当前位置: 仪器信息网 > 行业主题 > >

陶瓷电压击穿试验仪

仪器信息网陶瓷电压击穿试验仪专题为您提供2024年最新陶瓷电压击穿试验仪价格报价、厂家品牌的相关信息, 包括陶瓷电压击穿试验仪参数、型号等,不管是国产,还是进口品牌的陶瓷电压击穿试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合陶瓷电压击穿试验仪相关的耗材配件、试剂标物,还有陶瓷电压击穿试验仪相关的最新资讯、资料,以及陶瓷电压击穿试验仪相关的解决方案。

陶瓷电压击穿试验仪相关的资讯

  • 苏州热工研究院验收我司100kv电压击穿试验仪
    苏州热工研究院验收我司100kv电压击穿试验仪和ATI-212电阻率测试仪,我司工程师上门安装调试,成功验收得到客户的好评,下面是客户调试现场
  • 绝缘油击穿电压测定仪:采用干式变压器组合
    A1160绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。仪器特点1、采用双CPU微型计算机控制。2、升压、回零、搅拌、显示、计算、打印等一系列操作自动完成。3、具有过压、过流、自动回零保护装置,可靠。4、采用自动正弦波产生装置和无级调压方式加压,使测试电压稳定可靠。5、2KV/S和3KV/S两种加压速度供选择,适应性强。6、数据自动存储,并可随时调出和打印。7、采用干式变压器组合,具有体积小巧、重量轻、使用方便。技术参数升压速度:2.0~3.02KV/S可调准确度:2%测量范围:0~80KV分辨率:0.01KV试验次数:6次(1-9次可调)实验杯数:1杯显示方式:液晶显示搅拌时间:磁力搅拌静止时间:15分 (0~59分可调)间隔时间:3~5分 (0~9分可调)工作电源:AC220V±10%,50Hz环境温度:5℃~40℃ 环境湿度:≤85%外形尺寸:460mm×380mm×360mm重 量:30kg
  • 绝缘油击穿电压测定仪在润滑油行业中应用
    润滑油作为机械设备的润滑剂,其电气性能对设备的正常运行至关重要。击穿电压作为评价润滑油电气性能的重要指标之一,能够帮助工程师判断润滑油的电气性能是否达到设备要求。下面我们就来具体了解一下击穿电压在润滑油行业中的应用。1. 润滑油电气性能的表征润滑油的电气性能主要包括介电常数、介质损耗因数、电阻率等参数。其中,介电常数反映了润滑油在电场作用下的极化能力,介质损耗因数反映了电流通过润滑油时所消耗的能量,电阻率则反映了润滑油的导电性能。而击穿电压则可以进一步评价润滑油的电气绝缘性能,即当电压达到某一数值时,润滑油内部将产生放电现象,导致电流突然增加,这一电压值就是击穿电压。2. 击穿电压在润滑油选择中的应用在选择润滑油时,需要根据设备的运行工况和润滑油厂商提供的产品手册来选择合适的润滑油牌号在。产品手册中,通常会提供不同牌号润滑油的介电常数、介质损耗因数、电阻率和击穿电压等电气性能参数。在选择润滑油时,需要综合考虑这些参数,尤其是击穿电压,以确保设备在正常运转时,润滑油的电气性能能够满足设备要求。3. 击穿电压在润滑油品质控制中的应用在润滑油的生产过程中,由于原材料、生产工艺等因素的影响,润滑油的电气性能会发生一定的变化。为了确保生产出的润滑油符合产品要求,需要对润滑油的电气性能进行检测和监控。其中,击穿电压作为一项重要的检测指标之一,可以用于评估润滑油品质的稳定性。通过定期检测润滑油的击穿电压,可以对生产工艺和原材料进行及时调整,以确保生产的润滑油具有良好的电气性能。
  • 10000V!氮化镓功率器件击穿电压新纪录
    近日,美国弗吉尼亚理工大学电力电子技术中心(CPES)和苏州晶湛半导体团队合作攻关,通过采用苏州晶湛新型多沟道AlGaN/GaN异质结构外延片,以及运用pGaN降低表面场技术(p- GaN reduced surface field (RESURF)制备的肖特基势垒二极管(SBD),成功实现了超过10kV的超高击穿电压。这是迄今为止氮化镓功率器件报道实现的最高击穿电压值。相关研究成果已于2021年6月发表于IEEE Electron Device Letters期刊。图1:多沟道AlGaN/GaN SBD器件结构图(引用自IEEE ELECTRON DEVICE LETTERS, VOL. 42, NO. 6, JUNE 2021)实现这一新型器件所采用的氮化镓外延材料结构包括20nm p+GaN/350nm p-GaN 帽层以及23nm Al0.25Ga0.75N/100nm GaN本征层的5个沟道。该外延结构由苏州晶湛团队通过MOCVD方法在4吋蓝宝石衬底上单次连续外延实现,无需二次外延。基于此外延结构开发的氮化镓器件结构如图1所示,在刻蚀工艺中,通过仅保留2微米的p-GaN场板结构(或称为降低表面场(RESURF)结构),能够显著降低峰值电场。在此基础上制备的多沟道氮化镓肖特基势垒二极管(SBD),在实现10kV的超高击穿电压的同时,巴利加优值(Baliga’s figure of merit, FOM)高达2.8 ,而39 的低导通电阻率,也远低于同样10kV耐压的 SiC 结型肖特基势垒二极管。多沟道氮化镓器件由于采用廉价的蓝宝石衬底以及水平器件结构,其制备成本也远低于采用昂贵SiC衬底制备的SiC二极管。创新性的多沟道设计可以突破单沟道氮化镓器件的理论极限,进一步降低开态电阻和系统损耗,并能实现超高击穿电压,大大拓展GaN器件在高压电力电子应用中的前景。在“碳达峰+碳中和”的历史性能源变革背景下,氮化镓电力电子器件在电动汽车、充电桩,可再生能源发电,工业电机驱动器,电网和轨道交通等高压应用领域具有广阔的潜力。苏州晶湛半导体有限公司已于近日发布了面向中高压电力电子和射频应用的硅基,碳化硅基以及蓝宝石基的新型多沟道AlGaN/GaN异质结构外延片全系列产品,欢迎海内外新老客户与我们洽商合作,共同推动氮化镓电力电子技术和应用的新发展!
  • “100家实验室”专题:访清华大学新型陶瓷与精细工艺国家重点实验室
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近日,仪器信息网工作人员参观访问了本次活动的第四十六站:清华大学新型陶瓷与精细工艺国家重点实验室(以下简称:陶瓷实验室)。   清华大学新型陶瓷与精细工艺国家重点实验室是国家教育部系统唯一从事高性能陶瓷材料领域科学研究与人才培养工作的国家重点实验室。在清华大学无机非金属材料重点学科的基础上,1988年陶瓷实验室被列为世行贷款重点学科发展项目,1991年正式批准建设,1995年11月通过国家验收对外开放。 清华大学新型陶瓷与精细工艺国家重点实验室   陶瓷实验室主任潘伟教授介绍到:“陶瓷实验室位于清华大学逸夫技术科学馆二段内。实验室现有固定科研人员42人,其中中国工程院院士2名,中国科学院院士1名,博士生导师25人,杰出青年基金获得者7人,长江学者4人,新世纪优秀人才支持计划获得者2人。” 实验室还分别于2005年和2006年获得国家教育部创新团队和国家自然科学基金委创新研究群体科学基金支持。   “陶瓷实验室以高温结构陶瓷、信息功能陶瓷、陶瓷基复合材料、能源环境材和生物陶瓷等作为主要研究方向,属于应用基础研究类型的国家重点实验室,主要瞄准陶瓷新材料领域的科学发展前沿和国民经济、社会发展中的重大需求,进行集中研究。”   目前,陶瓷实验室主要承担国家973、863、国家自然科学基金等国家部委重大、重点项目,以及国际合作和横向项目等。特别值得一提的是,陶瓷实验室在铁电压电陶瓷材料、结构陶瓷材料的增强增韧机理、陶瓷胶态成型技术、陶瓷基复合材料结构设计等基础研究方面,取得了国际高水平的科研成果。   陶瓷实验室占地约6000m2,有各种功能齐全、水平先进的大型工艺装备和实验仪器86台(套),总价值10000万余元,如高分辨透射电子显微镜、扫描电子显微镜、原子力显微镜、激光共聚焦显微镜、高温显微镜、X射线衍射仪、DSC/TG分析仪、激光共聚焦拉曼光谱分析仪、频谱和介温谱自动测试系统、电滞回线测试装置,高温力学测试机、颗粒分布自动分析仪、高温综合热分析仪、高温导热系数测试仪、高温力学性能测试系统、放电等离子烧结炉、气压烧结炉和多功能高温烧结炉等。 安捷伦B1505A功率器件分析仪/曲线追踪仪 (对材料进行特性分析,使其达到效能与安全需求) HORIBA JY公司LabRAM HR型号高性能拉曼光谱仪 (通过拉曼光谱对材料进行定性、定量分析以及结构分析) 日本岛津S7000型X射线衍射仪 (主要功能:物相分析/1200℃以下的相变分析/残余应力分析/纤维取向分析/薄膜样品分析) 日本岛津SSX-550扫描电子显微镜(SEM) (主要用于进行各类物体的显微形貌分析、微区成份分析及显微组织结构分析) 德国耐驰DSC/TG分析仪 (主要用于真空条件下的差热实验和热失重实验,测试陶瓷材料的收缩曲线及膨胀系数) 德国FRITSCH A22激光粒度仪 (适用于金属氧化物、陶瓷、粘土、催化剂以及其他无机材料颗粒的粒度分布特性测试。) 美国布鲁克海文ZETAPLUS0 Zeta电位仪 (适用于Zeta电位和粒度的测试,用来表征胶体体系稳定性和颗粒表面带电性能的重要参数。)   此外,陶瓷实验室还设精细陶瓷分室(在清华大学核研院),占地2500m2,现有在编人员20人。该分室两次被评为一级实验室,也是北京高技术实验室。在开展生物陶瓷、纳米陶瓷、超细粉体、精细陶瓷及无损评价上取得出了明显成果,其中获得部级一、二、三等奖九项。建成了三个中试中心,包括超细粉体、精细陶瓷部件及生物陶瓷制品研究中心,还与美国企业建立了生物功能材料中心。   通过了解,陶瓷实验室在进行基础和应用基础研究的同时,也十分注重科技成果的转化以及产业化工作。   (1)在新型陶瓷的制备技术,信息功能陶瓷元器件等领域成功进行了应用转化。利用陶瓷胶态成型新工艺成果建立了陶瓷胶态(注射)成型中试基地,研制成功具有自主知识产权的工艺装备,开发了造纸机全陶瓷脱水元件、高功率金红石陶瓷电容器、超大功率新型复合陶瓷臭氧发生器薄壁管、高性能陶瓷系列微珠等产品。在河北邯郸高新技术产业开发区建立陶瓷胶态注射成型成果转化和规模化生产基地,占地166亩,现已建成近万平米的生产车间和年产5000吨陶瓷微珠生产线,预计实现年产值2亿元。   (2)在功能陶瓷领域进展显著,所研制的高性能铁电压电陶瓷材料,其成果已在广东风华公司和深圳宇阳公司等片式元件产业化基地实现了成果转化,取得了显著经济与社会效益。另外,高性能低烧多层陶瓷压电变压器及背光电源已在西安康鸿公司实现产业化,这一具有自主知识产权的创新性成果在国家有关部委及国家863计划的支持下,在西安建立了具有国际先进水平的片式压电陶瓷变压器和多层压电陶瓷驱动器的研发与产业化基地,对推动西部经济建设发挥了重要作用。 陶瓷实验室依托单位-清华大学材料系所获奖项   附录1:清华大学新型陶瓷与精细工艺国家重点实验室   http://www.mse.tsinghua.edu.cn/ceramiclab/index.htm   附录2:潘伟教授简介   潘伟,清华大学教授,博士生导师。1987年在日本名古屋大学获工学硕士学位,1990年在日本名古屋大学获工学博士学位。1990~1991年在日本神户制钢公司钢铁技术研究所工作。1991年回国工作,至今在清华大学材料科学与工程系目前在新型陶瓷与精细工艺国家重点实验室工作。先后担任材料科学与工程系党委副书记,副系主任,系主任,系教学委员会主任。现任清华大学材料科学与工程系党委书记,新型陶瓷与精细工艺国家重点实验室主任,清华大学教代会提案委员会主任委员,清华大学学位委员会委员,材料科学与工程学位分委员会主席。   兼任中国硅酸盐学会常务理事,中国硅酸盐学会特种陶瓷分会常务副理事长兼秘书长,中国复合材料学会理事,《硅酸盐通报》、《复合材料学报》、《无机材料学报》、《过程工程学报》、“Journal of The Ceramic Society of Japan”、“Composites Science and Technology”等杂志编委。   近期主要研究:高温陶瓷热障涂层材料、透明陶瓷材料、可加工陶瓷复合材料、有机无机功能复合材料、陶瓷微波烧结、梯度功能陶瓷材料,陶瓷生物仿生,纳米复合陶瓷材料,纳米功能纤维及敏感器件等研究。并从事《材料化学》和《材料合成热力学》的教学工作。先后负责多项国家自然科学基金以及国家“863”课题研究。   获得清华大学学术新人奖励,北京市科学技术二等奖,国务院政府特殊津贴,获得授权发明专利15项,发表论文350余篇,其中SCI收录论文220篇。   附录3:新型陶瓷与精细工艺国家重点实验室所获奖项荣誉   1978年“高压钠灯”全国科学大会奖   1987年“陶瓷分离环”等获两项国家科技进步二等奖,清华大学无机非金属材料学科被评为国家重点学科   1988年“复合氮化硅陶瓷刀具”国家技术发明二等奖,重点实验室立项   1995年 国家重点实验室通过正式验收开放   1996年“高性能铁电压电陶瓷材料组成及低烧技术”国家技术发明二等奖   1998年 国家教委所属重点实验室评估中被评为优秀   2002年 以实验室为基础的“材料学”评为重点学科, 全国第一   2004年“陶瓷胶态成型新工艺”国家技术发明二等奖   2005年“高性能低温烧结软磁铁氧体”国家技术发明二等奖   2005年“非均质材料显微结构与性能关联”国家自然科学二等奖   2007年 以实验室为基础的重点学科“材料学”评估全国第一。
