当前位置: 仪器信息网 > 行业主题 > >

非接触测量显微镜

仪器信息网非接触测量显微镜专题为您提供2024年最新非接触测量显微镜价格报价、厂家品牌的相关信息, 包括非接触测量显微镜参数、型号等,不管是国产,还是进口品牌的非接触测量显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非接触测量显微镜相关的耗材配件、试剂标物,还有非接触测量显微镜相关的最新资讯、资料,以及非接触测量显微镜相关的解决方案。

非接触测量显微镜相关的论坛

  • 非接触式形状测量显微镜

    谁知道那有非接触式表面三维形状测量显微镜?垂直Z方向要0.1微米级的,X,Y方向需要厘米级别的。我是想租用,基恩士有一款,不知道哪个实验室或者测量单位可以提供这个服务?

  • 测量显微镜的应用

    测量显微镜工作原理是使用透、反射的方式对工件长度和角度作精密测量。测量显微镜大多用于工业中,因此测量显微镜又称为[url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%89%E5%AD%A6%E6%98%BE%E5%BE%AE%E9%95%9C/%E5%B7%A5%E4%B8%9A%E5%8F%8A%E6%9D%90%E6%96%99/%E6%AD%A3%E7%BD%AE%E6%98%BE%E5%BE%AE%E9%95%9C/%E8%AF%A6%E7%BB%86%E4%BB%8B%E7%BB%8D/product/leica-dm6-m]工业测量显微镜[/url]。测量显微镜的工作台除可以作平面移动外,还可以作360度的旋转,可从全方位观察器件。它的主要用途有:1、广泛应用于电子工业,比如观察电路板的构造,观察零件直接的精确距离;2、适用于制造业、精密零件以及不方便移动的物件的观察测量;3、用于生产作业线。

  • 【求购】光学显微镜

    实验室需要显微镜观察样品表面形貌和精确测量样品的二维尺寸(精度达到0.01mm),请大家推荐几款质量过硬的光学显微镜及其大致价格。个人倾向于普通镜头带刻度的,非测量显微镜。谢谢!

  • 金相显微镜的测量方法

    1、接触法:接触法是利用金相显微镜的标记对和紧靠测件测量点、线、面的万工显附件-----光学测孔器的测头连在一起的双刻线进行瞄准定位的测量方法。测量时将光学测孔器的测头紧靠件(内、外)表面。当测量孔径时,首先使测头与测件内孔接触,取得最大弦长后,使米字线中间刻线被光学测孔器的双套线套在中间,并在金相显微镜读取一数;然后改变测量方向,使测头在另一侧与测件接触,同样使米字线分划板的中间刻线仍被光学测孔器的双套线套在中间,在金相显微镜上读取另一数。两次读数的差,再加上测头直径的实际值,即为测件的内尺寸,如减去测头直径的实际值,即为测件的外尺寸。2、影像法:影像法是利用金相显微镜的标记,对影像法进行瞄准定位的测量方法。测量时,通常是先用(米字线)分划板上的刻线瞄准测件影像的边缘,并在读数显微镜上读出数值,然后移动工作台以同一条刻线瞄准测件影像的另一边,再作第二次读数。两次读数的差,就是被测件的测量值。3、轴切法:轴切法是利用金相显微镜的标记对通过测件轴心线并利用测量刀上的刻线进行瞄准定位的测量方法。金相显微镜测量刀是万工显的附件。其表面有一刻线,刻线至刃口的尺寸为0.3和0.9毫米两种,测量时,把测量刀放在测量刀垫板上,刻线面通过测件的轴线,并使测刀的刃口和被测面紧紧接触,用相应的米字线去瞄准,测量两把测刀刻线间的距离,就间接测得被测件的测量值。为了避免测量中的计算,在中间垂直米字线的两侧刻有两组共四条对称分布的平行线,每组刻线对中心刻线的距离分别为0.9和2.7毫米,它正好是测刀的刃口到刻线间的距离0.3和0.9毫米的3倍。这样用3倍物镜瞄准时,分划板上的0.9和2.7毫米刻线正好压住测刀上的0.3和0.9毫米刻线,这时测刀上的刃口正好被米字线的中间刻线所瞄准。主要用于螺纹中径测量。

  • 【求助】有关光学显微镜的照明光源问题

    常用的光学显微镜的照明光源有什么要求?如测量显微镜、金相显微镜、体式显微镜等,分别选用什么照明,看到有LED、卤素灯、疝气灯等另外,照明光源的功率多少合适?

