当前位置: 仪器信息网 > 行业主题 > >

全息照相实验基本型

仪器信息网全息照相实验基本型专题为您提供2024年最新全息照相实验基本型价格报价、厂家品牌的相关信息, 包括全息照相实验基本型参数、型号等,不管是国产,还是进口品牌的全息照相实验基本型您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全息照相实验基本型相关的耗材配件、试剂标物,还有全息照相实验基本型相关的最新资讯、资料,以及全息照相实验基本型相关的解决方案。

全息照相实验基本型相关的资讯

  • “全息干涉仪”让宇宙探测跨进量子级
    引力波模拟图  据近日美国《基督教科学箴言报》在线版文章称,德国引力波探测器GEO 600的一项奇怪发现,不但可能冲击现有宇宙理论,还引发美国费米国家实验室的科学家们开始建造一个“全息干涉仪”,将探测深入到“普朗克长度”,以便更进一步观察宇宙的时空结构及这一结构中的波动――引力波。  引力波被称为“爱因斯坦广义相对论中最后一个尚未被证明是对的组成部分”,新探测仪器的出现有可能使人们直接观测到时间的不连续性,亦将带领人们发掘宇宙起源最深处的奥秘。  激光干涉追寻时空波纹  引力波其实是爱因斯坦对于万有引力本质的理解。他认为引力场有一种跟电磁波一样的波动,是为引力波。而引力波表现为时空曲率的扰动,以行进波的形式向外传递,其传播速度等于光速。  按道理,引力波存在且无处不在,深空中的突变性事件,如超新星爆发、黑洞形成、大型天体相撞这些过程,都能辐射出较强引力波。但事实上,以往在地球上进行的引力波直接搜寻的所有努力都以失败告终。其原因在于,波动虽能造成地球上各处相对距离的变动,但当它们到达地球的时候已经变得非常弱了,对于地球上最先进的引力波探测器来说,其变动的数量级小于一颗质子直径的千分之一。因而尽管引力波毫不模糊且被公认,却一直只能是广义相对论的预言。  但科学家们可不满足于这一点。于是,基于激光干涉原理的引力波探测器被建造出来。这一类型的探测器通过测量两条激光束相遇时所形成的干涉图像的变化来探测引力波,干涉图像依赖于激光束的传播距离,当引力波穿过时激光束的传播距离会相应变化。  因为目标是非常微弱的信号,引力波探测器的敏感度需达到几乎难以想象的程度。以德国引力波探测器GEO 600来讲,其对距离上极微小的变化都非常敏锐,甚至可探测到日地距离所发生的原子半径级别的变化。不过,这种激光干涉计的探测器灵敏度要与激光传播的距离成比例的话,一般来讲其尺寸都非常可观。  “奇怪波动”挑战现有认知  德国的GEO 600并不是新产物了,其已默默工作有些时日。然而,在近期利用其搜寻引力波的过程中,物理学家偶然发现了令人迷惑的现象――这一高科技设备虽然还没有找到引力波存在的证据,但却发现了大量的噪音。  这就有必要简单描述一下这类探测器的工作过程。以GEO 600为例,其要实现功能,需要发射一束激光穿过600米的隧道,再将激光分裂成两束,经过反射的一束以及未经反射的一束均进入干涉仪。当引力波经过这部分空间的时候,两束激光之间的微小位移将会由干涉仪进行探测。即便这种距离的变化非常之微妙,但如果引力波探测器有结果,那就很可能是引力波通过时引起的。  而今GEO 600的“噪音”让研究人员无从解释,在剔除了所有人为因素的影响之后仍不得要领,他们于是向费米实验室的科学家克雷格・ 霍根寻求帮助,希望他利用量子力学上的专业知识帮助阐明这一不规则的噪音。  霍根反馈的意见让人震撼又迷惑。他说:“看上去GEO 600受到了时空微观量子级别的冲击。”换句话说,GEO 600探测到的并不是来自什么噪音源,而是时空本身发生的量子级别波动。  这一看法的深层意义在于:根据爱因斯坦对宇宙的认知,时空应该是连续平滑的,而照霍根的结论推测时空实际上是不连续的,是由一系列量子点组成。其直指爱因斯坦的理论需要修正。  全新探测器进入量子尺度  量子力学的测不准原理意味着一些基本量度如长度和时间具有测不准性。而测不准的程度由普朗克常数确定,该常数可以定出最小长度量子――“普朗克长度”,比其更短的长度是没有意义的。  现在,要证明“奇怪波动”的来源,研究人员就需要深入到“普朗克长度”――10-35米进行探测,而GEO 600实验中探测到的噪音尺度不到10-15米。因此需要提升引力波探测仪的分辨率,这导致了“全息干涉仪”的产生。  “全息干涉仪”是利用全息照相的方法来进行干涉计量,其与一般光学干涉检测方法很相似,但获得相干光的方式不同。光学干涉检测方法获得相干光的方式如前所述,一般是将同一束光的振幅分为两个部分,但全息干涉计量术则是将同一束光在不同时间的波前来进行干涉,可以看作是一种波前的时间分割法。这就使相干光束由同一光学系统所产生,可以消除系统误差。  霍根认为,GEO 600在其尺度上发现的噪音是由于宇宙“视界”(天文学中黑洞的边界,在此边界以内的光无法逃离)的全息投射造成的。霍根比喻说,这就像一张图片越放大就会越模糊甚至像素化,宇宙“视界”投射其实发生在普朗克尺度中,所以在我们所身处的时空尺度上,这一投射发生了模糊。  而要验证霍根的结论,目前最值得依赖的就是这台“全息干涉仪”。其现正由费米实验室全力打造,它必将比GEO 600探测到更小的尺度,从而进入到量子尺度。如果霍根的看法是正确的,探测器将能探测到时空结构中的量子噪声,给我们现有对宇宙的认知带来巨大的冲击。
  • 中科院长春光机所:激光技术的“前世今生”
    p  自1960年美国研制成功世界上第一台红宝石激光器,我国也于1961年研制成功国产首台红宝石激光器(诞生于中国科学院长春光学精密机械研究所)以来,激光技术被认为是20世纪继量子物理学、无线电技术、原子能技术、半导体技术、电子计算机技术之后的又一重大科学技术新成就。br//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/fa6ca572-ac36-49a3-8c53-3b3f8b976589.jpg" title="1.jpg"//pp  如今,我们家中用的CD和DVD播放器,办公室的激光打印机和商场的条码扫描器都有激光。人们用激光治疗近视视力,通过光纤网络发送邮件浏览视频。无论我们是否意识到,我们每个人每天都使用激光,但是有多少人真正了解激光是什么,如何工作?/pp  激光,是一种自然界原本不存在的,因受激而发出的,具有方向性好、亮度高、单色性好和相干性好等特性的光。/pp  激光的产生机理可以溯源到1917年爱因斯坦解释黑体辐射定律时提出的假说,即光的吸收和发射可经由受激吸收、受激辐射和自发辐射三种基本过程。众所周知,任何一种光源的发光都与其物质内部粒子的运动状态有关。当处于低能级上的粒子(原子、分子或离子)吸收了适当频率外来能量(光)被激发而跃迁到相应的高能级上(受激吸收)后,总是力图跃迁到较低的能级去,同时将多余的能量以光子形式释放出来。/pp  如果光是在没有外来光子作用下自发地释放出来的(自发辐射),此时被释放的光即为普通的光(如电灯、霓虹灯等),其特点是光的频率大小、方向和步调都很不一致。/pp  但如果是在外来光子直接作用下由高能级向低能级跃迁时将多余的能量以光子形式释放出来(受激辐射),被释放的光子则与外来的入射光子在频率、位相、传播方向等方面完全一致,这就意味着外来光得到了加强,我们称之为光放大。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/ab5eeaa4-0704-4844-ae33-97c5ada732a7.jpg" title="2.jpg"//ppbr//pp style="text-align: center "strong图:激光产生机理:(左)受激吸收,(中)自发辐射,(右)受激发射/strong/ppbr//pp  而激光的产生需要满足三个条件:粒子数反转、谐振腔反馈和满足阈值条件。通过受激吸收,使处于高能级的粒子数比处于低能级的越多(粒子数反转),还需要在有源区两端制作出能够反射光子的平行反射面,形成谐振腔,并使增益大于损耗,即相同时间新产生的光子数大于散射吸收掉的光子数。只有满足了这三个条件,才有可能产生激光。/ppbr//ppstrong激光的特性/strong/ppbr//pp激光之所以被誉为神奇的光,是因为它有普通光完全不具备的四大特性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/cf4f1592-b99a-4837-8b8b-afb9947bff5f.jpg" title="3.jpg"//pp1.方向性好 ——普通光源(太阳、白炽灯或荧光灯)向四面八方发光,而激光的发光方向可以限制在小于几个毫弧度立体角内,这就使得在照射方向上的照度提高千万倍。激光每200千米扩散直径小于1米,若射到距地球3.8× 105km的月球,光束扩散不到2千米,而普通探照灯几千米外就扩散到几十米。/pp  激光准直、导向和测距就是利用方向性好这一特性。/pp2.亮度高 ——激光是当代最亮的光源,只有氢弹爆炸瞬间强烈的闪光才能与它相比拟。太阳光亮度大约是1.865× 109cd/m2,而一台大功率激光器的输出光亮度可以高出太阳光的亮度7~14个数量级。/pp  尽管激光的总能量并不一定很大,但由于能量高度集中,很容易在某一微小点处产生高压和几万摄氏度甚至几百万摄氏度的高温。激光打孔、切割、焊接和激光外科手术等实际应用就是利用了这一特性。/pp3.单色性好 ——光是一种电磁波。光的颜色取决于它的波长。普通光源发出的光通常包含着各种波长,是各种颜色光的混合。太阳光包含红、登、黄、绿、青、蓝、紫七种颜色的可见光以及红外光、紫外光等不可见光。/pp  而某种激光的波长只集中在十分窄的光谱波段或频率范围内。如氦氖激光的波长为632.8纳米,其波长变化范围不到万分之一纳米。激光良好的单色性为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。/pp4.相干性好 ——干涉是波动现象的一种属性。基于激光具有高方向性和高单色性的特性,它必然会是相干性极好的光。激光的这一特性使全息照相成为现实。 br//ppstrong激光器的类型/strong/pp  在光源中,实现能级粒子数反转是实现光放大的前提,也就是产生激光的先决条件。要实现粒子数反转,需借助外来光的力量,使大量原来处于低能级的粒子跃迁到高能级上去,这个过程我们称之为“激励”。/pp  我们通常所说的激光器,就是使光源中的粒子受到激励而产生受激辐射跃迁,实现粒子数反转,然后通过受激辐射而产生光的放大的装置。激光器虽然多种多样,但使命都是通过激励和受激辐射而获得激光。因此激光器通常均由激活介质(即被激励后能产生粒子数反转的工作物质)、激励装置(即能使激活介质发生粒子数反转的能源,泵浦源)和光谐振腔(即能使光束在其中反复振荡和被多次放大的两块平面反射镜)三个部分组成。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/34e5f14c-4b66-43c1-8be3-c64c88a23970.jpg" title="4.jpg" style="width: 590px height: 320px " width="590" vspace="0" hspace="0" height="320" border="0"//ppbr//pp style="text-align: center "strong图:激光器的工作原理/strong/pp  由于我们可以以许多不同的方式激发许多不同种类的原子,我们可以(理论上)制造许多不同种类的激光。/pp  激光器有多种分类方式,其中最著名的是固体,气体,液体染料,半导体和光纤激光器。固态激光器介质是类似红宝石棒或其他固体结晶材料,并且缠绕在其上的闪光管泵送其充满能量的原子。为了有效地工作,固体必须掺杂,这是一种用杂质离子代替一些原子的过程,使其具有恰当的能级以产生一定精确频率的激光。固态激光器产生高功率光束,通常是非常短的脉冲。相比之下,气体激光器使用惰性气体(即所谓的准分子激光器)或二氧化碳(CO2)作为介质的化合物产生连续的亮光。 CO2激光器功能强大,效率高,常用于工业切割和焊接。液体染料激光器使用有机染料分子的溶液作为介质,主要优点是可用于产生比固态和气体激光器更宽的光频带,甚至可“调谐”以产生不同的频率。/pp  按波长来分,覆盖的波长范围包括远红外、红外、可见光、紫外直到远紫外,最近还研制出X射线激光器和正在开发的γ射线光器;/pp  按激励方式不同,有光激励(光源或紫外光激励)、气体放电激励、化学反应激励、核反应激励等;/pp  按输出方式不同,有连续的、单脉冲的、连续脉冲的和超短脉冲等;/pp  从功率输出的大小来看,其中连续的输出功率小至微瓦级,最大可达兆瓦级。脉冲输出的能量可从微焦耳至10万以上焦耳,脉冲宽度由毫秒级到皮秒级乃至飞秒级(1000万亿分之一)。/pp  各式各样激光器满足不同的应用要求。如激光加工和某些军用激光都要求高功率激光或高能量激光(即所谓强激光)。有的希望脉冲时间尽量缩短,以从事某些特快过程的研究。有的还对提高光的单色性、改善输出光的模式、改善光斑的光强分布以及要求波长可调等提出了很高的要求。这些要求促使着激光器的研究者不断探索,从而使激光器的探索深度和应用广度得到前所未有的发展。/ppstrong蓬勃发展的激光应用 br//strong/pp  所谓激光技术,就是探索开发各种产生激光的方法以及探索应用激光的这些特性为人类造福的技术的总称。/pp  50多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。/pp1、激光在信息领域的应用/pp  半导体激光器和光纤放大器是光纤通信的两项关键技术。/pp  半导体激光器发出的激光不仅单色性和相干性好,而且光波频率比微波频率又高万倍,故以激光为传递信息的载体,用光纤做信息传递线路的光纤通信,不仅通信质量好、抗干扰能力强、保密性好,而且通信容量比微波通信要提高上万倍。/pp  利用激光技术进行光存储,使信息的存储发生了革命性的飞跃。一张CD声频光盘的记录密度相当于1000万bit/cm2,可记录78分钟的音乐节目,比密纹唱片要大好几个数量级。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/dedc2b11-657b-46c7-b7c6-323f02c9b1b4.jpg" title="5.jpg"//pp style="text-align: center "strong图: CD或DVD播放机中的光盘的激光和镜头。右下方的小圆是半导体激光二极管,而较大的蓝色圆圈是从激光器从光盘的光滑表面反射后读取光的透镜。/strong/pp  此外,激光打印机、激光传真机、激光照排、激光大屏幕彩色电视、光纤有线电视以及大气激光通讯等均已得到广泛应用。/pp2、激光在全息术领域的应用/pp  光作为一种波动现象,表征它的物理量有波长(同颜色有关)、振幅(同光的强弱有关)和位相(表示波动起点同基准时间的关系)。/pp  人们利用感光的照相方法,只能记录下波长和振幅,所以无论照得多么逼真,看照片和看真的景物总是不一样。/pp  而激光具有高相干性,能获取干涉波空间包括相位在内的全部信息。因此,采用激光进行全息摄影,被拍物体的全部信息都被记录在底片上,通过光的衍射,就能复现被摄取物体栩栩如生的立体形象。/pp  全息照相具有三维成像的特点,可重复记录,而且每一小块全息底片都能再现物体的完整立体形象,可广泛用于精密干涉计量、无损探伤、全息光弹性、微应变分析和振动分析等科学研究。/pp  其中,利用全息干涉术研究燃气燃烧过程、机械件的振动模式、蜂窝板结构的粘结质量和汽车轮胎皮下缺陷检查等已得到广泛应用。并且,全息照相用作商品和信用卡的防伪标记已形成产业,用全息照相拍摄珍贵艺术品,不仅欣赏起来令人如临其境,而且为艺术品的修复提供了可靠而逼真的依据。正在发展的全息电视还将为人们增添一种新的生活享受。/pp3、激光在医疗领域的应用/pp  激光在医学上的应用分为两大类:激光诊断与激光治疗,前者是以激光作为信息载体,后者则以激光作为能量载体。/pp  在激光诊断方面,激光可穿透到组织较深的地方进行诊断,直接反映组织病况,给医生诊断提供了充分依据。/pp  在激光治疗方面,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术。它解决了医学中的许多难题,例如激光手术治疗切口小,对组织基本没有损害或损害极小,毒副作用反应少。目前,激光临床应用领域包括近视矫正、视网膜修补、蛀牙修复、分子级微创手术等,当前激光医学的出色应用研究主要表现在以下方面:光动力疗法治癌;激光治疗心血管疾病;准分子激光角膜成形术;激光美容术;激光纤维内窥镜手术;激光腹腔镜手术;激光胸腔镜手术;激光关节镜手术;激光碎石术;激光外科手术;激光在吻合术上的应用;激光在口腔、颌面外科及牙科方面的应用;弱激光疗法等。目前,激光治疗在基础研究、新技术开发以及新设备研制和生产等诸多方面都保持持续的、强劲的发展势头。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/c865b4af-a3a7-46dd-8f4d-a512edd3bcc7.jpg" title="6.jpg"//pp style="text-align: center "strong图:激光在口腔医学领域的应用/strong/pp4.激光加工/pp  利用激光的高强度(亮度)聚焦激光束在1 ms内能发射100J的光能量,聚焦起来足以使材料在短时间内融化或汽化,从而对不同特性难以加工的材料进行加工处理,如:焊接、打孔、切割、热处理、光刻等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/9c933388-bd17-4722-8ba2-990a5003e9de.jpg" title="7.jpg" style="width: 600px height: 188px " width="600" vspace="0" hspace="0" height="188" border="0"//pp  激光加工具有精度高、畸变小、无接触、能量省等优点,其应用领域几乎可以覆盖整个机械制造业,包括矿山机械、石油化工、电力、铁路、汽车、船舶、冶金、医疗器械、航空、机床、发电、印刷、包装、模具、制药等行业。其中关键零部件和精密设备的磨损和腐蚀都能很好地利用激光熔覆技术进行修复和优化,成为化腐朽为神奇的利器。/pp5.精密测量/pp  精密测量是利用了激光单色性好、相干性强、方向性好的特点。相比于其他测距仪,激光测距具有探测距离远,精度高,抗干扰,保密性好,体积小重量轻的优点。测距仪发出光脉冲,经被测目标反射后,光脉冲回到接收系统,测量发射与接收时间间隔。/pp  激光同时具有高亮度和高相干性,这使得光的多普勒效应能够在测速方面得到应用。激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,激光雷达与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别,它在军事领域发挥着重要的作用,也成为环境监测的有力武器。/pp  此外,引力波的探测也是利用激光干涉测量方法,进行中低频波段引力波的直接探测,观测双黑洞并合和极大质量比天体并合时产生的引力波辐射,以及其他的宇宙引力波辐射过程。/pp  激光是20世纪人类最重大的发明之一,激光技术的应用已广泛深入到工业、农业、军事、医学乃至社会的各个方面,对人类社会的进步正在起着越来越重要的作用,正奇迹般地改变着我们的世界。/p
  • 北大成功研制新一代微型显微镜 可实时记录神经元进行脑分析
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201705/insimg/d524002c-f06f-4221-a09b-ea5520ae7810.jpg" title="QQ截图20170531163243.png" width="600" height="424" border="0" hspace="0" vspace="0" style="width: 600px height: 424px "//pp 进入新千年,脑科学研究成为热点。工欲善其事,必先利其器。若要更好的探索人类大脑,就必须有更好的仪器与工具。目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。 其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整 体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。/pp  近日,自然杂志子刊 Nature Methods 发布了来自于中国在这方面的研究进展。该论文主要展示了《超高时空分辨微型化双光子在体显微成像系统》的研究成果——新一代高速高分辨微型化双光子荧光显微镜成功研制,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。/pp  该研究成果源自于国家自然科学基金委员会计划局组织的国家重大科研仪器设备研制专项,当时共有9个项目入选。北京大学程和平院士主导的《超高时空分辨微型化双光子在体显微成像系统》就是其中之一,当时也获得了7200万元的经费支持。/pp  过去三年,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院,联合中国人民解放军军事医学科学院组成跨学科团队,完成了的这一研发工作。团对成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。研究论文2016年12月提交,2017年5月29日正式在自然杂志子刊 Nature Methods 发布。/pp  根据官方提供的信息,产品相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到 0.65μm,成像质量可达商品化大型台式双光子荧光显微镜水平,并优于美国所研发的微型化宽场显微镜。该显微镜采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达 40Hz(256*256 像 素),同时具备多区域随机扫描和每秒 1 万线的线扫描能力。/pp  此外, 采用自主设计可传导 920nm 飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动 的荧光探针(如 GCaMP6)的有效利用。/pp  同时采用柔性光纤束进行 荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而 受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能 成像的同时,精准地操控神经元和神经回路的活动。/pp  值得一提的是,该显微镜重仅 2.2 克,可在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号 在大型动物上,还有望实现多探头佩戴、多颅窗不同脑区的长时程观测。/pp  之所以说这一研究成果意义重大,主要是因为它为脑科学、人工智能学科的研究提供了重要的高端仪器。具体来说,微型双光子荧光显微成像技术改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、 睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp  事实上,成像技术一直是推动生命科学进步的主要动力。历史上,X射线、全息照相法、CT计算机断层成像、电子显微镜、MRI核共振成像、超高分辨率显微成像技术都推动了科学技术的进步,也都获得了Nobel奖。/pp  在今天的发布会之前,该成果在 2016 年底美国神经科学年会、2017 年 5 月冷泉 港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的认可。冷泉港亚洲脑科学专题会议主席、 美国著名神经科学家加州大学洛杉矶分校的 Alcino J Silva 教授认为,“ 这款显微镜将改变我们在自由活动动物中观察细胞和亚细胞结构的方式??系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所 造就的大脑环路实现复杂行为的核心工程学原理。”/pp  这项技术研发成功的同时,团队也成立了一家叫做”超维景“的公司,并获得了来自协同创新基金、西科天使的融资,公司将会在符合北大政策的前提下,由北大支持进行商业化推广。团队接下来的重心仍是技术迭代、新产品研发。/ppbr//p
  • 被誉为“黄金气体”,氦气有什么了不起?
