当前位置: 仪器信息网 > 行业主题 > >

普朗克常量实验装置

仪器信息网普朗克常量实验装置专题为您提供2024年最新普朗克常量实验装置价格报价、厂家品牌的相关信息, 包括普朗克常量实验装置参数、型号等,不管是国产,还是进口品牌的普朗克常量实验装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合普朗克常量实验装置相关的耗材配件、试剂标物,还有普朗克常量实验装置相关的最新资讯、资料,以及普朗克常量实验装置相关的解决方案。

普朗克常量实验装置相关的论坛

  • 【转帖】我国成为第四个独立测量普朗克常数的国家

    我国能量天平质量量子基准研究取得核心技术突破我国成为第四个独立测量普朗克常数的国家 据悉,我国能量天平质量量子基准研究取得核心技术突破。该院承担的“能量天平质量量子基准研究”课题4月29日通过国家质检总局组织的专家验收。课题通过独特的“能量天平”方案,使我国首次具备普朗克常数测量和千克基准稳定性绝对测量能力,成为国际上第四个可以独立测量普朗克常数的国家,步入国际计量前沿研究行列。 计量基准的准确与否,需要国际单位制7个基本单位的保证。而质量单位“千克”是7个基本物理量中唯一依靠实物基准保存和复现的一个物理量。为解决这一难题,目前已有多个先进国家计量院开展了此方面的研究,并提出了若干种解决方案。在国家“十一五”科技支撑计划重点项目“以量子物理为基础的现代计量基准研究”的支持下,中国计量科学研究院开展了此方面的研究。据课题负责人张钟华院士介绍,针对国外的研究现状,课题组独创性地提出了与国际上通行的“功率天平”方案不同的“能量天平”方案,通过对普朗克常数的测量,建立质量量子基准。目前,课题组已在国际上首次建立了能量天平法测量普朗克常数装置,并进行了实验验证,第一阶段测量普朗克常数的相对标准不确定度达到7.7×10-5,为国际计量界已获得的少数测量结果之一。 课题组还发挥我国量子化霍尔电阻基准世界领先水平的优势,攻克了互感量的精密测量等能量天平方案的核心技术,解决了3项国际难题:成功研制一套互感量的精密测量系统,将互感量溯源到量子化霍尔电阻和时间标准,互感测试系统测量不确定度达到1×10-7,优于国际上已发表的互感量精密测量的最小不确定度(3×10-6);研制成功一种负载系数极小的采样电阻,提出了负载系数自我校验方法,为能量天平方案中把互感量溯源到量子化霍尔电阻以及高精密稳流电流源的研制奠定了技术基础;研制成功一套稳定性达到3×10-7/30min,幅值达到250mA的磁场恒流源。 据悉,该项研究具有广泛的推广应用和产业化前景,将大幅度提高我国磁测量仪器、电测精密仪器的准确度,提高稀土资源利用价值,提升科技自主创新水平,具有重大的经济和社会效益。《中国质量报》------转自《中国质量新闻网》,仅仅为传递更多质量时讯。

  • 【转帖】量子力学的奠基人--普朗克

    Max Karl Ernst Ludwig Planck, 1858.4.23.―1947.10.3.姓名:马克斯普朗克1858年4月23日生于基尔。1867年,其父民法学教授J.W.von普朗克应慕尼黑大学的聘请任教,从而举家迁往慕尼黑。普朗克在慕尼黑度过了少年时期,1874年入慕尼黑大学。1877~1878年间,去柏林大学听过数学家K.外尔斯特拉斯和物理学家H.von亥姆霍兹和G.R.基尔霍夫的讲课。普朗克晚年回忆这段经历时说,这两位物理学家的人品和治学态度对他有深刻影响,但他们的讲课却不能吸引他。在柏林期间,普朗克认真自学了R.克劳修斯的主要著作《力学的热理论》,使他立志去寻找象热力学定律那样具有普遍性的规律。1879年普朗克在慕尼黑大学得博士学位后,先后在慕尼黑大学和基尔大学任教。1888年基尔霍夫逝世后,柏林大学任命他为基尔霍夫的继任人(先任副教授,1892年后任教授)和理论物理学研究所主任。1900年,他在黑体辐射研究中引入能量量子。由于这一发现对物理学的发展作出的贡献,他获得1918年诺贝尔物理学奖。1.普朗克早期的研究领域主要是热力学。他的博士论文就是《论热力学的第二定律》。此后,他从热力学的观点对物质的聚集态的变化、气体与溶液理论等进行了研究。  2.提出能量子概念  普朗克在物理学上最主要的成就是提出著名的普朗克辐射公式,创立能量子概念。  19世纪末,人们用经典物理学解释黑体辐射实验的时候,出现了著名的所谓“紫外灾难”。虽然瑞利、金斯(1877—1946)和维恩(1864—1928)分别提出了两个公式,企图弄清黑体辐射的规律,但是和实验相比,瑞利-金斯公式只在低频范围符合,而维恩公式只在高频范围符合。普朗克从1896年开始对热辐射进行了系统的研究。他经过几年艰苦努力,终于导出了一个和实验相符的公式。他于1900年10月下旬在《德国物理学会通报》上发表一篇只有三页纸的论文,题目是《论维恩光谱方程的完善》,第一次提出了黑体辐射公式。12月14日,在德国物理学会的例会上,普朗克作了《论正常光谱中的能量分布》的报告。在这个报告中,他激动地阐述了自己最惊人的发现。他说,为了从理论上得出正确的辐射公式,必须假定物质辐射(或吸收)的能量不是连续地、而是一份一份地进行的,只能取某个最小数值的整数倍。这个最小数值就叫能量子,辐射频率是ν的能量的最小数值ε=hν。其中h,普朗克当时把它叫做基本作用量子,现在叫做普朗克常数。普朗克常数是现代物理学中最重要的物理常数,它标志着物理学从“经典幼虫”变成“现代蝴蝶”。1906年普朗克在《热辐射讲义》一书中,系统地总结了他的工作,为开辟探索微观物质运动规律新途径提供了重要的基础。 普朗克对物理学的兴趣在上了中学以后有了新的发展。他的老师缪勒在讲到能量守恒原理的时候给他们讲述了一个辛辛苦苦把一块沉重的砖头扛上屋顶去的泥瓦匠的故事。缪勒说:泥瓦匠在他扛砖的时候所做的功并没有消失,而是原封不动地被储存起来,也许能储存很多年,直到也许有那么一天,这块砖头松动了,以致于落在下面某一个人的头上。缪勒讲得很生动,这使能量守恒原理"宛如一个救世福音"响彻了普朗克的心田。从此,这一原理深深扎根在普朗克的脑中,它成了普朗克日后进行科学研究的基础。  1874年,普朗克中学毕业了。但在选择今后的努力方向时却陷入了踌躇,因为除物理学之外,他还对音乐有着非同一般的兴趣。他在音乐方面的才能甚至比他对物理学的兴趣来得更早,他很小的时候就已经具有专业音乐家的钢琴和管风琴演奏水准了。他喜欢舒伯特的《摇篮曲》、《美丽的磨坊女郎》,勃拉姆斯的小提琴协奏曲,还有巴赫的《马太受难曲》等等。对于家教甚严、办事循规蹈矩、一丝不苟的普朗克来说,音乐是他唯一能放纵自己的感情,使自己的思想不受任何约束的领地。德意志民族是一个外表严谨但追求内心自由和思想解放的民族,普朗克是一个典型的德国人,他渴望在音乐的殿堂里纵横驰骋。但经过激烈的思想斗争,他还是选择了物理学。至于音乐,可以作为业余爱好。因为他认为做一个科学家应该比做一个艺术家更有价值。  上大学以后,普朗克渐渐将他在物理学上的兴趣锁定在纯理论的领域,也就是理论物理学。他的物理学老师约里对此十分不解,因为他认为物理学已经是一门高度发展的、几乎尽善尽美的科学,也许,在某个角落还有一粒尘屑或一个小气泡,对它们可以去进行研究和分类。但是,作为一个完整的体系,已经建立得足够牢固的了,经典理论物理学也已接近于十分完善的程度。约里的观点代表了当时科学界对物理学普遍的错误看法,但普朗克却不是那种轻易改变主意的人,走物理学乃至走理论物理学的道路是他认真考虑的结果,他不会让任何东西阻挡他前进的脚步。  如果你相信你能承担对之所负的责任的话,就不让任何东西阻挡你前进  因仰慕赫姆霍茨和基尔霍夫这两位物理学家的大名,普朗克在大学最后一年转到柏林大学学习。但两位老师蹩脚的讲课却使普朗克大失所望,不过他没有泄气,而是靠自学来满足自己的求知欲望。他不但自习两位老师的课程,也自修了克劳修斯的《热力学》,正是从克劳修斯的热力学理论出发,他开始了热辐射问题的研究。  在研究中,柏林大学维恩教授1894年提出的"维恩公式"和英国物理学家瑞利1900年提出的"瑞利公式"这两个完全相反的公式引起了他的注意,他尝试了经典物理学的所有理论和方法,试图提出一个新的公式来代替这两个互相矛盾的公式,但没有成功。为了寻求科学真理,他决定采取孤注一掷的行动--跳出经典物理学,从新的角度来考虑这个问题。1900年10月19日,普朗克在德国物理学会的一次会议上提出了他的新公式,这就是后来著名的"普朗克公式"。12月14日,他在物理学会的另一次会议上提出了这个公式的理论基础,即著名的"能量子假说"。在这个假说中,普朗克放弃了传统的物质运动绝对连续的观念,提出辐射过程不是连续的,而是以最小份量一小"包"一小"包"地放射或吸收,这一小包不能再分成更小的包,就象卖水果糖,最少只能一块一块地卖,而不能半块半块或分成更小的块卖,这个最小的能量单位就叫"能量子"。这一天,后来被人们认为是量子论的"生日"。由于量子概念随后成了理解原子壳层和原子核一切性能的关键,这一天也被看作原子物理学的生日和自然科学新纪元的开端。当然,提出能量子假说的普朗克也被人们尊称为"量子论的奠基人"。  成名之后的普朗克在谈到自己是如何成为一个科学家的时候,曾说了这么一句话:"你必须要有信仰。"普朗克所说的信仰实际上就是对科学、对研究事业的执着的爱和对寻求科学真理的坚定不移的精神。  值得一提的是,信仰使人成功,但信仰一旦变成固执的行动的话也会妨碍一个人前进的脚步。普朗克本质上根深蒂固的保守意识曾使他在提出石破天惊的理论并得到了其他人的发展以后,却固执地要将跳出经典物理学旧框框提出的新理论重新纳回经典物理学的旧框框中去。  普朗克的墓在哥庭根市公墓内,其标志是一块简单的矩形石碑,上面只刻着他的名字,下角写着:尔格秒。 他的墓志铭就是一行字:h=6.63×10^-34JS,这也是对他毕生最大贡献:提出光量子假说的肯定。