  • 【分享】如何选择显微镜?

    显微镜具有很广泛的用途,因此分为不同的类型并具有特殊的附件。生物显微镜常用在实验室、高校、医院,用于生物样品的研究和诊断。工业显微镜工业显微镜主要用于装配工作或质量监控。用于检测材料和工厂成品。体视显微镜体视显微镜是工作或学习中典型的放大工具,常用于样品的镜下手工操作或工具操作(如解剖)。倍数通常比较低,有些体视显微镜可放大到几百倍。电子检查设备体视显微镜常用于检测制造或成品的印刷电路板的缺陷。一个“斜查看器”(oblique viewer) 可添加到体视显微镜中,这样能够围绕一个组件检测它与印刷电路板的连接情况。测量显微镜这种显微镜具有数字读出功能。提供X、Y、Z轴可靠、精确、可重复的测量。金相显微镜金相显微镜用于科研和工厂。用于观察金属磨面、平面或其他物件表面。偏光显微镜偏光显微镜在科研、工业和学术领域有广泛的应用。利用偏振光,科研工作者能够发现不同有机物或无机物的结构、含量和化学组成。石棉显微镜Meiji有特殊的石棉显微镜,为世界各地的公司和政府机构提供矿物质和纤维的观察、鉴定工具。视频显微镜视频显微镜用于机器视觉,测量和生产小尺寸元件、需要高分辨率的领域。

  • 【小介绍】显微镜微测尺的使用

    [color=#00008B]显微测微尺是用来测量显微镜视场内被测物体大小、长短的工具, 包括目镜测微尺(分划目镜)和测微台尺。用时需两者配合使用。目镜测微尺系在目镜的焦面上装有一刻度的镜片而成, 其每一刻度值为0.1mm, 测微台尺为一特制的载玻片, 其中央有刻尺度, 每一小格的值为0.01mm, 使用时, 先将目镜测微尺插入目镜管, 旋转前透镜将目镜内的刻度调清楚, 在把测微台尺放在载物台上, 调焦点到看清楚台尺的刻度。观察时先将两者的刻度从“0”点完全重叠, 在向右找出两尺又在何处重叠, 然后记下两尺重叠的格数, 以便计算出测微尺每小格在该放大率下的实际大小。 计算公式: 台尺重叠格数×10÷目尺重叠格数例如:目镜测微尺上的第五小格与测微台尺上的第八格重叠 则目镜测微尺上的每小格= 8×10 ÷ 5 = 16um 测量时不再用测微台尺, 如改变显微镜的放大赔率, 则需对目镜测微尺重新进行标定.[/color]

  • 【讨论】实验室常用辅助设备系列讨论——显微镜(2分)

    活动第十一期:实验室常用辅助设备系列讨论之——显微镜~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~一、简介:显微镜是用于放大微小物体成为人的肉眼所能看到的仪器。显微镜在化学分析中主要用于在结晶分析中观察结晶的形状,它包括生物显微镜、金相显微镜、测量显微镜等类型。显微镜还可分为光学显微镜和电子显微镜。此外,显微镜还有单、双筒之分,在一般的分析测试中通常采用单筒生物显微镜。二、问题讨论:1、如何使用显微镜;2、使用显微镜时有哪些注意事项?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~其它系列讨论详见汇总贴: http://bbs.instrument.com.cn/shtml/20101112/2921750/

