当前位置: 仪器信息网 > 行业主题 > >

非接触测量显微镜

仪器信息网非接触测量显微镜专题为您提供2024年最新非接触测量显微镜价格报价、厂家品牌的相关信息, 包括非接触测量显微镜参数、型号等,不管是国产,还是进口品牌的非接触测量显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非接触测量显微镜相关的耗材配件、试剂标物,还有非接触测量显微镜相关的最新资讯、资料,以及非接触测量显微镜相关的解决方案。

非接触测量显微镜相关的资讯

  • 尼康推出新一代工业测量显微镜
    近日,尼康宣布推出全新的MM-400N和MM-800N系列工业测量显微镜。升级之后,这两个系列都具有针对透射照明装置的光圈控制装置,让用户能够调整光圈,以优化对比度和分辨率。此外,用户还可设置用于测量圆柱形产品的照明条件。新开发的透射LED照明装置同时拥有了白色和绿色光源;用户可通过按下显微镜前面的开关来切换光源颜色, 而无需插入或移除滤光片。另外,通过将透射照明装置集成至工业测量显微镜的主体中,可将仪器的深度缩短30mm,从而减小安装占用空间。MM-800N作为改造的一部分,尼康为工业测量显微镜设计了现代化的外观,展示了公司全新而简洁的黑白色涂装。此外, 电力消耗相比之前的MM-400/MM-800系列型号约降低10%。新款和以往系列型号共用很多相同的零部件,包括测量台、物镜和光学配件,用户可以继续将其用于实现简单、精确且高度可重复的测量应用。MM-800N/LMU
  • 了不起!这款显微镜在机加工件测量中表现得“恰如其分”!
    不知道大家有没有听过一个童话故事《金凤花姑娘和三只熊》?故事中,金凤花姑娘试着喝几碗粥,发现一碗太烫,一碗太凉,最后一碗刚刚好。这个故事告诉我们,适合的才是最好的。一谈到STM7测量显微镜时,让人不由得想起这则故事,因为这款显微镜在多项精密测量应用中表现得“恰如其分”。 STM7测量显微镜专为高通量、高精度3D测量而设计,非常适用于检查机加工金属部件的公差等。测量设备种类繁多,从简单的手持工具到大型的精巧装置。 那么,为何选择STM7呢? 这就是开头提及金凤花姑娘故事的原因了。对于在机加工件的生产和质量控制中的多项测量应用而言,STM7测量显微镜实现了易用性与高质量结果的正确平衡。 不妨看看其他替代品的表现。比如卡尺和千分尺等手持式工具。这些工具简单易用,无需培训,但需接触样品,而且对于复杂部件往往让人“手忙脚乱”。此外,不同操作员的测量结果也是大相径庭。 再比如坐标测量机、轮廓投影仪或光学比测器等高级测量工具。这些工具视野大,可以进行复杂的测量工作,但要么在测试实验室中太占空间,要么成本过高。有些还需要大量的培训。平衡正确的显微镜 STM7测量显微镜对各方面因素的平衡拿捏得恰到好处。其亚微米分辨率和3轴测量支持全方向操作,无需重新放置样品。性能远超仅具备同轴度、周向、角度等功能的产品系列。在STM7显微镜下放一颗螺钉螺钉的测量结果 通过将这些先进功能与快速、简单的操作相结合,STM7非常适合机加工部件的高通量测量。无需先拍照;只需定义起点并移动平台即可进行快速、准确的测量。当然,它可兼作普通的光学显微镜,较之其他测量设备,这是一大优势。 高精度测量与紧凑型设备的快速、直观操作相结合,使STM7成为部件测量的金凤花姑娘:贴合多种应用。
  • 华东理工大学450万元购买1套非接触原子力显微镜
    5月11日,华东理工大学公开招标购买1套非接触原子力显微镜,预算450万元。  项目编号:0705-2140*****505  项目名称:华东理工大学非接触原子力显微镜  预算金额:450.0000000 万元(人民币)  最高限价(如有):450.0000000 万元(人民币)  采购需求:品目号货物名称简要技术规格数量交货期 1非接触原子力显微镜非接触原子力显微镜的扫描探针具有AFM测量功能,在液氦温度下,在NaCl(100)表面实现原子分辨。1套合同签订并图纸确认后10个月(300天)内交货  合同履行期限:合同签订并图纸确认后10个月(300天)内交货  本项目( 不接受 )联合体投标。  开标时间:2021年06月04日 09点30分(北京时间)
  • 125万!广东省医疗器械质量监督检验所计划采购精密测量显微镜、血管内超声诊断设备弦线体模等设备
    项目概况2021年广东省医疗器械质量监督检验所综合检验一室仪器设备采购项目招标项目的潜在投标人应在广东省政府采购网https://gdgpo.czt.gd.gov.cn/获取招标文件,并于2021年11月12日 09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:440001-2021-50714项目名称:2021年广东省医疗器械质量监督检验所综合检验一室仪器设备采购项目采购方式:公开招标预算金额:1,250,000.00元采购需求:采购包1(综合检验一室仪器设备采购项目):采购包预算金额:1,250,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表仪器设备1(批)详见采购文件--1-2其他仪器仪表血管内超声诊断设备弦线体模1(套)详见采购文件--1-3其他仪器仪表精密测量显微镜1(套)详见采购文件--本采购包不接受联合体投标合同履行期限:按标的提供时间要求二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供2020年度财务状况报告或基本开户行出具的资信证明) 。4)履行合同所必须的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(较大数额罚款按照发出行政处罚决定书部门所在省级政府,或实行垂直领导的国务院有关行政主管部门制定的较大数额罚款标准,或罚款决定之前需要举行听证会的金额标准来认定)2.落实政府采购政策需满足的资格要求: 无。3.本项目的特定资格要求:合同包1(综合检验一室仪器设备采购项目)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单”记录名单; 不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。 (以采购代理机构于投标(响应) 截止时间当天在“信用中国”网站(www.creditchina.gov.cn) 及中国政府采购网(http://www.ccgp.gov.cn/) 查询结果为准, 如相关失信记录已失效, 供应商需提供相关证明资料) 。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。三、获取招标文件时间:2021年10月22日至2021年11月10日,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价:免费获取四、提交投标文件截止时间、开标时间和地点2021年11月12日 09时30分00秒(北京时间)地点:广州市天河区龙怡路117号银汇大厦5楼广东志正招标有限公司会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过400-1832-999进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。/七、对本次招标提出询问,请按以下方式联系。1.釆购人信息名 称:广东省医疗器械质量监督检验所地 址:广州市萝岗区科学城光谱西路1号联系方式:陈工020-666027682.釆购代理机构信息名 称:广东志正招标有限公司地 址:广东省广州市天河区龙怡路117号501、503、504、505、506房联系方式:020-875546183.项目联系方式项目联系人:叶小姐、吴小姐电 话:020-87554618广东志正招标有限公司2021年10月22日
  • JASIS 2018新品发布之奥林巴斯:3D测量激光显微镜
    p  strong仪器信息网讯/strong 2018年9月5日,日本最大规模的分析仪器展JASIS 2018在东京幕张国际展览中心盛大开幕,吸引来自全球各地的万余名观众参观出席。br//pp  作为日本乃至世界精密、光学技术的代表企业之一,奥林巴斯在展会期间带来其3D测量激光显微镜新品——OLS5000。/pp style="text-align: center "img title="奥林巴斯3D测量激光显微镜OLS5000.jpg" style="width: 400px height: 265px " alt="奥林巴斯3D测量激光显微镜OLS5000.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/ea349b73-612a-466f-8f66-a9011264cedf.jpg" height="265" border="0" vspace="0" width="400"//pp style="text-align: center "strong奥林巴斯3D测量激光显微镜OLS5000/strong/pp  OLS5000于去年年底发布,3D测量显微镜有着更真实的三维形貌反映能力,具有操作更便捷、更快速的优势。OLS5000采用计算机直观控制,搭载的扫描算法,可通过计算机的处理转换,快速获得完整带有高度信息的样品表面图像,并通过对样品不同层面的扫描和计算机处理。在使用时,只要在放置样品后按动按钮,设备就会自动进行工作,无需进行复杂的设置调整,即使是不熟练的用户也可获准确的检测结果,简化工作流程。/pp /p
  • 600万!苏州大学光谱联用的超高真空非接触式原子力显微镜采购项目
    项目编号:S2022067项目名称:光谱联用的超高真空非接触式原子力显微镜预算金额:600.0000000 万元(人民币)最高限价(如有):600.0000000 万元(人民币)采购需求:详见公告合同履行期限:合同签订后三个月内本项目( 不接受 )联合体投标。
  • 3D测量显微镜向着大视场、高精度等方向发展——访金燧奖获奖单位木木西里
    近期,由中国光学工程学会、辽宁省科学技术协会主办的全国光电测量测试技术及产业发展大会暨辽宁省第十七届学术年会在大连成功召开。会议同期举办首届“金燧奖”中国光电仪器品牌榜颁奖典礼。仪器信息网作为大会独家合作媒体参与了本次会议,并采访了金燧奖铜奖获奖单位代表南京木木西里科技有限公司(以下简称“木木西里”)CEO崔远驰。木木西里的获奖项目为“激光光谱共聚焦显微镜”,该产品是一款测量3D形貌、3D尺寸的显微设备,主导优势为大尺寸、超快速测量,在半导体、新材料、新能源等新型产业有巨大应用前景。该成果的研发背景和初衷是什么?该成果实现了怎样的创新突破,解决了什么样的关键问题,面向的主要用户有哪些?有哪些技术优势?中共中央总书记习近平在主持中共中央政治局关于加强基础研究第三次集体学习时提出“要打好科技仪器设备、操作系统和基础软件国产化攻坚战”。科研院所和仪器企业该如何打好“国产化攻坚战”?更多内容请观看视频: 首届“金燧奖”中国光电仪器品牌榜由中国光学工程学会联合多家单位于2022年发起,旨在积极面向国家重大战略需求,进一步突出企业的创新主体地位,促进关键核心技术攻关,突破卡脖子技术。本届“金燧奖”重点围绕分析仪器、计量仪器、测量仪器、物理性能测试仪器、环境测试仪器、医学诊断仪器、工业自动化仪器等7个类别进行广泛征集,得到了社会各界积极的参与和热情的响应。经过严格评审,71个优秀仪器产品脱颖而出,遴选出金奖10项、银奖16项、铜奖28项、优秀奖17项。这些产品都是我国自主研发、制造、生产的专精特新的高端光学仪器,较好地展现了我国在高端科学仪器中的自主核心竞争力,提升了民族品牌在激励市场竞争中的自信心,鼓舞了国产厂商的攻关热情。
  • 聚焦科技 | QD中国引进石墨烯/二维材料电学性质非接触快速测量全新技术
    西班牙Das-Nano公司成立于2012年,是一家专注研发高安全别打印设备、太赫兹无损检测设备以及个人身份安全验证设备的高科技公司。近日,该公司重磅推出了全球可以实现大面积(8英寸wafer)石墨烯和其他二维材料的100%全区域无损非接触快速电学测量系统-ONYX。石墨烯/二维材料电学性质非接触快速测量系统-ONYX 设备图ONYX采用一体化的反射式太赫兹时域光谱技术(THz-TDS)弥补了传统接触测量方法(如四探针法- Four-probe Method,范德堡法-Van Der Pauw和电阻层析成像法-Electrical Resistance Tomography)及显微方法(原子力显微镜-AFM, 共聚焦拉曼-Raman,扫描电子显微镜-SEM以及透射电子显微镜-TEM)之间的不足和空白。ONYX可以快速测量从0.5 mm2到~m2的石墨烯及其他二维材料的电学特性,为科研和工业化提供了一种颠覆性的检测手段。与其他大面积测试方法(例如四探针方法)相比,ONYX能够测量样品质量的空间分布信息,并且属于无损测试,在实验过程中不会对样品产生任何损伤。与传统显微方法相比,对大面积的样品可以以微米的空间分辨率快速表征,能够大的节约测量时间,提高效率[1,2]。ONYX参数及特点样品大小: 10x10mm-200x200mm 超快测量速度:12cm2/min样品100%全覆盖测量无需样品制备可定制样品测量面积(m2量)高分辨率:50μm非接触快速测量无损快速测量ONYX主要功能→ 直流电导率(σDC)→ 载流子迁移率, μdrift→ 直流电阻率, RDC→ 载流子浓度, Ns→ 载流子散射时间,τsc→ 表面均匀性ONYX应用方向石墨烯光伏薄膜材料半导体薄膜电子器件PEDOT钨纳米线GaN颗粒Ag 纳米线目前,ONYX在国际知名研究机构和工业化领域已经安装多套设备,包括:丹麦技术大学(DTU),牛津仪器,德国BOSH公司,LG化学,3M公司,西班牙Graphenea公司等。Quantum Design中国子公司也于2020年正式将该产品引进中国,为中国客户提供高效的技术支持和解决方案,欢迎广大科研工作者垂询。 参考文献[1] Cultrera, A., Serazio, D., Zurutuza, A. et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci Rep 9, 10655 (2019).[2] Melios, C., Huang, N., Callegaro, L. et al. Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro- and nano-scale. Sci Rep 10, 3223 (2020).
  • 0.5um微塑料颗粒的非接触式定性定量测量新技术
    来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且相对便宜,但同时也引发了人们对于塑料垃圾在环境中累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是终回归自然,安全而又环保。虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的功能材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用基于光学光热红外技术(O-PTIR)的新一代非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究这两种材料结合的方式和内在机理。图1. 非接触亚微米分辨红外拉曼同步测量系统—mIRage结构示意图光学光热红外技术(O-PTIR)是一种新兴的光谱分析技术,可以提供几百纳米尺度上高空间分辨的振动光谱,且远低于传统红外显微镜的衍射限(~10-20 μm)。在O-PTIR光谱学中,高频率调制下的强红外光束源,如量子联激光器(QCL),用于照射样品。当红外光束波数与样品分子振动频率相匹配时,红外光被吸收,能量被转化为热。当被激发的分子回到基态时,温度会以光源调制的频率发生波动,从而引发相应的体积变化(光声效应)和折射率变化(光热效应)。这些信号可被具有远低于传统红外源空间衍射限的高度聚焦的可见激光束所探测,同时在同一位置上伴随O-PTIR信号产生一个拉曼散射信号,从而实现真正的同时红外吸收和拉曼散射测量,并具有亚微米的空间分辨率。O-PTIR作为一种新型的光谱技术,具有传统FTIR显微镜不可比拟的优点,并克服了许多限制。先,O-PTIR可以提供空间分辨率约为500 nm的红外谱图,远远超过了典型的红外衍射限空间分辨率,且不依赖于入射红外波长。更重要的是,它能够以反射/非接触(远场)工作模式简单快速的生成高质量的类似于FTIR的谱图,从而避免了制备样本薄切片的必要,且光谱与商用FTIR数据库搜索完全兼容和可译。另外,即使样品中包含易产生荧光干扰的组分(压制拉曼信号或造成其饱和),O-PTIR的可调制信号收集特性也确保它完全不受任何荧光的影响。IR和Raman在O-PTIR方法的结合下,可以充分利用这两种互补性技术的优势,实现同步的红外吸收和拉曼散射测量,并相互印证。该工作中,作者先对这PHA和PLA的结合面进行了固定波数下的红外成像(图2)。通过对比可以发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用O-PTIR技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图2. 使用O-PTIR技术实现PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图3)。从羰基(C=O)伸缩振动区和指纹区(图3 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图3 C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图3. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合O-PTIR图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)被用来分析羰基拉伸区域采集到的红外谱图(图4A和4B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过O-PTIR技术对该区域进行了同步红外和拉曼分析(图4C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。图4. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域同步O-PTIR红外和拉曼光谱分析(左为红外,右为拉曼)。参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure, DOI: 10.1016/j.molstruc.2020.128045.
