄像头和其他产品的微型相机技术,可以追溯到美国国家航空航天局(NASA)的星际任务工作。西蒙说:“中国仍在寻找突出其发展速度的重大突破。”但还有另一个因素推动中国积累大科学基础设施,他补充说:“中国想要赢得诺贝尔奖。”  考虑到中国研究团体的规模,中国的诺贝尔奖数量非常低。中国近期唯一一项获奖研究——2015年诺贝尔生理学或医学奖,获奖原因是发现了治疗疟疾的药物青蒿素——是为了表彰主要在20世纪70年代进行的研究。西蒙说,赢得更多的诺贝尔奖,以肯定中国在全球科学领域的领先地位,这是中国领导人公开讨论的事情。“这在一定程度上与民族自豪感有关——这是一种不断鼓舞士气的方式,表明中国不再是跟随者,而是可以成为领导者。”  从历史上看,世界上大多数大科学项目都是由美国、欧洲和日本主持的,这些国家在中国于1984年启动的第一个重大科学基础设施——北京正负电子对撞机(BEPC)之前几十年就开始建设设施了。但中国很快就迎头赶上。西蒙说:“ 1980年,当中国决定开始与西方合作时,关系非常不对称,中国远远落后。”他补充说,现在,中国的立足点更加均衡,“甚至在某些研究领域或子领域处于领先地位”。  例如,在粒子物理学中,经过一系列升级后,北京正负电子对撞机BEPC成为世界上第一台探测到已确认的“四夸克”(一种奇异形式的亚原子物质)的仪器(M. Ablikim et al. Phys. Rev. Lett. 110, 252001 2013)。在天体物理学中,高海拔宇宙线观测站LHAASO捕捉到了,迄今为止探测到的最高能量γ射线爆发,这一事件以至于挑战了物理学的经典理论 (The LHAASO Collaboration Sci. Adv. 9, eadj2778 2023)。西蒙说:“在这个时代,中国是更加积极主动、更有影响力的参与者,正在塑造游戏规则。”  这种转变,将如何影响全球研究生态系统,还有待观察。柏林马克斯普朗克科学史研究所(Max Planck Institute for the History of Science)研究小组的负责人安娜丽莎阿勒斯(Anna Lisa Ahlers)表示:“目前正在进行的讨论,包括中国国内的讨论,表明中国在国际科学中发挥了重要作用,只是处于前沿,擅长于高质量的后续工作,而不是自己开创新的趋势。”“如果建立了其他国家没有的科学基础设施,这种情况可能会改变,”她说。在今年早些时候的一次政策会议上,最高领导人呼吁在科技领域进行更多的“颠覆性创新”,并将国家的科学预算提高了10%,尽管整体经济增长缓慢。  高压科学中国新的大科学基础设施,能否带来预期的收益,很大程度上取决于位于北京的中国科学院(CAS),这是世界上最大的科学研究机构,负责建设和运营中国大部分的大科学设施。作为中国最重要的研究资金接受者,中国科学院有望提供中国领导层渴望的改变游戏规则的研究发现。西蒙说:“中国科学院一直认为,如果中国想成为科技大国,就需要提升基础研究,包括大科学基础设施。”目前大科学装置的愿望实现了,此刻中国科学院是该交卷的时候了,为此也承受着很大的压力。在中国领导人中,有一种对整个系统的不断告诫:你必须做得更好you’ve got to do a better job。在中国锦屏地下实验室,研究人员注入液态氮。来源:Imago/Alamy  中国科学院在建设如此庞大的专业基础设施时,面临的个主要挑战之一是,由于多个项目同时启动,中国精英人才正变得捉襟见肘。例如,在中国重要的研究领域高能光子科学中,由于地方政府资助的项目与中国科学院和北京、上海的其他研究机构,正在开发的项目相互竞争,这些设施正在互相poaching挖人。“我不确定让这么多基础设施项目同时(运行)是否明智,”德国汉堡基础科学研究所德国电子同步加速器(German Electron Synchrotron)的区域研究研究员马库斯康莱(Marcus Conlé)说。Conlé去年作为代表团的一员访问了中国,探索潜在的研究合作。  康莱说,中国许多大科学项目的设施优先方法是另一个痛点。“在欧洲,这一过程,将是研究人员提出一项超出现有研究基础设施限制的实验,然后提出建造新仪器的理由。”在中国,有更多的动力来建造仪器,以获得世界第一的地位——尤其是在基础设施由地方政府资助的情况下——“然后科学家们,试图找出如何使用大科学装置的方法,”康莱说。他补充说,这种情况反映出了,中国在建造和操作此类大科学装置仪器方面,经验相对不足,尽管在上海等主要研究中心,这种情况正在迅速改变。  哥伦布市俄亥俄州立大学(Ohio State University)研究国际科学合作的公共政策研究员卡罗琳瓦格纳(Caroline Wagner)说,通过合作,向其他国家学习,对中国的大科学未来,具有非常重要的战略意义,尽管中国与西方的政治关系依然紧张。Wagner指出,中国投资的大部分大科学基础设施都是,世界领先的海外设施科学家协商设计的。她说:“研究人员知道,必须加强国际交流与合作,才能提高研究工作质量,例如,我们可以从俄罗斯的经验中,看到这一点。”  一些西方国家担心,中国的合作研究关系等同于单向的技术转让。因此,Ahlers说,“中国大学正在说服国际科学家”在中国工作,却“变得更加困难”。然而,中国的大科学装置项目,具有更强大的吸引力。Ahlers说:“要成为全球科学强国,需要吸引国际研究人员,而这正是这些大科学基础设施项目,正在做的事情。”“许多研究人员真的想去这些独特的大科学基础设施,因为这是在其他地方无法获得的新数据来源。”  康莱说,中国对大科学的投资,也可以带来全球利益。他表示:“中国合作伙伴的合作变得越来越困难,但也越来越有趣。”“在过去,这通常涉及在欧洲设施的合作——但现在也可以是在中国的大科学装置合作。”  西蒙还看到了中国推动大科学装置,对全球科学的主要好处。“需要睁大双眼,”他说。“但是,如果西方在'互惠互利mutual benefit'这个词有一些潜在含义的时候,离开中国,那将是不明智的——因为这种人才流动,不仅可以从西方流向东方,而且现在也可以从东方流向西方。”  文献链接  Nature 630, S6-S7 (2024)  doi: https://doi.org/10.1038/d41586-024-01597-1  https://www.nature.com/articles/d41586-024-01597-1  本文译自Nature,英文作者是澳大利亚自由撰稿James Mitchell Crow
  • 上海比朗公司首家推出“气体光催化装置”
    Bilon品牌自2007年推出以来,一直不断地进行着技术的改良,为科研工作者提供着高品质的检测产品。继2010年7月推出Bilon光化学发反应仪,Bilon家族再度创新,于2011年8月,上海比朗公司首家荣耀推出BILON-R-BA型&ldquo 气体光催化装置&rdquo ,该装置系统由反应系统和分析系统组成。配合我公司生产的光化学反应仪可完成气体的在线反应。气体光催化装置特征 气体光催化装置是一全密闭的反应器,其内部装有200mm*100mm大小,外部可调节高度的支撑块,测试样片放置在支撑块上。支撑块上方有一与其平行的光路窗口,反应器外部的紫外光通过此窗口照射到样片表面。通过调节支撑块的高度使得样片表面与窗口之间的距离大于5.0mm。反应气只能在样片表面和窗口之间通过。光路窗口材料可选用石英玻璃或硼玻璃。 样品的光催化性能测试是在连续流动反应装置中进行,反应装置由反应气供应、光源、光催化反应器组成。由于反应物浓度很低,因此构成装置的材料必须满足低吸附性呵抗紫外线的要求,测试装置原理图见下图。产品详情请咨询:上海比朗仪器有限公司www.sh-bilon.com地址:上海市闵行区中春路988号7号楼5楼Tel:021-52965995/52965969
  • 雷磁发布雷磁ZDY-504型常量水分滴定仪新品
    【主要特点】l 支持包括容量法、库仑法全范围水分含量的测量,满足常量水分、微量水分的不同用户测量需求;l 点阵式液晶显示,按键操作,电脑中文软件同时控制或分别控制;实时显示有关测试方法、测试结果;l “对话式”操作步骤,轻松完成滴定设置和过程操作;l 无污染测量分析过程:防漏液装置和废液瓶防倒吸装置;全自动进液、排液、KF试剂混合以及自动清洗功能,防滴定杯溶液溢出保护功能;防止用户直接接触KF试剂,保证测量和使用工作人员和环境的安全;l 支持预滴定、自动滴定、手动滴定、恒滴定、KF滴定度测定等多种滴定模式,满足不同类型样品分析;l 支持多种滴定管类型,并支持滴定管系数重新标定;l 用户可按需选择mg、mg/L、%、ppm等多种测量结果单位;仪器支持GLP规范,支持存贮常量、微量水分测量数据各200套;支持数据存贮、删除、查阅、打印或输出;l 具有断电保护功能和KF试剂失效检测以及提醒功能;l 支持RS232串行打印机,打印测量结果;l 支持固件升级和软件升级,允许功能扩展。【技术参数】型号ZDY-504测量范围 容量法:(0.1~250.0)mg;库仑法: 10μg~20mg测量结果容量法:mg、mg/L、%、ppm四种;库仑法:μg、mg、%、ppm、mg/L、μg/mL 六种。极化电流1μA±0.2μA;50μA±10μA;电解电流库仑法:10 mA、20 mA、50 mA、100 mA四种电流档。示值误差库仑法:±(5%检定点+3)μ3重复性容量法:≤0.5%库仑法:100μg点的测量值的相对标准偏差(RSD) ≤3%尺寸(mm),重量(kg)340×400×400(长×宽×高);约10创新点:1.集成式设计,支持容量法和库伦法的全范围水分含量(常量水分和微量水分)测定,支持固体、液体和粘稠样品的水分含量测定。2.整个测试过程安全可靠:可进行自动加液、排液、卡氏试剂混合功能,具有防漏液、防滴定杯溢出和防倒吸功能,支持卡氏试剂失效检测和提醒功能,具有断电保护防止数据丢失功能。3.可通过固件升级和软件升级,进行功能拓展,扩大应用领域。可通过升级,实现数据溯源和电子签名功能,满足GMP规范,保证数据的真实性和可靠性。雷磁ZDY-504型常量水分滴定仪
  • 上海比朗冷却液循环装置火热促销中
    为答谢广大客户及社会各界多年来对我公司的支持与帮助,我公司特推出一系列针对冷却液循环装置的促销活动!BILON-T-501 原价9000元 现价4500元BILON-T-502 原价9600元 现价4600元 BILON-T-503 原价10400元 现价4800元 时间有限,请广大客户抓住大好机会!比朗公司竭诚为您服务,期待您的来电!&mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash &mdash 上海比朗仪器有限公司公司电话:021-52965776公司网址:http://www.sh-bilon.com http://www.bilon17.com http://www.bilon.cc公司传真:021-52965990/ 52965991/ 52965992公司地址:上海市闵行区北松公路588号7号楼5层公司邮箱:info#bilon.cn ("#"改成"@")光催化 超声波清洗器 恒温振荡器 电热恒温培养箱 水浴恒温振荡器 超净工作台 接种环 电热恒温水浴锅 水浴恒温摇床 低温冷却液循环泵 生化培养箱 低温培养箱 索氏提取器 电热恒温 恒温循环器 恒温循环器 数控超声波清洗机 高低温一体恒温槽 万能粉碎机 恒温摇床 电热恒温水槽 万向摇床 高温循环器 低温恒温槽 玻璃反应釜
  • 国际千克单位标准将改为量子制
    据美国物理学家组织网11月7日(北京时间)报道,由于密封在法国巴黎国际计量局(BIPM)三层玻璃罩内的国际千克原器质量发生不明改变,世界最重要计量标准单位——千克将转变为量子物理制,以解决当前面临的困境。  国际千克原器由铂铱合金(90%的铂,10%的铱)制成,用于规定全世界的“千克”。自1889年以来,人们曾认为它像恒星一样恒久不变,但到了1992年,它的质量却发生了变化。经与其他“千克”原器相比,国际千克原器变化了大约50微克,相当于一个直径0.4毫米的小沙粒。BIPM质量部主管艾伦皮卡德说:“确切地说,我们无法确定它的质量是多了还是少了。这一变化可能是由于表面影响,失去了表面原子或结合了污染物。”  这个变化给物理学家带来了巨大的理论挑战,尤其是对那些需要精确测量的复杂实验而言。因此国际单位(SI)委员会决定淘汰千克原器,在今年10月21日召开的第24届国际计量大会上,同意用一个基于普朗克常数的固定值来代替“千克”。普朗克常数用字母“h”来表示,相当于两个粒子能够交换的最小能量包或称量子。  大会还表示,在2014年之前“将不会采用这一常数”,此之前还将通过实验评估测量技术的精确性,以确保精确度在亿分之二以内。如果今后用普朗克常数来表示质量,日常生活不会受到任何影响,比如要买500毫克阿司匹林、半公斤胡萝卜或一艘5万吨的游船,千克仍然是千克。然而,这一变化会即刻对专业实验室的高精检测产生重大影响。  从日常生活到工程设计、科学研究和工商贸易,“千克”是用得最广的度量单位之一。SI中有7个“基本单位”:千克、米、秒、安培、开尔文、摩尔和坎德拉,分别用于测量质量、长度、时间、电流强度、温度、物质的量和发光强度。1983年,国际单位“米”被光速基本常数(c)所取代,即光在真空中1/c秒内所经路程的长度,从此国际米原器作为纪念品而保存。“千克”是国际单位制(SI)的基石,也是最后一个由物质材料来定义的单位。
  • LAUDA - 未来储能器的温度控制
    位于马格德堡的马克斯普朗克研究所正在进行一项可持续储能系统的研究。LAUDA 为其提供所需的温度控制系统。 德国为实现能源转型采取多项措施,到 2050 年,可再生能源发电量应占电力消耗量的 80%。随着风能、光伏和其他可再生能源的增长以及社会电气化程度的日益提高,经济、政治和科学领域面临着巨大挑战:在生产过剩时,分散获取的能量必须尽可能得到有效、持久的存储,以便在消耗高峰期向供能网络输送能量。“Power to Gas”(电制气)被称为是一项前景广阔的能源产业设计。它利用电解和甲烷化将风能或太阳能转化为甲烷。从而将能量以气体形式储存,并在需要时进行重新利用。在汽车领域,甲烷化也可以推动燃气汽车的普及。燃气汽车所需的甲烷,生产方式环保。世界各地的研究人员正在全力以赴地使这项技术更简化,更加贴近能源产业。马格德堡的马克斯普朗克研究所处于这一复杂系统的研究前沿,近七年来,该研究所一直在从事该领域的研究。在研究工作中,研究所为其试验设备使用 LAUDA 换热系统,该换热系统必须满足研究人员极其苛刻的技术要求。 要求高精度的快速冷却LAUDA 加热和冷却系统是温度控制设备制造商 LAUDA 的工业分部,它根据客户需求,量身定制地规划并制造温度控制设备。针对马克斯普朗克研究所的项目,LAUDA开发出了 ITH 350 型换热系统。该设备用于反应器的温度控制。其中,LAUDA 设备的冷却效率必须达到每分钟 100 K,且温度不得过冲,以免影响最终产品的质量。所以设备在不低于特定温度值的前提下必须快速冷却,以免对工艺过程造成损害。对于 LAUDA 工程师来说,这也是一项挑战,因为传统意义上来说换热系统通常是被用于进行恒温控制的。而对于马克斯普朗克研究所的研究项目来说,该设备现在必须反应迅速地进行冷却。 几分钟内有效地从 340℃ 冷却至 150 ℃甲烷化反应会释放大量热能和高温,可能损坏反应器,特别是催化剂。到目前为止,曾循序渐进地启动过这些过程,然后稳定运行了数周。“我们首先尝试确定此过程的动态运行情况,并为新的运行策略和反应器设计得出初步方案。已经在计算机计算的基础上得到第一批有意义的结果,现在我们希望利用试验设备来验证这些结果”,项目负责人 Jens Bremer 对研究目标进行阐述道。对温度控制的要求相应较高。LAUDA换热系统实现了为此所需的精度。“反应器的性能和动力将在很大程度上取决于它的冷却。可快速调节的温度控制将灵活地实现对外部影响(例如减少氢的供应量)做出反应,而不必关闭反应器”,Jens Bremer 说道。 在此过程中,反应器会被通电加热至 340 ℃。一旦达到设定温度反应器就开始发生放热反应,必须将其迅速冷却至 150 ℃。通常使用的电子阀是用作调节元件,对于这种应用来说显然太慢。根据调节量,可以借助阀门更改冷却功率。利用冷却水冷却时,出于保护材料的考虑,冷却功率会在常规冷却任务中受到限制,这样即使在温度巨变时也能保护材料。这种情况下,即需要快速启动任务以达到所需的冷却速率,又不会向材料施加过大压力。因此,LAUDA 工程师安装了一个气动三通阀,它会在两秒内打开,以确保传热介质的冷却速度不低于每分钟 150 ℃。 在内部,换热系统由两个温度控制电路组成。第一个电路对缓冲容器进行温度控制,第二个电路则对马克斯普朗克研究所的试验装置进行温度控制。两个电路通过介质存储器彼此相连并使用相同的介质。客户对设备的另外一个要求是,所使用的传热介质工作温度必须最高可达 350℃。因此,LAUDA 选用了导热油,可满足对材料的高要求。 满足客户的特殊要求LAUDA 根据马克斯普朗克研究所的项目开发并设计出特殊的换热系统。早在使用计算机进行开发阶段,已经考虑到有限的空间条件。设备必须放置在一个特殊的安全穹顶内,这就使控制柜必须安装在旁边。根据客户要求,部分接口位于设备的底侧。安装时,LAUDA 将设备分为两部分运往马格德堡,并在那里用起重机吊入由安全玻璃制成的外壳内进行组装。 LAUDA用于甲烷化领域开发的换热系统,已经是第二次向马克斯普朗克研究所供货了。那里的研究人员对该温度控制设备制造商的表现非常满意:“从第一项方案设计到最终现场实施,我们得到了细致的建议和指导。在我们所联系过的制造商中,没有任何其他制造商能够为我们的特殊任务赋予这种灵活性的解决方案”,项目经理 Jens Bremer 解释道。 关于 LAUDA 我们是 LAUDA——精确温度控制领域的世界市场的先驱。我们的温度控制设备和加热/冷却系统是许多应用的核心。作为全方位服务供应商,我们在研究、生产和质量控制中保证最佳温度。我们是值得信赖的合作伙伴,特别是在汽车、化学/制药、半导体和实验室/医疗技术行业。60 多年来,我们每天都以崭新面貌在全球范围内提供我们专业咨询和创新的环保设计方案,满足我们的客户。 图片 1:pic_LAUDA_HKS_ITH_350_MPI_01_rho在马格德堡的马克斯普朗克研究所,LAUDA 换热系统不久将被安装到由安全玻璃制成的外壳内。(图片:马克斯普朗克研究所/Gabriele Ebel) 图片 2:pic_LAUDA_HKS_ITH_350_MPI_02_rho换热系统根据客户的特定需求进行了调整。图为打开的设备。所有电缆在交付前均进行过隔热处理。(图片:LAUDA) 图片 3:pic_LAUDA_HKS_ITH_350_MPI_03_rho马克斯普朗克研究所使用 LAUDA 设备进行能量储存过程的研究。为此,系统必须能够将温度精确控制在 150 °C。(图片:LAUDA) 图片 4:pic_LAUDA_HKS_SUK_350_4_18-12-06_rho在设计设备时,考虑到了现场有限条件以及研究人员的特殊要求。马克斯普朗克研究所对制造商的表现非常满意。(图片:马克斯普朗克研究所/Jens Bremer)
  • 我国首个超导托卡马克实验装置正式退役
    中国科学院等离子体物理研究所5月7日宣布,该所通过国际合作研制成功的中国首个超导托卡马克实验装置“合肥超环”(HT-7)正式退役。  据悉,自1990年初苏联库尔恰托夫原子能研究所赠送T-7托卡马克装置给中国后,时任等离子体所所长霍裕平院士集中全所人力、财力投入装置建设,对T-7及其低温系统进行了根本性的改造。1994年,更名为“HT-7”的大科学装置正式建成,首次工程成功调试并获得等离子体。其成功研制,使中国成为继俄、法、日之后第四个拥有超导托卡马克装置的国家。  建成后的HT-7是一个可产生长脉冲高温等离子体的中型聚变研究装置。其主要目标是获得并研究长脉冲准稳态高温等离子体,检验和发展与其相关的工程技术,为未来稳态先进托卡马克聚变堆提供工程技术和物理基础。  HT-7运行后,队伍中的主要骨干也成为建设世界首个全超导托卡马克核聚变实验装置(EAST)的各方面负责人,直接参与国际热核聚变实验堆(ITER)计划,为等离子体所及中国聚变研究事业的持续发展奠定了坚实的人才基础。2012年10月12日,HT-7进行了最后一次放电实验,在“职业生涯”上画了一个完美句号。  在服役的近20年中,HT-7在推动聚变研究、人才培养等方面取得了诸多成就,已成为中国聚变事业的重要里程碑。日前,在历经退役必要性论证、退役实施方案论证、环评验收与设备监测等工作后,HT-7正式被中国科学院和环保部批准退役,成为我国首个获批退役的大科学工程装置。
  • 霍尔德新品|便携式常量氧气体分析仪的应用和特点
    【便携式常量氧气体分析仪←点击此处可直接转到产品界面,咨询更方便】氧气是不可或缺的生活元素,它的检测仪,就像我们生活中的小守护神,时时刻刻守护着我们的健康。工业生产中,燃烧过程及工艺反应过程中,氧含量的测定和控制,对产品质量、产量及消耗等指标都直接产生重要的影响。因此,氧含量的测定和控制成为了工业生产中的重要环节。随着生产的发展,对氧含量的测量范围和精度要求也越来越高。便携式常量氧气体分析仪应用领域:空分制氮、化工流程、电子行业保护性气体以及玻璃、槽车、充氮、气罐气瓶,建材行业及各种混合气体中氧气含量的便携快速检测分析。便携式常量氧气体分析仪仪器特点:1、仪器采用全中文菜单操作,通俗易懂、简单可靠,越限自身报警(蜂鸣器及屏幕显示),并可随意设置控制方式;2、选用进口传感器,具有寿命长、精度高、响应快等特点;3、无人职守时,定时自动存储功能,可随时查看存储数据;4、内置温度补偿,减小样气温度和环境的变化对测量精度的影响;5、采用新型的气路稳流系统;具有技术先进、精度高、响应快、性能稳定、功能齐全、操作方便、气体分析过程连续等优点;6、配有大功率电池,一次充电保证仪器连续工作25小时以上。