  • 【讨论】原子力显微镜

    【讨论】原子力显微镜

    原子力显微镜(atomic force microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的格尔德?宾宁与斯坦福大学的Calvin Quate于一九八五年所发明的,其目的是为了使非导体也可以采用类似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子穿隧效应,而是检测原子之间的接触,原子键合,范德瓦耳斯力或喀希米尔效应等来呈现样品的表面特性。1. 工作原理原子力显微镜的原理示意图: Detector and Feedback Electronics 侦检器及回馈电路; Photodiode 感光二极管; Laser 激光器; Sample Surface 样品表面; Cantilever & Tip 微悬臂及探针; PZT Scanner 压电扫描器 AFM的关键组成部分是一个头上带有一个用来扫描样品表面的尖细探针的微观悬臂。这种悬臂大小在数十至数百微米,通常由硅或者氮化硅构成,其上载有探针,探针之尖端的曲率半径则在纳米量级。当探针被放置到样品表面附近的地方时,悬臂会因为受到探针头和表面的引力而遵从胡克定律弯曲偏移。在不同的情况下,这种被AFM测量到的力可能是机械接触力、范德华力、毛吸力、化学键、静电力、磁力(见磁力显微镜)喀希米尔效应力、溶剂力等等。通常,偏移会由射在微悬臂上的激光束反射至光敏二极管阵列而测量到,较薄之悬臂表面常镀上反光材质( 如铝)以增强其反射。其他方法还包括光学干涉法、电容法和压电效应法。这些探头通常由采用压电效应的变形测量器而制得。通过惠斯登电桥,探头的形变何以被测得,不过这种方法没有激光反射法或干涉法灵敏。 当在恒定高度扫描时,探头很有可能撞到表面的造成损伤。所以通常会通过反馈系统来维持探头与样品片表面的高度恒定。传统上,样品被放在压电管上并可以在z方向上移动以保持与探头之间的恒定距离,在x、y方向上移动来实现扫描。或者采用一种“三脚架”技术,在三个方向上实现扫描。扫描的结果S(x,y)就是样品的表面图。AFM可以在不同模式下运行。这些模式可以被分为接触模式(Contact Mode)、非接触(Non-Contact Mode)、轻敲模式(Tapping Mode)、侧向力(Lateral Force Mode)模式。2. 优点与缺点 相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812311440_127077_1664664_3.jpg[/img]

  • 【分享】基本原则的原子力显微镜

    基本原则的原子力显微镜 在原子力显微镜基本上是一个微型悬臂式(一小束停泊在一端,而另一项目进入太空像跳水板) ,以纤巧,指出探针(同一个极为精细陶瓷或半导体尖端这是衡量规模的纳米)底下的一端,就像笔就测谎,甚至是地震。 不同的笔在纸上打印或其他媒介,一个原子力显微镜有几项改进,使原子级测量的吸引力或令人厌恶的部队之间的“笔”尖和样品的表面。 作为小费是吸引或排斥的样品的表面,是悬臂偏转。 的严重性挠度测量激光反映在斜角月底的调查。 绘图激光挠度对冰山上的立场样品表面创造了“地图”的丘陵和山谷的表面。 这提供了一个高分辨率图像的样品的表面。 在原子力显微镜有两种扫描模式。 在接触模式下,原子力显微镜的探针接触样品的表面。 作为文书拖累冰山的表面,检测设备的措施悬臂的垂直挠度和说明了当地的样品高度-实际上,衡量'排斥'势力之间的尖端和样品。 在非接触模式下,原子力显微镜的探针没有触及表面的样本,它的措施有吸引力的部队之间的冰山,表面画地形图的表面。 利弊原子力显微镜 一个原子力显微镜具有优势了扫描电子显微镜( SEM ) 。 其中之一是,一个原子力显微镜可以功能的空气或液体的环境不同,电子显微镜,要求所有探头进行在真空中进行。 鉴于此,研究人员已经开始测试原子力显微镜的适宜用于研究活生物体在纳米尺度(例如,扫描和研究生物大分子如DNA等) 。 另一方面,一个原子力显微镜可以绘制三维图像 的扫描电镜只能提供二维图像或投影的抽样调查。 另一方面,一个主要的缺点是原子力显微镜是该地区它可以扫描和图像分辨率,它可以产生。 电子显微镜可以扫描面积测量毫米 一个原子力显微镜的扫描涵盖微米(纳米,事实上) 。 从这个角度看,可以很容易地看到,电子显微镜可以扫描的区域面积更广,速度超过了原子力显微镜。 原子力显微镜是相当新的,仍然有一些错误,但它是目前使用广泛的研究在电子,化学和生物领域包括深奥的学科磨损和粘附,清洗和腐蚀,以及作为东道主的其他应用软件。

