当前位置: 仪器信息网 > 行业主题 > >

氢燃料电池演示装置

仪器信息网氢燃料电池演示装置专题为您提供2024年最新氢燃料电池演示装置价格报价、厂家品牌的相关信息, 包括氢燃料电池演示装置参数、型号等,不管是国产,还是进口品牌的氢燃料电池演示装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氢燃料电池演示装置相关的耗材配件、试剂标物,还有氢燃料电池演示装置相关的最新资讯、资料,以及氢燃料电池演示装置相关的解决方案。

氢燃料电池演示装置相关的论坛

  • 车用氢燃料电池升压DC-DC测试

    车用氢燃料电池升压DC-DC测试

    [font=&][color=#333333]氢燃料电池是一种能量生成装置,在燃料氢气用尽之前一直产生能量,而且氢燃料电池的反应物氢气加料时间远远短于动力电池的充电时间,以氢燃料汽车为例,一般充气 5-10 分钟便可续航 1000 公里,与纯电动汽车相比,使用氢燃料电池的电动汽车可以大大缩短动力电池的充电时间,并且还可以大大提高续航里程,当然还有最重要的一点,氢燃料电池的产物是水,是没有污染的,是替代内燃机的新型清洁能源。[/color][/font][img=,690,359]https://ng1.17img.cn/bbsfiles/images/2024/02/202402221318078948_3879_6387980_3.jpg!w690x359.jpg[/img][font=&][color=#333333]车用氢燃料电池升压DC-DC测试是指对汽车使用的氢燃料电池升压装置系统进行转换效率的测试。燃料电池电动汽车的核心就是燃料电池的输出供电。燃料电池将氢氧转变为低压电能, 通过 DC-DC 升压后给动力电池充电同时给电机控制器供电驱动电机运转,在实际量产测试时由于功率密度高(一般为 60-120kw 电堆)、电压高(燃料电池直接输出 200V 左右,DC-DC 升压后达到 600V 左右)、电流高(200A-300A 左右),测试一直是个难题。[/color][/font][img=,690,359]https://ng1.17img.cn/bbsfiles/images/2024/02/202402221318079937_665_6387980_3.png!w690x359.jpg[/img][b]吹田电气解决方案[/b]吹田电气 (SUITA) 为车用氢燃料电池升压DC-DC测试提供专业的解决方案,针对目前车氢燃料电池相关测试难题提供精准的mV级电压测量与mA级电流测量的双向可编程直流电源SPSD15150B-30。可以提供1500V、±30A和±15kw,实现电能双向流动、正反方向自动无缝切换,功率密度更高、回馈效率更高,节能降耗,实时监测汽车氢燃料电池的功率、电压、电流等参数,并记录和储存测试数据,同时标配可互换的数字式接口与波形函数发生器,并且仪器内置多种工作模式与测试程序,帮助技术人员高效快速制定解决方案。[img=,690,347]https://ng1.17img.cn/bbsfiles/images/2024/02/202402221318089768_7766_6387980_3.png!w690x347.jpg[/img][b]方案的主要优势:[/b][list=1][*]完备可编程功能:双向可编程直流电源SPSD15150B-30.标配一任意波形函数发生器,具有完备的可编程功能与精密全面的开发者模式,可以设置序列输出,且最小可控编程时间低至10ms。[*]丰富的保护功能:双向可编程直流电源SPSD15150B-30.具备OVP、OCP、OPP以及OTP功能,可以限制最大输出电压、最大输出电流、最大输出功率以及工作时的最高温升,避免意外发生。[*]高性能并机系统:双向可编程直流电源SPSD15150B-30.可以并联组成供电系统,最多支持10台电源并联。电源并联后可以扩大功率,且具有真正的宽范围功能,能够在低电压下自动增大电流,从而使单机满足更广泛的测试要求。[*]无级变速风冷:双向可编程直流电源SPSD15150B-30.具备无级变速的强迫风冷功能,可以对工作时电源温度进行很好的控制,避免温升过高,且无级变速使得仪器更加安静节能。[*]智能操作界面:双向可编程直流电源SPSD15150B-30.配备高清触摸显示屏,智能操作界面可以快速配置和测试,无需进行大量的手动检查,操作简单,降低上手成本。[*]电池模拟功能:双向可编程直流电源SPSD15150B-30.内置电池充放电算法与内阻模式,可以模拟电池使用,并且具备自动检测能力的压降补偿功能。[/list][b]吹田电气产品可应用于多场景:[/b][list=1][*]汽车电机、电控制器和动力电池测试。[*]微电网、逆变器测试。[*]燃料电池测试。[*]生产、制造类工业控制测试。[*]通信供电和LED 产品测试。 [/list]

  • 【转贴-电池专题】从燃料电池开发看日本与德国的不同

    DATE 2008/03/05   【日经BP社报道】 在上周召开的“第4届国际氢燃料电池展”的主题演讲中,美国、日本、德国的政府人员就各国的燃料电池开发支援对策发表了演讲。三名演讲者各抒己见,显示出各国政府的立场及看法的不同,颇有些意思。   美国能源部的Paul Dickerson(能源效率与可再生能源办公室首席运营官)表示,从1994年开始美国原油进口量超过其国内原油产量,原油进口量目前已增至整体的2/3。在能源安全保障上一直处于极不乐观的状态。   从美国不同领域的CO2排放量来看,发电站为39%,其次是运输领域为33%,占有较大比例。顺便提一下,日本运输领域的CO2排放量为20%左右。运输领域消耗着美国67%的石油(原因是美国火力发电站主要使用煤碳)。Dickerson在演讲中迫切希望,可促进汽车脱离石油的燃料电池车能够与生物乙醇车及插电混合动力车一起尽快得到普及。   日本经济产业省资源能源厅远藤健太郎(燃料电池推进室室长)就日本的燃料电池开发前景发表了演讲。日本平成20年度(2008年度)与燃料电池相关的政府预算超过130亿日元,各种项目正在启动。远藤对目前在2200个地点展开大规模实证的1kW级固定式燃料电池的开发进行了详细介绍,强调正在通过打破厂商之间的界限、推进部件通用化等手段来大幅降低成本。很多人都知道,该装置是各大城市燃气公司与电机厂商等共同开发的家用热电联产装置,通过燃料电池发电、余热提供给热水器。经济产业省主导统一了性能指标并制定了开发计划,目前正在以产官联手方式推进实用化。   最后,德国政府氢燃料电池开发机构的Klaus Bonhoff(氢及燃料电池国家机构董事总经理)就以德国为中心的欧洲氢燃料电池实用化支援对策发表了演讲。对欧盟名为JTI(The European Joint Technology Initiative)的共同开发项目,以及德国国内的NIP(National Innovation Program)等开发计划进行了介绍,与日本经济产业省的项目相比,德国的项目以范围相当大的领域为对象,并建立了研发体制。   当然,德国与日本一样,将汽车及家用/商用热电联产定位于应用的中心,另外还设定了被称为“特殊市场”的领域。以叉车及产业用卡车等运输工具、货运摩托及短途汽车等市内交通、休闲游艇等的动力源、卡车、野营车乃至船舶及飞机使用的辅助动力源(APU)等为对象,进行燃料电池的市场开拓和产品开发支援。目的是“向产业界提供初期市场机会,使新技术被社会所接受”。 到达拐点的燃料电池开发   不过,在燃料电池车迟迟不能量产的情况下,燃料电池市场的起动可能要远远晚于当初的预想。虽然目前尚未形成实际的需求,但燃料电池展仍然是接连不断,其原因就是投入了相当大的政府预算。各国均在想法设法地尽快开拓汽车以外的用途。   在日本,经济产业省推进的家用固定式燃料电池最有可能成为新的应用,不过笔者对此略感担忧。与原来的热水器相比,该电池的成本非常高,虽然价格以大约50万日元为目标,但最初可能会超过100万日元。而且,随着燃气价格上涨,电费变得相对便宜,热电联产的优势越来越难以展现出来。从用户来看,存在初期投资的回收难度进一步加大的担忧。   这样一来该电池就无法畅销,也许要通过提供补助金来推动应用。总之,与通过这一措施艰难打入市场相比,紧密结合市场需求、开发受用户欢迎的产品或许更重要。经济产业省为了实现产业振兴使命,必须要制定出面向产业界的大规模开发支援对策。在这里,笔者希望环境省参考德国的做法,站在用户的角度提出具有多样性的环保技术支援对策。(主任编辑委员:田岛 进)