  • 【分享】P著名物理学家普朗克简介

    一、生平简介普朗克,M.(Max Planck 1858~1947)近代伟大的德国物理学家,量子论的奠基人。1858年4月23日生于基尔。1867年,其父民法学教授J.W.von普朗克应慕尼黑大学的聘请任教,从而举家迁往慕尼黑。普朗克在慕尼黑度过了少年时期,1874年入慕尼黑大学。1877~1878年间,去柏林大学听过数学家K.外尔斯特拉斯和物理学家H.von亥姆霍兹和G.R.基尔霍夫的讲课。普朗克晚年回忆这段经历时说,这两位物理学家的人品和治学态度对他有深刻影响,但他们的讲课却不能吸引他。在柏林期间,普朗克认真自学了R.克劳修斯的主要著作《力学的热理论》,使他立志去寻找象热力学定律那样具有普遍性的规律。1879年普朗克在慕尼黑大学得博士学位后,先后在慕尼黑大学和基尔大学任教。1888年基尔霍夫逝世后,柏林大学任命他为基尔霍夫的继任人(先任副教授,1892年后任教授)和理论物理学研究所主任。1900年,他在黑体辐射研究中引入能量量子。由于这一发现对物理学的发展作出的贡献,他获得1918年诺贝尔物理学奖。 自20世纪20年代以来,普朗克成了德国科学界的中心人物,与当时德国以及国外的知名物理学家都有着密切联系。1918年被选为英国皇家学会会员,1930~1937年他担任威廉皇帝协会会长。在那时期,柏林、哥廷根、慕尼黑、莱比锡等大学成为世界科学的中心,是同普朗克、W.能斯脱、A.索末菲等人的努力分不开的。在纳粹攫取德国政权后,以一个科学家对科学、对祖国的满腔热情与纳粹分子展开了,为捍卫科学的尊严而斗争。1947年10月4日在哥廷根逝世。二、科学成就1.普朗克早期的研究领域主要是热力学。他的博士论文就是《论热力学的第二定律》。此后,他从热力学的观点对物质的聚集态的变化、气体与溶液理论等进行了研究。2.提出能量子概念普朗克在物理学上最主要的成就是提出著名的普朗克辐射公式,创立能量子概念。19世纪末,人们用经典物理学解释黑体辐射实验的时候,出现了著名的所谓“紫外灾难”。虽然瑞利、金斯(1877—1946)和维恩(1864—1928)分别提出了两个公式,企图弄清黑体辐射的规律,但是和实验相比,瑞利-金斯公式只在低频范围符合,而维恩公式只在高频范围符合。普朗克从1896年开始对热辐射进行了系统的研究。他经过几年艰苦努力,终于导出了一个和实验相符的公式。他于1900年10月下旬在《德国物理学会通报》上发表一篇只有三页纸的论文,题目是《论维恩光谱方程的完善》,第一次提出了黑体辐射公式。12月14日,在德国物理学会的例会上,普朗克作了《论正常光谱中的能量分布》的报告。在这个报告中,他激动地阐述了自己最惊人的发现。他说,为了从理论上得出正确的辐射公式,必须假定物质辐射(或吸收)的能量不是连续地、而是一份一份地进行的,只能取某个最小数值的整数倍。这个最小数值就叫能量子,辐射频率是ν的能量的最小数值ε=hν。其中h,普朗克当时把它叫做基本作用量子,现在叫做普朗克常数。普朗克常数是现代物理学中最重要的物理常数,它标志着物理学从“经典幼虫”变成“现代蝴蝶”。1906年普朗克在《热辐射讲义》一书中,系统地总结了他的工作,为开辟探索微观物质运动规律新途径提供了重要的基础。三、趣闻轶事1.启蒙老师普朗克走上研究自然科学的道路,在很大程度上应该归功于一个名叫缪勒的中学老师。普朗克童年时期爱好音乐,又爱好文学。后来他听了缪勒讲的一个动人故事:一个建筑工匠花了很大的力气把砖搬到屋顶上,工匠做的功并没有消失,而是变成能量贮存下来了;一旦砖块因为风化松动掉下来,砸在别人头上或者东西上面,能量又会被释放出来,……这个能量守恒定律的故事给普朗克留下了终生难忘的印象,不但使他的爱好转向自然科学,而且成为他以后研究工作的基础之一。2.“普朗克行星”普朗克进入科学殿堂以后,无论遇到什么困难,都没有动摇过他献身于科学的决心。他的家庭相继发生过许多不幸:1909年妻子去世,1916年儿子在第一次世界大战中战死,1917年和1919年两个女儿先后都死于难产,1944年长子被希特勒处死。但是普朗克总是用奋发忘我的工作抑制自己的感情和悲痛,为科学做出了一个又一个重要的贡献。他一生发表了215篇研究论文和7部著作,其中包括1959年所著的《物理学中的哲学》一书。在普朗克诞辰80周年的庆祝会上,人们“赠给”他一个小行星,并命名为“普朗克行星”。1946年他虽然体弱,但却非常高兴地出席了皇家学会的纪念牛顿的集会。3.墓碑号刻着他的名和h的值普朗克为人谦虚,作风严谨。在1918年4月德国物理学会庆贺他60寿辰的纪念会上,普朗克致答词说:“试想有一位矿工,他竭尽全力地进行贵重矿石的勘探,有一次他找到了天然金矿脉,而且在进一步研究中发现它是无价之宝,比先前可能设想的还要贵重无数倍。假如不是他自己碰上这个宝藏,那么无疑地,他的同事也会很快地、幸运地碰上它的。”这当然是普朗克的谦虚。洛仑兹在评论普朗克关于能量子这个大胆假设的时候所说的话,才道出了问题的本质。他说:“我们一定不要忘记,这样灵感观念的好运气,只有那些刻苦工作和深入思考的人才能得到。”1947年10月3日,普朗克在哥廷根病逝,终年89岁。德国政府为了纪念这位伟大的物理学家,把威廉皇家研究所改名叫普朗克研究所。普朗克的墓在哥庭根市公墓内,其标志是一块简单的矩形石碑,上面只刻着他的名字,下角写着: h=6.62×10-27尔格秒。