    空气可能是我们最熟悉,也被认为是最廉价的东西。但在地球大气层中,有一种气体却被誉为“黄金气体”,在地球大气层中所占的比例只有几百万分之一,这就是氦气。但实际上,氦气深藏于地壳深处,一旦被开采出来,就会像氦气球一样飘散到天空,进入宇宙空间。目前人类主要的氦气来源就是开采石油和天然气中产生的副产品。氦气,英文名为Helium,化学元素符号为He,是种无色无味、低密度、不可燃的惰性气体。它的沸点是零下268.9摄氏度,与人类所说的绝对零度只有一点点距离,所以氦气在低温领域有巨大的应用价值,被广泛应用于军工、石化、制冷、医疗、半导体、管道检漏、超导实验、金属制造、深海潜水、高精度焊接、光电子产品生产等高科技领域。东京大学物性研究所里面的氦气储存罐图据《日刊工业新闻》在光电子产品领域,搭配氖气的氦氖混合气体是用作原子气体激光发生器的主要工作物质。氦氖激光器(Helium-Neon gas laser)是首先发明的气体激光器,也是目前应用领域很广的一种激光器。氦氖激光器的激光管内的气体在一定高的电压及电流(在电场作用下气体放电)下,管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞,产生了激光输出须具备的基本条件。He-Ne气体在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种波长激光,除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。通过反射镜的反射率设计,只输出一种632.8nm的激光。内腔式激光器结构图除了宝石晶体激光器,氦氖激光器在光束质量方面则是各种激光器中的翘楚。由于它能输出优质的连续运转可见光,光束方向性和单色性好,光束发散角小,非常接近完美的高斯分布。氦氖激光线宽窄干涉性能优良、稳定性高在诸多激光器中是首屈一指的,这已经是光学界的共识。而且具有结构简单、工作性质稳定、使用寿命比较长等优点,在全息照相、测量、精密计量等方面得到广泛应用,是高精度光学应用领域采用最多的激光器。以其为重要光学元件组成的光学测量仪器——氦氖激光粒度分析仪也成为高性能激光粒度仪的代表。LS-609激光粒度分析仪采用进口He-Ne气体激光光源,光学质量更好,更加稳定可靠,预热时间短,使用寿命更长测量范围:0.1~1000μm珠海欧美克仪器一直采用氦氖激光器作为主光源激光器,大多数仪器均采用JDSU品牌进口产品,不仅光学质量更好,输出单模偏振激光偏振比达500:1以上,光束中TEM00模占比达95%以上,而且更加稳定可靠,5分钟预热即可达到测试稳定性要求,测试周期内功率波动小于0.5%,大大提高了系统对有效信号的分辨能力。同时该He-Ne激光管的硬封装(hard seal)工艺使得工作气体不会散逸,完美的解决了早期He-Ne激光管气体散逸导致的平均寿命较短问题,进而适合于要求更为苛刻的应用。Topsizer Plus激光粒度分析仪采用以长寿命、低噪声、高稳定性著称的进口氦氖激光器及配套电源测量范围:0.01~3600μm(湿法,取决于样品),0.1~3600(干法,取决于样品)Topsizer Plus激光粒度分析仪欧美克仪器于2019年推出的一款高端粒度分析仪器。该仪器引入了先进的光学设计,采用以长寿命、低噪声、高稳定性著称的JDSU品牌进口氦氖激光器及配套激光电源,使激光衍射法的测试范围达0.01~3600um,具有量程宽、重复性好、分辨力高、真实测试性能强等优点,代表了当前国产激光粒度仪的前沿技术水平。Topsizer Plus通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围、自动化水平以及实际测试性能,应用遍及锂离子电池、制药、水文、精细化工、机械、建材、能源、医药等现代工业的各个领域。Topsizer系列产品保证了测试结果和分析能力与国内外、行业上下游黄金标准保持一致,这不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可避免粒径检测不准带来的经济损失和风险,无论在研发、过程控制还是质量控制上,都能够为用户带来真正的价值。参考资料:1. 百度文库,《氦-氖激光器简介》
  • 祝贺大卫· 伯奇博士荣获2020年丹尼斯· 加博尔奖
    近日,英国物理学会向大卫詹姆斯斯图尔特伯奇(David James Stuart Birch)博士颁发了2020年丹尼斯加博尔奖,以表彰他为英国荧光寿命产业领域创造的数亿英镑销售额的贡献。https://www.iop.org/about/awards/2020-dennis-gabor-medal-and-prize丹尼斯加博尔奖以1971年诺贝尔物理学奖获得者、全息照相发明者丹尼斯加博尔的名字命名,旨在表彰获奖者将物理学应用在工业、金融或者商业环境方面所做出的杰出贡献。作为思克莱德大学光物理学名誉教授,兼HORIBA Jobin Yvon IBH Ltd.的创始董事,在荧光领域,大卫伯奇博士的贡献可谓非常卓越,包括技术研究、多学科应用以及开发用于测量荧光寿命的仪器(如TCSPC技术)等。更重要的是,伯奇博士开拓了英国荧光寿命行业高质量发展之路。2003年,在伯奇博士的主导下,IBH与HORIBA合并,这给HORIBA科研部门提供了强大的支持。此后IBH产品出口增加了90%以上,HORIBA-IBH的荧光市场领先份额也从14%增加到了21%。大卫伯奇博士另一方面,大卫伯奇博士可谓TCSPC荧光寿命光谱领域的权威与先驱者。他的重点研究项目包括黑色素结构、葡萄糖传感、纳米颗粒计量、蛋白质的紫外线LED激发、多光子激发、以及为荧光和16通道多路复用设计的首个专用集成电路(ASIC)等。令人敬佩的是,在面对如何将荧光应用于生物医学界面分子级的重大挑战时,伯奇博士能数十年如一日地开展研究并取得重大成果。不仅如此,他还将荧光寿命测量技术及其在基础生物物理研究中的应用,带到世界各地的实验室,这项技术对蛋白质/药物相互作用、生物物理学、材料科学和光物理学的进一步发展至关重要。他创立的跨学科研究基地也为医疗、生物技术、材料、纳米技术和能源领域带来了全球性的社会效益。他的研究也为HORIBA Scientific指明了方向,HORIBA Scientific 开发的FLIMera实时荧光寿命成像相机就赢得了2019年IOP商业创新奖。对于这次荣获2020年丹尼斯加博尔奖,伯奇博士表示,他很荣幸能在英国物理学会成立一百周年之际获得这个奖项。“这进一步证明了HORIBA在荧光领域的领导地位,不仅代表了我多年来的成就,也代表了HORIBA、IBH和思克莱德大学许多出色的同事的成就。”伯奇博士这么评价,“我对IBH和整个HORIBA的创新团队充满信心,我会继续为荧光技术的未来而努力,使更多用户受益。”伯奇博士能够取得这样的成果,固然有HORIBA的支持的因素,但更多的,是因为他数十年如一日的努力。正因为如此,他才能推动荧光行业的持久发展,并做出卓越的贡献。正如HORIBA Scientific执行副总裁祝贺伯奇博士荣获殊荣所说的那样:“我们为大卫在荧光界的成就及获得的认可感到自豪,HORIBA很荣幸能与大卫和他的IBH团队合作。”免责声明HORIBA Scientific 公众号所发布内容(含图片)来源于文章原创作者或互联网转载,目的在于传递更多信息用于分享,供读者自行参考及评述。文章版权、数据及所述观点归原作者或原出处所有,本平台未对文章进行任何编辑修改,不负有任何法律审查注意义务,亦不承担任何法律责任。若有任何问题,请联系原创作者或出处。
  • 国内投资项目不予免税进口商品目录公布 国产仪器厂商受益
    为加快转变经济发展方式、推动产业结构调整和优化升级,积极鼓励企业引进国内不能生产的先进技术设备,统筹兼顾对外开放和国内发展,促进先进技术引进和企业自主创新,财政部、国家发展改革委、海关总署、国家税务总局在广泛收集、整理各地方、有关部门、行业协会、企业意见的基础上,针对《国内投资项目不予免税的进口商品目录(2008年调整)》(以下简称《2008年目录》)执行中存在的问题,对《2008年目录》中的部分条目进行了调整,形成了《国内投资项目不予免税的进口商品目录(2012年调整)》(以下简称《2012年目录》)。并于2012年12月24日以公告2012第83号发布。   目录中包含仪器商品调整内容较多,主要调整原因是技术规格升级,这源于国内仪器产业的技术进步。近年来,本国企业通过自主创新和技术改进,具有自主知识产权的仪器产品档次不断提高,具备替代进口的能力。国家为了鼓励企业自主创新,对国内外企业创造公平的竞争环境,实时地调整了不予免税的进口仪器商品目录。编号税则号列设备名称技术规格备注十三 仪器仪表 (一) 计量设备 184233020定量分选秤 X级系列(相当于静态精度低于或等于1/5000),Y级系列(相当于静态精度低于或等于1/3000,最大称量≥10kg)(注:数值越小静态精确度越高) 2842330108423303084233090其他定量秤准确等级低于或等于X(0.5)级,静态准确度低于或等于1/3000(注:数值越小静态准确度越高) (二) 光学仪器 19011复式光学显微镜所有规格 290151000测距仪测距精度≥±3mm (注:测距精度:大于、等于±3mm,数值越小,精度越高)技术规格调整(三) 气象仪器 19015气象测试仪器、系统常规用地面测风、气压、温度、湿度、降水、能见度测量仪器,六要素以下的自动气象站技术规格调整(四) 实验仪器 19016天平所有规格设备名称调整290291090转速、扭距等多参数动力机械性能自动测试仪器设备所有规格 390312000机械式、液压式、电磁式、电液式振动试验台所有规格新增条目(条目拆分)48419847989908514环境实验箱所有规格设备名称调整(五) 试验机 190241090248000金属材料、非金属材料、复合材料试验机(棉花综合检测仪除外)所有规格设备名称调整29022192090222910902229909031803无损探伤检测设备(包括射线检测、磁粉检测、渗透检测、涡流检测、超声检测设备)所有规格(450kV以上X光探伤机除外;声发射、光全息照相、红外热成像、微波检测设备除外)设备名称调整,技术规格调整、税号调整390248000棉花综合检测仪检测速度<700样/8小时 测试光源:白炽灯 490311000平衡试验机所有规格(其中:测量精度2克厘米且进给速度≥500mm/min的曲轴动平衡机除外) (六) 分析仪器 19027201190272012气、液相色谱仪所有规格 290273000傅里叶红外光谱仪分辨率≥0.1波数(注:数值越小,分辨率越高) 39027300090275000近红外、紫外、原子吸收、原子发射、荧光等光谱仪器(包括全自动生化分析仪)所有规格 490273000光电直读光谱仪所有规格技术规格调整590278012气体色谱质谱联用仪质量范围≤1100amu(注:amu为原子质量单位)新增条目690278019等离子质谱仪质量范围≤300amu(注:amu为原子质量单位)新增条目790271000光学式气体分析仪器所有规格 890278099PH计被测溶液温度在100℃以下 99027500090278099粉质、粒度检测仪器所有规格 1090278099BOD/COD/TOC水质多参数检测仪器所有规格(核电用除外)技术规格调整1190271000汽车尾气分析仪所有规格 附:国内投资项目不予免税的进口商品目录(2012年修订).pdf
  • 盘点那些先进制造中的精密测量技术及仪器设备
    centerimg style="width: 368px height: 400px " title="" alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441271.jpg" height="400" hspace="0" border="0" vspace="0" width="368"//centerp style="text-align: center "  精密坐标测量/pp  strong精密测量技术/strong/pp  现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。/pp  在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智慧化的发展趋势。三坐标测量机(CMM)是适应上述发展趋势的典型代表,它几乎可以对生产中的所有三维复杂零件尺寸、形状和相互位置进行高准确度测量。发展高速坐标测量机是现代工业生产的要求。同时,作为下世纪的重点发展目标,各国在微/纳米测量技术领域开展了广泛的应用研究。/pp  strong三坐标测量机/strong/pp  三坐标测量机作为几何尺寸数字化检测设备在机械制造领域得到推广使用。/pp  1、误差自补偿技术/pp  德国CarlZeiss公司最近开发的CNC小型坐标测量机采用热不灵敏陶瓷技术,使坐标测量机的测量精度在17.8~25.6℃范围不受温度变化的影响。国内自行开发的数控测量机软件系统PMIS包括多项系统误差补偿、系统参数识别和优化技。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441250.jpg" height="286" width="278"//centerp style="text-align: center "  CNC小型坐标测量机/pp  2、丰富的软件技术/pp  CarlZeiss 公司开发的坐标测量机软件STRATA-UX,其测量数据可以从CMM直接传送到随机配备的统计软件中去,对测量系统给出的检验数据进行实时分析与管理,根据要求对其进行评估。依据此数据库,可自动生成各种统计报表,包括X-BAR& R及X_BAR& S图表、频率直方图、运行图、目标图等。/pp  美国公司的Cameleon测量系统所配支持软件可提供包括齿轮、板材、凸轮及凸轮轴共计50多个测量模块。/pp  日本Mistutor公司研制开发了一种图形显示及绘图程序,用于辅助操作者进行实际值与要求测量值之间的比较,具有多种输出方式。/pp  /pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441295.jpg" height="333" width="484"//centerp style="text-align: center "  STRATA-UX系统处理简图/pp  3、非接触测量/pp  基于三角测量原理的非接触激光光学探头应用于CMM上代替接触式探头。通过探头的扫描可以准确获得表面粗糙度信息,进行表面轮廓的三维立体测量及用于模具特征线的识别。/pp  该方法克服了接触测量的局限性。将激光双三角测量法应用于大范围内测量,对复杂曲面轮廓进行测量,其精度可高于1μm。英国IMS公司生产的IMP型坐标测量机可以配用其它厂商提供的接触式或非接触式探头。/pp  /pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441352.jpg" height="357" width="241"//centerp style="text-align: center "  IMP型坐标测量机/pp  strong微/纳米级精密测量技术/strong/pp  科学技术向微小领域发展,由毫米级、微米级继而涉足到纳米级,即微/纳米技术。/pp  纳米级加工技术可分为加工精度和加工尺度两方面。加工精度由本世纪初的最高精度微米级发展到现有的几个纳米数量级。金刚石车床加工的超精密衍射光栅精度已达1nm,已经可以制作10nm以下的线、柱、槽。/pp  微/纳米技术的发展,离不开微米级和纳米级的测量技术与设备。具有微米及亚微米测量精度的几何量与表面形貌测量技术已经比较成熟,如HP5528双频激光干涉测量系统(精度10nm)、具有1nm精度的光学触针式轮廓扫描系统等。/pp  因为扫描隧道显微镜、扫描探针显微镜和原子力显微镜用来直接观测原子尺度结构的实现,使得进行原子级的操作、装配和改形等加工处理成为近几年来的前沿技术。/pp  1、扫描探针显微镜/pp  1981 年美国IBM公司研制成功的扫描隧道显微镜,把人们带到了微观世界。它具有极高的空间分辨率,广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。与此同时,基于STM相似的原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或接口纳米尺度上表现出来的性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。下面为几种具有代表性的扫描探针显微镜。/pp  (1)原子力显微镜(AFM)/pp  为了弥补STM只限于观测导体和半导体表面结构的缺陷,Binning等人发明了AFM,AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面的起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。/pp  就应用而言,STM主要用于自然科学研究,而相当数量的AFM已经用于工业技术领域。1988年中国科学院化学所研制成功国内首台具有原子分辨率的AFM。安装有微型光纤传导激光干涉三维测量系统,可自校准和进行绝对测量的计量型原子力显微镜可使目前纳米测量技术定量化。/pp  利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏组件产生的影响,在探针与表面10~100nm距离范围,可以探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜、静电力显微镜、摩擦力显微镜等,统称为扫描力显微镜。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010441475.jpg" height="229" width="600"//centerp style="text-align: center "  原子力显微镜及工作原理/pp  (2)光子扫描隧道显微镜(PSTM)/pp  PSTM的原理和工作方式与STM相似,后者利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激起的瞬衰场,其强度随距接口的距离成函数关系,获得表面结构信息。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442144.jpg" height="198" width="270"//centerp style="text-align: center "  光子扫描隧道显微镜/pp  (3)其它显微镜/pp  如扫描隧道电位仪(STP)可用来探测纳米尺度的电位变化 扫描离子电导显微镜(SICM)适用于进行生物学和电生理学研究 扫描热显微镜已经获得了血红细胞的表面结构 弹道电子发射显微镜(BEEM)则是目前唯一能够在纳米尺度上无损检测表面和接口结构的先进分析仪器,国内也已研制成功。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442219.jpg" height="194" width="362"//centerp style="text-align: center "  扫描隧道电位仪/pp  2、纳米测量的扫描X射线干涉技术/pp  以SPM为基础的观测技术只能给出纳米级分辨率,却不能给出表面结构准确的纳米尺寸,这是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量的定标手段。