  • 烯烃中常量和微量组分分析,中心切割一招搞定
    导读烯烃是人类社会经济和生产生活的重要原料之一,它是含有碳碳双键的一类碳氢化合物,通过聚合反应能形成具有各种特性与牌号的功能高分子材料,经过再加工成型为众所熟知的塑料器具、管材、人造纤维、合成橡胶等,满足并丰富人们多彩的物质生活需求。烯烃中不仅有常量组分,还有微量物质,它们共同影响着最终加工成型材料的特性。烯烃中乙烯、丙烯,一直被誉为石油化工的基石,如今,乙烯被视为定义化工产业水平的关键指标,丙烯则被称为化工产业链延伸的重要基础原料。我国现有⼄烯产能约4200万吨/年,丙烯产能约5000万吨/年,预计到“十四五”末,国内⼄烯产能将达到6500万吨/年,丙烯产能将达到7200万吨/年。市场需求带动烯烃的增长动力持续强劲,对于高品质烯烃质量的要求也更加严格。常见的乙烯、丙烯和丁烯等烯烃主要源于能源化工生产,不同厂家烯烃的生产工艺路线各异,既有石油催化裂化和裂解产生,也能从煤基合成气进行制备,组成比较复杂,往往含有大量烷烃、烯烃,同时还存在微量的杂质如极性的含氧化合物等。这些杂质不仅增加了烯烃聚合加工过程的氢耗和催化剂损耗,也影响了聚合烯烃的等级与品质。常规的气相色谱方法需要多次进样并更换不同色谱柱才能完成烯烃中的主要成分和各种杂质分析。有没有一种简便方法,一次进样就能实现烯烃中常量组分和微量物质的分析呢?答案是肯定的。想要“一招搞定”,实现如此复杂样品的高效率分离,就不得不提“先进流路技术”。先进流路技术——实现复杂组成的高效分离先进流路技术是什么?岛津公司的先进流路技术(Advanced Flow Technology,简称AFT)是采用新型流路控制技术的毛细管分析系统,可以高精度地将目标成分从复杂的原始样品中分离出来,实现高分离度并提高分析工作效率。它主要分为四种方式:反吹,检测器分流,检测器切换和中心切割。岛津先进流路技术软件界面主要特点和应用场景各控制方式的主要特点和应用场景示例如下。表1. 先进流路技术的控制方式特点与应用场景示例中心切割——简单实用的二维色谱分离中心切割是二维气相色谱常用的一种操作方式,通过无阀自动气体控制实现在设定时间段被分离物质切换流向,从第一根色谱柱一维模式进入第二根色谱柱二维模式分离。与全二维气相色谱中需要将所有一维分析组分再通过第二维分离的方式相比,采用中心切割后,可以根据需要选择一维色谱中难以分离的组分进入二维色谱继续分离,其他组分则在一维色谱中被分析检测。目前在能源化工分析领域已有很多标准方法都采用了中心切割二维色谱方法,常见的列于下表。对于烯烃分析,现在仍通过不同的方法去分别检测其中的含氧化合物和烃组成,影响分析效率,中心切割的方法有望在未来烯烃分析工作中大放光彩。表2. 国内外采用中心切割二维色谱方法的部分标准应用案例分享——烯烃的中心切割色谱分离• 仪器GC-2010Pro气相色谱仪• 分析条件进样方式:高压液体阀,0.2μL内置定量环;六通进样阀,500μL定量环进样口温度:150℃;分流比:3:1;FID检测器温度:200℃柱温程序:60℃(3min)→15℃/min→150℃(2min)→15℃/min→170℃(6min)色谱柱:Lowox 10m×0.53mm×10μm(1st柱);PLOT Al2O3/S50m×0.53mm×15μm(2nd柱);Rtx-1 1.8m×0.32mm×5μm(平衡柱)• 典型二维色谱图中心切割二维气相色谱法通过特殊的接口,两种分离机理不同的色谱柱串接在一起,将第一根色谱柱难分离的部分转移到第二根色谱柱做进一步分离分析。图1. 烯烃中常量和微量组分分析色谱图• 重复性和检出限采用中心切割技术,对烯烃样品连续进样6次,计算各组分的重复性和检出限(S/N=3),结果显示该方法对含氧化合物的检出限1 ppm,重复性RSD0.4%;烃类检出限0.4 ppm,重复性RSD0.5%。结语“十四五”期间我国烯烃产能持续攀升,尤其是高品质烯烃新工艺与新产品的开发水平不断提高,将对化工行业高质量发展起到积极促进作用。岛津先进流路控制的中心切割二维色谱可以有效应对愈加严格的烯烃质量控制,一招搞定烯烃中复杂常量和微量化合物组成分析,提高质量分析能力和工作效率。本文内容非商业广告,仅供专业人士参考。
  • 2020年狄拉克奖公布,三位弦理论先驱获此殊荣
    p style="text-align: justify text-indent: 2em "2020年8月10日,国际理论物理中心(ICTP)在意大利Trieste揭晓了被视为理论和数学物理领域的最高荣誉之一——2020年狄拉克奖,授予三位杰出的物理学家——蒙彼利埃大学的André Neveu,佛罗里达大学的Pierre Ramond,以及罗马第一大学的Miguel Virasoro,以表彰他们“创立和提出弦理论的先驱性贡献,将新的玻色和费米对称性引入了物理学”span style="text-indent: 2em "。/span/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/42edbc53-6064-49e6-9908-96e21817be43.jpg" title="ictp-dirac-medal-2020.png" alt="ictp-dirac-medal-2020.png"//pp style="text-align: justify text-indent: 2em "弦理论是基础物理的一种理论框架,其将物质描述为由一维的微观客体(称为“弦”)所组成。这些弦可以被视为微小的能量丝,它们以不同的模式振动。就像小提琴弦的不同振动模式产生不同音符一样,弦的不同振动状态通过确定其性质(如质量或电荷)会产生不同的基本粒子(如电子或中微子)。/pp style="text-align: justify text-indent: 2em "弦理论是物理学家们新提出的统一物理学理论,试图将描述引力的爱因斯坦广义相对论和描述物质基本组成的量子力学结合起来。弦理论在解决基础物理中的一些问题上发挥了非常重要的作用,并已应用于黑洞、早期宇宙、凝聚态物理等各种领域,且由于其复杂和严谨的公式,促进了纯数学的重大发展。/pp style="text-align: justify text-indent: 2em "弦理论的最初发展出现在20世纪60年代末,当时,它立即成为引力量子理论的一个有前途的候选者。其最早的版本是玻色弦理论,也就是说,只描述了一类叫作“玻色子”的粒子。玻色子是自旋为整数(0,1,2,… … ,以普朗克常量为单位)的粒子,如光子、引力子和希格斯玻色子;另一方面,费米子是自旋为半整数(1/2,3/2,5/2,… … ,以普朗克常量为单位)的粒子,比如电子、质子和夸克。/pp style="text-align: justify text-indent: 2em "20世纪60年代末,Miguel Virasoro开始在理论物理学领域进行一项雄心勃勃的工作,最初是和Gabriele Veneziano合作,后来是独自一人。这项工作主要集中在所谓的“Veneziano模型”的开发上,这是一种具有一些特性的数学模型,后来成为了第一个被认可的弦模型。受Veneziano“开放弦”的启发,Virasoro发展了自己的模型,后来被公认为“封闭弦”模型。在进行这些研究的时候,弦的理论还没有完全、清晰地发展起来,这些模型是在几年后才被认为完美地描述了弦的物理学。/pp style="text-align: justify text-indent: 2em "Miguel Virasoro通过研究这些模型的数学特性,继续为该领域作出重要贡献,并注意到这些模型具有的一些对称性特征。他确定并形式化表述了这些对称性,现在被称为“Virasoro代数”,这是一种被广泛应用于二维共形场论和弦论的复李代数。在纯数学家看来,这项工作也很有意义,因为它是一个无限维李代数,而在此之前李代数通常都是有限维的。/pp style="text-align: justify text-indent: 2em "“这项工作非常重要,因为它让我们可以完成之前无法完成的计算,”strong意大利猞猁之眼国家科学院(Accademia dei Lincei)主席、狄拉克奖评选委员会成员Giorgio Parisi教授/strongstrong说/strong:“有了一个模型却不知道其对称性是一种漫无目的的研究,就像在黑暗中行走。这就是为什么发现这些对称性是一个真正的转折点。”/pp style="text-align: justify text-indent: 2em "另一方面,André Neveu和Pierre Ramond把费米子自由度引入了理论模型。事实上,Virasoro所做的大部分工作都致力于研究玻色弦,这是弦理论领域中最早被研究的弦。Neveu和Ramond扩展了这些工作,将计算扩展到包括由费米子组成物质的另外部分。/pp style="text-align: justify text-indent: 2em "“这些工作的共同之处在于,它们都是弦理论中至关重要的工作,在科学家们意识到这些公式可以真正描述弦之前,这些工作就已经开始进行了”,strongGiorgio/strong strongParisi说/strong,“只有在几年后,由于Leonard Susskind、Yōichirō Nambu和其他人的工作,科学家们才真正开始谈论弦。”/pp style="text-align: justify text-indent: 2em "Andrè Neveu与John Schwarz在20世纪70年代早期合作完成的这项工作,也由Pierre Ramond独立完成,现在被称为“RNS形式”,以三位创始人的姓氏首字母命名。这是超弦理论的最初进展,将描述玻色弦的对称代数——Virasoro代数,推广到同样可以描述费米子的代数。这一构想可以将宇宙中所有的粒子和基本力都表述为微小的超对称弦的振动,因此得名“超弦”理论,它同时解释了费米子和玻色子。/pp style="text-align: justify text-indent: 2em "“作为ICTP的新主任,宣布2020年狄拉克奖让我倍感荣幸和开心。”strongICTP主任Atish Dabholkar说/strong,“狄拉克一直是理论物理学领域一个鼓舞人心的人物,对于ICTP更是如此。今年,一个非常杰出的评选委员会将这一奖项颁发给弦理论领域的三位先驱,他们在某种程度上继承了狄拉克的思想和做物理的方式。”/psection style="box-sizing: border-box text-align: justify "section style="margin-top: 10px margin-bottom: 10px text-align: center position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block vertical-align: top box-sizing: border-box "section style="width: 43px margin-left: auto box-sizing: border-box "section style="width: 5px height: 5px margin-left: auto margin-bottom: 3px background-color: rgb(58, 181, 75) box-sizing: border-box line-height: 0 "/sectionsection style="width: 40px height: 1px margin-right: 3px margin-bottom: -6px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 "/sectionsection style="width: 1px height: 25px margin-left: 34px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 "/section/sectionsection style="padding-left: 15px padding-right: 15px margin-top: -18px margin-bottom: -18px box-sizing: border-box "p style="margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strongspan style="font-size: 18px color: rgb(0, 0, 0) "获奖者介绍/span/strong/p/sectionsection style="width: 43px box-sizing: border-box "section style="width: 1px height: 25px margin-bottom: -6px margin-left: 8px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 "/sectionsection style="width: 40px height: 1px margin-left: 3px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 "/sectionsection style="width: 5px height: 5px margin-top: 3px background-color: rgb(58, 181, 75) box-sizing: border-box line-height: 0 "/section/section/section/section/sectionsection style="box-sizing: border-box text-align: justify "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 10px 0% 0px position: static box-sizing: border-box "section style="display: inline-block vertical-align: bottom width: 18px flex: 0 0 auto height: auto align-self: flex-end border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) line-height: 0 border-right-color: rgb(82, 175, 255) box-sizing: border-box "section style="text-align: right justify-content: flex-end transform: translate3d(-2px, 0px, 0px) -webkit-transform: translate3d(-2px, 0px, 0px) -moz-transform: translate3d(-2px, 0px, 0px) -o-transform: translate3d(-2px, 0px, 0px) margin: 0px 0% 2px position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 10px height: 16px vertical-align: top overflow: hidden background-image: linear-gradient(45deg, rgb(49, 67, 244) 0%, rgb(166, 172, 251) 100%) border-width: 0px border-radius: 2px border-style: none border-color: rgb(62, 62, 62) box-sizing: border-box line-height: 0 "/section/section/sectionsection style="display: inline-block vertical-align: bottom width: auto align-self: flex-end flex: 0 0 0% height: auto background-image: linear-gradient(0deg, rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) line-height: 0 letter-spacing: 0px box-sizing: border-box "section style="text-align: center position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 1px height: 20px vertical-align: top overflow: hidden box-sizing: border-box line-height: 0 "/section/section/sectionsection style="display: inline-block vertical-align: bottom width: auto flex: 100 100 0% align-self: flex-end height: auto border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) box-sizing: border-box "section style="color: rgb(36, 154, 255) text-shadow: rgb(255, 255, 255) 1px 1px, rgb(180, 221, 255) 2.3px 2.3px letter-spacing: 2px line-height: 1.4 padding: 0px 6px box-sizing: border-box " powered-by="xiumi.us"p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "André Neveu/p/section/section/section/sectionsection style="margin: 0px 0% position: static box-sizing: border-box " powered-by="xiumi.us"section style="background-image: linear-gradient(90deg, rgba(128, 218, 253, 0) 0%, rgb(128, 218, 253) 20px, rgb(123, 154, 255) 70%, rgba(123, 154, 255, 0) 100%) height: 1px box-sizing: border-box line-height: 0 "/section/sectionsection style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 0px 0% 10px position: static box-sizing: border-box "section class="group-empty" style="display: inline-block vertical-align: top width: 6px align-self: stretch flex: 0 0 auto height: auto background-image: linear-gradient(rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) margin: 0px 0px 0px 13px line-height: 0 box-sizing: border-box "section style="line-height: 0 width:0 "svg viewbox="0 0 1 1" style="vertical-align:top"/svg/section/sectionsection style="display: inline-block vertical-align: top width: auto align-self: stretch flex: 100 100 0% box-sizing: border-box "section style="margin: 5px 0% position: static box-sizing: border-box " powered-by="xiumi.us"section style="font-size: 14px color: rgb(55, 55, 74) line-height: 1.8 letter-spacing: 1.8px padding: 0px 6px box-sizing: border-box "p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "André Neveu出生于法国巴黎,理论物理学家,研究领域包括弦理论和量子场论。