  • 【资料】不使用白金触媒的燃料电池

    【资料】不使用白金触媒的燃料电池

    不使用白金触媒的燃料电池   日本大发工业开发出了使用液体燃料联氨作为燃料的新型燃料电池的基础技术(图7)。这种燃料电池的特点是,无需目前汽车用主流燃料电池——PEFC(高分子固体电解质型燃料电池)所需的Pt触媒。与以往PEFC为H+(氢离子)在电解质中移动的方式不同,新型燃料电池改为OH-(氢氧根)在电解质中移动的方式。 [img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903061049_137008_1604910_3.jpg[/img] 图7 大发工业开发的不含贵金属的新型燃料电池(a) 位于中央的四方形装置为燃料电池箱。向燃料极注入水合联氨,则开始发电。(b)为无色透明的水合联氨的外观(右)、以及与树脂固化后提高了安全性的状态(左)。   即便将电解质膜改为OH-移动的方式,但如果采用氢气作为燃料,则仍需要Pt触媒,因此,该公司决定采用反应性较高的液体燃料——联氨作为燃料。这样一来,便可采用Ni作为触媒。另外,如果直接使用联氨,由于毒性及引火性较高,所以决定使用加水稳定后的水合联氨(N2H4H2O)。

  • 【每周新闻】固体氧化物燃料电池

    燃料电池是一种直接将储存在燃料如氢气、甲烷、甲醇、煤气等和氧化剂中的化学能高效地转化为电能的发电装置。根据所使用的电解质种类的不同,燃料电池可分为:低温燃料电池,诸如固态高聚物电解质燃料电池〔PEMFC)及碱性燃料电池(AFC);磷酸盐酸性燃料电池(PAFC);熔盐碳酸盐燃料电池(MCFC);固体氧化物燃料电池(SOFC)等。  SOFC是继PAFC、MCFC之后的能量转换效率最高的第三代燃料电池系统,被认为为最有效率的和万能的发电系统、特别是作为分散的电站,目前正在引起各国科学家的广泛兴趣。它是将燃料和氧化剂气体,通过一种离子传导陶瓷并产生电能的全固态能量转换装置,所以又被称为陶瓷燃料电池。  SOFC主要包括电解质和两个电极。在阴极,空气中的氧转换成氧离子,通过两个电极间的固体电解质膜迁移,与阳极/电解质界面上的燃料反应。在外电路、从阳极到阴极的电子流产生直流电。固体电解质是SOFC的最核心的部件。它的性能不但直接影响电池的工作温度及电能转换效率,还决定了所需的相匹配的电极材料及其相应制备技术的选择。 总的燃料发电效率在单循环时有潜力超过60%,而对总的来说体系效率可高达85%。SOFC可用于发电、交通、空间宇航和其他许多领域,被称为21世纪的绿色能源。研究并开发可以用净化煤气及天然气为直接燃料的MCFC及SOFC,对中国是一种适合国情的选择。

  • 燃料电池及在大连化物所的发展

    燃料电池及在大连化物所的发展

    燃料电池及在大连化物所的发展 衣宝廉 张华民 明平文 (中国科学院大连化学物理研究所 大连 116023) Fuel Cells and the Activities in Dalian Institute of Chemical Physics, CAS Baolian YI. Huamin ZHANG. Pingwen MING (Dalian Institute of Chemical Physics, CAS, Dalian 116023 P.R.China) Abstract The principles, types, and status of fuel cell are introduced in brief. Dalian Institue of Chemical Physics (DICP) began the fuel cell research for Alkaline Fuel Cell (AFC) from 1960s. In 9th 5-year Plan, DICP acted as a leadship member in National Key Project, "Fuel Cell Technology". A set of technology was taken out independently. Nowadays DICP focus on Proton Exchange Membrane Fuel Cell (PEMFC), Solid Oxide Fuel Cell (SOFC), Molten Carbonate Fuel Cell (MCFC) and Direct Methanol Fuel Cell (DMFC). Recently a new corp. named Dalian Sunrise Power Co., Ltd. was founded for the commercialization of fuel cells, especially for that of PEMFC. DICP is the main shareholder of Sunrise Power for its fuel cell technology.    一. 原理,分类与技术现状   1. 原理   燃料电池(FC)是一种等温进行、直接将储存在燃料和氧化剂中的化学能高效(50-70%),环境友好地转化为电能的发电装置[1]。它的发电原理与化学电源一样,电极提供电子转移的场所,阳极催化燃料如氢的氧化过程,阴极催化氧化剂如氧等的还原过程;导电离子在将阴阳极分开的电解质内迁移,电子通过外电路作功并构成电的回路。但是FC的工作方式又与常规的化学电源不同,而更类似于汽油、柴油发电机。它的燃料和氧化剂不是储存在电池内,而是储存在电池外的储罐中。当电池发电时,要连续不断的向电池内送入燃料和氧化剂,排出反应产物,同时也要排除一定的废热,以维持电池工作温度的恒定。FC本身只决定输出功率的大小其储存能量则由储存在储罐内的燃料与氧化剂的量决定。 图1为石棉膜型氢氧燃料电池单池(single cell)的结构和工作原理图。[img]http://ng1.17img.cn/bbsfiles/images/2006/01/200601010112_12590_1604910_3.jpg[/img]   氢气在阳极与碱中的OH 在电催化剂的作用下,发生氧化反应生成水和电子:   H2 + 2 OH H2O + 2e- 0= -0.828V 电子通过外电路到达阴极,在阴极电催化剂的作用下,参与氧的还原反应:   O2 + H2O +2e- 2OH 0= 0.401V 生成的OH 通过饱浸碱液的多孔石棉膜迁移到氢电极。   为保持电池连续工作,除需与电池消耗氢、氧气等速地供应氢、氧气外,还需连续、等速地从阳极(氢极)排出电池反应生成的水,以维持电解液碱浓度的恒定;排除电池反应的废热以维持电池工作温度的恒定。     图2为燃料电池单池伏安特性曲线。   图中η0称为开路极化,即当电池无电流输出时的电池电压与可逆电势的差值,其产生原因是氧的电化学还原交换电流密度太低,从而产生混合电位。   ηr为活化极化,它为电极上电化学反应的推动力,ηD为浓差极化,它为电极内传质过程的推动力。ηΩ为电池内阻引起的欧姆极化,它包括隔膜电阻、电极电阻与各种接触电阻,伏安曲线的直线部分的斜率由它决定,电池电流密度的工作区间就选在此段,通称这一段斜率为电池的动态内阻。

