当前位置: 仪器信息网 > 行业主题 > >

微波介电常数测试仪

仪器信息网微波介电常数测试仪专题为您提供2024年最新微波介电常数测试仪价格报价、厂家品牌的相关信息, 包括微波介电常数测试仪参数、型号等,不管是国产,还是进口品牌的微波介电常数测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微波介电常数测试仪相关的耗材配件、试剂标物,还有微波介电常数测试仪相关的最新资讯、资料,以及微波介电常数测试仪相关的解决方案。

微波介电常数测试仪相关的论坛

  • 低介电常数微波介质陶瓷基覆铜板的研究

    微波介质陶瓷是指应用于微波(主要是300MHz~30GHz频段)电路中作为介质材料并完成一种或多种功能的陶瓷、在现代通信中被用作谐振器、滤波器、介质基片、介质天线、介质波导回路等,应用于微波电路的介质陶瓷除了必备的机械强度、化学稳定性之外,还应满足如下介电特性,微波频率下大的相对介电常数C^2高Qf值以及接近零的频率温度系数微波介质陶瓷可以按照其组成系统,介质特性及应用领域加以分类,较为常见的是按其介电常数的大小来分类,可分为低介电常数类(20~40);中介电常数类(40~80);高介电常数(>80)。低介电微波陶瓷主要应用于微波基板、卫星通讯以及军事应用等通讯系统中。目前研究的较多的低介微波陶瓷主要是以AL2O3和AIN的应用,低介微波陶瓷基覆铜板用绝缘散热材料的理想性能是既要导热性能好,散热好,还要在高频微波作用下产生损耗尽量小。BeO陶瓷是目前陶瓷基覆铜板中绝缘散热的绝佳材料,但由于BeO粉料具有毒性,在制造过程中需要采取严格的防护措施,且在美日等发达国家已禁止生产BeO陶瓷。因此研制替代BeO陶瓷的覆铜板用新型绝缘散热材料已迫在眉睫。AIN陶瓷是一种散热性能较好、无毒的陶瓷材料,其热导率理论值为320W/(mK),与BeO陶瓷热导率的理论值370 W/(mK)相近,并且已研制出热导率在200 W/(mK)以上的AIN陶瓷材料。所以AIN陶瓷材料被认为是最有希望替代BeO陶瓷的绝缘散热材料。 由于BN的介电常数较小,但AIN陶瓷中加入了h-BN,根据复相材料的介电常数公式计算,将h-BN加入到AIN中,还可以降低AIN陶瓷介电常数。本文旨在研制出满足陶瓷基覆铜板使用要求的高热导率、低介电损耗AIN及BN-AIN基陶瓷材料,以替代BeO陶瓷材料。 因为BN,AIN均为共价化合物,难以烧结,为了获得高致密度陶瓷,需添加烧结助剂。烧结助剂的选择应从两个方面考虑,其一,能形成低熔物相,实现液相烧结,促进致密;其二,能与AIN中的氧杂质反应,使AIN晶格净化。基于此两点,选用Y2O3为烧结助剂。因为Y2O3与AIN表面的氧化铝形成Y3AI5O12,Y3AI5O12的液相温度为1760℃,这样既促进了烧结又净化了晶格。但是,若烧结助剂分散不均匀,也很难烧制出结构致密的陶瓷材料。通过化学工艺,将BN包裹到AlN粉体表面,从而实现将BN均匀分散到AIN基体中的目的,并且利用包裹型复合粉体,制备出显微结构均匀的复相陶瓷,其热导率为78.1 W/(mK),在Ka波段介电常数为7.2、介电常数最小值为13×10-4。通过对AIN及BN-AIN基复相陶瓷在Ka波段的微波特性研究,发现AIN基陶瓷材料的介电常数随频率变化的幅度很小,但材料的介电损耗随频率的变化较大,并且在该区间内存在最大值和最小值。

