微根窗根系观测系统

仪器信息网微根窗根系观测系统专题为您提供2024年最新微根窗根系观测系统价格报价、厂家品牌的相关信息, 包括微根窗根系观测系统参数、型号等,不管是国产,还是进口品牌的微根窗根系观测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微根窗根系观测系统相关的耗材配件、试剂标物,还有微根窗根系观测系统相关的最新资讯、资料,以及微根窗根系观测系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

微根窗根系观测系统相关的厂商

  • A World of High Technology 总部位于德国巴登-符腾堡州Straubenhardt的Wiggens GmbH, 前身是2001年在德国成立的WiggenHauser GmbH, 公司从成立开始就致力于为全球客户提供技术先进,质量可靠的产品与服务,公司最初的产品为通用实验室产品如加热磁力搅拌器,顶置搅拌器,均质乳化机,振荡器等,全球有二十多万台产品在最“通用”的岗位上支持科研人员的工作。 WiggenHauser(2001-2005年)的主要产品为实验室加热、混合、破碎产品(Heating, Mixing and Homogenizing),依靠强大的研发团队及先进的生产设备,WiggenHauser产品一直处于行业前列,可以提供从实验室研究到工业生产的完整的加热、恒温、混合、均质解决方案。2005年,Shinetek Instruments 收购整合WiggenHauser,在延续WiggenHauser传统技术与市场的基础上,对公司的产品与技术进行全面提升,并将公司总部从柏林迁到风景秀丽的德国黑森林地区(Straubenhardt),开始在全球建立市场销售和售后服务体系,在德国、中国、瑞士、美国和新加坡建设生产基地或合作工厂,逐步成长为国际化、多元化的科学仪器品牌。公司建设有全产业链生产体系,产品的每个细节与部件都浸入了研发工程师的智慧与生产工程师的匠心,Wiggens The Magic Motion,在延续WiggenHauser产品技术之上,Wiggens全球团队为Wiggens品牌注入了全新的思想内涵。 PumpsHeating, Mixing and HomogenizingBiostreamMarketing MixWIGGENS产品全球生产供应基地Wiggens分布在全球的生产组装基地,主要为客户提供三个系列的产品:
    留言咨询
  • 400-860-5168转2933
    作为中国第一个以“生态仪器”命名的专业仪器公司,从成立之初,澳作生态仪器有限公司就致力于引进、推广国际先进的生态环境监测技术和仪器设备,并根据国内的科研需求研发、定制生态系统监测设施和仪器。时至今日,已经走过二十年的历程。 公司具有一支由实力雄厚的科研技术人员组成的团队,85% 以上具有本科或本科以上学历,其中一半人员具备硕士以上学历。公司总部位于中关村翠湖科技园云中心,在广州,南京、成都、郑州、泰安、新疆设立了营销、技术服务中心,网络化办公最大程度上给予客户周到便利的咨讯和服务。 澳作公司全体同仁秉承“协作开拓 共同发展”的经营理念,积极为国内用户提供生态仪器技术咨询、方案设计、客户化系统集成、仪器设备调试安装等各类优质服务。公司先后为“双一流”学科建设、中科院修购项目、“985”工程、中科院“中国生态研究网络(CERN)”、中国森林生态研究网络(CFERN)、知识创新工程、国家“948”项目、“973”项目、“863”项目、高校“211”工程、重点学科建设、中地共建、新疆建设兵团等提供仪器设备、技术方案集成和咨询,同时成功通过ISO9001 质量管理体系国际权威认证。此外公司还协助完成了多项国内外重大科研项目和课题。其中森林生态系统长期定位观测方法的土壤、水文监测等仪器技术被列为2011 年中华人民共和国林业行业标准。 澳作公司还积极和国内科研人员一起研发,改造了欧盟第三代蒸渗技术使之更适合国内的科研要求,测量精度达到国际领先水平,取得了多项专利。公司自主研发的根系观测系统、模拟降雨器等设施填补了国外仪器的功能空白。 展望未来,澳作公司将利用中关村翠湖科技园区的政策优势,在国家自主创新政策的扶持下,产学研相结合,深化生态环境监测设施及仪器设备研发、生产、集成、数据服务等业务,为中国的生态环境改善和可持续发展贡献一份力量。
    留言咨询
  • 上海海海洋科技有限公司成立于2015年,是一家专注于为海洋工程、海洋科考领域提供高技术、高可靠性的海洋设备,致力于为用户提供一站式定制服务的专业公司。公司在加拿大和中国都有分公司。 公司着眼于海洋科考仪器设备销售、技术咨询、技术服务,产品涵盖探测、监测、观测、取样及船载支撑保障装备五大类,初步形成从浅层到中深层不同深度取样,从沉积物、岩矿到水体微生物、浮游生物、宏生物观测监测及采集,从区域地形、地貌测量到不同尺度异常探测,从水面到水下不同层面的环境探测,从船舶到海底全覆盖的深海勘查装备体系。包括声学系统、光学系统、动力系统、控制系统、电缆系统、水密系统、环境观测系统、样品采集系统等各类不同作业系统。 公司具有较强的系统集成能力,面向广大用户提供海洋工程、海洋科考综合解决方案。公司秉承诚信为本,积极开拓,扎根于海洋,专注于海洋工程、科考设备,深刻了解用户需求,依托多年的经验积累,伴随着海洋事业的大踏步前进快速成长,我们的目标是打造为专业的方案解决者,用我们的专业、真诚、进取,赢得客户的信赖。
    留言咨询