  • 【资料】地球物理学之常用基本物理常量

    地球物理学之常用基本物理常量[table=95%][tr][td=1,1,25%]物理量和符号[/td][td=1,1,41%][font=宋体]数值[/font][/td][td=1,1,33%][font=宋体]单位[/font][/td][/tr][tr][td=1,1,25%][font=宋体]真空中光速[/font][font=Times New Roman][i]c[/i][/font][/td][td=1,1,41%][font=Times New Roman]299 792 458[/font][/td][td=1,1,33%][font=Times New Roman]ms[sup]-1[/sup][/font][/td][/tr][tr][td=1,1,25%][font=宋体]引力常量[/font][font=Times New Roman][i]G[/i][/font][font=宋体] [/font][/td][td=1,1,41%][font=Times New Roman]6.672 59[/font] [/td][td=1,1,33%][font=Times New Roman]10[sup]-11 [/sup]m[sup]3[/sup]Kg[sup]-1[/sup]s[sup]-2[/sup][/font] [/td][/tr][tr][td=1,1,25%][font=宋体]普朗克常量[/font][font=Times New Roman][i]h[/i][/font][font=宋体] [/font][/td][td=1,1,41%][font=Times New Roman]6.626 075 5[/font][/td][td=1,1,33%][font=Times New Roman]10[sup]-34 [/sup]Js[/font][/td][/tr][tr][td=1,1,25%][font=宋体]元电荷[/font][font=Times New Roman][i]e[/i][/font][font=宋体] [/font][/td][td=1,1,41%][font=Times New Roman]1.602 177 33[/font][/td][td=1,1,33%][font=Times New Roman]10[sup]-19[/sup] C[/font][/td][/tr][tr][td=1,1,25%][font=宋体]电子质量[/font][font=Times New Roman][i]m[/i][sub]e[/sub][/font][font=宋体] [/font][/td][td=1,1,41%][font=Times New Roman]9.109 389 7[/font] [/td][td=1,1,33%][font=Times New Roman]10[sup]-31[/sup] kg[/font][/td][/tr][tr][td=1,1,25%][font=宋体]质子质量[/font][font=Times New Roman][i]m[/i][sub]p[/sub][/font][font=宋体] [/font][/td][td=1,1,41%][font=Times New Roman]1.672 623 1[/font][/td][td=1,1,33%][font=Times New Roman]10[sup]-27[/sup] kg[/font] [/td][/tr][tr][td=1,1,25%][font=宋体]中子质量 [font=Times New Roman][i]m[/i][sub]n[/sub][/font][font=宋体] [/font][/font][/td][td=1,1,41%][font=Times New Roman]1.67 492 86[/font][/td][td=1,1,33%][font=Times New Roman]10[sup]-27[/sup] kg[/font] [/td][/tr][tr][td=1,1,25%][font=宋体]阿伏加德罗常量[/font][font=Times New Roman][i]N[/i][sub]A[/sub][/font][font=宋体] [/font][/td][td=1,1,41%][font=Times New Roman]6.022 136 7[/font] [/td][td=1,1,33%][font=Times New Roman]10[sup]23[/sup] mol[sup]-1[/sup][/font][/td][/tr][tr][td=1,1,25%][font=宋体]气体常量 [/font][font=Times New Roman][i]R[/i][/font][font=宋体] [/font][/td][td=1,1,41%][font=Times New Roman]8.314 510[/font][/td][td=1,1,33%][font=Times New Roman]Jmol[sup]-1[/sup]K[sup]-1[/sup][/font][/td][/tr][tr][td=1,1,25%][font=宋体]玻尔兹曼常量[/font][font=Times New Roman][i]k[/i][/font][/td][td=1,1,41%][font=Times New Roman]1.380 658[/font][/td][td=1,1,33%][font=Times New Roman]10[sup]-23[/sup] JK[/font][/td][/tr][/table]

  • 【资料】物理量单位制

    【资料】物理量单位制

    物理量单位制physical quantities,system of units of  物理学中对于同一类物理量(例如长度),需要规定一个特定量作为单位(例如1米),使同类量都可用这个单位和一个数的乘积来表示。各种物理量通过描述物理规律的方程和新物理量的定义而彼此相互联系。通常在其中选取一组互相独立的物理量,作为基本量,其他量根据物理方程导出 ,称导出量,从而建立了系统的单位制。物理学中首先使用的是长度以厘米(cm)、质量以克(g)和时间以秒(s)为基本单位的厘米克秒制(CGS制)。此制用于电磁现象时,有以真空介电常量为定义电量单位,导出的绝对静电制(CGSE)和以真空磁导率为1的绝对电磁制(CGSM),使用不很方便(见电磁学单位制)。1875年在巴黎制定的《米制公约》中规定: 长度以米(m)、质量以千克(kg)和时间以秒(s)为基本单位,称米千克秒(MKS)制。随着电磁学 、热力学 、光辐射学和微观物理学的发展 ,以3 个基本量为基础的单位制已不适用了,1960年第十一届国际计量大会确认了由国际计量局草拟的国际单位制(SI制)。它设有7个严格定义的基本单位:长度(米)、质量(千克)、时间(秒)、电流(安培)、温度(开尔文)、物质的量(摩尔)和发光强度(坎德拉),还设有导出单位和辅助单位 。SI制和 CGSM 制的主要单位的对照关系见表,其中电学以外的部分是 CGS制所共有的 ,电学内单位可根据CGSM和CGSE两制的关系,转换为 CGSE制 。在粒子物理学中还采用一种特殊的单位制——自然单位制,其中规定玻耳兹曼常量、光速、普朗克常量和真空介电常量都是其值为1的无量纲数 ,从而只留有一种独立的量纲 ,只有一种基本单位。在相对论天体物理学中,也有采用光速为无量纲数1的单位制。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611062055_31613_1634962_3.jpg[/img]表:国际单位制(SI)与厘米克秒制(CGS)主要单位对照表

  • 动图演示普朗克热辐射定律:不同黑体温度下的颜色变化

    动图演示普朗克热辐射定律:不同黑体温度下的颜色变化

    [color=#990000]摘要:用动图方式演示了不同黑体温度下的颜色变化[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]众所周知,普朗克辐射定律描述了任意温度下,从一个黑体中发射出的电磁辐射的辐射率与波长之间的关系。用图形表示,如图1所示。[align=center][img=黑体温度颜色,690,387]https://ng1.17img.cn/bbsfiles/images/2022/01/202201261118333353_4182_3384_3.jpg!w690x387.jpg[/img][/align][align=center][color=#990000]图1 黑体辐射强度的光谱分布(普朗克光谱)[/color][/align]按照维恩定律,随着黑体温度的升高,最大光谱强度会向更短的波长移动。在相对较低的温度下,最大值位于红外区间内,并且我们的眼睛看不到辐射。但随着黑体温度升高,辐射光谱转移到可见光范围内,此可见发射的辐射,表现为黑体开始发光。用一个立方体代表黑体,[color=#990000]本文底部[/color]的动图显示出黑体辐射随温度变化的整个过程。对上述动图进行细化,在大约1000K时立方体发出略带红色的辉光,如图2所示。[align=center][color=#990000][img=黑体温度颜色,690,387]https://ng1.17img.cn/bbsfiles/images/2022/01/202201261119024138_5221_3384_3.jpg!w690x387.jpg[/img][/color][/align][align=center][color=#990000]图2 黑体在1000K时发出的红光[/color][/align]在2000K时,光谱中黄色波长范围的比例有所增加,此时黑体往往散发出淡黄色光。[align=center][color=#990000][img=黑体温度颜色,690,387]https://ng1.17img.cn/bbsfiles/images/2022/01/202201261119212980_5536_3384_3.jpg!w690x387.jpg[/img][/color][/align][align=center][color=#990000]图3 黑体在2000K时发出的黄光[/color][/align]在超过3000K的高温下,会发出更多的紫外线辐射(UV辐射),如图4所示。[align=center][color=#990000][img=黑体温度颜色,690,387]https://ng1.17img.cn/bbsfiles/images/2022/01/202201261121221435_4065_3384_3.jpg!w690x387.jpg[/img][/color][/align][align=center][color=#990000]图4 黑体在3000K时发出的淡黄色光[/color][/align]在大约6000K的更高温度下,如图1所示,几乎所有具有相同强度的可见波长都存在于辐射光谱中,因此这时的辐射物体呈白色,如图5所示。这解释了白色太阳辐射,因为太阳作为一个几乎完美的黑体,其表面温度为5778K!同时太阳辐射的紫外线达到了不可忽视的程度,但幸运的是,这种紫外线辐射的很大一部分被地球大气层吸收,而高原地区气体变得稀薄,紫外线辐照就强。[align=center][color=#990000][img=黑体温度颜色,690,387]https://ng1.17img.cn/bbsfiles/images/2022/01/202201261121331189_8898_3384_3.jpg!w690x387.jpg[/img] [/color][/align][align=center][color=#990000]图5 黑体在 6000 K 时发出的白光[/color][/align]比太阳温度还要高很多的物体是所谓的蓝巨星。其中一些天文物体的质量是太阳的50倍,表面温度可以达到几万度。在这些温度下,蓝色波长范围比红色部分更多地存在于辐射光谱中。因此,这种蓝巨星的光显得偏蓝,如图6所示,这就是这种恒星被称为蓝巨星的原因。[align=center][color=#990000][img=黑体温度颜色,690,387]https://ng1.17img.cn/bbsfiles/images/2022/01/202201261121474288_8859_3384_3.jpg!w690x387.jpg[/img] [/color][/align][align=center][color=#990000]图6 黑体在10000K时发出的蓝光[/color][/align]需要说明的是,上述黑体发光颜色与温度的关系,是真正的黑体发光颜色描述,与我们现实中眼睛看到的有一定差别,肉眼观察到的颜色往往会夸大实际颜色和温度。这是由于在整个可见光范围内物体发射的光谱强度都比较高,造成我们眼睛中负责感知颜色的视锥细胞被“过度曝光”。在这种情况下,所有视锥细胞几乎都被相同地激发,如物体在2000K时的实际黄色辐射在我们的眼睛中通常呈现为白色,实际温度如果高于2000K,肉眼基本已经开始无法直视。本文编译自tec-science网站[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【讨论】“国际千克原器”重量减轻了,即将寿终正寝

    法新社伦敦2011年1月24日电科学家们今天说,他们距离制定千克的非实物定义更近了一步。在此之前,人们发现作为国际基准的金属制品的重量减轻了一点点。 研究人员提醒说,到他们完成任务尚有一段距离,不过一旦成功,将令最后一件确定基本计量单位所依赖的人造物品的使用寿命终结。 目前,千克的国际基准是一块自1889年后存放在法国的金属块,英制大约相当于2.2磅。 但是,科学家们对存放在位于巴黎附近塞夫尔的国际计量局的圆柱体铂铱合金表示担心。之前他们发现其重量神秘地减轻了一点。该机构的专家在2007年发现,金属块比好几十个复制品的平均重量减轻了50微克,这意味着它减轻了相当于一小粒沙子的重量。 他们如今在寻找非实物的方式来定义千克。千克与另外6个基本单位构成了国际单位制。 其他单位还有米、秒、安培、开尔文、摩尔、坎德拉,它们如今全都不以实物参考物为依据。 试验重点在于建立质量与普朗克常数之间的关系,以提供千克的新定义。普朗克常数是量子物理学中的基本计量单位。 国际计量局科学家迈克尔·斯托克说,被称作“国际千克原器”的金属块的使用寿命即将终结。他还表示:“我们的试验正在向前推进,但是目前就使用千克的新定义还为时过早。”-------------------------------------------------重量减轻可能是什么原因呢?难道金属也会“挥发”?欢迎大家讨论!