  • 塑胶电介电常数和损耗正切值 测试仪器

    推荐个仪器吧测试条件:塑胶电参数(1GHz下)介电常数为2.92+/-0.1,损耗正切值0.007。下壳密封壳体部分的塑胶电参数(1G/2G/3G下)介电常数为3.05+/-0.1/3.17+/-0.1/3.25+/-0.1,损耗正切值0.0048/0.005/0.0057

  • 电阻率、防静电性能、介电常数、击穿电压测试

    我分析测试中心是国家认可实验室,通过国家计量认可,拥有国内先进的电性能测试仪器:测量范围很广的高阻计,可以测试各种材料的电阻率、防静电性能、绝缘电阻等;介质损耗和电容率测试仪,可以在高频和音频下测量介质损耗因数和相对电容率(介电常数);击穿电压试验机可以在100KV范围内测量样品的电气强度和耐压性能等等。

  • 【原创】有关介电常数

    相对介电常数 εr (有时用κ或K表示)定义为如下比例: εr=εs/ε0 其中εs 是指介质的静电介电常数, 而ε0 是指真空介电常数。 这里的自由空间介电常数是由电场强度E和导电通量密度D通过麦克斯韦方程式导出. 真空下的(自由空间)介电常数ε 为ε0, 所以介电常数为1(ε0是基本量纲). 电介质经常是绝缘体。其例子包括瓷器(陶器),云母,玻璃,塑料,和各种金属氧化物。有些液体和气体可以作为好的电介质材料。干空气是良好的电介质,并被用在可变电容器以及某些类型的传输线。蒸馏水如果保持没有杂质的话是好的电介质,其相对介电常数约为80。 电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。当电磁波穿过电介质,波的速度被减小,使得它的行为象它有更短的波长一样。 电学角度看,介电常数是物质集中静电通量线的程度的衡量。更精确一点讲,它是在静电场加在一个绝缘体上时存贮在其中的电能相对于真空(其介电常数为1)来说的比例。这样,介电常数也成为静介电系数(permittivity, 也称诱电率)。 相对介电常数εr可以用静电场用如下方式测量:首先在其两块极板之间为空气的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后侧得电容Cx。然后相对介电常数可以用下式计算: εr=Cx/C0 对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。 至于具体怎么从麦克斯韦方程导出介电常数,这里不好写,复杂物质的介电常数也很复杂,有各向异性的介电常数,以及左手媒质等等,这些在电磁学里面有研究,但是,这里一时半时和你解释不清,你需要有良好的数学基础,以及高等电磁场的基础,其中对于矢量场的知识也是必须的,介绍一本书给你看,哈灵顿的《Time-Harmonic Electromagnetic Fields》,电磁学的经典著作。

  • 【求助】聚合物介电常数的测试

    请教聚合物的介电常数用什么仪器来测试啊?对测试样品的具体要求是什么呀?比如说尺寸、厚度等等,以及哪里能进行相关的测试?收费如何?多谢了

  • 【求助】请问极性与介电常数的关系是什么?

    请教高手,能帮忙解释一下,极性与介电常数的关系是什么?网上查的是反比关系,极性越大介电常数越小,极性越小,介电常数越大.而书上面说的是介电常数越大的,介电常数就越大.我弄不清楚到底是怎么回事?请这方面的高手帮忙解释一下这个问题!谢谢了.