  • 科学家为环境条件下的多维测量定制原子力显微镜
    原子力显微镜(AFM)是一种表面表征方法。AFM中的关键元件是一个锋利的探针尖端,连接在力传感换能器上。在测量产生的相互作用力的同时,尖端相对于样品进行扫描。作为样品位置函数的映射原则上允许对表面结构进行成像。此外,还可以获得许多其他相互作用,如局部化学力和静电力。此外,将不同刺激整合到AFM测量中的能力(例如,温度依赖性、紫外线照射等)使得能够研究不同的实验效果。按时间顺序,AFM操作可分为两种:静态(也称为接触)和动态模式。接触操作模式依赖于探针的直接偏转测量。通过了解力传感换能器(即悬臂)的弹簧常数,可以直接恢复力。因此,接触模式易于操作,结果直观。然而,局部程度是由尖端和样品之间建立的接触面积定义的,该接触面积可以多达数百纳米正方形。此外,还有机械不稳定性,其中吸引的尖端-样品相互作用克服了悬臂的刚度,也称为跳跃接触。引入了动态操作模式来解决接触模式的局限性。动态操作模式的基本思想依赖于对悬臂的谐波振荡的解调,以控制尖端-样本分离。调幅(AM)是最广泛使用的动态操作模式之一。AM基于振荡的解调以恒定的激励信号驱动悬臂时,激励信号和振荡信号之间的相位差、振幅和/或相位差。仅涉及一个控制回路来控制AM-AFM中恒定激励信号的尖端-样本分离。因此,AM-AFM的使用相对简单。尽管AM-AFM易于实现,但它在机械上受到限制,特别是在真空条件下。更具体地说,振荡幅度的稳定时间与悬臂的质量因子成比例。因此,由于在真空条件下缺乏粘性阻尼,AM调制的使用是不可行的。此外,超出现有AFM硬件能力的机械不稳定性和振幅变化阻碍了传统AM-AFM在真空条件下的使用。AM-AFM的替代品是调频原子力显微镜(FM-AFM),它基于尖端-样品相互作用下悬臂共振频率的解调。FM-AFM消除了AM-AFM的限制;然而,它需要一个相对复杂的控制架构,因为激励信号由于尖端-样本相互作用而变化。FM-AFM通常在真空条件下使用,因为信噪比随着高质量因子的提高而提高;然而,它也可以在环境下甚至在液体环境中使用。FM-AFM能够以高分辨率测量尖端-样本相互作用力,即作用力为皮牛顿,距离为皮米。此外,随着原子工程尖端的最新进展,有可能评估不同原子侧的直接化学表征。除了FM-AFM的精确力和距离控制外,FM-AFM还利用其时间分辨测量的潜力覆盖了AM-AFM,其中尖端-样本相互作用力是作为时间的函数测量的。然而,已经从理论上证明并通过实验验证了基于FM的测量的时间分辨率不受机械限制。在这里,科研人员展示了具有新的硬件和软件集成的商业原子力显微镜系统的定制。尽管最初的设置,VEECO的EnviroScope扫描探针显微镜(SPM)带有NanoScope®IIIa控制器,具有用户友好的功能(例如,易于访问样品和尖端以及样品和/或尖端的温度控制),但它只能进行接触模式和基于AM AFM的形貌测量,并具有原始的力谱能力。我们实现了一个锁相环、一个高压放大器和一个新的显微镜控制器,用于FM-AFM的自动测量。我们用环境条件下的实验来说明我们的定制。更具体地说,我们进行了FM-AFM形貌实验、接触电势差测量、基于FM AFM的力谱测量、时间分辨原子力显微镜测量和跨台阶边缘的二维力谱测量。尽管每个商业系统都有自己的特点(例如,驱动步进电机进行粗略处理,访问所有数据信号以及高压信号的能力,以及用于样本定位的摄像头连接),但许多(商业)系统也可以进行类似的升级/定制。因此,我们相信我们的方法将对其他扫描探针显微镜有用。
  • 奥林巴斯智能激光显微镜,亚微米3D测量检测新体验
    随着工业制造水平的不断提高,制造出的各类工业产品也越来越智能化,产品的升级随之而来的是产品的检测要求也越来越精细,对检测的设备也提出了更高的要求,尤其是半导体、平板显示、电子器件、高精密电路板制造以及材料等领域,所需要的显微镜检测设备越发精细化,不仅要极其精确还得智能。在众多的显微镜公司及显微镜产品中,奥林巴斯公司是世界中具有先进光学技术的代表企业,多年来一直在显微镜领域攻克难关,进行光学技术的创新,推出了与时俱进的奥林巴斯激光显微镜OLS5100,颠覆了传统激光显微镜,将大数据、科技智能等高端技术融入了新一代的3D测量激光显微镜中,助力我国工业领域的发展。奥林巴斯LEXT OLS5100是全新的一代激光显微镜,它可观察纳米范围的台阶,可测量亚微米级别的高度差,还可测量从线到面的表面粗糙度,在这些方面上的测量上,OLS5100通过它的智能物镜选择助手和智能实验管理助手,以非接触、非破坏的观察方式轻松实现3D观察和测量,容易、准确、快速!何为智能物镜选择助手?它如同机器人一样,给它下达指令,就能给你完成你想要的目的。智能物镜助手也一样,它能帮助您确定哪款物镜最适合用于样品表面的粗糙度测量。它通过三个步骤就能完成你对物镜的选择:首先,启动智能物镜选择助手功能。 第二,点击开始。第三,它就会确定并告诉你所选择的物镜是否适合当前被检测的样品。这样一来,就能顺利减少因错误选择物镜造成的实验时间浪费,同时还能让测量结果保持稳定,不受操作员技能水平的影响。智能实验管理助手,它是一个帮助用户管理实验计划、采集和分析的软件。在测量过程中可根据软件生成的定制实验计划扫描样品,所有的检测分析过程全部显示在屏幕上,这样的可视化可让用户在分析中更容易发现问题,优化检测结果,从而节省更多的时间和人力。制造业在变革,智能化转型升级是必然的结果,奥林巴斯不断开拓打造世界先进的测试和测量解决方案,为各行各业提供好用方便的检测武器。而奥林巴斯激光显微镜OLS5100顺应改革潮流,除了出色的激光共焦光学系统获得更加清晰的图像外,还配备了智能物镜选择助手和智能实验管理助手,无需制备样品、非接触面粗糙度分析和高效率的亚微米3D测量强大功能,测量精确、可靠稳定的奥林巴斯激光显微镜成为了制造研发和质量保障的重要设备。
  • 应用分享 | 激光扫描显微镜用于测量锂电池集流体的表面粗糙度
    小至手机和运动手环,大至各种电动汽车,锂离子电池都是其中的关键能源供给装置。锂离子电池重量轻,能量密度大,循环使用寿命长,且不会对环境造成污染。对于锂离子电池来说,电容量是衡量电池性能的重要指标之一。锂离子电池电极的材料主要有铝(正电极)和铜(负电极)。在充电和放电期间,电子转移发生在集流体和活性材料之间。当集流体和电极表面之间的活性材料电阻过大时,电子转移的效率降低,电容量就会减少。若集流体的金属箔的表面粗糙度过大,则会增加集流体和电极表面之间的活性材料电阻,并降低整体电容量。 集流体(左图:铝 右图:铜)如何进行锂电池负极集流体的铜箔粗糙度测定呢? 奥林巴斯提供非接触式表面粗糙度测量的解决方案: Olympus LEXT 3D激光扫描显微镜 奥林巴斯 OLS5000 激光共焦显微镜使用奥林巴斯 OLS5000 激光共焦显微镜,能够通过非接触、非破坏的观察方式轻松实现3D 观察和测量。仅需按下“Start(开始)”按钮,用户就能在亚微米级进行精细的形貌测量。 锂电池负极集流体的铜箔粗糙度测定使用奥林巴斯 OLS5000 显微镜测量粗糙度时,用户会得到以下三种类型的信息:粗糙度数据,激光显微镜3D彩色图像和高度信息以及光学显微镜真实彩色图像。这让使用人直观的看到粗糙度数据。同时,使用人可以从数据中了解集流体表面的状态。通过观察这些图像,也可以观察到实际的表面形貌。产品优点与特点 非接触式:与接触式粗糙度仪不同,非接触式测量可确保在测量过程中不会损坏易损的铜箔。这有助于防止由于样品损坏而导致的数据错误。专用物镜:LEXT OLS5000使用专用的物镜,因此您可以获得在视场中心和周围区域均准确的数据。平面数据拼接:数据可以水平拼接,从而可以在大区域上采集数据。由于拼接区域的数据也非常准确,因此与传统的测量方法相比,可以更高的精度获取电池集流体的粗糙度数据。超长工作距离:载物台水平范围为300 mm×300 mm使您可以测量较大的样品,例如汽车电池中的集流体,也不需要制备样品就可以在显微镜下观察。OLS5000显微镜的扩展架可容纳高达210毫米的样品,而超长工作距离物镜能够测量深度达到25毫米的凹坑。在进行这两种测量时,您只需将样品放在载物台上即可。
  • 十月非光学显微镜中标盘点出炉
    据不完全统计,10月份中国政府采购网上与扫描电镜、透射电镜、扫描探针、电子显微镜和能谱仪中标相关的词条有31条,其中可统计到的非光学显微镜中标24套,中标金额超1.7亿。科研院所是10月份非光学显微镜采购的主力军,金额超过10月份非光学显微镜总金额的50%;10月份非光学显微镜进口率100%,FEI表现突出。详细情况如下:从非光学显微镜的采购单位看10月采购非光学显微镜的单位共有17家,高校最多,有10家,其次是科研院所,共7家,医疗机构和其他机构各1家。各类型采购单位的数量各采购单位金额占比 从数量和金额两个方面综合来考虑,科研院所仍旧是10月份非光学显微镜的采购主力,5家科研院所共采购5套仪器,中标金额共计9672.9768万元,约占10月份非光学显微镜市场总额的54%。单台最高出自科研院所,北京生命科学研究所以7379.2万元的价格购得FEI Krios G4冷冻电子显微镜及制样环境配套系统一套。高校共采购仪器17套,中标金额总计7628.434179万元,约占10月份非光学显微镜市场总额的43%,其他采购单位金额较小。从非光学显微镜的中标品牌看10月份能统计到品牌的中标仪器有24套,从数量上来说。赛默飞中标仪器的数量最多,共10套,其次是日立,4套,飞纳为3套。各品牌中标仪器数量各品牌中标金额占比 从中标仪器的金额上看,FEI在10月份所占市场份额最高,以9932.7万元的金额占据了10月份约55%的市场份额,除上述“单台最高”出自FEI外,单台第二也同样出自FEI,北京科技大学以2553.5万元的价格采购一套FEI Thermoscientific Spectra 300 双球差校正透射电子显微镜一套。其次是赛默飞,总中标金额为5877.4026万元,约占33%。 众做周知,FEI已于几年前被赛默飞收购,这就相当于赛默飞世尔公司的产品占据了10月份非光学显微镜88%市场份额,是10月份当之无愧的第一名。中标仪器产地金额占比 从中标仪器的产地看,10月份可统计的中标的非光学显微镜100%为进口仪器,总金额为17888.31098万元。从非光学显微镜的中标类型看10月份成交数量最多的非光学显微镜类型是扫描电镜,共成交15套,;其次是能谱仪和透射电镜,数量分别为4套、3套。各类型非光学显微镜中标数量各类型非光学显微镜中标金额占比 从中标金额上看,10月份中标金额最多的是非光学显微镜类型是电子显微镜,可统计总金额为7489万元,约占10月份非光学显微镜总金额的42%;中标金额占比第二的是透射电镜,总金额为5319.668万元,约占总额的30%。
  • Park纳米科学原子力显微镜系列讲座培训(1) I 原子力显微镜在纳米研究中的应用:AFM的成像原理
    Park纳米科学原子力显微镜系列讲座培训一原子力显微镜在纳米研究中的应用:AFM的成像原理2021年5月25日(周二)北京时间下午3:30-4:30原子力显微镜(AFM)作为扫描探针显微镜家族的一员,具有纳米级的分辨能力,其操作容易简便,是目前研究纳米科技和材料分析的最重要的工具之一。此外原子力显微镜还具有摩擦性能,纳米机械性能和电学性能等高级性能。 在本研究中,我们将讨论接触模式、非接触模式和轻敲模式等原子力显微镜使用中的不同操作模式;内容将概括到从原子力显微镜测量中常用的原子相互作用的基本理论,到原子力显微镜的主要硬件组成。本讲座还将讨论各模式的关键点(如设定值、反馈)。 在接触模式下,系统会给探针恒定的力作为设定的基准点也就是设定点来物理接触样品。扫描期间为了维持这个设定点而进行反馈。在三种模式中,原理相对简单。然而,由于接触模式很容易对针尖和样品造成损伤。相比之下,非接触模式允许在不接触表面的情况下进行形貌测量。因此,可以很好地保护针尖和样品。轻敲模式与非接触模式原理相似,在扫描过程中,探针轻触样品表面,以获得测量材料属性分布的额外信息(例如模量分布)。 本次讲座主要针对AFM原理的基础知识,帮助大家了解探针和样品之间的相互作用。由三种模式测出的图像对比也将在讲座中呈现。报告人 : Park原子力显微镜应用科学家Chris Jung Chris Jung, is an Application Scientist for Park Systems Korea - Research Application Technology Center (RATC) department. He received his Master’s degree in Physics from the Kyung Hee University, and his Bachelor’s degree in Physics from Dankook University in South Korea. His major project includes Evaluation of Kelvin Probe Force Microscopy (KPFM) at the perspective of resolution.Park原子力显微镜系列讲座列表(5月-9月) 想了解更多详情,请关注微信公众号:Park原子力显微镜 400电话:400-878-6829 Park官网:parksystems.cn
  • AM:低温强磁场磁力显微镜助力化合物薄膜中纳米尺度非共线自旋结构研究取得重要进展
    近年来,磁性斯格明子受到了广泛的关注。这些拓扑保护的非共线磁性自旋结构纳米粒子稳定在反转对称破坏的磁性化合物中,是手性洛辛斯基-莫里亚相互作用(DMI)以及铁磁交换相互作用的结果。为广泛研究的自旋结构先是在单晶和外延薄膜中非中心对称B20化合物中观察到的类布洛赫斯格明子,其次是在超薄铁磁层和重金属层形成的薄膜异质结构中的斯格明子。对非共线自旋结构的观察很多都是利用从晶体中提取的薄片进行的。磁性纳米粒子,即反斯格明子和布洛赫斯格明子,已被发现同时存在于由具有二维对称的反四方赫斯勒化合物形成的单晶片层中。然而,制作四方赫斯勒化合物的薄膜以及在其中的自旋结构测量仍然具有挑战性。图1. 100K温度MFM成像研究35 nm厚Mn2RhSn薄膜中纳米磁性结构的演化 通过各种直接成像技术可以在真实空间中观察到斯格明子。近期,德国科学家Parkin等人使用低温强磁场磁力显微镜(MFM)成像来研究[001]取向的Mn2RhSn薄膜中的磁性结构。图1展示了在100K下随磁场增加而变化的典型MFM结果。为了进一步研究Mn2RhSn薄膜中观察到的纳米物体的稳定性,在矢量磁场存在下对35 nm厚的薄膜进行了MFM测量(图2)。图2 :200K温度下,35 nm厚Mn2RhSn薄膜中纳米粒子在矢量磁场中的稳定性科学家在很大的温度范围内(从2k到280K)和磁场的作用下观察磁性纳米物体,从研究结果可知,形成不同的椭圆和圆形的大小孤立粒子取决于场和温度(图3)。此外,借助于由MFM产生的局部磁场梯度,科学家还演示了这些纳米粒子的产生和湮灭(图4)。图3. 35 nm厚Mn2RhSn薄膜中, MFM研究不同温度下的纳米粒子, 图a-f分别是5K, 50K, 100K, 150K, 200K, 250K温度下MFM成像数据 图4. 基于MFM显微探针技术控制35 nm厚Mn2RhSn薄膜中纳米粒子的产生和湮灭综上所述,由磁控溅射形成的Mn2RhSn外延薄膜中存在磁性纳米粒子。类似于单晶薄片,这些纳米粒子在广泛的尺寸范围内以及在磁场和温度下都具有稳定性。然而,纳米粒子并没有形成明确定向的阵列,也没有任何证据发现螺旋自旋结构,这可能是薄膜中化学顺序均匀性较差导致的结果。然而,在外延薄膜中发现了沿垂直晶体方向的椭圆扭曲纳米粒子,这与在单晶片中观察到的椭圆布洛赫斯格明子一致。因此,这些测量结果为Mn2RhSn薄膜中非共线自旋结构的形成提供了强有力的证据。实验结果表明,在这些薄膜中,可以利用磁性的局部磁场来删除单个纳米物体,也可以写出纳米粒子的集合。 低温强磁场原子力/磁力显微镜attoAFM/MFM I主要技术特点:温度范围:1.8K ..300 K磁场范围:0...9T (取决于磁体, 可选12T,9T-3T矢量磁体等)工作模式:AFM(接触式与非接触式), MFM样品定位范围:5×5×4.8 mm3扫描范围: 50×50 μm2@300 K, 30×30 μm2@4 K 商业化探针可升PFM, ct-AFM, CFM,cryoRAMAN, atto3DR等功能 图5. 低温强磁场原子力磁力显微镜以及attoDRY2100低温恒温器 参考文献:[1]. Parkin et al, Nanoscale Noncollinear Spin Textures in Thin Films of a D2d Heusler Compound,Adv. Mater. 2021, 33, 2101323.