  • 新型陶瓷研究国家重点实验室一览
    p style=" text-indent: 2em " 新型陶瓷在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有耐腐蚀等功能;在生物方面,具有一定生物相容性能,可作为生物结构材料等。但也有它的缺点,如脆性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。下面让我们来了解一下国内研究新型陶瓷的国家重点实验室。 /p p style=" text-indent: 2em " strong 清华大学:新型陶瓷与精细工艺国家重点实验室 /strong /p p style=" text-indent: 2em " 新型陶瓷与精细工艺国家重点实验室致力于发展新型陶瓷科学与技术,开拓新型材料领域的学科前沿。实验室的主要研究方向包括:信息功能陶瓷材料、功能复合材料设计与新材料探索、高性能结构陶瓷、陶瓷材料先进制备工艺、能源与环境材料、生物陶瓷材料。 /p p style=" text-indent: 2em " 成立契机 /p p style=" text-indent: 2em " 新型陶瓷与精细工艺国家重点实验室的前身-清华大学无机非金属材料学科于1987年被评为重点学科,1988年列为世行贷款重点学科发展项目,1991年开始建设“新型陶瓷与精细工艺”国家重点实验室,于1995年通过国家验收正式对外开放。 /p p style=" text-indent: 2em " 科研队伍 /p p style=" text-indent: 2em " 实验室拥有一支学术水平高、教学和科研经验丰富的固定科研人才队伍。现任实验室主任为潘伟教授,学术委员会主任为中国工程院院士李龙土教授。实验室现有研究人员53人,其中教授27人(包括中国科学院院士2人,中国工程院院士2人),副教授19人,高工及其他人员7人。研究队伍中具有博士学位者43人(占总数约80%)。 /p p style=" text-indent: 2em " 科研成果 /p p style=" text-indent: 2em " 在透明氧化铝陶瓷与高压钠灯、复合氮化硅陶瓷刀具、高性能铁电压电陶瓷及低烧技术、陶瓷胶态成型新工艺、高性能低温烧结软磁铁氧体、纳米骨修复材料以及复合材料的结构与性能关联等方面取得了多项重大成果,先后获得全国科学大会奖、国家技术发明奖和国家自然科学奖等国家级科技奖励,其中国家自然科学二等奖2项、国家技术发明二等奖7项、国家科技进步二等奖2项和省部级奖励五十余项。 /p p style=" text-indent: 2em " 通过十几年来的建设和发展,实验室已逐步建成为我国在新型陶瓷材料与精细制备工艺,特别是信息功能陶瓷材料、高性能结构陶瓷材料以及陶瓷基复合材料等领域的重要科学研究与人才培养基地。 /p p style=" text-indent: 2em " strong 中国科学院上海硅酸盐研究所:高性能陶瓷和超微结构国家重点实验室 /strong /p p style=" text-indent: 2em " 成立契机 /p p style=" text-indent: 2em " 为促进我国高性能陶瓷的研究和发展,扩大我国在该领域中的影响,1988年4月,经国家计委和中国科学院批准,在中科院上海硅酸盐研究所建立高性能陶瓷和超微结构开放实验室;1989年1月实验室正式对外开放;1991年纳入国家重点实验室系列,更名为高性能陶瓷和超微结构国家重点实验室;1995年11月通过国家验收。 /p p style=" text-indent: 2em " 科研队伍 /p p style=" text-indent: 2em " 目前,两院院士严东生先生任实验室名誉主任,陈立东研究员任实验室主任,中国工程院院士江东亮先生任实验室学术委员会主任。实验室现有固定人员78人,其中院士3人(含两院院士1人),研究员39人。35岁以下的青年研究人员占全室人员的45%。自实验室建立以来,先后有2人当选第三世界科学院院士,5人当选世界陶瓷科学院院士,6人获得“国家杰出青年基金”,2人入选“国家新世纪百千万人才工程”,2人入选中组部“千人计划”;23人入选中国科学院“百人计划”。 /p p style=" text-indent: 2em " 科研成果 /p p style=" text-indent: 2em " (1)高性能陶瓷材料设计及其力学性能研究 /p p style=" text-indent: 2em " (2)氮化物相图研究 /p p style=" text-indent: 2em " (3)大尺寸钨酸铅闪烁晶体研究 /p p style=" text-indent: 2em " (4)扫描电声成像系统及其相关器件和材料 /p p style=" text-indent: 2em " (5)纳米微粒及纳米复相陶瓷的制备科学与性能研究 /p p style=" text-indent: 2em " (6)新型介孔及低维纳米复合材料研究 /p p style=" text-indent: 2em " (7)计算材料科学研究与能量转换材料的微观设计 /p p style=" text-indent: 2em " 以上这些重要的研究进展和成果先后荣获国家和省部级科技奖励24项,发表2000余篇高质量学术论文,获授权国家发明专利130余项,取得了良好的经济效益和社会效益。 /p p style=" text-indent: 2em " strong 武汉理工大学:硅酸盐建筑材料国家重点实验室 /strong /p p style=" text-indent: 2em " 实验室概况 /p p style=" text-indent: 2em " 硅酸盐建筑材料国家重点实验室是在原硅酸盐材料工程教育部重点实验室的基础上、于2011年10月获科技部批准立项建设的国家重点实验室。实验室依托的材料科学与工程学科是国家重点学科、“211工程”首批及“双一流”重点建设学科,国家第四轮学科评估结果为A+,进入世界ESI学科排名前1%;其硅酸盐材料专业至今已有50多年的建设历史。1992年由原国家建材局批准成立硅酸盐材料部门开放实验室,2000年成立硅酸盐材料工程教育部重点实验室。 /p p style=" text-indent: 2em " 科研队伍 /p p style=" text-indent: 2em " 实验室现有固定人员90人,其中研究人员80人,技术支撑人员7人,管理人员3人;78人具有博士学位(占比98%);研究人员中有正高职称65人、副高职称13人。形成了一支由国家杰青、长江学者和千人计划专家领衔的结构合理、科研能力强,富于创新的高水平学术队伍。 /p p style=" text-indent: 2em " 科研成果 /p p style=" text-indent: 2em " 技术成果在全国千余条水泥、玻璃、陶瓷、墙体材料等生产线,以及港珠澳大桥、武汉天兴洲大桥、南海岛礁等一大批“一带一路”控制性重难点工程应用,取得显著的社会环保与经济效益,近五年获国家自然科学奖1项(排2、5)、国家技术发明二等奖1项(排1、4)、国家科技进步二等奖2项(单位排2和4)、省部级一等奖和特等奖15项(9项排第1)、二等奖19项。 /p p style=" text-indent: 2em " 新型陶瓷的研究还需要继续深入,也希望越来越多优秀的人才能加入新型陶瓷研究的队伍当中。 /p
  • 江苏检验检疫陶瓷检测实验室开放展示纪实
    成立于1998年的江苏检验检疫陶瓷检测实验室,是国家区域性中心实验室,承担着出口陶瓷理化性能的检测和其他委托检测业务,是陶瓷检验的专业检测机构。宜兴作为江苏最大的陶瓷出口产地,正是在该检测实验室人员的严格把关下,一直在美国FDA官方网站上保持着输美日用陶瓷超标“零记录”。江苏检验检疫陶瓷检测实验室于2009年建成了江苏省陶瓷出口基地测试公共服务平台,此举是以检验检疫机构为主体,充分利用社会检测资源,服务企业、服务社会、服务民生的重要途径。然而,公众对于陶瓷实验室的技术保障能力知之甚少,为此江苏检验检疫陶瓷检测实验室通过丰富多彩的开放形式,正面宣传,充分展示质检部门保障质量安全,服务质量提升的技术支撑和技术保障能力,搭建起开放的公共服务平台。   多举措 服务地方外贸经济   近两年,全球通胀不断加剧,各种不确定因素相互激荡,致使陶都宜兴的特色产业——日用陶瓷出口压力持续加大。本着“送政策、送服务”的宗旨,江苏检验检疫陶瓷检测实验室邀请了多家重点日用陶瓷企业负责人及质量监督员召开了座谈会,详细讲解了实验室检测工作的程序、配置的主要仪器设备、具有的技术服务能力,并组织参观了实验室的浸泡室、检测室、化学分析室等,现场演示陶瓷理化性能的试验操作,让代表们零距离接触了“高精尖”仪器设备以及相关产品的安全检测过程,亲身感受了实验室人员科学严谨的工作态度。会上,代表们纷纷表示,参加此次活动,很有收获,不仅了解了陶瓷产品的检测过程,更加明白了产品质量把关的重要性,同时看到了陶瓷检测实验室先进的技术检测能力,进一步增强了陶瓷进出口贸易的信心。   该实验室一直以来在服务企业,促进地方外贸经济的发展方面作了大量的工作:对企业生产过程中产品试制,提供24小时服务,检验人员加班加点,协助企业试制出合格的样品,以最短的时间赢得订单 为进一步方便企业,该实验室为对外地企业样品实行“一条龙”服务,企业寄出需要检测的样品,该室接到样品两个工作日后,就可出具检测报告 对企业实验室进行监督管理,针对技术性问题进行辅导培训并开展比对试验,作为企业实验室的依托。近年来,江苏检验检疫陶瓷实验室的多项有效地服务举措得到了进出口企业的好评,促进了江苏省陶瓷出口基地的发展。   互动交流 服务社会   江苏检验检疫陶瓷检测实验室以服务社会为宗旨,提供公共检测服务,强调公众知情、参与和监督,互动交流,进一步提高其公共检测服务的效率和质量。   该实验室技术人员走进江苏检验检疫系统在线访谈直播间,就铅镉对人类健康的危害和在陶瓷产品中的应用及实验室检测技术等内容与广大爱好陶瓷的网友们一起交流,讲解了进出口日用陶瓷餐具安全卫生项目的限制性要求及相关的控制理论,使网友们对陶瓷餐具中铅镉溶出量的控制方面有了更加直观的了解。实验室每年都积极参加“3.15”消费者权益日活动,在走进消费者的街头宣传活动中,实验室人员通过宣传画板、宣传小册子等资料,向前来参加咨询的消费者图文并茂地介绍了陶瓷检测实验室基本概况,并告知消费者正确选购陶瓷餐具应注意的事项。这些与公众的互动交流活动,打消了公众日常生活中产生的疑虑,增强了消费者的信心,达到了服务社会的目的。   在陶瓷检测实验室开放集中展示月中,他们还邀请了宜兴市人大代表、政协委员等参观了实验室、陶瓷样品展示室,观摩了工作人员的现场实验操作。代表们一致认为陶瓷检测实验室管理规范、设备先进、服务周到,当听到实验室负责人介绍该实验室“输美日用陶瓷铅镉溶出量”持续超标零记录后,对实验室的检测能力和技术水平表示高度肯定,并希望陶瓷检测实验室能在宜兴特色陶瓷产业面临经济转型、打造科学发展新亮点的形势下,勇挑重任,不负众望,再创辉煌,为服务地方陶瓷出口经济健康持续发展做出更大贡献。   科技兴检 搭建检学研合作平台   科学技术是第一生产力,是经济社会发展中最活跃、最革命的元素,是支撑和引领经济社会发展进步的重大因素。