  • 微波知识讲座2

    微波知识讲座(二)当微波在传输过程中遇到不同的材料时,会产生反射、吸收和穿透现象,这些作用和其程度、效果取决于材料的几个主要的固有特性:介电常数(εr)、介质损耗角正切(tgδ,简称介质损耗)、比热、形状、含水量的大小等。1. 常用材料在微波加工系统中,常用的材料有导体、绝缘体、介质、极性和磁性化合物几类。(1) 导体:一定厚度以上的导体,如铜、银、铝之类的金属,能够反射微波,因此在微波系统中,常利用导体反射微波的这种特殊的形式来传播微波能量。例如微波装置中常用的波导管,就是矩形或圆形的金属管,通常由铝或黄铜制成。它们像光纤传导光线一样,是微波的通路。(2) 绝缘体:在微波系统中,绝缘体有其完全不同于普通电路中的地位,绝缘体可渗透微波并且,并且它吸收的微波功率很小。微波和绝缘体相互间的影响,就像光线和玻璃的关系一样,玻璃使光线部分地反射,但大部分则透过,只有很少部分被吸收。在微波系统中,根据不同地情况使用着玻璃、陶瓷、聚四氟乙烯、聚丙烯塑料之类地绝缘体,它们常作为反应器的材料。由于这种“透明”特性,在微波工程中也常用绝缘体材料来防止污物进入某些要害部位,这时的绝缘体就成为有效的屏障。(3) 介质:对微波而言,介质具有吸收、穿透和反射的性能。介质通常就是被加工的物料,他们不同程度地吸收微波的能量,这类物料也称为有耗介质。特别是含水和含脂肪的食品,它们不同程度地吸收微波能量并将其转变为能量。(4) 极性和磁性化合物这类材料的一般性能非常像介质材料,也反射、吸收和穿透微波。应当指出,由于微波能量具有能对介质材料和有极性、磁性的材料产生影响的电场和磁场,因此许多极性化合物、磁性材料同介质材料一样,也易于作微波加工材料。2. 微波对介质的穿透性质微波进入物料后,物料吸收微波能并将其转变为热能,微波的场强和功率就不断地衰减,即微波透入物料后将进入衰减状态。不同的物料对微波能的吸收衰减能力是不同的,这随物料的介电特性而定。衰减状态决定着微波对介质的穿透能力。汇研微波――资料与论文集(1) 穿透深度:当微波进入物料时,物料表面的能量密度是最大的,随着微波向物料的渗透,其能量呈指数衰减,同时微波的能量释放给了物料。穿透深度可表示物料对微波能的衰减能力的大小。一般它有两种定义:Ⅰ 渗透深度为微波功率从物料表面减至表面值的1/e (36.8%)时的距离,用DE表示,e为自然对数底值。DE=λ0 / π√εr tgδ式中 λ0――自由空间波长εr――介电常数tgδ――介质损耗Ⅱ 微波功率从物料表面衰减到表面值的1/2时的距离,即所谓半功率渗透深度D1/2,其表示式为渗透深度随波长的增大而变化,换言之,它与频率有关,频率越高,波长越短,其穿透力也越弱。在2 450Hz时,微波对水的