/pp  美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为192015.560± 0.012fm和192015.902± 0.019fm。日本 NRLM在恒温下对220晶间距进行稳定性测试,发现其18天的变化不超过0.1fm。实验充分说明单晶硅的晶面间距具有较好的稳定性。/pp  扫描X射线干涉测量技术是微/纳米测量中的一项新技术,它正是利用单晶硅的晶面间距作为亚纳米精度的基本测量单位,加上X射线波长比可见光波波长小两个数量级,有可能实现0.01nm的分辨率。该方法较其它方法对环境要求低,测量稳定性好,结构简单,是一种很有潜力的方便的纳米测量技术。/pp  自从1983年D.G.Chetwynd将其应用于微位移测量以来,英、日、意大利相继将其应用于纳米级位移传感器的校正。国内清华大学测试技术与仪器国家重点实验室在1997年5月利用自己研制的X射线干涉器件在国内首次清楚地观察到X射线干涉条纹。软X射线显微镜、扫描光声显微镜等用以检测微结构表面形貌及内部结构的微缺陷。迈克尔逊型差拍干涉仪,适于超精细加工表面轮廓的测量,如抛光表面、精研表面等,测量表面轮廓高度变化最小可达0.5nm,横向(X,Y向)测量精度可达0.3~1.0μm。渥拉斯顿型差拍双频激光干涉仪在微观表面形貌测量中,其分辨率可达0.1nm数量级。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442402.jpg" height="354" width="351"//centerp style="text-align: center "  迈克尔逊型差拍干涉仪/pp  3、光学干涉显微镜测量技术/pp  光学干涉显微镜测量技术,包括外差干涉测量技术、超短波长干涉测量技术、基于F-P(Ferry-Perot)标准的测量技术等,随着新技术、新方法的利用亦具有纳米级测量精度。外差干涉测量技术具有高的位相分辨率和空间分辨率,如光外差干涉轮廓仪具有0.1nm的分辨率 基于频率跟踪的F-P标准具测量技术具有极高的灵敏度和准确度,其精度可达0.001nm,但其测量范围受激光器的调频范围的限制,仅有0.1μm。而扫描电子显微镜(SEM)可使几十个原子大小的物体成像。/pp  美国ZYGO公司开发的位移测量干涉仪系统,位移分辨率高于0.6nm,可在1.1m/s的高速下测量,适于纳米技术在半导体生产、数据存储硬盘和精密机械中的应用。/pp  目前,在微/纳米机械中,精密测量技术一个重要研究对象是微结构的机械性能与力学性能、谐振频率、弹性模量、残余应力及疲劳强度等。微细结构的缺陷研究,如金属聚集物、微沉淀物、微裂纹等测试技术的纳米分析技术目前尚不成熟。国外在此领域主要开展用于晶体缺陷的激光扫描层析技术,用于研究样品顶部几个微米之内缺陷情况的纳米激光雷达技术,其探测尺度分辨率均可达到1nm。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442693.jpg" height="269" width="400"//centerp style="text-align: center "  以激光波长为已知长度利用迈克耳逊干涉系统测量位移/pp strong 图像识别测量技术/strong/pp  随着近代科学技术的发展,几何尺寸与形位测量已从简单的一维、二维坐标或形体发展到复杂的三维物体测量,从宏观物体发展到微观领域。 正确地进行图像识别测量已经成为测量技术中的重要课题。/pp  图像识别测量过程包括:(1)图像信息的获取 (2)图像信息的加工处理,特征提取 (3)判断分类。计算机及相关计算技术完成信息的加工处理及判断分类,这些涉及到各种不同的识别模型及数理统计知识。/pp  图像/pp  测量系统一般由以下结构组成。以机械系统为基础,线阵、面阵电荷耦合器件CCD或全息照相系统构成摄像系统 信息的转换由视频处理器件完成电荷信号到数字信号的转换 计算机及计算技术实现信息的处理和显示 回馈系统包括温度误差补偿,摄像系统的自动调焦等功能 载物工作台具有三坐标或多坐标自由度,可以精确控制微位移。/pcenterimg alt="" src="http://2.eewimg.cn/news/uploadfile/2018/0401/20180401010442902.png" height="243" width="547"//centerp style="text-align: center "  图像测量系统结构/pp  1、CCD传感器技术/pp  物体三维轮廓测量方法中,有三坐标法、干涉法、穆尔等高线法及相位法等。而非接触电荷耦合器件CCD是近年来发展很快的一种图像信息传感器。它具有自扫描、光电灵敏度高、几何尺寸精确及敏感单元尺寸小等优点。随着集成度的不断提高、结构改善及材料质量的提高,它已日益广泛地应用于工业非接触图像识别测量系统中。/pp  在对物体三维轮廓尺寸进行检测时,采用软件或硬件的方法,如解调法、多项式插值函数法及概率统计法等,测量系统分辨率可达微米级。也有将CCD应用于测量半导体材料表面应力的研究。/pp  2、照相技术/pp  全息照相测量技术是60年代发展起来的一种新技术,用此技术可以观察到被测物体的空间像。激光具有极好的空间相干性和时间相干性,通过光波的干涉把经物体反射或透射后,光束中的振幅与相位信息。/pp  超精密测量技术所代表的测量技术在国防、航天、航空、航海、铁道、机械、轻工、化工、电子、电力、电信、钢铁、石油、矿山、煤炭、地质、勘侧等领域有极其广泛的应用,在国民经济建设中占有重要的地位。在发展高端装备制造业的背景下,提高我国在超精密测量方面的科研实力和技术水平,成为不得不解决的迫切问题。/p
  • 中国人的中子照相机诞生记
    上个世纪90年代,如今已成为中国科学院院士的吴宜灿曾拒绝国外研发机构的多次邀请,放弃优厚待遇回到祖国。2020年,如今已成为凤麟核集团科研骨干的宋婧、师雪艳和一群年纪相仿的志同道合者,放弃手里的“铁饭碗”。两代人,走了两条告别“舒适区”的相似道路。在两条道路的交点处,高分辨率智能中子照相机应际而生。“凭什么中国人就干不成”中子,是开启核能利用的“钥匙”,也是构成原子乃至整个物质世界的基本粒子。中子本身不带电荷,具有很强的穿透能力,可以有效解决其他检测技术无法开展大厚部件缺陷或杂质无损检测的难题,快速精准识别物质成分。另外,中子学软件是核科学技术的核心载体,是核系统设计创新、安全评价的重要工具。自主化中子学软件的缺乏,曾严重制约着我国核技术行业的发展。吴宜灿深知,发展先进中子学理论、实现我国中子学软件及中子技术自主化有多么紧迫。“外国人能干的事情,凭什么中国人就干不成?不仅要干,干的还要比国外好!”很快,吴宜灿回国启动了我国自主中子学软件及中子核心技术的研发。历经三十多年发展,中子技术领域研发团队研发出大型一体化核设计与安全评价系统,建成大型氘氚中子源HINEG,提出“核5G”概念,并研发“核电宝”等。到2020年,中子技术在国际上已经在无损检测领域逐渐形成了产业应用。中子光研究院(青岛)院长宋婧告诉《中国科学报》,世界主要的航空发动机生产商,如通用电气公司、普惠公司、霍尼韦尔公司等都建立了发动机叶片残芯中子照相检测的企业标准。而这一技术在国内还远远满足不了工业应用的需求。“当时,国内能够提供中子照相检测的反应堆仅有两座,且体积庞大,无法实现工业现场的检测应用。有限的机时,难以满足用户单位对中子照相技术日益增长的需求。”宋婧说。研制可以在工业现场应用的紧凑型中子照相装置,成为他们的新目标。“要么创新,要么灭亡”当师雪艳跟家人说自己要辞职去一个创新平台做中子照相事业时,家人的第一反应是反对,因为那时的她在体制内工作,手里捧着“铁饭碗”。但最终她还是提起行囊,远走他乡。这次出走,起源于一次在青岛召开的学术会议。会上,他们介绍了自己在中子技术等领域的前沿成果,30多年的研发实力和技术积累得到了当地政府人员的认可。报告中,他们说:“没有任何借口——要么创新,要么灭亡。”这句话打动了当地政府人员,双方详聊后发现彼此理念契合、视野并肩。很快,在当地政府的支持下,中子照相项目落户青岛。项目刚落地,团队成员积累了许久的创新热情像火山熔岩一般喷薄而出。师雪艳、宋婧和其他年轻人,全都火急火燎地赶赴青岛。当时配套的实验室还没装修好,平均年龄才30岁出头的团队就在没有完全建成的实验室里,开始了第一台中子照相产品样机的设计和研发。毛坯房里堆着建筑材料,门窗没来得及装,冬天里零下十多度,寒风从窗户洞里呼啸而过。但对于他们来说,环境带来的挑战还不是最难熬的。更大的挑战是设计方案面临着一些质疑。“很多人都感觉我们的步子迈得太大了。”已成为中子光研究院(青岛)副院长的师雪艳说完话锋一转,“但是我们有信心。”他们不是第一次听到质疑声,早在他们说要做大型强流氘氚中子源时,质疑声就出现过,但他们还是走到了同类在运行装置中的世界前列。要么创新,要么灭亡。紧凑型高分辨率中子照相机涉及物理、材料、电气、结构等多学科耦合,国内外几乎没有成熟的经验可供参考,任何一个没有突破的技术难题都可能成为致命打击。研发过程中,科研人员一边密集研讨、大胆设计,一边分析测试、小心求证。他们设计制作的部件有几百件,历经的测试有上千次。吴宜灿常常鼓励大家:“虽然积累和经验缺乏,但年轻也有年轻的优势,就是有初生牛犊不怕虎的激情,有不会被传统思想禁锢的创新的心态,敢于去挑战世界第一。”“那两年,我们不断创新,不断验证,不断在碰壁中找到新的方向。”师雪艳说。在简陋的实验室里,一体化紧凑型中子源、高效中子慢化准直、高保真中子图像处理等关键技术被各个击破,中子源小型化与高保真中子成像的设想一点点变成现实。“做有用的科研”师雪艳说,他们的争分夺秒逆流而上,为的不只是项目顺利验收,也不只是追求世界第一,而是满足用户的需求,“‘有用’才是我们的目标”。2021年底,中子照相机完成了组装。正当项目团队准备给它做最后的调试时,一家用户单位紧急找了过来,希望尽快检测一批产品。接到请求后,团队成员把研发的整个过程挨着捋了一遍,从每个部件的检测调试,到整个安装流程。最后,大家信心满满,决定接下这项任务。很快,实验室里摆满了用户单位寄来的、刚刚从生产线上下来的产品。中子照相机每个系统的负责人都来到实验室,两天两夜不眠不休地完成了所有产品的检测,并把中子照相无损检测报告提交给用户单位。让师雪艳感到自豪的是:“用户单位对被检产品进行了人工破坏性复检,复检结果与我们的检测结果完全一致,我们的检出率是100%。”就这样,他们完成了首台适用于工业现场应用的紧凑型高分辨率中子照相机产品的研制与首测。今年1月,在科技部认定的第三方科技成果评价机构组织的科技成果评价会上,院士专家组评价认为,该成果“具有自主知识产权,核心技术自主可控,成像质量达国际标准最高等级,实现了中子照相智能化,整体技术和指标达到国际领先水平”,“为解决我国亟需重大装备无损检测的难题做出重大贡献,经济社会效益显著,应用前景十分广阔”。
  • 放射性药品检验实验室:药监局建议配置28种基本仪器设备
    为落实《国家药监局关于改革完善放射性药品审评审批管理体系的意见》,鼓励有能力和条件的药品检验机构开展锝标记及正电子类放射性药品检验能力的建设,增加有资质的检验机构,国家药监局组织制定了锝标记及正电子类放射性药品检验机构评定程序,2024年3月7日发布,自发布之日起施行。在实验仪器设备方面,《国家药监局锝标记及正电子类放射性药品检验机构评定程序》对药品检验机构的要求如下:(1)应配备与放射性药品检验工作相适应的仪器设备,仪器设备应按检验项目进行功能划分,合理布局,避免不同检验项目相互干扰。放射性药品检验实验室配置的主要仪器设备可参考表1。(2)实验室应制定检验设备和辐射防护监测设备的操作规程、使用记录、维护保养、校准方案等相关文件。应确保设备功能正常并防止污染或性能退化。(3)放射性药品检验用仪器应进行检定、校准或核查。应配备仪器期间核查相关的放射性标准源,并定期进行复核和必要的调整,以保持对校准状态的可信度。(4)放射性药品检验用仪器的检定、校准或核查项目应满足检验要求。(5)放射性校准源应由具备能力的标准物质生产者提供(满足ISO17034要求的标准物质生产者被视为是有能力的)。应确保放射性标准源满足检验要求,如γ谱仪标准源的γ光子能量应涵盖待测核素的主要光子能量,大小、体积、介质和容器材料应与样品相同。表1:锝标记及正电子类放射性药品检验实验室建议配置的主要仪器设备序号仪器设备名称1放射性活度计2放射性薄层色谱扫描仪3γ能谱仪4γ计数器5液体闪烁计数器6铅防护手套箱7辐射剂量监测仪8表面污染监测仪9紫外可见分光光度计10气相色谱仪11高效液相色谱仪(含放射性检测器)12电子分析天平13酸度计14微量渗透压测定仪15可见异物测定仪16照相显微镜17电热干燥箱18超净工作台或隔离器19精密恒温水浴箱(或其他具备相同功能的设备)20离心机21低温冰箱22蒸汽灭菌锅23生物安全柜24恒温培养箱25浮游菌采样器26尘埃粒子计数器27旋涡混合器28超纯水机注:上述仪器设备为锝标记及正电子类放射性药品检验所需要的基本配备。
  • CMRS2018:高冷的中国中子照相技术获广泛应用
    p  strong仪器信息网讯/strong 2018年7月13日下午,2018中国材料大会(CMRS)各分会场会议交流拉开帷幕。本次大会共设35个分会场,仪器信息网编辑走入E02.材料表征与评价分会场,为读者带来分会场中引起观众热烈关注的一场报告的内容报道。中国原子能科学研究院核物理研究所的副研究员韩松柏带来的报告《中国先进研究堆中子照相技术应用》。报告中全面介绍了中国先进研究堆中子照相技术的应用技术和产品,如储氢材料、锂电材料的研究者们想要获取材料内部变化的图像信息,就可以利用中子照相技术。此外,报告中特别展示了放射性样品间接中子CT研究最新进展。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/9609b937-08cd-4eb9-871c-1a71acbc434f.jpg" title="韩松柏.jpg"//pp style="text-align: center "strong中国原子能科学研究院核物理研究所副研究员 韩松柏/strong/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strong世界第三的高通量中子源/strong/span/pp  常见的X射线成像利用的是X射线与内层电子的相互作用。中子散射、中子成像这类应用,是因为中子具有自身特有的粒子性质。中子不带电荷,可与原子核相互作用,它的散射能力与原子序数没有关系,对于C、H、O、N等相对原子质量较轻的元素,利用中子成像可得到更清晰的图像信号,而这些元素对X射线而言是透明的。中子这具有不带电的特点,使其具有很强的穿透性,在实际测量金属材料的过程中具有很高的穿透深度。像高温、高压、磁场、电场这几类加载样品环境,可以采用许多不透光的金属作为窗口。在X射线,同步辐射均没有办法解决问题的时候,中子就体现出了它的优势。中子有磁矩,是一个真正的三维磁性结构。中子对临近原子、同位素具有一定的分辨能力。/pp  技术的开展以及利用中子进行科学研究需要解决的首要问题是如何获取高通量的中子源。中国投资数十亿建成来开展中国原子能科学研究院的中国先进研究堆,位于北京市房山区。与通过使用质子轰击重金属靶来获取中子的中国散裂中子源不同,中国原子能科学技术研究院的中国先进研究堆采用裂变反应的方式来得到中子。目前,韩松柏开展中子照相实验的高通量中子源功率高达60MW,中子通量高,其规模目前排名亚洲第一、世界第三。堆芯发生裂变产生中子,从孔道穿出,向四面发散 由于中子源的建设成本很高,通过使用导管把中子引入到另一个大厅,可以损失很少的中子,以更好地利用每一个中子 中子的引出是为了建设更多的中子谱仪,目前中国先进研究堆已建成的谱仪有9台,在建的有5台。/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strong中子照相技术五大特点/strong/span/pp  中子成像技术是随着X射线成像技术的进步而不断发展的。随着上世纪90年代数字相机的出现,有了数字成像技术 上世纪90年代中期,中子CT技术也发展了起来。中子照相的类别包括实时成像、共振成像。根据中子能量的不同,还可分为冷中子成像,快中子成像,超热中子成像,单波长中子成像等等。/pp  中子照相是通过利用中子束穿过物体时在强度上的衰减变化,对被测物体进行透视成像,从而获取内部结构信息。中子源不能像X射线一样做成锥束,在实际应用中,中子发散束均被当做平行束进行处理。由于中子本身独特的性质,中子照相技术有五个特点:/pp  (1)深穿透性无损检测 /pp  (2)可观测磁场 /pp  (3)对轻元素敏感 /pp  (4)区分同位素 /pp  (5)可测试放射形样品。/pp  因此,中子照相技术在某些应用领域独具优势,如:对于同一个金属外壳的炸弹样品,可见光只能观测到外表,X射线(150keV)无法看穿样品,Gamma射线(1.2MeV)能穿透但分辨率较差,中子(25MeV)不仅可以穿过样品,还可清晰观测到其中的炸药、电线、开关、计时器等部件。对于放射型样品,常规的X射线,胶片,包括成像板、相机都会出现很大的干扰,只有中子成像能够通过一定方法而把干扰去除。/pp style="text-align: center "strongspan style="color: rgb(31, 73, 125) "9大谱仪和12项应用研究全扫描/span/strong/pp  中国原子能科学研究院的合作模式是与有中子成像测试需求的国际、国内科研单位合作,利用中国先进研究堆的中子源建设相应的中子谱仪和开展中子成像应用研究。目前,中国先进研究堆已建成谱仪9台,另有5台在建。同时,与12家单位开展了一些中子成像的相关应用研究。/pp  粉末衍射谱仪目前有两台,一台是与中国科学院大学合作建设的高分辨粉末衍射谱仪,另一台是与北京大学合作建设的高强度粉末衍射谱仪,均由对应高校出资。该设备可以观测和分析材料相态的纯度。/pp  中子残余应力谱仪是与瑞典乌普萨拉大学合作建设的,可以研究材料疲劳与失效行为,通过分析内部残余应力来解释材料失效原因,目前该设备承担了很多国家重大科研任务。/pp  中子织构谱仪、四圆单晶谱仪、热中子三轴谱仪是从德国Jü lich国家研究中心引进,中子织构用于研究材料自由取向,四圆单晶用于测量单晶材料。从德国引进的热中子三轴谱仪有两台,目前是与中科院物理所合作,主要用于研究材料动力学,研究内容均为前沿基础理论的方向,如热电材料、超导材料等,这类研究成果通常发表在Nature,Science等刊物。/pp  中子反射谱仪和中子小角谱仪,是同中科院化学所合建的,反射谱仪用于研究材料表面,以及薄膜材料,主要有液体表面及高分子薄膜 中子小角主要用于做纳米相。/pp  韩松柏在中国先进研究堆开展实验主要使用的两台设备,一台是高分辨探测系统,做实时成像,分辨率能做到50~80μm 另一台是高速探测系统,实时成像速度可达100帧/秒,分辨率则相对较低。/pp  在建的中子谱仪设备有5台。和人民大学合作建设冷中子三轴谱仪和冷中子光谱仪。现有一台中子残余应力谱仪已无法满足需求,和中南大学合作建设工程谱仪。这三台谱仪总值约两亿多元,受到国家自然科学基金委的重大仪器专项支持,预计明年建成并投入使用。/pp  此外,在建的还有两台中子照相装置,以及利用中子开展中子活化分析的装置。活化分析主要用于痕量元素的无损分析,如空气PM2.5的来源:不同的C元素来源,同位素不同,可做一个标记物C14来进行研究。/pp  中国原子能科学研究院还同中航工业北京航空材料研究院等12家单位合作开展了一些中子成像的相关应用研究。合作研究的内容有:航空发动机叶片脱芯测试,干电池与锂离子电池中子照相,商业锂离子电子CT成像,燃料电池吹扫实验,燃料电池低温启动,两相流快速中子照相实验,油渗沙4D测量,古生物化石CT,压力容器钢焊接,砂岩自发吸渗,混凝土裂缝毛细吸附,混凝土钢筋锈蚀中子CT测量。应用研究结果很好地体现了中子照相技术的特点和优势,如:/pp  航空发动机叶片脱芯测试—通过图像增强技术可以很可靠地观测到航空发动机叶片脱芯测试过程是否脱芯完全。/pp  干电池与锂离子电池中子照相—可清晰地观测到干电池与锂离子电池在满电与耗尽时的内部结构和状态。/pp  燃料电池低温启动—中子开展燃料电池的研究有一个优势,中子穿透能力强,对于含氢物质比较敏感 研究燃料电池低温启动的过程中,可以观察到过冷水、冰是怎么生成,分布,以及如何演化变化的过程。/pp  压力容器钢焊接—利用能量选择中子成像研究压力容器钢焊接,可细致微观地研究结构相变、织构以及进行应力分析。/pp  油渗沙4D测量,砂岩自发吸渗,混凝土裂缝毛细吸附—X射线无法观测水的运动过程,而中子成像可以观测到这些行为。/pp  混凝土钢筋锈蚀中子CT测量—将混凝土钢筋放在配置好的一个腐蚀液里,每过一段时间进行一个检测,中子成像不但可以把钢筋的图层剥离出来,可以把铁锈的图层剥离出来,从而观测到腐蚀演化的进程。/pp style="text-align: center "strong style="text-align: center "span style="color: rgb(31, 73, 125) "放射性样品间接中子CT研究进展/span/strong/pp  放射型材料可以用中子照相进行检测,使用间接成像的方法。首先将中子束打在被测样品上,中间接一个金属转换屏,该金属屏只能被中子所活化,而不能被γ、α等粒子所活化 金属屏带了显像信息之后,送入暗室进行二次曝光,有胶片和IP(Image Plate)板两种成像形式。基本的流程是:转换屏与中子曝光→与胶片曝光之前的冷却→转换屏与胶片曝光→胶片的显影及成像分析→转换屏的冷却。/pp  IP板是目前主流的一个技术,具有三点优势:数字化成像数据,方便数据处理与存储 更宽的曝光线性范围,可对不同实验条件下的成像数据进行对比分析 成像黑度值与曝光量为线性关系,利于进行精确的定量测量。/pp  其研究团队利用国内首台核燃料元件中子照相测试平台,在反应堆功率10MW的条件下,对模拟核燃料元件进行了CT无损测试、2D中子成像、测量杂质尺寸,对三明治型结构管材进行了中子CT三维实验,对高管进行了高分辨CT成像等实验。/pp  报告结束后,多名参会的老师和学生向韩松柏提问,韩松柏一一回答了他们的问题,并向广大对中子成像技术感兴趣的科研工作者作出邀请,欢迎他们来到原子能院的中子谱仪测试平台进行实验。/pp  仪器信息网将对2018中国材料大会现场跟踪报道(详见专题报道:a href="http://www.instrument.com.cn/zt/2018C-MRS" target="_blank" title=""span style="color: rgb(0, 112, 192) "2018中国材料大会/span/a),欢迎关注CMRS后续精彩内容。/p