  • 【转帖】中国氢燃料电池轿车驶进奥运会场

    【转帖】中国氢燃料电池轿车驶进奥运会场

    [img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807162227_98720_1615922_3.jpg[/img]图为氢燃料电池轿车。中国自主研制的氢燃料电池轿车走出实验室,驶进奥运会场。作为2008北京奥运“绿色车队”中的重要成员,由上海燃料电池汽车动力系统有限公司、同济大学、上汽集团等提供动力系统,上海大众汽车有限公司负责制造的20辆帕萨特领驭氢燃料电池轿车,6月20日完成全部的试制试验,其中5辆车作为先遣队,已经运抵北京,另15辆车整装待发。它们将作为公务用车在奥运中心区投入示范运营,与其它近500辆各类电动汽车一道,实现奥运核心区污染零排放。这20辆燃料电池轿车此前已通过国家安全性、可靠性、耐久性方面的严格检测,获得国家许可证。今天下午,上海发车仪式在同济大学新能源汽车工程中心举行。全国政协副主席、科技部部长万钢,上海市副市长艾宝俊出席发车仪式并致辞。在“十五”国家863电动汽车重大专项、“十一五”国家863节能与新能源汽车重大项目的支持下,同济大学、上汽集团等单位通过产学研紧密合作,已经自主成功研制出我国四代拥有完全自主知识产权的氢燃料电池轿车样车。该车以氢气为能源,经氢氧化学反应生成水,真正实现了零污染。经过一代代改进、优化,最新一代的燃料电池轿车动力性能持续增强,最高时速近150公里,一次性充氢连续行驶里程超过300公里,整车的可靠性、稳定性也不断得到提升。此20辆氢燃料电池轿车,是由整车企业牵头,利用大众帕萨特领驭车型,通过集成最新一代燃料电池轿车动力系统技术平台而成功研制出来的。与以前样车相比,它的工程化、产品化程度更高。为确保其安全性、可靠性,前5辆车每辆均已完成3000公里的实际道路行驶试验,另外15辆车也已完成相当量的行驶里程。“2008北京奥运会燃料电池轿车”专项计划于2007年8月启动,这是上海市政府为响应“科技奥运、绿色奥运、人文奥运”而实施的重要举措。这20辆氢燃料电池轿车,将主要为贵宾、媒体记者和奥组委官员等提供用车服务。据介绍,项目研发团队部分成员将于明天启程赴北京,为确保燃料电池轿车在奥运期间顺利运行提供技术支撑。有关负责人表示,这既是我国自主研发的燃料电池汽车走出实验室以来首次小规模化的示范运行活动,也是我国节能与环保最新科技成果的国际展示。

  • 氢燃料电池飞机中热导式气体传感器用于监测氢气含量

    [font=微软雅黑][size=10.5000pt]在当今世界,氢能被公认是一种清洁能源,并且正在成为一种低碳和零碳能源。氢燃料电池是将氢和氧的化学能直接转换成电能的发电装置[/size][/font][font=微软雅黑][size=10.5000pt],[/size][/font][font=微软雅黑][size=10.5000pt]基本原理是电解水的逆反应[/size][/font][font=微软雅黑][size=10.5000pt]。[/size][/font][font=微软雅黑][size=10.5000pt]氢和氧分别提供给阳极和阴极[/size][/font][font=微软雅黑][size=10.5000pt],[/size][/font][font=微软雅黑][size=10.5000pt]氢通过阳极向外扩散并与电解质反应后,发出的电子通过外部负载到达阴极。[/size][/font][font=微软雅黑][size=10.5000pt]工采网总结了三个氢燃料电池的优点:[/size][/font][font=微软雅黑][size=10.5000pt]1、[/size][/font][font=微软雅黑][size=10.5000pt]无污染[/size][/font][font=微软雅黑][size=10.5000pt]氢燃料电池对环境没有污染。它是通过电化学反应而不是燃烧(蒸汽为、柴油)或能量存储(电池)为最典型的传统备用电源解决方案。[/size][/font][font=微软雅黑][size=10.5000pt]传统电池[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]燃烧会释放出污染物,例如[/font]COx、 NOx、 SOx气体和粉尘。如上所述,[/size][/font][font=微软雅黑][size=10.5000pt]氢[/size][/font][font=微软雅黑][size=10.5000pt]燃料电池仅产生水和热量。如果氢气是由可再生能源(光伏电池板、风力发电等)产生的,则整个循环过程不会完全产生有害物质。[/size][/font][font=微软雅黑][size=10.5000pt]2、[/size][/font][font=微软雅黑][size=10.5000pt]无噪音[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]氢燃料电池安静地运行,噪音仅为[/font]55dB,这相当于正常人的谈话水平。这使得该燃料电池适合于室内安装或在室外噪声受限的地方。[/size][/font][font=微软雅黑][size=10.5000pt]3、[/size][/font][font=微软雅黑][size=10.5000pt]高效率[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]氢燃料电池的发电效率可以达到[/font]50%以上。这取决于燃料电池的转换特性。化学能直接转换为电能,而没有热能和机械能(发电机)的中间转换。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]由于氢燃料电池的这些优势,波音公司于[/font]2008年4月3日成功测试了由氢燃料电池驱动的小型飞机。波音公司声称这是世界航空历史上的第一次,这表明航空业[/size][/font][font=微软雅黑][size=10.5000pt]未来[/size][/font][font=微软雅黑][size=10.5000pt]将变得更加强大[/size][/font][font=微软雅黑][size=10.5000pt]和[/size][/font][font=微软雅黑][size=10.5000pt]环保。[/size][/font][font=微软雅黑][size=10.5000pt]该飞机使用性能更高且效率更高的氢燃料电池,证明了[/size][/font][font=微软雅黑][size=10.5000pt]氢燃料电池[/size][/font][font=微软雅黑][size=10.5000pt]技术的应用潜力。燃料系统使用氢气作为燃料,将其直接转化为电能,并与空气中的氧气进行电化学反应,而不会燃烧,唯一的副产品是水。如果使用可再生能源生产氢燃料,则飞机发动机完全不含二氧化碳。[/size][/font][font=微软雅黑][size=10.5000pt]但是,[/size][/font][font=微软雅黑][size=10.5000pt]工采网提醒大家[/size][/font][font=微软雅黑][size=10.5000pt]应注意[/size][/font][font=微软雅黑][size=10.5000pt]的是[/size][/font][font=微软雅黑][size=10.5000pt],在[/size][/font][font=微软雅黑][size=10.5000pt]氢燃料电池生产[/size][/font][font=微软雅黑][size=10.5000pt]和应用中,电池中[/size][/font][font=微软雅黑][size=10.5000pt]可能会[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]存在[/font]H2泄漏的一定风险。 H2泄漏会导致燃料电池的性能下降,[/size][/font][font=微软雅黑][size=10.5000pt]并且[/size][/font][font=微软雅黑][size=10.5000pt]H2是易燃气体[/size][/font][font=微软雅黑][size=10.5000pt],[/size][/font][font=微软雅黑][size=10.5000pt]过多的堆积会造成很大的隐性安全隐患,因此,[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]需要对氢气进行含量检测,在这里,工采网技术工程师推荐使用热导式气体传感器[/font]MTCS2601来进行监测:[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]法国[/font]Endetec 热导式气体传感器 - MTCS2601,基于帕拉尼原理的真空度检测,需要超低功耗,长寿命和免维护的产品。适用于恶劣环境下初级压力控制。另外,也可以用荷兰Xensor的热导式气体传感器 XEN-TCG3880。[/size][/font]