  • 【资料】-微波技术在中药加工中的应用进展

    [u][i]中国药房:2006,17(16):1263-1264[/i][/u][b]微波技术在中药加工中的应用进展[/b][i]徐晓彬[/i]随着科学技术的不断发展,微波技术已成为人们关注的一门新兴的、具有可持续发展前景的前沿交叉学科。微波加热是利用介质损耗原理, 采用超高频电场对物料进行加热处理, 加热速度快,内、外部温度梯度的负效应小; 同时,具有独特的生物学效应,其电磁场效应可促使酶分子活性钝化。目前,国内、外微波干燥技术已在医药化工领域得到广泛应用, 特别是在中药炮制、中药干燥灭菌、中药萃取等方面表现出强大的优势,但鲜见将微波技术作为社会大生产的新技术应用到中药散剂的研究。 1. 微波干燥原理和特点1.1 微波加热干燥原理 微波是一种具有穿透能力的电磁波, 其波长在 1mm~1m之间,较普通无线电波短,而较红外线长。微波发生器的磁控管接受电源功率而产生微波, 通过波导输送到微波加热器, 需要加热的物料在微波场的作用下被加热。微波的加热方式与普通的热传递有较大不同,高频电场以每秒几亿级的速度周期性改变外加电场和方向, 使物料中的极性分子随电场作高频振动,分子间摩擦挤压作用使物料迅速发热,从而使物料内部和表面温度同时迅速升高。根据上述原理,由麦克斯韦尔方程推导出微波场对物质热效应的表达式。 (1) 质吸收的微波能:P = 2πfεnnE2 上式中,π为圆周率;f 为微波频率; E 为电场强度;εn 为物质的介电损耗,其表示物质将电磁能转换为热能的效率。 (2) 微波在不同材料中的穿透深度:D = cεo/ (2πfεn) 上式中,c 为常数;εo 为无外电场时物质的介电常数。 (3) 物质在微波加热下升温速率:Dt/ dt = Kf E2ε‘ ( T) tanδ( T) / (ρcv) 上式中,tanδ(T)为介质损耗因子角正切,表示物质在特定频率和温度下将电磁能转化为热能的能力;ε‘ (T) 为物质的介电;K为常数ρ为物质的密度;cv 为物质的质量定容热容。 由此可见, 在一定微波场中, 极性分子的介电常数较大, 同微波有较强的耦合作用, 而非极性分子同微波不产生或只产生较弱的耦合作用。1.2 微波加热干燥的特点 传统加热方式是通过辐射、对流及传导由表及里进行加热。为了避免温度梯度过大,加热速度往往不能太快,也不能对处于同一反应装置内混合物料的各组分进行选择性加热。与传统加热方式相比,微波加热有以下特点: (1) 穿透性:微波可以直接穿透进入物料内部,对物料内外均衡加热,从而大大缩短了加热时间。(2)选择性加热:不同物料微波吸收程度是不一样的。一般来说,物料分子极性越强,越容易吸收微波。水的分子极性非常强,非常容易吸收微波。物料含水量越大,其吸收微波的能力越强,若含水量降低,其对微波的吸收也相应减少。当干燥器内物料的含水量有差异时, 含水量较大的部分会吸收较多的微波,因此在腔体内起到一个能量自动平衡作用。(3) 加热反应快,易于控制:微波加热的时滞极短,加热与升温几乎是同步的。

  • 【分享】微波消解仪

    微波消解仪原理: 1. 什么是微波微波是一种电磁波,是频率在300MHz—300GHz的电磁波,即波长在100cm至1mm范围内的电磁波,也就是说波长在远红外线与无线电波之间。微波波段中,波长在1-25cm 的波段专门用于霄达,其余部分用于电讯传输。为了防止民用微波功率对无线电通讯、广播、电视和雷达等造成干扰,国际上规定工业、科学研究、医学及家用等民用微波的频率为2450 土5OMHz。因此,微波消解仪器所使用的频率基本上都是245OMHz,家用微波炉也如此。 2. 微波的特性   (1) 金属材料不吸收微波,只能反射微波。如铜、铁、铝等。用金属(不锈钢板)作微波炉的炉膛,来回反射作用在加热物质上。不能用金属容器放入微波炉中,反射的微波对磁控管有损害。   (2) 绝缘体可以透过微波,它几乎不吸收微波的能量。如玻璃、陶瓷、塑料(聚乙烯、聚苯乙烯)、聚四氟乙烯、石英、纸张等,它们对微波是透明的,微波可以穿透它们向前传播。这些物质都不会吸收微波的能量,或吸收微波极少。物质吸收微波的强弱实质上与该物质的复介电常数有关,即损耗因子越大,吸收微波的能力越强[2]。家用微波炉容器大都是塑料制品。微波密闭消解溶样罐用的材料是聚四氟乙烯、工程塑料等。   (3)极性分子的物质会吸收微波(属损耗因子大的物质),如:水、酸等。它们的分子具有永久偶极矩(即分子的正负电荷的中心不重合)。极性分子在微波场中随着微波的频率而快速变换取向,来回转动,使分子间相互碰撞摩擦,吸收了微波的能量而使温度升高。我们吃的食物,其中都含有水份,水是强极性分子,因此能在微波炉中加热。下面,我们可以进一步理解微波消解试样的原理。

  • 【求助】请教: 如何理解铁电性能和介电常数的关系

    铁电性能和介电常数的关系是什么?在资料中看到, 铁电体一般都具有较高的介电常数, 但是具有很高介电常数的不一定是铁电材料.本人一直不能具体理解何为铁电性能(总觉得很抽象), 怎样判断某物质是否铁电材料呢?欢迎高手指点. 先谢!