  • 英国剑桥大学刘子维:全息术助力表面形貌的干涉测量
    全息术是一种能够对光波前进行记录和重建的技术,自从 1948 年匈牙利-英国物理学家 Dennis Gabor 发明全息术以来,该技术不仅得到了显微学家,工程师,物理学家甚至艺术家等各领域的广泛关注,还使他获得了 1971 年的诺贝尔物理学奖。干涉术作为光学中另一个主要研究领域,是利用光波的叠加干涉来提取信息,其原理与全息术都是用整体的强度信息来记录光波的振幅和相位,虽然记录的方法有很大不同,但随着 20 世纪 90 年代,高采样密度的电子相机的出现,可用来记录数字全息图,则进一步增强了二者的联系。近日,针对全息术对表面形貌的干涉测量的发展的推动作用,来自美国 Zygo Corporation 的 Peter J. de Groot、 Leslie L. Deck,中国科学院上海光机所的 苏榕 以及德国斯图加特大学的 Wolfgang Osten 联合在 Light: Advanced Manufacturing 上发表了综述文章,题为“Contributions of holography to the advancement of interferometric measurements of surface topography”。本文回顾了包括相移干涉测量,载波条纹干涉,相干降噪,数字全息的斐索干涉仪,计算机生成全息图,震动、变形和粗糙表面形貌和使用三维传输方程的光学建模七个方面,从数据采集到三维成像的基本理论,说明了全息术和干涉测量的协同发展,这两个领域呈现出共同增强和改进的趋势。图1 全息术的两步过程图2 干涉术的两步过程相移干涉测量术 因为记录的光场的复振幅被锁定在强度图样中的共同基本原理,全息术和干涉测量术捕获波前信息也是一个常见的困难,用于表面形貌测量的现代干涉仪中,常用相移干涉测量术(PSI)来解决这个问题,PSI 的思路是通过记录除了它们之间的相移之外几乎相同的多个干涉图,以获取足够的信息来提取被测物体光的相位和强度。Dennis Gabor 早在 1950 年代搭建的全息干涉显微镜使用偏振光学隔离所需的波前,引入除相移外两个完全相同的全息图。如图3所示,Gabor 的正交显微镜使用了一个特殊的棱镜,在反射光和透射光之间引入了 π/2 的相移。因此,可以说,用于表面测量的 PSI 首先出现在全息术中,然后独立出现在干涉测量术中。PSI 现在被广泛用于光学测试和干涉显微镜,虽然许多因素促成了其发展,但其基本思想可以追溯到使用多个相移全息图进行波前合成的最早工作。图3 Gabor正交显微镜简化示意图载波条纹干涉测量术 通过使用角度足够大的参考波来分离 Gabor 全息图中的重叠图像,从而使全息图形成的重建真实图像和共轭图像在远场中变得可分离,是全息术的重大突破之一, 到 1970 年代,人们意识到传播波阵面的远场分离等价物可以在没有全息重建的情况下模拟干涉测量。这一概念在 1982 年武田 (Takeda) 的开创性工作中广受欢迎,他描述了用于结构光和表面形貌的干涉测量的载波条纹方法。载波条纹干涉测量术的基本原理源自通信理论和 Lohmann 对全息重建过程的傅里叶分析。到 2000 年代,计算机和相机技术已经足够先进,可以使用高横向分辨率的二维数字傅里叶变换进行实时数据处理,赋予了载波条纹干涉技术的新的生命。图4 从干涉图到最后的表面形貌地图的过程此外,在菲索干涉仪中,参考波和物体表面的相对倾斜会导致相机处出现密集的干涉条纹。如果仪器在离轴操作时,具有可控制或可补偿的像差,所以只需要对激光菲索系统的光机械硬件进行少量更改,就可以实现这种全息数据采集。因此,载波条纹干涉仪通常是提供机械相移的系统的选择。相干降噪 虽然可见光波段激光器的发明给全息术带来重要进展,然而,在全息术和干涉测量术中不使用激光的主要原因是,散斑效应和来自尘埃颗粒和额外的反射而产生的相干噪声。通过仔细清理光学表面只能很小部分的噪声,而围绕系统的光轴连续地旋转整个光源单元就可以解决这个问题。如果曝光时间很长,这种运动会增强所需的静态图样,同时平均化掉大部分相干噪声。常用的实现平均化的方式包括围绕光轴旋转光学元件、沿着照明光移动漫射器、用旋转元件改变照明光的入射方向,或在傅里叶平面中移动不同的掩模成像系统。激光在 1960 年代开始出现在不等路径光学装置中,最初为全息术开发以减少相干噪声的平均方法,被证明也可有效改善干涉测量的结果。图5中,是 Close 在 1972 年提出的一种基于脉冲红宝石激光器的便携式全息显微镜。显微镜记录了四个全息图,每个全息图都有一个独立的散斑图案,对应于棱镜的旋转位置,由全息图形成的四个图像不相干叠加以减少相干噪声和散斑粒度。图5 使用旋转楔形棱镜的相干降噪系统数字全息菲索干涉仪 Gabor 的背景和研究兴趣使他将全息术视为一种具有大景深的新型显微成像技术,使显微镜学家可以任意地检查图像的不同平面。记录后重新聚焦图像的能力仍然是全息术的决定性特征之一,使我们无需仔细地将物体成像到胶片或探测器上。它还可以记录测量体积,能够清晰地成像三维数据的横截面。而数字全息术使这种能力变得更具吸引力,其重新聚焦完全在计算机内实现。虽然数字重聚焦在数字全息显微镜中很常见,但它通常不被认为是表面形貌干涉测量的特征或能力。尽管如此,从前面对该方法的数学描述来看,在采集后以相同的方式重新聚焦常规干涉测量数据是完全可行的。随着数据密度的增加,人们对校正聚焦误差以保持干涉测量中的高横向分辨率感兴趣。图6 激光菲索干涉仪的聚焦机理与全息系统不同,传统干涉仪的布置方式是在数据采集之前将物体表面精确地聚焦到相机上。图 6 说明了一种简化的聚焦机制。聚焦通常是手动过程,涉及图像清晰度的主观确定。由于光学表面通常在设计上没有特征,因此常见的过程包括将直尺放置在尽可能靠近调整表面的位置并调整焦距,直到直尺看起来最锋利。繁琐的设置和人为错误的结合使得我们可以合理地断言,今天很少有干涉仪能够充分发挥其潜力,仅仅是因为聚焦错误。数字重新聚焦提供了使用软件解决此问题的机会。计算机产生全息图 早在 1960 年代后期,学者们就已经对波带片与计算机生成全息图 (CGH) 之间的类比有了很好的理解,这是因为在开发新的基于激光的不等径干涉仪来测试光学元件的表面形状的应用时,需要对具有非球面形状的透镜和反射镜进行精确测试。图7 计算的菲涅尔波带片图样和牛顿环(等效于单独的虚拟点光源产生的Gabor全息图)然而,干涉仪作为最好的空检测器,在比较形状几乎相同的物体和参考波前时能提供最高的精度和准确度,虽然有许多巧妙的方法可以使用反射和折射光学器件对特定种类的非球面进行空测试,但 CGH 可通过简单地改变不透明和透明区域的分布来显着增加解空间。CGH 空校正器的最吸引人的特点是波前构造的准确性在很大程度上取决于衍射区的平面内位置,而不是表面高度。因此,无需费力地将非球面参考表面抛光至纳米精度,而是可以在更宽松的尺度上从精密参考波来合成反射波前。图8 使用激光菲索干涉仪和计算机产生的全息图测试非球形表面的光学装置振动、变形和粗糙表面形貌 全息干涉测量术是全息术对干涉测量术最明显的贡献,从技术名称中就可以看出。这项发现的广泛应用引起了计量学家高度关注,包括用于通过全息术定量分析三维漫射物体的应力、应变、变形和整体轮廓的方法。全息干涉测量术的发现对干涉测量术的能力和可解释性产生了深远的影响,为了辨别这些联系,首先考虑在同一全息图的两次全息曝光中,倾斜一个平面物体。两个物体方向的强度图样的不相干叠加,调制了全息图中条纹的对比度,而当这个双曝光全息图用参考波重新照射,以合成来自物体的原始波前时,结果也是条纹图样。因此,我们看到传播波前的全息再现,可用于解调双曝光全息图中存在的非相干叠加的干涉图案,将对比度的变化转换为表示两次曝光之间差异的干涉条纹。由于全息图中这些叠加的图案相互不相干,它们可以在不同的时间、全息系统的组成部分的不同位置、甚至不同的波长等条件下生成,因此,该技术的应用范围十分广泛。图9 模拟平面的双曝光全息使用三维传输方程的光学建模 使用物体表面的二维复表示,对本质上是三维问题的传统建模,是假设所有表面点可以同时沿传播方向处于相同焦点位置。因此,这种二维近似的限制是表面高度变化相对于成像系统的景深必须很小。全息术影响了三维衍射理论的发展,进一步影响了干涉显微镜的评估和性能提升。光学仪器的许多特性可以使用传统的阿贝理论和傅里叶光学建模来理解,包括成像系统的空间带宽滤波特性。干涉仪的傅立叶光学模型的第一步,是将表面形貌的表示简化为限制在垂直于光轴的平面内的相位分布。但对于使用干涉测量术的表面形貌测量,这并不是一个具有挑战性的限制,因为普通的菲索干涉仪的景深大约为几毫米,表面高度测量范围可能为几十微米。因此,在高倍显微镜中采用三维方法的速度更快,特别是对于共聚焦显微镜,在高数值孔径下,表面形貌特征不能都在相对于景深的相同的焦点。然而,二维傅里叶光学的近似对于干涉显微镜来说是不够精确的,因为在高放大倍率下,仅几微米的高度变化,就会影响干涉条纹的清晰度和对比度。基于 Kirchhoff 近似推导出了 CSI 的三维图像形成和有效传递函数,其中均匀介质的表面可表示为连续的单层散射点。这种方法已被证明具有重要的实用价值,不仅可以用于理解测量误差的起源,是斜率、曲率和焦点的函数,还可以用于校正像差。本文总结 基于激光的全息术的出现带来了一系列快速的创新,这些创新从全息术发展到干涉测量术。虽然文中提到的七个方面无法完全概括全息术的贡献,但一个明显的趋势是全息术对用于表面形貌测量的干涉测量技术的影响正在不断增加, 这最终可能会导致全息术与通常不被认为是全息术的技术相融合,而应用光学计量的这种演变必将带来全新的解决方案。论文信息 de Groot et al. Light: Advanced Manufacturing (2022)3:7https://doi.org/10.37188/lam.2022.007本文撰稿: 刘子维(英国剑桥大学,博士后)
  • 海洋光学推高透光率低杂散光全息光谱
    海洋光学(Ocean Optics – www.oceanopticschina.cn) 推出像差校正全息凹面衍射光栅光谱仪 – Torus 系列。该光谱仪具有透光率高、杂散光更低、热稳定性好的特点,可用于液体、固体等的吸收、荧光测量。Torus 可见波段光谱仪(360nm-825nm),杂散光水平:在400nm 处,约0.015%,较平面光栅等微型光纤光谱仪更低。  平场光学设计及全息凹面光栅用于光的色散:Torus 光栅的凹面用于光的反射及汇聚 光栅刻线用于光的色散 光栅的环形设计用于像差校正,提高衍射效率。  Torus 并且具有较高的光学分辨率(1.6nm FWHM,25um 狭缝)和优良的热稳定性(在0-50℃范围内,波长漂移更小,峰型保持基本一致)。  Torus 系列光谱仪可以通过 USB 接口与计算机进行交互控制,可以根据客户需要更改狭缝、滤光片及其它配件来优化配置 也可以通过 C-mount 接口与显微镜等配合使用。与海洋光学的其它光学配件一起,使您的测量更方便,更灵活。  Torus 通过海洋光学的 Spectrasuite 光谱操作软件来进行操作与分析,并且可用于 Windows, Macintosh,及 Linux 操作平台。并且还与海洋光学的 OmniDriver,SeaBreeze 软件开发平台相兼容。
  • 突破|日本科学家开发"廉价"冷冻电镜,有望走进更多实验室
    p style="text-align: left text-indent: 2em "strongspan style="text-indent: 2em "仪器信息网讯 /span/strongspan style="text-indent: 2em "3月16日,日本冲绳科技大学研究生院(OIST)消息,来自OIST的科学家们已经开发出一种更便宜、更用户友好的冷冻电镜,此技术有望将冷冻电镜应用于成千上万的实验室中。/span/pp style="text-align: left text-indent: 2em "span style="text-indent: 2em "在这项研究中,科学家们克服了许多技术难题,成功实现了丹尼斯· 伽(Dennis Gabor)全息照相技术优势与当下结构生物学中最重要的技术冷冻电镜技术的结合。/span/pp style="text-align: left text-indent: 2em "span style="text-indent: 2em "此项研究得到了日立高新公司的部分技术支持。/span/pp style="text-indent: 0em text-align: center "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 600px height: 200px " src="https://img1.17img.cn/17img/images/202003/uepic/745aee6e-0198-4fca-9d85-0acb52b6e4fa.jpg" title="1.jpg" alt="1.jpg" width="600" height="200" border="0" vspace="0"//span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "用电子观察:科学家为更廉价和更容易获得的cryo-EM铺平道路/span/pp style="text-indent: 2em "研究人员表示,该技术显微镜可获得高达纳米级图像分辨率,虽然远低于传统冷冻电镜埃米级近原子分辨率,但对于更高要求的科研工作,此类技术也足可以作为预筛查显微镜,填补重要的市场。如,由于低能电子与冰有很强的相互作用,因此,此种更便宜,更友好的显微镜可以帮助研究人员在使用常规冷冻电镜花费宝贵时间和金钱之前,评估其冰的质量。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 82px " src="https://img1.17img.cn/17img/images/202003/uepic/8668e1fa-1403-4454-9e20-312de72681ae.jpg" title="2.png" alt="2.png" width="600" height="82" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 0em "将病毒、蛋白质和其他小生物分子的结构可视化,可以帮助科学家更深入地了解这些分子如何工作及其功能,从而可能会带来新的疾病治疗方法。近年来,一种被称为冷冻电镜(cryo-EM)的强大技术(将冰冻样品嵌入玻璃状冰中并用电子束探测)已经彻底改变了生物分子成像技术。然而,这项技术所依赖的电镜设备价格昂贵且使用复杂,致使许多研究人员无法使用到这项技术。span style="text-indent: 0em color: rgb(165, 165, 165) "[如,/spana href="https://www.instrument.com.cn/news/20200317/534040.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 0em color: rgb(0, 176, 240) "近期上海科技大学招标1套300kV冷冻电镜,预算为5000万元/span/a/spanspan style="text-indent: 0em color: rgb(165, 165, 165) "]/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 346px " src="https://img1.17img.cn/17img/images/202003/uepic/e59a670f-18db-4d93-a6b7-dcf92ba26235.jpg" title="3.png" alt="3.png" width="450" height="346" border="0" vspace="0"//pp style="text-indent: 0em text-align: center " span style="text-indent: 2em color: rgb(127, 127, 127) "商品化的冷冻电镜产品代表/spanspan style="text-indent: 2em "(左:/spanspan style="text-indent: 2em text-decoration: underline "a href="https://www.instrument.com.cn/netshow/SH100537/C14739.htm" target="_blank" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) "赛默飞Krios G4/span/a/spanspan style="text-indent: 2em " ;右:/spanspan style="text-indent: 2em text-decoration: underline "a href="https://www.instrument.com.cn/pic/C283127.html" target="_blank" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) "日本电子JEM-Z300FSC/span/a/spanspan style="text-indent: 2em ")/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(127, 127, 127) "[更多产品信息:/spana href="https://www.instrument.com.cn/zc/1139.html" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "透射电子显微镜专场/span/aspan style="color: rgb(127, 127, 127) "]/span/pp style="text-indent: 2em "近日,来自OIST的科学家们已经开发出一种更便宜、更用户友好的冷冻电镜,此技术有望将冷冻电镜应用于成千上万的实验室中。