  • 【分享】我国能量天平质量量子基准研究取得核心技术突破

    4月29日,由中国计量科学研究院承担的国家科技支撑计划课题“能量天平质量量子基准研究”通过国家质检总局组织的专家验收。该课题通过“能量天平”方案,开展对普朗克常数测量和质量量子基准及其关键技术的研究,建立能量天平法测量普朗克常数装置,使我国首次具备普朗克常数测量和千克基准稳定性绝对测量能力,成为国际上第四个可以独立测量普朗克常数的国家,步入国际计量前沿研究行列。 计量基准的准确与否,需要国际单位制的七个基本单位的保证。为适应经济和社会发展对计量准确度日益提高的要求,20世纪下半叶开始,国际计量界已陆续研制了一系列量子计量基准代替沿用多年的实物计量基准,来复现和保存国际单位制的基本单位。质量单位“千克”是目前国际单位制的7个基本物理量中唯一依靠实物基准保存和复现的一个物理量。实现质量基准的量子化——用某种量子计量基准来代替尚在使用的国际千克原器这一实物基准,重新准确定义质量单位,是国际计量界经典计量难题中最后的堡垒。 为解决这一难题,目前已有多个先进国家计量院开展了此方面的研究,并提出了若干种解决方案。在国家“十一五”科技支撑计划重点项目“以量子物理为基础的现代计量基准研究”的支持下,中国计量科学研究院开展了此方面的研究。

  • 科学家研发可确定电子隧穿时间点的试验装置

    中国科技网讯 近日,德国马克斯—玻恩非线性光学与短脉冲光谱学研究所(MBI)的研究人员与国际伙伴一起研发了一个试验装置,首次可以准确确定电子从隧道效应障碍物中出来的时间点。该研究为原子和分子中的“多电子重排”在空间和时间上的直接分辨提供了一个普遍方法。相关研究发表在《自然》杂志上。 在神奇的量子世界里原子和分子不再适用经典的物理规律。在这里,电子可以克服能垒,尽管他们没有必要的能量,这就是所谓的“隧穿效应”。直接测量量子世界里的进程是非常困难的,尤其当他们时间尺度特别短的时候。因此,MBI的研究人员与来自以色列、加拿大和英国的同事一起研发了一个试验装置,让各种物理量的大小可以在比飞秒还短的时间尺度内变化。通过测量和计算的比较,科学家获得了一个量子时钟,从而能够以阿秒的精度确定发生电子隧穿的时刻。 研究人员先用一个强激光场诱导来自氦原子的电子隧道效应,再用一个较弱的探测激光场将发生隧道效应的电子引到侧向进行研究。这其中带正电的原子核的吸引力就表现为需要克服的能垒,而缓慢振荡并垂直照射隧穿电子的弱激光场则可以让电子像被橡皮筋牵引一样向原子核运动。当电子与原子核接近时会出现光闪烁的特性,这就是所谓的高次谐波。通过测量这些高次谐波的频率、偏转电子飞行路径的长度和偏转激光场的属性,研究人员就可以最终计算出电子跨越能垒的准确时间点。 MBI的奥尔加·斯米尔诺娃博士用一个简单的比喻来解释她们是如何得到电子隧穿时间点的。她说:“当你从一家咖啡店出来走向对面的公共汽车站,弱激光场就像左右交替吹的风,把你往路旁推。当我们知道了风的特点,即有多大、如何改变方向,我们就能说出你走出门口的时间。” 现在,研究人员继续用二氧化碳分子来进行类似的实验。相对于只有两个电子的氦,二氧化碳分子有20个电子。它们可能会停在不同的轨道,隧穿的电子根据所处轨道的不同会有一个很小的时间延迟。这个实验首次给了物理学家确认隧穿电子源头的机会。(驻德国记者 李山) 《科技日报》(2012-08-13 二版)

  • 千克、安培、摩尔和开尔文被重新定义?一文读懂来龙去脉!