  • 混合显微镜可从三维测量生物分子

    中国科技网讯 据每日科学近日报道,最近,美国爱荷华大学与国家能源部艾米实验室科学家合作,将光学显微与原子力显微技术结合起来,开发出一种能对单个生物分子进行三维测量的方法,准确性和精确性都达到纳米级别。最近出版的《纳米快报》上详细介绍了该技术。 现有技术只能从二维平面来测量单个分子,只有X轴和Y轴,新技术称为驻波轴向纳米仪(AWAN),让研究人员能测量Z轴,也就是高度轴,样本也不需要经过传统光学或特殊表面处理。 “这是一种全新类型的测量技术,可以确定分子Z轴方向的位置。” 论文合著者、爱荷华大学物理与天文学副教授珊吉维·西瓦珊卡说,他们承担的研究项目有两个目标:一是研究生物细胞彼此之间怎样粘合,二是开发研究这些细胞的新工具。为此他们开发了新的显微技术。 研究小组用荧光纳米球和DNA单链测试了新式混合显微镜。他们把一台商用原子力显微镜与一台单分子荧光显微镜结合。将原子力显微镜的悬臂针尖放置在一束聚焦激光束上,以产生驻波纹样。 驻波是频率和振幅均相同、振动方向一致、传播方向相反的两列波叠加后形成的波。波在介质中传播时其波形不断向前推进,称为行波;上述两列波叠加后波形并不向前推进,叫做驻波。将一个经处理发光的分子放置于驻波内,当原子力显微镜尖端上下移动时,分子表面相应于它距针尖的距离而起伏发出荧光,由此可以对这一距离进行测量。在实验中,该技术在测量分子时可以准确到1纳米内,测量可多次重复,精确度达到3.7纳米。 西瓦珊卡说,该技术可以通过显微镜来提供高分辨率数据,给医疗研究人员带来便利。还具有商业化潜力,促进单分子生物物理学的研究。(常丽君) 《科技日报》(2012-8-9 二版)

  • 显微镜基础知识

    这次上传的是显微镜基础知识,希望对初次接触显微镜的朋友们能够有所帮助。

  • [经验] 显微镜目镜刻度使用方法

    更加精确的测量需使用目镜测微尺。目镜测微尺具有精细的刻度,安装在目镜筒内。目镜测微尺需用镜台测微尺进行校正。镜台测微尺是一种刻有精细刻度的玻片。假设总放大倍数为400×时,1个镜台测微尺单位0.1mm相当于39个目镜测微尺单位。则每一目镜测微尺单位=0.1/39mm=2.56μm。这时,就可用目镜测微尺测量标本。在上例中,目镜测微尺读数乘以2.56即为镜台测微尺的值。此外,也可用100um的线段表示标本中39个目镜测微尺单位的长度。 显微镜的保养 显微镜是高度精密的仪器。操作时要小心,调节各控制部件绝不能用力过猛。除用擦镜纸外不要用其他物品接触玻璃表面。记住,更换任何部件都将是十分昂贵的。 移动显微镜时,一只手持载物台上部的支架,另一只手托住底座。保持显微镜竖立(防止目镜掉落),轻轻放置。 用干净的擦镜纸轻轻擦拭镜头,每块擦镜纸只能用一次。不能用手指触模镜头,因为很难除净含油的指印,不允许任何溶液(包括水)接触镜头,盐水特别有害。

  • 高速实时非接触3D测量技术——0.001秒实时非接触动态测量,亚纳米精度

    高速实时非接触3D测量技术——0.001秒实时非接触动态测量,亚纳米精度

    数字全息显微镜DHM测量材料动态的3D形貌,亚纳米分辨率,基于菲涅尔衍射的数字全息重建技术 [table=100%][tr][td][img=动态3D细胞监测,690,138]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241018_01_1546_3.jpg!w690x138.jpg[/img]仅0.001秒即可测出物体三维形貌,并且是亚纳米的分辨率。不同于传统白光干涉仪、共聚焦显微镜、扫描探针轮廓仪等需要扫描的成像方式,DHM仅需0.001秒采集单张全息图即可测出物3D形貌信息,做到了快速动态监测。 和传统全息术不一样的是没有采用干板而是采用CCD记录全息图,全息图中 光强图:提供与传统显微镜一样对比度的图像 相位图:提供量化数值,得以对被测物体进行精确三维测量 该系统为预放大全息显微镜,其中的相位图解析中用到了大量的算法,实时相位解包裹技术 实时形貌测量的案例二:石墨烯薄膜受力形变实时测量[img=石墨烯薄膜受力形变,384,216]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241017_02_1546_3.gif!w384x216.jpg[/img][img=MEMS跟踪测量,690,389]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241017_03_1546_3.gif!w690x389.jpg[/img][/td][/tr][/table]