/pp style="text-indent: 2em "在为期六年的构建过程中,该团队通过在扫描电子显微镜中添加新的成像功能来构建显微镜。他们用混合显微镜对三种不同的生物分子成像:两种形状明显不同的病毒和一种蚯蚓蛋白。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 256px " src="https://img1.17img.cn/17img/images/202003/uepic/63bff6ab-c9ad-49b3-a909-af5bd72b415e.jpg" title="4.png" alt="4.png" width="450" height="256" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "该项研究成果发表在《/spani style="text-indent: 2em "Ultramicroscopy/ispan style="text-indent: 2em "》,该项研究的共同第一作者之一,量子波显微镜部门(QWM)的研究人员Hidehito Adaniya博士表示,“制作这台显微镜是一个漫长而富有挑战的过程,所以到目前为止,我们对它的结果感到非常兴奋。我们的显微镜不仅更便宜、使用更简单,而且还利用了低能电子,这有可能改善图像的对比度。”/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202003/uepic/eeee17ea-0f89-45ab-8c77-188080910c66.jpg" title="1.jpg" alt="1.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "来自QWM的研究人员Hidehito Adaniya博士(左)和Martin Cheung博士(右)展示新的冷冻电镜系统/span/pp style="text-indent: 2em "当前,冷冻电镜的工作原理是向生物样品发射高能电子,电子与生物分子中的原子相互作用并散射,从而改变其方向。然后,散射的电子撞击检测器,并且使用特定的散射图样来建立样品的图像。/pp style="text-indent: 2em "但是在高能量下,只有相对较少的散射产生,这是因为电子在加速通过时与样品中原子相互作用非常微弱。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 346px " src="https://img1.17img.cn/17img/images/202003/uepic/2757c271-91ea-421d-8d6a-6ed04a484ba2.jpg" title="1.png" alt="1.png" width="500" height="346" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "搭建全新冷冻电镜系统部分关键部件/span/pp style="text-indent: 2em "“生物分子主要由低原子质量的元素组成,如碳、氮、氢和氧,”该成果共同研究者Martin张博士解释说,“这些较轻的元素实际上对高速电子是不可见的。”/pp style="text-indent: 2em "相比之下,低能电子的移动速度较慢,与较轻元素的相互作用更强,从而可以产生更频繁的散射。/pp style="text-indent: 2em "低能电子与较轻元素之间的这种强相互作用很难利用,因为样品周围的冰层也会散射电子,从而产生掩盖生物分子的背景噪声。为了克服这个问题,科学家们对显微镜进行了改装,使其可以切换到另一种不同的成像技术:低温电子全息术。/pp style="text-indent: 2em "然而,低能电子与较轻元素之间的这种强相互作用很难驾驭,因为样品周围的冰层也会散射电子,产生掩盖生物分子的背景噪音。为了克服这个问题,科学家们对显微镜进行了改装,使其可以切换到另一种不同的成像技术:低温电子全息术。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/70de3342-0fd3-4a42-8d59-284aee50c170.jpg" title="6.jpg" alt="6.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "扫描电子显微镜的两种常规模式(SEM和STEM;左和中)无法生成生物分子的图像。 但是,全息成像模式(右)可用于成像生物分子,例如所示的烟草花叶病毒。/span/pp style="text-indent: 2em "strong形成全息图/strong/pp style="text-indent: 2em "在全息模式下,电子枪向样品发射一束低能电子,以使一部分电子束穿过冰和样品,形成目标波,而另一部分电子束仅穿过冰,形成参考波。然后,电子束的两个部分彼此相互作用,就像池塘中相互碰撞涟漪一样,形成一种独特的干涉图样-全息图。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c73b4fb8-5147-4798-b4ea-9029ba20ff2d.jpg" title="7.jpg" alt="7.jpg"//pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 176, 240) "在全息成像模式下,电子束包围整个样本,形成参考波和目标波。这些波然后彼此干涉以形成全息图,并由检测器记录下来。/span/pp style="text-indent: 2em "根据全息图的干涉图样,探测器可以区分样本的散射和冰膜的散射。科学家们还可以比较这两部分的电子束,从而从电子中获得额外的信息,而传统的冷冻电镜很难探测到这些信息。/pp style="text-indent: 2em "“电子全息术为我们提供了两种不同的信息——振幅和相位,而传统的冷冻电镜技术只能检测相位,” Adaniya博士表示,“这些增加的信息可以使科学家们获得有关样品结构的更多知识。”/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/72552d99-2cca-4a91-aaae-986b40de49b7.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "图像a显示了噬菌体T4病毒的已知结构。图像b显示记录的全息图。图像c和d是重建图像,分别显示了振幅和相位的对比度。/span/pp style="text-indent: 2em "strong薄冰的突破/strong/pp style="text-indent: 2em "除了构建混合显微镜,科学家们还必须优化样品制备。由于低能电子比高能电子更容易被冰散射,因此包裹样品的冰膜必须尽可能薄,才能最大限度地放大信号。科学家们用水合氧化石墨烯薄片来固定生物分子,从而形成更薄的冰膜。/pp style="text-indent: 2em "Cheung表示,科学家还必须采取特殊措施来防止结晶冰的形成,这对冷冻电镜成像是不利的。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/f4666970-f03a-4b15-9002-8deb7dde1356.jpg" title="9.jpg" alt="9.jpg"//pp style="text-indent: 2em "当大气中的水蒸气与过冷的样品接触冷却并结晶时,结晶冰就形成了。因此,研究人员必须在一个装满氮气的手套盒中进行准备工作,以防止与水接触。/pp style="text-indent: 2em "利用当前建立和优化的样品,显微镜产生了分辨率高达几纳米的图像。研究人员也承认,几纳米的分辨率远低于传统冷冻电镜获得的近原子分辨率。/pp style="text-indent: 2em "但即使以目前几纳米的分辨率,此显微镜仍然可以作为预筛查显微镜,以填补重要的市场。Adaniya博士说:“由于低能电子与冰有很强的相互作用,因此,我们更便宜,更友好的显微镜可以帮助研究人员在使用常规冷冻电镜花费宝贵的时间和金钱之前,评估其冰的质量。”/pp style="text-indent: 2em "研究人员说,整个过程既快速又简单。 SEM / STEM模式可帮助科学家找到最佳成像点,然后无缝过渡到全息模式。而且,这种模式切换技术可以在其他商用扫描电子显微镜中实现,因此使其成为可广泛采用的成像方法。/pp style="text-indent: 2em "将来,研究小组希望通过将电子枪改为能产生更高质量电子束的电子枪来进一步提高图像分辨率。他们表示:“这将是下一步计划。”/pp style="text-indent: 2em " /ppbr//p
  • 重大仪器专项“高端全息光栅研发”项目完成初步验收
    p  2017年9月1日,由中科院条财局在长春组织召开的国家重大科学仪器设备开发专项“高端全息光栅研发”项目初步验收会顺利通过。会议听取了长春光机所做的“项目研制工作报告”和各参与单位做的子任务情况汇报,并进行了质疑讨论。/pp style="text-align: center "img width="500" height="376" title="1.jpg" style="width: 500px height: 376px " src="http://img1.17img.cn/17img/images/201709/noimg/247fd012-fa79-48d2-aa28-be5abdcbf9b8.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "img width="500" height="376" title="2.jpg" style="width: 500px height: 376px " src="http://img1.17img.cn/17img/images/201709/noimg/faf91127-d523-4835-be24-06df8026fd88.jpg" border="0" vspace="0" hspace="0"//pp  随后对项目研制的光栅和仪器设备进行了现场测试验收。/pp  在“高端全息光栅研发”项目立项之前,中科院长春光机所研制的全息光栅产品已成功用于国内外多家光谱仪器企业的各种类型光谱仪器。但是,在技术实力方面和国外同行差距较大,高端光谱仪器急需的高端全息光栅仍未完全实现自主知识产权,部分产品需要进口,并且价格比较昂贵,阻碍了光谱仪器产品进入国际市场的进程。/pp  本项目立项目标是研发出高端光谱仪器的核心部件-高端全息光栅:①建立集全息光栅设计、制造、检验于一体的开发平台 ②开发光谱分析市场中急需的光栅,形成一定产业化规模,满足我国光谱分析仪器行业的需求,并打开国际市场 ③将研制的光栅在光谱分析仪器企业中进行应用示范及产业化推广,通过高端全息光栅自主创新带动我国高端光谱分析仪器自主创新,完善我国光谱分析仪器产业链,引领和拉动整个光谱分析仪器行业向纵深发展,并辐射带动光谱分析技术向更多应用领域拓展,进一步增强我国对外经济交往中的主动权。/pp  本项目的实施使我国在相关领域的研究工作摆脱了受制于人的处境,突破了国外技术壁垒。项目研制了低杂散光光栅、高分辨本领光栅、特种面型光栅、体全息光栅等11种全息光栅。在5家光谱分析仪器公司进行应用示范及产业化推广,开发了5类新型光谱分析仪器,形成了一定的产业化规模,减低了成本,满足了我国光谱分析仪器行业的需求,填补了国内该类产品的空白,拉低了国外同类产品在华售价,部分光谱仪出口国外。研发的极紫外软X射线单色器已在国家同步辐射实验室中使用,增强了我国光谱定标能力,为“国家同步辐射实验室二期工程”提供了科技支撑。/pp/pp/pp/pp/p
  • 玩光谱的你知道什么是全息平场光栅吗?
    光栅是光谱仪器中的一个重要元器件,它就是光谱仪器的眼睛,它具有色散(分光)和成像的功能。目前光栅在摄谱仪、扫描单色仪、直读光谱仪等广泛使用,目前使用的传统凹面光栅相差偏大, 随着CCD等平面阵列探测器在光谱仪测量设备中的广泛使用,要求分光成像系统形成的光谱像位于同一平面上,科学家们面对这一需求,研发出全新的全息技术,全息平场光栅孕育而生。全息光栅的特点为:(1)无鬼线(传统机刻光栅的光谱中会出现一些不真实的谱线),杂散光极小;(2)分辨率高,由于全息技术使光栅刻线总数大幅度增加,因此色散率、分辨率也大幅度得到提高,此特点对兼顾平场和提高分辨率方面效果显著。当波长范围较宽时,传统帕邢-龙格凹面光栅很难兼顾平场和高分辨率的要求,利用全息记录技术获得的平场光栅(变间距曲线槽凹面光栅),具有校正像差能力,与传统机刻光栅相比,在像差、信噪比和成本方面更具优势,全新的全息平场光栅逐渐引起人们的关注。赛默飞世尔科技是检测领域的世界领导者。它为全球客户提供的优质分析仪器、实验室设备、试剂耗材及创新的实验室综合解决方案。赛默飞世尔在直读火花光谱仪行业拥有超过80年的经验,最近在高端台式直读火花光谱仪3460/4460之后,赛默飞世尔科技利用平场光栅(变间距曲线槽凹面光栅)技术又推出一款全新的全谱直读火花光谱仪ARL easySpark 1160。ARL easySpark 1160全谱直读火花光谱仪可快速的对固体金属样品进行分析。无论从痕量元素,还是到高浓度的元素,它都能准确、可靠的分析。赛默飞世尔在行业内多年的积累,针对有大量金属分析需求的冶炼行业和实验室,设计了这款全新的、更具性价比的全谱直读火花光谱仪,可满足客户在冶炼、汽车、航空航天、铸造等众多行业的生产需求。关于朗铎科技朗铎科技,全球科学服务领域的领导者-赛默飞世尔科技(Thermo Fisher Scientific)中国区域战略合作伙伴。作为工业检测分析系统解决方案服务商,我们致力于为中国客户提供全球高品质的分析仪器、专业的应用技术支持、优质的售后服务等系统解决方案。朗铎科技是赛默飞世尔尼通(Niton)手持式光谱仪在合金/地矿行业的中国区总经销商,也是Niton中国区售后服务及技术支持唯一授权服务商,同时也是赛默飞世尔arl全谱直读光谱仪的中国区总经销商。目前朗铎科技主要产品包括手持式合金光谱仪、手持式矿石光谱仪、全谱直读光谱仪等系列产品。关于赛默飞世尔ARL赛默飞世尔科技(Thermo Fisher Scientific,纽约证交所代码:tmo,以下简称赛默飞),全球科学服务领域的领导者。ARL是赛默飞旗下品牌,1934年生产出世界上第一台火花直读光谱仪,80多年来,ARL以其良好的操控性、稳定性、可靠性和耐用性,引领了直读光谱仪行业潮流,其尖端技术和卓越信誉让arl直读光谱产品销量和市场占有率均居世界同类产品前列。目前全球各大钢铁、有色、石化、建材等客户都选择ARL作为产品质量和生产过程控制的主要手段,中国各大钢铁、有色、科研院所都是ARL的忠实用户。
  • 行业前沿——带你走进全息黑科技
    前不久,法国总统的竞选大会上,左翼总统候选人梅朗雄在法官大选中首次使用了全息投影技术辅助演讲,利用3D投影,梅朗雄同时现身在两个会场,获得了最大的关注,这是第一次有候选人将全息投影技术直接应用在竞选中。期间,梅朗雄的支持者纷纷掏出手机为他和他的“分身”拍照。3D投影技术在政府、商场等各领域可以达到出人意料的效果。你还以为全息技术是这样的吗?电影《星球大战》里的机器人投出全息影像 首先我们要明确一点,全息和3D显示不存在谁包含谁的问题,他们是有交叉的两个概念。只是,全息技术是一项很有前景的3D显示技术。 另外,全息技术除了应用在3D成像,还广泛用在测量、存储、加密、防伪等各个方面,实际上大家日常生活中经常见到的各种镭射防伪商标,就是全息技术的一大应用。解读全息技术 当我们看一张照片时,你怎么来判断照片里的物体有多远? 一般情况下可以根据物体之间的遮挡关系、近大远小的经验和画面中的阴影等信息来判断,但是缺少了观看真实物体时的立体感。因为使用相机进行拍摄时,记录的只是物体的光强信息,而物体的深度信息是包含在相位当中的。 既然如此,是否可以通过某种方式,将光线的强度信息和相位信息同时记录下来呢? 这就是“全息”思想的来源。所谓“全息”,其实是个科学上创造的名词,本意即指可以同时呈现强度和相位信息的技术,类似地,英文中会冠以“holo-”开头,表达全息相关名词。 比较麻烦的一点就是,我们手中用来记录光线的物质都只是对光强敏感,而不是对相位敏感。因此要一个方法,利用记录光强的物质将相位的分布记录下来。科学家们发现,光的干涉恰好可以满足需求。 其第一步是拍摄过程,利用干涉原理来记录物体光波信息: 被拍摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片。 其第二步是成象过程,这是利用衍射原理再现物体光波信息: 全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立体感强,具有真实的视觉效应。全息图的每一部分都记录了物体上各点的光信息,故原则上它的每一部分都能再现原物的整个图像,通过多次曝光还可以在同一张底片上记录多个不同的图像,而且能互不干扰地分别显示出来。 进击的全息传统(光学)全息术 ? 数字全息术 ? 计算全息术 若是去科技馆的话,经常会见到传统全息术的展品。从3D显示的效果来说,传统全息术的显示效果还是非常棒的,但是难以实现动态显示,而且干板价格比较昂贵,也不利于复制和传播。 随着数字式感光器件的发展,科学家意识到,就如同数码相机取代胶片相机一样,可以将干板换成CCD或者CMOS。由于记录下来的信息是数字化的,所以可以用计算机进行处理,即便没有参考光束,也可以用计算机计算出复现的图像,进行研究。 所谓计算全息,其实就是抛开了干涉图的记录过程,直接将光场分布使用计算机通过数学运算计算出来。这样做有一个巨大的好处,那就是可以实现任意物体的全息显示,即便这个物体在现实中并不存在。因此许多产品的防伪标识都可以使用这种方式来实现。知识扫盲区 全息技术不同于虚拟现实技术(VR)与增强现实技术(AR)。 全息是一种图像的展示方式,呈现三维立体形式,有物体的尺寸、形状、亮度和对比度等信息,AR与全息投影技术所呈现的虚拟图像都可以叫做全息。然而,全息投影与AR有着不同的技术实现手段。 全息投影也叫虚拟成像,是利用衍射原理记录并再现物体真实三维图像的技术,也就是通过记录被摄物体反射或投射光波中的信息并完全重建图像,是完全可以通过裸眼来体验的。 AR是将虚拟图像准确叠加到现实中物体上的技术;VR是通过佩戴上VR设备,在眼前覆盖一个完全虚拟的景象,通过动作的追踪,进行场景的模拟。 全息的应用 目前全息投影技术和批量生产条件相对成熟,但其应用范围还相对较窄,国内主要将全息投影技术应用到小型展柜、小型舞台中。全息投影在展柜的商业运用中,多是用于展示企业标识、小型电子产品、珠宝首饰的360°和270°展台,内容多数是比较简单的旋转动画,当然也有用于展示游戏角色的,角色有比较简单的动作。 在舞台的商业运用中,为满足舞台的观赏角度,以180°的单片全息幕居多。应用方式有虚拟表演、虚拟与真人互动、真人表演全息特效等。 在房地产展示中,全息投影沙盘的模块化硬件可以实现重复使用,减少电子沙盘、样板间模型售罄即废的资源浪费情况。而且展示内容以数字影像方式存在,展示内容灵活多变,内容量巨大,还可以很好的完成客户与楼盘间的互动。 在传统照片中的应用,全息投影照片将传统的二维平面图转变为动态的、有体感的、可全方位视角观看的图像,消费者可将自己、亲友甚至偶像的全息投影照片放置在全息投影相框中,操作方式同将电子照片放到电子相框一样方便简单,但相对于电子照片,全息投影照片的视觉效果和感官体验是全新震撼的。 当然,全息投影的应用还有很多方式,如全息投影博物馆、全息投影伴舞、全息投影视频电话、全息投影只能引导员等等。全息的前景 随着技术的不断成熟以及单位材料成本的下降,或者出现更好的替代投射材料,在这之后,作为综合性的能研究开发并提供整体解决方案和相关服务,提供硬件集成和展示内容制作一站式解决方案的供应商或许会脱颖而出,获得不菲的收益。 作为可以帮助人类解决一部分空间问题的显示技术,其应用领域及可预见的发展前景是我们难以想象到的。虽然目前仍然存在着一系列的问题,但毋庸置疑,我们相信全息投影行业具有极大的市场前景。 作为一种具有颠覆意义的革命性技术,我们可以预见到全息投影技术在很多方面具有非常巨大的、革命性的应用价值,在立体电影、电视、展览、显微术、干涉度量学、投影光刻、军事侦察监视、水下探测、金属内部探测、保存珍贵的历史文物、艺术品、娱乐场合、酒吧、KTV房、DISCO等等场所都能获得广泛的应用。