江苏检验检疫陶瓷检测实验室一直认真实施科技兴检战略,大力加强质检科技工作,根本目的就是要充分发挥检验检疫实验室的科技作用,为服务经济发展和社会进步提供技术保障,为履行检验检疫的国门卫士职能提供技术支撑。   无锡工艺职业技术学院陶瓷专业材料工程技术系是陶都宜兴的特色专业,每年为陶瓷生产企业输送大量的专业人才。江苏检验检疫陶瓷检测实验室作为该校教学合作基地,多次邀请老师和学生们走进实验室,实验室工作人员就日用陶瓷铅镉溶出量和物理性能检测为学生们上了生动的教学课,并通过展板展示、发放宣传手册等宣传形式,全方位的展示了实验室水平,加深了学生们对陶瓷实验室的良好形象。   为了提高检测人员的科研能力,该实验室与南京工业大学等院校进行技术上的交流与合作,共同开展科研项目的研究。南京工业大学材料科学与工程学院的教授也多次到实验室进行实地考察,对于实验室的科研仪器配备与科研制标的方向给予了很多重要的意见和建议。   该实验室一直注重检学研合作机制,坚定不移地走科技兴检之路,与江苏省陶瓷研究所合作的“硅酸锆放射机理及改性研究”项目在2005年获国家质检总局组织的“科技兴检奖”评审中获得了三等奖。   该实验室注重科技创新,近年来多次主持或参与科研制标项目,参与了《进出口陶瓷检验》、《生态轻纺产品检测标准应用》的编写。并且在国内专业刊物《江苏陶瓷》、《佛山陶瓷》、《中国陶瓷》、《中国陶瓷工业》等及国外J mater Sci:Mater Electron刊物上发表论文14篇。   苦练内功 提升服务企业的能力和水平   江苏检验检疫陶瓷检测实验室苦练内功,持续提高检测能力和技术水平,一直积极参加水平测试和能力验证活动,多次参加国家认监委和中国疾病防治控制中心辐射防护与核安全医学所组织能力验证试验及全国建材样品中放射性含量分析,并获得较好成绩 定期与湖南、潮洲等检验检疫局的陶瓷检测实验室、景德镇陶瓷实验室及安徽局技术检测中心进行比对试验,结果均符合标准规定要求。为进一步提高检测准确性,实验室还开展了不定期样液重现性、同一样品同一仪器不同人员、同一样品不同仪器不同人员等试验,这些都大大提升了实验室服务企业的能力和水平,有助于陶瓷进出口企业更好的应对国外技术贸易壁垒。   江苏检验检疫陶瓷检测实验室通过搭建更加开放的公共服务平台,进一步加强了宜兴检验检疫部门与社会各界的沟通,全方位的展示了实验室的技术水平,促进社会各界理解、支持质检工作,提高了全社会的质量意识,提升了质检部门的形象。
  • 陶瓷纤维马弗炉在产品质量和安全性方面的多重益处
    陶瓷纤维马弗炉在产品质量和安全性方面的多重益处在现代科学研究和工业生产中,高温炉是不可或缺的实验设备之一。上海喆图科学仪器有限公司推出的1000度陶瓷纤维马弗炉TMF-7.2-10T以其卓越的性能和可靠性,成为了实验室和工业应用中的热门选择。一、产品质量的多重益处:精密控温:TMF-7.2-10T型号的马弗炉具备微电脑PID控制器和大屏幕液晶显示,操作简便,控温精确,精度达到±1℃,保证实验的精确性。快速升温:该型号的马弗炉能够实现快速升温,至950℃仅需30分钟,显著提高工作效率。节能保温:采用真空微孔隔热耐高温的陶瓷纤维板,重量轻,保温效果好,实现节能省电。结构优化:炉体与控制器结构合理,温场均衡,升温迅速,环保节能。安全特性:具备双级安全报警系统,包括超高温报警和断电记忆功能,确保使用安全。耐用性设计:加厚外壳和优质耐火材料,确保炉膛在频繁使用中的稳定性和耐用性。多功能性:适用于多种高温实验和工艺,如元素分析测定、材料烧结与退火等。智能操作:具有自动检测环境温度功能,智能计算起始温度,加快升温速度,提高效率。易于维护:炉门内侧装有优质耐火材料制成的挡热板,减少热量散失,同时易于清洁维护。可选配件丰富:提供多种可选配件,如排气烟囱、操作台、微型打印机等,以满足不同实验需求。二、安全性的多重益处:开门断电功能:在加热过程中如需临时取放样品,开门即自动停止加热,关门后自动恢复,防止意外伤害。内置式二级超温保护装置:具备断电记忆功能,来电后可自动恢复记忆,确保设备安全运行。数字直读显示:电气线路中的电压、电流值以数字直读方式显示,便于及时发现电路异常。炉门锁扣设计:经典设计确保炉门炉膛贴合紧闭,防止热量丢失,同时保障操作安全。耐火材料挡热板:炉门内侧装有耐火材料挡热板,减少热量散失,提高炉膛温度均匀性,同时保护操作者安全。安全报警系统:具备超高温报警系统,具有断电、缺相、断偶报警功能,确保使用过程中的安全性。
  • 国家陶瓷检测重点实验室联盟在佛启动运作
    记者近日从佛山市检验检疫局获悉,国家陶瓷检测重点实验室联盟(简称“联盟”)在佛山正式启动运作。该“联盟”是由河北唐山、江西景德镇、山东淄博、湖南和广东佛山等地的共5家质检系统内的国家陶瓷检测重点实验室共同发起的,总部设在佛山。佛山检验检疫局相关负责人表示:“联盟”正式运作后将参与和主导国家、行业等标准的制订。   佛山检验检疫局相关负责人介绍,“联盟”在山东、湖南、河北和江西等陶瓷产区均设有分部,按照“先行先试、资源共享、优势互补、共同发展”的原则,通过专业实验室间的强强联合,加强各实验室在技术装备方面的协作,实现在仪器、技术、人才、信息等方面的资源整合与共享,推动国家检测重点实验室在我国传统产业转型升级、战略性新兴产业发展中的技术保障作用,发挥其在国际贸易中的技术引领优势和桥梁纽带作用,提升我国陶瓷产业的国际竞争力。   “目前,‘联盟’已具有跨地域、覆盖全国的综合检验能力、检验技术开发能力和综合的质量技术服务能力,可以为国内外陶瓷相关企业提供检验、认证、产品测试、新产品鉴定、信息咨询、人员培训、工艺改进、实验室建设等方面的技术服务。”该负责人介绍说:“联盟”正式运作后将在成员发展、业务范围、产业影响力等方面重点发挥作用,参与和主导国家、行业等标准制(修)订工作,参与对国内外先进标准的跟踪、比对、消化工作,抢占陶瓷领域技术制高点。   据介绍,“联盟”将积极利用检验检疫机构、实验室的技术力量,通过检测来发现产品质量问题,帮助企业对其进行重点分析、攻关,达到最终提升产品整体质量和竞争力的目的。与此同时,“联盟”还将发挥自身品牌效应,通过建立的联盟网站开展对外宣传推广和业务工作,着力构建联盟技术品牌,扩大和提高检验检疫技术服务的影响力。
  • 四川省生态环境厅发布《陶瓷工业大气污染物排放标准》
    各有关单位:为贯彻落实《中华人民共和国大气污染防治法》,改善大气环境质量,加强陶瓷工业大气污染物排放监管,促进陶瓷工业技术进步和可持续发展,我省组织制定了《陶瓷工业大气污染物排放标准》,经省政府同意,现予以发布。标准编号及名称为:DB51 3165-2024 陶瓷工业大气污染物排放标准。本标准自2024年10月1日起实施。特此通知。四川省生态环境厅 四川省市场监督管理局2024年3月10日附件下载.zip
  • 综述|高导热氮化硅陶瓷基板研究现状
    摘要:为了减少环境污染、打造绿色经济,高效地利用电力变得越来越重要。电力电子设备是实现这一目标的关键技术,已被广泛用于风力发电、混合动力汽车、LED 照明等领域。这也对电子器件中的散热基板提出了更高的要求,传统的陶瓷基板如 AlN、Al2O3、BeO 等的缺点也日益突出,如较低的理论热导率和较差的力学性能等,严重阻碍了其发展。相比于传统陶瓷基板材料,氮化硅陶瓷由于其优异的理论热导率和良好的力学性能而逐渐成为电子器件的主要散热材料。关键词:半导体 陶瓷基板 氮化硅 热导率然而,目前氮化硅陶瓷实际热导率还远远低于理论热导率的值,而且一些高热导率氮化硅陶瓷(>150 W/(mK))还处于实验室阶段。影响氮化硅陶瓷热导率的因素有晶格氧、晶相、晶界相等,其中氧原子因为在晶格中会发生固溶反应生成硅空位和造成晶格畸变,从而引起声子散射,降低氮化硅陶瓷热导率而成为主要因素。此外,晶型转变和晶轴取向也能在一定程度上影响氮化硅的热导率。如何实现氮化硅陶瓷基板的大规模生产也是一个不小的难题。现阶段,随着制备工艺的不断优化,氮化硅陶瓷实际热导率也在不断提高。为了降低晶格氧含量,首先在原料的选择上降低氧含量,一方面可选用含氧量比较少的 Si 粉作为起始原料,但是要避免在球磨的过程中引入氧杂质 另一方面,选用高纯度的 α-Si3N4 或者 β-Si3N4作为起始原料也能减少氧含量。其次选用适当的烧结助剂也能通过减少氧含量的方式提高热导率。目前使用较多的烧结助剂是 Y2O3-MgO,但是仍不可避免地引入了氧杂质,因此可以选用非氧化物烧结助剂来替换氧化物烧结助剂,如 YF3-MgO、MgF2-Y2O3、Y2Si4N6C-MgO、MgSiN2-YbF3 等在提高热导率方面也取得了非常不错的效果。研究发现通过加入碳来降低氧含量也能达到很好的效果,通过在原料粉体中掺杂一部分碳,使原料粉体在氮化、烧结时处于还原性较强的环境中,从而促进了氧的消除。此外,通过加入晶种和提高烧结温度等方式来促进晶型转变及通过外加磁场等方法使晶粒定向生长,都能在一定程度上提高热导率。为了满足电子器件的尺寸要求,流延成型成为大规模制备氮化硅陶瓷基板的关键技术。本文从影响热导率的主要因素入手,重点介绍了降低晶格氧含量、促进晶型转变及实现晶轴定向生长三种提高实际热导率的方法 然后,指出了流延成型是大规模制备高导热氮化硅陶瓷的关键,并分别从流延浆料的流动性、流延片和浆料的润湿性及稳定性等三方面进行了叙述 概述了目前常用的制备高导热氮化硅陶瓷的烧结工艺现状 最后,对未来氮化硅高导热陶瓷的研究方向进行了展望。关键词:半导体 陶瓷基板 氮化硅 热导率00引言随着集成电路工业的发展,电力电子器件技术正朝着高电压、大电流、大功率密度、小尺寸的方向发展。因此,高效的散热系统是高集成电路必不可少的一部分。这就使得基板材料既需要良好的机械可靠性,又需要较高的热导率。图 1 为电力电子模块基板及其开裂方式。研究人员对高导热系数陶瓷进行了大量的研究,其中具有高热导率的氮化铝(AlN)陶瓷(本征热导率约为320 W/(mK))被广泛用作电子器件的主要陶瓷基材。图 1 电力电子模块基板及其开裂方式但是,AlN 陶瓷的力学性能较差,如弯曲强度为 300~400 MPa,断裂韧性为 3~4 MPam1/2,导致氮化铝基板的使用寿命较短,使得它作为结构基板材料使用受到了限制。另外,Al2O3 陶瓷的理论热导率与实际热导率都很低,不适合应用于大规模集成电路。电子工业迫切希望找到具有良好力学性能的高导热基片材料,图 2 是几种陶瓷基板的强度与热导率的比较,因此,Si3N4 陶瓷成为人们关注的焦点。图 2 几种陶瓷基板的强度与热导率的比较与 AlN 和 Al2O3 陶瓷基板材料相比,Si3N4 具有一系列独特的优势。Si3N4 属于六方晶系,有 α、β 和 γ 三种晶相。Lightfoot 和 Haggerty 根据 Si3N4 结构提出氮化硅的理论热导率在200~300 W/(mK)。Hirosaki 等通过分子动力学的方法计算出 α-Si3N4 和 β-Si3N4 的理论热导率,发现Si3N4 的热导率沿 a 轴和 c 轴具有取向性,其中 α-Si3N4 单晶体沿 a轴和 c轴的理论热导率分别为105 W/(mK)、225W/(mK);β-Si3N4 单晶体沿a轴和c轴方向的理论热导率分别是 170 W/(mK)、450 W/(mK)。Xiang 等结合密度泛函理论和修正的 Debye-Callaway 模型预测了 γ-Si3N4 陶瓷也具有较高的热导率。同时 Si3N4 具有高强度、高硬度、高电阻率、良好的抗热震性、低介电损耗和低膨胀系数等特点,是一种理想的散热和封装材料。现阶段,将高热导率氮化硅陶瓷用于电子器件的基板材料仍是一大难题。目前,国外只有东芝、京瓷等少数公司能将氮化硅陶瓷基板商用化(如东芝的氮化硅基片(TSN-90)的热导率为 90 W/(mK))。近年来国内的一些研究机构和高校相继有了成果,北京中材人工晶体研究院成功研制出热导率为 80 W/(mK)、抗弯强度为 750 MPa、断裂韧性为 7.5MPam1/2 的 Si3N4 陶瓷基片材料,其已与东芝公司的商用氮化硅产品性能相近。中科院上硅所曾宇平研究员团队成功研制出平均热导率为 95 W/(mK),最高可达 120 W/(mK)且稳定性良好的氮化硅陶瓷。其尺寸为 120 mm×120 mm,厚度为 0.32 mm,而且外形尺寸能根据实际要求调整。目前我国的商用高导热 Si3N4 陶瓷基片与国外还是存在差距。