他发展了第一个可以描述玻色子和费米子的弦理论,从而开启了超对称的想法(当时由几个研究小组独立发展),被认为是弦理论的先驱。/pp style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "André Neveu曾就读于巴黎巴黎高等师范学院,自1989年起工作于蒙彼利埃大学理论物理研究所(现在的L2C,即查尔斯· 库仑实验室)。他曾任加州大学伯克利分校客座教授。因对理论物理的贡献,他荣获多个奖项,包括Paul Langevin奖(1973年)和Gentner-Kastler奖(1988年)。/p/section/section/section/section/section/sectionsection style="box-sizing: border-box text-align: justify "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 10px 0% 0px position: static box-sizing: border-box "section style="display: inline-block vertical-align: bottom width: 18px flex: 0 0 auto height: auto align-self: flex-end border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) line-height: 0 border-right-color: rgb(82, 175, 255) box-sizing: border-box "section style="text-align: right justify-content: flex-end transform: translate3d(-2px, 0px, 0px) -webkit-transform: translate3d(-2px, 0px, 0px) -moz-transform: translate3d(-2px, 0px, 0px) -o-transform: translate3d(-2px, 0px, 0px) margin: 0px 0% 2px position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 10px height: 16px vertical-align: top overflow: hidden background-image: linear-gradient(45deg, rgb(49, 67, 244) 0%, rgb(166, 172, 251) 100%) border-width: 0px border-radius: 2px border-style: none border-color: rgb(62, 62, 62) box-sizing: border-box line-height: 0 "/section/section/sectionsection style="display: inline-block vertical-align: bottom width: auto align-self: flex-end flex: 0 0 0% height: auto background-image: linear-gradient(0deg, rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) line-height: 0 letter-spacing: 0px box-sizing: border-box "section style="text-align: center position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 1px height: 20px vertical-align: top overflow: hidden box-sizing: border-box line-height: 0 "/section/section/sectionsection style="display: inline-block vertical-align: bottom width: auto flex: 100 100 0% align-self: flex-end height: auto border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) box-sizing: border-box "section style="color: rgb(36, 154, 255) text-shadow: rgb(255, 255, 255) 1px 1px, rgb(180, 221, 255) 2.3px 2.3px letter-spacing: 2px line-height: 1.4 padding: 0px 6px box-sizing: border-box " powered-by="xiumi.us"p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "Pierre Ramond/p/section/section/section/sectionsection style="margin: 0px 0% position: static box-sizing: border-box " powered-by="xiumi.us"section style="background-image: linear-gradient(90deg, rgba(128, 218, 253, 0) 0%, rgb(128, 218, 253) 20px, rgb(123, 154, 255) 70%, rgba(123, 154, 255, 0) 100%) height: 1px box-sizing: border-box line-height: 0 "/section/sectionsection style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 0px 0% 10px position: static box-sizing: border-box "section class="group-empty" style="display: inline-block vertical-align: top width: 6px align-self: stretch flex: 0 0 auto height: auto background-image: linear-gradient(rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) margin: 0px 0px 0px 13px line-height: 0 box-sizing: border-box "section style="line-height: 0 width:0 "svg viewbox="0 0 1 1" style="vertical-align:top"/svg/section/sectionsection style="display: inline-block vertical-align: top width: auto align-self: stretch flex: 100 100 0% box-sizing: border-box "section style="margin: 5px 0% position: static box-sizing: border-box " powered-by="xiumi.us"section style="font-size: 14px color: rgb(55, 55, 74) line-height: 1.8 letter-spacing: 1.8px padding: 0px 6px box-sizing: border-box "p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "Pierre Ramond出生于法国塞纳河畔纳伊市,被认为是超弦理论发展的发起人。1970年代初,通过将Virasoro 代数推广为一种超共形代数(被称为超Virasoro代数),他完成了玻色弦理论的推广,使其同样适用于费米弦。他是佛罗里达大学杰出物理学教授。/pp style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "Pierre Ramond曾是费米实验室的博士后,之后成为耶鲁大学的讲师和助理教授。他曾在加州理工学院担任R. A. Millikan高级研究员。因对理论物理的贡献,他获得了多项奖项,包括Boris Pregel奖(1992年)和享有盛誉的Dannie Heineman数学物理学奖(2015年)。他是美国物理学会会员。/p/section/section/section/section/section/sectionsection style="box-sizing: border-box text-align: justify "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 10px 0% 0px position: static box-sizing: border-box "section style="display: inline-block vertical-align: bottom width: 18px flex: 0 0 auto height: auto align-self: flex-end border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) line-height: 0 border-right-color: rgb(82, 175, 255) box-sizing: border-box "section style="text-align: right justify-content: flex-end transform: translate3d(-2px, 0px, 0px) -webkit-transform: translate3d(-2px, 0px, 0px) -moz-transform: translate3d(-2px, 0px, 0px) -o-transform: translate3d(-2px, 0px, 0px) margin: 0px 0% 2px position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 10px height: 16px vertical-align: top overflow: hidden background-image: linear-gradient(45deg, rgb(49, 67, 244) 0%, rgb(166, 172, 251) 100%) border-width: 0px border-radius: 2px border-style: none border-color: rgb(62, 62, 62) box-sizing: border-box line-height: 0 "/section/section/sectionsection style="display: inline-block vertical-align: bottom width: auto align-self: flex-end flex: 0 0 0% height: auto background-image: linear-gradient(0deg, rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) line-height: 0 letter-spacing: 0px box-sizing: border-box "section style="text-align: center position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 1px height: 20px vertical-align: top overflow: hidden box-sizing: border-box line-height: 0 "/section/section/sectionsection style="display: inline-block vertical-align: bottom width: auto flex: 100 100 0% align-self: flex-end height: auto border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) box-sizing: border-box "section style="color: rgb(36, 154, 255) text-shadow: rgb(255, 255, 255) 1px 1px, rgb(180, 221, 255) 2.3px 2.3px letter-spacing: 2px line-height: 1.4 padding: 0px 6px box-sizing: border-box " powered-by="xiumi.us"p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "Miguel Virasoro/p/section/section/section/sectionsection style="margin: 0px 0% position: static box-sizing: border-box " powered-by="xiumi.us"section style="background-image: linear-gradient(90deg, rgba(128, 218, 253, 0) 0%, rgb(128, 218, 253) 20px, rgb(123, 154, 255) 70%, rgba(123, 154, 255, 0) 100%) height: 1px box-sizing: border-box line-height: 0 "/section/sectionsection style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 0px 0% 10px position: static box-sizing: border-box "section class="group-empty" style="display: inline-block vertical-align: top width: 6px align-self: stretch flex: 0 0 auto height: auto background-image: linear-gradient(rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) margin: 0px 0px 0px 13px line-height: 0 box-sizing: border-box "section style="line-height: 0 width:0 "svg viewbox="0 0 1 1" style="vertical-align:top"/svg/section/sectionsection style="display: inline-block vertical-align: top width: auto align-self: stretch flex: 100 100 0% box-sizing: border-box "section style="margin: 5px 0% position: static box-sizing: border-box " powered-by="xiumi.us"section style="font-size: 14px color: rgb(55, 55, 74) line-height: 1.8 letter-spacing: 1.8px padding: 0px 6px box-sizing: border-box "p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "Miguel Virasoro出生于阿根廷布宜诺斯艾利斯,因其在理论物理和数学物理领域的研究而闻名。他于1962年毕业于布宜诺斯艾利斯大学,并在1966年离开了阿根廷(当时阿根廷联邦警察强制学生和教师从布宜诺斯艾利斯大学的五个学院撤离)。他在以色列雷霍沃特的魏茨曼科学研究所的获得了博士后职位,之后在威斯康星大学、加州大学伯克利分校、普林斯顿高等研究院、法国巴黎高等师范学院等一些国际机构工作了几年,其间还去阿根廷做了两次短期访问。1977年,他移居意大利,先是去了都灵,然后在1981年去了罗马第一大学,在那里做了30年的教授,讲经济和电磁学的物理数学模型。/pp style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "Miguel Virasoro因发现了Virasoro模型(一种闭弦模型)以及对无限维李代数的发展做出了巨大贡献而闻名,即引入了弦理论中的关键工具——Virasoro代数。与Giorgio Parisi和Marc Mezard合作,他在统计力学领域,特别是在无限维自旋玻璃态的研究方面做出了巨大贡献。/pp style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "1995年至2002年,他担任里雅斯特的ICTP主任。span style="text-align: center font-size: 16px " /span/p/section/section/section/section/section/sectionsection style="box-sizing: border-box text-align: justify "section style="margin-top: 10px margin-bottom: 10px text-align: center position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block vertical-align: top box-sizing: border-box "section style="width: 43px margin-left: auto box-sizing: border-box "section style="width: 5px height: 5px margin-left: auto margin-bottom: 3px background-color: rgb(58, 181, 75) box-sizing: border-box line-height: 0 "/sectionsection style="width: 40px height: 1px margin-right: 3px margin-bottom: -6px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 "/sectionsection style="width: 1px height: 25px margin-left: 34px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 "/section/sectionsection style="padding-left: 15px padding-right: 15px margin-top: -18px margin-bottom: -18px box-sizing: border-box "p style="margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strongspan style="font-size: 18px "关于 ICTP 狄拉克奖/span/strong/p/sectionsection style="width: 43px box-sizing: border-box "section style="width: 1px height: 25px margin-bottom: -6px margin-left: 8px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 "/sectionsection style="width: 40px height: 1px margin-left: 3px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 "/sectionsection style="width: 5px height: 5px margin-top: 3px background-color: rgb(58, 181, 75) box-sizing: border-box line-height: 0 "/section/section/section/section/sectionp style="text-align: justify text-indent: 2em "ICTP狄拉克奖是为纪念P.A.M.狄拉克而设立的,于1985年第一次颁发。狄拉克是20世纪最伟大的物理学家之一,也是ICTP坚定的朋友。每年的8月8日(狄拉克的生日),该奖项被授予对理论物理学作出重大贡献的科学家。狄拉克奖获得者都是世界顶级物理学家,其中很多人也获得了诺贝尔奖、菲尔兹奖和沃尔夫奖。由杰出科学家组成的国际委员会从提名候选人名单中选出获奖者。本次颁奖典礼将于2021年举行,三位获奖者将就他们的工作发表演讲。/ppbr//p