  • 《自然》:量子计算机首次模拟全息虫洞
    国际著名学术期刊《自然》最新发表一篇量子物理学论文,首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这一演示使用的是谷歌(Google)的悬铃木(Sycamore)处理器,标志着距离在实验室研究量子引力的可能性又进了一步。该论文介绍,广义相对论描述的是高能或高物质密度的物理世界,比如天体物理对象。量子力学描述的则是原子和亚原子水平上的物质。量子引力是一种假设的物理理论,描述的是与这两类情况都相关的对象,比如黑洞的内部。不过,量子力学与广义相对论在根本上是不相容的,因此对于量子引力的理论目前尚未达成共识。而全息原理是连接不同理论的一种方式,或有助于调和量子力学和广义相对论,它利用一个受限的物理系统将相对论解释为量子物理学的扩展。本次研究中,根据全息原理,论文通讯作者、美国加州理工学院玛丽亚斯皮罗普鲁(Maria Spiropulu)和同事与合作者设计了一个简单系统,用来模拟一个全息虫洞,其经过适当设计的量子系统的性质符合引力系统所该有的性质。该量子模拟利用一台量子计算机进行,有一个9量子比特的电路。量子比特在这台处理器上传输时的动力学特征与量子比特穿过可穿越虫洞时所该有的动力学特征相同。
  • 中子照相检测新兴产业:下一个百亿“风口”
    编者按:中国制造的痛点在于产业结构偏中低端,缺少高附加值的产业,产业结构向高端转变的关键就在于提高质量。中子无损检测在航空航天、国防、安检、新能源汽车电池很多领域都有着不可替代性,目前国内的中子照相检测新兴产业风口已经形成。目前我国工业的装备制造处在飞速发展与中低端向高端转型的重要阶段,在此过程中,确保产品的质量至关重要,而提升质量的核心是解决超精密检测能力问题。没有超精密检测,就不会有高质量的高端装备制造。我国现阶段须迫切完成的任务是,补齐精密检测能力,追平超精密检测能力,在完整精度检测阶段胜出。只有从根本上解决整体检测能力问题,才能从根本上解决高端装备制造质量问题。 中子照相检测赋能高端设备制造的“黑科技” 中子照相是一种高端先进的无损检测技术,跟已经应用和正在进行研究的70余种无损检测方法相比,中子具有穿透能力强、轻元素检测灵敏、成分识别准、抗干扰能力强的独特优势。一般情况下,普通金属原子与中子发生核反应的概率都比较小,而大多数轻材料是碳氢化合物,其中的氢原子对中子有较大的散射截面,从而使得中子的透射强度大为减弱,因此,当需要检测重金属内部轻质材料的分布状态时,中子照相可以达到比较高的灵敏度。由于中子在不同同位素或原子序数相近的核素材料中衰减系数不同,因此中子照相还具备区分同位素、检测原子序数相同或相近核素材料分布的能力。此外,中子照相采用对中子反应截面较大的转换屏来记录中子图像,可以消除杂乱射线的影响,实现干扰环境下的精确成像。因此,中子照相相比其他无损检测手段,具有不可替代的核心优势。在航空领域,航空发动机涡轮叶片是飞机的关键部件,单晶涡轮叶片是由腊模精密铸造而成,外壳为耐高温的镍基合金,但是在铸造过程中,里面的散热孔道可能还残留没有脱离干净的氧化铝型芯,导致散热孔道的堵塞,叶片无法正常散热会严重损害发动机的正常运转,不仅影响发动机性能,甚至还会引发严重事故。如果采用常规X射线等手段,只能识别出毫米级别残芯,会造成残芯漏检,无法确保叶片的质量,但利用中子照相进行检测,可以实现微米级别的残芯检出,大大提升涡轮叶片的缺陷检出率,保障了涡轮叶片的生产质量与飞机的飞行安全。在航天领域,导爆索是火箭发射的关键要素之一,导爆索的生产过程中可能出现空隙、压制不实,或在火药中混入铅粒或银粒,导致炸药分布不均匀,这些都会引起阻燃,从而影响导弹、火箭的正常发射。航天导爆索主要由含H、C、N、O的火药和Ag、Pb等包层构成,由于其材料复杂且结构特殊,使用X射线照相检测导爆索药柱的缝隙、断痕、密度分布等存在许多困难,然而利用中子照相可以较为容易的实现。因此,对火箭发射起爆器开展中子照相检测对于保障火箭安全发射至关重要,例如法国还特别规定,其阿丽娜火箭发射前,起爆器必须经过中子照相检测。我国中子照相技术落后“三十年”迎转机在国际上,中子照相已实际应用于飞机机翼、油箱、发动机、航天飞行器元件、火工品、电子线路、冶金部件、有机粘合件、核燃料组件等的无损检测和氢化物的检测,具有重要的应用价值,许多应用已经完全商业化。在美国,90%的航空发动机和零部件制造商都已将中子照相作为发动机生产的必需检测流程之一,并建立了相关的企业标准。世界最大的民用和军用飞机制造商美国波音公司(Boeing)和世界第二大飞机制造商美国军用飞机巨头洛克希德(Kockheed)、美国普拉特•惠特尼(Pratt & Whitney)在其产品生产过程中均要求必须使用中子照相无损检测进行发动机叶片质量检测。在加拿大,多伦多的Nray服务公司已经向全球40多家客户单位提供中子照相服务,客户包括全球大型企业、国防部门、科研院所以及高校。同样的,加拿大Precicast、加拿大Liburdi Engineering两大世界大型的航空发动机零部件制造商也使用中子照相进行产品质量检测。在欧洲,同样中子照相商业化应用主要为航空发动机制造过程中的无损检测,例如英国罗尔斯•罗伊斯(Rolls-Royce)、奥地利AE公司在发动机制造过程使用中子照相无损检测,世界主要航空发动机公司,包括美国波音公司、GE公司、普惠公司,英国的罗尔斯•罗伊斯公司(又称劳斯莱斯)等在上世纪九十年代就开始使用热中子照相方式进行航空发动机叶片批量检测,并建立了发动机叶片残芯检测的企业标准。在澳大利亚,澳大利亚科学与工程研究学院2007年研制的中子/X射线融合照相装置已实际服务于澳大利亚布里斯本国际机场,成为世界首个商业CSIRO航空货运扫描仪。同时2008年开始与中国同方威视公司开始合作,研发下一代中子/X射线联合航空安检设备,用于航空包裹的检测。由于中子照相在工业应用中的重要性和敏感性,尤其是在航空发动机制造中的应用,国际上大部分企业对该技术都选择严格保密,相关国家也将此技术列为国家战略技术,严格禁止技术输出。特别是21世纪初期,欧美对华高技术出口渠道重新收紧,特别是“考克斯报告”和“出口管制清单”的发布,美国商务部工业安全局将中子源系统、中子管、中子计算模拟软件等列入对我国贸易出口限制清单。因此,“拿来主义”在中子工业检测领域行不通,我国中子技术在相当长的一段时间内一直处于无法实现工业应用的状态。新中国的发展历史告诉我们,落后就要挨打,关键技术的发展是无法依赖任何外部力量,必须坚定不移地自主发展,才能从根本上保障国家的经济安全与国防安全。我国的中子照相技术相对起步较晚,基础理论发展及装置研制进程较慢,很长一段时间以来一直处于实验室研究阶段,缺少成熟的市场产品。国内的中子照相技术通过多年的研究发展,已经可以得到质量优异的检测图像。但是由于研究都是基于反应堆或者大型加速器,而反应堆或者加速器受到体积庞大、造价高昂、建设周期长、专业性强等因素制约,国内的中子照相技术一直都没有形成体系,无法广泛的推广到工业应用中。直到2022年初,凤麟核团队攻克了中子照相的诸多技术难题,率先发布了国际首台紧凑型高分辨率中子照相机,据相关媒体报道,该中子照相机已成功应用于航空航天、能源装备、电路结构、动力电池等领域的无损检测。该中子照相机同时解决了体积小、性能强、智能易用、成本低等多个矛盾问题,使得中子照相广泛应用于工业检测成为了可能。我国中子照相检测新兴产业迎来转机,在高端制造的多个领域迅猛发展,应用日益广泛和深入。中子照相检测新兴产业新“风口”根据中国机械工程学会组编的《无损检测发展线路图》统计,经过实施无损检测后,各行业的产品增值情况为:机械产品约5%,国防、宇航、原子能产品为12%~18%,火箭为20%左右。中子照相检测市场前景广阔,据估算,目前的市场规模超200亿元/年,且随着应用领域的拓展和开发,市场规模还在不断扩大。就拿航空发动机涡轮叶片检测来说,利用中子进行检测,灵敏度比X射线高出1个量级,可识别出0.2 mg以下的微小残芯,可满足四代及以上发动机的无损检测需求。此外,中子无损检测在火工品、钢混结构缺陷检测、放射性部件检测、毒品、爆炸物安检、新能源汽车电池检测、弹药及武器装备检测等很多领域都具有不可替代性。小编认为,中子照相检测新兴产业新的“风口”已出现,新一代中子无损检测技术就像被评选为百年来最重要发明的X射线一样,必将赋能和引领工业发展的下一个百年。
  • 上海光机所斐波那契-比累对切光子筛相移全息成像研究取得进展
    p style="text-align: justify text-indent: 2em "中国科学院上海光学精密机械研究所高功率激光物理联合实验室张军勇课题组针对相移干涉技术,首次构造了三焦点的累对斐波那契-比span style="text-indent: 2em "切光子筛,实验验证了基于单次曝光的相移数字全息成像技术。相关成果发表在[Optics Express, 27, 32392 (2019)]。/span/pp style="text-align: justify text-indent: 2em "相移干涉技术广泛应用于各类测量中,比如折射率、光学元件损伤、波前测量、光学表面缺陷等诸多领域。而融合了相移技术的数字全息成像,更是极大地推动了全息领域的蓬勃发展。传统移相器分为两类,一类是压电陶瓷、波片、空间光调制器等通过分时实现多次曝光,另一类是基于光栅等衍射元件的空分相移技术实现单次曝光。基于前期希腊梯子透镜的工作基础,课题组设计了一类三焦点的斐波那契光子筛,在传统单焦点比累对切透镜的基础上成功延拓出了三焦点的斐波那契-比累对切光子筛,不仅实现了对参考光与物光在单次曝光下的多重锁相拷贝,顺利解决了数字全息中的移相问题,而且对于微小待测物体,该结构表现出共光路特性,可以单光路实现相移干涉记录,这一特性进一步增强了测量光路的稳定性。/pp style="text-align: justify text-indent: 2em "斐波那契-比累对切光子筛属于振幅型衍射透镜,适用于相移X射线全息术。对于EUV及更长的相干光波段,可以设计成位相型衍射透镜,提高衍射效率,提升对弱信号的检测与成像能力。该项研究得到国家自然科学基金和中科院青年创新促进会项目的支持。/pp style="text-align: justify text-indent: 2em "a href="https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-22-32392" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong论文链接/strong/span/a/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 172px " src="https://img1.17img.cn/17img/images/201910/uepic/bc55fad6-fda1-4f21-9d31-57e8dc973614.jpg" title="斐波那契-比累对切光子筛的原理图.png" alt="斐波那契-比累对切光子筛的原理图.png" width="450" height="172" border="0" vspace="0"//ppbr//pp style="text-align: center text-indent: 0em "斐波那契-比累对切光子筛的原理图/pp style="text-indent: 0em text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 197px " src="https://img1.17img.cn/17img/images/201910/uepic/02360f2a-a8e2-4f68-9ac1-54f6d4c5742f.jpg" title="待测物体重构的实验结果,振幅(a)与位相(b)分布.png" alt="待测物体重构的实验结果,振幅(a)与位相(b)分布.png" width="450" height="197" border="0" vspace="0"//ppbr//pp style="text-align: center text-indent: 0em "待测物体重构的实验结果,振幅(a)与位相(b)分布/p
  • 深圳先进院开发出相控阵全息声镊在体操控细胞新技术
    “隔空取物”是人类的梦想。这种科幻超能力现被超声科技实现并可望用于治病救人。近日,中国科学院深圳先进技术研究院研究员郑海荣团队开发出一种相控阵全息声镊操控技术,在生物体及血流中实现了对含气囊细菌群的无创精准操控和高效富集,在动物模型中实现了肿瘤靶向治疗应用。相关研究成果以In-vivo programmable acoustic manipulation of genetically engineered bacteria为题,发表在《自然-通讯》(Nature Communications)上。该相控阵全息声镊系统基于高密度面阵列换能器产生可调谐三维体声波,通过对空间声场在活体血管内等复杂环境中的时空精准调控,在活体血管内等复杂环境中操控了含气囊细菌团簇,使其精准地移动到目标区域并发挥治疗功能,有望为肿瘤的靶向给药和细胞治疗等提供理想手段。光、声、电、磁等经典物理手段是实现“隔空取物”非接触操控物体的可能途径。光镊操控技术于2018年获得诺贝尔物理学奖,在微纳尺度颗粒操控上展示出精准优势,但存在对非透明生物体穿透深度有限的问题;磁镊一般需要磁性颗粒的结合,易导致细胞活性受影响。相较而言,基于高频声波梯度声场设计的声镊技术是一种通过声波与目标物体相互作用产生辐射力以实现非接触操控物体的方法,在非透明生物体系中具有作用力大、穿透性强、操控通量高等优势。基于空间体波的相控阵全息声镊具有声场时空动态调控能力且实验架构灵活,是生物体等复杂环境内实现对目标进行靶向操控的理想手段。      郑海荣带领的深圳先进院医学成像团队,经过十多年声操控技术积累,基于超声辐射力作用原理,利用高密度二维平面阵列和多通道可编程电子系统,结合空间声场调制、超声成像和时间反演算法,提出并构建了可编程相控阵全息声镊理论、技术和仪器体系,为生物体等复杂环境下的精准声操控奠定了基础(图1)。该团队分析不同声对比系数粒子受到的声辐射力,完成初步的理论验证;模拟活体组织环境,利用时间反演矫正声波畸变,构建复杂环境中精准声操控的模型;交替发射超声成像与操控脉冲,实现非透明介质中超声成像实时引导的三维声镊。该团队继续在相控阵全息声镊领域深耕,推动了二维高密度超声阵列的微型化以及融合显微成像,初步实现了细胞、微生物等的离体三维声操控验证,进一步结合基因编辑等技术,推进了可编程相控阵全息声镊在各领域的关键应用。该工作推动相控阵全息声镊高精度高通量操控技术取得了生物医学应用的突破,实现了在体声操控细菌对于实体肿瘤的靶向治疗(图2)。     从理论研究层面,该团队提出了复杂声场环境中声辐射力离散表达与计算理论,解决了复杂声场的任意结构微粒受力量化表征的问题,并探究了复杂环境中空间声场作用下操控目标的动力学行为。从工程研发层面,该团队通过长期的技术探索与积累,攻克了高密度声镊换能器研发中声场设计和制造工艺等难题,研制了二维高密度超声换能器阵列,利用全息元素构建和时间复用的方法,结合多通道高精度时间反演超声激励,实现了强梯度声场生成和复杂声场的时空动态调控。从生物医学应用层面,该团队利用基因编辑技术,在细菌细胞中产生了亚微米气体囊泡,提升了细菌的超声敏感性,增强了其受到的声辐射力,使得含气囊细菌可以克服流体拉力,驱使它们在焦点区域聚集形成团簇(图3)。     当工程菌被聚集成团簇后,通过电子控制声束沿着预设可编程的轨迹移动,如在分叉微流腔中的细菌团簇可以选择性地通过分叉口,或在无边界条件下沿着字母A形进行移动,或同时操控两个团簇沿着矩形路径移动。整个团簇的轨迹与预设路径匹配。利用全息声元素构架法,阵列可以产生具有不同拓扑电荷的聚焦涡旋。当预设的拓扑荷数发生变化时,含气囊细菌团簇所显示的涡旋场模式随之发生变化。由于角动量的存在,团簇可以围绕涡旋中心连续旋转。     生物体组织结构复杂易引起声波畸变,且高速血流的存在阻碍了血管内的声操控。该团队结合相控阵全息声镊与显微成像,构建动物模型,实现了在活体动物水平通过电子控制声束对含气囊工程细菌进行可编程操控。在小鼠尾静脉注射工程菌后,该研究利用小鼠透明背脊皮翼视窗模型进行观察,打开相控阵全息声镊,使得工程菌在声束焦点处聚集。研究通过对含气囊工程菌和普通大肠杆菌分别在小鼠背部浅表血管中进行声捕获比较发现,只有含气囊工程菌可以被捕捉在聚焦声束中心,并在血管中形成簇状。进一步,研究在不同直径的血管也尝试对含气囊工程菌进行声捕捉。进一步,通过电子偏转声束,研究实现了含气囊工程菌的体内声操控。在声镊操控下,含气囊工程菌可以沿着血管前后移动,还可以选择性地穿过血管分叉。声镊可以同时操控两个工程菌团簇在同一条血管中,将其彼此靠近或远离。上述研究表明,相控阵全息声镊系统操控含气囊细菌团簇的运动可严格按照程序设置进行,展示出优异的时空操控精度,使这些细菌能够逆流或按需流动到活小鼠的预设血管中。     进一步,高通量相控阵全息声镊操控技术可以显著提高肿瘤中工程细菌的聚集效率,并结合细菌的肿瘤杀死活性,抑制了肿瘤的生长速度,延长了荷瘤小鼠的生存期(图4)。     本研究证明了相控阵全息声镊仪器系统可以作为活体内非接触精准操控细胞的新工具。以相控阵全息声镊为手段,功能细胞及细胞球为载体,在免疫细胞治疗、组织工程、靶向给药等方面颇有应用前景。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院和深圳市科技创新委员会等的支持。 图1.相控阵全息声镊系统示意图(Research,2021)图2.相控阵全息声镊系统在体操控细胞示意图(Nature Communications,2023)     图3.声聚集基因编辑细菌和普通细菌对比图4.声操控基因编辑细菌治疗肿瘤实验