  • 高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用

    高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用

    [color=#ff0000]摘要:氢气供应系统作为燃料电池系统的重要组成部分,其空气侧与氢气侧之间压力差的动态控制对于整个燃料电池系统可靠性尤为重要。本文针对氢燃料电池系统氢气压力控制中存在的问题,推荐使用精密电动针阀,并详细介绍了电动针阀的特点和技术参数。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][img=高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用,690,518]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101053487958_1868_3384_3.png!w690x518.jpg[/img][/align][size=18px][color=#ff0000]1. 问题的提出[/color][/size]  氢气供应系统作为燃料电池系统的重要组成部分,与电堆、空气供应系统、水热管理系统和电子电力系统协同工作,保证氢气流量、压力的稳定供应,并实现氢气循环利用。燃料电池氢气供应系统简化结构如图1-1所示。高压储氢罐是系统的氢气来源,氢气经过减压阀,压力降至适宜系统使用的范围,通常情况为几巴左右。氢气进气阀用于控制进入电堆的氢气量,进而控制电堆氢气回路的压力,目前常用的氢气进气阀为比例调节阀、开关阀或多个开关阀组。[align=center][color=#ff0000][img=燃料电池氢气供应系统简化图,690,66]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101055206617_6144_3384_3.png!w690x66.jpg[/img][/color][/align][align=center][color=#ff0000]图1-1 燃料电池氢气供应系统简化图[/color][/align]  由于燃料电池自身膜电极的厚度逐渐降低,其机械强度相应下降,因此空气侧及氢气侧压力的动态控制对于整个燃料电池系统可靠性尤为重要,一般要求是氢气侧压力要等于或者稍高于空气侧压力,并且在调节两侧压力时要确保同升同降,以减少对质子膜的损害。然而,在目前氢燃料电池电源系统中,对于这两侧压差的控制存在以下几方面的问题:  (1)采用开关阀进行氢气进气的控制,使得整个氢气回路中的波动太大而不易控制;  (2)采用电磁比例阀尽管可以按照一定比例进行类似PID模式进行压力控制,但电磁比例阀由于存在较大磁滞现象,会带来控制不稳定的严重问题。  本文针对氢燃料电池系统氢气压力控制中存在的问题,推荐使用精密电动针阀,并详细介绍了电动针阀的特点和技术参数。[size=18px][color=#ff0000]2. 电动针阀[/color][/size]  电动针阀如图2-1所示。[align=center][img=各种规格电动针阀,599,513]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101055582033_8168_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#ff0000]图2-1 各种规格电动针阀[/color][/align][size=18px][color=#ff0000]2.1. 技术指标[/color][/size][align=center][color=#ff0000][img=电动针阀技术指标,690,453]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101057223127_3501_3384_3.jpg!w690x453.jpg[/img][/color][/align][color=#ff0000][/color][align=center][color=#ff0000]图2-2 电动针阀技术指标[/color][/align][align=center] [img=电动针阀尺寸,690,421]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101057371906_4688_3384_3.jpg!w690x421.jpg[/img][/align][align=center][size=16px][color=#ff0000]图2-3 电动针阀尺寸[/color][/size][/align][size=18px][color=#ff0000]2.2. 驱动模块[/color][/size]  数控电动针阀配备有步进电机驱动电路模块,以提供所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供RS485串口通讯的直接控制。[align=center][color=#ff0000][img=驱动模块及其尺寸,690,220]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101058555517_9466_3384_3.jpg!w690x220.jpg[/img][/color][/align][color=#ff0000][/color][align=center][color=#ff0000]图2-4 驱动模块及尺寸[/color][/align][size=18px][color=#ff0000]2.3. 特点[/color][/size]  新一代用于比例流量调节的数控电动针阀将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级换代产品。与各种PID控制算法和压力控制器相结合,可构成快速准确的氢气压力控制装置。  电动针阀具有以下几方面的特点: (1) 多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。  (2) 高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。  (3) 高重复性:通过每次达到0.1%的相同流量,可提供长期稳定的一致性。  (4) 宽压力范围:通过5或7bar的压力,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。  (5) 低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。  (6) 高分辨率:0.2%的分辨率允许电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。  (7) 快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][img=,690,355]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101059518215_4501_3384_3.jpg!w690x355.jpg[/img][/align][align=center][/align][align=center][/align]

  • 〔转〕燃料电池的春天来了

    今年电池类的2个973都给了燃料电池,科技部的导向真是厉害。2012CB215400 碳基燃料固体氧化物燃料电池体系基础研究2012CB215500 基于贵金属替代的新型动力燃料电池关键技术和理论基础研究 版友有研究这方面的吗