  • EAST托卡马克核聚变实验装置升级进入二期
    EAST托卡马克核聚变实验装置辅助加热系统工程开工典礼,11月29日在中科院合肥研究院等离子体所举行。中科院副院长詹文龙、国家自然科学基金委副主任何鸣鸿、核工业西南物理研究院院长刘永、合肥研究院院长王英俭等共同为工程开工剪彩。  詹文龙表示,等离子体所通过自主创新率先研制建成了世界上首个全超导托卡马克EAST装置,是我国聚变界的里程碑。但EAST建成运行仅是它整个科学计划的第一步,作为探索核聚变能源的先进实验装置,EAST肩负重要科学目标,需要对装置进行升级改造。  而EAST辅助加热系统将极大地提高EAST装置性能,使其在发展稳态高性能等离子体物理的科学研究计划中始终处于世界前沿地位,必将提升我国聚变能研究的自主创新能力和在国际上的地位。詹文龙强调,要把EAST辅助加热系统建设好,把“EAST二期”引入国际舞台,作出更多具有重大国际影响的成果和贡献。  何鸣鸿表示,国家重大科学工程是国家创新能力的一个重要基础和平台,EAST建成运行后将能够探索更多科学问题,基金委一直很重视核聚变相关的研究,希望研究所能做出更多一流工作。
  • 德国在实验室制造出黑洞等离子体
    据美国物理学家组织网11月4日报道,德国马克斯普朗克核物理研究所和赫尔姆霍茨柏林中心的研究人员使用柏林同步加速器(BESSY Ⅱ)在实验室成功产生了黑洞周边的等离子体。通过该研究,之前只能在太空由人造卫星执行的天文物理实验,也可以在地面进行,诸多天文物理学难题有望得到解决。   黑洞的重力很大,会吸附一切物质。进入黑洞后,任何东西都不可能从黑洞的边界之内逃逸出来。随着被吸入的物体的温度不断升高,会产生核与电子分离的高温等离子体。  黑洞吸附物质会产生X射线,X射线反过来又会刺激其中的大量化学元素发射出具有独特线条(颜色)的X射线。分析这些线条可以帮助科学家了解更多有关黑洞附近等离子体的密度、速度和组成成分等信息。  在这个过程中,铁起了非常关键的作用。尽管铁在宇宙中的储量并不如更轻的氢和氦丰富,但是,它能够更好地吸收和重新发射出X射线,发射出的光子因此也比其他更轻的原子发射出的光子具有更高的能量、更短的波长(使得其具有不同的颜色)。  铁发射出的X射线在穿过黑洞周围的介质时也会被吸收。在这个所谓的光离化过程中,铁原子通常会经历几次电离,其包含的26个电子中有超过一半会被去除,最终产生带电离子,带电离子聚集成为等离子体。而现在,研究人员在实验室中重现了这个过程。  实验的核心是马克斯普朗克核物理研究所设计的电子束离子阱。在这个离子阱中,铁原子经由一束强烈的电子束加热,从而被离子化14次。实验过程如下:一团铁离子(仅仅几厘米长并且像头发丝一样薄)在磁场和电场的作用下被悬停在一个超高真空内,同步加速器发射出的X射线的光子能量被一台精确性超高的“单色仪”挑选出来,作为一束很薄但却集中的光束施加到铁离子上。  实验室测量到的光谱线与钱德拉X射线天文台和牛顿X射线多镜望远镜所观测的结果相匹配。也就是说,研究人员在地面实验室人为制造出了太空中的黑洞等离子体。  这种新奇的方法将带电离子的离子阱和同步加速器辐射源结合在一起,让人们可以更好地了解黑洞周围的等离子体或者活跃的星系核。研究人员希望,将EBIT分光检查镜和更清晰的第三代(2009年开始在德国汉堡运行的同步辐射源PETRAⅢ)、第四代(X射线自由电子激光XFEL)X射线源结合,将能够给该研究领域带来更多新鲜活力。
  • 湖北打造中部地区“创新策源地”:正在加速建设实验室、科学装置等
    七大湖北实验室、九大科学装置、九大创新中心、七大功能板块、三条千亿产业大道、两大万亿产业集群… … 在湖北东部,一条由中国光谷出发,连接武汉、鄂州、黄石、黄冈、咸宁五个城市,沿长江经济带延展的科创大走廊正在加速建成。  未来,这里将强化基础研究,打造中部地区“创新策源地”。  一批实验室,加装新兴产业“发动机”  光谷实验室日前召开理事会明确,实验室将聚焦激光技术与装备、生物医学影像装备等方向,并确定9位首席科学家、学术委员会21位院士名单,堪称“豪华阵容”。  “我们聚集了湖北省光电领域的丰富资源,高校、院所、企业联动,好比握成一个拳头,共同做大做强。”光谷实验室主任、中国工程院院士邵新宇说,每年将聚焦4到5项“卡脖子”问题,与企业联手攻关。  今年2月18日,春节后开工第一天,湖北省召开科技创新大会,宣布设立首批7个“湖北实验室”,探索科技体制改革。  成立两个月来,光谷实验室“喜讯不断”:实验室与精测电子等高新技术企业签订合作协议 陆培祥教授团队的高次谐波光谱研究持续领先世界 闫大鹏博士团队12000W激光器件国产化进程加快。  除光谷实验室外,还有珞珈实验室、江夏实验室、洪山实验室、江城实验室、东湖实验室、九峰山实验室。  7家湖北实验室分别从湖北优势学科和重点产业出发,面向国家重大战略需求和湖北发展需要,瞄准光电科学、生物安全、空天科技、生物育种等领域,集中发力,为战略性新兴产业发展加装“发动机”。  一座科学城,誓做科技创新“领头羊”  武汉市东南角梁子湖畔,一个精美的展示中心格外引人注目,许多人慕名前来参观。在它周边,高端生物医学成像设施、中国船舶通信与电子信息技术基地等重大科技项目正在抓紧建设。  6月10日,湖北省主要领导宣布东湖科学城正式开建,并要求东湖科学城依托中国光谷的科研和产业优势,推动教育资源与科技创新有机结合,做大做强光电子、生物医药、人工智能、航空航天等领域。  武汉东湖高新区党工委书记汪祥旺说,相比30多年前设立被称为中国光谷的东湖高新区,如今设立东湖科学城的影响或更加深远,将在未来30年深刻影响湖北乃至中国。  东湖科学城的开工,让紧邻的鄂州市格外兴奋。因为“近水楼台”,鄂州很早就与武汉共建产业园,深化与武汉高校院所合作,布局重大科技基础项目。  近些年,华中科技大学、华中师范大学及中国科学院先后在此设立分校或院所。东湖高新科技创意城、光谷联合科技城等一批创新平台拔地而起,引来不少高科技项目落地转化。  一条大走廊,串起万亿级产业“聚集带”  今年2月,湖北发布《光谷科技创新大走廊发展战略规划》,以东湖科学城为创新极核,辐射带动武汉、鄂州、黄石、黄冈、咸宁等城市协同发展,打造“创新策源地”。  距离武汉仅一小时车程的黄石,最早嗅到创新的“味道”。6月底,黄石东贝集团以32件专利作为质押,成功获得3000万元银行贷款。“作为一家传统制造业企业,东贝集团不再‘傻大粗’,已是‘高精尖’。”东贝集团董事长杨百昌说,这得益于集团乘上“创新快车”,投入1.6亿元进行数字化、智能化、信息化改造。  与黄石一样,“武鄂黄黄咸”一直是湖北“老工业地区”,曾是冶金走廊、服装走廊和建材走廊。近些年来,取而代之的是“芯片—新型显示屏—智能终端—互联网”的“光芯屏端网”万亿级产业集群。  黄冈市与武汉东湖高新区合作建设的光谷黄冈科技园7月12日正式开园,将积极对接“光芯屏端网”外溢产业。目前,已引进落户10余个项目,总投资40多亿元。  除“光芯屏端网”外,光谷生物城已聚集2400余家企业,实现产业总收入3000多亿元。素有“温泉之城”美誉的咸宁,也结合自身资源禀赋,突出发展以医养为主的大健康产业。
  • “千克”将被重新定义——我国计量将迎来国际单位制重大变革
    p style="line-height: 1.5em "  “千克死了,千克永存。”国家市场监管总局11日召开国际单位重大变革新闻发布会,随着国际单位制迎来重大变革,从明年5月20日起,中国将开始使用新修订后的国际单位制。届时,“千克”不再依赖实物来体现,计量将会更加方便精准,其误差将可以“忽略不计”。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/e2863d49-4288-483d-8a3a-79cddbd913b2.jpg" title="1123838314_15445382810141n.jpg" alt="1123838314_15445382810141n.jpg"//pp style="line-height: 1.5em "  一个多世纪以来,国际基准质量单位都是由一块高尔夫球大小的铂铱合金圆柱体来定义。这个圆柱体学名“国际千克原器”,被人们亲切地称为“大K”,是1889年第一届国际计量大会赋予它的原器地位。/pp style="line-height: 1.5em "  据国际计量局数据显示,国际千克原器服役近130年来,它的质量与各国保存的质量基准、国际计量局官方作证基准的一致性出现了约50微克的偏差,但国际千克原器的质量是否发生了变化,具体变化了多少至今仍是一个谜。/pp style="line-height: 1.5em "  根据第26届国际计量大会决定,到明年的5月20日,“国际千克原器”将正式退役,取代它的将是符号为h的普朗克常数。经过全球各国国家计量院的多年研究,国际测量体系将有史以来第一次全部建立在不变的自然常数上。至此,国际计量单位制的7个基本单位全部实现由常数定义,这是改变国际单位制采用实物计量的历史性变革。/pp style="line-height: 1.5em "  “可以想象,我们今天在北京复现的量值,和我们的子孙后代未来在火星上复现的量值将是一致的。”中国计量科学研究院院长方向介绍,用常数重新定义千克后,质量单位将更加稳定,我们不必担心国际千克原器质量漂移可能给全球质量量值统一带来的问题。/pp style="line-height: 1.5em "  方向介绍,对大多数人来说,国际单位制是“不变”的。对于普通用户、产业界人士和多数科研人员来说,新定义不会对他们造成影响,他们的测量结果仍将是连续的。实际上,所有用于基本单位重新定义的“常数”都经过了精确测量与严格验证,从而保障了新单位的大小“不变”。/pp style="line-height: 1.5em "  国家市场监管总局计量司司长谢军说,此次变革从表面来看,大家可能感觉不到变化,就如同我们给房子换了一个更加坚固的地基,并不太会直接影响我们生活起居,但它实际上已经发生了“脱胎换骨”的变化。/pp style="line-height: 1.5em "  谢军说,无处不在的精准测量,将直接促进市场公平交易、实现精准医疗、改善环保节能等,我们在生产生活中都将能够直接应用最准的“标尺”。/pp style="line-height: 1.5em "  比如,我们目前依靠的实物基准逐级传递的计量模式,费时费力、效率低下、误差放大等问题,将得到彻底解决。不受环境干扰无需校准的实时测量,使得众多物理量、化学量和生物量的极限测量等将成为可能,测量仪器仪表形态将面临全面创新,这将引发仪器仪表产业的颠覆性创新。/pp style="line-height: 1.5em "  国际单位制的全范围准确性,为科学发现和技术创新提供了新的机遇。得益于更高的测量准确度,我们将可以测量极高、极低温度的微小变化,从而更加准确地监测核反应堆内、航天器表面的温度变化 在生物医药领域,我们可以准确测量单个细胞内某种物质的含量,并根据病人的实际需要,制定更加精确的药物剂量。/pp style="line-height: 1.5em "  谢军介绍,我国目前获得国际互认的校准和测量能力已跃居全球第三、亚洲第一。我国已独立建立了基于新定义的千克复现装置,并成功研制了真空质量测量和质量标准传递装置,可以保障未来我国质量量值与国际等效一致。为抓住此次变革带来的历史性机遇,我国将强化计量量子化战略研究,并制定量子化时代的中国计量发展新规划。/ppbr//p
  • 印度科学家初步确认韩春雨实验的可重复性
    河北科技大学的副教授韩春雨领衔研发的NgAgo-gDNA技术在《自然》子刊《生物技术》(Nature Biotechnology)发表后,引起了科研圈的广泛关注,赞扬声自然是不断,不少学者们称其为“诺奖级”的成果 但在另一方面,也存在质疑声,其中包含了方舟子在近日发文所质疑韩春雨“诺奖级”实验成果的可重复性问题。【详情】  一个科学成果的证明或是证伪,从来靠的不是言语上的争论,只要有独立的第三方通过论文里所提供的方法重复了实验,那么所有的流言和质疑都将不攻自灭。  目前有网友曝出两则关于第三方成功重复NgAgo-gDNA实验的消息,来源都是两封电子邮件,其中一封署名为Jan Winter,由于缺乏更多的相关信息,这个来源看起来可信度不高 看起来比较靠谱的是另一位来自位于印度的Debojyoti Chakraborty博士所发的邮件。  为了进一步验证消息的来源,DT君专门给Chakraborty博士写信求证。我们先简单介绍一下这位印度博士:Debojyoti Chakraborty从德国的马克斯普朗克研究所(类似于德国的中科院)获得了博士学位,直至2015年底在德国德累斯顿理工大学(TU Dresden)从事生物学研究,今年年初回到了印度,就职于位于新德里的基因与综合生物学研究所(Institute of Genomics and Integrative Biology)。Chakraborty博士迅速地做出了回复,原文如下:  Chakraborty博士在信中确认了他们使用NgAgo技术剪辑了海拉细胞(HeLa,传说中的不死细胞)中GFP(绿色荧光蛋白)的相关序列,并观测到了细胞中的GFP减少的现象,这初步确认了剪辑技术发生了作用,然而是要判定韩教授的方法的可重复性,必须要等到基因测序结果出来以后才能下结论。  由于Chakraborty博士应该与韩春雨没有任何利益关系,因此基于他的书面回复,我们可以说,这位印度博士的实验结果初步确认了韩春雨NgAgo技术的可重复性,然而是否能最终判定,我们还需要等待。  以下附上Chakraborty博士的公开简历。
  • 稳态强磁场实验装置:探索科学宝藏的“国之重器
    p  2008年5月,由中科院合肥物质院强磁场科学中心承担的稳态强磁场实验装置项目启动 2011年7月,试验磁体通电测试成功 2016年11月,混合磁体大口径外超导磁体研制成功 2017年2月,专家组对混合磁体工艺测试完成验收 2017年9月27日,“稳态强磁场实验装置”通过国家验收,验收专家组给予了很高评价,认为项目全面完成了建设目标,各项关键参数达到或超过设计指标,“技术和性能达到国际领先水平”。/pp  九年时间里,强磁场的科研人员完成了一个又一个跨越,使我国成为国际五大稳态强磁场研究机构之一,中国的强磁场科学技术事业迈上了一个新台阶。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/869ce1bd-adaa-4e62-b5da-a9ff1c35ab0b.jpg" title="1_副本.jpg"//pp style="text-align: center "①2016年底混合磁体首次调试成功。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/c43cc087-9520-4092-b997-350c4e51976e.jpg" title="2_副本.jpg"//pp style="text-align: center "②安装在水冷磁体上的扫描隧道显微镜。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/db639ee9-02c5-409b-8e70-117373bf43d4.jpg" title="3_副本.jpg"//pp style="text-align: center "③混合磁体。/pp  strong“极端条件就是把不可能变成可能”/strong/pp  高秉钧是中科院强磁场科学中心首席科学家,也是“稳态强磁场实验装置”项目总工程师。他对记者说:“物质在强磁场情况下会改变它本身的电子态,从而产生新的现象。强磁场是一个极端条件,我们在设计和研制稳态强磁场实验装置过程中,常会遇到许多难以克服的困难,甚至是无路可走。我们必须坚持不懈,实现超越,把不可能变成可能。”/pp  强磁场是调控物质量子态的重要参量,在发现新现象、揭示新规律、探索新材料、催生新技术等方面具有不可替代的作用。自1913年以来,已有多项与磁场相关成果获诺贝尔奖,因此,强磁场极端条件已成为科技界公认的探索科学宝藏的“国之重器”。我国因缺乏相应的强磁场条件,屡次错失在物质科学等诸多领域开展前沿探索的机遇。/pp  据了解,“稳态强磁场实验装置”是一个针对多学科实验研究需要的强磁场极端实验条件设施,包括十台强磁场磁体装置和六大类实验测量系统。/pp  混合磁体由内部水冷磁体和外部超导磁体组合而成,是追求更高稳态极端场强的首选,但此前国际上已有多个失败案例,而我国在高场超导磁体技术方面的基础较为薄弱,项目所有科研人员都面临着巨大挑战。/pp  对水冷磁体而言,必须解决材料和结构的优化选择、巨大电磁力和发热问题,与之配套的数千万瓦级的稳态直流电源系统、低温冷却系统、去离子水冷却系统等均是一个个不容置疑的难关。/pp  谨慎起见,超导磁体组决定先研制一款磁场强度低、口径小,但选材、加工工艺完全相同的试验磁体,试验磁体在2011年7月通电测试成功。混合磁体研制真正开始之后,所有科研人员都秉持着一种谨慎严肃的工作状态,为了达到验收要求而不断努力着。/pp  strong国际领先水平的科学实验系统/strong/pp  水冷磁体WM1原设计是超世界纪录的38.5T,但在磁体组装后的预测试中,科研人员却发现磁场强度比预期的要低得多,且已是板上钉钉,超纪录无望了。水冷磁体总设计高秉钧带领工作人员排查原因,最终发现绝大部分bitter片厚度不是原设计的0.27毫米,而是0.29~0.30毫米。/pp  高秉钧说:“面对几千片bitter片,我们就用天平称重量、算体积,来实测每片的实际厚度。将实测厚度的bitter片优化配置,重新组合,使组装的磁体达到原设计的目标。”这样,WM1最终实现了38.5T的磁场强度,打破水冷磁体场强世界纪录。/pp  2016年底混合磁体首次调试,磁场强度达到40特斯拉,符合工程验收指标。就在科研人员欢欣鼓舞之时,磁体系统却发生了故障。春节将至,项目组的人却集中在场地,不断调试设备排除故障。/pp  大年三十上午八点,装置准时通电测试,所有人在文化走廊吃了一顿简单而又难忘的“年夜饭”。但是那天因为降温没到位,再一次失败了。项目组的科研人员在春节假期继续加班,大年初四,混合磁体终于通电励磁,再次成功。/pp  经过多年自主创新,强磁场研制团队打破国际技术壁垒,成功克服关键材料国际限制、关键技术国内空白等重大难题,建成继美国之后世界第二台40T级混合磁体,建立了国际领先水平的科学实验系统,实现了我国稳态强磁场极端条件的重大突破。/pp  “稳态强磁场实验装置”国家验收意见中写道:“项目提出了一种水冷磁体设计创新方案,发展了一套全程可量化检测的高精度装配工艺。建成的水冷磁体中有三台磁体的性能指标创世界纪录,其中两台保持至今 突破了800毫米室温孔径、磁场强度达10特斯拉的铌三锡超导磁体研制的技术难关,建成了40特斯拉稳态混合磁体装置,磁场强度世界第二 建成了国际首创水冷磁体扫描隧道显微镜系统、扫描隧道—磁力—原子力组合显微镜系统,以及强磁场下低温、超高压实验系统,使得我国稳态强磁场相关实验条件达到国际领先水平。”/pp  strong“边建设边开放”的管理新模式/strong/pp  强磁场下的应用研究对于高技术产业具有很强的催生和带动作用,“强磁场效应”其实就在我们身边。/pp  高秉钧介绍道:“大家都比较熟悉的医院的核磁共振成像、磁悬浮列车等就运用了强磁场技术。此外,强磁场在化学合成、特殊材料、生物技术、医药健康等多种新技术研发方面都有可能发挥关键作用,孕育新的发明。”/pp  据了解,强磁场有助于促进多学科交叉研究,尤其是生命科学、物理学、材料与化学、新技术之间的交叉研究。2014年,合肥物质院技术生物所吴跃进研究组和强磁场科学中心钟凯研究组合作,研究了造影剂对水稻生长的潜在影响,并用磁共振成像技术获得了造影剂在根系中的动态信息。这也是世界上首次利用造影剂研究磁共振成像技术在水稻根系无损检测中的应用,为植物根系研究提供了一种新的研究方法。/pp  在中科院“十二五”验收中,“强磁场科学与技术”重大突破入选院“双百”优秀。2017年3月,中共中央政治局委员、国务院副总理刘延东视察装置,对团队取得的成绩给予了充分肯定。/pp  同时,项目提出并实践了国家大科学装置“边建设边开放”管理新模式。从2010年试运行以来装置已经为包括北大、复旦、中科大、浙大、南大、中科院物理所、中科院固体物理所、上海生科院、福建物构所等在内的百余家用户单位提供了实验条件,有力支撑了强磁场下前沿研究,产出了一大批具有国际影响力的科研成果。/pp  随着稳态强磁场装置工程建设的推进,一支能打硬仗的强磁场技术攻关队伍在锻炼中成长。稳态强磁场实验装置将成为科学研究、科技发展的创新源头,将为合肥综合性国家科学中心的建设贡献更多的科技力量。/p
  • 实验室菜鸟报道,你需要色谱柱身份识别装置!