  • 长春光机所高端全息光栅重大仪器专项启动
    3月2日上午,国家重大科学仪器设备开发专项“高端全息光栅研发”项目在中科院长春光学精密机械与物理研究所召开启动会。  该项目由中科院长春光机所牵头,中国科学技术大学、北京普析通用仪器有限公司等另外6家单位共同参与,目标是研发出高端光谱仪器的核心部件——高端全息光栅,建立集全息光栅设计、制造、检验于一体的开发平台,发展具有自主知识产权、具有国际先进水平的高端全息光栅制造技术。此外,项目还将针对光谱分析市场中对光栅的特殊需求,开发低杂散光光栅、特种面型光栅等11种光栅,并在5家光谱分析仪器企业和1家高校中进行应用示范及产业化推广,从而推动我国光栅制造领域应用基础研究及产业级研究成果的涌现。  中科院长春光机所光栅技术研究始于1958年,是我国第一批光栅刻划机和第一块衍射光栅的诞生地。经过50余年的努力,光栅设计、制造、复制和检测等技术日臻完善。2011年8月,依托长春光机所筹建的“国家光栅制造与应用技术研究中心”顺利通过现场评估,进一步推动了长春光机所在光栅研制及光谱仪器开发和工程化方面的发展。
  • 【激光成像】AM:从蓝色至近红外的碳点激光用于彩色无散斑激光成像与动态全息显示
    背景介绍随着可溶液加工激光增益材料的不断发展与改进,该类型的激光器在生物医学治疗、柔性可穿戴设备、通信及军事设备等领域的应用也在不断突破。然而,增益材料的毒性、成本和稳定性问题日益显著,这些问题是增益材料在微/纳激光领域可持续发展的主要障碍。因此,寻找低毒、低成本、高稳定性的激光材料成为该领域内的重要的任务。研究出发点碳点(CDs)作为一种环境友好、稳定性优良、制备成本低及荧光性能优异的碳基纳米材料,近年来引起了人们广泛的研究兴趣。基于CDs激光增益介质的研究不断被报道,并且逐渐走向实际应用。虽然这些早期的研究促进了CDs激光的发展,并证明了CDs是一种优异的激光增益介质。然而,跨度广的全彩色激光,尤其是近红外激光器,一直难以实现。考虑到近红外激光器在空间光通信、激光雷达、夜视,特别是临床成像和治疗等方面的广阔应用前景,开发高性能的近红外CDs激光具有重要意义。此外,CDs激光缺乏系统性的研究,这些研究可以指导CD激光材料的开发,并有助于推动其实际应用的发展。全文速览在此背景下,郑州大学卢思宇课题组合成了具有明亮蓝色、绿色、黄色、红色、深红色和近红外荧光(分别标记为B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs)的全色CDs(FC-CDs)的制备,其PL峰值波长范围为431至714 nm。CDs的低含量sp3杂化碳、高PLQY和短荧光寿命是影响其激光性能的重要因素。结果表明,这些FC-CDs的半高宽明显较窄,在44 ~ 76 nm之间;同时,辐射跃迁速率KR为0.54 ~ 1.74 × 108 s−1,与普通有机激光材料相当,表明FC-CDs具有良好的增益潜力。激光泵浦实验证实了这一点,成功实现了从467.3到705.1 nm宽范围(238 nm)可调的CDs激光出射,覆盖了国家电视标准委员会(NTSC)色域面积的140%。结果表明,CDs具有较高的Q因子、可观的增益系数和较好的稳定性。最后,利用这些FC-CDs激光作为光源,实现了高质量的彩色无散斑激光成像和动态全息显示。此项工作不仅扩大了CDs激光的发射范围,而且为实现多色激光显示和成像提供了有益的参考,是推动CDs激光发展和实际应用的重要一步。文章以“Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display”为题发表在Advanced Materials上,第一作者为张永强博士。图文解析图1a-f为其透射电子显微镜照片,显示出B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs为球形或准球形颗粒,平均粒径分别为3.09、3.24、3.76、3.25、4.25和5.98 nm。高分辨率透射电镜(HRTEM)显示,所有CDs的面内晶格间距为0.21 nm,这可归因于石墨烯的(100)面。值得注意的是,NIR-CDs是由单分散CD聚集而成的。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的X射线衍射(XRD)峰分别位于20°、22°、22.8°、27°、23°和23.5°。这些值近似于石墨(002)平面25°和层间距(0.34 nm)处的衍射峰。通常,对于脂肪族前驱体,制备的CDs的XRD峰在21°左右,晶格间距比0.34 nm更宽这是因为脂肪族前体在炭化过程中更容易将含氧和含氮杂原子基团引入共轭面,从而扩大了面内间距。R-CDs在27°处有一个清晰的尖锐衍射峰,表明两步溶剂热处理产生了良好的结晶度。此外,NIR-CDs在31.7°和45.5°处有两个尖峰,这两个峰属于NIR-CDs中残留的离子液体(IL),IL具有聚集单分散CDs的功能,有助于形成聚集的颗粒。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)进一步收集了的结构成分信息(图1h和i)。光谱在3425和3230 cm−1附近显示出广泛的吸收特征,证实了-OH和-NH2的存在。1710和1630 cm−1附近的强信号与C=O拉伸振动有关,1570、1386、1215和1145 cm−1处的峰是由C=C、C-N和C-O- C拉伸振动引起的。这些结果表明,所有的FC-CDs都是由sp2/sp3杂化芳香结构形成的,这些杂化芳香结构在表面被含有杂原子(O和N)的极性基团修饰,这些基团使CDs在极性溶剂中具有良好的溶解性。图1中完整的XPS扫描显示,FC-CDs主要含有碳、氮和氧。高分辨率C 1s在C=C、C-N/C-O/(C-S)和C=O分别为284.6、286.6和288.3 eV处呈现出三个峰。N 1s分别在399.0、399.9和401.4 eV处显示吡啶、吡啶和石墨的N掺杂。O 1s光谱中C=O和C-O基团的峰分别位于531.4 eV和533 eV左右。这些XPS结果与FTIR分析一致。图1 形貌与化学成分表征。(a)B-CDs,(b)G-CDs,(c)Y-CDs, (d)R-CDs,(e)DR-CDs和(f)NIR-CDs;右上方的插图是相应的粒径分布,右下方的插图是单个颗粒的高分辨率TEM(HRTEM)图像。(g)XRD图谱,(h)FTIR谱,(i)XPS全扫描谱图。图2a-f显示了紫外照射下FC-CDs的亮蓝色、绿色、黄色、红色、深红色和近红外荧光,其发射峰分别位于431、526、572、605、665和714 nm。这些PL谱都表现出独立于激发波长的行为。它们的PLQY分别为64.9%、91.2%、41.2%、51.6%、28.3%和37.9%。此外,对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,其PL光谱的半高全宽(FWHM)分别为0.46、0.19、0.18、0.24、0.20和0.14 eV。XPS分析sp3杂化碳含量分别为17.09%、9.01%、11.78%、16.78%、6.26%和11.41%。Yan等人的第一性原理计算表明,C-N、C-O和C-S基团可以导致局域化电子态,并在n -π*间隙中产生许多新的能级。这些sp3杂化碳相关激发能级的密度与C-N、C-O和C-S基团的含量呈正相关,决定了PL光谱的FWHMs。因此,CDs的PL光谱FWHMs可以通过sp3杂化碳的含量来控制。这些CDs的紫外-可见吸收峰存在于高、低两个不同的能带区,分别归因于芳香sp2结构域C=C的π -π*跃迁和CDs表面与C=O相关的不同表面态的n -π*跃迁。图2g显示了FC-CDs溶液的PL光谱的CIE坐标覆盖了NTSC标准色域面积的97.2%,意味着FC-CDs在显示中的具有良好的应用潜力。FC-CDs的时间分辨PL(TRPL)谱显示其荧光寿命分别为12.09、5.24、3.60、3.87、2.43和2.44 ns(图2h)。这些高PLQY、窄发射带和快速的PL衰减寿命的特性都有利于受激辐射(SE)。为了评估CDs的激光增益能力,结合公式(1)和(2)计算了ASE的相关参数。ASE阈值与爱因斯坦系数B和SE截面(σem)成反比:KR = φ / τ, (1) σem(λ)= λ4g(λ)/ 8πn2cτ, (2)B ∝ (c3/8πhν03)KR, (3)其中φ为PLQY,τ为平均荧光寿命,λ为发射波长,n为折射率,c为光速,g(λ)是自发辐射的线性函数,表示为g(λ)dλ = φ,h 为普朗克常数,ν0 为光频率,c 为光速。因此,KR值分别为0.54、1.74、1.14、1.33、1.16和1.55 × 108 s−1(图2i)。计算得到的最大的σem分别为1.46、16.59、13.38、15.45、19.51和38.66 × 10−17 cm2(图2i)。这些值与普通有机激光材料的值相似,表明这些CDs具有优良的增益潜力。基于上述分析,我们认为实现CDs激光有两个重要的因素。首先,需要集中的激发态能级来收集大量的具有相同能量的激发态电子,这有利于粒子数反转。其次,处于激发态能级的电子需要在高KR下跃迁回基态,这样统一的快速过程有利于光放大。这两个因素都可以通过精准的合成来控制:通过减少CDs中sp3杂化碳的含量来获得集中的激发能级,通过增加CDs的PLQY同时降低荧光寿命来获得高KR。 图2 光学表征。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs的吸收光谱和PL发射光谱,插图为对应CDs溶液在紫外灯照射下的光学图片,,线标签表示激发波长,单位为nm。(g)CDs发光光谱的CIE色坐标。(h)FC-CDs的TRPL光谱和(i)KR和最大σem。采用激光泵浦对FC-CDs的激光性能进行了表征。图3a、c、e、g、i和k分别为不同泵浦强度下的B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的发射光谱,显示出在467.3、533.5、577.4、616.3、653.5和705.1 nm处的出现尖峰;输出在可见光区域的跨度为238 nm(图3m)。在垂直于泵浦激光器和比色皿端面的方向上观察到这些FC-CDs产生的远场激光光斑(图4a、c、e、g、i和k的插图),表明激光发射的产生。随着泵浦影响的增加,FWHMs从大约60 nm急剧下降到~5 nm。这些发射光谱表明,泵浦强度的增加使发射强度急剧增加,峰的FWHM迅速窄化。为了明确发射峰强度、FWHMs和泵浦强度之间的量化关系,图3b、d、f、h、j和l绘制了相关曲线。它们都表现出明显的拐点:对于拐点以下的泵浦强度,FWHMs和输出发射强度的强度变化不明显,但在拐点以上增加泵浦能量,FWHMs急剧窄化,发射峰值强度急剧增加,其斜率与拐点以下大不相同。拐点表示激光的阈值,B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光阈值分别为319.84、35.89、53.31、11.10、43.90和17.88 mJ cm−2。考虑到这种激光泵浦中无反光镜体系,这些阈值也是合理的。为了评估FC-CDs的激光阈值水平,我们还使用相同的激光泵浦设置测量了罗丹明6G (Rh6G),其激光阈值为32 mJ cm−2,表明FC-CDs具有与常用激光染料相近的激光阈值。为了评估全色激光器的性能和商业化潜力,研究了其CIE颜色坐标、Q因子、增益系数(g)和稳定性。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光光谱对应的CIE色坐标分别为(0.131,0.047)、(0.178,0.822)、(0.494,0.505)、(0.684,0.315)、(0.728,0.272)和(0.735,0.265)(图3n)。所形成的封闭区域可以达到NTSC色域面积的140%,表明FC-CDs在全彩色激光显示中的巨大潜力。对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,各自的激光线宽分别为0.17、0.13、0.11、0.21、0.21和0.34 nm,相应的Q因子(Q = λp/∆λp,其中λp为激光峰波长,∆λp为激光线宽)分别为2748.8、4103.8、5249.1、2920.5、3111.9和2073.8,这些值目前位于可溶液加工激光器中的前列。这些发现表明,我们的FC-CDs的激光器在激光质量上具有相当大的优势,这有利于其实际应用。光学增益系数量化了荧光材料实现激光发射的能力,可以用变条纹长度法来计算光学增益系数。激光输出强度可表示为:I(l) = (IsA/g) [exp(gl)-1], (4)其中I(l)为从样品边缘监测到的发射强度,IsA描述了与泵浦能量成正比的自发发射,在固定的泵浦能量下为常数,l为泵浦条纹的长度,g为净增益系数。图3p显示了在2倍激光阈值下,输出发射强度与激发条纹长度的关系。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的增益系数分别为8.9、24.7、17.1、16.0、13.5和21.5 cm−1。这些结果与大多数有机激光材料相当甚至更优,表明这些FC-CDs具有良好的增益特性。稳定性也是评估激光器时的一个重要考虑因素。在2倍激光阈值下连续泵浦FC-CDs激光,G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs连续工作7、7、5.5、5.5和4 h后,激光强度分别为初始激光强度的0.97、0.97、1、0.98、1.03倍(图4)。在CDs的2倍激光阈值下,将相近激光波长的常用商用激光染料与相应的CDs进行了稳定性比较。香豆素153 (541 nm)、Rh6G (568 nm)、RhB (610 nm)、Rh640 (652 nm)和尼罗蓝690 (695 nm)的激光强度分别下降到初始强度的0.60、0.84、0.89、0.76和0.73倍。对于B-CDs,激光阈值大约比其他CDs高一个数量级;在泵浦的0.6 h时,激光输出逐渐降至零。相比之下,香豆素461 (465 nm)的激光在0.2 h的操作时间内消失。与以往的文献相比,本工作对CDs激光进行了更全面的研究,该激光器具有从蓝色覆盖到近红外区域的宽可调激光范围、高增益系数、高Q因子、良好的辐射跃迁率、可观的增益系数和优异的稳定性。这些参数都处于CDs激光的前沿。图3 激光稳定性。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs与具有相近激光波长的商用有机激光染料在相应CDs的两倍激光阈值下的稳定性对比。FC-CDs的上述独特激光特性使其能够实现比传统热光源更亮的照明和色域更宽的全色激光成像。图4a-f分别为以B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs激光为光源对分辨率板(1951USAF)照射后的光学成像。利用互补金属氧化物半导体(CMOS)相机观测到的图像强度分布均匀、清晰、无散斑。作为对比,我们也使用商用激光器作为成像光源,使用波长为532 nm的连续波激光器和脉冲(7 ns, 10 Hz)激光器分别产生如图4g和h所示的光学图像,具有明显的激光散斑。从根本上说,这是由于图像质量受到激光高相干性带来的斑点的限制。我们进一步展示了这些CDs激光在全息显示中的潜在适用性,全息显示被认为是在3D空间中重建光学图像的最现实的方法之一,并且作为下一代显示平台为用户提供更深入的沉浸式体验而受到广泛关注。图4i为其实验设置。将CDs激光作为照明源照射到空间光调制器(SLM)上,在SLM上加载不同相位掩模(全息图)以重建全息显示所需的图案,在本例中为郑州大学的徽标。徽标分为三个部分,每个部分都可以使用B-CDs、G-CDs、和R-CDs出射的激光进行全息成像(图4j)。第一行是设计好相位掩模并输入SLM的原始图像。第二到第四行分别是CMOS相机在B-CDs、G-CDs、和R-CDs激光照射下拍摄的光学图像。第一列显示了会徽作为一个整体,并被分成几个部分。不同的组件可以简单地组合起来,以获得完整的彩色徽标(图4k)。这些静态图像具有高分辨率和高对比度,为了更接近实际应用,我们制作了一系列不同运动姿势的人物彩色全息图像,以获得彩色动态人物视频。图4l中的第一行给出了这些运动姿势的原始图片。第二至第四行分别显示了在B-CDs、G-CDs、和R-CDs激光照射下每个运动姿势不同部位的独立全息图像。然后将每个运动姿势的不同颜色部分合并到图41的第五行中。然后以每秒3帧的速度将从左到右依次输出,从而实现动态全息显示。虽然成像质量和显示方案还需改进,但我们的实验证明了未来基于CDs的激光成像的可行性。图4 基于FC-CDs激光的无散斑全彩色激光成像和彩色全息显示。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs激光,以及(g)连续波激光器(532 nm)和(h)脉冲激光器(7 ns, 10 Hz,532 nm)的商用激光源下的1951USAF的光学图像,标尺均为100 μm。(i)以CDs激光为光源的全息显示器实验装置(S1、S2、A、P分别为狭缝1、狭缝2、衰减器和偏振器;L1-L4分别为焦距40、100、100、50 mm的镜头 圆柱透镜的焦距为100 mm)。(j)郑州大学校徽全息静态展示。(k)为(j)中部分成像合并后的彩色徽标。(l)运动角色的全息动态显示。全息显示器中的比例尺都是1 mm。总结与展望综上所述,在无反光镜体系的光泵浦中,FC-CDs实现了467.3、533.5、577.4、616.3、653.5和705.1 nm的波长可调谐随机激光发射,从蓝色到近红外区跨越238 nm,覆盖了NTSC色域的140%。sp3杂化碳的低含量在n -π*隙中引入了集中的激发态能级,从而实现了较窄的FWHMs和粒子数反转,高KR(高PLQY和小寿命)有利于光放大。这两个因素决定了FC-CDs的激光增益特性,在CDs激光阈值的2倍能量泵浦下,FC-CDs也表现出高Q因子、可观的增益系数和比普通商业有机染料更好的稳定性。最后,我们成功地演示了使用这些FC-CDs激光作为光源的彩色无散斑激光成像和高质量的动态全息显示。我们的研究结果扩展了CDs激光的波长范围,提供了对其激光性能的全面评估,并为全彩色激光成像和显示应用打开了大门,从而显著促进了可溶液加工的CDs基激光器的实际应用和发展。文献链接:https://doi.org/10.1002/adma.202302536
  • 全球首发!Incyton实时全息细胞能量代谢分析平台
    德国Incyton公司出品的全新产品“实时全息细胞能量代谢分析平台”- CYRIS Flox系统将于第十届慕尼黑上海分析生化展全球首发!能量代谢异常常见于代谢性疾病,肥胖、糖尿病、癌症、神经性疾病等。探索疾病发病机理、寻找药物作用靶点,往往是科研的首要任务,而细胞的能量代谢检测与细胞形态的观察,能够真实有效的反应细胞的状态与活力。德国Incyton实时全息细胞能量代谢分析平台可以从组织样本、活细胞样本到线粒体样本进行一站式无标记检测。CYRIS Flox系统采用全新的实时无标记荧光检测模块与铂金芯片传感器相结合方法,能够精准的获得多参数数据,实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率、细胞膜电阻值检测等功能的全自动测定和分析。具有显微扫描成像系统,首创细胞能量代谢数据与显微细胞影像同时在线实时监测和分析。▌性能指标24孔样本,每孔可单独进行实验耗氧率(OCR)、产酸率 (ECAR)、氧浓度、细胞膜阻抗显微扫描成像系统首创细胞能量代谢数据与显微细胞影像同时在线实时监测和记录氧气浓度和湿度控制氧气控制范围1-21%,可做低氧、厌氧等试验自动灭菌检测室全自动移液工作站,24通道独立换液6个不同试剂池多次精准加药可进行几周至数月的长期试验全自动化数据处理,可实现无人值守耗材可重复使用,配套试剂全部开放▌具体应用1、经典细胞氧化压力测量模式,测量细胞的基础呼吸、质子漏水平、最大呼吸、呼吸储备能力以及非线粒体耗氧等阶段。2、毒理药理学研究中,将细胞能量代谢实时检测与活细胞成像完美结合,诠释了细胞理化性质与细胞密度、细胞活力之间的耦联作用。3、细胞应激研究中,将细胞有氧呼吸和无氧呼吸同时检测,并结合细胞膜电阻抗电生理信号,可同时观察到细胞在应激调节中,细胞的抗压能力的高低。