  • 燃料电池汽车氢系统氢气泄漏检测传感器

    根据《中国氢能源及燃料电池产业白皮书》,氢能将成为中国能源体系重要组成部分,2050年能源体系中占比约10%,氢气需求量达6000万吨,加氢站10000座以上,氢燃料汽车产量达500万辆/年,行业发展前景广阔。截至2020年底,全球氢燃料电池汽车保有量为32535辆,同比增长38%,韩国保有量达10906辆,位居全球第一,美国为8931辆,我国氢燃料电池汽车保有量为7352辆排第三。[url=http://news.isweek.cn/wp-content/uploads/2022/09/QQ图片20220907092340.png][img=QQ图片20220907092340,447,300]http://news.isweek.cn/wp-content/uploads/2022/09/QQ图片20220907092340-447x300.png[/img][/url]氢燃料电池汽车是利用氢气和氧气的电化学反应产生电能驱动汽车,产物只有水,具有无污染、动力性能高、充气时间短和续驶里程长等优点。基于这些优点,氢燃料电池汽车正在成为各国政府和企业重点布局和探索的未来绿色产业,也是发展新能源汽车的重要技术路线之一。氢燃料电池汽车的核心为燃料电池发动机系统,关系着整车运行的安全性,对燃料电池汽车是否具备成熟、可靠的性能表现具有重要影响。燃料电池发动机主要部件包括电堆、发动机控制器、氢气供给系统、空气供给系统等。燃料电池系统是氢燃料电池汽车的核心单元,存在结构复杂、性能要求高、运行环境恶劣和动态响应能力差等,难免出现各种故障和失效。而氢气具有无色无味、极易燃烧等特性,需要重点关注对于氢气泄漏故障的准确诊断,以免发生严重安全事故。工采网推出了一款专门针对燃料电池系统氢气泄漏检测的传感器TGS6812,该传感器性可靠性好、性价比高,是氢燃料电池H2泄漏检测的好帮手。[img=日本figaro 催化燃烧式可燃气体传感器,300,300]https://www.isweek.cn/Thumbs/300/0161206/58466d62d3342.JPG[/img][b]一、催化燃烧式可燃气体传感器TGS6812描述:[/b]TGS6812-D00是催化燃烧式的可燃气体传感器,可以检测100%LEL水平的氢气,此传感器具有精度高,耐久性与稳定性好,快速响应、线性输出的特点,不仅可监测氢气,还可以用于检测甲烷与LP气体。这对于固定式燃料电池将氢气作为可燃气体时的泄漏检测是个非常优秀的方案。TGS6812-D00的盖帽内有吸附剂,对有机蒸汽的交叉灵敏度很低。此外,此传感器对硅化合物的耐受性更佳,更适应恶劣环境。[b]二、催化燃烧式可燃气体传感器TGS6812特点:[/b]* 线性输出* 使用寿命长* 对酒精灵敏度低* 对氢气、甲烷与LP等物质有较高灵敏度[b]三、催化燃烧式可燃气体传感器TGS6812应用:[/b]* 用于监测燃料电池的氢气与可燃气体泄漏* 工业、商用上的可燃气体泄漏检测

  • 固体氧化物燃料电池的特点介绍

    SOFC与第一代燃料电池(磷酸型燃料电池,简称PAFC)、第二代燃料电池(熔融碳酸盐燃料电池,简称MCFC)相比它有如下优点:  (1)较高的电流密度和功率密度;  (2)阳、阴极极化可忽略,极化损失集中在电解质内阻降;  (3)可直接使用氢气、烃类(甲烷)、甲醇等作燃料,而不必使用贵金属作催化剂;  (4)避免了中、低温燃料电池的酸碱电解质或熔盐电解质的腐蚀及封接问题;  (5)能提供高质余热,实现热电联产,燃料利用率高,能量利用率高达80%左右,是一种清洁高效的能源系统;  (6)广泛采用陶瓷材料作电解质、阴极和阳极,具有全固态结构;  (7)陶瓷电解质要求中、高温运行(600~1000℃),加快了电池的反应进行,还可以实现多种碳氢燃料气体的内部还原,简化了设备。  除了燃料电池的一般优点外,SOFC还具有以下特点:对燃料的适应性强,能在多种燃料包括碳基燃料的情况下运行;不需要使用贵金属催化剂;使用全固态组件,不存在对漏液、腐蚀的管理问题;积木性强,规模和安装地点灵活等。这些特点使总的燃料发电效率在单循环时有潜力超过60%,而对总的来说体系效率可高达85%,SOFC的功率密度达到1MW/M3,对块状设计来说有可能高达3MW/M3。事实上,SOFC可用于发电、热电回用、交通、空间宇航和其他许多领域,被称为21世纪的绿色能源。  固体氧化物燃料电池具有燃料适应性广、能量转换效率高、全固态、模块化组装、零污染等优点,可以直接使用氢气、一氧化碳、天然气、液化气、煤气及生物质气等多种碳氢燃料。在大型集中供电、中型分电和小型家用热电联供等民用领域作为固定电站,以及作为船舶动力电源、交通车辆动力电源等移动电源,都有广阔的应用前景。

  • “燃料电池及氢源技术国家工程研究中心”在北京化工大学挂牌

    近日,由中国科学院大连化学物理研究所、新源动力股份有限公司、北京化工大学、中氢新能技术有限公司和国创氢能科技有限公司等五家单位联合共建的“燃料电池及氢源技术国家工程研究中心”,经大连市发改委批准并报告国家发改委,完成了共建单位的迭代更新重新挂牌,北京化工大学作为在该领域拥有核心技术专利的新共建单位被引入,中心挂靠材料电化学过程与技术北京市重点实验室。[align=center][img]https://img1.17img.cn/17img/images/202403/uepic/4e7b1278-4bb9-4a95-9b1f-53e4e53d80d3.jpg[/img][/align]“燃料电池及氢源技术国家工程研究中心”是在国家发改委和大连市政府的支持下,依据《国家工程研究中心管理办法》和《纳入国家工程研究中心新序列管理》相关要求建立,旨在通过具备自主知识产权的技术构建氢能及燃料电池创新链、产业链,解决发达国家制约我国氢燃料电池行业发展的关键共性技术与“卡脖子”问题,带动产业升级。中心重新挂牌后,将在国家发改委、大连市发改委和中国科学院共同领导下,实行主任负责制,副主任由共建单位各派1名领导专家担任,并设立科学技术委员会,由我国燃料电池与氢源技术领域著名专家组成。中心将坚持[b]“资源共享、模式创新、做大做强”[/b]方针,分设多个技术平台,包括[b]燃料电池系统科学与工程研究平台、绿色制氢技术平台、化石能源高效制氢技术研究平台、燃料电池及氢源技术商业化应用科创平台、分布式氢源及低碳应用技术研发平台[/b]等,逐步打造为创新引领型技术攻关平台,高效赋能“双碳”战略。[align=center][img]https://img1.17img.cn/17img/images/202403/uepic/4c2956cd-815c-419a-ad47-8016ccff12e8.jpg[/img][/align]北京化工大学表示,作为中心共建单位之一,目前在燃料电池和氢能研究领域,已形成了一支由院士、国家杰青领衔的高层次人才队伍,先后承担了一系列国家级和省部级重大科研计划项目。在未来国家工程研究中心建设中,将继续聚焦燃料电池和氢能行业关键共性技术和“卡脖子”课题,进一步发挥在燃料电池、电解水、储氢等方面的专长,通过产学研用跨学科协同创新,加速提升成果转化和市场化能力,积极推动燃料电池和氢源技术产业化进程。[来源:北京化工大学][align=right][/align]

  • 【求购】求购氢燃料电池 电极膜(EMA)

    现求购氢燃料电池的[size=4]电极膜[/size],要求表面积60到100 cm2,需要150左右片,使用氢气和氧气,能在常压,常温下工作. 要求质量好,价钱公道,能供货到法国的.最好能有附有详细的技术资料.谢谢``!!

  • 燃料电池!中国汽车行业的又一大新进步!