  • 【综述】qPlus型非接触原子力显微技术及应用
    p style="text-indent: 2em "本文主要介绍了qPlus型非接触原子力显微镜(NC-AFM)的基本工作原理,qPlus NC-AFM的两种工作模式的应用:高分辨成像获得分子内和分子间原子结构和力谱测量获得表面元素及成键力信息,以及NC-AFM在表面在位化学反应、低维材料、三维成像探测、开尔文探针力显微镜(KPFM)等方面的应用。/psection style="box-sizing: border-box text-align: justify "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box "section style="display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box "section style="text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box "section style="text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by="xiumi.us"p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strong style="box-sizing: border-box "1/strong/p/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box "section style="margin: 3px 0% 0px position: static box-sizing: border-box " powered-by="xiumi.us"section style="font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box "p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strongspan style="box-sizing: border-box "NC-AFM工作原理/span/strong/p/section/section/section/section/section/sectionp style="text-align: justify text-indent: 2em "NC-AFM分为振幅调制和频率调制两种工作模式,超高真空体系中基于qPlus传感器的NC-AFM一般使用频率调制模式。频率调制AFM的基本工作原理是针尖悬臂在外力的驱动下以自由共振频率fsub0/sub简谐振动,振幅(A)保持恒定,当针尖逼近样品时,针尖-样品之间的相互作用力梯度发生变化,引起悬臂共振频率的偏移(Δf),利用Δf和针尖高度的关联进行成像。/pp style="text-align: justify text-indent: 2em "NC-AFM的信号检测电路(图1A)主要由振幅控制模块和频率测量模块两部分组成。针尖悬臂振动信号经过带通滤波器后分成三路:一路信号进入交流直流转换器,将悬臂振幅转化为直流信号,并与振幅设定值比较(两者的差为能量耗散),通过比例-积分-微分控制器(PID)控制,调整激励信号,使得AFM悬臂保持恒定振幅振动;一路信号输入到相位调节器,经过π/2的相位移后返回激励陶瓷,与交流直流转换器共同组成振幅控制模块(灰色虚线框标记部分);另一路信号经过基于锁相环(PLL)的频率调制解调器后得到频率偏移信号,与控制针尖高度的模块相结合进行不同模式的成像。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/a2bacf3f-6fd9-4827-86ff-9a0eda9e5d52.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "strong图1 非接触原子力显微镜的工作原理/strong/pp style="text-align: justify text-indent: 2em "类比于STM工作模式有恒电流和恒高度两种模式,NC-AFM也具有恒频率偏移和恒高度两种主要成像模式。在恒频率偏移成像模式下,通过振幅反馈回路使音叉悬臂保持恒定振幅,通过频率反馈回路调整针尖和样品间的距离保持频率偏移恒定(Δf),所获得图像为恒定力梯度下的样品表面形貌高度图。在恒高度成像模式下,断开频率偏移控制的反馈回路保持针尖高度恒定,探测扫描过程中的频率偏移变化,所获图像为恒定高度下的样品表面力梯度图。/pp style="text-align: justify text-indent: 2em "NC-AFM之所以能够达到亚分子级分辨,甚至亚原子级分辨率,主要原因是qPlus传感器(如图1所示)的引入。qPlus传感器使用高弹性常数(~1800 N· msup-1/sup)的石英音叉作为悬臂代替传统AFM使用的硅悬臂,石英音叉在针尖-样品的作用力可以以非常小的振幅( 100 pm)稳定成像。此外,qPlus传感器还具有以下优势:qPlus传感器使用导电的金属针尖,可以同时获得STM和AFM信号,可以给出更丰富的样品信息;qPlus音叉使用的石英晶体是压电晶体,振动时会产生和振幅成比例的压电信号,属于自检测传感器,不需要激光检测,适用于极低温工作环境;相比于传统硅悬臂,qPlus传感器体积较大,属于宏观物体,易于集成功能化的针尖。/pp style="text-align: justify text-indent: 2em "针尖-样品之间的总作用力是吸引力和排斥力加和,如图1C所示。从作用范围的不同可以分为长程力和短程力:其中长程力包括范德华力、静电力、磁力;短程力包括化学成键力和泡利排斥力。范德华力产生的原因是原子与原子之间的局域瞬时偶极作用;针尖和样品间的电势差,或功函数差可以产生长程的静电力;在微观上长程的静电力的加和可以产生短程的静电力,其大小随距离指数衰减。短程化学力可分为短程化学成键力和短程泡利排斥力:短程化学成键力衰减长度在化学键长度的量级,由于化学键力很大又相对局域,所以在理想的体系中可以获得很高的分辨;短程泡利排斥力来源于量子力学中电子的量子数不能全同导致的短程排斥力,具有最高的空间局域性。相比于长程力,短程力有更大的力梯度,对Δf的贡献也更大,所以降低针尖的振幅可以一方面大大提高短程力的敏感性,另一方面降低振幅还可以大大降低长程力的贡献,消除长程力的背景。目前认为,在单分子内的原子分辨上 起主要贡献的是泡利排斥力。/psection style="box-sizing: border-box text-align: justify "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box "section style="display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box "section style="text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box "section style="text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by="xiumi.us"p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strong style="box-sizing: border-box "2/strong/p/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box "section style="margin: 3px 0% 0px position: static box-sizing: border-box " powered-by="xiumi.us"section style="font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box "p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strongspan style="box-sizing: border-box "qPlus NC-AFM的工作模式/span/strong/p/section/section/section/section/section/sectionp style="text-align: justify text-indent: 2em "strong2.1 高分辨成像/strong/pp style="text-align: justify text-indent: 2em "实现分子内部单原子的识别是表面显微技术的重要目标。STM可获得原子级的图像,但由于隧穿电流主要探测的是费米面附近的局域电子态密度,因此对于分辨吸附分子内部的原子结构有一定的难度。NC-AFM探测的是针尖与样品原子间的相互作用力,在成像区域起主要贡献的是短程泡利排斥力,其探测的实质为分子内部总电子密度的分布,这使得AFM在理论上具有比STM更高的空间分辨能力。/pp style="text-align: justify text-indent: 2em "为了达到NC-AFM的超高分辨率,针尖需要满足两个条件:一是化学惰性,保证针尖与样品分子之间的弱相互作用力,避免分子被针尖操纵;二是针尖尖端必须尖锐,针尖半径足够小(亚纳米尺度)从而确保可以获得原子级别的分辨,这两个条件保证了针尖可以逼近表面吸附的分子从而达到成像所需的泡利排斥力区域。/pp style="text-align: justify text-indent: 2em "除了能够分辨分子内部的原子结构,NC-AFM技术还被用于化学键键级研究。利用NC-AFM技术识别键级的机制有两种:一是电子密度随键级的增大而增大,在相同高度下高键级区域与针尖之间具有更大的泡利排斥力,因此在AFM图像中呈现更亮的衬度;二是由于化学键长随着键级的增大而减小,结合针尖上修饰的CO分子的偏转作用可以判断其键级大小。由于CO针尖的偏转作用,AFM图像中所有化学键长都被放大,无法利用测量值与理论键长直接进行比较,但可以利用不同位置化学键的测量值进行对比获得其键级信息。/pp style="text-align: justify text-indent: 2em "为了保证针尖及样品的稳定性,大多NC-AFM图像的采集需要在液氦温度,极少数结果在液氮温度下获得。随着技术的进一步发展,德国雷根斯堡大学Giessibl团队于2015年首次在室温下利用qPlus传感器及W针尖获得了苝四甲酸二酐分子的AFM图像。这一成果对于将qPlus NC-AFM技术应用于常温化学反应及分子结构识别等领域具有突破性的意义。/pp style="text-align: justify text-indent: 2em "除了分子内部原子结构和化学键的识别,qPlus NC-AFM也可以识别分子间相互作用。2013年,裘晓辉团队以Cu(111)单晶表面吸附的8-羟基喹啉分子为研究体系,首次利用qPlus NC-AFM技术实现了实空间对分子间氢键的成像。卤键是一种类似氢键的分子间的相互作用,是由卤素原子的亲电位点(称为σ-hole)和另一原子的亲核位点之间形成的非共价相互作用。Cl、Br、I等卤素原子形成卤键的键能逐渐增大,F原子由于难以形成σ- hole,因此F原子之间认为没有卤键存在。/pp style="text-align: justify text-indent: 2em "分子间氢键和卤键被实空间观测对于研究分子间弱相互作用力具有重要意义。氢键之所以能够被NC-AFM观测到,最初的解释是由于氢键的形成增大了该处的电子密度,因此针尖可以探测到增强的泡利排斥力,故而可以获得氢键成像。之后,捷克科学院Hapala团队利用CO针尖建立模型模拟发现,单纯利用针尖尖端CO分子所受范德华力引起的偏转,也可以实现上述结果显示的分子间氢键衬度特征。由于在图像模拟中未考虑分子间电子密度的作用,因此他们认为NC-AFM图像中针尖偏转对分子间作用力成像起了主要作用。随后,芬兰阿尔托大学Liljeroth和荷兰乌特勒支大学Swart等利用二对吡啶基乙炔(BPPA)分子自组装体系对该问题进行了进一步的研究。BPPA分子利用分子间氢键形成四聚体结构(如图3 (G, H)所示),示意图显示上下两个BPPA分子之间未直接形成化学键,但相对的两个N原子之间在NC-AFM图像中出现亮线。利用CO软性针尖进行Lennard-Jones势模拟图像与实验结果相似。因此他们认为针尖偏转在AFM成像上具有重要的影响:一方面使化学键的AFM衬度锐化,易于得到分子内部原子结构,另一方面在相邻非常近但未成键的两原子之间,偏转效应会使图像中出现成键的假象。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/1885fe3a-f255-4b08-972e-86fe121a072d.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "strong图3 分子间化学键高分辨成像/strong/pp style="text-align: justify text-indent: 2em "虽然NC-AFM已经实现了亚原子级别的高分辨成像,但其成像机制在国际上仍具有一定的争议,针尖偏转和电子密度在分子间成像上的贡献孰多孰少,亦或是某一因素起单独作用,目前并没有定论。解决这一问题也是现在NC-AFM技术最重要的目标之一,也是该技术应用于研究分子间成键和弱键相互作用体系的基本前提。/pp style="text-align: justify text-indent: 2em "strong2.2 针尖-样品作用力谱测量/strong/pp style="text-align: justify text-indent: 2em "NC-AFM的力谱功能可以定量测量针尖-表面之间的相互作用力和能量,是研究高分辨成像和原子/分子操纵机理的关键。力谱是在特定的位置上记录针尖-样品相互作用力梯度(即Δf)与针尖-表面间距(d)的关系,即Δf(d)曲线,利用Sader和Jarvis提出的转换关系可以将Δf(d)曲线转化为F(d)曲线。当针尖与样品之间距离较远时,其作用力包括宏观尺度的范德华力、针尖尖端与样品的局域范德华力、偶极或带电样品引起的静电力,短程的泡利排斥力在此时可以忽略。针尖与样品之间距离较近进行成像扫描时,泡力排斥力对成像起主导作用,但长程的范德华力和静电力仍有作用(图4A)。因此,定量研究针尖与样品间的短程泡利排斥力时需要在总力谱的基础上扣除长程力背景(图4B)。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/e4d6a009-363d-4afe-92ca-e5ff9242a84a.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "strong图4 针尖-样品间作用力测量/strong/pp style="text-align: justify text-indent: 2em "2001年,瑞士巴塞尔大学Lantz团队首次在低温下利用力谱技术测量了Si针尖与 Si(111)-(7× 7)表面Si原子悬挂键间形成的共价键力的大小为2.1 nN,如图4(C,D)所示。这一结果是化学成键力测量上的突破性进展。2007年,日本大阪大学Morita团队在室温下利用不同结构的针尖测量了Si基底上沉积Sn分子后针尖与Si原子和Sn原子间的力谱,将每种针尖测得的短程力谱根据Si原子力谱的最大吸引力进行归一化后得到Sn原子和Si原子力谱的最大吸引力比值为0.77 : 1 (图4(E, F))。同样的方法可得到Pb原子和Si原子力谱的最大吸 引力比值为0.59 : 1。基于以上结果,在Si(111)基底上Si、Sn、Pb合金材料上通过区别不同原子与针尖之间吸引力最大值的差别,可以实现Si、Sn、Pb化学元素的识别(图4(G,H))。NC-AFM的成像技术和力谱测量相结合,有利地推进了扫描探针技术对尺度空间和能量空间分辨率的提高,为研究原子或分子间相互作用及化学键的形成具有重要意义。值得注意的是,以上提到的研究结果都早于qPlus传感器的发明,是利用悬臂梁针尖测量所得。/psection style="box-sizing: border-box text-align: justify "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box "section style="display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box "section style="text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box "section style="text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by="xiumi.us"p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strong style="box-sizing: border-box "3/strong/p/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box "section style="margin: 3px 0% 0px position: static box-sizing: border-box " powered-by="xiumi.us"section style="font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box "p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strongspan style="box-sizing: border-box "qPlus NC-AFM的应用/span/strong/p/section/section/section/section/section/sectionp style="text-align: justify text-indent: 2em "strong3.1 针尖修饰对成像的影响/strong/pp style="text-align: justify text-indent: 2em "在AFM成像研究中,针尖的原子组成和几何结构对成像结果具有重要影响。通常实验中可以通过针尖脉冲,降低扫描高度或撞针的方法进行针尖处理,但这些处理方法获得的针尖重复性不高且难以确定针尖的具体原子结构。而纵向原子/分子操控技术可以高效地将特定的分子或原子从样品表面提取,修饰到针尖尖端,提高AFM成像的分辨率。已经实现可以进行针尖修饰的原子/分子包括H原子、卤素原子(Cl,Br)、惰性气体分子(Ar,Kr,Xe)及小分子如CO、NO、CH4等。/pp style="text-align: justify text-indent: 2em "目前,对于表面吸附分子的结构识别和化学反应研究一般选择CO分子修饰的针尖。修饰步骤如下:首先将CO分子沉积在基底表面,将NC-AFM针尖置于CO分子上方,在针尖方向施加-2.8 V的恒定电压激发CO分子跳到针尖端,若重复扫描图像发现CO分子消失且分辨率得到极大地提高则认为CO分子已修饰到针尖尖端。尖端修饰的CO分子的偏转极大地提高了分子内部原子结构的AFM分辨率,但同时也带来了图像扭曲的问题(图5A)。惰性气体如Xe原子可以在金属基底、NaCl基底或分子自组装网格上吸附并修饰针尖,将针尖置于Xe原子上方,下压0.3 nm,继续扫描发现该处Xe原子消失,且图像分辨率显著提高,/pp style="text-align: justify text-indent: 2em "证明Xe原子被修饰在针尖尖端。对同一个分子的成像结果显示Xe针尖的分辨率低于CO针尖,但分子成像的扭曲程度比CO针尖小(图5B)。与CO修饰针尖相比,Xe针尖的一个优点是在STM成像实验中避免CO中O原子p波函数态对分子轨道成像的贡献。Kr针尖的制备方法类似Xe针尖,但稳定性比Xe针尖弱。卤素原子的提取方法与Xe原子类似,Cl原子通常来源于NaCl晶体,Br原子通常来源于从有机分子上断键后的游离Br原子。卤素原子修饰的针尖分辨率比CO针尖低,但是图像扭曲程度也较低,这主要是由于卤素原子的偏转效应比CO分子弱(图5(C, D))。Br原子虽然比Cl原子半径大,但成像分辨率相近。Br针尖的优势在于易于制备,并且可以对NaCl上的DBA单分子进行“pulling”模式的横向操纵,这对于其他修饰针尖来说是比较困难的。/pp style="text-align: justify text-indent: 2em "除了以上提到的可与针尖尖端形成较弱成键的分子和原子外,利用O原子与Cu针尖形成CuO针尖,O原子的存在可减弱Cu针尖与样品之间的作用力,同时具有稳定的原子结构,减少针尖偏转对图像成像的影响。如图5(E, F)所示,利用O针尖获得的二蒄(DCLN)分子的AFM图显示分子外围的C原子呈现比分子内部C原子更亮的AFM衬度,这是由于分子外围C原子上具有更高的电荷密度以及与针尖具有更小的范德华吸引力导致,两种原因所占的比例约为30% : 70%。此外,CO针尖进入排斥力成像区域后具有严重的偏转效应,导致对化学键的成像有30%的放大,而O针尖所引起的成像放大效应几乎可以忽略。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/3234dc8f-eb23-4348-a559-cd7e82fa60e7.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "strong图5 不同针尖修饰对成像的影响/strong/pp style="text-align: justify text-indent: 2em "strong3.2 对低维纳米材料的研究/strong/pp style="text-align: justify text-indent: 2em "低维材料是材料学科和物理化学研究中的重要研究方向,其中以石墨烯为代表的一维/二维材料的表面原位合成研究至关重要。对于表面低维材料的结构研究多以STM为主,但是对于石墨烯以及石墨烯纳米带(GNRs)这类具有较强电子离域性质的材料来说,STM图像呈现的是材料整体的电子态信息,难以直观地确定材料的原子结构、缺陷和边界结构等。NC-AFM 技术有效地解决了这些问题。由于石墨烯具有化学惰性,且尺寸较大不易被针尖操纵,所以可以直接用金属针尖对石墨烯进行NC-AFM成像。/pp style="text-align: justify text-indent: 2em "图6(A,B)是分别用W针尖和CO针尖对Ir(111)基底上的石墨烯进行成像,可以识别长程的摩尔条纹(周期~2.5 nm)。活性金属针尖扫描时,石墨烯晶格呈现六方对称的点状,在该状态下降低针尖高度,图像会发生反转呈现蜂窝状晶格。