  • 汽车工程领域非接触三维光学测量系统技术

    汽车工程领域非接触三维光学测量系统技术

    1-1 系统介绍三维光学非接触式应变位移振动综合测量系统分为三维光学应变测量系统和三维动态变形测量系统两个部分。 http://ng1.17img.cn/bbsfiles/images/2016/07/201607051411_599282_3024107_3.png http://ng1.17img.cn/bbsfiles/images/2016/07/201607051411_599283_3024107_3.png 图1 三维应变测量头 图2 动态变形测量头三维光学应变测量系统主要通过数字散斑相关法和双目立体视觉技术结合,追踪物体表面散斑点,实时测量各个变形阶段的散斑图像,通过算法重建三维坐标,最终实现快速、高精度、实时、非接触的三维应变测量。(全场或局部应变)动态变形测量系统基于双目立体视觉技术,采用两个高速摄像机实时采集被测物体变形图像,利用准确识别的标志点(包括编码标志点和非编码标志点)实现立体匹配,重建出物体表面点三维空间坐标,并计算得到物体变形量、三维轨迹姿态等数据。(关键点振动位移)三维光学应变测量系统和动态变形测量系统可以根据实验情况单独使用,也可以合并成综合测量系统使用。1-2与传统方法对比 三维光学测量方法传统测量方法(如位移计、应变片、引伸计等)测量方式非接触式测量,不对被测物体造成干扰与影响。接触式测量,易打滑,不容易固定,试件断裂容易破坏引伸计。测量对象适用于任何材质的对象。测量尺寸范围广,从几毫米到几米。适用于常规尺寸对象测量,特殊材料无法测量,小试样无法测量,大试样需要多贴应变片。测量范围应变测量范围:0.01%~1000%。应变测量范围:应变片通常小于5%,引伸计小于50%。环境要求环境要求低,可在高温、高速、辐射条件下测量。一般适用常规条件测量。测量结果全场多点、多方向测量,同时获得三维坐标、三维位移及应变。单点、单方向测量。三维测量需要多个应变片,效率低。1-3 系统技术参数 指标名称技术指标1. 核心技术工业近景摄影测量、数字图像相关法2. 测量结果三维坐标、全场位移及应变3. 测量幅面支持4mm-4m范围的测量幅面,更多测量幅面可定制4. 测量相机支持百万至千万像素相机,支持低速到高速相机,支持千兆网和Camera Link等多种相机接口5. 相机标定支持任意数目相机的同时标定,支持外部图像标定6. 位移测量精度0.01pixel7. 应变测量范围0.01%-1000%8. 应变测量精度0.005%9. 测量模式兼容二维及三维变形测量10. 实时测量采集图像的同时,实时进行全场应变计算11. 多测头同步测量支持多相机组同步测量,相机数目任意扩展,可同步测量多个区域的变形应变12. 动态变形模块具备圆形标志点动态变形测量功能13. 轨迹姿态测量模块具备刚体物体运动轨迹姿态测量功能14. 试验机接口接通后实时同步采集试验机的力、位移等信号15. FLC接口配合杯突试验机进行Nakazima试验,可以测得材料的FLC成形极限曲线16. 显微应变测量配合双目体式显微镜,可实现微小型物体的三维全场变形应变检测17. 64位软件软件采用64位计算,速度更快18. 系统兼容性支持32位和64位Windows操作系统2 系统应用于汽车振动强度实验室2-1 振动强度实验室介绍振动强度试验室,主要开展对汽车整车,总成,零部件,或者材料的强度,耐久性,疲劳特性,以及可靠性等问题的研究,试验,考核,或者评估。三维应变位移振动综合测量系统在振动强度试验室里具备以下的功能:(1)采集相关的振动、位移和变形数据;(2)作为前期信号分析的软件和硬件;(3)进行必要的试验控制和试验后期数据分析系统。2-2 汽车振动测量常规配合使用设备振动模拟实验系统:电动式振动试验台,机械式试验台,电液伺服试验机系统,道路模拟试验台,吊车(一般5~10吨、小型3吨以下、大型10吨以上)等。振动数据采集传统产品:传感器、应变片、放大器等。2-3系统在汽车振动实验室中应用的相关实验采集测量系统:三维应变位移振动综合测量系统。配合使用系统:振动模拟实验系统。实现功能1—耐振性能试验。测试车辆或者零部件系统的减振,耐振性能。模拟振动环境,通过非接触的光学方法,测量振动和位移,从而对车辆的振动性能进行分析。应用包括:发动机振动模态分析,车门振动实验,座椅振动测量分析等。实现功能2—耐久可靠试验。考核车辆和零部件的强度、抗疲劳特性和可靠性指标。应用包括:车身结构强度实验(测量区域振动或者关键点变形),汽车座椅分级加载实验,汽车轮胎受力变形实验等。3 系统应用于汽车材料实验室3-1 汽车材料实验室介绍汽车材料试验室,主要开展对汽车新型材料及相关基础性工作的研究和探索。三维应变位移振动综合测量系统在材料试验室里一般有以下的基本功能:(1)汽车材料常规力学性能方面的测试,得到各种工况下的应变变形;(2)汽车材料焊接的应变变化情况测量;(3)板料成形应变及板料成形极限曲线测量。3-2 汽车材料试验常规配合使用设备力学实验系统:高温蠕变试验机、扭转试验机、疲劳试验机、杯突试验机等。焊接相关设备:焊枪、焊机等。3-3 系统在汽车材料实验室中应用的相关实验采集测量系统:三维应变位移振动综合测量系统。配合使用系统:力学实验系统、焊接相关设备。实现功能1—材料应变变形测量实验。通过对材料进行常规的拉压弯等实验,进行相关材料的力学性能测定。应用包括:金属材料拉伸实验,复合材料大变形测量,碳纤维材料实验等。实现功能2—汽车焊接相关试验。考核汽车相关焊接实验的应变和变形。应用包括:焊接全场应变测量,高温焊接变形测量等。实现功能3—板料成形相关实验。板料成形过程中的全场应变变形测量和板料成形极限曲线(配合杯突试验机)。应用包括:板料成形应变实验、板料成形极限曲线测定实验。4 系统在汽车工程研究方面典型实验案例展示4-