因此,研发高导热的 Si3N4 陶瓷基片必将促进我国 IGBT(Insula-ted gate bipolar transistor)技术的大跨步发展,为步入新能源等高端领域实现点的突破。近年来氮化硅陶瓷基板材料的实际热导率不断提高,但与理论热导率仍有较大差距。目前,文献报道了提高氮化硅陶瓷热导率的方法,如降低晶格氧含量、促进晶型转变、实现晶粒定向生长等。本文阐述了如何提高氮化硅陶瓷的热导率和实现大规模生产的成型技术,重点概述了国内外高导热氮化硅陶瓷的研究进展。01晶格氧的影响氮化硅的主要传热机制是晶格振动,通过声子来传导热量。晶格振动并非是线性的,晶格间有着一定的耦合作用,声子间会发生碰撞,使声子的平均自由程减小。另外,Si3N4 晶体中的各种缺陷、杂质以及晶粒界面都会引起声子的散射,也等效于声子平均自由程减小,从而降低热导率。图 3 为氮化硅的微观结构。图 3 氮化硅烧结体的典型微观结构研究表明,在诸多晶格缺陷中,晶格氧是影响氮化硅陶瓷热导率的主要缺陷之一。氧原子在烧结的过程中会发生如下的固溶反应:2SiO2→ 2SiSi +4ON+VSi (1)反应中生成了硅空位,并且原子取代会使晶体产生一定的畸变,这些都会引起声子的散射,从而降低 Si3N4 晶体的热导率。Kitayama 等在晶格氧和晶界相两个方面对影响 Si3N4晶体热导率的因素进行了系统的研究,发现 Si3N4晶粒的尺寸会改变上述因素的影响程度,当晶粒尺寸小于 1μm时,晶格氧和晶界相的厚度都会成为影响热导率的主要因素 当晶粒尺寸大于 1μm 时,晶格氧是影响热导率的主要因素。而制备具有高热导率的氮化硅陶瓷,需要其具有大尺寸的晶粒,因此通过降低晶格氧含量来制得高热导率的氮化硅显得尤为关键。下面从原料的选择、烧结助剂的选择和制备过程中碳的还原等方面阐述降低晶格氧含量的有效方法。1.1 原料粉体选择为了降低氮化硅晶格中的氧含量,要先得从原料粉体上降低杂质氧的含量。目前有两种方法:一种是使用低含氧量的 Si 粉为原料,经过 Si 粉的氮化和重烧结两步工艺获得高致密、高导热的 Si3N4 陶瓷。将由 Si 粉和烧结助剂组成的 Si的致密体在氮气气氛中加热到 Si熔点(1414℃)附近的温度,使 Si 氮化后转变为多孔的 Si3N4 烧结体,再将氮化硅烧结体进一步加热到较高温度,使多孔的 Si3N4 烧结成致密的 Si3N4 陶瓷。另外一种是使用氧含量更低的高纯 α-Si3N4 粉进行烧结,或者直接用 β-Si3N4 进行烧结。日本的 Zhou、Zhu等以 Si 粉为原料,经过 SRBSN 工艺制备了一系列热导率超过 150W/(mK)的氮化硅陶瓷。高热导率的主要原因是相比于普通商用 α-Si3N4 粉末,Si 粉经氮化后具有较少的氧含量和杂质。Park 等研究了原料Si 粉的颗粒尺寸对氮化硅陶瓷热导率的影响,发现 Si 颗粒尺寸的减小能使氮化硅孔道变窄,有利于烧结过程中气孔的消除,进而得到致密度高的氮化硅陶瓷。研究表明,当 Si 粉减小到 1μm 后,氮化硅陶瓷的相对密度能达到 98%以上。但是在 SRBSN 这一工艺减小原料颗粒尺寸的过程中容易使原料表面发生氧化,增加了原料中晶格氧的含量。Guo等分别用 Si 粉和 α-Si3N4 为原料进行了对比试验。研究发现,以 Si 粉为原料经过氮化后能得到含氧量较低(0.36%,质量分数)的 Si3N4 粉末,通过无压烧结制得热导率为 66.5W/(mK)的氮化硅陶瓷。而在同样的条件下,以 α-Si3N4 为原料制备的氮化硅陶瓷,其热导率只有 56.8 W/(mK)。用高纯度的 α-Si3N4 粉末为原料,也能制得高热导率的氮化硅陶瓷。Duan 等以 α-Si3N4 为原料,制备了密度、导热系数、抗弯强度、断裂韧性和维氏硬度分别为 3.20 gcm-3 、60 W/(mK)、668 MPa、5.13 MPam1/2 和 15.06 GPa的Si3N4 陶瓷。Kim 等以 α-Si3N4为原料制备了热导率为78.8 W/(mK)的氮化硅陶瓷。刘幸丽等以不同配比的 β-Si3N4/α-Si3N4 粉末为起始原料,制备了热导率为108 W/(mK)、抗弯强度为 626 MPa的氮化硅陶瓷。结果表明:随着 β-Si3N4 粉末含量的增加,β-Si3N4柱状晶粒平均长径比的减小使得晶粒堆积密度减小,柱状晶体积分数相应增加,晶间相含量减少,热导率提高。彭萌萌等研究了粉体种类(β-Si3N4或 α-Si3N4)及 SPS 保温时间对氮化硅陶瓷热导率的影响。研究发现,采用 β-Si3N4粉体制备的氮化硅陶瓷的热导率比采用相同工艺以 α-Si3N4为粉体制备的氮化硅陶瓷高 15% 以上,达到了 105W/(mK)。不同原料制备的Si3N4材料的热导率比较见表1。表 1 不同原料制备的 Si3N4材料的热导率比较综合以上研究可发现,采用 Si 粉为原料制得的样品能达到很高的热导率,但是在研磨的过程中容易发生氧化,而且实验过程繁琐,耗时较长,不利于工业化生产 使用高纯度、低含氧量的 α-Si3N4粉末为原料时,由于原料本身纯度高,能制备出性能优异的氮化硅陶瓷,但是这样会导致成本增加,不利于大规模生产 虽然可以用 β-Si3N4 取代 α-Si3N4为原料,得到高热导率的氮化硅陶瓷,但是 β-Si3N4的棒状晶粒会阻碍晶粒重排,导致烧结物难以致密。1.2 烧结助剂选择Si3N4属于共价化合物,有着很小的自扩散系数,在烧结过程中依靠自身扩散很难形成致密化的晶体结构,因此添加合适的烧结助剂和优化烧结助剂配比能得到高热导率的氮化硅陶瓷。在高温时烧结助剂与Si3N4表面的 SiO2反应形成液相,最后形成晶界相。然而晶界相的热导率只有 0.7~1 W/(mK),这些晶界相极大地降低了氮化硅的热导率,而且一些氧化物烧结添加剂的引入会导致 Si3N4晶格氧含量增加,也会导致热导率降低。目前氮化硅陶瓷的烧结助剂种类繁多,包括各种稀土氧化物、镁化物、氟化物和它们所组成的复合烧结助剂。稀土元素由于具有很高的氧亲和力而常被用于从 Si3N4晶格中吸附氧。目前比较常用的是镁的氧化物和稀土元素的氧化物组成的混合烧结助剂。Jia 等在氮化硅陶瓷的烧结过程中添加复合烧结助剂 Y2O3-MgO,制备了热导率达到 64.4W/(mK)的氮化硅陶瓷。Go 等同样采用 Y2O3-MgO为烧结助剂,研究了烧结助剂 MgO 的粒度对氮化硅微观结构和热导率的影响。研究发现,加入较粗的 MgO 颗粒会导致烧结过程中液相成分分布不均匀,使富 MgO 区周围的 Si3N4晶粒优先长大,从而导致最终的 Si3N4陶瓷中大颗粒的 Si3N4晶粒的比例增大,热导率提高。然而,加入氧化物烧结助剂会不可避免地引入氧原子,因此为了降低晶格中的氧杂质,可以采用氧化物 + 非氧化物作为烧结助剂。Yang 等以 MgF2-Y2O3为烧结添加剂制备出性能良好的高导热氮化硅陶瓷,发现用 MgF2可以降低烧结过程中液相的粘度,加速颗粒重排,使粉料混合物能够在较低温度(1600℃)和较短时间(3 min)内实现致密化,而且低的液相粘度与高的 Si、N 原子比例有助于 Si3N4 的 α→β 相变和晶粒生长,从而提高 Si3N4 陶瓷的热导率。Hu 等分别以 MgF2-Y2O3和 MgO-Y2O3为烧结助剂进行了对比试验,并探究了烧结助剂的配比对热导率的影响。相比于 MgO-Y2O3,用 MgF2-Y2O3作为烧结助剂时 Si3N4陶瓷热导率提高了 19%,当添加量为 4%MgF2 -5%Y2O3时,能达到最高的热导率。Li 等以 Y2Si4N6C-MgO 代替 Y2O3 -MgO 作为烧结添加剂,通过引入氮和促进二氧化硅的消除,在第二相中形成了较高的氮氧比,导致在致密化的 Si3N4 试样中颗粒增大,晶格氧含量降低,Si3N4 -Si3N4 的连续性增加,使Si3N4 陶瓷的热导率由 92 W/(mK)提高到 120 W/(mK),提高了 30.4%。为了进一步提高液相中的氮氧比,降低晶格氧含量,通常还采用非氧化物作为烧结助剂。Lee 等研究了氧化物和非氧化物烧结添加剂对 Si3N4 的微观结构、导热系数和力学性能的影响。以 MgSiN2 -YbF3 为烧结添加剂,制备出导热系数为 101.5 W/(mK)、弯曲强度为822~916 MPa 的 Si3N4 陶瓷材料。经研究发现,相比于氧化物烧结添加剂,非氧化物 MgSiN2 和氟化物作为烧结添加剂能降低氮化硅的二次相和晶格氧含量,其中稀土氟化物能与 SiO2 反应生成 SiF4,而SiF4 的蒸发导致晶界相减少,同时也会导致晶界相 SiO2 还原,降低晶格氧含量,进而达到提高热导率的目的。不同烧结助剂制备的氮化硅陶瓷热导率比较见表 2,显微结构如图 4所示。表 2 不同烧结助剂制备的 Si3N4材料的热导率比较图 4 氧化物添加剂(a)MgO-Y2O3 和(d)MgO-Yb2O3、混合添加剂(b)MgSiN2 -Y2O3 和(e)MgSiN3 -Yb2O3 、非氧化物添加剂(c)MgSiN2 -YF3 和(f)Mg-SiN2 -YbF3 的微观结构目前主流的烧结助剂中稀土元素为 Y 和 Yb 的化合物,但是有些稀土元素并不能起到提高致密度的作用。Guo等分别用 ZrO2 -MgO-Y2O3和 Eu2O3 -MgO-Y2O3作为烧结助剂,制得了氮化硅陶瓷,经研究发现 Eu2O3 -MgO-Y2O3的加入反而抑制了氮化硅陶瓷的致密化。综合以上研究发现,相比于氧化物烧结助剂,非氧化物烧结助剂能额外提供氮原子,提高氮氧比,促进晶型转变,还能还原 SiO2 起到降低晶格氧含量、减少晶界相的作用。1.3 碳的还原前面提到的一些能高效降低晶格氧含量的烧结助剂,如Y2Si4N6C和 MgSiN2 等,无法从商业的渠道获得,这就给大规模生产造成了困扰,而且高温热处理也会导致高成本。因此,从工业应用的角度来看,开发简便、廉价的高导热 Si3N4 陶瓷的制备方法具有重要的意义。研究发现,在烧结过程中掺杂一定量的碳能起到还原氧杂质的作用,是一种降低晶格氧含量的有效方法。碳被广泛用作非氧化物陶瓷的烧结添加剂,其主要作用是去除非氧化物粉末表面的氧化物杂质。在此基础上,研究者发现少量碳的加入可以有效地降低 AlN 陶瓷的晶格氧含量,从而提高 AlN 陶瓷的热导率。同样地,在 Si3N4 陶瓷中引入碳也可以降低氧含量,主要是由于在氮化和后烧结过程中,适量的碳会起到非常明显的还原作用,能极大降低 SiO 的分压,增加晶间二次相的 N/O 原子比,从而形成双峰状显微结构,得到晶粒尺寸大、细长的氮化硅颗粒,提高氮化硅陶瓷的热导率。Li 等用 BN/石墨代替 BN 作为粉料底板后,氮化硅陶瓷的热导率提升了 40.7%。研究发现,即使 Si 粉经球磨后含氧量达到了 4.22%,氮化硅陶瓷的热导率依然能到达 121 W/(mK)。其原因主要是石墨具有较强的还原能力,在氮化的过程中通过促进 SiO2 的去除,改变二次相的化学成分,在烧结过程中进一步促进 SiO2 和 Y2Si3O3N4 二次相的消除,从而使产物生成较大的棒状晶粒,降低晶格氧含量,提高 Si3N4 -Si3N4 的连续性。研究表明,虽然掺杂了一部分碳,但是氮化硅的电阻率依然不变,然而最终的产物有很高的质量损失比(25.8%),增加了原料损失的成本。Li 等发现过量的石墨会与表面的 Si3N4 发生反应,这是导致氮化硅陶瓷具有较高质量损失比的关键因素。于是他们改进了制备工艺,采用两步气压烧结法,用 5%(摩尔分数) 碳掺杂 93%α-Si3N4 -2%Yb2O3
  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • 高性能陶瓷和超微结构国家重点实验室开放课题开始申请