    ,“中国燃料电池汽车技术创新战略联盟”首批成员单位由同济大学、清华大学、武汉理工大学、重庆大学4所高校,中科院大连物理化学研究所、上海空间电源研究所、中国汽车技术研究中心3家研究机构,以及中国第一汽车集团公司、上海汽车集团股份有限公司、东风电动车辆股份有限公司、上海燃料电池汽车动力系统有限公司等国内12家汽车整车及零部件企业组成,集中了我国燃料电池汽车研发和生产的优势力量。联盟内各成员单位将通过开展合作攻关、自主技术创新,力争早日攻克燃料电池汽车的关键核心及瓶颈技术,解决我国燃料电池汽车工程技术和产业化难题,加快我国燃料电池汽车产业化进程。  “先进地面交通创新联盟”集结了6家知名高校、3家著名科研院所以及4家国有大型骨干企业,聚合了国内地面交通领域多方面的优势资源。“先进地面交通创新联盟”将集中各成员单位的优势学科资源、科技创新平台和高端研发人才,面向地面交通发展的核心共性问题,建立多学科融合、多团队协同、多技术集成的深度合作创新联盟,形成政、产、学、研、用融合发展的新模式,围绕先进地面交通领域的基础研究、前沿技术、人才培养、产业发展等多方面内容,开展合作创新。  燃料电池汽车的工作原理是,使作为燃料的氢在汽车搭载的燃料电池中,与大气中的氧发生化学反应,从而产生出电能启动电动机,进而驱动汽车。甲醇、天然气和汽油也可以替代氢(从这些物质里间接地提取氢),不过将会产生极度少的二氧化碳和氮氧化物。但总的来说,这类化学反应除了电能就只产生水。因此燃料电池车被称为“地道的环保车”。  近几年来,燃料电池技术已经取得了重大的进展。世界著名汽车制造厂,如戴姆勒-克莱斯勒、福特、丰田和通用汽车公司已经宣布,计划在2004年以前将燃料电池汽车投向市场。目前,燃料电池轿车的样车正在进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。在开发燃料电池汽车中仍然存在着技术性挑战,如燃料电池组的一体化,提高商业化电动汽车燃料处理器和辅助部汽车制造厂都在朝着集成部件和减少部件成本的方向努力,并已取得了显著的进步。

  • 生物燃料电池

    斑竹和各位同行大家好:希望我们能够在这个领域内来共同讨论生物燃料电池方面的内容,感谢大家的关系及合作[em61] 先上传一篇综述共赏[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=33461]生物燃料电池[/url]

  • 【转帖】科学家开发出有机金属燃料电池

    据美国物理学家组织网12月16日报道,瑞士苏黎世联邦理工学院和意大利研究人员联合开发出一种新奇的有机金属燃料电池,该电池在发电同时还能用可再生原材料生产出优质化学产品。这种新有机金属燃料电池的工作原理与以往的电池完全不同。它基于一种含铑元素的特殊分子络合物,这种络合物以分子形式嵌入阳极材料,阳极的支持材料为碳粉,使分子络合物能分布均匀。阳极吸收自由电荷,将它们转移到阴极重新释放,这一过程生成了电流。其特别之处在于,它是用阳极上的分子络合物作催化剂,有很多优势功能。苏黎世联邦理工学院教授汉斯乔格·格鲁茨曼彻说,这种燃料电池在发电的同时,还能用可再生原料产出优质化工产品,并且毫无浪费,这是一个巨大的进步。格鲁茨曼彻认为,这种有机金属燃料电池的潜在用途很广。比如在实验中,1,2-丙二醇(来自可再生原料)能被转化成多种乳酸,乳酸可用来制造生物降解高分子材料,而大部分传统工艺,生产1吨乳酸要产生约1吨的硫酸钙,处理这些硫酸钙成本很高。而新的燃料电池在转化原料之后不留残余。此外,还可以将有机金属燃料电池微型化,给心脏起搏器供电。它还能减少制作催化剂时对稀土和贵重金属的需求。格鲁茨曼彻还在研发不需要金属电极的燃料电池,或者只用很少的锰、铁或钴等金属,而目前的有机金属燃料电池还用了铑。

  • 【求助】有关研究固体氧化物燃料电池的仪器设备。

    各位大侠,大家好!我最近刚刚开始接触燃料电池的研究,以后的方向可能是CeO2基固体电解质及此类燃料电池。我所在的课题组刚开始这方面的投入,老板让我查找研究SOFC的全套设备仪器,列出清单。我是电化学领域的新人,不太懂此类的仪器。请高人指点一二。我一个人身在海外不容易呀,请大家多帮忙!小女子在此先谢过了!![em01]

  • 【资料】在线分析仪…电化学篇…燃料电池式分析仪(收集)

    虽然无人说好,我想我还是将我的培训资料发全了,我发的这些内容,基本上就是我的分析室人员培训基本理论,作为一个基本合格分析工,这些东西还是要掌握的。希望这些书上的东西,对我们这行的朋友有用!第三节:燃料电池式氧分析仪燃料电池是指原电池中的一种类型。原电池式氧分析仪中的电化学反应可以自发地进行,不需要外部供电,其综合反应是气样中的氧和阳极发生氧化反应,反应的结果生成阳极氧化物,这种反应类似于氧的燃料反应,所以这类原电池也称为“燃料电池”,以便与其他类型的原电池相区别,安装有这类原电池的分析仪,我们称之为燃料电池分析仪。由于阳极在反应中不断消耗,因而电池需要定期更换。燃料电池式氧分析仪,既可以测量微量氧,也可以测量常量氧。若需要测量常量氧,其测量测量精度和长期使用的稳定性肯定不如顺磁氧效果好,且电池的寿命因与氧浓度有关,所以测量常量氧,其寿命也较短。因此,它测量常量只适合一般要求不高的场合。而测量微量氧,则是这类仪器的优势所在,它测量微量氧的下限为PPM级,而顺磁氧为:0.1%(1000PPM)O2,精度高的顺磁氧也只能达到0.01%(100PPM)O2。过去为,燃料电池的电解质均采用电解液,近20年来,由于固体(糊状)电解质应用于燃料电池,为了便于区分,我们将者称之为液体燃料电池,后者称之为固体燃料电池。两者相比,固体燃料电池比液体燃料电池有一定的优越性,但固体能否取代液体,尚难预料!在液体燃料电池中,我们根据燃料电池的性质,又将液体燃料电池分为碱性燃料电池和酸性燃料电池。