而电学非活性的CO针尖扫描时,石墨烯在所有高度下只呈现蜂窝状晶格。对于GNRs、NC-AFM的成像能够提供更为精细的结构信息,图6C左下角是GNRs的STM图像,条带区域呈现均一的电子态。而相对应的利用CO针尖扫描获得的 AFM 图像中可以清晰的观测 GNRs的原子结构。该GNRs是由六排碳原子组成的具有锯齿型边界的纳米带,简称6-ZGNRs (6-zigzag graphene nanoribbons),边界C由H原子终止。对6- ZGNRs进行边界修饰可以得到图6D所示的原子结构,在 6-ZGNRs 的两个锯齿型边界上分别修饰了周期性的荧蒽基团,边界的C原子仍由H原子终止,而不以自由基形式存在。NC-AFM图像还可以分辨GNRs中的掺杂原子,如图6E所示,GNRsspan style="text-indent: 2em "中衬度较暗的区域是对位的两个B原子掺杂(标记为红点),呈现与C原子差别较大的AFM衬度不仅是由于B原子的缺电子特性导致该位点的电子密度较低,更主要的原因是由于在该结构中B原子在高度上比C原子低30 pm53。此外,NC-AFM还可以研究其他类型的缺陷态,例如图6F所示的两GNRs交界处形成的非完美融合中的五七元环结构等。以上这些结构信息对研究GNRs的物理性质和边界态结构具有重要意义。除了石墨烯、石墨烯纳米带等导电材料,NC-AFM对于氧化物、氮化物等绝缘材料的结构研究也具有一定的优势。/span/pp style="text-align: center text-indent: 0em "span style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/08f77a2e-f030-4be2-8c18-5fefb84c84d2.jpg" title="6.jpg" alt="6.jpg"//span/pp style="text-align: center "strong图6 q Plus NC-AFM在低维纳米材料中的应用/strong/pp style="text-align: justify text-indent: 2em "利用qPlus NC-AFM研究绝缘材料表面原子结构的工作,大多是基于金属单晶表面的超薄层样品,只有少数研究是基于严格意义上的体相绝缘体材料。从基本原理上分析,qPlus NC-AFM用于研究体相绝缘材料是可行的,但在实际应用中存在一定的困难。首先,体相绝缘材料与针尖之间具有电势差,由于qPlus针尖弹性常数大,工作振幅极小( 100 pm),需要在较小的针尖-样品距离下才能得到成像,而在此状态下,针尖-样品间电势差引起的静电力无法估量;第二,针尖形状和尖端修饰的分子对AFM成像分辨率具有极大的影响,纯绝缘体表面很难对针尖进行原位处理或修饰。因此目前研究的体相绝缘体材料大多是平整度较高的晶体,例如NaCl等。如何克服以上难点将qPlus NC-AFM更广泛地应用于体相绝缘体材料对于一些催化体系的活性位点、燃料电池材料的工作机制的研究具有重要意义。/pp style="text-align: justify text-indent: 2em "strong3.3 表面化学反应研究/strong/pp style="text-align: justify text-indent: 2em "观测化学反应过程中分子和原子的重组对催化机理研究具有重要意义,也是表面物理化学研究中的巨大挑战。2013年,加州大学伯克利分校的Crommie和Fischer等利用NC-AFM首次观测了Ag(100)基底上oligo-(phenylene-1,2-ethynylenes)单分子的内部原子结构以及在该表面的单分子环化反应过程。反应物和产物分子的STM图无法直观解析分子结构(图7A-C),但相对应的NC-AFM图像(图7D-F)可以提供分子内部的原子排列的结构信息。除了分子中原子位置和共价化学键之外,反应物分子中两苯环之间的C≡C键也可以清晰地分辨,这是由于三键区域具有较高的电子密度导致。而分子外围AFM衬度的增强则是由与该处具有较小的范德华吸引力背景,离域π电子体系边缘处的电子密度增强和分子平面的扭曲等因素造成的。产物分子中可以清晰地分辨分子环化反应后形成的四元、五元、六元环以及分子边缘C原子连接的氢原子。通过AFM高分辨图像确定的原子结构证实反应物和多种产物具有同样的分子式,因此该表面环化反应是反应物分子的异构化过程。随后,他们用同样的方法研究了oligo-(E)-1,1′-bi(indenylidene)分子在Au(111)表面的环化和双自由基聚合反应和 1,2- bis(2- ethynyl phenyl) ethyne分子的二聚体偶联和环化过程(图7G-I),并通过反应中间产物确定了该反应的复杂路径,并提出该反应路径不仅决定于表面能量耗散,也取决于反应熵增加。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/1e218ed1-ae02-4059-addd-aad91a26105a.jpg" title="7.jpg" alt="7.jpg"//pp style="text-align: center "strong图7 q Plus NC-AFM在表面化学反应中的应用/strong/pp style="text-align: justify text-indent: 2em "目前,NC-AFM技术被越来越多的应用到表面化学反应领域,在原子、分子的层次研究化学反应的机制。/pp style="text-align: justify text-indent: 2em "strong3.4 三维成像技术/strong/pp style="text-align: justify text-indent: 2em "由于qPlus NC-AFM成像的主要贡献来源于针尖与样品之间的短程泡利排斥力,因此针尖与样品间工作距离非常近,通常在1 nm以内,这导致qPlus NC-AFM的应用主要局限在平面分子或二维结构表面等起伏较小的材料样品体系。近年来,人们致力于发展qPlus NC-AFM在三维成像上的应用,并拓展了多种不同的方法。/pp style="text-align: justify text-indent: 2em "2015年,德国雷根斯堡大学Albrecht团队利用CO针尖研究了非平面分子二菲并[9,10-b:9′,10′- d]噻吩(DPAT)的表面吸附和环化反应。DPAT分子的两个分支由于空间位阻的作用无法存在于同一平面内,当分子吸附在Cu(111)表面时,一个分支与表面平行,另一分支的两个苯环与表面分别形成10° 和23° 的夹角,如图8B左图。为了能够准确地表征与平面具有一定夹角的分子结构,将扫描平面进行一定的旋转,直至获得非平面区域清晰的原子结构图像。利用这一方法一方面可以有效地得到立体分子原子结构,另一方面可以根据旋转角度确认分子立体部分与平面部分之间的夹角。但对于夹角太大的立体分子不能单纯利用该方法确认分子内部夹角,因为针尖CO的偏转会对成像分析具有一定的影响。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/4f8a208b-efb0-4fd2-aa9c-f3c858367d6e.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "strong图8 q Plus NC-AFM的三维成像/strong/pp style="text-align: justify text-indent: 2em "对于表面催化或表面在位化学反应,分子在基底上的吸附位点和角度等对催化或反应活性具有重要的影响。由于高度的差异,通常AFM只能够分别分辨吸附分子或基底的原子结构,2015年,日本国家材料科学研究所Moreno团队提出了一种利用多通道AFM同时分辨分子结构和基底结构的方法。首先接通恒Δf反馈回路,对样品表面形貌进行一次AFM扫描(图8D,F),然后断开反馈回路,将针尖沿一次扫描的形貌路径进行二次扫描,但二次扫描需要在针尖上施加高度补偿将针尖置于更靠近样品的位置以保证获得清晰的原子分辨图像(图8E,G),他们利用这一方法同时获得基底锐钛矿(101)和其表面吸附的并五苯分子和C60分子的原子结构。这种方法有望被应用于非平面纳米结构的研究,例如纳米管、纳米颗粒、聚合物和生物分子等。/pp style="text-align: justify text-indent: 2em "strong3.5 表面电荷分布的测量/strong/pp style="text-align: justify text-indent: 2em "通过测量不同电荷状态下针尖与样品的接触势差,即KPFM中的局域功函数差,可以实现对表面分子或原子/离子电荷分布或带电性质的测量。2012年,Mohn团队采用qPlus-AFM的KP-FM成像模式,通过测量萘酞菁分子内部的局域功函数差,获得了分子内的电荷分布的亚分子分辨图像(图9A-C)。具体测量模式为将萘酞菁分子所在的区域分为64 × 64个像素点,在恒高模式下,在每个像素点处做Δf(V)谱(在保持针尖-样品间距离恒定下,频率偏移随针尖和样品间偏压变化曲线),得到分子内不同位点的局域接触势差。这对应于分子内不同位点的带电状态或电荷分布,这种方法可以实现对由于氢原子位置改变引起的分子内电荷分布的识别。通过利用CO分子修饰针尖,可以进一步提高分辨率。/pp style="text-align: justify text-indent: 2em "2009年,Gross团队通过针尖施加电压脉冲,让吸附在NaCl薄层上的金属Au和Ag原子分别得到和失去一个电子,得到Au-和Ag+离子。通过比较在中性原子和带电离子上获得的Δf(V)谱,发现中性原子与带电离子的局域功函数差有约30 mV,且正离子和负离子具有相反的局域功函数差,实现了原子不同带电状态的识别和测量。通过针尖操控,可以实现Ausup-/sup离子、Au原子和Ausup+/sup离子的三态电荷调控(图9(D, E))。对于TTF-PYZ2这类自身带有电子给体和受体的双极性分子,利用局域功函数差的测量可以判定分子内电荷转移方向(图9(F-H))。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/685f29b1-7ffe-4236-adcf-e38f614dbfeb.jpg" title="9.jpg" alt="9.jpg"//pp style="text-align: center "strong图9 表面电荷分布测量/strong/psection style="box-sizing: border-box text-align: justify "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box "section style="display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box "section style="text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box "section style="text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by="xiumi.us"p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strong style="box-sizing: border-box "4/strong/p/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box "section style="margin: 3px 0% 0px position: static box-sizing: border-box " powered-by="xiumi.us"section style="font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box "p style="white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box "strongspan style="box-sizing: border-box "总结/span/strong/p/section/section/section/section/section/sectionp style="text-align: justify text-indent: 2em "应用qPlus传感器的NC-AFM使得扫描探针技术在空间分辨率上得到了提升,自从2009年Gross团队首次利用NC-AFM技术得到单分子内部原子结构成像后,该技术进一步应用在化学键键级、分子间氢键、卤键、表面纳米结构的研究中,通过3D NC-AFM技术还可以获得非平面分子的内部结构以及同时获得吸附分子和吸附基底的原子结构。NC-AFM技术对于研究表面原位化学反应、表面催化、低维材料等具有极大的优势。根据NC-AFM技术发展的谱学测量可以根据针尖与不同原子之间作用力的差异,实现对样品表面的原子操纵、元素识别、电荷分布测量等,对表面异质结和界面研究具有重要意义。/pp style="text-align: justify text-indent: 2em "尽管基于qPlus传感器的NC-AFM技术已经获得了相当的发展,但在技术以及应用体系上仍面临以下问题和局限:为了保证图片的信噪比和分辨率,扫描速度相对较慢,由此连带产生热漂移问题,热漂移等问题的存在使仪器需要在液氦温度下工作,成本较高,虽然目前在液氮和室温也得到了分子内部结构的图像,但分辨率与液氦温度下的图像相差甚远;由于STM和NC-AFM电极都集成在qPlus传感器上,工作时电流信号会对力信号产生串扰,与此同时电流的存在会在针尖和样品之间引入静电势,影响力信号的测量;对于力谱测量,针尖形状对针尖-样品间作用力影响极大,如何合理地扣除背景力,保留化学成键力成分,建立一套有效的力谱测量和分析标准也是亟待解决的重要问题。此外,对于qPlus NC-AFM的成像机制,尤其是考虑CO针尖偏转效应的前提下,仍具有一定的争议,需要更多的实验探索和发展相应的理论进行分析。/pp style="text-align: justify text-indent: 2em "为解决这些问题,科学家们致力于开发更高频的力传感器,优化传感器电路,发展详尽的NC-AFM力谱测量的理论和成像模拟理论,联合NC-AFM与其它技术(如STM、光谱等),在提高空间分辨率的同时进一步提高时间分辨率。NC-AFM的快速发展为物理、化学、材料等研究领域带来了众多突破性的进展。目前,NC-AFM已能够达到亚原子级分辨率,这对在分子/原子尺度研究催化反应机理、化学成键机制等具有绝对优势,可以应用在分子筛、金属纳米颗粒、金属氧化物表面等催化体系的基础研究。/pp style="text-align: justify text-indent: 2em "在未来发展中,NC-AFM与其它表面分析技术的联用将进一步拓宽其研究领域,例如,NC-AFM与STM模式的联用可以研究样品不同的结构和物理化学特性,是全面而深入地研究原子尺度接触问题不可或缺的工具;NC-AFM与光谱技术联用可以研究分子或材料内部原子结构与能带结构关系、光催化或反应过程的基元步骤;基于NC-AFM技术的KPFM也已经成为一种具有高空间分辨和能量分辨的表征手段,可以在表面构造功能纳米结构,并研究分子内电荷分布、电荷传输路径和化学反应活性等问题,为材料、物理、化学和生命科学研究提供了新的思路。/ppbr//ppstrong本文来自:/strong刘梦溪,李世超,查泽奇,裘晓辉.qPlus型非接触原子力显微技术进展及前沿应用[J].物理化学学报,2017,33(01):183-197./p
  • 360万!清华大学激光共聚焦显微镜和超声扫描显微镜采购项目
    项目编号:清设招第2022123号项目名称:清华大学激光共聚焦显微镜预算金额:160.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01激光共聚焦显微镜1套是设备用途介绍 :高精度表面分析,用于微观形貌、微观结构的表征;厚胶光刻显影工艺、刻蚀释放工艺、厚金属剥离工艺等3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像。简要技术指标 :1)具备8英寸及以下基片上3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像和测量功能;2)3D观测方式:共焦光路系统,光源:反射激光和反射LED光源,激光共聚焦模式、彩色成像模式、彩色光学DIC成像,具备光学测量及成像模块,3D观测方式具有白光;明场、暗场及共聚焦;单色共聚焦或多色真彩共聚焦观察方式;3)成像图像X/Y平面分辨率≤0.12µm、Z轴显示分辨率精度≤0.006μm;4)5x,10x,20x,50x,100x均为激光专用复消色差物镜。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。项目编号:清设招第2022125号项目名称:清华大学超声扫描显微镜预算金额:200.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01超声扫描显微镜1套是设备用途介绍 :利用材料内部组织因密度不同而对超声波声阻抗、超声波吸收与反射程度产生差异的特点,实现对材料内部缺陷的定性分析,在半导体封装及材料等行业中具有广泛的应用。对器件内部的结构、夹杂物、裂纹、分层、空洞等进行检测,是提供高分辨率无损检测的重要手段。简要技术指标 :1)最大扫描速率≥610mm/s;2)扫描精度:可设置最小扫描步进≤5μm,最大扫描步进≥500μm。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。
  • 【实验室动态】QD中国北京实验室引进美国PSC非接触亚微米分辨红外拉曼同步测量系统-mIRage样机
    2020年,QD中国迎来了公司的十六个年头。为满足国内日益增长的红外仪器测试需求,更好的为国内的科研工作者提供专业技术支持和服务,Quantum Design中国子公司北京总部的样机实验室迎来了一个新的面孔——美国PSC公司(Photothermal Spectroscopy Corp., 前身Anasys)非接触亚微米分辨红外拉曼同步测量系统 mIRage。 mIRage 红外拉曼同步测量系统是一个全新的光谱测试系统,基于的光热诱导共振(PTIR)技术, mIRage产品突破了传统红外光谱系统的两大难题:1. 无需接触式的ATR部件及AFM探针技术,即可实现亚微米空间分辨的红外光谱和成像分析;2. 非接触的反射测量模式,提供媲美透射模式的IR谱图质量和标准的谱图数据库,大大简化了样品制备和图谱分析过程,并支持厚样品和液体样品的测试。 图 1. mIRage系统及O-PTIR技术原理示意图mIRage采用可调脉冲式中红外激光器激发样品表面,产生光热诱导热膨胀效应,然后将可见光聚焦到样品上作为“探针”探测产生的光热效应,从而实现快速、简易的样品探测,且不接触样品。基于O-PTIR技术,mIRage可支持多种红外测量模式,包括反射模式下高速的单点(图2 A)和线性扫描红外谱图(图2 B)以及亚微米分辨的单一波长下的高光谱成像(图2 C和D),分析样品目标位置上的化学组成及分布。 图2. mIRage系统数据示例(A)单一纤维不同位置的O-PTIR谱图. (B)高分子薄膜红外线性扫描谱图.(C)多层薄膜单一波长下的高光谱红外成像及谱图. (D) 数据存储单元单一波长下的O-PTIR成像, 用于污染检测 另外mIRage可与拉曼联用,实现同时同地相同分辨率的IR和Raman测试(图3A),无荧光风险;且可选配透射模块(图3B),用于观察液体样品,满足科研工作者的不同测试需求。图3. 血红细胞的O-PTIR和Raman同步谱图测试及成像. (B) 透射模式下观察液体样品(上皮细胞) mIRage非接触式亚微米分辨红外拉曼同步测量系统,可以快速,准确的实现样品亚微米尺度的红外光谱和成像检测,被广泛应用于多层薄膜、高分子聚合物、生命科学(骨头,细胞,头发等)、医药、法医鉴定、缺陷分析、微电子污染、食品加工、地质学及考古和文物鉴定等多种应用领域。更多的应用仍在不断开发和探索中,我们期待与您早日合作,共同进步!
  • PSC发布非接触式亚微米分辨红外拉曼同步测量系统新品
    非接触式亚微米分辨红外拉曼同步测量系统 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的非接触式亚微米分辨红外拉曼同步测量系统。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μm x 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点: mIRage O-PTIR (Optical Photothermal Infrared) 是基于独家专利的光热诱导共振(PTIR)技术,m其突破了传统红外的光学衍射极限,空间分辨率高达500 nm,可有效助力科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。非接触式亚微米分辨红外拉曼同步测量系统
  • 层状材料的原子力显微镜