    p style="line-height: 1.75em text-indent: 2em "span style="font-family: 微软雅黑 "今天,是小A来实验室的第二天,熬过了第一天的入职培训,惊喜地发现8890 全新一代气相色谱系统四个检测器集于一身,同时操控,轻松应对复杂样品,告别超大的工作强度不必在实验室折返跑,可谓是信心满满迎接新一天工作的到来。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 微软雅黑 "做足实验准备,样品、色谱柱、参数设置一切完美,这样智能灵活的操作,工作起来事半功倍,很是轻松嘛。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 微软雅黑 "不过实验的操作,总是会有突发情况,带来的不是惊喜而是惊吓。到底发生了什么?让同事们受到了惊吓,小A更是崩溃到头痛呢?快来看看这样的情形是否也是您熟悉或者头痛的?/span/pp style="line-height: 1.75em text-indent: 0em "script src="https://p.bokecc.com/player?vid=44575FA8BF721B9F9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/scriptbr//pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 微软雅黑 "像小A这样的遭遇,实验室中发生过不止一次,原因在于实验室里许多色谱柱,相同的固定相有不同的规格,相同的规格也有好多根,辨别起来让人抓狂。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 微软雅黑 "难道就只能放任色谱柱的“神秘状态”不管吗?NO!NO!NO!其实只需要给每根色谱柱加一个“身份证号”就可以办到,一键记录色谱柱的所有信息。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 微软雅黑 "安捷伦全新一代8890系列气相色谱系统,就是为色谱柱配备了专属的身份识别装置——智能钥匙(Smart Key),即插即用,色谱柱的所有信息和使用历史一目了然,既方便更换色谱柱之后的仪器配置,又优化了实验室色谱柱的管理流程。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 微软雅黑 "智能钥匙一小只,实验室技能新解锁。有了这把智能钥匙,小 A 以后何愁还会拿错色谱柱。小A进入实验室后麻烦事不断,接二连三的实验难题和解决,仿佛坐上了云霄飞车。下次又会遇到什么样的问题呢?听说,第三天的他有什么秘密约会,还特意带了鲜花呢。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 微软雅黑 "相关链接:/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 微软雅黑 "span style="font-family: 微软雅黑 "想了解更多?点击查看a href="https://www.instrument.com.cn/netshow/C315133.htm" target="_self" style="color: rgb(79, 129, 189) text-decoration: underline font-weight: bold "Agilent 8890 气相色谱系统/a/spanstrongspan style="font-family: 微软雅黑 color: rgb(79, 129, 189) "/spanspan style="font-family: 微软雅黑 color: rgb(79, 129, 189) "/span/strong产品详情/span/pp style="line-height: 1.75em text-indent: 2em "a href="https://www.instrument.com.cn/Buyer/" target="_self" style="color: rgb(79, 129, 189) text-decoration: underline font-family: 微软雅黑 "span style="font-family: 微软雅黑 "strongspan style="font-family: 微软雅黑 color: rgb(79, 129, 189) "仪采通/span/strong/span/aspan style="font-family: 微软雅黑 ",一键直达,快速发布采购需求/span/p
  • 我国四项电学计量基准采纳国际单位制新定义值
    近日,市场监管总局发布2021年第5号公告,批准我国基于量子化效应建立的电学计量基准——直流电压基准装置、直流电压作证基准装置、直流电压副基准装置、直流电阻(量子化霍尔电阻)基准装置复现单位量值采纳国际单位制(SI)新定义值。市场监管总局关于批准部分国家计量基准单位量值复现采纳国际单位制新定义值的公告 2021年第5号 第26届国际计量大会表决通过关于“修订国际单位制(SI)”的1号决议,其中普朗克常数(h)的值修订为6.62607015×10-34J s,基本电荷(e)的值修订为1.602176634×10-19C。由此,约瑟夫森常数变为KJ=2e/h=483597.848416984 GHz/V,冯克里青常数变为RK=h/e2=25812.8074593045 Ω。为保持我国计量基准量值与国际等效一致,根据《中华人民共和国计量法》及其实施细则,以及《计量基准管理办法》的相关规定,现将我国直流电压基准、直流电阻基准采纳国际单位制新定义值的有关事项公告如下:一、批准采用量子化效应建立的直流电压基准单位量值复现采纳国际单位制新定义后的约瑟夫森常数(KJ),重新确定直流电压基准装置、直流电压副基准装置、直流电压作证基准装置技术指标(见附件1),并换发国家计量基准证书。二、批准采用量子化效应建立的直流电阻基准单位量值复现采纳国际单位制新定义后的冯克里青常数(RK),重新确定直流电阻(量子化霍尔电阻)基准装置技术指标(见附件2),并换发国家计量基准证书。三、本公告自2021年3月1日起实施,请各相关国家计量基准保存单位和计量技术委员会做好后续工作,保障国家计量单位制统一和量值准确可靠。附件:1.重新确定的直流电压基准技术指标.pdf2.重新确定的直流电阻基准技术指标.pdf
  • 中国首次完成高海拔地区光谱类油中溶解气体在线监测装置特性试验
    记者从国网青海电科院获悉,该院于8日成功完成“光谱类油中溶解气体在线监测装置的测量误差及稳定性环境影响特性试验”,该试验是中国首次在海拔2000米以上地区进行的该类在线监测装置的特性试验,试验结果可有效解决在高海拔环境下,光谱类油中溶解气体在线监测装置可靠性差和现场运维难题。图为试验人员开展光谱类油中溶解气体在线监测装置的测量误差及稳定性环境影响特性试验。何炳勋 摄据悉,通过在线监测装置实时监测大型充油电气设备绝缘油中溶解气体含量,反馈主设备运行状态、实现故障主动预警,是当前强化变压器(高抗)状态管控、对设备开展早期故障检测和诊断最有效的手段之一。光谱类油在线装置因其无需分离单元、监测周期短等特点,正广泛运用于750千伏及特高压变电站。据悉,由于该类装置研发和出厂应用主要集中在中国东部地区,在高海拔地区存在油气分离度、气体检测准确度不足等应用瓶颈,导致在装置入网过程中,质量管控标准难以统一。“我们搭建测试平台验证激光与红外热辐射光源的环境适应性,提出数据校正方法,可提高高海拔地区油在线装置的入网质量管控质量,突破高海拔环境下装置可靠性差、缺乏科学评价标准的难题。”国网青海电科院设备状态评价中心周尚虎介绍说。未来,国网青海电科院将开展系列研究,形成高海拔环境因素对光谱类在线装置的影响规律及数据抑制校正方法,并将研究结果应用至光声光谱在线装置的入网及现场运维,解决现场运维技术瓶颈,保障电网设备安全稳定运行。
  • 中科院化学所“生物颗粒离子阱质谱装置”通过验收
    中科院条件保障与财务局近日组织专家对中科院化学所研究员聂宗秀主持承担的中科院科研装备研制项目“生物颗粒离子阱质谱装置”进行了结题验收。验收专家组一致认为该项目圆满完成了研制任务,达到了预期目标,同意通过验收。  包括细菌、病毒和细胞在内的生物颗粒在物质循环、生物进化和环境保护中扮演着重要的角色。因此,测量起源各异、个体微小的生物粒子的质量及其在特定群体中的分布和变异情况,对于了解它们的结构和特性非常有帮助。理论上可以采取类似分子质谱的方法,通过精确测定某一个生物颗粒的质量,推断其生物属性。因此,发展精确测量完整生物颗粒质量的质谱技术更具有重大的学术意义和应用价值。然而,生物颗粒的质量已远远超出现代质谱仪的测量范围,使用质谱技术测量病毒、细菌、细胞等生物颗粒是一个巨大的挑战。  该项目针对商用质谱存在的关键科学与技术问题,在质谱理论、仪器构建及新方法应用方面开展了系列探索性研究。科研人员首先研究了非线性离子阱质谱理论,为高性能质谱仪器研发奠定了基础。同时,为破解商用质谱仪无法测量完整颗粒质量的难题,科研人员还研制了离子阱颗粒质谱装置。此外,通用、免标记纳米颗粒在生物组织中的质谱成像及定量新方法也在该研究中成功建立。  “生物颗粒离子阱质谱装置”的研制成功,将质谱测定的质量范围从小于106的分子拓展至约1013的颗粒物,成功实现了颗粒物的质谱分析。利用该装置,项目组发展了对颗粒物的比表面积、尺寸分布及表面吸附量等进行多参数表征的质谱测定新方法,并成功应用于细胞质量的测定、颗粒吸附量“称量”、色谱填料综合表征等。同时,项目组通过相关质谱理论的研究,获得了非线性离子阱的离子运动特性和稳定区,为发展和提高囚禁质谱技术提供了新思路。
  • 上海BILON仪器固相萃取装置又添新成员啦
    固相萃取/固相萃取装置(Solid-Phase Extraction,简称SPE)是一种被广泛应用且备受欢迎的样品前处理技术,就是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。它在传统的液&mdash 液萃取基础上采用物质间相似作用的相似相溶原理并结合目前广泛应用的液相色谱和气相色谱固定相基本知识发展而来。  近日,上海比朗公司与上海理工大学共同研发的BSPE-12固相萃取装置主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较可以提高分析物的回收率,更有效的将分析物与干扰组分分离,减少样品预处理过程,操作简单、省时、省力。广泛的应用在医药、食品、环境、商检、化工等领域。  配套真空详细资料:http://www.bilon.cc/goods-288.html  固相萃取装置主要特征:  1、每路配有一个进口调节阀,可根据试验要求调节流速。  2、独特的螺旋盘支架设计可自由调节高度和灵活组合不同孔径的支撑盘用来满足大多数采样试管。  3、与DP-01型真空泵配套使用真空度可达0.098Mpa。  4、特有的废液收集瓶将萃取部分与存放废液部分分离开,既防止了交叉污染,处理废液也更加方便  5、萃取柱托盘采用特高分子材料制成,其美观耐腐蚀并且长期使用在高压力状态下不变形。  固相萃取装置技术参数:  样品处理数:12  气体控制方式:独立控制每个孔  压力显示:有  真空度:0.098Mpa  流量控制阀:12个  上海比朗BSPE-12固相萃取装置是上海比朗公司和上海理工大学共同打造研发。产品详细信息、实物图片、相关测试结果请电话或邮件索取!  电话TEL:021-52965776  传真FAX:021-52965990  邮箱Email:info@bilon.cn  商城Mall:www.bilon.cc  地址Add:上海市闵行区北松公路588号7号楼5层
  • 大科学装置铸就“中国枢纽”
    实验装置是科学家的“枪”,随着知识探索的不断深入,科学家对实验装置的需求也向着大型、复杂、综合的方向迅速发展。  现在,世界上许多国家级实验室里,人们都可以见到不同肤色、不同语言的学者在一起工作 而在一些大科学计划、大科学装置的建立中,对资金、技术和人力的需求往往超过了一个国家的能力。国际合作由此日渐成为各国科研机构的不二选择。  实验室里的国旗墙  在中科院高能物理所北京谱仪III(BESIII)狭长的地下实验室尽头,有一面特殊的墙,墙上挂满了五颜六色的各国国旗。  “墙上的国旗代表着现在参与北京谱仪III的合作单位。”高能物理所常务副所长、BESIII国际合作组发言人王贻芳告诉《科学时报》记者,“现在搞高能物理研究的人,都知道北京谱仪。”  截至今年6月,BESIII合作组国内外成员单位已扩大到49个,其中外国单位20家,中国香港2家,合作组专家达300多人。  用王贻芳的话说,在北京谱仪之前,中国对高能物理的贡献度“几乎为零”。直到1988年,BESIII的前身——北京正负电子对撞机(BEPC)和北京谱仪建成并投入运行后,这样的局面才得以扭转。  基于北京谱仪,高能物理所也取得了一批重要成果,发表科学论文达150多篇,跻身于世界八大高能物理研究中心之一。  “中国现在已经是世界高能物理界的一支举足轻重、不可或缺的力量。”提起这几十年的变化,王贻芳感到自己和合作组同事的努力全都值了。  中国的,世界的  坐落在上海张江高科技园区的上海光源,是我国迄今为止最大的大科学工程,同时也是目前世界上性能最好的第三代中能同步辐射光源之一。  2004年开工不久,上海光源工程经理部就发现了人力资源的严重短缺。根据当时的测算,上海光源工程建设期间需要约380人的骨干队伍,但开工时却只有130人左右。因此,工程经理部开始注意从国外引进或短期聘请工程建设特别需要的专家,不久就收到了明显效果,工程在编人员很快超过了200 人。  为了保证上海光源建成时仍居国际先进水平,工程经理部积极开展国际合作工作,与国外各主要同步辐射实验室建立了良好的合作关系,进行人员和技术的交流,及时了解国际同步辐射装置的发展趋势、新技术的发展方向,在工程建造过程中得到了国际上的帮助与支持。  上海光源开工一年内,就已有外宾来访47人次,涉及11个国家 出访40人次,涉及8个国家。  安装在中科院近代物理研究所兰州重离子加速器上的ECR离子源,也离不开以“ECR离子源之父”、法国格勒诺布尔技术研究所物理学家Richard Geller为代表的国际同行们的鼎力帮助。  Richard Geller曾几次到近代物理所介绍有关技术。经过与外国专家的交流,近代物理所离子源组在过去十几年间,先后自主研制了4台具有国际先进或领先水平的高电荷态ECR离子源。  2008年,该所副研究员孙良亭获得了首届Richard Geller奖。近代物理所离子源组也在两年内获得了国际离子源领域两项最重要的国际奖项,被认为是目前国际上最活跃和最具创新能力的离子源小组之一。  像Geller这样“无私奉献”的老外,在中科院各大科学装置的建设和运行中还有很多。科学家们明白,大科学装置是技术复杂的综合性工程,它涉及到许多不同的学科领域和高新技术,只有大家通力配合,才能解决关键的技术问题,为人类共同的科学事业争取时间和节省经费。  始于装置 瞄准未来  不管是中科院大科学装置里的“老大哥”北京谱仪,还是近年来赫赫有名的上海光源和合肥强磁场,这些大科学装置都不约而同地冠上了中国的地名。它们在各学科领域发挥重要作用的同时,也让长期以来发达国家在高技术领域对我国的“冷战”思维迅速转变。  这些大科学装置的落户,让中国终于有条件作为东道国,组织多国科学家参与的大规模科学实验,推进以我国为主的国际科技合作。  托卡马克(Tokamak)是一种利用磁约束来实现受控核聚变的环性容器。通电时,托卡马克内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。因此,托卡马克被公认为是探索、解决未来稳态聚变反应堆工程及物理问题的最有效的途径。  在国外同行研究的基础之上,1994年,中科院等离子体物理研究所通过国际合作,研制出HT-7超导托卡马克,使我国成为继俄、日、法之后第四个拥有该类装置的国家,中国聚变事业从此走上了国际舞台。  2007年,该所独立设计制造的世界上首个全超导托卡马克装置“东方超环”(EAST)通过验收,进入实验阶段后,“东方超环”面向全世界聚变领域的专家开放。2010年,近百人次的国内外同行参加了实验,并取得了许多重要的成果。  作为“十一五”国家重大科技基础设施,稳态强磁场实验装置尚未全部完工,主持建设的中科院合肥物质科学研究院就迎来了一波又一波的国外考察团队,一些世界知名的学者也陆续被聘为中科院强磁场科学中心的研究员。  而上海光源的用户则几乎“挤破头”。从2009年5月6日试运行以来,上海光源在短短半年多时间里,中外用户的数量就上升到了4位数。  承担上海光源建设的中科院上海应用物理所也因此受益。通过上海光源项目,应用物理所与英国、日本、法国、德国等国家的同步辐射光源及其研究机构建立了全面的合作与交流关系,并与美国五大实验室保持着密切的人员交流与技术合作。  2007年,大亚湾反应堆中微子实验在我国启动,它不仅成为具有重要国际影响力的大型基础科学研究项目,也是中美两国历史上最大的合作项目之一。  这样的例子不胜枚举。截至2010年底,中科院已与全球50多个国家和地区签署院级合作协议200多个,所级合作协议1000多个,每年在研国际合作项目800余项。  2009年、2010年两年间,有近500名国外高水平专家来华参与大科学装置的建设和研究。而2010年6月30日中科院与国家外国专家局签署的《引进国外智力为大科学装置服务合作框架协议书》,则标志着我国大科学装置引智工作进入了新的层面。  相识系于缘,相交系于诚。透过这些扎根中国的大科学装置,国际合作的含义早已超越了“凑份子”的阶段。中外科研人员互访、合作开展科研项目、联合培养研究生等越来越丰富的手段,让中国在科技全球化的浪潮中,逐渐成长为一个融合与开放的枢纽。
  • “诺奖风向标”拉斯克奖揭晓,光遗传学会不会获诺奖?