微根窗根系观测系统相关的仪器

  • BTC-Borescope小型微根窗根系观测系统 一、BTC-Borescope小型微根窗根系观测系统用途 BTC-Borescope小型微根窗根系观测系统是BTC-100X土壤根系监测系统的微型版,兼容I-CAP控制系统(镜头控制及图像抓取),其测管直径只有约7mm,适于要求小孔径测管和足够长度和亮度照明的条件下的植物根系测量分析,通过它能够清晰地观察测量到研究对象的细节。用于实验室盆栽植物、蒸渗仪,温室大棚等环境下的植物根系生长监测研究 (不防水),结合所提供的根系分析软件,能够对植物根系进行定量化测量分析,包括根的长度、面积、根尖数量、直径分布格局、死亡根及存活根数量等等;根据用户需求结合土壤水 分监测,可以研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于苗木培养、作物生长模型研究、根系病理分析、植物胁迫研究及昆虫行为生态等。 探视器镜管整体外形成直角型(90度),其探测管的外径是0.313 英寸.(约0.795cm),长度有7,12,17,22,28和37英寸等供选择。有其它尺寸要求的顾客,可以按需求订制。便携式照明光源比一个标准微型手电明亮10倍,较强的氙气灯聚光透镜系统能为Rhizotron图像软件分析时,提供给观察管内足够明亮的光源。内置充电器,可再充电锂电池组能够持续供电约一个小时: 二、BTC-Borescope小型微根窗根系观测系统原理 利用微根窗技术(Minrhizotron,又称微根管技术),由一个插入土壤中的微根窗管、摄像头、标定手柄、I-CAP系统(由控制器和I-CAP采集器等集成安装于野外工作箱中)组成。将摄像头伸入埋设在根系周围的透明管内,通过I-CAP控制系统进行图像抓取根系照相,然后借助专业根系分析软件系统对混合图像进行分析,从而跟踪了解其生长过程。 三、BTC-Borescope小型微根窗根系观测系统技术指标: (一)迷你根系监测系统 1、 *采用高灵敏度的Super HAD II CCD 2、 *镜头单元采用一体式的紧凑设计,外观尺寸22 (H) x 22 (W) x 64 (D)mm,重量51g 3、 *视频输出和外部视频输入可选 视频输出接口: VBS和Y/C外部输入接口:HD/VD, VS, VBS 4、 通过RS-232C串行通讯,操作简单 5、此系统也包含一条5m长的电缆线(如需额外定制,需联系厂家提供价格)和便携式包。 (二)图像控捕捉制系统 I-CAP图像抓取系统:I-CAP采集器,12英寸显示屏,控制器可以遥控摄像头白光水平及聚焦。 通过摄像头直接抓取、命名并存储图象到野外控制系统上,以供日后实验室分析;包括:摄像头控制软件,图片管理软件,安装在便携式手提箱中的野外控制系统。 图像采集特征: 可自动曝光和白色的平衡 像素修正 2D/3D减少噪音(NR) 边缘增强/细节提高 内置彩色平衡 (三)根系分析软件 WinRHIZO TRON:可以以交互方式方便地分析根系,该软件一次分析一帧图像。操作者需要在不同图像间手动跟踪所需分析的根,软件在屏幕上显示根的形态信息。用于可以根据需要编辑各个根部。在屏幕上通过图形方式显示根长度分布、面积、体积、根尖数量等,将它们作为根直径的函数。软件可以提供根长度、平均直径、投影面积、表面积、根体积、分类数量、每个直径类的根尖数量等。测量结果可以显示在屏幕上,同时提供分析数据的文件。程序可以自动检索并分析此前在相同地点拍摄的图像。 除了以上分析功能,该软件能够使用户处理时间-空间上的连续性,将多幅图像拼接。对于不同时间相同位置的图像进行分析时,同时加载以前的分析信息。拼接的多帧图像中的内容可以一起分析。对于一帧图像进行分析所得的信息,可以复制到与其连续的图像上从而节约分析时间。 四、产地 美国
    留言咨询