    • James Keerfot• Vladimir V Korolkov原子力显微镜(AFM)是一种测量探针和样品之间作用力的技术,它不仅可用于测量纳米级分辨率的表面形貌,还可用于绘制和操作可使用纳米级探针处理的一系列性能。在这里,我们只谈到了最先进的AFM在层状材料研究中的一些能力。我们希望探索的第一个例子是如何使用AFM来研究垂直异质结构中的层的注册表,这会产生许多有趣的现象[1,2]。根据层间和层内的结合、晶格周期和两个重叠薄片角度的对称性和失配,可以观察到单层石墨烯(SLG)和六方氮化硼(hBN)[3]之间的莫尔图案或扭曲控制的双层二硫化钼(2L-MoS2(0°))[4]中的原子重建等特征。在图1中,我们展示了我们的FX40自动AFM如何使用导电AFM(C-AFM)和侧向力显微镜(LFM)来测量这些特征。这两种技术都源于接触模式AFM,其中悬臂由于排斥力而产生的偏转用于通过反馈回路跟踪表面形貌。LFM测量探针在垂直于悬臂梁的方向上扫描时的横向偏转,而C-AFM绘制尖端样品结处恒定电压和力下的电流图。除了传统的形貌通道外,AFM还使用这些模式,为研究垂直异质结构中层间扭曲和应变影响的研究人员提供了“莫尔测量”。图1:Park Systems的FX40自动AFM(a)用于使用LFM(c)和c-AFM(d)测量hBN和单层石墨烯(b)之间的莫尔图案。对于具有边缘扭曲角和有利的层间结合的样品,可以测量原子重建,这是石墨上平行堆叠的双层MoS2的情况(e)。与莫尔图案一样,在这种情况下,由于重建,可以使用LFM(f)和C-AFM(g)测量不同配准的区域。除了探索层状材料的形态和注册,原子力显微镜还具有一系列功能模式,可以用纳米尺度的分辨率测量诸如功函数、压电性、铁电性和纳米机械性能等性能。在图2中,我们展示了如何使用单程边带开尔文探针力显微镜(SB-KPFM)[5]来同时绘制尖端和具有不同层厚度的MoS2薄片之间的形态和接触电势差(CPD)。MoS2薄片从聚二甲基硅氧烷(PDMS)转移到Si上,在MoS2和Si之间留下截留的界面污染气泡。通过比较形貌(见图2b)和CPD(见图2c),我们看到由于MoS2层厚度和截留的界面污染物气泡的大小,CPD发生了变化。通过从地形数据中提取相对应变的估计值,该估计值基于尖端水泡相对于平坦基底的行进距离,可以直接将CPD和一系列层厚度的应变关联起来[6]。图2:KPFM是用Multi75E探针和5V的电驱动(VAC)和5kHz的频率(fAC)在硅(天然氧化物)上的MoS2上进行的(a)。对于多层MoS2薄片,同时绘制了形貌图(b)和CPD(c),揭示了由于层厚度和捕获污染物的气泡的存在而导致的CPD对比度。通过从地形图像中提取相对应变的估计值,我们绘制了各种泡罩尺寸和MoS2厚度的相关应变和CPD(d),如图图例所示。在我们的最后一个例子中,我们将研究如何使用原子力显微镜来决定性地操纵层状材料。在图3 a-c中,我们比较了90 nm SiO2/Si中2-3层(L)石墨烯薄片在使用阳极氧化切割之前(见图3b)和之后(见图3c)的横向力显微镜图像,其中尖端使用接触模式保持接触,同时施加40 kHz的10 V AC偏压[7]。除了阳极氧化,原子力显微镜还能够对层状材料进行机械改性。图3d-f中给出了一个这样的例子,其中使用Olympus AC160探针(刚度~26N/m)将聚苯乙烯上的3L-MoS2薄片缩进不同的深度。如图3f的插图所示,压痕深度(使用非接触模式监测)与压痕力密切相关。以这种方式修改局部应变已被证明可以决定性地产生表现出单光子发射的位点[8]。图3:在接触模式(a)下,通过向探针施加AC偏压,对少层石墨烯进行阳极氧化。通过比较(b)之前和(c)之后的LFM图像来证明薄片的确定性切割。也可以在聚苯乙烯上进行几层MoS2的压痕,证明了机械操作(d)。通过非接触模式AFM监测的压痕深度显示,压痕力范围高达~7.2µN。总之,我们已经展示了AFM如何能够提供比表面形貌多得多的信息,并且可以执行的一套功能测量和样品操作过程为关联测量提供了新的机会。易于使用的功能以及使用最佳探针自动重新配置硬件进行功能测量的能力,使Park的FX40特别适合此类调查。References[1] R. Ribeiro-Palau et al. Science 361, 6403, 690 (2018).[2]Y. Cao et al. Nature 556, 80 (2018).[3] C. Woods et al. Nature Phys. 10, 451 (2014).[4]A. Weston et al. Nat. Nanotechnol. 15, 592 (2020).[5] A. Axt et al. Beilstein J. Nanotechnol. 9, 1809–1819 (2018)[6] E. Alexeev et al. ACS Nano 14, 9, 11110 (2020)[7] H. Li et al. Nano Lett., 18, 12, 8011 (2018)[8] M. R. Rosenberger et al. ACS Nano, 13, 1, 904–912 (2019)原文:Atomic force microscopy for layered materials,Wiley Analytical Science作者简介• 詹姆斯基尔福(James Keerfot)Park Systems UK Ltd, MediCity Nottingham, Nottingham, UK.弗拉基米尔科罗尔科夫(Vladimir V. Korolkov)Park Systems UK Ltd., MediCity Nottingham, UK.弗拉基米尔于2008年获得莫斯科大学化学博士学位。随后,他进入海德堡大学,专攻薄膜的X射线光电子能谱学,随后在诺丁汉大学任职,在那里他发现了自己对扫描探针显微镜(SPM)的热情,并成为SPM技术的坚定拥护者,以揭示纳米级的结构和性能。他率先使用标准悬臂的更高本征模来常规实现分辨率,而以前人们认为分辨率仅限于STM和UHV-STM。弗拉基米尔目前发表了40多篇科学论文,其中包括几篇在《自然》杂志上发表的论文。尽管截至2018年,他的专业知识为SPM技术的产业发展做出了贡献,但他的工作仍在激励和影响该领域的学术冒险。
  • 一文看懂扫描隧道显微镜STM/AFM
    p  strong扫描隧道显微镜/strong(scanning tunneling microscope,缩写为STM),亦称为扫描穿隧式显微镜,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德· 宾宁及海因里希· 罗雷尔在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特· 鲁斯卡分享了1986年诺贝尔物理学奖。/pp  它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。/pp  它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,针尖随着物体表面的高低上下移动以维持稳定的电流,依此来观测物体表面的形貌。/pp  换句话说,扫描隧道显微镜的工作原理简单得出乎意料。就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有落,如此便极其细致地探出它的轮廓。在许多的流通后,通过绘出电流量的波动,人们可以得到组成一个网格结构的单个原子的美丽图片。/pp  strong原子力显微镜/strong(atomic force microscope,简称AFM),也称扫描力显微镜(scanning force microscopy,SFM))是一种纳米级高分辨的扫描探针显微镜,是由IBM苏黎士研究实验室的比宁(Gerd Binning)、魁特(Calvin Quate)和格勃(Christoph Gerber)于1986年发明的。AFM测量的是探针顶端原子与样品原子间的相互作用力——即当两个原子离得很近使电子云发生重叠时产生的泡利(Pauli)排斥力。工作时计算机控制探针在样品表面进行扫描,根据探针与样品表面物质的原子间的作用力强弱成像。/pcenterimg alt="" src="http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100352076.jpg" height="210" width="459"//centerp style="text-align: center "strong世界上第一台原子力显微镜和发明人之一比宁/strong/pp  以一种简单的方式进行类比,如同一个人利用一艘小船和一根竹竿绘制河床的地形图。人可以站在小船上将竹竿伸到河底,以此判断该点的位置河床的深度,当在一条线上测量多个点后就可以知道河床在这条线上的深度。同样道理绘制多条深度线进行组合,一张河床的地形图就诞生了。与此类似,在AFM工作时的,原子力传感器相当于人和他手中的竹竿,探针顶端原子与样品原子间作用力的大小就相当于竹竿触及河底时水面下的长度。这样,在一艘小船(控制系统)的控制下进行逐点逐行的扫描,AFM就可以绘制出一张显微图像啦。/pp  /pcenterimg alt="" src="http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100358209.jpg" height="283" width="388"//centerp style="text-align: center "strong普通原子力显微镜的原理示意图/strong/pp  原理解释起来并不算十分复杂,但是AFM的发明、使用与改进汇聚了大批科学家们的辛劳努力和创造性思维。特别是拍摄到氢键实空间图像所使用的非接触式原子力显微镜,经过分子沉积、温度控制、防振、探针、真空、控制系统等多方面的摸索与改造才最终具有如此强大的分辨能力。/pp strong1 基本原理/strongbr//pp  原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。/pp  strong2 /strongstrong成像模式/strong/pp  原子力显微镜的主要工作模式有静态模式和动态模式两种。在静态模式中,悬臂从样品表面划过,从悬臂的偏转可以直接得知表面的高度图。在动态模式中,悬臂在其基频或谐波或附近振动,而其振幅、相位和共振与探针和样品间的作用力相关,这些参数相对外部参考的振动的改变可得出样品的性质。/pp  1)strong接触模式/strong/pp  在静态模式中,静态探针偏转用做反馈信号。因为静态信号的测试与噪音和偏移成正比,低硬度探针用来增强外偏转信号。然而,因为探针非常接近于样品的表面,吸引力非常强导致探针切入样品表面。因此静态原子力显微镜几乎都用在总使用力为排斥力的情况。结果,这种技术经常被叫做“接触模式”。在接触模式中,扫描过程时保持探针偏转不变来使其探针和样品表面的作用力保持恒定。/pp  2)strong非接触模式/strong/pp  /pcenterimg alt="" src="http://upload.wikimedia.org/wikipedia/commons/5/5d/AFM_noncontactmode.jpg" height="291" width="350"//centerp style="text-align: center "strong原子力显微镜非接触模式/strong/pp  在这种模式下,悬臂上的探针并不接触样品表面,而是以比其共振频率略高的频率振动,振幅通常小于几纳米。范德华力在探针距离表面样品1~3纳米时最强,它与其他在表面上的长程力会降低悬臂的振动频率。/pp  通过调整探针与样品间的平均距离,频率的降低与反馈回路一起保持不变的振动频率或振幅。测量(x,y)每个数据点上的探针与样品间的距离即可让扫描软件构建出样品表面的形貌。/pp  在接触模式下扫描数次通常会伤害样品和探针,但非接触模式则不会,这个特点使得非接触模式通常用来测试柔软的样品,如生物组织和有机薄膜 而对于坚硬样品,两个模式得到的图像几乎一样。然而,如果在坚硬样品上裹有一层薄膜或吸附有流体,两者的成像则差别很大。接触模式下探针会穿过液体层从而成像其下的表面,非接触模式下则探针只在吸附的液体层上振动,成像信息是液体和下表面之和。/pp  动态模式下的成像包括频率调制和更广泛使用的振幅调制。频率调制中,振动频率的变化提供探针和样品间距的信息。频率可以被非常灵敏地测量,因此频率调制使用非常坚硬的悬臂,因其在非常靠近表面时仍然保持很稳定 因此这种技术是第一种在超高真空条件下获得原子级分辨率的原子力显微镜技术。振幅调制中,悬臂振幅和相位的变化提供了图像的反馈信号,而且相位的变化可用来检测表面的不同材料。 振幅调制可用在非接触模式和间歇接触领情况。在动态接触模式中,悬臂是振动的,以至悬臂振动悬臂探针和样品表面的间距是调制的。[来源请求]振幅调制也用于非接触模式中,用来在超高真空条件下使用非常坚硬的悬臂和很小的振幅来得到原子级分辨率。/pp  strong3)轻敲模式/strong/pp  /pcenterimg alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg/285px-Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg" height="215" width="190"//centerp style="text-align: center "strong在不同的pH的溶液环境中使用轻敲模式得到的高分子单链的原子力显微镜图(0.4 nm 厚)/strong/pp  通常情况下,绝大部分样品表面都有一层弯曲液面,为此非接触模式下使探针足够靠近样品表面从而可以测试短程力,但是此时探针又容易粘贴到样品表面,这是经常发生的大问题 动态模式就是为了避免此问题而发明的,又叫做间歇接触模式(intermittent contact)、轻敲模式(tapping mode)或AC模式(AC Mode)。在轻敲模式中,悬臂通过类似于非接触下的装载在探针上的微小的压电元件做来上下振动,频率在其共振频率附近,然而振幅则远大于10纳米,大概在100~200纳米间。当探针越靠近样品表面时,探针和样品表面间的范德华力、偶极偶极作用和静电力等作用力会导致振幅越来越小。电子自动伺服机通过压电制动器来控制悬臂和探针间的距离,当悬臂扫描样品表面时,伺服机会调整探针和样品间距来保持悬臂的预设的振幅,而成像相互作用力则得到原子力显微镜轻敲模式图像。轻敲模式减少了接触模式中对样品和探针和损伤,它是如此的温和以致于可以成像固定的磷脂双分子层和吸附的单个高分子链。比如液相的0.4纳米厚的合成聚合物电解质,在合适的扫描条件下,单分子实验可以在几小时内保持稳定。/pp  strong3 优点与缺点/strong/pp  相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。他就像盲人摸象一样,在物体的表面慢慢抚摸,原子的形状很直观的表现。/pp  和扫描电子显微镜相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。/p
  • 测试秘籍丨原子力显微镜(AFM)
    原子力显微镜(Atomic Force Microscopy,AFM)是一种具有原子级别高分辨率的新型表面分析仪器,它不但能像扫描隧道显微镜(STM)那样观察导体和半导体材料的表面现象,而且能用来观察诸如玻璃、陶瓷等非导体表面的微观结构,还可以在气体、水和油中无损伤地直接观察物体,大大地拓展了显微技术在生命科学、物理、化学、材料科学和表面科学等领域中的应用,具有广阔的应用前景。1 原子力显微镜的工作原理1.1 基本原理AFM 进行表面分析的基本原理如下:AFM 中有一由氮化硅片或硅片制成的对微弱力极敏感的弹性臂,微悬臂顶端有一硅或碳纳米管等材料制成的微小针尖,控制这一针尖,使其扫描待测样品的表面,这一过程是由压电陶瓷三维扫描器驱动的。当针尖与样品表面原子做相对运动时,作用在样品与针尖之间的力会使微悬臂发生一定量的形变。通过光学或电学的方法检测微悬臂的形变,转化成为图像输出,即可用于样品表面分析。简单地说,原子力显微镜是通过分析样品表面与一个微弱力敏感元件之间的相互作用力来呈现材料表面结构的。1.2 工作模式(一)接触工作模式扫描时如果控制针尖一直与样品表面原子或分子接触,那么这种工作模式称为接触模式。在这一过程中,针尖原子与样品表面原子之间力的作用主要表现为是两者相接触原子间的互斥力(大小约为10-8-10-11 N)。接触模式下工作的原子力显微镜可得到稳定的、高分辨率的样品表面图像。但是这种工作模式也有它的不足之处:当研究易变形的样品(液体样品)、生物大分子等的时候,由于针尖与样品原子直接接触,会使样品表面的原子移动、粘附于针尖或者发生较大形变,从而造成样品损坏、污染针尖或者结果中出现假象。(二)非接触工作模式扫描时如果控制针尖一直不与样品表面的原子或分子接触,那么这种工作模式称为非接触模式。非接触工作模式下由于扫描样品时针尖始终在样品上方5-20 nm 距离范围内,针尖与样品间的距离较接触模式远,所以获得的样品表面图像分辨率相对接触模式较低。但正是这一距离也克服了接触模式的不足之处,不再会造成样品的损坏、针尖污染等问题,灵敏度也提高了。(三)间歇接触工作模式扫描时如果控制针尖间歇性的与样品表面的原子或分子接触,那么这种工作模式称为间歇接触模式,也称为轻敲模式,常通过振动来实现针尖与样品的间歇性接触。该模式下微悬臂的振动是由磁线圈产生的交流磁场直接激发的,针尖与样品表面原子作用力主要是垂直方向的,不再受横向力的影响。间歇接触工作模式集合了接触与非接触模式的优点,既减少了剪切力对样品表面的破坏,又适用于柔软的样品表面成像,因此特别适合于生物样品研究。2 原子力显微镜的组成AFM 的硬件系统由力检测部分、位置检测部分和反馈控制系统三部分组成。图1 所示为AFM 的工作原理图,从图中可以看出,AFM 就是通过集合以上三个系统来将样品的表面特性反映出来的:在AFM的工作系统中,使用由微小悬臂和针尖组成的力检测部分来感应样品与针尖间的作用力;当微悬臂受力形变时,照射在微悬臂末端的激光会发生一定程度的偏移,此偏移量反射到激光检测器的同时也会将信号传递给反馈控制系统;反馈控制系统根据接受的调节信号调节压电陶瓷三维扫描器的位置,最终通过显示系统将样品表面的形貌特征以图像的形式呈现出来。3 样品制备3.1 样品要求原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,样品的载体选择范围很大,包括云母片、玻璃片、石墨、抛光硅片、二氧化硅和某些生物膜等,其中最常用的是新剥离的云母片,主要原因是其非常平整且容易处理。而抛光硅片最好要用浓硫酸与30%双氧水的7∶3 混合液在90 ℃下煮1h。利用电性能测试时需要导电性能良好的载体,如石墨或镀有金属的基片。试样的厚度,包括试样台的厚度,最大为10 mm。如果试样过重,有时会影响Scanner的动作,请不要放过重的试样。试样的大小以不大于试样台的大小(直径20 mm)为大致的标准。稍微大一点也没问题。但是,最大值约为40 mm。如果未固定好就进行测量可能产生移位。请固定好后再测定。3.2 样品制备粉末样品的制备:粉末样品的制备常用的是胶纸法,先把两面胶纸粘贴在样品座上,然后把粉末撒到胶纸上,吹去为粘贴在胶纸上的多余粉末即可。块状样品的制备:玻璃、陶瓷及晶体等固体样品需要抛光,注意固体样品表面的粗糙度。液体样品的制备:液体样品的浓度不能太高,否则粒子团聚会损伤针尖。(纳米颗粒:纳米粉末分散到溶剂中,越稀越好,然后涂于云母片或硅片上,手动滴涂或用旋涂机旋涂均可,并自然晾干)。4 原子力显微镜的应用4.1 在材料科学及化学中的应用目前,AFM 在材料科学中主要应用于材料的表面结构、表面重构现象以及表面的动态过程(例如扩散现象)等方面的研究,表面科学的中心内容是研究晶体表面的原子结构,例如从理论上推算出的金属表面结构往往不如实际复杂,借助原子力显微镜可以直观地观察材料的表面重构现象,有助于理论的进一步完善。4.1.1 在探测材料样貌方面的应用利用原子力显微镜来观测材料的样貌进行成像的时候,材料与探针之间出现相应作用力改变能够很好的反映出材料表面的三维图像。可以通过数值分析出材料表面的高低起伏情况,因此,在利用原子力显微镜对材料进行图像分析的时候,可以有效地发现材料表面的颗粒程度、粗糙程度、孔径分布以及孔的结构等。可以利用这种成像的方式把材料表面的情况形成三维图像进行模拟显示,促使形成的图像更加利于人们观察。4.1.2 在粉体材料中的应用在对粉体材料进行分析和研究的时候,可以利用原子力显微镜来逐渐分析原子或者分子中尺度,从而保证可以准确观测晶体以及非晶体的位置、形态、缺陷、聚能、空位以及不同力之间的相互作用。一般来说,粉体材料基本上都是使用在工业中的,但是现阶段有关于检测粉体材料的方法还是十分少的,研制样品也相对比较困难。原子力显微镜实际上是一种新兴的检测方式,具有操作方便、制样简单等特点。很多专家学者认为,人们使用化学方式研制出了SnS粉末,利用原子力显微镜把涂在硅基板上的材料进行成像,从图像上我们很容易发现此类材料具有分布均匀的特点,每一个大约15nm。4.1.3 在晶体材料中的应用专家学者经过不断研究和分析得到了很多晶体生长的模型,但是经过更加深入的分析和研究发现这些理论模型和实际情况是否相同还是具有一定差异,也逐渐成为学者讨论和研究的重点,所以人们希望通过显微镜来监测和观察生长过程。虽然,使用传统的显微镜已经观测出一定的成果,但是由于这些光学显微镜、激光全息干涉技术等存在分辨率不是十分高、实验条件不是很好以及放大不足等问题,使得研究过程出现很大困难,导致不能观测纳米级的分子等。原子力显微镜的发展,为科学家们研究纳米级分子或者原子提供了依据,也成为了专业人士研究晶体过程的重要方式。利用这种显微镜具有的能够在溶液中观察以及高分辨率等特点,可以保证科学家们能够很好的观测到晶体生长过程中的纳米级图像,从而不断分析和掌握材料的情况。4.2 在生物学中的应用AFM 能在气体、液体中无损伤地直接观察物体,可对生物分子在近生理条件下进行检测,是生命科学研究中的有力工具。目前,在生命科学中AFM 主要应用于对细胞、病毒、核酸、蛋白质等生物大分子的三维结构和动态结构信息进行研究。4.2.1 对细胞膜表面形态的研究细胞膜有重要的生理功能,它既使细胞维持稳定代谢的胞内环境,又能调节和选择物质进出细胞。AFM 能够观察到细胞膜表面的超微结构,因此它可以用来观察正常细胞与病变细胞的细胞膜,发现两者的异同,为临床病理诊断提供新的视角和方法。4.2.2 测定细胞弹性以及力学性质病变这一生理过程与细胞的形态和力学性质有关。细胞形态学的变化会影响和反映细胞性质、功能以及细胞微环境的改变。健康细胞与病理状态的细胞在机械性能上是完全不同的。抓住这一点,可以利用AFM 测量出的细胞弹性性质识别癌细胞,以及辅助诊断红细胞相关的各种疾病等,从细胞层面上对各种疾病进行早期诊断和治疗。4.2.3 检测活细胞间相互作用AFM 也可以对细胞间的相互作用进行观察。将一种细胞连接在AFM 扫面探针的尖端,使针尖功能化,对另一种单层排列的细胞进行扫描就可以进行细胞间相互作用的研究。4.2.4 观察动态生物过程AFM也是观察细胞生物过程非常有效的工具。研究痘病毒和活细胞,得到了痘病毒感染活细胞全过程的AFM 图。通过活着的细胞观察子代病毒颗粒,并用AFM 在水溶液环境中在分子水平分辩出有规则重复的烙铁状结构和准有序的环状结构。观察中发现: 在感染前后最初几小时,细胞并无显著变化 子代病毒粒子沿细胞骨架进入细胞内部,还有胞吐、病毒颗粒聚集等现象。通过AFM 图像可以看出哑铃状小泡逐渐形成、消失并在细胞膜表面形成凹陷的全过程。4.2.5 观察生物大分子之间相互作用在生物体内,DNA 与蛋白质间的相互作用有着同样举足轻重的地位。在转录、翻译的过程中,DNA 与特定的蛋白质如解旋酶、聚合酶、启动因子等的结合就决定着生命活动的开启。Gilmore 等利用AFM 以每500 ms 拍摄1 次的速度,清晰地观察到了蛋白质在DNA 上的结合情况。因此,AFM 可以真正帮助我们深入地“看到”生命活动的本质。4.2.6 测定细胞电学性质细胞不论在静止状态还是活动状态,都会产生与生命状态密切相关的、有规律的电现象,生物电信号包括静息电位和动作电位,其本质是离子的跨膜流动。因此,研究细胞的电生理学也成为了生命科学领域一个重要的分支。在AFM 系统中增加了导电模块,在迎春花细胞、酵母菌细胞等样品和探针之间加一个偏压,在扫描的过程中,同时获得样品的表面形貌和电流像,且在成像的同时检测探针和细胞样品之间的电流,得到样品表面形貌和局域电流分布及两者之间的对应关系,从而实现AFM 在纳米尺度上对细胞样品电学特性的分析检测。参考文献[1]高翔.原子力显微镜在材料成像中的应用[J].化工管理,2015(08):67.[2]王明友,王卓群,焦丽君.原子力显微镜在表面分析中的应用[J].邢台职业技术学院学报,2015,32(01):75-78.[3]万旻亿.原子力显微镜的核心技术与应用[J].科技资讯,2016,14(35):240-241.[4]鞠安,蒋雯,许阳,杨升,常宁,王鹏,顾宁.原子力显微镜在生命科学领域研究中的应用进展[J].东南大学学报(医学版),2015,34(05):807-812.