    北京时间9月25日零点,2021年拉斯克奖(The Lasker Awards)公布了三大奖项获奖名单。其中,基础医学研究奖由Dieter Oesterhelt、Peter Hegemann 和Karl Deisseroth获得,以表彰他们对光遗传学的贡献;来自BioNTech的Katalin Karikó和宾夕法尼亚大学的Drew Weissman获得临床医学研究奖,以表彰他们发现基于mRNA修饰的新治疗技术;医学科学特别成就奖则颁给了诺贝尔奖得主David Baltimore。 光遗传学被认为是一项注定要得诺奖的技术(相关文章: 光遗传学:一项注定要得诺贝尔奖的技术)。 实际上,对于光遗传学技术作出贡献的科学家不止这三人,还有他们的合作者和其他科学家。 科学的发展常常伴随着科学家竞争,这是科学的常态。每一项科学成果的背后,故事主角们都有不同的悲喜。但无论结局如何,每一位探索在知识边缘的科学家都值得我们深深的敬意。 撰文|王承志 梁希同 林岑 责编|夏志坚 陈晓雪 北京时间2021年9月25日零点,有 “诺奖风向标” 之称的拉斯克奖(the Lasker Awards)公布,三位在光遗传学领域作出重要贡献的科学家获得阿尔伯特拉斯克基础医学研究奖。 获奖理由: 发现了可以激活或沉默单个脑细胞的光敏微生物蛋白,并将其用于开发光遗传学——神经科学领域的一项革命性技术。 根据拉斯克奖官网介绍,三位获奖人的具体贡献分别是: 迪特尔奥斯特黑尔特(Dieter Oesterhelt),发现了一种古细菌蛋白质,它可以在光照条件下将质子泵出细胞; 彼得黑格曼(Peter Hegemann),在单细胞藻类中发现了相关的通道蛋白; 卡尔代塞尔罗思(Karl Deisseroth),利用这些分子创建了光触发系统,这些系统可以在活的、自由移动的动物身上使用,以理解在迷宫一般的脑回路中特定类别乃至一类神经元的作用。 大脑是人最复杂的器官,人的感觉、记忆、思考、运动等诸多生理活动,以及各种神经系统疾病都与神经元的功能息息相关。多年以来,理解各种神经元的具体功能一直是神经生物学的中心研究领域。 特异性地控制神经元活动对神经生物学家具有无法抵挡的吸引力。如果能特异性地激活一类神经元,那么就可以通过观察激活后的生理现象来推测其功能。同理,如果能特异性地抑制一类神经元,则可以推测这类神经元对哪些生理活动是必须的。 神经生物学家们尝试过各种方法来达到这个目标。比如,用微电极来刺激神经元,或者使用化学物质来模拟或者拮抗神经递质。但这些方法都有难以克服的缺陷:微电极控制的精度不够,比如不能特异性地控制一类神经元;化学物质控制神经元的速度难以控制,很难在毫秒级别进行操作。 紫色的膜与光传感器 1969 年,29岁的青年化学家迪特尔奥斯特黑尔特(Dieter Oesterhelt,1940年-)从德国慕尼黑大学学术休假,来到了美国加州大学旧金山分校电子显微镜专家沃尔瑟斯托克尼乌斯(Walther Stoeckenius,1921年7月3日-2013年8月12日)的实验室。 当时,斯托克尼乌斯正在研究一种可以在高盐环境中生存的古细菌的细胞膜,这种微生物现在被称作盐生盐杆菌(Halobacterium salinurum)。在这次合作中,奥斯特黑尔特证实盐生盐杆菌的细胞膜中紫色的组分含有视黄醛。随后,他和斯托克尼乌斯确定了古细菌中的一种蛋白质,并将其命名为细菌视紫红质(bacteriorhodopsin)。1971 年,他们提出细菌视紫红质起到了光传感器或光感受器的作用。迪特尔奥斯特黑尔特 | 图源:biochem.mpg 回到德国后,奥斯特黑尔特和斯托克尼乌斯继续合作这一研究。奥斯特黑尔特发现,细菌视紫红质可以将质子泵出细胞。这个神奇蛋白质,像是一个微型光能发电机,能吸收光子的能量,用这些能量把质子泵到细胞的外面,从而进一步转化为细菌所需的能量。 后来,科学家们发现了另外一种含视黄醛的光激活泵——卤化视紫红质(halorhodpsin),可以将氯离子输送到细胞中。这两种物质的发现和对其生物物理、结构和遗传学的研究,为光遗传学的发展提供了基础性的见解。 来自微生物的光敏蛋白 20世纪80年代,彼得黑格曼在位于慕尼黑的马克思普朗克生物化学研究所攻读博士学位。他的导师正是发现细菌视紫红质的迪特尔奥斯特黑尔特。 黑格曼的博士论文,研究的是来自另一种细菌的视紫红质——卤化视紫红质(halorhodopsin)。 卤化视紫红质存在于一种耐盐古细菌中,其利用光能将其生活的高盐度环境中的氯离子排出体外。黑格曼首先通过生物化学技术分离提纯了这一蛋白。彼得黑格曼 | 图源:project-stardust.eu 此时,刚刚在法兰克福的马克思普朗克生物物理研究所建立自己实验室的恩斯特班贝格(Ernst Bamberg)参与了进来,他通过构建体外系统来研究黑格曼所提纯出的halorhodopsin的电化学特性。 1984年获得博士学位后,黑格曼来到美国雪城大学的肯福斯特(Kenneth Foster)的实验室从事博士后研究。 福斯特研究的是另一种对光敏感的微生物:单细胞绿藻。这些单细胞的藻类具有趋光性,能够挥舞鞭毛向着有光的方向游去(它们需要光进行光合作用)。福斯特认为,单细胞绿藻也可能使用某种视紫红质作为它们的眼睛,从而得知光亮的方向,并且能驱动鞭毛游往有光的地方。莱茵衣藻 Chlamydomonas reinhardtii 1986年,黑格曼回到普朗克生物化学研究所建立起自己的实验室,开始潜心研究莱茵衣藻(Chlamydomonas reinhardtii,一种微小的绿藻)趋光性行为。 1991年,黑格曼发现,莱茵衣藻的光受体也是一种视紫红质,但它的工作方式与之前发现的各种视紫红质都不一样。衣藻视紫红质的光照之后会引起钙离子流入细胞中,从而引起的电流能够激发鞭毛的运动,他称之为光电流(photocurrent)。恩斯特班贝格(Ernst Bamberg) 人眼中的视紫红质感光之后也会产生光电流,通过神经传递到大脑之后就形成了视觉。人眼中视紫红质引起光电流需要经过细胞内一系列蛋白的信号传导,而黑格曼发现衣藻视紫红质产生光电流的速度比人眼中的视紫红质快得多。据此他大胆地推测:衣藻视紫红质本身可能就是一个可以作为电流开关的离子通道。 然而,此后的十年里,黑格曼使尽各种办法,也无法像当初分离提纯一样分离卤化视紫红质提纯出衣藻视紫红质,来验证他的猜想。 随着分子生物的发展,2001年,黑格曼和其他科学家通过测序衣藻的基因组发现了两个新的光受体基因。 为了证明它们究竟是不是苦苦追寻十余年的衣藻视紫红质,黑格曼找到了当初和合作研究卤化视紫红质电化学特性的班贝格。 此时的班贝格已经是普朗克生物物理研究所的所长。此前的1995年,班贝格就和普朗克生物物理研究所的科学家格奥尔格纳格尔(Georg Nagel)将细菌视紫红质表达在动物细胞中,使得动物细胞在受到光照时产生光电流。奥尔格纳格尔(Georg Nagel) 2003年,从黑格曼那里得到光受体基因后,班贝格和纳格尔用同样的方法成功地在动物细胞中表达了衣藻视紫红质蛋白,从而发现只要有这个蛋白单独存在,就能产生光电流,使阳离子流入细胞中,造成细胞去去极化。他们的结果终于证明黑格曼的假说:衣藻视紫红质是一个能被光所打开的阳离子通道。 从前人们知道,特定的化学分子,或者电压的变化,或者机械力的变化可以开关特定的离子通道,而能被光直接控制的离子通道还是第一次被发现,于是他们把衣藻视紫红质命名为视紫红质通道蛋白(Channelrhodopsins,ChR1)。这个词由离子通道(Channel)和视紫红质(Rhodopsin)组合而成。 他们还在爪蟾的卵细胞中表达了这种蛋白,发现光照可以引起细胞的静息电位发生变化。这项开创性的工作发表在了2002年6月的 Science 上。 2003年,纳格尔和黑格曼又发现了一个新的通道蛋白——ChR2。这一次,他们不但做了更深入的机制研究,而且把ChR2首次在人的细胞(HEK)中表达。作者在文章结论中写道:“ChR2能够成为控制细胞内钙离子浓度或者细胞膜极化水平的有用工具,特别是在哺乳动物细胞中”。 ChR1和ChR2的发现,让一些神经生物学家眼前一亮——这或许就是使用光来控制神经元的理想介质。而光遗传学的大门从这里也正式开启了。 光遗传学的诞生 视紫红质通道蛋白的发现,不仅仅解释的衣藻的趋光性行为,纳格尔和班贝格的实验还证明了这个来自衣藻的光敏感通道能独自驱使动物细胞产生光电流。因此,借助这个光敏感通道,就可以通过光来遥控动物细胞,特别是神经细胞的电活动。 用光来改变神经细胞的电活动是神经科学家长久以来的梦想,光刺激有着比传统药物刺激和电刺激更高的时间和空间的精确性,并且对组织的伤害更小。 20世纪90年代,科学家开始使用光控释放神经递质来激活细胞,但这种方法的时间和空间的精确性仍然不够。 2002年,奥地利神经科学家格罗米森伯克 (Gero Miesenböck)开始在光控中引入遗传学,尝试将果蝇眼中的视紫红质表达在哺乳动物细胞中,或者将哺乳动物的离子通道表达的果蝇的神经细胞中。使用遗传学的优势在于,可以专门针对研究者想到测试的神经细胞进行遥控,但米森伯克缺乏一种强有力的工具可以让光精确地改变神经活动。格罗米森伯克 (Gero Miesenböck) | 图源:cncb.ox.ac.uk 2003年在衣藻中发现的视紫红质通道蛋白正好提供了这样一个强有力的工具。 2000年,爱德华博伊登(Edward S. Boyden,1979-)来到斯坦福大学,在钱永佑(Richard Tsien,钱永健的哥哥)和詹妮弗雷蒙德(Jennifer Raymond)教授的指导下,研究小脑神经回路。 在钱永佑的实验室,博伊登遇到了钱永佑之前的博士生卡尔代塞尔罗思(Karl Deisseroth,1971-)。代塞尔罗思之前在斯坦福大学学习神经生物学,并在斯坦福医院当过精神科住院医师。 有着工程背景的博伊登和医学背景的代塞尔罗思经常在一起讨论当时神经生理学的研究技术。多次的思想碰撞让两位年轻人意识到,当时的技术还有很大局限,神经生物学家需要更好的工具来控制大脑中特异的神经元,他们决定开发这样的工具。Edward S. Boyden | 图源:mcgovern.mit.edu 他们最初设想可以使用磁场来控制神经元,在神经元中表达机械拉力敏感的离子通道,然后把微小的磁珠特异性连接到这种通道蛋白上,这样就可能通过外部磁场来控制神经元的电活动。但是,无论是找到合适的机械敏感离子通道基因还是把磁珠连接到通道蛋白上,技术难度都非常大。 后来,博伊登在阅读一篇1999年发表的论文中得到了灵感。这篇论文报道了在嗜盐碱单胞菌中发现的卤化视紫红质(halorhodopsin),能够在大脑的氯离子浓度下工作。这种视紫红质可以在受光照时激活离子通道。 博伊登意识到使用光来控制离子通道比磁场更容易实现。他写邮件给这篇论文的作者,索要了这个蛋白的基因。但后来由于博伊登忙于博士学位论文,这件事情被晾在了一边。 2003年秋天,代塞尔罗思即将独立成为PI,组建自己的实验室。他写邮件给博伊登,希望博伊登博士毕业后可以去他的实验室做博后,一起开展之前讨论的使用磁场控制神经元的项目。卡尔代塞尔罗思 | 图源:www.hhmi.org 从2003年10月到2004年2月,代塞尔罗思和博伊登为即将开始的磁控神经元项目阅读了大量的文献。恰在此时,纳格尔、黑格曼和班贝格及同事们在 PNAS 期刊上发表了前文提到的ChR2的论文。 博伊登阅读这篇论文时立刻意识到,ChR2拥有他们设想过的一切特性:在一个蛋白中把输入信号(光)和输出(去极化神经细胞)偶联起来。事实上,同时意识到这一ChR2这一特性可以用于光控神经细胞的,远不止博伊登一人。 博伊登写信给代塞尔罗思,希望能联系纳格尔索要ChR2的克隆。代塞尔罗思于2004年3月联系了纳格尔。那时,纳格尔已对ChR2做了一些改良,他把这些改良后的克隆寄送给了代塞尔罗思和博伊登。 博伊登当时还在钱永佑的实验室做博士课题。但从2004年7月开始,博伊登几乎把博士课题放在了一边,专心做起了ChR2在神经元中表达的项目。 2004年8月4日的凌晨1点,博伊登在钱永佑的实验室里用蓝光照射表达了ChR2的神经元,成功观察到了去极化和动作电位。早上,他发邮件给代塞尔罗思告诉了他的发现。代塞尔罗思回信:“太棒了!!!!!” 五个感叹号显示了他当时的兴奋心情。 2005年初,张锋(就是后来最早在哺乳动物细胞中使用CRISPR做基因编辑的那位,现麻省理工学院教授)来到代塞尔罗思实验室开始了研究生生涯。他改进了博伊登的表达体系,使用慢病毒在神经元中表达ChR2,大大增加了该系统的稳定性。 2005年4月19日,博伊登和代塞尔罗思把他们的发现投稿给 Science 杂志,遭拒稿,理由是没有具体的科学发现。5月5日,他们投稿到 Nature 杂志,Nature 建议把稿件转投给 Nature Neuroscience 杂志。经过一轮修改,Nature Neuroscience 接受了这篇文章。 光遗传学的其他研究者 自从黑格曼等在2003年发表了光敏通道蛋白ChR1和ChR2,很多科学家都意识到这类光控通道蛋白有极大的应用潜力。一场无形的竞争也在悄然展开。 美国底特律的韦恩州立大学华人神经科学家潘卓华是一位视觉专家,他在2000年早期即构想将光敏蛋白表达在盲人的眼内,以代替视杆细胞和视锥细胞的缺失。潘卓华 | 图源:kresgeeye.org 2003年ChR1和ChR2论文的发表,潘卓华敏锐地觉察到这可能就是他一直在寻找的光敏蛋白。 他与萨鲁斯大学(Salus University)的 Alexander Dizhoor 教授合作,在神经节细胞中表达ChR2。Dizhoor 教授的团队设计合成了光敏通道蛋白的DNA,并添加了示踪的荧光蛋白——这与纳格尔对ChR2的改良非常类似。同时,潘卓华使用病毒在细胞中表达ChR2,这与张锋在代塞尔罗思实验室的改进也相似。 2004年7月,潘卓华将载有ChR2基因的病毒注入给小鼠,5周后他通过荧光蛋白确认了ChR2在视网膜细胞上的表达。当他打开照射灯时,插入视网膜的电极显示了明显的电活性。这显然是个了不起的实验,它第一次证明了ChR2在活体动物中的活性,证明表达视紫红质通道蛋白可以使的失明的大鼠重新感光——这有着极大的应用价值,有可能成为治愈盲人的一种方法。 2004年11月25日,潘卓华和合作者将这些发现投稿给 Nature 杂志。与代塞尔罗思的文章遭遇一样,Nature 建议将文章改投到旗下子刊 Nature Neuroscience。 不过,潘卓华的论文继续被拒。2005年初,潘卓华将文章投到Journal of Neuroscience ,再次遭拒稿。 2005年5月,潘卓华在佛罗里达参加视觉与眼科学研究协会大会时,简短报告了他的这项成果。当时他的论文还没有发表,这是该工作第一次公布于众。 最后,潘卓华的论文几经周折,直到2006年4月在 Neuron 杂志发表 。不过,这篇文章所受的关注远远不如代塞尔罗思等人在8个月前发表的论文。 2005年,日本的 Hiromo Yawo 实验室和美国的凯斯西储大学的林恩兰德梅赛(Lynn Landmesser)和 Stefan Herlitze 也发表了类似的结果,他们比代塞尔罗思等人等的文章晚了两三个月。 一位长期关注光遗传学的科学家评论说,代塞尔罗思和博伊登的文章几乎直接提出了光遗传学的概念,并予以了充分的证据支持,使得其作为一个能够广泛使用的潜在神经科学工具而被神经科学领域所快速的接受。相对来说,潘卓华的工作相对而言受众更小,为大家接受验证也需要时间,但他开创性地将ChR表达到视网膜细胞中用于治疗,并且取得成功,是一项很了不起的工作;并且这也是第一次将ChR表达到活体动物中发挥治疗作用。 科学的发展常常伴随着科学家竞争,这是科学的常态。每一项科学成果的背后,故事主角们都有不同的悲喜。但无论结局如何,每一位探索在知识边缘的科学家都值得我们深深的敬意。光照使表达了Channelrhodopsin的神经元放电 光遗传学的发明,几乎在一夜之间改变了神经科学研究。 从线虫到灵长类动物,人们在几乎所有实验动物中表达光敏感通道来实现远程遥控神经活动。通过在不同类型的神经细胞中表达光敏感通道,人们可以用光控制小鼠的行为,控制它们的运动,使它们产生虚拟的饥饿感或饱腹感,甚至在它们脑中用光写入或抹去特定的记忆。 