    高性能陶瓷和超微结构国家重点实验室依托于中国科学院上海硅酸盐研究所,主要从事高性能无机非金属材料的设计理论及结构与材料性能关系、材料合成的物理化学与制备科学、新材料探索等方面的基础与应用基础研究。为了营造实验室创新、求实、开放交流的学术氛围,设置了高性能陶瓷和超微结构国家重点实验室开放课题基金。2011年开放课题申请事项如下:   一、资助方向:   1. 结构陶瓷与陶瓷基复合材料   2. 能源与环境材料   3. 生物医用材料   4. 超微结构与计算材料   二、申报条件:   1. 申请人应为具有博士学位、在岗高级技术职称的科研人员(含副高级职称),在相关领域有相当的技术积累,且有稳定的科研队伍支持项目执行。课题责任人年龄一般不超过45周岁,优先资助中青年学术骨干。   2. 申请人须根据实验室开放课题资助方向与高性能陶瓷和超微结构国家重点实验室在职科研人员联合申请。   3. 申请项目应具有创新的学术思想,解决的科学问题要明确,研究路线或技术方案可行,研究重点突出,考核目标明确。   4. 已作为课题责任人承担本实验室资助项目且尚未结题的申请人,原则上不予资助。   三、申请程序及说明   1. 申请人可以在“高性能陶瓷和超微结构国家重点实验室”网站,下载《开放基金申请书》(Word版本:《开放基金申请书》),并按规定的格式,认真、如实填写《开放基金申请书》。申请人所在单位学术主管部门应签署意见,单位领导在申请书上签字并加盖单位公章。   2. 所有申请均须报送电子申请书和纸质申请书原件(一式两份),电子申请书和纸质申请书的内容必须一致。难以电子化的附件材料随纸质申请书一并报送。所有书面文件请采用A4纸双面印和普通纸质材料做封面 不采用胶圈、文件夹等带有突出棱边的装订方式。   3. 评审将按照“依靠专家、发扬民主、公平公正、择优支持”的原则,由实验室学术委员会对申请者提交的申请书进行评审,确定资助项目和金额,并书面通知获得资助的申请人。   4. 项目批准之后,项目责任人全面负责项目的实施,并定期向本实验室汇报项目的执行和进展情况。如果项目不能如期完成或负责人发生出国/调离,无法按计划实施项目,实验室有权中止经费支持。   5. 由实验室资助的课题所发表的论文、论著、研究报告、资料、鉴定证书以及申报成果时,研究者署名前冠中文:高性能陶瓷和超微结构国家重点实验室 英文:State Key Laboratory of High Performance Ceramics and Superfine Microstructure,和研究者所在单位,且均须标注“高性能陶瓷和超微结构国家重点实验室开放课题基金资助”(Supported by the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure)中英文字样和项目编号。   6. 开放课题的研究期限一般为2年,每项开放课题的资助经费一般为5-10万元人民币。对于取得重要进展的课题,经实验室主任和学术委员会主任同意可以适当增加经费支持。   7. 2011年度开放课题的申请起始时间为2011年4月1日,截止日期为2011年4月30日(邮寄申请以邮戳为准)。   四、材料报送地址与联系方式:   联系地址:上海市定西路1295号(邮政编码:200050)   中科院上海硅酸盐研究所/高性能陶瓷和超微结构国家重点实验室   联系电话:021-52412610 传  真:021-52413122   联系人:步文博   E-mail地址:wbbu@mail.sic.ac.cn   实验室网址:http://www.sic.ac.cn/kybm/kybm1/   附件:国家重点实验室开放课题基金申请书 .doc
  • 投入1500万 玉林建国家级陶瓷检测实验室
    日前,国家质检总局正式下文批准在玉林市筹建国家级陶瓷检测重点实验室,这标志着玉林市在陶瓷领域的技术研发能力居于国内行业领先水平。玉林重点实验室的建成,将使玉林市的陶瓷检测、科研制标、科学研究等方面提高到一个新的水平,它不仅将成为西南地区陶瓷产品检测研究和技术交流的中心,而且将在全国乃至世界陶瓷科研领域中占据重要地位。   拥有一个国家级重点陶瓷实验室,是10多万陶瓷产业人的梦想   近几年来,玉林市陶瓷出口产业迅猛发展,成为第一大创汇产业。至2009年,玉林市日用陶瓷出口量已跃居全国第三位,直接从事日用陶瓷生产人员达10多万人。   目前,玉林市拥有一个自治区级陶瓷工业园区北流日用陶瓷工业园区,全市有各类日用陶瓷生产企业近100家,具有出口质量许可证企业近40家,日用陶瓷年出口总量在全国起着举足轻重的作用。作为全国出口日用陶瓷行业龙头企业的广西三环集团,2001年至今连续9年日用陶瓷产量、销售收入、出口创汇三项指标位居全国同行业首位。   然而,玉林市当前的陶瓷产品研发、技术含量、产品档次与一些传统陶瓷产区相比还有一定差距,陶瓷出口企业对国外提出的一些较高要求的检测项目,还需送区外的得到国际认可的实验室进行检测,这不但增加了企业负担,还影响到企业交货时间等。更值得思考的是,由于玉林市尚没有一个有实力的陶瓷产品的设计、开发中心,没有能力对传统产品进行及时更新换代,随着原材料、煤电、人工成本的不断上涨,玉林市这一优势产业将会面临被淘汰的危险。   拥有一个国家级重点陶瓷实验室,是玉林10多万陶瓷产业人的梦想,它的建成也将填补玉林尚无国家重点实验室的历史空白。   投入1500万元建设陶瓷实验室,开启划时代陶瓷产业革命   建设国家级陶瓷检测重点实验室,对玉林陶瓷生产有着划时代的重要意义。玉林检验检疫局局长陈爱荣介绍,按照建设目标要求,玉林重点实验室将建成布局合理、层次分明、功能配套,集检测、科研、开发、信息一体化的实验室,配备国际一流的种类齐全的包括日用陶瓷、建筑陶瓷和卫生陶瓷等全项目检测仪器设备,可以满足广西、乃至西南区域开展陶瓷检测新项目、新方法的研究以及适应快速反应和应急能力的需求,也将成为国内外互认的第三方社会实验室。   据悉,玉林重点实验室的建设,在现有玉林检验检疫局陶瓷实验室基础上计划增加投入1500万元,其中实验室设施设备投入1000万元,科研项目和专业人员培训投入各200万元,实验室修缮改造300万元。建成后的玉林重点实验室,拥有先进的检测设备、雄厚的技术力量,检测能力达到国际先进水平,检测结果实现与欧盟等国际权威检测机构合作和互认,将成为国家认监委日用陶瓷能力验证依托实验室,成为中西部乃至全国最有影响的陶瓷检测中心,不仅能开展日用陶瓷、建筑陶瓷和卫生陶瓷的全项目检测,还可以帮助出口企业提高产品质量,通过共同研发新产品提高出口产品和产品档次,加快玉林市的外向型经济发展。   目前,玉林重点实验室正在紧锣密鼓筹建之中。它的建成将有效解决玉林市陶瓷生产、升级换代中可能产生的技术问题,发挥信息和技术优势帮助企业有效应对国外技术壁垒,解决出口发达国家提出的检测问题,加强陶瓷生产企业技术人才培训,提高生产管理水平,确保产品质量,增强玉林陶瓷产品在国外市场的竞争力,从而提升玉林陶瓷的品位乃至玉林的知名度。
  • 光谱鉴定古陶瓷是否靠谱?
    光谱鉴定古陶瓷是否靠谱? 据称准确率达90%以上   号称最先进“能量色散X荧光光谱仪”现身广州   专家称能为古陶瓷器鉴定“生日”和“出生地”,开具“元素身份证”   有了先进的科学仪器,古代文物鉴定是否便可以从此进入“机器时代”?日前,云南省收藏家协会古陶瓷科学检测实验室的技术人员和鉴定师们携带号称“最先进”的“能量色散X荧光光谱仪”来到广州进行文物鉴定工作。据称这种检测方法可以精确地测定古代文物,特别是古代陶瓷器的“生日”和“出生地”,为文物开具一份严谨的“元素身份证”。   目前流行的“科技检测”方法   一、热释光:可以准确地检测陶瓷的烧成年代,误差在50~80年左右,但是这种方法需要取样,对文物会造成破坏   二、无损检测釉的脱玻化系数,用这种方法对付高仿瓷器非常有效。但是它的局限是只能检测带釉的瓷器   三、无损检测陶瓷的胎、釉的化学成分及微量元素,可以准确断定其新老。   探测仪技术曾用于月球探测车,据称准确率可达90%以上   记者在文德路玉鸣轩中看到了这台“EDX-3600L能量色散X荧光光谱仪”。鉴定活动的负责人那静告诉记者,这台仪器是云南省收藏家协会古陶瓷科学检测实验室于2008年7月从德国引进的,是当今世界上非破坏化学组成分析、检测古陶瓷方面最为先进的X荧光仪。该仪器配置德国硅漂移探测仪(据称这种探测仪技术曾经使用在月球探测车探测器上)、牛津仪器X光管。它的分析范围为1ppm(百万分之一)-99.9% 并且可以深入釉下0.3cm,探测陶瓷胎体的成分 检测有效空间为65×65×55(cm),是目前世界上最大真空容量仓。它可为古陶瓷、青铜器、贵金属、矿物标本等进行科学鉴定。   那静说,这种“光谱鉴定”是一种无损的鉴定方式。技术人员会在陶瓷器的表面选择几个点——一般包括釉的样本区域和胎的样本区域——进行成分分析,并将分析出的微量元素结果与已有的古陶瓷成分数据库进行比照,从中找出吻合的时间段和生产地区,从而确定一件陶瓷器的“真实身份”。据称,这种检测方法的准确率可以达到90%以上。   那么对于愈加“专业化、科学化”的文物仿制手段来说,“光谱鉴定”有没有被“瞒过去”的可能?对此云南省收藏家协会古陶瓷科学检测实验室主任、云南省收藏家协会古瓷研究会总顾问沈华友告诉表示,之前也曾经有人尝试过组织数十位制瓷高手仿制景德镇古瓷,经过大半年的尝试终于在成分上达到了相当程度的吻合,但烧制出来的成品从品相上看,就是一件废品。沈华友表示,一般来讲,陶瓷成分中的钠、镁、铝等“变量”元素的仿制调配相对容易,但铁、钡、锌、铜、锌、铅等“常量”、“恒量”元素的仿制调配就相当困难。要想让各种成分全部吻合,从成本角度来讲几乎没有可行性 而由于不同时期不同窑口使用的陶土和烧制技术、燃料等的不同,很多材料已经消耗殆尽,要重新还原当年的环境,使用旧时的陶土,也是不可能的。   庞大数据库支撑解开考古学上“悬案”   那静表示,事实上这种“最先进”的检测方式的核心并不是价格昂贵的光谱仪,而是一个强大、权威、涵盖面足够广、涵盖时间足够长的数据库,“光谱仪本身只能告诉你一件陶瓷器的成分含量,打出的是一连串的化学元素的百分比,只有和数据库比照之后才能给出鉴定的结论。”她表示,目前他们主要采用的是中国科学院上海硅酸盐研究所建立的数据库。上海硅酸盐所从上世纪50年代开始就进行了对古陶瓷时期、地区、窑口等方面的成分分析和数据统计,这个中国古陶瓷微量元素组成数据库就是在半个多世纪的统计基础上所建立的,也是国内外率先研制成的古陶瓷元素分析专用标准参考物。   除此之外,中科院物理所、国家博物馆、中国科学技术大学、陕西科技大学、复旦大学等机构也都有自己的微量元素数据库。那静也表示,除此之外他们还拥有国内几乎所有研究机构长期积累的古陶瓷及青铜器的检测数据。   在实际检测当中,采用微量元素的分析技术也的确有过不少成功案例,例如1995年在西安附近的唐秋官尚书李晦墓中出土了一批精美的唐三彩制品,其中的唐三彩俑使这个墓葬成为迄今为止有唐三彩俑的年代最早的纪年唐墓,中科院有关单位进行了微量元素分析后,将分析结果与数据库中调出的3个窑址的微量元素数据进行对比分析,最终认为李晦墓唐三彩使用了与黄冶窑唐三彩成分比较接近的高岭土作为制胎原料,如果不存在元素组成相近的其他窑址,可以断定李晦墓中的唐三彩是河南黄冶窑烧制的。   又如河北省的四大历史名窑即邢窑、定窑、井陉窑和磁州窑中,前三个窑口都是以烧制白瓷为主。这三个窑口由于地理位置相距不远,在烧造过程中往往互相借鉴、模仿,致使所生产的白瓷产品在胎釉颜色、造型、纹饰方面有很多雷同或相似之处,使得许多精美的传世品无法确定其确切的产地,留下了不少考古学上的“悬案”。但是从元素分析入手,就可以清楚地把三个窑口区分开来。   “科技鉴定”还存在空白地带 “肉眼”才能辨粗细、定价值   不过专家们也指出,单纯靠“科技鉴定”并不能解决文物鉴定中的所有问题。目前,各种的无损检测方式都需要先进设备的支撑,不具有便携性,而且这些方法都依赖庞大的数据库,而数据库中没有涵盖进去的部分,在检测上就是空白地带 另一方面,仪器能够给出的只是物理分析后的成分列表,至于这件文物在艺术、市场方面的价值,则须依赖专家们的“肉眼”评价。   广东省文物鉴定站副站长邹伟初告诉记者,从现有的技术手段来看,对古代文物的微量元素进行光谱分析的确是最好的方法,特别是在鉴定古陶瓷方面,具有相当高的准确性。但他同时对“科技鉴定”这个提法表示出不同意见。他指出,事实上传统的“肉眼”鉴定方法经过千余年的发展,特别随着近代考古学的进步,已经形成了一套相当完备的体系,而且也是建立在“科学”的基础之上,比如器物类型学等专业学科。专家们在鉴定时看胎,看釉,看器型,依据的都是多年积累的对文物演变规律的熟谙掌握,怎么能说不是“科学”呢?中国著名文物鉴定专家汪庆正也曾经指出,“人文科学”和“自然科学”两者不可偏废。单纯自然科学测定是不可取的,因为标本的取舍要靠人文科学、靠考古发掘来决定。自然科学手段只能是补充,“独立”是行不通的。所谓鉴定,不仅仅是断真伪,还要鉴定它是好的,还是一般的,是精还是粗,这都是鉴定,离开人文科学就不行。他认为鉴定需几个方面工作:一是掌握历史上已经有的资料 二是要有新考古发掘的资料,如窑址的新考古发现等情况 三是传世品的排比、分类 四是自然科学手段的测定 五是进行模拟实验。这五项工作做好了,才能完成鉴定工作。