    [align=left][color=#333333] 11月13至16日,由国际计量局(BIPM)组织的第26届国际计量大会(CGPM)在法国凡尔赛召开。大会最终对“修订国际单位制(SI)”的1号决议进行了表决。7个SI基本单位中的4个改由自然常数来定义,并于2019年5月20日起正式生效。新定义将保证SI的长期稳定性,并使复现单位的方法向更好、更新的技术开放。[/color][/align][align=left][color=#333333][b]为什么要使用国际单位制?[/b][/color][/align][align=left][color=#333333]  国际单位制,也是常说的米制或公制,想必大家都有一些概念,但是它被广泛被采用的原因是什么呢?各个国家之间进行贸易活动,那必然涉及到贸易产品的数量是多少的问题。比如说,我们国家要出口给美国一批钢材,价钱谈好了,例如一吨是800美元,接下来要进行贸易结算的话,就要确定这批钢材有多少吨。这里就会涉及一个测量问题,即是用中国的秤还是美国的秤来确定这批钢材的质量,或者说谁的秤更准、更公平。为了避免贸易摩擦,统一标准,国际单位制(International System of Units,SI)应运而生。在国际单位制中,明确规定了1千克到底应该多重。贸易双方可以都加入这个体系,然后用国际单位制中所规定的1吨标准(1000千克)来称量这批钢材,如此,就避免了可能的贸易纠纷,当然也就促进了不同国家间的贸易活动。换句话说,国际单位制的地位相当于贸易的第三方,或者是裁判员,保证了交易的公平公正。[/color][/align][align=left][color=#333333]  再举一个在科学研究方面的例子。1998年12月11号,火星“观察者”号飞船由美国宇航局发射升空后不明原因地神秘失踪。直至6年后,美国宇航局才找到了飞船失踪的原因:原来,美国洛克希德—马丁公司在研制飞船时将一部分工作转包给了英国的一家公司。而该公司负责项目的工程师使用了英国的计量单位(英制),而不是美国宇航局所使用的国际单位制。两套单位之间的差异,导致观察者号在计算和测量控制参数时出现了显著偏差,并在随后出现航行错误,导致轨道器最终进入低高度轨道并被大气压撕毁。要知道,火星观察者号的造价是一亿两千五百万美元!显然,如果两个合作方采用的是统一的单位,这样的悲剧就不会发生。这个例子更从侧面说明了单位制在全世界范围内的统一对促进科学技术发展的重要意义。[/color][/align][img=,326,294]http://www.chinamtt.cn/Upload/images/%E5%9B%BE%E7%89%871%20(2).png[/img][color=#444444]图:观察者号火星探测器在坠毁之前的照片 (图片来源:维基百科)[/color][align=left][color=#333333][b]国际单位制是如何发挥作用的?[/b][/color][/align][align=left][color=#333333]  国际单位制共有7个基本单位,分别是米、秒、千克、安培、摩尔、开尔文和坎德拉。由这7个基本单位可以导出其他所有的单位。因此,要维持国际单位制本身的稳定性,必须要对这7个SI基本单位设立一种不随时间、环境等因素发生变化的定义,确保SI单位基本量值的稳定性。实际上,国际单位制建立的一个基本宗旨就是:For all time, for all people,即能在任何时间能为任何用户提供“最高标准”。[/color][/align][align=left][color=#333333]  在溯源体系方面,传统基于实物基准的定义,如千克,呈现金字塔状的溯源结构。在金字塔的顶端是保存在国际计量局的国际千克原器,而各个国家的千克基准,都要定期送到国际计量局进行校准。如此,国际计量局在基本单位的实物基准定义的单位量值传递方面便具有了核心地位。[/color][/align][align=left][color=#333333]  然而,近几十年来,量子技术的出现和发展打破了国际计量局在量值溯源方面的核心地位。例如,目前在计量领域应用最成功的量子基准——原子钟,复现SI基本单位秒的定义准确性已经进入10-18量级。在此基础上发展的导航、卫星成像技术广泛应用在人们的生活之中,取得了巨大的成功。如今,在很多国家的计量院都建立了高精度的原子钟用于对秒定义的复现,这些复现的装置本身基于量子效应,复现值与基本物理常数直接挂钩。各个国家也就不用把本国的原子钟送到国际计量局校准,因为基于量子现象实现的标准自身就具有绝对的准确性。给国际计量局“去核心化”也是本次基本单位变革的主要目标之一。[/color][/align][align=left][color=#333333][b]本次国际单位制变革的主要内容是什么?[/b][/color][/align][align=left][color=#333333]  第26届国际计量大会在2018年11月16日通过决议,决定对4个SI基本单位进行重新定义,即分别采用普朗克常数、基本电荷量、阿伏伽德罗常数和玻尔兹曼常数来分别重新定义基本单位千克、安培、摩尔和开尔文。新定义正式实施时间为2019年国际计量日(5月20日)。[/color][/align][align=left][color=#333333]  用于重新定义的4个基本物理常数值由国际科学数据委员会(CODATA)根据世界各主要实验室测量结果评差确定,4个常数的最终数值分别为:[/color][/align][img=,379,195]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181116163856.png[/img][img=,371,371]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181120172912.png[/img][color=#444444]图:SI基本单位和用于定义的基本物理常数(图片来源:国际计量局)[/color][align=left][color=#333333]  在新定义实施之前,这四个SI基本单位的定义分别是:千克等于国际千克原器的质量 安培是一恒定电流,若它保持在处于真空中相距1米的两根无限长而横截面大小可被忽略的平行直导线内,则这两根导线之间产生的力在每米长度上等于2×10-7牛顿 摩尔所包含的基本单元数与0.012千克碳12的原子数目相等 开尔文等于水的三相点热力学温度的1/273.16。[/color][/align][align=left][color=#333333][b]为什么要重新定义、实物基准及其缺点?[/b][/color][/align][align=left][color=#333333]  质量千克的量值,是用保存在国际计量局的一个砝码来确定的——国际千克原器(International prototype of kilogram,IPK)。之所以用这个砝码来定义质量的单位千克,是因为科学家发现铂铱合金(90%铂+10%铱)相对于其他的合金材料密度大且化学性质稳定。采用铂铱合金砝码定义千克的决议是在1889年召开的第1届国际计量大会上通过的。[/color][/align][img=,372,448]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181120173032.png[/img][color=#444444]图:国际千克原器(图片来源:国际计量局)[/color][align=left][color=#333333]  千克采用国际千克原器定义后,计量学家们十分关心的一个问题是:这样的定义到底有多稳定?会随着时间的推移发生漂移吗?这个问题在定义质量单位千克之初就被提了出来。在1889年进行千克定义时,国际计量局共制作了7个铂铱合金千克砝码,其中里之前千克定义量值最近的一个,用于质量单位千克的定义,即国际千克原器。而其他6个采用同种材料、同种工艺制作的砝码,则作为副基准,用于检查彼此之间是否存在随时间变化的漂移。从1889年千克定义到今天,国际千克原器与6个副基准之间的量值比对试验共进行了4次,结果发现,6个副基准的平均量值相对于国际千克原器,在100多年的时间里变化了约50微克,即相对于1千克变化了约5×10-8。而测定该变化量的前提是假定国际千克原器的量值是绝对稳定的(定义),因此,是进行的相对测量。而对千克的绝对量变化,既无法测量,也无人知晓。从这一点上来讲,千克基于国际千克原器质量的定义不是“for all time”,因为千克的实际量值可能已经随时间发生了变化。[/color][/align][img=,405,266]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181120174324.png[/img][color=#444444]图:国际千克原器与6个复制品比对结果(横坐标为比对年份,纵坐标为砝码质量差值)[/color][align=left][color=#333333]  千克用千克原器定义后,千克原器就被保存在国际计量局。为了保证千克原器的绝对安全,用于保存千克原器的装置外设置了3把锁,钥匙交由3个不同的重要人物保管,分别是国际计量局局长、国际计量咨询委员会主席和法国档案部部长。从这点上看,基于国际千克原器的千克定义也不是“for all people”。[/color][/align][align=left][color=#333333]  应特别注意7个SI基本单位的定义之间并不是彼此独立的,千克量值的不稳定性,还会影响SI其他基本单位的量值。例如,在上述的基本单位定义中,电流单位安培的定义用到了导出单位牛顿,而牛顿这个单位中就包含质量单位千克。再例如,摩尔的定义中也用到了千克。现有的千克量值基准存在的缓慢变化,虽然说现阶段还不足以影响人们的日常生活,但其长期积累的效应,无疑会影响国际计量制体系的稳定性,并且会对精密科学研究产生不良影响。[/color][/align][align=left][color=#333333][b]采用了新定义后的好处是什么?[/b][/color][/align][align=left][color=#333333]  基于基本物理常数重新定义SI的上述基本单位,最重要的进步,是使得基本单位的量值具有了长期稳定性。至少,目前已有的科学试验并未发现基本物理常数在宇宙形成后曾发生过显著变化,即便有微小的变化,这种变化在人类存在的历史中也完全可以忽略不计。基于基本物理常数定义SI的基本单位,就是要使对基本单位量值的复现变得不再受时间、地点以及环境的限制。打个比方,质量的单位千克采用普朗克常数重新定义后,我国若建立了达到国际先进水平的联系普朗克常数与砝码质量的精密测量试验装置,那么,我们国家的千克标准砝码,就不需要再送到国际计量局去进行校准了。不仅如此,原则上我们的装置测量准确性得到公认的话,还能为其他国家提供校准的服务。[/color][/align][align=left][color=#333333]  千克单位新定义具有开放性,还允许人们在家里建造自己的砝码校准装置。例如,我两年多前在美国国家计量院工作期间,一个同事Leon.Chao,就自己用乐高拼块制作了一架功率天平装置,并成功地实现了对克量级砝码优于1%的校准。[/color][/align][img=,435,353]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181120173202.png[/img][color=#444444]图:美国计量院Leon Chao搭建的乐高版功率天平(图片来源:美国物理联合会)[/color][align=left][color=#333333]  采用基本物理常数重新定义SI基本单位,这对基本单位量值保持连续性也意义非凡。以前人们对实物基准,总担心因为天灾或人祸而损毁,而采用基本物理常数重新定义基本单位后,人们就无需考虑这个问题了。并且,在以前,当新的、更准确的计量技术出现时,可能会导致基本单位的定义要被修改。例如,质量单位千克在被定义为国际千克原器的质量之前,还曾被定义为1升水的质量。采用基本物理常数定义SI基本单位后,可以在相当长的时间内避免基本单位的定义被反复修改。而且未来随着相关技术的进步,只会不断提升单位量值复现的准确性,但不会轻易改变基本单位的定义。另外,上述4个SI基本单位的重新定义,也会使得SI七个基本单位的定义具有统一的形式。[/color][/align][align=left][color=#333333]  与SI基本单位定义相对应,基本物理常数体系在本次SI单位制修订中也会产生重要的变化。普朗克常数、基本电荷量、阿佛加德罗常数、玻尔兹曼常数的数值被确定下来后,很多与之相关的基本物理常数的测量准确性也会发生重要变化。但总体来讲,新单位体制下的基本物理常数体系将更为精密,其测量[url=http://www.jlck.net/forum-279-1.html]不确定度[/url]也将变得更小。[/color][/align][align=left][color=#333333][b]这次基本单位修订会对人们生活有什么影响吗?[/b][/color][/align][align=left][color=#333333]  本次SI基本单位修正的基本原则,是保证基本单位量值的连贯性,即保证新的定义对人们生活产生的影响最小。应该说,本次SI基本单位定义的修订,是过去几十年来大量科技人员努力奋斗的结果。在此之前,物理学家、计量学家等在共同努力希望做得更好一件事情,就是将这些用于SI基本单位定义的基本物理常数的量值测准。而在此测量过程中,必须保证所使用的相关基准能够完全溯源到现有的SI基本单位定义上。例如,测量普朗克常数所使用的砝码,必须要能溯源到国际千克原器上。这样做的目的,就是保证在重新定义后,SI基本单位的量值在新、旧定义中是连续的,不会发生跳变。简单地说,本次SI基本单位制的修订,不会对人们的基本生活产生影响。[/color][/align][align=left][color=#333333][b]这次SI基本单位修订有缺点吗?[/b][/color][/align][align=left][color=#333333]  本次SI基本单位修订也存在一个小缺点,即对中小学的科普可能存在一些困难。例如,未来千克的定义为(还没有官方表述):千克是使得普朗克常数准确等于6.62607015×10-34焦耳*秒的质量。显然,相对于之前的实物基准定义,如何将普朗克常数与砝码联系在一起,中小学生在理解上可能会有一定困难。个人认为,最简单的理解,也需要用到爱因斯坦的质能方程和普朗克辐射,即mc2=hf([i]m[/i]为质量,[i]c[/i]为真空中的光速,[i]h[/i]为普朗克常数,[i]f[/i]为辐射频率)。因此,在未来,将这些新定义转化成易懂、深入浅出的物理解释或描述,也是一件十分重要且必须要做好的事情。[/color][/align]

  • 【分享】检验宇宙暴涨

    随着普朗克探测器和地面以及气球实验的不断推进,它们对于支配着宇宙大爆炸之后不久的暴涨来说意味着什么呢?  宇宙空间是寒冷的。但欧洲空间局的普朗克探测器甚至更冷。在“普朗克”的心脏,一张轻薄的丝网被悬挂在近乎真空之中,而那里的温度也由太空中最先进的制冷系统冷却到了0.1开。这张类似蜘蛛网的丝网将会收集来自宇宙微波背景辐射——宇宙创生的余辉——的光子。