  • 【原创】求通用显微镜测量软件

    本人有台体视显微镜。是用来做试验使用的。现在需要对试验样品进行二维的测量。哪位大侠帮忙下!谢谢。本人邮箱:[email]wpxzwj@yahoo.cn[/email]

  • 扫描探针显微镜一套

    山东大学从美国维柯公司DI分部购进扫描探针显微镜一套,该设备是属于多功能配套设备。它包含如下功能:①原子力显微镜;②隧道力显微镜;③电力显微镜;④磁力显微镜;⑤摩擦力显微镜。工作模式可分为:接触式,非接触式,敲打式,力调制等。功能之全是国际上一流的。为此,山东大学于2001年9月9日派遣任可、刘宜华、孙大亮三人赴美国圣巴巴拉市维柯公司DI分部接受培训(扫描探针显微镜生产厂家为美国、、、、、、、

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 【求购】能测量高度的显微镜

    最近我们需要测量产品的凹坑深度(很多凹坑相联,坑长宽约200~500um,深在几十到一百多微米),了解到三维体视显微镜可以测量。我也联系过keynece等厂家,感觉做是可以做,视野有点小,不能多看一些坑。估计方法倍数在20×左右就能看到很多的坑了,而且能测量坑的深度。请各位帮忙介绍下。我的联系方式dogxiong@163.com