  • 1500万!同济大学非接触式自主配置全息测试子系统—结构表观多维度测试模块采购项目
    一、项目基本情况项目编号:Z20230815(代理机构内部编号:JSHC-2023050436S1)项目名称:同济大学非接触式自主配置全息测试子系统—结构表观多维度测试模块采购项目预算金额:1500.0000000 万元(人民币)最高限价(如有):1500.0000000 万元(人民币)采购需求:非接触式自主配置全息测试子系统—结构表观多维度测试模块1套合同履行期限:签订合同后6个月内完成并验收合格交付使用。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年08月10日 至 2023年08月17日,每天上午9:00至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:上海市普陀区中山北路2130号1701室方式:现场获取或通过邮箱获取采购文件。获取采购文件须提供的资料:加盖公章的授权委托书原件或扫描件、加盖公章的被委托人身份证复印件或扫描件,及汇款凭据的截图(转账时请务必备注公司名称+436S1)。获取采购文件电话:025-83609978(南京)/021-52181959(上海) 邮箱:jshc9999@163.com售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:同济大学     地址:上海市杨浦区四平路1239号        联系方式:沈老师 021-65983761      2.采购代理机构信息名 称:江苏省华采招标有限公司            地 址:上海市普陀区中山北路2130号17层            联系方式:刘翠红、胡晓秀 021-52181959            3.项目联系方式项目联系人:刘翠红、胡晓秀电 话:  021-52181959
  • 瑞典Phiab公司发布新款小型激光全息显微镜M4
    激光全息技术开创了前所未有的最佳非标记实时细胞分析,可以在细胞自然生长状态下,无需任何标记,即可实时分析细胞的增殖,分化,凋亡,并可实时提供视野内每个细胞的运行轨迹及形态变化。激光全息技术有别于电阻法和其他的标记显微技术,激光全息技术利用激光干涉原理,可以定量每个细胞的形态参数,包括体积,面积,厚度,圆度,不规则度等等,并可进行细胞3D形态的观察。仪器小巧,可在桌面观察样品,也可直接放入培养箱,实现边培养边观察。633nm的微弱红光,经历长时间多次曝光,不会对细胞造成任何伤害右图为放置在培养中的M4激光全息显微镜技术应用M4自动聚焦,全程无需手动调焦。实时追踪细胞形态变化,并可以以Video的形式导出,呈现最真实的3D图像如应用到人类胰腺肿瘤细胞系PaTu 8988S和PaTu 8988T细胞骨架动态变化。经过Latrunculin B 处理后的细胞形态的变化过程。 应用于细胞凋亡研究纳米级的分辨率能观察到细胞分化整个过程 研究小鼠神经元在凋亡时体积的变化,监控凋亡的整个过程,结合细胞计数功能,量化细胞的存活率。可应用于药物筛选。实时拍摄细胞迁移功能细胞计数功能--自动生成体积、面积与细胞数量的分布图,以及细胞总数量以及每ml细胞数量。细胞追踪功能选择靶标细胞进行实时追踪,监控肿瘤细胞运行的轨迹以及迁移速率,运动速率自动导出的细胞迁移轨迹图谱实时监控细胞体积的变化,检测细胞分化 瑞典Phiab公司简介:瑞典Phiab公司是激光全息细胞分析的全球领导品牌。激光全息技术开辟了细胞成像分析的新纪元,被国外专业杂志评价为开创性技术。M3激光全息细胞成像及分析系统作为专业细胞全息分析的第一品牌,提供无与伦比的细胞形态学分析和实时3D成像技术,将开启细胞形态学分析新的研究领域。瑞典Phiab公司国内独家代理:北京倍辉科技有限公司www.bio-sun.com.cn
  • 手机摄像变全息显微镜,史上最小发光二极管问世
    新加坡—麻省理工学院研究与技术联盟的科学家开发了世界上最小的LED(发光二极管)。这种新型LED可用于构建迄今最小的全息显微镜,让现有手机上的摄像头仅通过修改硅芯片和软件即可转换为显微镜。相关研究发表在最近的《光学》杂志上。  这一突破得到了革命性神经网络算法的支持,该算法能够重建全息显微镜观察的物体,增强对细胞和细菌等微观物体的检查,而无须笨重的传统显微镜或额外的光学器件。  大多数光子芯片中的光都来自芯片外,这导致整体能源效率低下,从根本上限制了芯片的可扩展性。  团队此次开发的最小硅发射器,其光强度可与目前最先进的大面积硅发射器相媲美。新型LED在室温下表现出高空间强度(102±48毫瓦/平方厘米),并且在所有已知的硅发射器中具有最小的发射面积(0.09±0.04平方微米)。为了展示潜在的实际应用,研究人员随后将这种LED集成到一个不需要透镜或针孔的在线、厘米级全硅全息显微镜中。  他们还构建了一种新颖的、未经训练的深度神经网络架构,该架构能使全息显微镜重建图像并提高图像质量。与需要训练的传统方法不同,新的神经网络架构通过在算法中嵌入物理模型来消除训练的需要,允许研究人员在事先不了解光源光谱或光束轮廓的情况下使用新型光源。  这种微型LED和神经网络的协同组合,可用于其他计算成像,例如用于活细胞跟踪的紧凑型显微镜或活植物等生物组织的光谱成像。该研究还为光子学的重大进步铺平了道路。
  • 科学家利用全息光镊技术对细胞微环境进行研究
    近日,刊登在国际杂志Scientific Reports上的一篇研究论文中,来自诺丁汉大学的研究人员通过研究构建了一种新型微观细胞,其可以帮助开发治疗疾病的新型疗法,这种微观细胞可以被操作,并且可以利用高强度的红外线来进行3D模式的研究。文章中研究者发现如何利用全息光镊技术(Holographic Optical Tweezers)来控制微小的细胞,从而在3D显微镜下对其进行移动来使其按照研究者的意愿进行排列;Glen Kirkham教授说道,人类机体的基础就是由无数个细胞所构成,但问题是我们如何控制小世界内细胞的生存和生长,如果我们可以更好地理解细胞的工作机制并且检查出细胞出错的地方,那么或许就可以帮助开发出新型治疗疾病的疗法。在机体中干细胞存在于骨髓中,其可以为机体提供所需的血细胞,并且可以修复损伤,但其存在于名为干细胞生境的小世界中,在那里功能细胞存活、生长以及发挥功能,但研究者并不知道这个小世界具体发生着些什么,因为目前无法在实验室中对这种小环境进行重建。这项研究中,研究人员利用了一种新技术实现对了对这种细胞结构生境的重建,这样研究者就可以学习干细胞是如何被组织、彼此沟通以及完成多种细胞功能的。短期来讲,研究小组想利用这些微观细胞来检测新型药物及疗法的作用效果,将来他们将会深入去研究者中微观细胞来解释特定的细菌如何在一定水平下对其进行破坏,并且揭示其所涉及的分子机制。最后研究者Kirkham说道,在此前我们并没有开发出一种新型工具来研究细胞,此前研究者是利用物理控制方法来研究细胞;利用全息光镊技术研究人员就可以对大量细胞进行同时移动并且研究,而移动过程中产生的激光能量并不会损伤细胞的功能。研究者希望通过对细胞微环境的深入研究可以帮助开发出治疗疾病的新型靶向疗法。hz-E10182中文名称:人内吗啡肽-2(EM-2)ELISA试剂盒英文名称:Human endomorphin-2,EM-2 ELISAkit规格:48T/96Thz-E10183中文名称:人α-内吗啡肽(α-EP)ELISA试剂盒英文名称:Human α-Endomorphin,α-EP ELISAkit规格:48T/96Thz-E10184中文名称:人抑制素(INH)ELISA试剂盒英文名称:Human Inhibin,INH ELISAkit 规格:48T/96Thz-E10185中文名称:人神经元凋亡抑制蛋白(NAIP)ELISA试剂盒英文名称:Human neuronal apoptosis inhibitory protein,NAIP ELISAkit规格:48T/96Thz-E10186中文名称:人食欲素/阿立新B(OX-B)ELISA试剂盒英文名称:Human Orexin B,OX-B ELISAkit规格:48T/96Thz-E10187中文名称:人促睡眠肽(DSIP)ELISA试剂盒英文名称:Human delta sleep-inducing peptide,DSIP ELISAkit规格:48T/96Thz-E10188中文名称:人6-羟多巴胺(6-OHDA)ELISA试剂盒英文名称:Human 6-hydroxydopamine,6-OHDA ELISAkit规格:48T/96Thz-E10189中文名称:人心纳素(ANF)ELISA试剂盒英文名称:Human atrial natriuretic factor,ANF ELISAkit规格:48T/96Thz-E10190中文名称:人神经髓鞘蛋白(p2)ELISA试剂盒英文名称:Human myelin protein 2,p2 ELISAkit规格:48T/96Thz-E10191中文名称:人精氨酸加压素(AVP)ELISA试剂盒英文名称:Human arginine vasopressin,AVP ELISAkit规格:48T/96Thz-E10192中文名称:人垂体腺苷酸环化酶激活肽(PACAP)ELISA试剂盒英文名称:Human pituitary adenylate cyclase activating polypeptide,PACAP ELISAkit规格:48T/96Thz-E10193中文名称:人微管相关蛋白2(MAP-2)ELISA试剂盒英文名称:Human microtubule-associated protein 2,MAP-2 ELISAkit规格:48T/96Thz-E10194中文名称:人神经丝蛋白(NF)ELISA试剂盒英文名称:Human neurofilament protein,NF ELISAkit规格:48T/96Thz-E10195中文名称:人利钾尿肽(KP)ELISA试剂盒英文名称:Human kaliuretic peptide,KP ELISAkit规格:48T/96Thz-E10196中文名称:人神经降压素(NT)ELISA试剂盒英文名称:Human Neurotensin,NT ELISAkit规格:48T/96Thz-E10197中文名称:人神经激肽B(NKB)ELISA试剂盒英文名称:Human Neurokinins B,NKB ELISAkit规格:48T/96Thz-E10198中文名称:人强啡肽(Dyn)ELISA试剂盒英文名称:Human dynorphin,Dyn ELISAkit规格:48T/96Thz-E10199中文名称:人脑啡肽(ENK)ELISA试剂盒英文名称:Human enkephalin,ENK ELISAkit规格:48T/96Thz-E10200中文名称:人γ肽(Pγ)ELISA试剂盒英文名称:Human Peptide γ,Pγ ELISAkit规格:48T/96Thz-E10201中文名称:人C型钠尿肽(CNP)ELISA试剂盒英文名称:Human C -type natriuretic peptide,CNP ELISAkit规格:48T/96Thz-E10202中文名称:人阿立新A(Orexin A)ELISA试剂盒英文名称:Human Orexin A ELISAkit规格:48T/96Thz-E10203中文名称:人神经肽Y(NP-Y)ELISA试剂盒英文名称:Human neuropeptide Y,NP-Y ELISAkit规格:48T/96Thz-E10204中文名称:人脑肠肽(BGP/Gehrelin)ELISA试剂盒英文名称:Human brain-gut peptides,BGP/Gehrelin ELISAkit规格:48T/96Thz-E10205中文名称:人乙酰胆碱(ACH)ELISA试剂盒英文名称:Human acetylcholine,ACH ELISAkit规格:48T/96Thz-E10206中文名称:人脑钠素/脑钠尿肽(BNP)ELISA试剂盒英文名称:Human brain natriuretic peptide,BNP ELISAkit规格:48T/96T
  • 飞秒激光照相机可在生物成像等领域广泛应用
    据美国物理学家组织网11月17日报道,美国麻省理工科学家最近研制出一种照相机,能拍摄到来自非正面的目标。这种照相机安装了一个飞秒激光器,当其发出的极短暂光脉冲被某个物体(比如门或镜子)反射后,可在光线返回之前拍摄第二个目标图像,然后利用数学算法将这些像素信息重建,就能获得那些隐蔽景物的图像。  激光照相机由麻省理工教授拉瑞马斯瑞斯卡及其研究小组设计,称为“飞秒瞬间成像系统”(femtosecond transient imaging system)。这种相机能在极短时间内捕获光线,大约是千万亿分之一秒。他解释说,通过不断收集光线,计算每个像素到达照相机的时间和距离,就能按照所处环境生成一种“三维实时图像”。  “这就像不用X射线却有了X射线般的眼睛,”瑞斯卡说,“我们将围绕着目标,而不是通过它。”  这种相机目前仍处于早期研发阶段,研究人员正在探究如何精确合成更复杂的图像。该相机系统将有广泛的应用,比如用于搜救任务,在垮塌或失火建筑中寻找幸存者,也能避免汽车在隐蔽拐角处相撞,在工业上还可用于机械探测以检查隐蔽物体。此外,它和生物医学图像也有相似之处,可让医生用内窥镜观察身体内部被遮住的区域,便携式的内窥镜成像系统再过两年就可能出现。
  • 新全息相机揭示更多“隐秘角落”
    美国西北大学研究人员发明了一种新型高分辨率相机,采用“合成波长全息术”将相干光间接散射到隐藏物体上,这些物体再将光散射回相机,通过重建散射光信号而呈现隐藏的物体。利用它,人体的皮肤到骨头将一览无余,甚至还能看到角落和散布四周的介质,如雾气等。相关研究发表在17日的《自然通讯》杂志上。  为角落里的物体成像和为人体器官成像似乎是不同的范畴,但论文第一作者弗洛里安威洛米泽说,二者实际密切相关,都需要处理散射介质,光线照射到物体并以无法再看到物体直接图像的方式散射。  威洛米泽说:“当用手电筒照射你的手时,你会在手的另一边看到亮点,但从理论上讲,你的骨骼应该会有一个暴露出轮廓或结构的影子。”然而,通过骨骼的光线在人体组织内向各个方向散射,完全模糊了阴影图像。因此,研究团队的目标是拦截散射光,重新测量有关其传播时间的信息,以揭示无法被成像的物体。  为了克服可以对光进行高精度测量的探测器成本高昂的问题,研究团队通过合并来自两个激光器的光波,形成了一种为不同散射场景下进行全息成像而量身定做的合成光波。这是第一种能在角落周围通过散射介质进行成像的技术。该方法结合了高空间分辨率、高时间分辨率、小探测区域和大角度视野。这意味着,即使在物体移动的情况下,相机也能以高分辨率拍摄出狭小空间中的微小特征以及大面积区域中隐藏的物体。  由于光只能沿直线传播,因此必须有不透明的障碍物(例如墙壁、灌木或汽车)让新相机能看到拐角处。光从传感器单元发出,从障碍物反弹,然后击中拐角处的物体,接着光反射回障碍物并最终返回传感器单元的检测器。  据介绍,由于具有高时间分辨率,该相机还可对快速运动的物体成像,例如心跳或街角飞驰的汽车。车辆转弯时,该相机可看到附近车辆以防发生意外。它还可替代用于医疗和工业成像的内窥镜。例如,在结肠镜检查时,可用它观察肠道内的褶皱。此外,该相机在夜间和有雾的天气下也可使用。  总编辑圈点  对遮挡或散射介质背后的物体成像,其实是一个相对较新的研究领域,即所谓非视距成像。与相关的非视距成像技术相比,新方法可快速获取大范围、亚毫米精度的全视野图像,在这种分辨率水平下,相机甚至可透过皮肤成像,看到哪怕最微小的毛细血管。因此,这一方法在无创医学成像、汽车预警导航系统以及在狭小空间进行工业检查等方面,拥有无限潜力。
  • 新型光学材料厂商光科全息完成数千万级别A轮融资 将用于开启面向半导体领域的研发渗透
    新型光学材料厂商「光科全息」近期完成数千万级别A轮融资,资方是深圳市投控东海基金。本轮资金将用于开启面向半导体领域的研发渗透。「光科全息」2015年成立于深圳,研制生产光子晶体型光学薄膜产品,推进产品落地,主要产品包括微结构光学成像薄膜、光子晶体蓝光滤波防护膜、微结构抗菌类薄膜等等。  近年来国内智能显示产业有了快速发展,但是产业链上游光学功能薄膜的研发和生产,一直是整个显示产业链中的薄弱环节。全球光学功能薄膜领域的核心技术,多为日本、韩国及美国少数企业所掌握。以投影显示为例,传统显示屏幕的材料痛点在于偏暗感强烈,色彩不够严厉,和液晶电视相比其画质不够突出。「光科全息」创始人兼CEO郭滨刚表示,「光科全息」的光子成像薄膜是一种具有独特的结构化微观光学设计的薄膜材料,可以通过对红光、绿光、蓝光做定向增强来提升画质。光子成像薄膜的色彩显示能力相比传统幕布高了两倍到三倍,同时抗环境光能力也更强,在非弱光的环境下也可以应用。  光子成像薄膜材料在成本和重量方面也有优势。据介绍,光子成像薄膜本身是无源器件,不包含电子电路,因此也没有能耗和发热 重量也足够轻,光子成像薄膜本身只是一张厚度为约100-200微米的薄膜 目前,「光科全息」的光子成像薄膜的制造良品率已经超过96%以上,所以在成本方面,光子成像薄膜相比传统幕布的价格虽然略高,但已达到接近的水平。  另外,传统显示屏幕有伤眼的危害,原因是有一些高能量的短波长蓝光对人眼视网膜刺激会导致视疲劳和辐照积累损伤,而通过光子材料具有的精密微光学结构可以把有害光有效区分并滤除掉。  郭滨刚介绍,公司的光子成像薄膜材料已经在投影领域有了大范围的批量应用,进入了一些居于全球头部的投影设备公司的上游供应链,比如爱普生、极米、坚果等等。  除了在投影仪终端上的应用,光子成像薄膜在艺术展览、广告传媒等场景上也有成功的运用,达成合作的有法国博物馆授权的梵高艺术展、日本东京画廊艺术展、分众传媒、淘屏等。  「光科全息」光子材料后续系列还在筹备进入半导体芯片制造领域,晶圆切割胶、芯片加工胶膜等产品。郭滨刚称,目前经过初期的产品验证,公司的晶圆切割胶膜产品对UV光敏工艺特性的表现已达到和超过了同领域的日系产品,成本也低于海外产品,目前已经提供给国内部分头部芯片加工企业做产品测试。  郭滨刚表示,公司的产品在2020年第三季度开始正式大批量化进入市场,去年3、4季度的营收即突破了数千万元,今年之后预计每年以三倍左右的速度增长。在核心技术的专利布局方面,公司已经储备有120多项专利,每年新专利的储备数量大概在三、四十项。  目前,「光科全息」现阶段的布局是,通过LED、投影、晶圆加工等既存市场应用来支撑企业的现金流和盈利,中期阶段计划用三年以上的时间实现IPO目标,从而构建稳定、健康的融资渠道,进而投入定位长期发展目标的光半导体材料技术的深入研发。  在创始团队方面,「光科全息」创始人兼CEO郭滨刚在哈工大(深圳)、 西安交大、深圳大学兼职教授,曾任日本东京大学生产技术研究所博士研究员,曾在日本从事过多项NEDO、METI等大型产业技术项目的研发工作。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制