  • 西南首家陶瓷检测国家重点实验室通过验收
    5月9日,广西检验检疫局国家陶瓷检测重点实验室(广西玉林)顺利通过由国家质检总局组织的专家组核查验收,这标志着西南地区首家陶瓷检测领域国家重点实验室通过验收,将承担检验检疫执法的技术保障工作。   广西玉林是传统的日用陶瓷生产和出口大市,在生产和出口规模、产业集聚等方面都具备了较好的基础。目前,玉林辖区日用陶瓷出口企业共46家(出口金额在1000万美元以上的企业共6家),据2012年相关数据显示,出口日用陶瓷货值占玉林辖区总出口额53%,占全国日用陶瓷出口额8%左右,位居全国各市第三位。产品主要出口到德国、巴西、英国、意大利、马来西亚、秘鲁、墨西哥、法国、日本、阿联酋等国家。   据悉,近年来,由于受国际金融危机和国际技术壁垒影响,玉林日用陶瓷的出口量受到了较大的影响。据检验检疫部门统计数据显示,2011年,玉林辖区检验出口日用陶瓷共1.1万多批,货值2.6亿多美元,同比分别下降19.2%和6.9% 2012年,共检验出口日用陶瓷9000多批次,2.4亿多美元,与2011年相比分别下降16.83%和6.87%。国家陶瓷检测重点实验室通过核查验收,将有效提升检验检疫检测技术能力,发挥科研、技术创新重要力量、突破国外技术壁垒,为保障玉林日用陶瓷质量安全示范区建设提供技术支撑,有效拉动广西玉林陶瓷行业进步,促进地方经济发展。   据介绍,该实验室是在2009年12月被国家质检总局规划为国家级陶瓷检测重点实验室的,2008年通过中国合格评定国家认可委员会(CNAS)和国家计量认证(CMC)。目前,该国家级重点实验室年均上机样品量达6万多件,采集数据达12万之多。拥有大型进口仪器设备原子吸收、ICP、激光粒度仪、放射性检测仪、维氏硬度仪、原子荧光仪、微波消解仪、安捷伦气相、液相色谱仪、水刀等先进仪器设备100余台/套。可以开展的认证陶瓷检测项目主要有:铅镉溶出量、白度、抗热震性、光泽度、吸水率、釉面维氏硬度、变形、容积、口径误差、高度误差、重量误差、缺陷尺寸、色差、外观质量、放射性核素检测等。   国家质检总局专家组认为该重点实验室在管理水平、人员情况、仪器设备、环境设施、技术能力、检测业务量、可持续发展能力等方面要素均满足了国家重点实验室的验收标准和要求,认为该实验室是一个集检测、科研、开发、信息一体化的科技服务平台,是科研技术人才的培养中心。这是广西检验检疫局获得国家质检总局批准建设并通过核查验收的第七家国家检测重点实验室。国家质检总局科技司肯定广西检验检疫局在国家陶瓷检测重点实验室建设、科研能力、人才培养、提升检测技术等方面取得的成效,并表示将在仪器设备、人员培训、科研项目等方面继续加大对基层实验室的支持力度,促进基层实验室基础建设全面提高。玉林市政府对国家陶瓷检测重点实验室顺利通过验收表示祝贺,希望检验检疫部门发挥好重点实验室科技服务平台的作用,为推动玉林陶瓷产业持续健康发展,扩大出口做出更大贡献。
  • 江苏检验检疫陶瓷检测实验室顺利通过CNAS复评审
    10月23日至24日,中国合格评定国家认可委员会(CNAS)对江苏检验检疫陶瓷检测进行了第二次复审。评审组专家依据CNAS-CL01:2006《检测和校准实验室能力认可准则》等要求对申请认可的全部技术能力进行了评审,评审采用了核查文字资料、提问、现场试验相结合的方式,对管理要素等进行了资料审查,安排了7项现场试验,并对授权签字人进行了考核。经过两天的紧张评审,专家组一致同意江苏检验检疫陶瓷检测实验室通过CNAS复审。   江苏检验检疫陶瓷检测实验室目前接收全省范围内的日用陶瓷、建筑陶瓷的物理化学性能的检测任务,同时接受社会委托样品检测业务,其检测仪器和检测水平在国内陶瓷检测领域处于领先地位。
  • 弗尔德仪器亮相第十一届先进陶瓷国际研讨会--发布陶瓷行业解决方案
    2019年5月25-29日,由中国硅酸盐学会发起的第十一届先进陶瓷国际研讨会(CICC-11)于云南省昆明市完美落幕。此次会议邀请到了来自33个国家和地区的1450名代表参会,CICC已然发展成为亚洲最大、国际知名的陶瓷领域学术盛会。本届CICC-11设置了24个专题研讨会,交流范围基本涵盖了整个特种陶瓷领域及相关学科,汇集业内知名专家学者与会做大会报告、主旨报告及邀请报告。 弗尔德仪器作为陶瓷产品的仪器应用翘楚,应邀赞助第十一届先进陶瓷国际研讨会,为CICC-11的成功举办增砖添瓦。陶瓷领域研究离不开样品前处理、热处理以及理化分析等实验操作,弗尔德仪器应陶瓷行业所需,能够为陶瓷样品的研磨粉碎、热处理、氧/氮/氢/碳/硫元素分析提供先进完善的仪器解决方案。弗尔德仪器旗下产品包括德国Retsch(莱驰)粉碎研磨筛分设备、德国Retsch Technology(莱驰科技)粒度粒形分析仪、德国Eltra(埃尔特)元素分析仪、CarboliteGero(卡博莱特盖罗)烘箱、马弗炉。n 陶瓷制品的研磨粉碎处理对烧结陶瓷的半成品进行检验,需要先对半成品进行研磨粉碎处理。针对不同陶瓷原料、陶瓷粉末以及成品,行星式球磨仪PM 400可以实现陶瓷样品的细粉碎。高能水冷球磨仪Emax优于常规球磨仪能够在更短时间内实现陶瓷样品的纳米研磨。n 陶瓷制品的元素分析、热重分析熔点高达2700℃的碳化硅是陶瓷制品的重要原材料。德国Eltra(埃尔特)元素分析仪特别适用于含碳化硅的陶瓷制品的质量控制。ELEMENTRAC CS-i采用高频感应燃烧法能够对陶瓷样品中的碳含量进行精准测量。ELEMENTRAC ONH-p采用惰性保护气氛熔融技术对陶瓷制品中的氧氮氢元素进行精准可靠的测量。热重分析仪TGA Thermostep由可编程炉连内置天平,加热称重在同一台仪器上完成,大大简化了人工操作,能够一次测量出陶瓷样品的水分、灰分、挥发分。n 陶瓷制品的热处理工艺陶瓷粉末注射成型(CIM)是一种新型陶瓷成型技术,在成型形状复杂的零件和精确控制零件尺寸上有着其他工艺无可比拟的优势。陶瓷注射成型的整个过程主要包括原材料的混合,喂料的注射成型,生胚的排胶和烧结。在CIM工艺过程中,排胶过程最重要的使温度缓慢上升,大量的粘结剂才会析出。CarboliteGero(卡博莱特盖罗)热壁炉——GLO系列,能满足此应用。其加热元件位于炉膛外侧,整个炉膛相当于一个容器。加热元件直接加热炉膛外侧,并向内传导热量,整个炉膛壁是热的,所以叫做热壁炉,也可选配带氢气供气系统的全自动控制系统。退火炉GLO 烧结是CIM工件成形前的最后一个工艺,是一个把粉状物料转变为致密体的传统工艺过程。还有一种工艺是排胶和烧结使用同一台炉子,这样的炉子我们称之为“排胶烧结一体炉”。HTK陶瓷纤维炉,是排胶烧结一体炉,能够在空气环境下排胶和烧结,最高温度2200°C。排胶烧结一体炉HTKn 陶瓷粉末的粒度粒形分析陶瓷粉末注射成型(CIM)对粉末特殊的要求,以使喂料在达到高装载量的同时满足一定的流动性。较理想的粉末一般要求散装密度高、无团聚、颗粒形状为球形、平均粒径小、颗粒内全致密无内孔等。Retsch Technology(莱驰科技)干湿两用多功能粒径及形态分析仪CAMSIZER X2能够满足CIM工艺对陶瓷粉末粒度粒形的检测需求。采用所见即所得的双镜头(CCD)专利技术,能够对陶瓷颗粒的粒径、球形度、纵横比、对称性等粒径粒形参数进行测量与分析。干湿两用多功能粒径及形态分析仪CAMSIZER X2
  • 2129万!尧山实验室2024年陶瓷基复合材料实验设备采购项目
    一、项目基本情况 1、项目编号:平采招标-2024-79 2、项目名称:尧山实验室2024年陶瓷基复合材料实验设备采购项目 3、采购方式:公开招标 4、预算金额:21,290,000.00元 最高限价:21290000元 序号 包号 包名称 包预算(元) 包最高限价(元) 序号包号包名称包预算(元)包最高限价(元)1平公资采2024609号-1第一标段208000020800002平公资采2024609号-2第二标段126000012600003平公资采2024609号-3第三标段650000065000004平公资采2024609号-4第四标段395000039500005平公资采2024609号-5第五标段110000011000006平公资采2024609号-6第六标段160000016000007平公资采2024609号-7第七标段480000048000005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1项目采购内容:包1:1200℃不锈钢节能箱式电炉一套,1300℃节能箱式电炉一套,1600℃节能箱式电炉一套,1200℃单温区管式炉一套,1600℃真空气氛管式炉一套,高低温介电阻抗温谱仪一套,高温绝缘材料电阻率测量系统一套,高温压电温谱仪一套,HPC高性能计算集群一套。包2:热重分析仪一套、热膨胀仪一套。说明:主要用于陶瓷基复合材料的制备和测试。包3:X射线光电子能谱仪一套。说明:主要用于陶瓷基复合材料的制备和测试。包4:大功率微区X射线衍射仪一套。说明:主要用于陶瓷基复合材料的制备和测试。包5:原位红外光谱仪一套、紫外可见近红外分光光度计一套。说明:主要用于陶瓷基复合材料的制备和测试。包6:闪射法导热仪一套。说明:主要用于陶瓷基复合材料的制备和测试。包7:200KV透射电子显微镜一套。说明:主要用于陶瓷基复合材料的制备和测试。5.2标包划分:本项目划分7个标段5.3质量要求:合格标准;5.4供货期:签订合同后进口设备90日历天;国产设备60日历天;完成交货、安装、调试、验收。5.5质保期:进口设备1年,国产设备3年。所有设备厂家终身保修、软件免费升级更新,质保期外上门服务,免收人工费等,零配件费按80%折扣收取。 6、合同履行期限:同供货期 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 9、是否专门面向中小企业:否 二、获取招标文件 1.时间:2024年07月29日 至 2024年08月18日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:平顶山市公共资源交易中心网。 3.方式:本项目只接受网上报名,不接受其它形式报名。潜在投标人报名需凭CA数字证书通过全国公共资源交易平台(河南省平顶山市)(网址:http://ggzy.pds.gov.cn/)“投标人登录”入口进入交易系统进行报名。具体操作请查看以下链接:链接地址:http://ggzy.pds.gov.cn/fwzn/11020.jhtml办理CA证书:http://ggzy.pds.gov.cn/tzgg/10814.jhtml 4.售价:0元 三、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:尧山实验室 地址:平顶山市城乡一体化示范区未来路南段(平顶山学院湖滨校区) 联系人:贾老师 联系方式:17612715557 2.采购代理机构信息(如有) 名称:河南大明建设工程管理有限公司 地址:郑州市花园路27号河南省科技信息大厦12楼 联系人:王先生 联系方式:18737514111 3.项目联系方式 项目联系人:王先生 联系方式:18737514111
  • 中国国际科技促进会发布《激光照明用稀土荧光陶瓷可靠性性能的试验方法》和《稀土激光荧光陶瓷热稳定性的测定》两项团体标准
    根据《中国国际科技促进会团体标准管理办法》的要求,《激光照明用稀土荧光陶瓷可靠性性能的试验方法》和《稀土激光荧光陶瓷热稳定性的测定》两项团体标准已经完成立项、编制起草、征求意见、评审、修改、审查、批准及备案等标准制定流程,经中国国际科技促进会标准化工作委员会审批通过,正式发布,现予以公告,即日起实施。详情见正式文件。 中国国际科技促进会标准化工作委员会2023年7月17日关于《激光照明用稀土荧光陶瓷可靠性性能的试验方法》团体标准发布的公告.pdf关于《稀土激光荧光陶瓷热稳定性的测定》团体标准发布的公告.pdf
  • 激光诱导击穿光谱(LIBS)研究领域再次取得重要进展