  • 显微镜基础知识【汇集】

    、工作原理 表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像。光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体AB位于物镜的前方,被物镜作第一级放大后成一倒立的实象A1B1。然后此实像再被目镜作第二级放大,成一虚象A2B2,人眼看到的就是虚像A2B2。2、显微镜的总放大倍率为显微镜总放大倍率=物镜放大倍率×目镜放大倍率放大倍率是指直线尺寸的放大比而不是面积比。在用人眼直接观察的显微镜中,可以在实像面A1B1处放置一块薄型平板玻璃片,其上刻有某种图案的线条,例如十字线。当实像A1B1和这些刻线叠合在一起时,利用这些刻线就能对物体进行瞄准定位或尺寸测量。这种放置在实像面处的薄型平板玻璃片通称分划板。在新型的以光电元件作为接收器的光学显微镜中,电视摄象管的靶面或其他光电元件的接收面就设置在实像面上。3、组成 光学显微镜由载物台、聚光照明系统、物镜、目镜和调焦机构组成。(1)载物台 用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿、方向作精密移动和在水平面内转动,把被观察的部位调放到视场中心。(2)聚光照明系统 由灯源和聚光镜构成。当被观察物体本身不发光时,由外界光源给以照明。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。聚光镜的功能是使更多的光能集中到被观察的部位。(3)物镜位于被观察物体附近实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜。转动转换器可让不同倍率的物镜进入工作光路。物镜放大倍率通常为5~100倍。物方视场直径(即通过显微镜能看到的图像范围)约为11~20毫米。物镜放大倍率越高则视场越小。物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有:①能对两种颜色的光线校正色差的消色差物镜;  ②质量更高的能对三种色光校正色差的复消色差物镜;  ③能保证物镜的整个像面为平面以提高视场边缘成像质量的平像场物镜。为了提高显微观察的分辨率,在高倍物镜中采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体。(4)目镜位于人眼附近实现第二级放大的镜头。目镜放大倍率通常为5~20倍,按能否放置分划板,可分成两类:①不宜放置分划板的,如惠更斯型目镜。这是现代显微镜中常用的型式,优点是结构简单、价格低廉;缺点是由于成像质量的原因,不宜放置供瞄准定位或尺寸测量用的分划板。  ②能放置分划板的,如凯尔纳型和对称型目镜,它们能克服上述目镜的缺点。按照能看到的视场大小,目镜又分为视场较小的普通目镜和视场较大的大视场目镜(或称广角目镜)两类。(5)调焦机构 载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。4、显微镜放大倍率的极限 显微镜放大倍率的极限即有效放大倍率。仪器的分辨率是指仪器提供被测对像微细结构信息的能力。分辨率越高则提供的信息越细致。显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。根据衍射理论,显微物镜的分辨率为:sigma=0.61lamda/N.sinU ~1式中lamda为所用光波的波长;N为物体所在空间的折射率,物体在空气中时N=1;U为孔径角,即从物点发出能进入物镜成像的光线锥的锥顶角的半角;NsinU 称为数值孔径。当波长λ一定时,分辨率取决于数值孔径的大小。数值孔径越大则能分辨的结构越细,即分辨率越高。数值孔径是显微物镜的一个重要性能指标,通常与放大倍率一起标注在物镜镜筒外壳上,例如40×0.65表示物镜的放大倍率为40倍,数值孔径为0.65。分辨率和放大倍率是两个不同的但又互有联系的概念。当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像。这种过度的放大倍率称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的潜在能力,但因图像太小而仍然不能被人眼清晰视见。为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配,以满足下列条件:500NsinU<显微镜总放大倍率<1000NsinU在此范围内的放大倍率称为有效放大倍率。由于sinU永远小于1,物方空间折射率N最高约为1.5,NsinU不可能大于1.5,故光学显微镜的分辨率受 (1)式限制,具有一定的极限。有效放大倍率受上式限制,一般不超过1500倍。显微镜使用者应由所需分辨的最小尺寸按(1)式确定所需的数值孔径,选定物镜,然后按(2)式选定总放大倍率和目镜放大倍率。提高分辨率的途径是:采用较短波长的光波或增大孔径角U值,或是提高物体所在空间的折射率N,例如在物体所在空间填充折射率为 1.5的液体。以这种方式工作的物镜称为浸液物镜。而电子显微镜正是利用波长极短的特性,在提高分辨率方面取得重大突破的。5、聚光照明系统对显微观察的影响聚光照明系统是对显微镜成像性能有较大影响但又易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。观察高反差物体时,宜使照明光束充满物镜的全孔径;对于低反差物体,宜使照明光束充满物镜的2/3孔径。在较完善的柯勒照明系统中,除可变孔径光阑外,还装有控制被照明视场大小的可变视场光阑,以保证被照明的物面范围与物镜所需的视场匹配。物面被照明的范围太小固然不行,过大则不仅多余,甚至有害,因为有效视场以外的多余的光线会在光学零件表面和镜筒内壁多次反射,最后作为杂散光到达像面,使图像的反差下降。 改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)和暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。6、分类光学显微镜有多种分类方法:①按使用目镜的数目可分为双目和单目显微镜;②按图像是否有立体感可分为立体视觉和非立体视觉显微镜;③按观察对像可分为生物和金相显微镜等;

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制