  • 中美“人造太阳”实验装置首次联合实验获成功

    据新华社合肥9月11日电(记者蔡敏)记者从中科院合肥物质科学研究院了解到,我国新一代“人造太阳”实验装置EAST与美国通用原子能公司托卡马克实验装置DIII-D近日首次联合实验并获得成功,实验验证了完全依靠自举电流和非感应驱动电流的托卡马克高性能稳态运行的可行性。 据介绍,此次实验的主要目的是利用DIII-D的离轴加热与电流驱动能力模拟EAST的实验条件,实现高比压、高自举电流份额的完全非感应电流高约束等离子体,并利用DIII-D全面先进的物理诊断和分析工具进一步加深对相关物理问题的理解,为EAST实现具有高参数的完全稳态等离子体探索出一种先进的运行模式。 实现托卡马克实验装置高性能稳态运行是国际热核聚变实验堆(ITER)的目标之一。EAST作为一个超导托卡马克装置,为ITER预演稳态运行是其重要使命。EAST下轮实验加热功率将升级到超过20兆瓦,如何使用这些功率实现具有高参数的稳态等离子体,是目前面临的一个关键课题。 通过与美国通用原子能公司此次合作,中科院等离子体所科研人员在DIII-D上模拟了EAST的实验条件,成功实现了与EAST等效旋转扭矩注入,及相同电流爬升率条件下,具有内部输运垒、高自举电流份额、超宽电流分布等条件的完全非感应电流高性能等离子体,从而验证了完全依靠自举电流和非感应驱动电流的托卡马克高性能稳态运行的可行性。 中国是国际热核聚变实验堆(ITER计划)的参与国之一。EAST是由中国独立设计制造的世界首个全超导核聚变实验装置,2007年3月通过国家验收,并在近年来取得了一系列实验成果。其科学目标是为ITER计划和中国未来独立设计建设运行核聚变堆奠定坚实的科学和技术基础。

  • 常量凯氏定氮测定如何解决倒吸现象

    在做水中凯氏氮检测,常量,简易装置。在做的过程中吸收液总是倒吸到反应室,然后反应室里反应液也是时常爆沸,直接进入吸收液中。求教大家怎么解决这个问题

  • 【分享】量子力学的历史和发展

    量子论和相对论是现代物理学的两大基础理论。它们是在二十世纪头30年发生的 物理学革命的过程中产生和形成的,并且也是这场革命的主要标志和直接的成果,量 子论的诞生成了物理学革命的第一声号角。经过许多物理学家不分民族和国籍的国际 合作,在1927年它形成了一个严密的理论体系。它不仅是人类洞察自然所取得的富有 革命精神和极有成效的科学成果,而且在人类思想史上也占有极其重要的地位。如果 说相对论作为时空的物理理论从根本上改变人们以往的时空观念,那么量子论则很大 程度改变了人们的实践,使人类对自然界的认识又一次深化。它对人与自然之间的关 系的重要修正,影响到人类对掌握自己命运的能力的看法。 量子论的创立经历了从旧量子论到量子力学的近30年的历程。量子力学产生以前 的量子论通常称旧量子论。它的主要内容是相继出现的普朗克量子假说、爱因斯坦的 光量子论和玻尔的原子理论。      热辐射研究和普朗克能量子假说      十九世纪中叶,冶金工业的向前发展所要求的高温测量技术推动了热辐射的研究。 已经成为欧洲工业强国的德国有许多物理学家致力于这一课题的研究。德国成为热辐 射研究的发源地。所谓热辐射就是物体被加热时发出的电磁波。所有的热物体都会发 出热辐射。凝聚态物质(固体和液体)发生的连续辐射很强地依赖它的温度。一个物体 被加热从暗到发光,从发红光到黄光、蓝光直至白光。1859年,柏林大学教授基尔霍 夫(1824—1887年)根据实验的启发,提出用黑体作为理想模型来研究热辐射。所谓黑 体是指一种能够完全吸收投射在它上面的辐射而全无反射和透射的,看上去全黑的理 想物体。1895年,维恩(1864—1928年)从理论分析得出,一个带有小孔的空腔的热辐 射性能可以看作一个黑体。实验表明这样的黑体所发射的辐射的能量密度只与它的温 度和频率有关,而与它的形状及其组成的物质无关。黑体在任何给定的温度发射出特 征频率的光谱。这光谱包括一切频率,但和频率相联系的强度却不同。怎样从理论上 解释黑体能谱曲线是当时热辐射理论研究的根本问题。1896年,维恩根据热力学的普 遍原理和一些特殊的假设提出一个黑体辐射能量按频率分布的公式,后来人们称它为 维恩辐射定律。普朗克就在这时加入了热辐射研究者的行动。 普朗克(1858—1947年)出身于一个书香门第之家,曾祖父和祖父曾在哥廷根大学 任神学教授,伯父和父亲分别是哥廷根大学和基尔大学的法学教授。他出生在基尔, 青年时期在慕尼黑度过。17岁进慕尼黑大学攻读数学和物理学,后来转到柏林大学受 教于基尔霍夫和赫尔姆霍茨(1821—1894年)等名师。1879年,他以《论热力学第二定 律》的论文获博士学位。他先后在慕尼黑大学和基尔大学任教并从事热力学研究。18 88年11月,他作为基尔霍夫的继任人到柏林大学讲授理论物理学。 他的研究方向从热力学转向热辐射,就是到柏林后才开始的。开始时他用热力学 方法研究黑体辐射理论。他假定空腔壁是由具有相同频率的电谐振子组成的,用热力 学方法处理这种谐振子集。1899年,他得到了一个和维恩辐射定律一致的关系式。同 年年底他得知库尔鲍欧(1857—1927年)和鲁本斯(1865—1922年)在 9月份发表的实验 报告,维恩以及他自己的辐射定律在高频部分与这实验相符,而在低频部分则与实验 偏离。他不得不尝试修改自己的公式,他得到了一个,仍然不好。 正当他继续修改自己的辐射公式时,1900年6月英国物理学家瑞利(1842—1912年) 发表论文批评维恩在推导辐射公式时引入了不可靠的假定。他把统计物理学的能量均 分定理用于他的一个以太振动模型,导出了一个新的辐射公式。同年10月 7日,鲁本 斯夫妇走访普朗克,并告诉他瑞利的辐射定律在低频部分与他的实验相符,在高频部 则与实验相差甚大。普朗克受到启发,立即用内插法导出了一个在高频趋近维恩公式 而在低频则趋近瑞利公式的新的辐射定律。10月19日,他在德国物理学会的会议上以 《论维恩辐射定律的改进》为题报告了自己的结果。鲁本斯当晚进行了核验,证明普 朗克的新公式同实验完全相符。鲁本斯深信普朗克公式与实验曲线的精确一致绝非巧 合,在这个公式中一定孕育着一个新的科学真理。于是鲁本斯在第二天就把这一结果 告诉了普朗克。普朗克受到极大的鼓舞,并决定寻找隐藏在公式背后的物理实质。 普朗克又回到他的谐振子模型,而且这次他把出发点从热力学转到统物理学。但 是他回避了能量均分定理。他把玻尔兹曼原理运用于线性谐振子热平衡时的能谱分布 问题上,导出了振子热平衡时的能谱分布公式。若想使新得到的这个公式能说明实验 曲线,则这公式必须与以前用内插法得到的公式具有同一形式。而要得到这样的统一, 则要求新公式中所包含的振子的能量值必须是一系列不连续的量。而这是与古典物理 学关于能量是连续的观点尖锐对立的。普朗克尊重实验事实,于是提出一个大胆的、 革命性的假设:每个带电线性谐振子发射和吸收能量是不连续的,这些能量值只能是 某个最小能量元e的整数倍,而每个能量元和振子的频率成正比。后来人们称e为“能 量子”,称 h为“普朗克常数”。1900年12月24日,普朗克在德国物理学会的会议上 以《论正常光谱能量分布定律的理论》为题报告了自己的结果。 量子论就这样随着二 十世纪开始由伟大的物理学家普朗克把它带到我们这个世界来。 虽然在围绕原子论的争论过程中,玻尔兹曼(1844—1966年)在反驳唯能论时说过 “怎么能说能量就不像原子那样分立存在呢?”这样的话,马赫(1838—1916年)曾经 表明化学运动不连续性的观点,但真正把能量不连续的概念引入物理学的是普朗克。 因为能量不连续的概念与古典物理学格格不入,物理学界对它最初的反映是冷淡的。 物理学家们只承认普朗克公式是同实验一致的经验公式,不承认他的理论性的量子假 说。普朗克本人也惴惴不安,因为他的量子假设是迫不得已的“孤注一掷的举动”。 他本想在最后的结果中令h→0,但却发现根本办不到。他其后多年试图把量子假说纳 入古典物理学框架之内,取消能量的不连续性,但从未成功。只有爱因斯坦最早认识 到普朗克能量子概念在物理学中的革命意义。