    激光诱导击穿光谱技术(LIBS)又称激光诱导等离子体光谱,是一种基于原子发射光谱法的元素分析技术,在多元素分析、实时快速原位检测等方面具有突出优势,并且在痕量物质定性定量分析领域具有重要的应用前景。目前该技术已在深空深海探测、地质勘探、生物医药,以及环境监测等众多领域得到广泛应用。但在普遍应用中,LIBS技术面临信号波动大、光谱强度低、信噪比差、探测灵敏度低等不利因素。瞬态光学与光子技术国家重点实验室汤洁研究员课题组近年来开展了激光等离子体光谱研究领域的技术攻关。放电辅助增强策略可实现大幅度的激光等离子体光谱增强。然而,D-LIBS在放电时电能消耗过大,同时从交变电压和电流中产生电磁脉冲,这不可避免地导致能源浪费和环境污染相关问题。2023年2月份,瞬态光学与光子技术国家重点实验室汤洁研究员课题组与Vassilia Zorba教授团队合作共同提出一种离子动力学调制方法,对克服传统放电辅助LIBS技术(D-LIBS)放电能耗大、安全风险高、环境危害大等不利因素,同时提高分析灵敏度具有显著改善效果。该项工作借助于这种方法,合理优化电极配置,有序调控放电模式,在有效增强光谱信号强度的同时,大幅降低放电能耗。然而,这一方法在液态样品的探测中受液相对放电过程的干扰导致LIBS信号波动大,影响探测光路甚至无法探测,极大阻碍了放电辅助LIBS(DA-LIBS)在液态样品中痕量物种定性或定量分析方面的应用。近日,针对放电辅助LIBS在液态样品探测中面临的关键技术性难题,该团队提出了DA-LIBS结合滤纸采样的方法,促进等离子体中更多的物质被持续加热、电离,致使其寿命从几微秒延长至近百微秒,等离子体光谱强度增加1–2个数量级,滤纸均匀采样巧妙克服了液相干扰放电过程及信号稳定性差等不利因素,显著增强激光烧蚀样品的稳定性,等离子体光谱信号稳定性得以提升33%。凭借显著的光谱增强效应,痕量Ca、Ba元素检出限降低至ppb量级( 1ppb=10-9=十亿分之一),相比于传统单脉冲LIBS,检出限降低近2个数量级。相比于其他LIBS增强技术(如双脉冲LIBS),该方法不仅享有同等高水平的探测灵敏度,还具备低成本、低能耗、装置简易等优势,将在环境与生态废油污染监测中,对污染物质的溯源,以及预防措施的制定,展现出巨大的应用潜力和价值。图片来源于中国科学院西安光学精密机械研究所该项研究成果发表于分析化学领域顶级期刊 Analytical Chemistry(Nature Index 收录,IF:8.0)。
  • 中国首套UO2陶瓷抗断强度试验装置在长春机械院研制成功
    4月23日,长春机械科学研究院有限公司为中国核动力研究院四所研发制造的UO2陶瓷抗断强度试验装置顺利通过中国核动力研究院专家组验收,这是长春机械院为我国重大科研项目提供的又一台高精尖试验测试设备,其技术达到国际先进水平。 该设备在环境模拟、夹具设计、挠度测量、数据采集、温度控制等多方面进行了创新,完全符合GB/T6569-2006《精细陶瓷弯曲强度试验方法》,GB/T14390-2008《精细陶瓷高温弯曲强度试验方法》,JIS R1612-2010《精细陶瓷弯曲蠕变试验方法》。 UO2陶瓷抗断强度试验装置的成功研制,打破国外对我国核动力研究领域的封锁局面, 为我国在常用核动力燃料-UO2陶瓷的高温/常温力学性能研究提供了技术保障。 长春机械院作为中国核工业集团公司试验测试领域战略合作伙伴,先后为核工业集团提供过大吨位超低温电液伺服动静试验机、ITER TF支撑多维加载测试平台、摩擦磨损试验机、高、低周疲劳试验机、电子万能试验机等多批次、多台套高性能试验测试设备。 UO2陶瓷抗断强度试验装置主要用于UO2陶瓷在室温及高温环境下的弯曲强度试验和弯曲蠕变试验。UO2陶瓷是最常用的陶瓷燃料,具有熔点高(2865℃),高温稳定性好等特点,普遍用于核动力的轻水反应堆中,是核动力研究的重要方向。 中国核动力研究设计院隶属于中国核工业集团公司,是中国唯一集核反应堆工程研究、设计、试验、运行和小批量生产为一体的大型综合性科研基地。是以研究设计核动力为主,带动其它堆型反应堆相关技术研究设计的国家战略高科技研究设计院。在我国高新技术领域和先进能源开发工业体系中占有重要的地位。关注:【长春机械院】微信号:cimachtest
  • 医用陶瓷材料力学测试,且看我英斯特朗
    陶瓷材料是人类生活和现代化建设中不可缺少的一种材料,它兼有金属材料和高分子材料的共同优点。应用领域非常广泛,涵盖科研、医疗、工业、建筑等,具有优异性能的高级陶瓷材料更是生物医疗领域的明星材料,在这类陶瓷材料的力学测试中经常能看到英斯特朗试验机的身影。陶瓷材料在现代医疗领域有着广泛的应用,其中包括补牙、牙冠、贴面、种植体和牙箍。标准ISO6872"牙科-陶瓷材料”对牙科所用陶瓷材料的力学性能做出了规定,同时提供了测试其弯曲强度的基本方法。测试时,采用英斯特朗万能材料试验机或ElectroPuls电子动静态测试系统,借助Bluehill® 软件运行试验及分析试验结果。采用微型压缩夹具,安装不同直径的砧子,装载小尺寸样品。测试既可在空气中进行,亦可浸在液体槽中来模拟人体内环境。英斯特朗弯曲夹具符合ISO6872标准试验的测试要求,夹具的特殊设计能确保跨度距离和对中的高精度,解决了这类试验中关键的对齐及平行问题。当今社会中,无数人正在遭受颈部椎间盘突出和腰间盘突出的痛苦,这是一种常见的人体老化现象。当连接脊椎的椎间盘失去灵活性和冲击吸收能力时,神经和脊髓就会受到压迫,引起手臂和颈部的慢性疼痛。过去40年,医学上往往采用颈椎融合术解除此病患,然而这种手术通常会导致颈骨不能运动,造成颈部其余椎间盘的负荷加重。针对上述情况,全新的临床试验是将人造的颈椎间盘组件,即由钛和陶瓷复合材料制成球窝结构,植入脊椎后可以代替受损的颈椎间盘,使患者的人造椎间盘的运动幅度可以和正常的颈椎间盘保持同样的水平。除了上述临床试验以外,医疗器械制造商也在研究人造颈椎间盘在遭受冲击时如何持保持持续有效,以及由钛杯边缘产生的陶瓷球开裂或剥落和固定于底座的陶瓷附件松动或损坏的情况。采用英斯特朗9350HV型落锤试验机,安装45kN (10000 磅) 载荷容量的冲击头可为试验提供足够大的载荷容量。该系统还配有气动回弹制动器,有效防止试样受到任何二次冲击。由于样品的大小、形状和样式不同,英斯特朗可针对客户的特殊需求定制平面锤头和承载夹具。根据英斯特朗9350HV型落锤试验机的控制特性,选择冲击能量和落锤点,客户能够系统地增加每个试样的载荷量级。这样就能收集人造椎间盘受到不同冲击时的应变数据,然后形成产品的冲击性能记录。除上述应用场景外,英斯特朗试验机也可应用在其他高性能陶瓷材料或结构的测试中。SiC陶瓷具有高强度、高硬度、可靠的化学稳定性、良好抗热冲击性能,在国防、核能和空间技术、汽车工业及海洋工程等领域获得了广泛应用。Instron试验机可对SiC陶瓷材料的抗弯强度性能进行检测,测出其三点抗弯强度。另外,英斯特朗试验机也可以应用在双重固化树脂陶瓷粘接耐久性测试上。将样品通过502胶水固定在自制器具上,然后将器具安装在Instron万能材料试验机上,使用缝合线(直径为0.3~0.349mm)沿着树脂柱粘接区的界面,通过抗拉实验模式对树脂柱与陶瓷的粘接界面进行剪切加载,加载速度为1.0mm/min,直至粘接界面断裂,即可测试双重固化树脂陶瓷粘接耐久性。
  • 陶瓷铅镉溶出检测前处理实现自动化
    《日用陶瓷铅镉溶出浸泡室自动加液装置及配套设施的研制》项目,首次利用人机界面可视化操作和自动体积定量、自动三维定位、自动温度控制、pH值实时传感、自动液位检测等智能手段,实现了日用陶瓷铅镉溶出量检测浸泡自动加液系统的精确配酸、自动定位定容加液、废酸液自动中和自动排放、自动温度控制、自动酸雾排放等功能,提高了检测效率和准确性,降低了劳动强度,在陶瓷检测领域达到国际领先水平。 日用陶瓷铅镉溶出浸泡室自动加液装置主体 检测人员进行日用陶瓷铅镉溶出量检测 3月7日,由山东淄博检验检疫局主持研制的“日用陶瓷铅镉溶出浸泡柜自动加液设备”获得国家知识产权局颁发的发明专利证书,这是淄博局建局以来获得的首个国家发明专利。而就在两个多月前,2011年12月20日,此项课题还获得了“2011年度国家质检总局科技兴检三等奖”,成为该局获得的第3个总局科技兴检奖。淄博检验检疫局科技兴检工作由此走上了一个新的台阶。 随着这项技术的研制成功,一直以来,日用陶瓷铅镉溶出量检测浸泡加液依靠人工手动配置实施的做法可望成为历史。 传统检测方法多不足 淄博,我国北方著名的瓷都。日用陶瓷是淄博大宗出口商品之一,主要出口欧美等市场。铅镉溶出量是日用陶瓷产品重要的安全卫生指标。欧美等发达国家对日用陶瓷铅镉溶出量设置了严格的限量要求。 日用陶瓷样品的前处理——醋酸浸泡,是铅镉溶出量实验的重要步骤,该环节对环境温度、浸泡用酸的浓度、避光性等要求甚严。国内最常用的浸泡室为柜式浸泡室,由人工负责配置和添加醋酸溶液,存在占地面积大、劳动防护差、自动化程度低、劳动效率低、精准度难保证等诸多不足。 近几年,随着日用陶瓷产品出口的不断增长以及检验检疫机构对产品抽查密度和检验检测力度的加大,大大增加了陶瓷实验室检测的工作量。提高检测的自动化程度,加快产品检验检测和放行速度,成为当务之急。 因此,研制一套根据产品的器型和容积,既能对多个样品定量自动加入浸泡用标准浓度的醋酸,又能及时排除醋酸挥发成份等有害物质的装置,对有效保护实验人员安全、提高检测结果的准确性、提高工作效率、加快产品检测和验放速度,具有极其重要的意义。 走别人没走过的路 淄博局陶瓷实验室通过对2007年承担的全国日用陶瓷铅镉溶出量能力验证的返回调查结果进行分析,发现全国几个陶瓷主产区的检验检疫部门在相关实验中,对从总体上提高浸泡室的自动化程度以及劳动者防护方面的研究还未展开。国内大部分浸泡室采用的依然是传统的手动/半自动加液方式。根据陶瓷器形不同设定不同加液量的全自动加液装置还没有被研究开发过。经向权威部门检索查新,国外也没有这方面的研究。 作为国家级陶瓷检测重点实验室,也是全国第四家、山东省第一家获得能力验证提供者认可的实验室,淄博局领导和陶瓷实验室相关人员感到,自己有责任、有义务在提高日用陶瓷铅镉溶出量检测前处理自动化程度方面进行革新攻关,勇走别人没走过的路。他们根据掌握的情况,在充分研讨的基础上,及时组织申报了《日用陶瓷铅镉溶出浸泡室自动加液装置及配套设施的研制》课题,并被山东检验检疫局推荐上报国家质检总局立项。2009年3月,课题获得国家质检总局批准立项后,该局立即成立了由分管副局长王克刚任组长的课题研究小组,通过广泛进行资料调研,收集相关测试方法标准,结合检测实践,认真整理分析,制定了课题研究思路及方案。 课题采用目前世界上最先进的控制系统——德国西门子公司生产的PLC作为主控制系统,以实现数据的采集及分析控制;使用最直观、最人性化的人机界面——触摸屏作为操作界面;为减少控制误差,采用最先进的执行机构——步进电机和燕尾轨道来实现动作的精确定位;使用国内最先进、全密封、无泄漏、耐腐蚀的磁力计量驱动泵来实现精确计量。 自动化装置提速增效 经过一年多的努力,淄博检验检疫局成功研制出“日用陶瓷铅镉溶出浸泡室自动加液装置及配套设施”。 该设备主要由防醋酸腐蚀装置、自动设定加入醋酸体积装置、自动定位装置、醋酸挥发物质及时排除实验室装置组成。课题小组通过对醋酸性能的反复试验,设计出了能够配制4%标准浓度醋酸的混液装置。操作人员可从人机操控界面按照预先设定的比值抽取去离子水和醋酸,经配液箱搅拌均匀后,将配置好的醋酸溶液自动输入储液箱。醋酸由储液箱经酸液输送管道进入可控流量的加液枪,再通过自动定位装置的控制,实现各位置点的酸液自动加液。 经过试验检测,该套系统能够实现酸液的自动稀释和自动计量,能够实现不同位置的多点控制加液和准确计量,达到了预期的设计要求,实现了设备的自动化运行,大大提高了检测效率,降低了劳动强度,改善了工作环境。目前,该设备已应用于淄博检验检疫局国家级陶瓷检测重点实验室铅镉溶出量检测实验中,效果良好。 相关背景 2010年8月,国家质检总局在淄博组织召开了《日用陶瓷铅镉溶出浸泡室自动加液装置及配套设施的研制》(编号:2009IK110)科研项目鉴定会。来自系统内外的7名专家组成鉴定委员会,听取了该项目的工作报告和技术报告,审阅了相关课题材料,现场查看了设备的运行、操作,并对研究过程进行了质询。 专家组审议鉴定后一致认为,该项目技术资料完整,数据详实可靠;采用PLC自动化控制技术,利用人机界面可视化操作和自动体积定量、自动三维定位、自动温度控制、pH值实时传感、自动液位检测等智能手段,研制的一套自动化日用陶瓷铅镉溶出量检测前处理设备,实现了检测浸泡自动加液系统的精确配酸、自动定位定容加液、废酸液自动中和、自动排放、自动温度控制、自动酸雾排放等功能,将有效提高检测效率和准确性,降低劳动强度,减少对人体健康危害和环境的污染,填补了国内外同类研究的空白,在陶瓷检测领域达到国际领先水平。