  • 【原创大赛】氢燃料电池膜电极漏率测试方法中存在的问题及改进措施

    【原创大赛】氢燃料电池膜电极漏率测试方法中存在的问题及改进措施

    [color=#990000]摘要:针对氢燃料电池膜电极的氢气泄露质量问题,本文详细介绍了T/CAAMTB 12-2020《质子交换膜燃料电池膜电极测试方法》中的串漏率检测方法,分析了测试方法中存在的不足,对检测方法提出了改进意见,进一步细化了加载压力精确控制和漏率自动化检测方案,使得该测试方法可不受不同时间和地点的大气压力和环境温度的影响,使该测试方法更准确可靠和具有普遍适用性。[/color][size=18px][color=#990000][/color][/size]1. 问题的提出  氢燃料电池汽车已成为新能源汽车领域的重点发展方向之一,但氢气具有易燃性,一旦发生氢气泄漏,很容易引发严重的安全事故。氢燃料电池的膜电极是燃料电池电化学反应发生的区域,是整个燃料电池系统的核心部件,由于薄膜针孔或者边框封装等缺陷的存在,可能引发内漏降低效率和形成氢氧界面等问题给电池运行带来严重风险。  通常电池厂家在膜电极装配后会进行气密性检测,但发现泄露发生时难以找出问题膜电极,因此膜电极出厂前应当对每一片膜电极进行漏率检测,找出问题膜电极,保证出厂膜电极质量。  为了保证膜电极漏率检测的准确性和规范性,我国在2020年推出了相应的行业团体标准T/CAAMTB 12-2020《质子交换膜燃料电池膜电极测试方法》。针对膜电极串漏率的检测,此标准采用了阳极侧加压方式,通过阴极侧的压力变化测量串漏情况,并通过流量计测量流量,最终得到串漏率。这种方法是一种典型的压降检漏法,其技术关键是要保证检测过程不随时间、地点和温度等因素的影响,并保证加载压力精确控制,特别是要确保加载压力值是一绝对值,不受大气压力和环境温度变化的影响,这点在T/CAAMTB 12-2020并没有给出明确规定。  针对上述膜电极漏率测试方法中存在的问题,本文在详细介绍T/CAAMTB 12-2020《质子交换膜燃料电池膜电极测试方法》中串漏率检测方法的基础上,对测试方法中存在的不足进行分析,对检测方法提出改进意见,进一步细化加载压力精确控制和漏率自动化检测方案,使该测试方法可不受不同时间和地点的大气压力和环境温度的影响,使该测试方法更准确可靠和具有普遍适用性。[size=18px][color=#990000]2. 膜电极串漏率测试方法[/color][/size]  2020年5月1日中国汽车工业协会团体标准T/CAAMTB 12-2020《质子交换膜燃料电池膜电极测试方法》正式发布执行,其中一个重要部分是膜电极串漏率测试方法,由此对膜电极的气密性进行表征评价。  标准T/CAAMTB 12-2020中规定的膜电极串漏率测试方法基于压降捡漏原理,检测一定压差下的膜电极在单位时间内气体从单位面积膜电极阳极漏向阴极的流量。标准中推荐了两种具体方法,详细介绍如下。[size=16px][color=#990000]2.1. 流量测量法[/color][/size]  膜电极串漏率可由流量测量法得到,具体步骤如下:  (1)将膜电极阴极朝下阳极朝上放置在检漏夹具阴极端板上定好位,随后将阳极端板放在膜电极上与阴极端板定好位。  (2)将装好膜电极的检漏夹具居中放置在压力机上。  (3)按图2-1安装好管路与检漏夹具。[align=center][img=氢燃料电池膜电极漏率测试,690,532]https://ng1.17img.cn/bbsfiles/images/2021/11/202111140924225303_1476_3384_3.png!w690x532.jpg[/img][/align][align=center][color=#990000]图2-1 漏率测试结构示意图[/color][/align]  (4)截止阀S1保持关闭状态,打开截止阀S2和S3,使夹具内部与大气联通,启动压力机压紧夹具,即使得整个被测夹具的初始状态为常压大气环境。  (5)关闭截止阀S3,打开截止阀S2和截止阀S1,使阴阳集隔室通入压缩空气,调整压力控制器使压力表P1、P2读数为50±1kPa(表压)。关闭截止阀S3,确保压力表P1、P2读数稳定无外漏现象,即在阳极进气口和阴极出气口加载气压,使被测夹具内部完全处于等压加载状态,此为被测夹具的待测状态。  (6)关闭截止阀S2,打开截止阀S3,排气位置接气体流量计,此为被测夹具的测试状态。观察P2处的压力变化情况,待P2处压力稳定为0kPa(表压)后,打开截止阀S1(在步骤5中已经打开了截止阀S1,标准中此处再打开截止阀S1应是笔误),开始使用气体流量计测量气体从阳极串漏到阴极的流量,测量三次求取平均值,流量平均值除以膜电极有效面积即为膜电极串漏率。[size=16px][color=#990000]2.2. 压力测量法[/color][/size]  除了上述流量测量法,还可以采用压力测量法,快速测量P2处压力单位时间内的变化值换算成串漏流量。  (1)在检漏夹具阴极端板上放置一张碳纸,后将膜电极阴极朝下、阳极朝上放置在检漏夹具阴极端板上定好位,随后将阳极端板放在膜电极上与阴极端板定好位。  (2)将装好膜电极的检漏夹具在压力机上居中放置。  (3)按图2-1安装好管路与检漏夹具。  (4)截止阀S1保持关闭状态,打开截止阀S2和S3,使夹具内部与大气联通,启动压力机压紧夹具,即同样使被测夹具处于常压初始状态。  (5)关闭截止阀S3,打开截止阀S2和截止阀S1,使阴阳极隔室通入空气,调整减压阀使压力表P1、P2读数为50±1kPa(表压)。关闭截止阀S3,确保压力表P1,P2读数稳定无外漏现象,同样使被测夹具处于待测状态。  (6)关闭截至S2,打开截止阀S3,将排除阴极侧空气,观察P2处的压力变化,待P2处压力稳定为0kPa(表压)后,此时被测夹具处于测试状态。然后关闭截止阀S3,开始计时,连续记录15秒内P2处的压力增大变化值,拟合得到P2处压力的单位时间变化值(ΔP/Δt)。  (7)根据膜电极的有效面积,将测量得到的单位时间压力变化值(ΔP/Δt)换算为膜电极串漏率流量。[size=18px][color=#990000]3. 问题分析[/color][/size]  上述T/CAAMTB 12-2020膜电极漏率的具体测试方法,从理论上来说是完全正确且可行,但在实际应用中可能会存在以下问题:  (1)在上述测试规范中,所测量的压力为相对大气的压力(即表压),而测试时的大气压力在不同的测试时间,测试地点都不同,是一种相对压力测量方式。同时,被测气体压力会随着环境温度升高而升高,随着环境温度的降低而减少,因此在实际漏率测量中因漏气所引起的压力降应扣除温度和大气压的波动。  (2)测试规范中规定阳极进气口处的压力恒定在50±1kPa(表压),即恒定压力的波动率不超过±2%。这个波动率的规定范围可能会偏大,有可能在实际膜电极质量控制(特别是氢气漏率)中带来严重问题:即±2%波动率会造成膜电极漏率测量结果的最小波动率至少也是±2%,这就将低于±2%的漏率完全淹没在系统误差中。这个漏率±2%的相对测量误差在实际产品质量控制中能否被接受,特别是对漏率要求非常严格的氢燃料电池膜电极而言,非常值得商榷。  (3)尽管测试规范中明确漏率测量需要被测夹具通过压力机加载外部机械压力,以模拟燃料电池膜电极的外部机械压力状态,但测试规范中少了另一项重要的外部环境参数:温度,除了外部机械压力外,环境温度的变化也会对膜电极漏率产生严重影响。另外,温度参数是考核膜电极老化性能的重要试验参数。[size=18px][color=#990000]4. 测试方法改进措施[/color][/size]  针对上述现有测试规范中存在的不足,提出以下相应改进措施:  (1)将目前测试规范中的表压测量方式改进为绝对压力测量,采用绝对气压传感器,以规避测试时间地点不同和环境温度变化给压力测量带来的影响。同时采用电动针阀和高精度PID控制器对阳极进气口压力进行自动控制,提高膜电极进口压力精度和稳定性。  (2)建议提高目前测试规范中规定的50±1kPa恒压控制精度,即减小膜电极进口恒定压力的波动率,上述改进措施中的高精度绝对气压传感器、电动针阀和高精度PID控制器,完全能将此波动率降到很低水平。  (3)建议在目前的测试规范中增加温度考核参数,即对应燃料电池实际使用温度范围,进行不同温度下的膜电极漏率测量,对膜电极的产品质量进行更全面和更结合实际应用场景的评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创】燃料电池驱动的汽车