  • 【资料】激光原理及其应用

    激光是二十世纪六十年代出现的一种新型光源——激光器发出的光。激光一词的本意是受激辐射放大的光。1960年美国休斯研究实验室的梅曼制成了第一台红宝石激光器,1961年9月中国科学院长春光学精密机械研究所制成了我国第一台激光器。此后,在激光器的研制、激光技术的应用以及激光理论方面都取得了巨大进展,并带动了一些新型学科的发展,如全息光学、傅立叶光学、非线性光学、光化学等,激光还与当今的重点产业——信息产业密切相关。与激光有关的诺贝尔物理学奖获得者有:1964年,美国汤斯、原苏联巴索夫和普洛霍罗夫因在激光理论上的贡献而获奖。1981年美国肖洛因发展激光光谱学及对激光应用作出的贡献、美国布隆伯根因开拓与激光密切相关的非线性光学共同获奖。1997年美国朱棣文、科恩和飞利浦因首创用激光束将原子冷却到极低温度的方法共同获奖。 激光原理一.物质与光相互作用的规律光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202115_32995_1634962_3.gif[/img]微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为=△E/h(h为普朗克常量)。1. 受激吸收(简称吸收)处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。2. 自发辐射粒子受到激发而进入的高能态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,既使没有外界作用,粒子也有一定的概率,自发地从高能级(E2)向低能级(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率 =(E2-E1)/h。这种辐射过程称为自发辐射。众多原子以自发辐射发出的光,不具有相位、偏振态、传播方向上的一致,是物理上所说的非相干光。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202116_32996_1634962_3.gif[/img]3. 受激辐射、激光1917年爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。可以设想,如果大量原子处在高能级E2上,当有一个频率 =(E2-E1)/h的光子入射,从而激励E2上的原子产生受激辐射,得到两个特征完全相同的光子,这两个光子再激励E2能级上原子,又使其产生受激辐射,可得到四个特征相同的光子,这意味着原来的光信号被放大了。这种在受激辐射过程中产生并被放大的光就是激光。二.粒子数反转爱因斯坦1917提出受激辐射,激光器却在1960年问世,相隔43年,为什么?主要原因是,普通光源中粒子产生受激辐射的概率极小。当频率一定的光射入工作物质时,受激辐射和受激吸收两过程同时存在,受激辐射使光子数增加,受激吸收却使光子数减小。物质处于热平衡态时,粒子在各能级上的分布,遵循平衡态下粒子的统计分布律。按统计分布规律,处在较低能级E1的粒子数必大于处在较高能级E2的粒子数。这样光穿过工作物质时,光的能量只会减弱不会加强。要想使受激辐射占优势,必须使处在高能级E2的粒子数大于处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,称为粒子数反转分布,简称粒子数反转。如何从技术上实现粒子数反转是产生激光的必要条件。理论研究表明,任何工作物质,在适当的激励条件下,可在粒子体系的特定高低能级间实现粒子数反转。

  • 溅水试验装置和冲水试验装置的工作原理和作用是什么

    溅水试验装置的工作是什么呢,什么又是冲水试验装置呢,它的作用又是什么呢?下面请跟小编一起来看看溅水实验装置的工作原理是什么,冲水试验装置的作用又是什么。首先我们一起看看冲水试验装置用途是什么。冲水试验装置主要用于考核电工电子产品外壳、密封件在水试验后或者在试验期间是否能保证该设备及元器件良好的工作性能及技术状态,同时产品在运输过程或使用中可能受到侵水的影响,为产品技术标准提供引用依据,适用以自然条件为基础所进行的人工淋雨试验。那么溅水试验装置的工作原理又是什么呢?溅水装置的莲蓬式喷头,采用全不锈钢精密烧焊制成,喷孔采用激光打孔。孔腔光滑无毛刺,喷头前方有一挡板(SUS304)。可调节喷头喷出雨滴的覆盖面,此种装置可对产品在做水试验时从各个不同角度进行喷洒,此时可将挡板拆下。

  • 【仪器心得】朗亿LYFJ-1000粉尘仪表检定装置使用心得

    【仪器心得】朗亿LYFJ-1000粉尘仪表检定装置使用心得

    [align=center][size=21px]朗亿[/size][font='times new roman'][size=21px][color=#000000]LYFJ-1000[/color][/size][/font][font='宋体'][size=21px][color=#000000]粉尘仪表检定装置[/color][/size][/font][font='宋体'][size=21px][color=#000000]使用心得[/color][/size][/font][/align][font='宋体'][color=#000000][size=16px] [/size][size=18px]张家港朗亿机电设备有限公司[/size][/color][/font][size=18px][font='宋体'][color=#000000]是一家专门研发、生产[/color][/font][font='宋体'][color=#000000]粉尘仪表检定装置[/color][/font][font='宋体'][color=#000000]和检定装置配套用的[/color][/font][font='宋体'][color=#000000]发尘材料[/color][/font][font='宋体'][color=#000000]的公司。其中[/color][/font][font='宋体'][color=#000000]LYFJ-1000粉尘仪表检定装置[/color][/font][font='宋体'][color=#000000]就是其中一种。[/color][/font][/size][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310310751087870_2134_2369266_3.png[/img][font='宋体'][color=#000000][size=16px] [/size][size=18px]这款装置体积较大,有一个[/size][/color][/font][size=18px][font='宋体'][color=#000000]大型发尘检定[/color][/font][font='宋体'][color=#000000]的大通道,安装好后,[/color][/font][font='宋体'][color=#000000]会占据很大的空间,一般得安装在一个较大的实验室或生产厂房。它[/color][/font][font='宋体'][color=#000000]高约1.5米,长约15米,通道直径约1.2米,[/color][/font][font='宋体'][color=#000000]前端发尘口[/color][/font][font='宋体'][color=#000000]是一个直径约2米的锥形喇叭口,后端有测量装置,实时测量通道内粉尘浓度,测量装置后端是一套除尘净化装置,将发生的粉尘过滤除掉,后由通风管道将通道内带有微量粉尘的空气排到净化排风管道内。[/color][/font][font='宋体'][color=#000000] 该检定装置优点是发尘量大,可发0-1000mg/m3的粉尘,如更换更大[/color][/font][font='宋体'][color=#000000]的发尘喷头[/color][/font][font='宋体'][color=#000000],发尘量会更大。[/color][/font][font='宋体'][color=#000000]发尘响应[/color][/font][font='宋体'][color=#000000]非常快,几秒钟就可以发生很大浓度的粉尘。除尘装置除尘效率也较高,可将99%以上的粉尘去除掉。简单总结就是发尘量大,[/color][/font][font='宋体'][color=#000000]发尘快[/color][/font][font='宋体'][color=#000000],除尘效率高。当然也有缺点,缺点是发出的粉尘浓度不是很稳定,有较大的波动。费尘,发生大浓度尘,一桶用不多长时间就没了。功率较大,较费电,一小时大概得消耗3度电。[/color][/font][font='times new roman'][color=#000000] 它可以供检测烟道、环境空气等的仪器做测试、调试、计量、检定、校准等[/color][/font][font='times new roman'][color=#000000],可供仪器仪表研发、生产、维修、计量检定等工作环节使用[/color][/font][font='times new roman'][color=#000000],[/color][/font][font='times new roman'][color=#000000]用它进行这些工作,效率很高、很方便,[/color][/font][font='times new roman'][color=#000000]使用[/color][/font][font='times new roman'][color=#000000]总体感觉和效果也都不错。[/color][/font][/size]

  • 最新探测显示宇宙年龄更古老:约138亿岁(图)