  • 硫酸铜溶液的介电常数

    硫酸铜粉末的介电常数是10.3,那硫酸铜溶液呢?硫酸铜溶液的介电常数和溶液的浓度有关系吗?

  • 【求助】溶液介电常数有差别吗?

    1*10-3mol/L的盐溶液介电常数和水溶液介电常数有差别吗?有差别的话怎么查盐溶液的介电常数?有人说在无机化学的附录里可以查到,但是我怎么找不到啊!!请求高手解答!

  • 【资料】-影响微波消解和微波萃取的因素

    [b]影响微波消解和微波萃取的因素[/b] 微波消解和微波萃取的效率受多种因素的影响。采用微波消解和微波萃取的方法处理样品时.要同时考虑列样品的种类、萃取溶剂、萃取温度、微波消解和萃取的功率和时间等多种因素的影响。 一、酸和萃取溶剂的影响 在元素总量分析中,一般是利用强酸〔硝酸。硫酸、双氧水,王水和盐酸〕或强氧化剂如酸性溴化钾一溴酸钾作消解介质对待测元素进行消解。而在有机金属化合物的形态分析中,为了避免酸对化合物的破坏作用,一般是采用较稀的酸和有机溶剂(异辛烷、苯、丙酮和甲醉)进行萃取。 在线消解全血样品时,选择稀盐酸和稀硝酸作为萃取溶剂口酸的浓度稍高.在消解管内会产生人量的泡沫。影响液体在管内的流动方式,降低重复性。在消解生物组织如肾、肝脏、鱼以及污水淤泥和沉积物时,只用硝酸就足以将目标分析物萃取出来。但在萃取鱼组织中的硒时,只用硝酸不能将其定耸萃取,只有加入双氧水和硫酸后才能将硒定量萃取出来,可能是由于双氧水和硫酸的加人使酸混合物具有较高的沸点和较强的氧化能力,而只硒化合物易挥发、在氧化条件下,能将硒化合物最大程度的保存在酸混合物中。一般情况下,萃取样品基体中的硒不采用盐酸作为萃取溶剂。因为硒在盐酸介质中易挥发。 在分析特定的元素时,如钙和硫,应避免使用硫酸,以防生成不溶的硫酸钙和硫元素测定的不准确性一。在某些情况下,萃取溶剂的体积影响萃取效率,如沉积物中甲基汞的萃取效率与萃取溶剂中盐酸的体积有关。利用微波辅助萃取技术处理样品时所选择的萃取溶剂一般情况下和传统的萃取方法选择的萃取溶剂相同。“相似相溶”,的原理在微波辅助萃取中仍然适用。但微波萃取中所用的萃取溶剂应具有适当的介电常数(ε)来吸收微彼能并将其转化为热能。Ganzler等的研究成果表明萃取溶剂的电导率和介电常数大时,在微波萃取中可显著提高萃取效率。然而,在有些情况下,萃取溶荆的选择还应考虑到所萃取物质的稳定性,以防止快速加热引起化合物降解。Xiong等比较了不同萃取溶剂在相同的加热条件下压力升高的速 度,其结果是:甲醉>丙酮>水≥二氯甲烷,但正己烷的压力几乎没有变化,而压力升高的速度又和溶剂吸收微波的能力有关。所以溶剂吸收微波的能力大小与上述顺序相同。二、消解和萃取温度的影晌消解和萃取温度是保证萃取效率的重要因索,在通常情况下高的消解和萃取温度会提高萃取效率。例如,密闭系统中多环芳烃类化合物在室温下的萃取效率只有52%。在115℃的萃取效率可达到75% ;酚类化合物在130℃萃取能得到较好的回收率;三嗪类化合物在密闭系统中的温度达到80-120℃时也可得到较好的回收率。但高的萃取温度可能会便多种化合物同时萃取出来,降低萃取的选择性,对待测化合物造成干扰,所以萃取湿度的选择应同时兼顾高的萃取效率和高的萃取选择性。提高萃取温度还可能会导致所萃取的化合物的降解。例如,有机氯杀虫剂二氯萘醌在115℃降解。一般来说,萃取温度的设置应在萃取溶剂的沸点附近以使萃取洛剂允分搅动起来增大萃取效率。在敞口微波装置中。消解和萃取的温度是根据所选择的酸和有机溶剂的种类决定的。难消解的样品一般加入高沸点强氧化性的酸,如硫酸使样品彻底消解。