    昨日看见几辆燃料电池驱动的汽车在二环路上行驶,这种汽车应该是完全没有空气污染的环保汽车,如果能替代现在的燃油汽车,对控制环境污染一定会有好处的。也许造价会高,也许还存在其它的问题,但是毕竟是一个进步。希望它能健康发展。

  • 求购燃料电池用碳粉

    有谁知道哪儿有卖燃料电池所用的碳粉,型号好像是XC-72R,纳米级的、高比表面积的。

  • 【讨论】中国对清洁能源“直接甲醇燃料电池”研究取得重要成果

    直接甲醇燃料电池 你了解多少?你认为国内清洁能源这一块的发展前景怎么样?记者近日从中科院长春应化所了解到,由该研究所承担的国家“863计划”课题——直接甲醇燃料电池技术,近日顺利通过科技部组织的专家验收,为这种可再生清洁能源的实用化和产业化奠定重要基础。

  • 丰田发表燃料电池车锂离子电池应用成果

    丰田发表燃料电池车锂离子电池应用成果

    【PEAF 2005】丰田发表燃料电池车锂离子电池应用成果  在2005年11月25日于新横滨召开的电力电子技术论坛“PEAF(Power Electronics Application Forum)2005”上,丰田汽车以“燃料电池车开发中的电力电子技术”为题发表了演讲。   发表演讲的是丰田汽车HV系统开发部HV开发总监石川哲浩。介绍了2002年开发的FCHV的系统构成,以及混合动力化时应用电池及电容的研究结果。演讲内容汇总了过去曾在美国汽车工程学会(SAE)上所做的发表。 [img]http://ng1.17img.cn/bbsfiles/images/2006/01/200601302314_13482_1604910_3.jpg[/img]

  • 【分享】燃料电池产品和Nafion产品专业供应商!

    各位同仁:大家好!现为大家推荐一家经销该产品的公司-颐邦科技有限公司。其公司是一家专业的从事燃料电池研发和生产的公司,主要产品有:1、杜邦的Nafion溶液、膜(211CS、212CS、1135CS、115CS、117CS等)、CCM、60%PTFE乳液等2、FC催化剂、氯铂酸(H2PtCl6.6H2O)、贵金属盐3、碳纸4、碳板、双极板(金属板、石墨板)5、膜电极热压及燃料电池组装设备6、其它FC相关产品另外,该公司还可为您代购其它FC材料与部件,提供FC单电池、小功率电堆(PEMFC、DMFC),MEA,FC教具、FC实验设备、FC玩具、FC测燃料电池和大功率动力电池测试设备及FC相关服务咨询。公司的主要服务对象是:高校和科研单位。目标是:为客户提供小批量的相关产品,降低科研成本,最终为大家提供最优质的服务!如需要可直接联系!联系方式:颐邦科技有限公司联系人:Jacky 联系电话:13918734907(上海)E-mail: kabasiji_cn@163.com谢谢!祝好!颐邦科技 8-23

  • 【分享】芬兰研发天然气燃料电池系统 多层结构提高效率

    1月10日报道,芬兰国家技术研究中心日前发布的公报说,该中心研发出独特的燃料电池系统,能够以天然气为燃料并网发电。其独特性在于利用10千瓦级的单个平板式固体氧化物燃料电池堆来生产电能。  单个燃料电池功率有限,为增强其实用性,研究人员将若干燃料电池以串联、并联等方式组装成燃料电池堆,平板式固体氧化物燃料电池堆是一种形似“多层夹心饼干”的组装结构。  芬兰国家技术研究中心的专家介绍说,他们在两个月前首次将10千瓦级的单个平板式固体氧化物燃料电池堆组装成系统,并在实际运行条件下进行测试。  该中心指出,提高单个燃料电池堆的功率,可为将来建造大规模固体氧化物电池发电厂创造条件。目前市场上单个平板式燃料电池堆的功率多为0.5千瓦到数千瓦,如果要用燃料电池技术建造一座发电厂,就需要很多燃料电池堆,加上组装、维护和管理,成本很高。提高单个平板式燃料电池堆的功率可减少这种新型发电厂的建设和维护成本。

  • 【第三届原创】微量氧燃料电池的内部结构

    【第三届原创】微量氧燃料电池的内部结构

    [color=crimson][font=宋体]本文为[/font][/color][color=crimson][font=Arial]chengjingbao [/font][/color][color=crimson][font=宋体]原创作品,本作者是该作品唯一合法使用者,该作品暂不对外授权转载。[/font][/color][color=crimson][font=Arial][/font][/color][color=crimson][font=宋体]其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为。[/font][/color]特别关照,还能用的千万不要模仿拆卸,否则,后果自负!!![img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007161059_230982_1605035_3.jpg[/img]前期我发过燃料电池的系列介绍。第一为基本理论介绍;第二为仪器检测器(的判断与更换;第三就是就做了这个检测器内部结构介绍;我想有此类表的的人,看过这三类,对其操作、维护都会有很大帮助的。系列1:基本原理[url]http://www.instrument.com.cn/bbs/shtml/20081117/1589450/[/url]系列2:判断与处理[url]http://bbs.instrument.com.cn/shtml/20090914/2109563/[/url]一点解释:我们常用的燃料电池有许多型号,我有幸拆过其中的六种;综观其结构,本质性的区别都不大,特别是碱性渗透膜技术的燃料电池,不管是单孔、双孔的,其布局都与基本理论上介绍的差不多,只是在隔膜层布局上有些区别。其次,就是图片上反映不出来的电解液浓度和等级及布液量;图解中的介绍只代表个人观点,而不代表厂家和权威,因个人知识水平有限,必定会有许多错误之处,敬请高手谅解并指正,不胜感谢!本图解中的燃料电池GPR-333系列,因一次工作之余,收拾工具时,偶有兴致,拆与分析同仁看看,以期对大家工作有所感性认识而作。图一电池为正反两面,此面为正,接触样品扩散;另一面为负,与电极相连。总之,原理部分请看系列1;拆换部件,请看系列2;有兴趣了解一点,就看看系列3;

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制