  • qPlus型原子力显微镜技术
    |作者:彭金波1,2,† 江颖3,4,††(1 上海交通大学 李政道研究所 )(2 上海交通大学物理与天文学院 )(3 北京大学物理学院 量子材料科学中心 )(4 北京大学轻元素先进材料研究中心 )本文选自《物理》2023年第3期摘要:扫描探针显微镜主要包括扫描隧道显微镜和原子力显微镜,其利用尖锐的针尖逐点扫描样品,可在原子和分子尺度上获取表面的形貌和丰富的物性,改变了人们对物质的研究范式和基础认知。近年来,qPlus型高品质因子力传感器的出现将扫描探针显微镜的分辨率和灵敏度推向了一个新的水平,为化学结构、电荷态、电子态、自旋态等多自由度的精密探测和操控提供了前所未有的机会。文章首先简要介绍原子力显微镜的发展历史和基本工作原理,然后重点描述qPlus型原子力显微镜技术的优势及其在单原子、单分子和低维材料体系中的应用,最后展望该技术的未来发展趋势和潜在应用。关键词:扫描探针显微镜,原子力显微镜,qPlus力传感器,高分辨成像,原子分辨01原子力显微镜的诞生显微镜是人类认识微观世界的最重要工具之一。光学显微镜的诞生让人们第一次看到了细菌、细胞等用肉眼无法看到的微小物体,从而打开了崭新的世界。然而,由于光学衍射极限的限制,光学显微镜的空间分辨率一般局限于可见光波长的一半左右(约300 nm),很难用于分辨纳米尺度下更细微的结构,更无法用于观察物质最基本的原子结构排布。要想进一步提高探测的空间分辨率,一种途径是减小探测波的波长,比如扫描电子显微镜就是利用波长更短的电子波来进行成像。另一种途径是采取近场的局域探测,比如近场光学显微镜及其他基于局域相互作用探测的扫描探针显微镜。可以想象,要想获得更高的空间分辨率,就需要对样品的探测更加局域,即“探针”尖端足够尖,最好只有探针和样品最接近的几个原子能够发生相互作用,“感受”到彼此。这种相互作用可以是电子波函数的交叠或者原子作用力等。1981年,Binnig和Rohrer发明了扫描隧道显微镜(scanning tunneling microscope,STM),STM是基于探测针尖和样品之间的隧道电流来进行空间成像的工具。由于隧道电流正比于针尖尖端几个原子与衬底原子的电子波函数的交叠,对针尖与样品之间的距离非常敏感,因此可以获得原子级的空间分辨率。STM的发明,使得人们可以在实空间直接观察固体表面的原子结构,因此荣获1986年的诺贝尔物理学奖[1]。然而,STM依赖于隧道电流的探测,无法用于扫描绝缘样品,因此使用范围受到了极大的限制。有趣的是,在早期的STM实验中,研究人员发现当针尖和样品比较近而出现隧道电流时,会同时产生较强的相互作用力。Binnig意识到通过测量针尖与样品原子之间的相互作用力也可用来对样品表面成像。1986年,他提出了基于探测针尖和样品之间原子作用力的新型显微镜——原子力显微镜(atomic force microscope,AFM)[2],并随后与Quate和Gerber搭建出了第一套可以工作的AFM[3]。三人于2016年获得了Kavli纳米科学奖。AFM是基于针尖与样品之间原子作用力的探测,不需要样品具有导电性,因而可以用于研究包括金属、半导体、绝缘体等多种材料体系,大大弥补了STM的研究局限。此外,AFM还可以在大气和液体环境中工作,具有很好的工况条件和生物体系兼容性。这些优势使得AFM成为纳米科学领域使用最广泛的成像工具之一。然而,AFM并不像STM那样在发明之初就获得了原子级分辨率,而是直到5年之后(1991年),惰性固体表面的原子分辨成像才得以实现[4,5]。近年来,由于qPlus力传感器的引入,AFM的空间分辨能力得到了极大的提升。通过针尖修饰,人们可以更加容易地获得原子级成像,甚至实现氢原子和化学键的超高分辨成像。接下来,本文将简要介绍常见AFM的基本工作原理,然后着重介绍基于qPlus力传感器的AFM(简称qPlus-AFM)及其在各种体系中的应用,最后展望qPlus-AFM在物理和其他领域的潜在应用和面临的挑战。02常规AFM的原理和工作模式介绍2.1 AFM工作的基本原理目前使用最为广泛的是激光反射式AFM,其典型的结构示意图如图1(a)所示[6]。最核心的部分是力传感器,它一般是一个由微加工技术制备的可以振动的悬臂(常用的材料是硅或者氮化硅),悬臂的末端有一个与悬臂梁一体的尖锐针尖,悬臂的背面镀有一层金属以达到镜面反射。当一束激光照射到悬臂上,光斑被反射到一个对光斑位置非常敏感的光电探测器上。当针尖扫描样品表面时,由于针尖与样品之间存在相互作用力,悬臂将随样品表面形貌的起伏而产生不同程度的弯曲形变,因而反射光斑的位置也会发生变化。通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。图1 AFM工作的基本原理[6] (a)典型激光反射式AFM的结构示意图;(b)超高真空下针尖与样品的相互作用力Fts及各成分力与针尖—样品距离z的关系2.2 原子力的分类在超高真空环境中,针尖与样品之间的相互作用力(Fts)与针尖—样品距离z之间典型的关系曲线如图1(b)所示。Fts大致可以分为长程力和短程力,长程力通常包括范德瓦耳斯力和静电力等,其衰减长度一般为几纳米或者几十纳米。短程力主要包括来自针尖和样品之间形成化学键的作用力和由于针尖—样品电子云交叠产生的泡利排斥力,其衰减长度一般约为0.1 nm左右。长程力对距离不敏感,很难分辨较小的表面起伏,要想获得较高的空间分辨率,需要让短程力的贡献占主导。在特殊的环境下,针尖和样品之间的相互作用力还包括机械接触力、毛细力、磁场力、卡西米尔力、水合力等。2.3 AFM的主要工作模式AFM有多种工作模式,通常分为静态模式和动态模式,后者包括非接触模式和轻敲模式两种(图2(a))。在静态模式下,针尖以拖拽的形式在样品表面扫描并记录表面的形貌起伏变化,因此也叫接触模式。悬臂的形变量为q=Fts/k (k为悬臂的劲度系数),为了提高力探测的灵敏度,一般使用较软(k较小)的悬臂。为了避免较大的吸引力引起针尖发生“突跳”现象,静态模式主要工作在短程的排斥力区间(图2(b)),因此空间分辨率较高。但这种模式下针尖和样品之间的相互作用力较大,容易对较软的样品产生破坏。图2 AFM的工作模式[6] (a)接触模式、非接触模式和轻敲模式的示意图;(b)不同模式的大致工作范围(区分并不严格);(c)悬臂在频率调制和振幅调制模式下的共振曲线。人们也经常把振幅调制模式称为轻敲模式,把频率调制模式称为非接触模式在动态模式下,悬臂被压电陶瓷励振器驱动以共振频率振动,当振幅A足够大使得回复力k∙Amax(Fts)时可以避免“突跳”现象的发生。动态模式有轻敲模式和非接触模式两种。轻敲模式类似于盲人使用手杖行走,其振幅比较大,一般从几纳米到一百多纳米,主要的力的贡献来源于针尖距离样品很近甚至接触的时候。这种模式对样品的损坏小,适用于不同的材料,是目前AFM使用最为广泛的模式。但是这种模式由于包含较多的长程力贡献,因此一般较难获得原子级分辨。此外,由于轻敲模式下振幅较大,测量振幅变化的信噪比较高,这种模式一般使用幅度调制(amplitude modulated,AM),即以固定频率和振幅的激励信号来驱使悬臂振动,针尖和样品的作用力会引起悬臂振幅(及相对于激励信号的相位)的变化,将测量的振幅(或相位)的变化作为反馈信号可以获取样品表面的形貌信息(图2(c))。非接触模式的振幅一般是几纳米或埃的量级,针尖在振动过程中不会接触样品,因此可以避免对样品的扰动或者破坏。非接触式AFM除了可以使用AM模式外,还能以频率调制(frequency modulated,FM)模式工作。这其实与收音机的AM和FM模式原理类似,只是工作的频段不同。在FM模式下,悬臂保持相位和振幅不变,针尖和样品的作用力引起悬臂振动频率的变化,测量振动频率的变化可以得到样品表面形貌的信息(图2(c))。AM和FM模式下悬臂的共振频率变化的响应时间[7,8]分别约为τAM=Q/(πf0),τFM=1/(2πf0),其中Q是悬臂的品质因子,f0为悬臂的本征振动频率。由此可见,AM模式的响应时间会随Q因子的增加而线性变大,而FM模式的响应时间不受Q因子的影响。在超高真空低温环境中,悬臂的Q因子会比大气环境下增加几十倍,这使得AFM对力的敏感度及信噪比会有很大提升,但也会使得AM模式下AFM的响应时间大幅延长,导致扫描成像需要很长的时间。因此,AM模式(轻敲模式)主要被用于大气或者液体环境中。Q因子的增加对FM模式下AFM的响应时间没有影响,所以FM模式是超高真空环境下被广泛使用的工作模式,即保持高Q因子的同时还能保证较高的扫描速度。2.4 影响频率调制AFM噪音大小的因素在FM模式下,AFM直接探测的信号是针尖—样品相互作用力引起的悬臂频率偏移∆f,利用公式[9]可进一步转化为相互作用力Fts。频率偏移对应的相对噪音,因此可以用δkts的形式来表示FM模式下AFM测量中4种主要的噪音来源,分别为[10]热噪音:力传感器信号探测的噪音:AFM悬臂振荡的噪音:漂移噪音:其中kB为玻尔兹曼常数,T是温度,B是与扫描速度对应的带宽,nq是悬臂偏转信号探测的噪音密度,r 是频率的漂移速率,N是扫描图像的像素数。由上述式子可知,k越小,4种噪音都更小,因此在满足k∙Amax(Fts)的前提下,选择的k越小越好;Q越大,会使得第一和第三种噪音更小,但过大的Q会使得悬臂在FM模式下的稳定起振难以维持;振幅A越大,前三种噪音都更小,但A太大会引起短程力贡献大幅减小的问题(见下节)。03基于qPlus力传感器的非接触式AFM3.1 振幅对非接触式AFM分辨率的影响在FM模式下,AFM探测的频率偏移∆f,可以转化为权重函数w(z,A)和针尖—样品相互作用力的梯度的卷积[11]。如图3所示,w(z,A)是与振幅A和距离z相关的半椭圆,kts是力Fts与z曲线的梯度,也呈现为勺子形,只是最低点对应的距离z有所不同。可见,当振幅较大时,长程力对频率偏移的贡献占主导;随着振幅减小,短程力的贡献变大。当振幅与短程力的衰减长度(亚埃级)接近时,更容易得到原子级分辨率[10]。图3 长程力和短程力的贡献与AFM悬臂振幅A的关系[11]3.2 qPlus力传感器的发明传统AFM力传感器一般采用微加工制备的硅或者氮化硅悬臂,其劲度系数较小(约1 N/m),力的探测灵敏度高。为了能探测短程力从而实现高空间分辨,往往需要让针尖靠近表面,从而导致“突跳”的发生。为了避免“突跳”引起的针尖损坏,需要悬臂在较大的振幅下工作。然而,大的振幅会使长程力的贡献增加,引起AFM的空间分辨率大大降低。图4 石英音叉和qPlus力传感器实物图 (a),(b)手表中拆出来的石英音叉[12];(c)第一代qPlus力传感器的实物图(图片来自德国雷根斯堡大学Giessibl课题组)[13];(d)第四代qPlus力传感器的实物图(图片来自北京大学江颖课题组)[6]要想克服上述矛盾,实现在小振幅下工作的同时而不引起“突跳”的发生,则需要使用劲度系数k较大的悬臂。石英音叉是被广泛用于手表中的计时元件(图4(a),(b))[12],劲度系数高,可产生极高精度的振荡频率(一般为32—200 kHz),且具有很高的Q因子。此外,其悬臂的形变可以利用石英的压电效应以电学的方式来直接探测,不需要激光系统,更容易兼容低温环境。早期,人们一般是在石英音叉的一个悬臂上粘上针尖来作为力传感器使用。然而,两个悬臂(相当于两个耦合的谐振子)由于质量和受力的不对称性导致Q因子大幅度降低,严重降低了AFM的信噪比。1996年,Giessibl将音叉的一个悬臂固定在质量很大的基底上,而在另一个自由的悬臂上粘上针尖以作为AFM力传感器,这样把两个耦合的谐振子变成单个独立的谐振子,可以保持较高的Q因子,且Q因子几乎不受针尖—样品相互作用力的影响。因此,这种力传感器被称为qPlus力传感器[13](图4(c))。目前,qPlus力传感器已经经过了四代的升级和改进,最新的版本是直接设计单个石英悬臂作为力传感器(图4(d))。表1 微加工硅悬臂力传感器与qPlus力传感器典型参数的对比[6]典型的qPlus力传感器与广泛使用的微加工硅悬臂力传感器的主要参数对比见表1。可以看到,qPlus力传感器悬臂的劲度系数高得多(一般约1800 N/m),因此其力灵敏度一般情况下低于硅悬臂。然而,qPlus力传感器可以在非接触模式下,以极小的振幅(约100 pm)近距离扫描样品,而不会出现“突跳”现象。由于qPlus-AFM的振幅可以与短程力的衰减长度接近,因此短程力的贡献非常大,更加容易获得超高的空间分辨率。最近,田野等通过优化设计qPlus力传感器,将Q因子提升到140000以上,最小振幅小于10 pm,最小探测力小于2 pN,从而将qPlus力传感器的性能推向了一个新的水平[14]。此外,使用导电针尖,并通过单独的导线把经过针尖的电流提取出来,可以很容易地将qPlus-AFM与STM集成在一起,以同时发挥STM和AFM的功能。关于qPlus-AFM更为系统的介绍见综述[10,11]。3.3 获得超高空间分辨率的关键如前所述,针尖与样品间的相互作用越局域,空间分辨率越高。换言之,要想获得超高的空间分辨率,需要减小长程力的贡献,凸显短程力的贡献。要实现这一点,有两点非常关键:一是使用与短程力衰减长度接近的亚埃级的小振幅工作(详见3.1节);二是让针尖更加尖锐,减少长程的范德瓦耳斯力的贡献。对于AFM成像来说,针尖末端几纳米的部分尤其是针尖末端的几个原子扮演着最重要的角色。为了让针尖末端更尖锐,常用办法是让金属针尖轻戳金属衬底或对针尖进行原子或者分子修饰,使得短程的泡利排斥力、化学键力或者高阶静电力占主导。3.3.1 短程的泡利排斥力当针尖与样品的距离足够近时,二者的电子云会发生交叠,产生很强的短程泡利排斥力。大部分时候,泡利排斥力是对固体及分子体系成像获得原子级分辨率的关键。2009年,Gross等[15]发现对针尖修饰一氧化碳(CO)分子后,可以实现对单个并五苯分子的化学键和结构(图5(a))的超高分辨成像(图5(c)),其分辨率已经超过了STM图像(图5(b))。这种超高空间分辨率的成像主要起源于CO针尖“尖锐”的p轨道与并五苯分子之间电子云交叠所导致的短程泡利排斥力。这种针尖修饰方法简单易行,成像分辨率高,使得qPlus-AFM成像技术迅速获得了广泛的应用。除了CO分子修饰外,人们还可以对针尖修饰其他种类的原子或者分子,以提高空间分辨率或者实现其他特定功能,例如Cl离子[16]和Xe分子[17]修饰的针尖以及CuO针尖[18]等。图5 基于泡利排斥力的单分子化学键成像[15] (a)并五苯分子的结构图;用 CO 分子修饰的针尖得到的 STM 图(b)和AFM图(c)3.3.2 短程的化学键力当针尖和衬底的化学活性都较强时,在近距离扫描过程中,二者可以形成局域的化学键,基于这种短程的化学键力,也可以获得超高的空间分辨率。典型的例子是半导体表面的AFM高分辨成像。例如,Giessibl等[19]发现在用AFM扫描Si(111)-(7×7)样品时,针尖会从样品上吸起一些Si团簇而被修饰,因此在扫描时容易与样品表面带悬挂键的Si原子形成共价键,而得到原子级分辨率。然而,这种成像方式对表面结构扰动较大,不适用于弱键和分子体系。3.3.3 短程的静电力通常所说的静电力主要来源于低阶静电力,比如点电荷与点电荷或者电偶极之间的静电力,其大小分别正比于r -2和r -3(r是二者作用的距离),是较长程的相互作用力,因此空间分辨率较低。而在某些特殊的情况下,高阶静电力的贡献会起主要作用,而且是更加短程的,因此会导致分辨率的显著提升。一个典型的例子是对离子晶体(如NaCl,MgO,Cu2N等)的原子分辨成像。离子晶体表面周期性的正负电荷排布产生指数衰减的短程静电势分布[20],针尖与离子晶体表面的短程静电力作用可以得到原子级分辨的成像[21]。图6 基于高阶静电力的水分子高分辨成像 (a)CO针尖示意图(上)及DFT计算得到的CO针尖的电荷分布(下),呈现出明显的电四极矩特征[16];(b)水四聚体的原子结构图(上)和AFM图(下)[16]。白色箭头和弧线分别指示水分子中氧原子和氢原子的位置;(c)Au(111)上双层二维冰的原子构型(上)和AFM图像(下),其中可以分辨平躺(蓝色箭头)和直立(黑色箭头)的水分子[23];(d)Au(111)表面由Zundel类型水合氢离子(黑色箭头)自组装形成的单层结构图(上)和AFM图像(下)[14]另一个例子是利用CO针尖对强极性分子的高分辨成像。彭金波等[16]利用CO修饰的针尖(图6(a)上图)扫描水分子四聚体时,发现即使在针尖距离较远时也能获得亚分子级的分辨率(图6(b)),且图像的形貌与水分子四聚体的静电势分布极其接近,从中可识别水分子OH键的取向。通过理论计算得知,CO修饰的针尖具有电四极矩(图6(a)下图),与水分子电偶极之间存在高阶静电力相互作用,这是一种更为短程的静电力(正比于r -6),因此能够在未进入泡利排斥区域时获得超高空间分辨。这种基于微弱的高阶静电力的成像技术可以区分水分子中氢、氧原子的位置和氢键的取向并且扰动极小。近年来,这个技术已被成功应用于亚稳态水分子团簇[16]、盐离子水合物[22]、二维冰[23](图6(c))及单层水中的水合氢离子[14]的非侵扰高分辨成像(图6(d)),将水科学的研究推向了原子尺度。04超高分辨qPlus-AFM的应用相对于传统的AFM,qPlus-AFM可以很方便地与STM集成在一起,并兼容超高真空和低温环境,而且可获得原子级甚至单个化学键级的超高空间分辨率。这些优势使得qPlus-AFM获得了广泛的应用,大大促进了表面科学和低维材料研究领域的快速发展。下面我们简要介绍qPlus-AFM在高分辨结构成像、电荷态和电子的测量、原子力的测量和操纵等方面的应用和最新进展。4.1 高分辨结构成像qPlus-AFM在高分辨结构成像方面得到了最为广泛的应用。Gross等[15]通过对AFM针尖进行CO修饰,首次实现对有机分子的化学结构的直接测量(图5),触发了一系列后续研究,包括:分子之间的氢键相互作用[24]、分子化学键键序[25]、铁原子团簇[26]、化学反应产物识别[27]等。近年来,人们通过控制有机分子前驱体的表面化学反应可以精确制备低维纳米材料,如石墨烯、石墨烯纳米带等。STM虽然被广泛用于表征其电子态,但是难以直接确定其原子结构、局域缺陷和边界构型等。qPlus-AFM对原子结构的敏感及超高的空间分辨率,可以很好地解决这些问题。