光遗传学已经成为神经科学中证明因果性的关键手段。这一技术也为众多医学应用开辟了道路。科学家们希望能利用光,给盲人提供基本视力,刺激患有帕金森病的患者的深部脑,甚至影响心律,以治疗心力衰竭。用光纤控制实验鼠的行为 作为一项彻底改革了神经科学发展的技术,光遗传学也让包括黑格曼、纳格尔、班贝格、代塞尔罗思、博伊登在内的科学家在过去几年中屡获殊荣,其中包括了2010年《科学》杂志十年最佳进展,2013年的大脑奖,2015年的生命科学突破奖、2016年度科学突破奖、2019年的拉姆福德奖金和2020年的邵逸夫奖等。 回到故事最开始的时候,科学家们只是想知道单细胞藻类微小的秘密。彼时,没有人会想到,那些努力向光游去的小绿藻,最终居然教会我们如何改写大脑活动的秘诀,推动我们向解开大脑秘密前进了一大步。 迪特尔奥斯特黑尔特 现为德国马克斯普朗克生物化学研究所名誉组长。他1940年11月10日出生于德国慕尼黑,1959-1963年在德国慕尼黑大学学习化学,1967年他博士毕业于慕尼黑大学,之后担任马克斯普朗克细胞化学研究所研究助理。1969年,奥斯特黑尔特前往加州大学旧金山分校做研究,并在那里开启了对细菌视紫红质的研究。1973-1975年,他是马克斯普朗克学会弗里德里希米歇尔实验室的研究组长,1976-1979年在维尔茨堡大学任正教授。1980年之后,奥斯特黑尔特长期担任马克斯普朗克生物化学研究所所长。2008年退休。 彼得黑格曼 1954年12月11日出生于德国明斯特。1975年至1980年在明斯特大学和慕尼黑大学学习化学。1980年至1984年在马克斯普朗克生物化学研究所 Dieter Oesterhelt 教授的指导下完成博士学位,研究细菌的光敏感离子泵。之后,在美国雪城大学的Kenneth Foster 实验室从事博士后工作,开始研究单细胞藻类的趋光行为。 1986年黑格曼回到马克斯普朗克生物化学研究所建立微藻光受体实验室。1991年发现衣藻的光电流。2002年找到介导衣藻光电流的基因,即视紫红质通道蛋白(Channelrhodopsins)。2005年至今,在柏林洪堡大学担任生物物理学教授和系主任。 卡尔代塞尔罗思 代塞尔罗思为美国斯坦福大学教授。他1971年出生于美国,在哈佛大学获得生物化学学士学位后,1998年在斯坦福大学获得神经学博士学位。2004年,他在斯坦福大学建立自己的实验室。 2005年,代塞尔罗思和博士后爱德华博伊登(Edward Boyden)、学生张锋等共同发表了一篇论文,首次利用通道视紫红质在神经细胞上实现了毫秒级动作电位的控制。2006年,代塞尔罗思将这种方法命名为“光遗传学”。他们的方法很快被广泛应用于生物学各个领域,使生物学家可以用光控制各种生命活动。 主要参考资料 [1] Bamberg, Ernst, Peter Hegemann, and Dieter Oesterhelt. "The chromoprotein of halorhodopsin is the light-driven electrogenic chloride pump in Halobacterium halobium." Biochemistry 23, no. 25 (1984): 6216-6221. [2] Harz, Hartmann, and Peter Hegemann. "Rhodopsin-regulated calcium currents in Chlamydomonas." Nature 351, no. 6326 (1991): 489-491. [3] Nagel, Georg, Bettina Möckel, Georg Büldt, and Ernst Bamberg. "Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping." FEBS letters 377, no. 2 (1995): 263-266. [4] Nagel, Georg, Doris Ollig, Markus Fuhrmann, Suneel Kateriya, Anna Maria Musti, Ernst Bamberg, and Peter Hegemann. "Channelrhodopsin-1: a light-gated proton channel in green algae." Science 296, no. 5577 (2002): 2395-2398. [5] Boyden, Edward S., Feng Zhang, Ernst Bamberg, Georg Nagel, and Karl Deisseroth. "Millisecond-timescale, genetically targeted optical control of neural activity." Nature neuroscience 8, no. 9 (2005): 1263-1268. [6]Zemelman, Boris V., Georgia A. Lee, Minna Ng, and Gero Miesenböck. "Selective photostimulation of genetically chARGed neurons." Neuron 33, no. 1 (2002): 15-22. [7]Nagel, Georg, Tanjef Szellas, Wolfram Huhn, Suneel Kateriya, Nona Adeishvili, Peter Berthold, Doris Ollig, Peter Hegemann, and Ernst Bamberg. "Channelrhodopsin-2, a directly light-gated cation-selective membrane channel." Proceedings of the National Academy of Sciences 100, no. 24 (2003): 13940-13945. [8]Boyden, Edward S. "A history of optogenetics: the development of tools for controlling brain circuits with light." F1000 biology reports 3 (2011). [9]Bi, Anding, Jinjuan Cui, Yu-Ping Ma, Elena Olshevskaya, Mingliang Pu, Alexander M. Dizhoor, and Zhuo-Hua Pan. "Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration." Neuron 50, no. 1 (2006): 23-33.
  • 英斯特朗携手浙江医疗、中科院力学所举办外科植入物实验力学及应用技术研讨会
    在过去的十多年,生物医疗材料尤其是骨科,口腔等外科植入物领域经历了大量的创新与变革。中国作为全世界医疗器械的第二大市场,预计未来5年继续以每年超过15%到20%的速度增长,其中对生物材料的质量标准体系的要求将趋于严格化。到2020年,中国将全面提升医疗保健制度。这意味着中国的相关医疗器械的制造商将逐渐要求加入监督管理控制体系并促进医疗器械测试的相关标准。美国英斯特朗公司自1946年开始就已经在这一领域开展研究并为用户提供材料力学性能测试系统和解决方案,服务项目包括产品的研发、生产、标准,监管和质量控制。我们通过ISO和ASTM标准委员会协助起草了生物材料力学试验的相关标准,同时与众多国际知名学府和研究机构开展项目合作。不断努力为推进生物力学测试行业提供具有价值的最优化解决方案。今年6月,英斯特朗分别携手浙江医疗器械检验院和中科院力学研究所在杭州和北京两大先进生物材料产学研前沿地区组织了汇聚中欧外科植入物领域研究者,政策法规,检验检测技术专家及植入物产业相关精英的技术研讨会并共同就当今外科植入物国家监管政策方向,研究进展,技术应用和未来趋势进行交流互动。杭州外科植入物应用技术及政策研究研讨会 浙江省医疗器械检验院(MDST),成立于1977年地处杭州下沙经济开发区是浙江省食品药品监督管理局(ZJFDA)的直属事业单位,同时也是国家食品药品监督管理总局(CFDA)的10个国家级医疗器械检验中心之一。浙江医疗是专业从事医疗器械质量监督检验和医疗器械产品认证检测的国家级检验机构。作为此次技术研讨会的主办机构之一,来自英斯特朗英国动态产品制造基地的Alexander Johnson与在坐众多嘉宾分享了全球先进骨科植入物材料力学性能测试的解决方案。全程由英斯特朗中国销售总监杨卫刚先生刚担任技术翻译。Alexander是英斯特朗全球ElectroPuls电子动静态万能材料试验系统的应用专家和市场战略制定顾问。目前专注于负责ElectroPuls产品在生物医学和骨科领域的咨询和技术使用。拥有专利的直线电机技术,无油源,仅需单箱电源而无需额外冷却装置,ElectroPuls电子动静态万能材料试验机可进行最大载荷一吨的低速静态和高周疲劳测试。可应用于橡塑,复合材料,金属,电子和消费品等领域。尤其是在生物医疗外科植入物方面,ElectroPuls因其无与伦比的绝佳优势在中国拥有诸如强生医疗,碧迪医疗,柯惠医疗,施乐辉等知名全球医疗企业和天津医疗,北京医疗,山东医疗等中国医疗器械检验检疫机构及上海九院,北京口腔医院和南方医科大学南方医院等著名医学研究机构的使用和推荐。英斯特朗ElectroPuls动静态万能材料试验机拉扭双轴功能可满足现今ASTM F543 骨螺钉测试,ASTM F1717脊柱固定结构静态,扭转以及疲劳测试和ASTM F 2077椎间融合器试验等多类生物医学标准测试值得一提的是,本次会议来自国家医疗器械技术审评中心, 国家食品药品监督管理局的刘斌副处长也来到此次研讨会并与大家分享了关于外科植入物3D打印发展现状与监管理论研究的演讲。会上,刘处长分别就3D打印在外科植入物领域的发展现状及趋势进行了介绍,同时向各大医疗器械制造企业提出了注册行政监管环节,质量体系与技术审评环节,上市后监管环节和定制医疗注册研究后续工作的相关研究介绍。英斯特朗ElectroPuls动静态万能材料试验机拉扭双轴功能可满足现今ASTM F543 骨螺钉测试,ASTM F1717脊柱固定结构静态,扭转以及疲劳测试和ASTM F 2077椎间融合器试验等多类生物医学标准测试值得一提的是,本次会议来自国家医疗器械技术审评中心, 国家食品药品监督管理局的刘斌副处长也来到此次研讨会并与大家分享了关于外科植入物3D打印发展现状与监管理论研究的演讲。会上,刘处长分别就3D打印在外科植入物领域的发展现状及趋势进行了介绍,同时向各大医疗器械制造企业提出了注册行政监管环节,质量体系与技术审评环节,上市后监管环节和定制医疗注册研究后续工作的相关研究介绍。会议的最后来自英斯特朗中国ESG部门经理沈文荣先生为大家带来了期待已久的技术干货:生物力学测试标准及优化解决方案。沈文荣先生于1996年加入美国英斯特朗公司,作为技术研发部门的总负责,他从事和管理着中国及港澳地区材料力学测试的战略方向和技术研究。不断致力于为客户提供专业生物医学材料和医疗器械力学性能测试的解决方案和特殊工装的开发和定制工作,有超过20年的行业丰富经验。沈先生拥有金属材料硕士学历,在加入英斯特朗之前,任职于上海应用技术大学教授材料相关课程,并在此期间以访问学者身份赴德国纽伦堡进行为期10个月的交流学习。 北京外科植入物试验力学及应用研讨会作为中国力学领域科学界人才的摇篮,中国科学院力学研究所创建于1956年,是以钱学森先生工程科学思想建所的综合性国家级力学研究基地,在国际力学界享有盛誉,为我国“两弹一星”、载人航天事业及国家经济社会发展做出了重要贡献。现有中国科学院院士7人,中国工程院院士1人,研究员69人,副研究员、高级工程师和高级实验师146人,中国科学院“百人计划”入选者19人、国家杰出青年科学基金获得者11人,汇聚了国家材料力学测试的卓越人群。此次英斯特朗与力学所的成功牵手可谓是中外力学测试领域先驱企业共同为推进国家材料力学研究发展的开篇重要之举。中国科学院力学研究所的郇勇博士在会上进行了现代材料力学测试技术及其在医学领域的应用的报告。郇博士毕业于中国科学院力学研究所,工学博士,2015年入选“中国科学院关键技术人才”。现在力学研究所从事力学实验技术研究,在多尺度材料力学测试技术方面积累了丰富经验。目前已申请专利28项,参与制定国家标准2项。在Adv. Mater.、Rev. Sci. Instrum.、Sci. Rep.等期刊上发表论文40多篇。 会议图片分享:
  • 《焦点访谈》:国家重大科技基础设施稳态强磁场实验装置顺利验收,综合极端条件实验装置启动建设
    近期,重大科技基础设施“稳态强磁场实验装置”在合肥通过验收,使我国成为继美国、法国、荷兰、日本之后五个拥有稳态强磁场的。而在北京怀柔,另一个大科学装置——“综合端条件实验装置”也启动建设。听起来,“稳态强磁场”“综合端条件”都很陌生,它们都属于重大科技基础设施。为什么要建这样的设施,对于科学研究来说,这两个大装置有着什么样的重要意义呢? 稳态强磁场实验装置 磁现象是物质的基本现象之一。科学研究早已证实,当物质处在磁场中,其内部结构可能发生改变,磁场因而一直是研究物理等诸多学科的一种非常有用的工具。物质结构和状态在强磁场环境下都可能发生变化,呈现出多样的物理、化学现象和效应。磁场强度越高,物质的变化就越为明显,也就越有利于新的科学发现,就像显微镜放大10000倍比放大10倍能告诉研究人员更多一样。但是,磁场强度的提高,每一步都走得很艰难。强磁场中心的“稳态强磁场实验装置”达到了40万高斯的磁场强度,这是二十几年来,上几个有实力的都在尝试的目标。中国科学院强磁场科学中心(图中设备为磁性测量设备mpms,图片来源于网络)混合磁体装置(已产生稳态磁场强度达40t、二高场强,图片来源于网络) 强磁场是现代科学实验重要的端条件之一。在强磁场这种端条件下,物质的特性可以被调控,这就给科学家提供了研究新现象、发现新技术的机遇。因此场也被称为诺贝尔奖的摇篮,包括1985年和1998年诺贝尔物理奖的整数和分数量子霍尔效应、2003年获得诺贝尔奖的核磁共振成像技术。从生命科学到医疗技术,从化学合成到功能材料̷̷在各个科学领域,强磁场都是科学家们渴求的研究环境。 ”稳态强磁场实验装置”运行期间,为清华、北大、复旦、中科大等106家用户单位的1500余项课题提供了实验条件,产出了一大批具有国际影响力的科研成果。综合端条件实验装置 任何物质都是在一定的物理条件下形成的,通过使物理实验条件达到端状态,可以形成许多在常规物理条件下不能得到的新物质和新物态。综合端条件实验装置是指综合集低温、超高压、强磁场和超快光场等端条件为一体的用户装置。就在“稳态强磁场实验装置”通过验收的二天,我国在北京市怀柔科学城启动建设“综合端条件实验装置”,比“稳态强磁场实验装置”更进一步。 综合端条件实验装置启动(图片来源于网络) 项目席科学家、中科院物理研究所研究员吕力(quantum design 公司产品用户)说:“比如低温可以抑制物质中电子、原子的无规运动;强磁场作为可以调控的热力学参量,能够改变物质的内部能量;超高压可以有效缩短物质的原子间距,增加相邻电子轨道的重叠,从而改变物质的晶体结构,以及原子间的相互作用,形成全新的物质状态;超快激光则具有无与伦比的超快时间特性,快速变化的光场是人们能够操作并且控制的快物理量。” 综合端条件实验装置建成之后,将是国际上集低温、超高压、强磁场和超快光场等端条件为一体的用户装置,在非常规超导、拓扑物态、量子材料与器件等领域,提供实验手段的支撑,进而为相关材料的人工设计与制备,以及诸多科学难题的破解提供前所未有的机遇。 稳态强磁场实验装置、综合端条件实验装置等的重大科技基础设施,是科学家们进行科学研究的重要平台,也是提升科研水平的利器。它们的建成,既是我国科研人员创新进取的成果,也将以巨大的磁力,吸引更多人才从事相关领域的研究,推动我国基础领域的科学研究进一步走向前沿。文章原文部分摘自:cctv焦点访谈、人民网 相关产品链接: mpms3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/sh100980/c17089.htmppms 综合物性测量系统:http://www.instrument.com.cn/netshow/sh100980/c17086.htm完全无液氦综合物性测量系统 dynacool:http://www.instrument.com.cn/netshow/sh100980/c18553.htm多功能振动样品磁强计 versalab 系统:http://www.instrument.com.cn/netshow/sh100980/c19330.htm超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/sh100980/c122418.htm低温热去磁恒温器:http://www.instrument.com.cn/netshow/sh100980/c201745.htmmicrosense 振动样品磁强计:http://www.instrument.com.cn/netshow/sh100980/c194437.htm智能型氦液化器 (ATL):http://www.instrument.com.cn/netshow/sh100980/c180307.htm