  • 【求助】请问有机溶剂的介电常数表???有英文的请帮翻译一下

    因为氯仿现在是管制品,我们想找其他溶剂来代替,请问与氯仿介电常数值相近的有机溶剂有哪些?在资料里有介电常数表,可是是英文的,我又看不懂,在此求助各位老师,帮帮我,谢谢了。现在我上传了英文的请老师们帮忙翻译 一下,谢谢[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=23972]介电常数表[/url]

  • 【分享+讨论】微波萃取基本介绍,另,欢迎大家交流讨论

    如果你对微波萃取的操作有什么心得体会,或者建议见解,或者相关资料分享,或者其它任何与微波萃取的相关内容,欢迎讨论,参与有奖~微波萃取基本介绍(附小文献一篇) 微波萃取是利用微波能来提高萃取率的一种最新发展起来的新技术。它的原理是在微波场中,吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到介电常数较小、微波吸收能力相对差的萃取剂中。 微波萃取具有设备简单、适用范围广、萃取效率高、重现性好、节省时间、节省试剂、污染小等特点。目前,除主要用于环境样品预处理外,还用于生化、食品、工业分析和天然产物提取等领域。 微波萃取的机理可从以下3个方面来分析: ①微波辐射过程是高频电磁波穿透萃取介质到达物料内部的微管束和腺胞系统的过程。由于吸收了微波能,细胞内部的温度将迅速上升,从而使细胞内部的压力超过细胞壁膨胀所能承受的能力,结果细胞破裂,其内的有效成分自由流出,并在较低的温度下溶解于萃取介质中。通过进一步的过滤和分离,即可获得所需的萃取物。 ②微波所产生的电磁场可加速被萃取组分的分子由固体内部向固液界面扩散的速率。例如,以水作溶剂时,在微波场的作用下,水分子由高速转动状态转变为激发态,这是一种高能量的不稳定状态。此时水分子或者汽化以加强萃取组分的驱动力,或者释放出自身多余的能量回到基态,所释放出的能量将传递给其他物质的分子,以加速其热运动,从而缩短萃取组分的分子由固体内部扩散至固液界面的时间,结果使萃取速率提高数倍,并能降低萃取温度,最大限度地保证萃取物的质量。 ③由于微波的频率与分子转动的频率相关连,因此微波能是一种由离子迁移和偶极子转动而引起分子运动的非离子化辐射能,当它作用于分子时,可促进分子的转动运动,若分子具有一定的极性,即可在微波场的作用下产生瞬时极化,并以24.5亿次/s的速度作极性变换运动,从而产生键的振动、撕裂和粒子间的摩擦和碰撞,并迅速生成大量的热能,促使细胞破裂,使细胞液溢出并扩散至溶剂中。在微波萃取中,吸收微波能力的差异可使基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使被萃取物质从基体或体系中分离,进入到具有较小介电常数、微波吸收能力相对较差的萃取溶剂中。 以上资料转自互联网。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制