例如,Gröning等[28]利用扫描隧道谱成像观测到了石墨烯纳米带末端的拓扑末端态(图7(a)右),并通过AFM成像确定了拓扑非平庸的石墨烯纳米带的原子构型(图7(a)左)。图7 qPlus-AFM在低维材料高分辨成像中的典型应用 (a)表面合成的石墨烯纳米带的AFM图(左)和0.25 V偏压下的dI /dV 图(右)[28],四角较亮部分指示拓扑边缘态;(b)利用磁性针尖得到的绝缘反铁磁NiO表面的AFM图像(左)及沿[100]方向相邻两个Ni原子不同自旋取向对应的高度轮廓线(右)[34]此外,qPlus-AFM开始被用于绝缘体表面原子结构的高分辨成像,如KBr[29],CaF2[30]等。在复杂氧化物表面方向,Diebold组观测了钙钛矿KTaO3(001)的表面重构[31]和TiO2(110)及In2O3(111)表面分子的吸附和分解[32,33]等。最近,qPlus-AFM被用于对绝缘反铁磁材料NiO的成像,而且使用磁性针尖成像时,由于超交换作用可以分辨不同Ni原子的自旋取向[34](图7(b))。4.2 电荷态和电子态的测量在电荷态测量方面,由于qPlus-AFM极高的信噪比和力灵敏度,Gross等[35]率先展示了单个原子的不同带电状态可以通过AFM直接测量(图8(a))。通过测量AFM的局域接触势差,单个原子和分子内部的电荷分布也可进行成像[36,37]。利用厚层绝缘的NaCl阻断分子与金属衬底之间的电荷转移,可对单分子进行多重电荷的充放电并控制分子间的电荷横向转移[38]。图8 AFM在电荷和电子态探测中的应用 (a)电中性和带负电的金原子的恒高AFM图(插图)及对应的频率偏移的轮廓线[35];(b)三重激发态寿命的探测:左图为单个并五苯分子和近邻吸附的两个氧气分子的结构图(上)和AFM图(下);右图为测量三重激发态占据比例随电压脉冲停留时间的变化,通过指数拟合可得猝灭后三重激发态的寿命仅0.58(5) μs[42]近些年,人们利用qPlus-AFM实现了对分子电子态的测量。例如,绝缘衬底上单分子的基态和激发态电子能谱被成功测量[39,40]。进一步,将AFM与纳秒电学脉冲结合,能直接对绝缘体表面上单分子在不同带电状态下电子转移的概率分布进行成像[41]。最近,qPlus-AFM被成功用于对分子自旋激发态的探测。彭金波等[42]发展了一套新颖的电学泵浦—探测AFM技术,首次实现了以原子级分辨率对单分子三重激发态寿命的探测并观测到了近邻氧气分子引起的三重态的猝灭(图8(b))。4.3 原子力的测量与操纵利用qPlus-AFM可以对原子作用力直接测量。Ternes等[43]变高度扫过表面上吸附的单原子并记录针尖—原子之间相互作用力引起的频率偏移(利用公式[9]可以将频率偏移∆f 转化成垂直作用力Fz),直到原子发生移动,便可知移动原子所需的最小垂直作用力(图9(a))。进一步,可以将垂直作用力转化为相互作用势,将其对x坐标微分可以得到移动原子所需的最小水平作用力Fx 的大小。利用类似的方法,单个石墨烯纳米带在Au(111)表面的摩擦力已被精确测量[44]。最近,通过测量原子力曲线,人们揭示了针尖上CO分子与衬底上单个铁/铜原子的物理吸附向化学吸附的转变过程[45]。图9 qPlus-AFM在原子力测量和操纵中的应用 (a)测量移动Pt(111)表面(灰色小球)吸附的单个Co原子(红色圆球)所需的力[43]。由远及近测量沿原子上方(x方向,图(a-i))的频率偏移及垂直作用力Fz(a-ii),直到在某个高度下开始引起原子移动(红色箭头所示),从而可以得知移动原子所需要的最小垂直作用力(a-iii);(b)利用AFM针尖和金刚石样品之间产生的局域强电场,通过“拉出—推离”方法耗尽NV色心附近的杂质电荷((b-i),(b-ii)),使NV色心的自旋相干时间提升20倍(b-iii)[47]此外,qPlus-AFM也开始被尝试应用于绝缘载体中固态量子比特的操控。边珂等[46]利用金属针尖的局域强电场和激光成功诱导了金刚石氮—空位色心(NV center)的电荷态转换。进一步,郑闻天等[47]通过施加较大的偏压,在AFM针尖—样品之间产生强电场,改变电场的方向,利用“拉出—推离”方法来清除NV色心周围的未配对电子,实现了金刚石近表面电子自旋噪声的高效抑制,从而大幅提升了浅层NV色心的相干性(T2,echo时间提升20倍)及其探测灵敏度(图9(b))。05总结和展望基于qPlus力传感器的超高分辨AFM技术,有力促进了单分子、表面科学、低维材料等研究方向的发展,为人们理解物质的结构、电子态、电荷态、自旋态等提供了崭新的信息。这种超高分辨的AFM成像技术仍处于快速发展期,我们相信在接下来若干年它会成为物理、材料、化学、生物等学科领域的重要工具,并对这些领域产生深远的影响。5.1 应用展望首先,高分辨qPlus-AFM成像技术可以提供固体表面的原子结构和原子尺度电荷分布的信息。STM仅对费米能级附近的电子态或外层电子敏感,常常很难将几何结构和电子态的信息分离开,而qPlus-AFM测量的泡利排斥力对总电子态密度敏感,其中包含内层电子的信息,可以反映原子核位置。因此,STM与qPlus-AFM的结合将有助于人们更准确细致地确定材料的结构和电子态分布。另一方面,通过qPlus-AFM对静电力的探测,可实现以单个电荷的灵敏度和原子级的空间分辨率确定原子或者分子带电状态。利用开尔文探针力显微镜(KPFM)模式或者对短程静电力的成像,还可对材料表面的电荷分布进行高分辨表征,这种关于电荷的新信息将为人们在原子尺度研究各种电荷序带来巨大的便利,比如电荷密度波、高温超导中的电荷序、铁电材料中的电荷分布等。其次,qPlus-AFM也将为各种绝缘材料或者材料绝缘相研究打开全新的窗口。例如,高温超导体的母体一般是莫特绝缘体,STM很难成像。而qPlus-AFM可以用于研究高温超导体随着掺杂浓度的增加从莫特绝缘体向超导态和金属态转变的全过程,有助于理解高温超导的机制。如果将针尖进行自旋极化,还可研究各种磁性绝缘体(如NiO)或者材料绝缘相(如高温超导体的母体)的自旋分布等。此外,qPlus-AFM还将在以绝缘体为载体的固态量子比特研究中发挥独特的作用。借助qPlus-AFM强大的空间表征、操纵与局域调控能力,有望发展出表面/近表面量子比特的相干性提升、精密量子比特网络构筑、纳米尺度扫描量子传感等多种前沿技术。最后,qPlus-AFM在化学和生物领域也将发挥重要的作用。qPlus-AFM可以用来识别化学反应的产物,还可以被用于研究绝缘体(如NiO,Fe3O4)表面的化学反应及固液界面各种化学反应(如电化学过程)的机制。在生物大分子的结构成像方面,可以精准识别DNA、RNA、蛋白质分子等的构型和相互作用位点,揭示其结构与功能的关系。5.2 挑战和机遇qPlus-AFM技术本身面临的一些问题和技术瓶颈亟待解决。qPlus力传感器的悬臂劲度系数大,对力的灵敏度较低。Q因子受环境和温度影响大,从而严重影响信噪比。一种可能的途径是发展主动控制Q因子的技术[48]。qPlus力传感器共振频率低(一般约几十kHz),成像速度慢,难以捕捉较快的非平衡态动力学过程,需要发展高速甚至超快的AFM技术。比如制备质量更小共振频率更高的AFM悬臂;或者将AFM与泵浦—探测技术相结合,将短的电压脉冲[42]或者超短的激光脉冲[49]耦合到qPlus-AFM中。利用qPlus-AFM对非平面的三维立体结构和分子的测量,还面临着挑战,发展新的算法(如利用机器学习)是一条可能的途径。此外,qPlus-AFM通常缺乏化学分辨,有时候很难仅从图像上获取样品的化学信息。一种途径是将其与具有化学分辨的光谱技术(如拉曼光谱)相结合[50]或者与磁共振技术结合。最后,qPlus-AFM面临的另一个巨大挑战是如何将其应用推广到溶液、生物体系等复杂的环境或体系中。大气溶液环境兼容的金刚石色心量子传感技术[51]可能为qPlus-AFM带来全新的应用场景和探测自由度。参考文献[1] Binnig G,Rohrer H. Rev. Mod. Phys.,1987,59:615[2] Binnig G. Atomic Force Microscope and Method for Imaging Surfaces with Atomic Resolution. 1986,US Patent No.:4,724,318[3] Binnig G,Quate C F,Gerber C. Phys. Rev. Lett.,1986,56:930[4] Giessibl F J. Rastertunnel-und Rasterkraftmikroskopie bei 4.2 K im Ultrahochvakuum. Ph.D. thesis,1991[5] Ohnesorge F,Binnig G. Science,1993,260:1451[6] Peng J,Guo J,Ma R et al. Surf. Sci. Rep.,2022,77:100549[7] Albrecht T R,Grutter P,Horne D et al. J. Appl. Phys.,1991,69:668[8] Gildemeister A E,Ihn T,Barengo C et al. Rev. Sci. Instrum.,2007,78:013704[9] Sader J E,Jarvis S P. Appl. Phys. Lett.,2004,84:1801[10] Giessibl F J. Rev. Sci. Instrum.,2019,90:011101[11] Giessibl F J. Rev. Mod. Phys.,2003,75:949[12] Giessibl F J,Hembacher S,Herz M et al. Nanotechnology,2004,15:S79[13] Giessibl F J. Vorrichtung zum beruehrungslosen Abtasten einer Oberflaeche und Verfahren dafuer. 1996,German Patent DE:19633546[14] Tian Y et al. Science,2022,377:315[15] Gross L,Mohn F,Moll N et al. Science,2009,325:1110[16] Peng J B et al. Nat. Commun.,2018,9:112[17] van der Lit J,Di Cicco F,Hapala P et al. Phys. Rev. Lett.,2016,116:096102[18] Monig H et al. ACS Nano.,2016,10:1201[19] Giessibl F J,Hembacher S,Bielefeldt H et al. Science,2000,289:422[20] Lennard-Jones J E,Dent B M. Trans. Faraday. Society,1928,24:92[21] Schneiderbauer M,Emmrich M,Weymouth A et al. Phys. Rev.Lett.,2014,112:166102[22] Peng J et al. Nature,2018,557:701[23] Ma R et al. Nature,2020,577:60[24] Zhang J et al. Science,2013,342:611[25] Gross L et al. Science,2012,337:1326[26] Emmrich M et al. Science,2015,348:308[27] de Oteyza D G et al. Science,2013,340:1434[28] Gröning O et al. Nature,2018,560:209[29] Wastl D S,Weymouth A J,Giessibl F J. Phys. Rev. B,2013,87:245415[30] Giessibl F J,Reichling M. Nanotechnology,2005,16:S118[31] Setvin M et al. Science,2018,359:572[32] Sokolović I et al. Proceedings of the National Academy of Sciences,2020,117:14827[33] Wagner M,Meyer B,Setvin M et al. Nature,2021,592:722[34] Pielmeier F,Giessibl F J. Phys. Rev. Lett.,2013,110:266101[35] Gross L et al. Science,2009,324:1428[36] Mohn F,Gross L,Moll N et al. Nat. Nanotechnol.,2012,7:227[37] Mallada B et al. Science,2021,374:863[38] Steurer W,Fatayer S,Gross L et al. Nat. Commun.,2015,6:8353[39] Fatayer S et al. Nat. Nanotechnol.,2018,13:376[40] Fatayer S et al. Phys. Rev. Lett.,2021,126:176801[41] Patera L L,Queck F,Scheuerer P et al. Nature,2019,566:245[42] Peng J et al. Science,2021,373:452[43] Ternes M,Lutz C P,Hirjibehedin C F et al. Science,2008,319:1066[44] Kawai S et al. Science,2016,351:957[45] Huber F et al. Science,2019,366:235[46] Bian K et al. Nat. Commun.,2021,12:2457[47] Zheng W et al. Nat. Phys.,2022,18:1317[48] Humphris A D L,Tamayo J,Miles M J. Langmuir,2000,16:7891[49] Jahng J et al. Appl. Phys. Lett.,2015,106:083113[50] Xu J Y et al. Science,2021,371:818[51] Schirhagl R,Chang K,Loretz M et al. Annu. Rev. Phys. Chem.,2014,65:83
  • 眼视光镜片的加工和品控 - 车床加工/三维非接触测量/透氧性
    由于眼视光镜片需要在人眼中使用,质量控制尤为重要,高精度加工和检测是高质量的保证。 阿美特克旗下多品牌仪器皆可助力眼视光镜片的加工和品控。此次讲座将涵盖STERLING超精密车床在眼视光镜片制造与加工中的应用,TAYLOR HOBSON三维非接触测量技术助力眼视光镜片面形控制的提升,以及MOCON对隐形眼镜透氧性能的解析。 6月16日14:00-16:00,STERLING & TAYLOR HOBSON & MOCON的专家将为大家带来精彩的线上直播,期待您扫码报名参与~
  • “扫描探针显微镜漂移测量方法”国际标准发布
    日前,由中国科学技术大学工程科学学院黄文浩教授主持制订的国际标准“扫描探针显微镜漂移测量方法(ISO11039:2012)”已由国际标准化组织正式发布。  自20世纪80年代扫描探针显微镜(Scanning-probe microscopy,SPM)发明以来,由于其具有原子量级的分辨能力,极大地促进了纳米科学技术的发展,并已逐步形成了一种高新技术产业。SPM的工作原理是通过微小探针在样品表面进行扫描,将探针与样品表面间的相互作用转换为表面形貌和特性图像。由于扫描速率较慢,漂移现象在扫描过程中普遍存在,这制约了SPM在纳米测量和纳米加工方面的进一步应用。  黄文浩教授近二十年来一直从事纳米技术与精密仪器领域的研制工作。在2006年,他向国际标准化组织ISO/TC201(表面化学分析技术委员会)提出了“扫描探针显微镜漂移速率测量方法标准”的提案,目的是要将SPM工作时纳米/秒的漂移大小和方向测量出来,以规范这类仪器的使用方法。2007年该提案正式立项,黄文浩教授被指定为该项目工作组的召集人。经过四年多的努力,SPM漂移测量方法标准的最终草案于2011年经全体成员国投票后顺利通过,并于2012年正式发布。  该标准定义了描述SPM在X、Y和Z方向的漂移速率的专业术语,规定了SPM漂移速率的测量方法和测量程序,对仪器的功能和工作环境以及测量报告内容均作了严格要求。该标准为SPM仪器生产厂家制定了漂移速率的有效参数规格,并且能帮助用户了解仪器的稳定性,以便设计有效的实验。该标准不仅适用于基于SPM测量图像的漂移速率评价方法,对其它纳米级测量仪器稳定性的评价也有着重要参考价值。  相关研究工作受到国家自然科学基金、中科院知识创新工程重要方向性项目和科技部973项目资助。  背景资料:黄文浩教授 博士生导师  1968年毕业于清华大学精密仪器及机械制造系精密仪器专业。1978年至今在中国科技大学精密机械与精密仪器系任教,现任教授,博士生导师。其中1989-1991年,西班牙马德里自治大学, 1993-1994年日本东京大学访问学者。主要研究领域:微纳米制造和测量技术 SPM科学仪器技术 飞秒激光微纳米加工技术 纳米技术与标准化。曾承担国际科技合作项目有: 中-日大学群合作先进制造领域中方负责人(1996-2002),中国-西班牙国家级科技合作项目(2001-2004) “纳米技术与仪器”负责人。主持国家自然科学基金面上项目、重点项目、973子课题等多项。在国内外刊物发表论文200余篇。现任国家纳米技术标准化委员会委员,国际标准化组织ISO/TC201/SC9/WG2召集人。《光学 精密工程》《纳米技术与精密工程》杂志编委。2011年担任国际纳米制造趋势论坛NanoTrends2011组委会主席。2011年当选国际纳米制造学会会士(Fellow of ISNM)。
  • 省时省力!微塑料全自动快速分析,非接触式亚微米红外拉曼同步光谱显微系统再度升级!