  • 加热台面性能对陶瓷电热板的影响
    陶瓷电热板主要用于样品金属元素分析前对样品进行加热、消解、赶酸处理,分体控制与大尺寸设计的特点,避免人员受到酸雾的伤害和大批量处理样品,安全保障、提高实验工作效率。作为一款新型的实验室用电热板,加热台面已不同于以往的传统台面,采用陶瓷作为加热台面有哪些优势呢?陶瓷加热台面又跟其他材质台面有哪些不同?优势特点1、玻璃陶瓷材质的台面耐磨损、防腐蚀、易清洁且不会生锈,让陶瓷电热板使用寿命更长久。 2、分体控制系统,控制器与加热体分离控制,避免了实验人员在加热消解过程受到酸雾的直接伤害,人体安全。 3、数显控温系统,精确控制温度,升温速度快,加热均匀,温度可达到400℃满足大部分样品消解。4、样品处理能力强:加热台面为500x400mm,可放置48个50ml三角瓶。5、超薄机身,机身的厚度为5cm左右的,便于放置实验室通风柜内且不占用多余空间。不同加热台面材料性能比较 台面使用温度防腐性易清洁性HT-300陶瓷电热板400℃不长锈一抹即净不锈钢台面400℃易长锈,寿命短长锈,难清洁喷涂化工陶瓷台面300℃涂层磨损后易长锈不易清洁喷涂特氟龙台面250℃涂层磨损和易长锈难清洁适用样品范围实验陶瓷电热板在很多领域得以广泛应用,主要有食品、纺织、塑料、地质、冶金、煤炭、生物医药、石油化工、环境监测、污水处理、电池制造、化妆品、保健品等多个领域。
  • 欧盟新指令提高陶瓷铅、镉限量标准
    欧盟修订的《关于与食品接触的瓷器制品的性能标准与合格声明》从2006年5月20日起试行。 新指令对仪器分析方法检出的铅和镉的限量标准由原来的4.0毫克/升、0.3毫克/升,修订为0.2毫克/升、0.2毫克/升,从而提高了此类产品进入市场的门槛。 近日,欧盟委员会对《关于与食品接触的瓷器制品的性能标准与合格声明》这一指令进行修订。新指令指出,从2006年5月20日起,允许符合该指令的瓷器制品使用和进行贸易;从2007年5月20日起,不符合该指令的瓷器制品将禁止生产和进口。新指令增补了在欧盟范围内生产和销售的可能与食品接触的瓷器制品必须附有由生产商和销售商提供的书面声明。另外,新指令对仪器分析方法检出的铅和镉的限量标准由原来的4.0毫克!升、0.3毫克!升,修订为0.2毫克0升、0.2毫克!升,从而提高了此类产品进入欧盟市场的门槛。 业内人士认为,这次限量标准的修订,对我国陶瓷产品出口,甚至对我国整个陶瓷产业,将带来严峻挑战。 限量标准不只影响对欧出口 专家认为,欧盟对我国陶瓷产品限量标准的修改,部分原因是由于我国陶瓷产品大量销往欧洲,导致欧洲市场对我国陶瓷产品采取技术性贸易措施,来阻止中国陶瓷产品的大量进入。这样会使得我国陶瓷产品因不能顺利进入欧洲市场,转向美国等市场,从而可能导致美国等市场对我国陶瓷产品采取措施。因此,欧盟修改限量标准,可能会引起连锁反应,使得美国及亚洲、非洲市场的陶瓷限量标准更为严格。 面对增高的出口门槛,业内人士对我国陶瓷产品的出口表现出明显的担忧。一位不愿透露姓名的日用陶瓷专家告诉记者,我国大部分陶瓷产品属于低档产品,产量大,附加值低。如果短时间内产品销量骤降,企业将陷入严重亏损乃至破产的境地。 在陶瓷产业重要基地之一的淄博,据淄博检验检疫局对2005年淄博市出口必须检测的陶瓷产品情况的统计,如果按照欧洲新的标准,将有95%%的产品不能进入欧盟市场。而国家质检总局2005年10月份公布的对日用陶瓷产品质量进行的国家监督抽查结果显示,广东、广西等十省区市56家企业生产的56种产品,抽样合格率为82.1%%。抽查发现,有6种产品铅溶出量严重超标,最高为国家标准规定的24.98倍;其中一种产品镉溶出量也超标。而欧盟新的限量标准主要就是针对铅和镉的溶出量,我国陶瓷企业如果不尽快提高产品质量,陶瓷出口将面临的巨大冲击不言而喻。 技术与检验面临新挑战记者了解到,铅、镉溶出量超标问题,长期以来一直在困扰着陶瓷行业,至今仍没有好的解决办法。虽然市场上出现了无铅、镉颜料,但只是部分颜色能够实现,对于大红颜色等,仍旧没有很理想的产品可以替代铅、镉颜料。可以说未来几年,这一技术难题得不到攻破,中国陶瓷出口企业将面临严重的困难。 另据介绍,欧盟的限量指令也将对我国出入境检验检疫工作发起挑战。首先,我国陶瓷企业的认证工作必须重新进行。原来通过认证的企业,需要根据新的技术要求全部重新考核,考核的难度将远大于已往。对企业的检验监管模式,也将从原来的粗放式改变为更加严格的全程控制监管模式。而对陶瓷企业的全程控制,其技术难度非常之大,到目前为止仍无法到位。其次,我国的实验室检测也必须再提高一个档次。 限量标准从原来的ppm级提高到ppb级,使得实验室工作必须与之齐头并进。比如,原来仅需要原子吸收就可以做到的检测,必须改为石墨炉检测。这将大大提高检测成本,降低检测速度。 而从消费者角度看,随着人们对食品等产品对人体危害严重程度的认识不断加强,人们对陶瓷产品中铅、镉元素的危害认识更加深入,严格陶瓷产品铅、镉元素的限量也成为发展的必然趋势。 因此,专家认为,从产品本身彻底解决铅、镉溶出量问题,才是关键。为有效应对此次欧盟新陶瓷铅、镉限量,企业应加快研究对策,努力把陶瓷铅、镉溶出量降下来,提高产品档次和附加值。检验检疫部门应加快对检测方法的研究,尽快建立起新的检验监管体系,提高检测能力,确保我国陶瓷产品持续、稳定出口。
  • 陶瓷行业遭遇质量门 放射性竟然是潜规则
    据09年10月20日国家质检总局发布的公告显示,陶瓷行业被抽查的272家企业,共有364种陶瓷被抽查,其中有97种陶瓷产品 上黑榜。据悉,由于国家质检总局发布的《2009第2批产品质量国家监督抽查质量公告》,让博华陶瓷公司猝不及防,各种电话四处打来'了解情况'。与博华陶瓷同上黑名单的,有广东家美陶瓷生产的L&D瓷砖,山东东鹏陶瓷 生产的东鹏超市砖,此外还有众多福建、四川、辽宁、山东、陕西等地陶瓷品牌 。   “送两个地方检查,结果两个地方的结果不一样。”博华陶瓷集团销售总经理刘汉津告诉记者,国家质检总局抽查之后,他们马上把同一批次的产品送交其他质监所。结果,由于标准不一,还是其他什么原因,结果也不一。   根据09年10月20日国家质检总局发布的公告显示,陶瓷行业被抽查的272家企业,共有364种陶瓷被抽查,其中有97种陶瓷产品上黑榜。瓷砖吸水率不合格、墙砖强度不合格、瓷砖放射性超标成为不合格的主要原因,其中放射性超标更是引起全行业轩然大波。有行业人士表示,此次涉及企业之多、抽检产品之广,都属行业首次。   东鹏陶瓷研发中心副主任曾德朝接受本报采访时表示,陶瓷的放射性 再怎么高也高不到哪里去,与天然的石材相较而言,更是不可相提并论。'消费者的心理就是怪,天然的东西辐射更大,人们还愿意接受。人造的瓷砖辐射性小,还把它当回事。“一些媒体把放射性超标的危害放大了,其实它比电脑的辐射小多了。现在很多IT人还不是天天抱着电脑睡觉?”他说。   中国建筑卫生陶瓷 协会相关负责人认为,企业的每批产品都有生产证明和产品批号,必须要经过检验才能出厂,如果出现质量问题,只能说明企业本身的产品质量管理和控制不严格。'陶瓷行业的大部分企业都能严格按照国家标准执行,但是也不排除个别企业或者企业的个别批次产品出问题,要看每个企业的具体情况。'该负责人认为,无论瓷砖放射性超标本身是否对人体有伤害,或者伤害程度有多大,首先都应按照国家标准严格执行。   陶瓷行业资深人士张永农则认为,放射性超标是企业作茧自缚。“本来消费者不关注这些,有些企业就把这个当作卖点,大吹特吹,结果每个企业都把放射性当回事。”   他认为,地球本来就是一个放射源,任何物体对人体都有不同程度的损害,而陶瓷企业最早知道放射性这个玩意,是早期北京电视台的一个新闻。一位消费者买了马桶,得了癌症,就状告该马桶生产企业,认为马桶放射性促成了他癌症的形成。
  • 建筑卫生陶瓷新国标将实施
    有消息称,建筑卫生陶瓷行业7项新国家标准即将于2011年下半年正式推行。这7项新国家标准是刚刚落幕的第三届全国建筑卫生陶瓷标准化技术委员会首次年会暨国家标准审议会的全国建筑卫生陶瓷标准化委员会专家组最新审议通过的。   即将实行的标准包括:   《建筑卫生陶瓷分类及术语》国家标准   《节水型卫生洁具》国家标准   《便器用压力冲水装置》国家标准   《便器用重力式冲洗装置》国家标准   《防静电陶瓷砖》国家标准   《陶瓷地砖表面防滑性试验方法》   《建筑卫生陶瓷用原料粘土》国家标准。   据悉,其中第1项国家标准是对gb/t9195-1999《陶瓷砖和卫生陶瓷分类及术语》的修订其他6项都是新制定的国家标准,涉及建筑陶瓷、卫生洁具、建筑卫生陶瓷用原料等。   年会宣布了国家标准化管理委员会《关于全国建筑卫生陶瓷标准化委员会(sac/tc249)换届的批复》,第三届全国建筑卫生陶瓷标准化技术委员会由87名委员组成,李转任主任委员,尹虹、武庆涛、缪斌、张旗康、宋子春任副主任委员,刘幼红任委员文章出处是华夏陶瓷网兼秘书长,王博、张锦华任委员兼副秘书长。   第三届全国建筑卫生陶瓷标准化技术委员会副秘书长、潮州市陶瓷行业协会秘书长张锦华表示这些标准都是最新制定,拥有行业内的最高发言权,对企业和行业的发展影响较大。业内专家分析表示,标准的制定肯定会综合考虑大多数企业的情况,大多数企业是可以达到标准的。   据悉,新的国家标准将再次修订,并将于2011年下半年正式执行,届时,可能这些新的国家标准也将强制性推行。   记者采访了部分企业,业内人士普遍认为这些标准实施后会在一定程度上提升行业的水平,淘汰部分落后的小企业,但如果不强制实行的话,效果并不会明显。也有业内人士表示在新标准执行后新的器型可能会依照国家标准,但以前的器型还是不会作大的改动,因为部分改变,有可能会影响销售。   长葛市科技局副局长、长葛市卫生陶瓷协会秘书长张建民表示这次制定的新国标要求更严格高效,对于长葛卫生陶瓷提出了更高的要求,但长葛的许多企业已经达到了标准要求,他们也肯定会做到,将很好地执行这些新标准。
  • 建卫陶瓷行业通过七项新国标 下半年正式推行
    2011年下半年,建筑卫生陶瓷行业将有7项新国家标准被正式推行。这7项新国家标准已被全国建筑卫生陶瓷标准化委员会专家组审议通过。   据悉,2011年将要实施的建筑卫生陶瓷新国标包括:《建筑卫生陶瓷分类及术语》国家标准、《节水型卫生洁具》国家标准、《便器用压力冲水装置》国家标准、《便器用重力式冲洗装置》国家标准、《防静电陶瓷砖》国家标准、《陶瓷地砖表面防滑性试验方法》国家标准和《建筑卫生陶瓷用原料黏土》国家标准。   其中,第1项国家标准是对《陶瓷砖和卫生陶瓷分类及术语》的修订,其他6项都是新制定的国家标准,涉及建筑陶瓷、卫生洁具、建筑卫生陶瓷用原料等。   有关负责人表示,这些标准都是最新制定的,拥有行业内的最高发言权,对企业和行业的发展影响较大。业内专家分析表示,标准的制定肯定会综合考虑大多数企业的情况,大多数企业是可以达到标准的。这7项国家标准将在修改、完善后,于2011年下半年正式执行。届时,这些新的国家标准可能被强制性推行。
  • 5G时代到来,岛津助力基站陶瓷滤波器及导电银浆工艺研究和生产
    背景简介5G技术是第五代移动通信技术的简称,相较于4G技术,具有高传输速率、低时延、超大网络容量等特点。2019年是中国5G商用元年,先期5G架构的搭建会集中在基站建设。而5G信号频段高,穿透能力差,传输距离短,覆盖能力弱,因此5G基站数量将远大于4G。在国家“新基建”推动下,三大通信运营商计划2020年在国内建设5G基站50万个。5G时代,基站天线设计集成化,用于信号处理的射频部件有了较大改变,其中的每个天线滤波器所需数量倍数增加,因而重量轻、体积小的陶瓷介质滤波器将成首选,逐步替代现有金属腔体滤波器。 陶瓷介质滤波器生产工艺?行业面临的技术难点及要求 岛津助力研究生产测试方案岛津具备多种表征及测试设备,能帮助企业研究陶瓷滤波器生产工艺提供必要手段。 岛津特色应用 金属化步骤中导电银浆生产及工艺研究测试方案其中金属化步骤中所需导电银浆,为了保证其均匀性、流平性,银浆的配方、制备工艺及生产也需得到研究及控制。银浆生产企业需要特别关注。 更多详细信息,请联系岛津。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制