  • 布鲁克推出 timsTOF Pro质谱仪 可实现更高灵敏度蛋白质组学分析
    p style="text-align: center "img title="IMG_1279.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/053b4ae8-ce11-4330-abec-7a4ed6c2a53a.jpg"//pp  2017年9月18日,在第十六届人类蛋白质组学年度世界大会(HUPO)上,Bruker推出了用于PASEF质谱的timsTOF Pro系统。该质谱采用了专有捕获离子迁移谱(TIMS)技术,能实现更高速度、更高灵敏、更强大的鸟枪法蛋白质组学分析,具有出色的单次肽和蛋白质鉴定性能。/pp  基于TIMS创新技术的四极杆飞行时间质谱仪(QTOF-MS)由MaxQuant / Perseus和PEAKS Studio蛋白质组学分析软件支持,这种timsTOF Pro方法对于定量蛋白质组学工作流程尤其有利。/pp 从较小样品量的识别性能方面,这种独特的前端TIMS分析仪对更高速度的鸟枪法蛋白质组学进行了优化。其独特的双TIMS几何形状允许离子在第一个TIMS部分中并行累积,并且在实时执行额外的TIMS分离步骤之后,离子从第二个TIMS部分释放出来,用于MS / MS碎裂。这可以产生近100%的占空比,使得这种平行堆积和连续碎裂(PASEF)技术在酶促消化产生的蛋白质混合物中,应用可重复纳流LC-MS分析可以具有前所未有的性能。/pp style="text-align: center "img title="timsTOF_Pro nanoELUTE_3D - 副本.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/b2589663-240a-424c-8bb3-77fa0c6b1803.jpg"/  /pp PASEF能力代表了性能的改进,因为它提供更高灵敏度和更高速度的鸟枪法蛋白质组学分析,而不损失质量分辨率。而之前,更高的扫描速度通常导致用于鸟枪法蛋白质组学的基于FT的质谱技术具有较低质量分辨率。这些临界限制可以由PASEF消除,允许以高灵敏度以及接近100%的占空比,同时还可以保持前体和产物离子的超高质量分辨率。双TIMS技术这一重要PASEF功能,有助于科学家们深入研究细胞复杂生物学以及发现重要低水平生物学蛋白。同时,这一功能也有助于蛋白质翻译和临床蛋白质组学研究中的验证和纵向研究。/pp  定量蛋白质组学是蛋白质组学研究的关键领域,双重TIMS供电的PASEF提供了超越传统门控时间串联FT的质谱分析局限性的优势。新的timsTOF Pro提供超过四个数量级的动态范围,低肽负载(100-200ng),这使得它非常适合于研究细胞生物学和临床中经常遇到的小细胞群体和低样品量的蛋白质组学。/pp  德国马丁斯堡的马克斯· 普朗克生物化学研究所蛋白质组学和信号转导系主任马蒂亚斯· 曼(Matthias Mann)表示:“我的实验室与布鲁克合作开发PASEF技术,我们很高兴看到timsTOF Pro实现我们最初设想的鸟枪法蛋白质组学的潜力。这种新技术有可能革新蛋白质组学的几个领域:临床研究,其中速度和定量能力是运行大样本队列的关键 需要增加灵敏度的应用 富含磷酸肽或其中有限数量的细胞可用于分析的样品;并且对于使用等压标记的定量实验,其中使用捕获的离子迁移率的额外分离可以至少部分地消除引起所谓的比例压缩效应导致不可接受的误差的共分裂物质的干扰。我们对技术进一步发展的潜力感到非常兴奋。“/pp  Bruker Daltonics的Omics解决方案副总裁Gary Kruppa表示:“蛋白质组学研究人员总是希望提高速度,灵敏度和定量能力,同时保持高分辨率,准确的质量和高保真度同位素图案,以便更深入地了解蛋白质组。使用PASEF,科学家们现在不需要将扫描速度和敏感度的解决方案进行权衡,它们通过TIMS前体离子选择获得高灵敏度,高扫描速度和无与伦比的特异性这三重效果。这提供了发现低水平生物相关蛋白质的可能性,目前它们是超出了非TIMS质谱仪的性能范围的。“/pp  马丁· 马克斯普朗克生物化学研究所计算系统生物化学小组组长Juergen Cox评论说:“Bruker决定采用开放文件格式,以便我们可以直接使用原始数据,将有利于蛋白质组学研究人员的使用MaxQuant和Perseus软件平台。我们对数据质量特别重视,并期待与Bruker合作,通过最先进的客户支持软件和分析统计查询,我们可以使用PASEF在timsTOF Pro上获取数据。“/pp  关于带有PASEF的timsTOF PRO/pp  专有的timsTOF Pro系统使用通过捕获离子迁移光谱(TIMS)实现的PASEF,为鸟枪法蛋白质组学提供了行业领先的数据采集速度。 timsTOF Pro的独特双TIMS几何结合了TIMS设备中离子包的时间聚焦,意味着PASEF提供的速度优势同时提高了灵敏度和定量。所有这些在速度,灵敏度和定量方面的增益保持了Bruker的高性能QTOF质谱仪的优势,包括高质量分辨率(即使在最高数据采集速率下,分辨率为50,000 FWHM),ppm精确质量和高同位素保真度(True同位素模式或TIPTM)。具有PASEF的强大的timsTOF Pro为科学家提供了深入细胞机器复杂生物学研究、发现低水平生物学重要蛋白质、在蛋白质翻译以及临床蛋白质组学研究中进行验证提供了有力工具。/pp  关于MaxQuant和Perseus软件平台/pp  MaxQuant是猎枪蛋白质组学数据分析的行业标准。 Juergen Cox在过去十年发展起来,已经成为肽,蛋白质和翻译后修饰的鉴定和定量最常用的包装。近期,MaxQuant已经适应于timsTOF数据的分析,管理由保留时间、离子迁移率、质量和信号强度所占据的空间中的4D特征。用于多元数据分析的Perseus软件支持生物和生物医学研究人员解释分子定量,相互作用和蛋白质翻译后修饰数据。 Perseus包含用于高维数据分析的统计工具的综合组合,涵盖归一化,模式识别,时间序列分析,跨学科比较和多重假设检验。/pp  关于PEAKS Studio/pp  生物信息解决方案公司的旗舰软件PEAKS Studio为蛋白质组学研究界提供了创新的质谱数据分析工作流程。自从在二十世纪初期首次亮相以来,PEAKS Studio已被高度认可,其基准测试从头测序算法被集成到所有其他鸟枪法蛋白质组学软件模块中。从头测序与传统数据库检索的结合确保了对原始光谱数据的完整解释,以满足质谱的复杂性和灵敏度,并为蛋白质组学和治疗性蛋白质发现提供了先进的解决方案,如通过肽/蛋白质鉴定和定量,肽图,翻译后修饰和序列变体。/pp  PEAKS Studio提供的独特工作流程以及由timsTOF Pro的第四维离子迁移率引起的令人信服的数据质量促成了生物信息解决方案公司和Bruker的合作。/pp  关于布鲁克公司(纳斯达克股票代码:BRKR)/pp  55多年来,布鲁克已经使科学家们能够突破发现,开发新的应用,提高人类生活质量。 Bruker的高性能科学仪器和高价值分析和诊断解决方案使科学家能够在分子,细胞和微观层面探索生命和材料。/pp  通过与客户的密切合作,Bruker在生命科学分子研究,应用和制药应用以及显微镜,纳米分析和工业应用方面实现了创新,生产力和客户成功。近年来,Bruker也成为细胞生物学,临床前成像,临床表现学和蛋白质组学研究,临床微生物学和分子病理学研究的高性能系统的提供者。/pp /p
  • 北京怀柔科学城首个大装置开工 综合极端条件实验装置启动建设
    p  由中国科学院物理研究所等建设的国家重大科技基础设施项目——综合极端条件实验装置9月28日在北京怀柔正式启动建设,这也是怀柔科学城第一个开工的国家重大科技基础设施。该工程拟通过5年左右时间,建成国际上首个集极低温、超高压、强磁场和超快光场等极端条件为一体的用户装置,极大提升我国在物质科学及相关领域的基础研究与应用基础研究综合实力。/pp  综合极端条件实验装置工程由国家发改委审批,中科院、教育部共同申请,得到了北京市和怀柔区的鼎力支持。装置由极端实验条件产生系统、极端条件下的样品表征和测量系统,以及能满足上述各系统研制、升级、维护与运行的支撑系统等部分组成。建成后,该装置将成为开展物质科学及相关领域研究的重要实验基地,成为具有国际领先水平和重要国际影响力的科学与技术研究中心。/pp  在项目启动会上,中科院副院长王恩哥表示,综合极端条件实验装置是中科院站在国家科技创新总体布局的高度,面向全球科技创新发展态势作出的一项重大部署,是落实习近平总书记关于在北京“建设具有全球影响力的科技创新中心”要求的具体举措之一。/pp  王恩哥对项目建设法人单位中科院物理所提出了几点要求。他说,物理所要以对人民负责、对历史负责、对党和国家负责的态度,强化建设标准和要求,按照既定建设周期,保质保量完成建设任务 抢抓机遇,认真做好前沿科学领域布局规划 大胆探索大科学装置管理体制机制改革,运行好综合实验设备,多出成果,早出成果,出大成果,勇攀科学高峰 发现、吸引、凝聚顶尖科学家,形成国际科技创新人才高地。/pp  王恩哥强调,综合极端条件实验装置在国际上是首创,是一项“功在当代,利在千秋”的国家科技基础设施建设工程。他希望该装置能够建设成为世界领先的用户装置,与相关交叉平台一起构成具有全球影响力的凝聚态物质科学研究中心。努力探索世界科学前沿,实现技术引领性突破,在怀柔科学城建设中作出重要贡献。/pp  “极端条件实验手段的整体水平直接影响着我国在若干核心领域的竞争力。”中科院物理所所长方忠认为,项目建设将大幅提升我国综合极端条件科学与技术研究及尖端实验设备的研制、运行能力,提升我国在相关基础研究、高技术研究领域的综合水平,使我国在该领域的综合实力步入世界一流水平,促进我国从科技大国走向科技强国。/pp  利用装置,科研人员可以开展非常规超导、拓扑物态、新型量子材料与器件等研究工作,并可在物理、材料、化学和生物医学等领域开展超快科学研究,探索极端时空尺度上的物质结构信息和动力学信息。项目首席科学家、国家“千人计划”入选者、中科院物理所研究员丁洪举例说,倘若科学家能利用装置做出室温超导体,电影《阿凡达》中壮观的“哈利路亚悬浮山”就有望成为现实。/pp  此外,装置还具有广泛的实际应用价值。依靠该装置,人们可以开展各种特殊功能材料和技术的研发,还能够促进凝聚态物理、材料科学、化学、地质、能源科学及信息科学等不同学科之间的相互渗透、交叉融合。/pp  项目首席科学家、中科院物理所研究员吕力透露,装置建成后将向国内外用户全面开放,遵循“开放、共享、流动、合作”的运行管理机制,严格保证全面对外开放机时。/pp  据了解,综合极端条件实验装置是指综合集成低温、高压、强磁场、超快光场等一系列配套的集群设备所构成的大型科学实验设施。近年来,利用极端实验条件取得创新突破已成为科学研究发展的一种重要范式,不少工作获得了诺贝尔奖,大量成果得到了重要应用。世界上许多发达国家或地区,如美国、欧洲、日本等都在该领域展开了激烈竞争,许多著名研究机构都拥有先进的极端条件实验设施。/pp/p
  • “基于可调谐红外激光的能源化学研究大型实验装置”通过验收
    3月8日至9日,国家自然科学基金委员会(以下简称“基金委”)组织专家,在中国科学技术大学对国家重大科研仪器研制专项(教育部推荐)“基于可调谐红外激光的能源化学研究大型实验装置”进行验收。基金委副主任谢心澄、化学科学部主任杨学明线上参会,基金委化学科学部常务副主任杨俊林、教育部科学技术与信息化司相关人员、项目验收组专家、项目四个承担单位负责人、项目组成员等50人参加了会议。会议分别由杨俊林和验收专家组组长主持。   谢心澄指出,国家重大科研仪器研制项目的定位是面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创性科研仪器与核心部件的研制,以提升我国的原始创新能力;建议专家在验收时重点考察仪器的原创性、研究目标的实现情况、仪器技术指标完成情况和指标的先进性,以及对解决重大科学问题、开拓新的研究领域,促进人才培养和推动学科发展所取得的作用。他强调,部门推荐项目验收通过后,基金委适时组织专家对项目进行后评估。因此,希望项目负责人加强后期管理,注重仪器的运行使用与开放共享,提高科研仪器的使用效率和水平,推动项目成果转化,为探索前沿和服务国家需求夯实技术基础。杨学明指出,过去5至10年,我国在化学领域批准建设的比较重大的科学装置对推动化学学科的发展非常重要,证明化学领域和物理领域的研究人员通过合作可以把一件比较困难的事情做好,证明我国在高端科学仪器研制方面具有很大的实力。厦门大学副校长江云宝代表项目四个承担单位发言。   专家组认真审阅了验收材料,听取了项目负责人厦门大学孙世刚院士作的项目工作报告,以及监理组相关人员作的监理情况报告,并进行了质询和现场考察,听取了仪器测试组报告、财务组验收意见及档案组审核情况报告。经过讨论,专家组认为:项目达到了预期研制目标,符合验收要求,同意通过验收。   “基于可调谐红外激光的能源化学研究大型实验装置”项目集厦门大学、中国科学技术大学、复旦大学和大连化物所的相关优势,建设了一套具有先进水平的波长连续可调、覆盖中红外到远红外波段的可调谐红外自由电子激光光源,以及基于红外自由电子激光为光源的固/气和固/液表界面反射吸收红外光谱实验线站、原子力显微红外光谱实验线站、和频光谱实验线站、光解离光谱实验线站和光激发光谱实验线站五条实验线站。各实验线站分别在四个参研单位研制,最终搬迁到中国科学技术大学与红外自由电子激光光源集成,经调试、验收后开放运行,为化学、物理、材料以及生物医学等相关领域提供了一个有力的工具和研发平台。   该项目的仪器研制历经8年,在项目团队全体成员的不懈努力下,克服各种困难,建成了我国第一个覆盖中、远红外波段的红外自由电子激光用户装置,具体包括:开发了包含光波导效应的光场数值计算方法和程序,实现了加波导的自由电子激光振荡器的模拟;研发了2856MHz次谐波可调、高重频电子枪,实现了基于同一台电子加速器的中红外和远红外两套振荡器的运行;建成了红外自由电子激光反射吸收光谱实验线站、上/下入射激发模式的红外自由电子激光—原子力显微镜实验线站和红外自由电子激光分子反应散射实验线站。   该项目中,大连化物所江凌研究员团队负责研制了一套基于红外自由电子激光的光解离光谱实验站,实现了金属化合物团簇的高灵敏红外光谱探测及结构表征,对诠释催化反应机制具有重要作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制