    2013年03月24日 来源: 新浪科技http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130324/c0cb380a6d6112b88e614f.jpg  这张全天地图展示的是宇宙中最古老的光芒,这是迄今我们能够获得的最好分辨率结果。图像根据普朗克探测器数据制作 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130324/c0cb380a6d6112b88e6150.jpg  这张全天地图展示的是从地球到可观测宇宙边缘之间的物质分布情况。物质较少的区域颜色较浅,反之,物质较多的区域颜色更深一些 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130324/c0cb380a6d6112b88e6151.jpg  普朗克空间望远镜对宇宙中最古老的光芒——大爆炸的余晖,宇宙微波背景辐射进行了迄今精确度最高的观测 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130324/c0cb380a6d6112b88e6152.jpg正在宇宙中工作的欧洲空间局普朗克空间望远镜  新浪科技讯 北京时间3月22日消息,据美国宇航局官方网站报道,普朗克空间望远镜近日发布了其最新数据及分析结果,绘制出了迄今最精确的宇宙图景,进一步改进了我们对宇宙年龄,组成及起源的认识。  普朗克空间望远镜项目由欧洲空间局(ESA)实施,美国宇航局对这一项目提供了技术支持。来自欧洲,美国和加拿大的科学家们共同组成科学组对普朗克项目的数据进行了分析。  根据此次最新的数据分析结果,宇宙的膨胀速度要比科学家们原先设想的更慢,而其年龄则比原先的计算结果更古老,达到138亿年,这比此前的137亿年提前了大约1亿年。数据分析结果还显示宇宙中的暗能量比原先认为的更少,但是暗物质的量则更高一些。暗物质是一种无法被观测到,只能依靠对其引力作用的探测来获知其存在的神秘物质,而暗能量则更加诡异,它正试图撕裂宇宙。到目前为止,物理学家们对于这两种现象的本质仍旧一无所知。  乔伊·塞奇拉(Joan Centrella)是普朗克项目科学组成员,来自美国宇航局总部。他说:“全世界的天文学家们一直以来都翘首以盼,希望获得这份宇宙地图。这些测量数据对于多个科学领域的研究工作以及未来的空间探测都至关重要。对于能在这样一个历史性的项目中与欧洲空间局开展合作,我们感到非常荣幸。”  我们的宇宙中充斥着宇宙微波背景辐射(CMB),这是来自宇宙最早期的古老光线,它们在穿越数十亿年时空之后被我们观测到。此次公布的分析结果是根据普朗克空间望远镜在其最初的15.5个月中获得的探测数据制作的。其观测结果发现在宇宙微波背景辐射中存在轻微的震荡现象。这些早期的细小不均匀性可能正是后来形成我们今天所见星系以及星系团结构的早期雏形。  查尔斯·劳伦斯(Charles Lawrence)也是一位参与普朗克项目的美方科学家,来自喷气推进实验室。他说:“当这些古老的光线穿越广袤空间抵达我们这里,一路上空间中的物质都会对其产生影响。普朗克空间望远镜不仅可以揭示最早期宇宙的景象,还有其中包含的物质,包括遍布宇宙的暗物质。”  科学家们此前已经设计出了一个可以用来描述整个宇宙年龄,组成和其它基本参数的模型,即所谓“宇宙学标准模型”。而此次普朗克空间望远镜获得的数据将帮助改进和完善这一模型的精度。与此同时,科学家们也发现了一些有趣的,似乎不符合目前标准模型预期的新现象。举例来说,标准模型认为宇宙应当是各向同性的,但是探测结果显示天空的两个方向上的光的模式存在差异性。  詹尼·图波尔(Jan Tauber)是一位来自荷兰的欧洲空间局普朗克项目科学家。他说:“一方面,我们拥有一个与现有观测结果吻合度非常好的模型;但在另一方面我们也观测到了一些奇特的出乎意料的新现象,这促使我们回头去重新思考一些最基本的假设。这是一场新旅程的开端,我们希望借助我们对普朗克项目数据的进一步分析将会最终揭开这个谜团。”  此次普朗克探测器的数据分析结果也对暴涨理论进行了验证。暴涨理论认为宇宙在其诞生之后曾经经历一次集聚的膨胀期。在远比眨一次眼更短得多的时间内,宇宙的体积膨胀了至少10的78次方。根据此次最新的分析结果,物质似乎是在宇宙中随机分布的,这显示随机过程可能在极早期宇宙量子层面上发挥了作用。这一结果让科学家们得以排除很多复杂的暴涨理论,留下那些相对显得简单的理论作为备选。劳伦斯表示:“在天空中大片区域中隐藏的结构能告诉我们在宇宙初生之时极小尺度上宇宙中发生了什么。”  普朗克空间望远镜于2009年发射升空,在那之后便一直在对整个天空进行巡视观测,测量宇宙微波背景辐射,这被认为是宇宙诞生时大爆炸留下的余晖。这一余晖让科学家们得以一窥宇宙在大爆炸之后大约37万年左右时的情景。在这一时期之前宇宙中已经有了光,但它们都被困在高温等离子体“迷雾”之中,随着宇宙膨胀降温,光子第一次被解放——宇宙变得“透明”了。  宇宙微波背景辐射在整个天空中基本呈现各向同性,然而仍然存在一些微小的差异。这些细微差异是由宇宙诞生之初的量子涨落引发的差异性的遗迹。这些遗迹在普朗克探测器获得的宇宙地图上表现为一些“斑点”,这正是宇宙中物质生长的“种子”,并最终形成恒星和星系。在此之前,科学家们通过气球和卫星搭载的设备已经开展了大量的有关研究,其中包括美国宇航局的威尔金森各向异性探测器(WMAP)以及宇宙背景探测器(COBE),这些项目的研究成果荣获了2006年的诺贝尔物理学奖。  普朗克探测器是这些探测项目的后继者,其探测范围覆盖了更广的光谱波段,拥有更高的灵敏度和分辨率。卡兹托夫·戈尔斯基(Krzysztof Gorski)是来自喷气推进实验室的普朗克项目科学家,他表示:“普朗克望远镜就像是宇宙微波背景研究领域的法拉利。你不断改进技术以便获得更精确的测量结果。对于一辆好车来说,这可能意味着更快的速度和获得更多的赛车比赛冠军。但是对于普朗克望远镜而言,它所提供的是天文学家们渴求的宝藏,它加深了我们对于宇宙本质与历史的认识。”  根据此次普朗克空间望远镜的测量结果,描述宇宙膨胀速率的哈勃常数是67.15±1.2km/s/Mpc,此处“Mpc”即百万秒差距,这是一个距离单位,大约相当于300万光年。这一数据比原先由美国宇航局斯皮策和哈勃等空间望远镜采用不同技术测出的数据要稍小一些。最新测量结果还显示宇宙中暗物质的占比约为26.8%,而原先的估计值是24%;最新结果显示宇宙中暗能量的占比约为68.3%,而原先的估计值是71.4%;相应的,宇宙中正常物质的占比由原先认为的大约4.6%上升到了大约4.9%。预计根据更多数据给出的进一步分析结果将于2014年发布。(晨风)

  • 【讨论】请大家推荐一个实验室设备或装置,均匀干燥固体颗粒

    固体颗粒放在烘箱里直接烘干就会不均匀.现在他们做法是,烘一会拿出来抖一抖,让我找个能不能替代的设备或装置.大的当然有,比如转筒干燥机,炒栗子机,还有像手动摇的炸爆米花似的,但是实验室用只要处理几十克,不知道有没类似的仪器我推荐了旋转蒸发仪,其实就是利用了旋转和加热,但是毕竟不是这个用途,所以有些不合适的地方,比如多余的是抽真空\冷凝管和升降台,遗憾的是加热热量利用率不高所以想大家给我看看有没什么适合实验室用的比较好的设备能够实现这个功能?

  • 【原创】闲聊原子吸收和质谱仪器的数学物理基础3-2

    (2)在经典力学身上捅上第一刀的人,不是爱因斯坦,而是普朗克。普朗克1858年就出生了,这资格真是老极了。爱因斯坦是在1879年出生的,所以,普朗克与爱因斯坦之间也有代沟——总之,普朗克是基尔霍夫的学生,在1900年代,他已经42岁,创新能力已经有点不行。那时候,铁血宰相俾斯麦(bismark)让德国统一,炼钢工业也得到极大发展,德国的很多钢铁厂面临的问题是如何通过钢水的颜色来知道钢水的温度,这背后的理论就是黑体辐射的经验规律,普朗克象一个精巧的裁缝,把这些经验规律做成的两条裤腿整合起来,做成了一条裤子。这裤子右边的裤腿上写着“维恩制造”,左边的裤腿上写了“瑞利——金斯制造”。当时,维恩实际上已经得到了一个经验规律,也就是“维恩位移定律”:温度正比于最大辐射处的光频率。这定律我们使用中文表达,显得有点别扭,其实就是说,钢水的温度和它辐射出来的最厉害的那个波长的乘积是一个常数。如果有读者比较深邃,可能马上就可以想到,这辐射最大处的波长很明显是一个函数的极值问题------这个函数就是那个未知的黑体辐射函数。换句话说,“维恩位移定律”其实是普朗克后来才发现的那个乳峰曲线的微分。(如果读者有兴趣,还可以知道,乳峰曲线的积分其实上是所谓波尔兹曼----斯特番辐射通量定理。)另外,人们在麦克斯韦时代已经知道的一点是,黑体辐射的光是电磁波,于是,一个很自然的推论由英国的瑞利和金斯推出——这是一个驻波条件,说明光的波长是一个单位长度的n整数倍.任何吉他手都是很清楚的——吉他高手必须要改变手指按琴弦的位置,才能改变乐音基频。吉他基频对应的波长λ的半整数倍等于弦长L。同样道理,按照这个经典图象,在一个密闭容器(炼钢炉)中,电磁波的所有模式中,反弹形成驻波的模式才是基本的,能量在这些模式之中平均分配.在这个模型中,很显然的是,电磁波的基本频率模式是与容器的外形相关的(数学上,这个是一个偏微分方程,零频时也被称为调和问题,一般模式是亥姆霍兹方程,总之,基本频率与边界的形状有关系。)——换句话说,对于一个鼓手来说,鼓的形状不一样,发出的鼓声的基频也是不一样的——这可以通过目前的音乐分析的电脑软件通过傅里叶变换看出来。根据以上的能量均分和驻波模型,瑞利和金斯得到的黑体辐射曲线说,辐射发射的强度与光频率的关系是抛物线形状的,这个显然是不对的,因为如果频率趋向无穷大,辐射强度也是无穷大,这显然是非物理的.前面已经讲到,1900年的10月,普朗克作为一个热力学统计的研究者,才得到了正确黑体辐射曲线,到了12月,他勉强找到了一个半数学半物理的解释,这个被称为“不情愿的革命”。那场革命,刚开始,显得有点非理性,普朗克他面对2个经验公式,在凑公式,凑到最后,糊弄了半天,为了解释他凑出来的那根乳峰曲线(这个在数学上叫内插法)。但这个是凑出来的公式,背后的物理看不清楚,到了最后关头,他才不得不讲出了那句话:“能量是离散的”。普朗克自己也不相信能量是离散的,所以觉得自己在讲鬼话。但作为一个有身份的人,他于是又去思考别的解释,他是鸟枪换炮,开始动用起玻尔兹曼的东西。普朗克把系统总能量平均分成p等份,强行分给n个振子(弹簧)——经典电动力学认为,炼钢炉壁上的原子象弹簧一样振动,能发出电磁波。普朗克为了计算n个振子的玻尔兹曼熵S,首先必须计算出了热力学微观态数w……事情就是这样的,s=klnw 是玻尔兹曼的遗产,当时普朗克感觉自己有点玻尔兹曼灵魂附体……我们再打个比喻,来说明如何计算微观态数W:假如有一个人,他有3个苹果,他有2个抽屉,需要把这3个苹果放在2个抽屉里,显然具有4种安排方式:0,31,22,13,0这就是P=3,n=2的特例。当普朗克为了做到同样的事情,他的工作显得非主流,他不做任何说明,得到了如下的微观态数W:w=(N+P-1)! /{(N-1)!P!}以上数学!表示阶乘。这在物理上算是一个技巧,确实可以据此推出乳峰曲线。细节我们先跳过去不讲,总之,黑体辐射的定律一旦被猜出来写出来就成了绝响,至少对于仪器分析的各位同胞们来说,如果你想知道这个世界上有没有标准光源,答案可能只有两个,其中一个就是黑体辐射光源------比如我们的宇宙背景辐射,太阳光,等等等等。爱因斯坦是在普朗克的基础上进行工作的,他对普朗克的推导并不满意,于是引进了关于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的最重要的一个数学系数,称为爱因斯坦B系数。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制