    随着大量塑料的使用和随意处置,微塑料几乎污染了整个地球,科学家也愈发关注对微塑料的研究。环境中微塑料的尺寸往往小于5μm,传统红外因受限于微米级别空间分辨率,以及不同尺寸颗粒变化的实际红外吸收峰相较于理想吸收峰散射严重等问题,很难对样品进行有效的定性和定量分析。美国PSC公司推出的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,得益于其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量等优势,有效解决了绝大多数环境微塑料样品光谱显微测试的问题。其显著的技术优势为:✔ 亚微米红外空间分辨率,比传统的FTIR/QCL红外显微提高~20倍;✔ 有效排除小尺寸样品散射伪影,极大提高样品测试范围,获得高质量红外拉曼分析图谱;✔ 非接触式,反射(远场)模式测量,对样品无污染,没有任何常见光谱失真。可快速匹配光谱商用数据库,获得样品种类结果;✔ 可升级亚微米同步红外+拉曼同步联用系统,在相同时间、条件、位置下获得相同空间分辨率的红外和拉曼光谱。非接触亚微米分辨红外拉曼同步测量系统—mIRage近日,PSC公司将mIRage系统全新升级,即将发布FeaturefindIR功能。FeaturefindIR创新性的实现了微塑料和其他颗粒快速、自动化的光谱测量和化学鉴定,显著提高了实验效率,并为应用中大量样品的测量提供了基础,包括但不限于微塑料,缺陷污染和细胞分析,以及许多其他样品类型。mIRage升级系列将原有优势进一步拓宽:☛ 测试从亚微米到毫米范围内微塑料样品;☛ 红外拉曼同步,测量大量的微塑料和颗粒;☛ 测试系统自动搜索和检测粒子;☛ 自动测量和定位化学ID。升级功能新品发布会为使研究者更好的了解这一升级功能,美国PSC公司将举办升级功能新品发布会,发布会将由产品管理和营销总监Mustafa Kansiz博士主持介绍。此次发布会将主要介绍“FeaturefindIR”软件自动化工具如何在mIRage上对更具有生物学意义的微塑料颗粒(从小于500 nm到大尺寸(mm))进行自动化、快速和准确的分析,规避传统FTIR/QCL和拉曼显微系统所见的明显缺陷,从而有效完成微塑料样品测试。同时,Mustafa Kansiz博士也将实时演示亚微米mIRage的featurefindIR功能,无论颗粒形状和大小如何,都将得到一致、无伪影的图谱,并使用交叉偏振可见光增强颗粒检测。敬请期待mIRage系统featurefindIR的详情发布!FeaturefindIR优势解析:【高效粒子数据收集】微塑料、颗粒和有机污染物有时很难在大量的一般污染物中发现。为了获得最大的灵活性,featurefindIR可以使用图像输入,以实现更准确和敏感的检测和定位。【自动测量和识别】一旦确定了颗粒的位置和大小,mIRage系统就会自动移动到所需测量位置,并执行快速、自动化的红外光谱测量。测量完成后,粒子信息汇总表将列出获得关键光谱的每个粒子的位置和特定尺寸。此表可以转移到featurefindIR μChemical ID报告中,也可以导出为CSV文件。【FeaturefindIR μChemical ID报告】FeaturefindIR μChemical ID报告将自动分析PTIR Studio文件中用户选择的所有光谱,并将它们与集成数据库中的参考光谱集相关联。对每个测量的频谱报告命中质量指数(HQI),如果HQI高于用户设置的阈值,还会报告最佳匹配化学ID。在测量光谱和参考光谱之间显示覆盖层,颜色编码可用于评估光谱数量的视觉支持,特定塑料类型被分配特定颜色作为视觉辅助。此外,可以通过选择每个结果来进行定量检查,以显示与OPTIR参考匹配接近的详细光谱叠加。FeaturefindIR为研究人员提供了一种快速测量大量相关微塑料的自动化方案。不但提供了维度方面的信息,同时可以通过专用的μChemical ID数据库确定它们的化学ID。所有数据都可以通过CSV导出,以便根据需要进行进一步分析。FeaturefindIR通过提供识别微塑料类型的不同方法(如单波长成像和荧光图像)来提高测量效率,提供了从亚微米到毫米大小的微塑料研究完整解决方案。
  • 不忘初心,砥砺前行——Park原子力显微镜成长史
    不忘初心,砥砺前行,以下按照时间轴,一起回顾Park原子力显微镜公司成长史,以及伴随世界原子力显微镜技术发展的故事。01Park公司简介 帕克原子力显微镜(Park Systems,以下称Park)是一家专门从事纳米设备测量的公司。Park致力于新技术开发,始终是纳米显微镜和计量学领域的创新者。Park在AFM技术发展中发挥着举足轻重的作用,制造和销售具有全自动化软件且使用方便的高精度原子力显微镜(AFM)。截至2021年4月20日,Park股票估值超过了一兆(万亿)韩元。朴尚一(Sangil Park)博士和他的导师Calvin Quate教授02为梦想而坚守Park原子力显微镜创始人朴尚一博士 Dr. Sangil Park1985年朴尚一博士所在的课题组(师从Calvin Quate教授)研发出世界首台原子力显微镜1988年朴尚一博士在美国硅谷创立了Park Scientific Instruments公司(PSI)1997年朴尚一博士将年销量为1200万美金的PSI以1700万美金的价格转卖给了美国测量设备公司Thermo Micro.1997年朴尚一博士回到韩国,创立PSIA公司,即为后来的Park原子力显微镜公司。Park原子力显微镜1997年4月PSIA(株)成立(资金5亿韩元)1998年7月中小企业厅风险投资企业确认1998年10月被韩国产业资源部评定为工业为主技术开发公司2000年04月韩国科学技术部颁发国家研究奖(NRL)2002年7月获得NT Mark(New Technology)新技术认证2002年消除串扰技术的发展(XE),从而提高了原子力显微镜的反馈和成像2003年4月成立美国分公司(PSIA Inc.)2003年5月被韩国科学技术部选为核心技术开发产业(Nano)2003年10月获得CE标志认证(XE-100, XE-150产品型号)2004年2月获得“工业技术奖”2004年真正非接触模式(True Non-contact Mode)实现无损样品扫描2005年1月被评为2004年韩国十大新技术企业(原子力显微镜技术)2005年7月获得ISO 14001环境管理体系认证2006年1月获得韩国高新技术认证(NEP, New Excellence Product)2007年1月成立日本分公司2007年4月法人名更改为Park Systems Corp.2007年12月被知识经济部评为"世界一流商品生产企业"2008年3月“韩美未来产品经营大奖”2008年7月获得 ISO 9001质量管理体系认证2008年8月XE-3DM:用于高分辨率3D测量的全新3D原子力显微镜2008年11月XE-Wafer: 用于在线晶圆检测和计量的自动化工业AFM2009年5月通过了Hynix海力士半导体的"Preliminary Performance Test"2009年6月荣获彼得.德鲁克创新奖2010年1月获得国家核心技术奖(工业型原子力显微镜技术)2010-11号2010年12月韩国十大新技术奖(XE-3DM技术)-知识经济部2010年12月韩国技术大赏银奖(XE-3DM技术)(经济部长奖)2011年Park NX10新品出市:全新产品系列的最优原子力显微镜2012年8月NanoKorea 2012知识经济部长奖2012年8月新加坡分公司成立2012年10月Park NX-Wafer: 全自动晶圆检测原子力显微镜2012年Park NX20新产品:用于故障分析和大型样品扫描的领先纳米计量工具2013年6月被选为 INNO-BIZ(技术创新中小企业) (13.06.20~16.06.19)2013年Park NX-HDM: 实现硬盘介质和半导体衬底的全自动化缺陷检查和亚埃米级表面粗糙度测量2014年Park SmartScan: 通过Park划时代创新自动成像技术,实现SmartScan软件的三次点击成像2015年2月与IMEC达成JPD协议以开发用于半导体制造业的纳米级原子力显微镜计量学2015年5月被选为国家产业核心技术事业项目 (2015.06~2018.05)-韩国产业通商资源部2015年8月首次在KOSDAQ(科斯达克)评估信息中获得AA等级技术评估,技术保证金2015年9月被指定为国家核心技术(原子力显微镜制造技术)- 韩国产业通商资源部2015年12月在科斯达克(KOSDAQ)上市,首次公开募股2015年6月NX-3DM:失效分析,质量监控和工艺改进的最佳原子力显微镜2015年Park NX-Hivac: 用于故障分析和气压敏感材料研究的高真空原子力显微镜2016年6月荣获第8届韩国KOSDAQ奖"最佳下一代企业奖"2016年6月被选为INNO-BIZ(技术创新中小企业) (A等级,16.06.20~19.06.19)2016年7月2016弗若斯特沙利文(Frost&Sullivan)“全球技术支持领先奖”2016年12月产业通商资源部颁发2016年"第15届产业技术奖"2016年Park NX20 300mm: 可用于300 mm晶片圆测量和分析的自动化纳米测量工具2017年2月成立中国台湾分公司2017年3月成立欧洲分公司2017年Park NX12: 多功能原子力显微镜平台,满足纳米级测量的需求2018年5月2018年科斯达克(KOSDAQ)后起之秀企业2018年6月第十届韩国科斯达克(KOSDAQ)大赏最优秀技术企业奖2018年9月中国北京分公司成立2018年11月科学技术信息通信部,产业通商资源部颁发2018年十大纳米技术奖2018年12月入选2018年最有前途半导体技术解决方案企业2019年7月再次被选为2019年科斯达克(KOSDAQ)后起之秀企业2019年7月获NanoKorea 2019年韩国国务总理表彰奖2020年2月Park NX-TSH: 专为超大纳米平板显示器测量设计的自动化原子力显微镜2020年3月IMEC与Park公司签署第二期JDP协议合作开发用于半导体制造的纳米计量解决方案2020年5月Park原子力显微镜完成其对Molecular Vista的股权投资2021年1月2020年福布斯亚洲10亿美元200强企业榜单- Park原子力显微镜公司上榜2021年2月Park SmartLitho™ -最简易的纳米光刻和纳米操作的智能化软件2021年4月在科斯达克(KOSDAQ)突破一兆(万亿)韩元的关口03Park研发之路"前世今生"近40年间,朴尚一博士致力于原子力的发展。1985年,朴尚一博士在斯坦福大学Calvin Quate教授课题组攻读博士学位期间,亲身参与并见证了首台AFM的诞生。该成果发表在1986年3月的“物理评论快报”上,该成果的共同作者单位为Gerd Binnig(IBM公司阿尔玛登研究中心)、Christoph Gerber(IBM公司苏黎世研究实验室)、Calvin Quate教授(斯坦福大学)。1988年,朴尚一博士在美国硅谷创立了Park Scientific Instruments公司(PSI),PSI作为全球最初的商业化AFM公司在硅谷获得了巨大成功,公司仅用三年时间,销售业绩就达到了595万美金,相比于创业之初的1988年,业绩实现了超过10倍的暴风式增长。1997年, PSI以1700万美金的收购价格被美国测量设备公司Thermo Micro全资收购。1997年,朴尚一博士回到韩国并于当年成立了PSIA公司。伴随着半导体产业的崛起,PSIA公司着力于开发适用于半导体产业的计量型原子力显微镜。1998年,PSIA公司推出了首款可以对8英寸Wafer进行缺陷检测的原子力显微镜"SM5-200"。2000年,PSIA公司根据LCD产业的需求,推出了世界上首台不用破片的大尺寸LCD产业用原子力显微镜--600X720 mm液晶显示器(LCD)。该产品首次实现了原子力显微镜检测的不破片测量,并在同年得到了三星电子的评测认可。但在2001年,由于受制于美国的贸易政策,PSIA公司不能从美国的公司采购任何主要的美国生产的产品备件,导致公司生产一度停滞。“求人不如求己!”面对美国一些贸易壁垒的经营限制条例,朴尚一博士决定借此机会让PSIA成为完全的技术独立者。在随后的漫长时间里,他致力于研发完全本土化的产品。历尽不为人知的众多曲折后,PSIA最终推出了世界上首台扫描器分离的原子力显微镜Park XE-100,并且将非接触模式的算法进行了优化升级,一举解决了传统非接触模式不能进行高分辨扫描的弊端。PSIA推出的非接触模式成像,在获得高分辨率的照片的同时,且使探针寿命得到了显著的提升,有效降低了AFM使用成本。2007年4月,PSIA正式改名为Park Systems (中文名:帕克原子力显微镜,以下称为Park)。随后Park还开发了3D原子力显微镜测量技术,升级款的原子力显微镜可以测量类似TSV样品的侧壁形貌。此项技术问世后,欧洲领先的微电子技术独立研发中心IMEC向Park抛来合作的橄榄枝,并在2015年和Park签署合作意向书,以便在半导体工艺先进制程研发领域建立长期合作伙伴关系。小结Park公司成立至今,从包括朴尚一博士在内的首次创业的几个合伙人,发展到现在拥有400人的全球公司,实现了质的蜕变。截至目前,Park公司市值已超过10亿美金,在全球建立了9个分公司和代表处,并于2017年在中国北京成立了韩国帕克服份有限公司北京代表处… … 毋庸置疑,随着市场地不断开拓,Park公司凭借着与时俱进的研发技术,已经成为业界领先的优秀企业。接下来Park即将推出一系列新品原子力显微镜,并将于2024年扩迁公司总部,以更好地推进公司的运营和发展。Park将为科学和工业实验室引入一种具有人工智能和机器人智能化的全新全自动化原子力显微镜 ,值得期待!
  • Park原子力显微镜NX系列新品发布:灵活智能的研究级AFM
    仪器信息网讯 Park原子力显微镜11月14日发布了NX系列新品——Park NX7。Park NX7通过消除扫描器串扰进行准确的XY扫描,操作软件可以帮助初次使用用户和资深用户进行专业的纳米级研究,支持高级样品表征。Park NX7涵盖所有扫描探针显微镜的扫描模式,26种SPM模式包括3种形貌成像、3种介电/压电特性、1种磁学特性、9种电学特性、8种力学特性和2种化学特性模式,拥有极佳的选择兼容性和可升级性。Park NX7 配有Park原子力显微镜顶尖技术,其设计与新型显微镜一样彰显细节品质,可以有效助您取得精准的研究成果。现在价格实惠,是您预算合理下的理想首选。NX系列产品优势:True Non-Contact™模式可延长探针寿命、保护样品和精准测量;高速扫描器可在提高扫描速度的同时提供高解析度图像,为用户提供高效率解决方案;人性化设计的软件和硬件功能,拓展功能齐全。实惠智能Park NX7(点击查看更多仪器信息)概览通过消除扫描器串扰进行准确的XY扫描• 独立闭环XY和Z柔性扫描器• 正交XY扫描• 样品表面形貌信息测量精准,无需软件处理最全面的原子力显微镜解决方案• 涵盖所有扫描探针显微镜的扫描模式• 更智能的NX电子控制器默认启用高级纳米机械测量模式• 拥有业界最佳选择兼容性和可升级性人性化设计的软件和硬件功能• 方便样品或换针的开放式使用• 预对准的探针夹设计,可轻易直观的进行SLD光校准• Park SmartScanTM - 原子力显微镜操作软件可以帮助初次使用用户和资深用户进行专业的纳米级研究。技术信息无扫描器弓形弯曲的平直正交XY轴扫描Park的串扰消除技术不仅改善了扫描器弓形弯曲的缺点,还能够在不同扫描位置,扫描速率和扫描尺寸条件下进行平直正交XY轴扫描。即使最平坦的样品也不会出现如光学平面,各种偏移扫描等背景曲率。因此Park能不惧艰难挑战,为您在研究中提供高精度的纳米测量。 无耦合关系的XY和Z扫描器Park的核心优势在于匠心独运的扫描器架构。基于独立XY扫描器和Z扫描器设计的独特挠曲结构,能让您轻松获得无可比拟的高精度纳米级分辨率数据。 行业领先的低噪声Z探测器Park AFM 配备了该领域最有效的超低噪声Z探测器,噪音水平低于0.02 nm,因而达到了样品形貌成像精准,没有边沿过冲无需校准的高效率。Park NX系列不仅为您提供高精准的数据,更为您最大化地节省了时间成本。 由低噪声Z探测器测量准确的样品形貌• 利用低噪声Z探测器信号进行形貌成像• 有高宽带,Z探测器低噪声只有0.02 nm• 边缘位置无前沿或后沿过冲现象• 只需在原厂校准一次样品: 1.2 μm标准台阶高度(9 μm x 1 μm, 2048 pixels x 128 lines)True Non-Contact™模式可延长探针寿命、保护样品和精准测量True Non-Contact™ 模式是Park原子力显微镜系统独有的扫描模式,通过在扫描过程中防止针尖和样品损坏,从而产生高分辨率和准确的数据。接触模式下,针尖在扫描过程中持续接触样品;轻敲模式下,针尖周期性地接触样品;而在非接触模式下针尖不会接触样品。因此,使用非接触模式具有几大关键优势。由于针尖锐度得以保持,在整个成像过程中会以最高分辨率进行扫描。非接触模式下由于针尖和样品表面不会直接接触,从而避免损坏软样品。 更快速的Z轴伺服使得真正的非接触式原子力显微镜有更精确的反馈• 减少针尖磨损 → 长时间高分辨率扫描• 无损式探针-样品接触 → 样品受损最小化• 可满足各种条件下,对各种样品都能够进行非接触式扫描 此外,非接触模式可以感知探针与样品原子之间的作用力,甚至可以检测到探针接近样品时产生的横向力。因此,在非接触模式下使用的探针可以有效避免撞到样品表面时突然出现的高层结构。而接触模式和轻敲模式只能进行探针底端检测,很容易受到这种撞击伤害。原子力显微镜模式最具扩展性的 AFM 解决方案:行业领先——支持最广泛的SPM模式和选项如今,研究人员需要在不同的测量条件和样品环境下表征广泛的物理特性。 Park Systems能为您提供最广的 SPM 模式、最全的 AFM 选项以及业界最佳的选项兼容性和可升级性,支持高级样品表征。Park NX7拥有最广泛的 SPM 模式形貌成像• 非接触模式• 接触模式• 轻巧模式介电/压电特性• 压电力显微镜(PFM)• 高压PFM• Piezoresponse Spectroscopy磁学特性• 磁力显微镜 (MFM) 电学特性• 导电原子力显微镜 (C-AFM)• 电流-电压分光镜• 开尔文探针力显微镜 (KPFM)• 高压KPFM• 扫描电容显微镜 (SCM)• 扫描扩展电阻显微镜 (SSRM)• 扫描隧道显微镜(STM)• 光电流映射 (PCM)• 静电力显微镜 (EFM) 力学特性• 力调制显微镜 (FMM)• 纳米压痕• 纳米刻蚀• 高压纳米刻蚀• 纳米操纵• 横向力显微镜 (LFM)• 力距(F/d)光谱• 力容积成像化学特性• 具有功能化探针的化学力显微镜• 电化学显微镜 (EC-AFM)技术参数Park NX7 参数ScannerZ扫描器柔性引导高推动力扫描器Z扫描范围: 15 μm (30 μm可选) XY扫描器闭环控制式单模块柔性XY扫描器扫描范围: 50 µm × 50 µm(可选 10 μm × 10 μm 或 100 μm × 100 μm)位移台Z位移台Z位移台行程范围: 28 mm XY位移台XY位移台行程范围: 13 mm X 13 mm 样品架样品大小 : 最大50 mm样品厚度: 最厚20 mm软件SmartScanTMAFM系统控制和数据采集软件智能模式的快速设置和简易成像手动模式的高级使用和更精密的扫描控制 SmartAnalysisTMAFM数据分析软件独立设计—可以安装和分析AFM以外的数据能够生成采集数据的3D绘制 Dimensions in mm
  • 岛津原子力显微镜——iPS细胞与癌细胞的对比与区分
    干细胞的研究一直受制于供体细胞很难获得,而且相关实验的伦理风险也不容忽视。因此2007年发明的诱导式多能性干细胞(iPS)技术成为最佳的胚胎干细胞替代。iPS细胞在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等方面都与胚胎干细胞相似。但是iPS转化过程中,会有一定的几率发展为癌细胞。不同体细胞来源的iPS细胞成瘤性有差异。因此,如何筛选安全型iPS细胞是该技术能够进入临床实验的关键。原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的细胞观测设备。除了形貌观察外,原子力显微镜还可以多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些特征为原子力显微镜应用于iPS细胞观测与筛选提供了技术基础。为此设计一个实验,分别用原子力显微镜观察未分化的iPS细胞和HeLa细胞。HeLa细胞是一种被广泛使用的癌变细胞,因此可以和iPS细胞进行对比观察。上图显示了SPM形状图像(a)HeLa细胞和(b)iPS细胞。用光学显微镜观察到的相应相位差图像分别显示在(c)和(d)中。图中箭头所示位置处的截面形状轮廓如(e)和(f)所示。从细胞形态上来看,HeLa细胞呈圆顶形,表面隆起比较高,约7um;而iPS细胞呈扁平状且细胞间粘附呈网状结构,细胞高约1.7um。仔细观察细胞之间的边界,可以看出HeLa细胞之间的边界呈凹陷状,而iPS细胞之间的边界是凸起的,而且呈网络状。据此可分析得知这两种细胞各自的间粘附具有差异,且HeLa细胞之间的粘附较弱,而iPS细胞之间的粘附较强。除了形貌观察外,原子力显微镜还可以通过力学测量获得细胞表面的机械性能。如下图所示,用探针针尖压触细胞表面,通过对探针获得的力反馈分析样品各类机械性能。对于本实验,在对64×64点的测量区域进行测量后,从获取的体数据中形成形状图像。该观察中使用的探针是由OlympusCorporation制造的OMCL-TR800PSA并且具有0.15N/m的弹簧常数。测量是在培养液中的活细胞条件下进行的。对细胞的最终压力(排斥力)为2.5nN。通过比较从探针与样品接触的位置到达到2.5nN的力的变化,确定样品的硬度。(a)和(b)显示了SPM观察到的HeLa和iPS细胞的细胞形状图像,(c)和(d)显示了相应的ZX断面图像,是从样品竖截面方向看时在(a)和(b)中箭头所示的X线位置处施加到探针的力的图像。图中上方为测量起点,下方白色虚线为压触终点,显示了样品截面形状轮廓。在ZX图像中,探针与样品接触后检测到力的位置以黄色到红色的颜色显示。因为这表明探针对细胞的变形,所以可以理解较大量的细胞变形显示细胞的较软部分。可以从细胞变形量了解硬度。(c)中的HeLa细胞显示出均匀的变形,但相比之下,在(d)中的iPS细胞中,细胞体较软,细胞间粘附区较硬。分析结果表明,HeLa细胞表面硬度比较均匀,软硬部分差别不大,而iPS细胞主体较软,细胞间粘附区较硬。由以上测试可知,利用原子力显微镜对iPS细胞进行表征,有潜力发展为正常细胞筛选以及剔除癌变细胞的合适工具。本文内容非商业广告,仅供专业人士参考。
  • 原位力学测量仪与拉曼光谱、金相显微镜实现联用
    p  近日,科技部高技术研究发展中心组织专家组对吉林大学牵头承担的863计划“跨尺度原位力学测试新技术与仪器装备的开发制造”进行了技术验收。专家组认为该课题突破了微纳量级测量的多项关键技术,研发出系列测量仪器,实现了预期目标,一致同意通过验收。/pp  随着新材料、航空航天和高端制造业等产业集群的发展,对材料服役性能测试与保障能力的要求不断提高,学术界和工业界对材料微观力学性能测试技术与仪器开发的需求迅速增长。对此,在863计划支持下吉林大学等单位开展了跨尺度原位力学测试新技术与仪器装备的开发研制工作。经过3年攻关,课题组攻克了原位力学测试仪器装备的设计、制造与标定等关键技术,突破了原位测试仪器精度校准的技术瓶颈,使加载力分辨率达10mN、加载位移分辨率优于100nm,多项指标取得突破,与传统的材料力学性能测试技术相比,本课题研制的仪器能与扫描电子显微镜、Raman光谱仪和金相显微镜等多种材料性能表征技术相兼容,实现了对材料力学参数、微观力学行为、变形损伤机制与微观组织演化多参量原位精准测试。课题组已初步掌握了微测量仪器工程化产业化关键技术,并形成了专利成果转化的良性机制,所研发的压痕/刻划、拉伸/压缩、剪切、弯曲、扭转和拉伸-扭转复合等6类17种仪器及其配套分析处理软件,填补了我国相关领域仪器的空白。该课题成果已在包括北京大学、浙江大学、北京工业大学以及济南铸锻所等国内20多家大学和研究单位得到示范应用和推广。/pp  该课题的验收表明我国已经掌握了具有自主知识产权的材料微观力学性能测试仪器及其批量制造的核心关键技术,实现了我国自主知识产权原位测试仪器的突破,提升了我国自主研制仪器的技术水平,推进了传统试验机行业转型升级,丰富了现有材料力学性能测试理论、技术与标准体系,在人才培养、学科建设和产学研合作等方面发挥了重要作用,扩大了我国在力学性能测试领域的国际影响力。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制