  • 一、产品介绍根系显微观测系统HXIN- RootSnap170是一种微根窗技术。采用非电视标准摄像头拍摄模式技术,在不破坏根系,不干扰植物根系正常生长的前提下,能够快速获取植物根系主根、侧根、根毛、菌根、线虫、根瘤、虫卵等整个生长、物候、变化等特征,采集到显微高清图片信息。 二、硬件参数1. 工作方式:进行360度显微拍照采集,整机直接由笔记本或平板USB 3.0接口驱动,无须外接控制箱或电源,可外接充电宝给笔记本延长工作时间10小时以上;2. 拍照光源:独立的白光、紫外光、红光、绿光光源,软件控制光源的切换,光源种类及强度可程控调节,并自动调取及保存光源种类和强度值;3. 拍照图像参数:成像范围50mm*40mm,分辨率4800DPI,拍照速度不低于1秒;4. 图像像素:10393*7559 5. 延长杆:不锈钢材质,采用分段链接方式,每节长度25cm,带有毫米刻度,定位孔可无极锁定深度;6. 控制软件:控制系统进行根系拍摄,自带镜头畸变和色彩均衡实时矫正功能;(后期加入二维码自动识别功能,可以自动识别根管上的二维码信息用于根系图像的命名)7. 温度进水模块:探测根管温度,探测系统是否发生浸水,如果浸水则进行报警提示并断电保护; 8. 数字地球磁场方位模块,可以实时标定拍照图像所对应的地球磁场方位角,方便长期动态跟踪定位;
    留言咨询
  • 1 引言根际是植物、土壤和微生物相互作用的重要界面,也是物质和能量交换的结点,根系生产和周转直接影响陆地生态系统碳和氮的生物地球化学循环。自1904年德国科学家Lorenz Hiltner提出根际这一概念后,相关研究方兴未艾。但由于受土壤不可观测性的限制,传统的研究方法如挖掘法、剖面法、盆栽法及土柱法仍在大量使用,陆地生态系统根际微生态学的研究进展缓慢,因此寻找并建立新的根际微生态研究方法就显得至关重要。近年来随着光学和电子学技术的提升,特别是微根窗法(Minirhizo tron)的应用,使根际微生态研究得到了较快的发展。当前,这是唯一可多个时间段内原位重复观测根系的方法,其最大优点是在不干扰细根生长过程的前提下,原位长期连续观测并记录细根从出生到死亡的消长变化动态。这种测量方法是非破坏性的,是传统的研究方法不可替代的。因此,在国外,微根窗技术目前被广泛应用于森林、果园、草地、沙漠和农业生态系统等植物根系动态及其功能的研究中。2 观测系统设计2.1 目标AZ-B0201根际微生态观测系统通过可视化微根窗技术对根系生长和形态因子进行非破坏性的长期连续定位观测,结合专业的根系分析软件,能够将根系相关数据定量化,包括根的长度、面积、根尖数量、直径分布格局、死亡根及存活根数量等等,实现探索植物细根生长和消亡动态及其周转规律、研究植物根系拓扑结构的目标。同时测量根区土壤理化指标和监测土壤水温等环境因子,揭示植物根系消长动态与环境因子间的关系。2.2 观测点布设在待研究地区选择群落结构明显、优势种典型、地势平坦、土壤层足够深厚的区域,设置观测样地。选择标准木,在根部按照45°角安装微根管。通常一个观测样地安装12~24根1.8m/0.9m(L)×5cm/3cm(D)微根管。在每标准木安装的微根管周围安装1~3根1m或者1.5m观测管,同时检测土壤水分和温度参数。2.3 数据采集频率微根管安装好,应在其与土壤间达到平衡后再开始采集数据,平衡时间从几周到几个月或一年乃至更长的时间不等。众多研究表明,通常情况下7个月后开始采集图像比较合适。数据采集根据环境条件、植物生长周期不同,使用不同的采集间隔期,范围从每1周、每2周到每4周或每6~16周。一般生长季节至少每2周取1次图像,冬天可以降低采样频率或取消。每根观测管可由下到上或由上到下依次采集图像,每管每次取图像数量不少于30个。2.4 观测内容根系形态因子:根的长度、单位面积根长密度、根尖数量、直径分布格局、死亡根及存活根数量、平均直径、投影面积、表面积、根体积、分类数量、每个直径类的根尖数量、细根生长量、细根死亡量和细根周转。根际水盐指标:土壤水分、土壤温度。土壤理化指标:根际土壤全氮、土壤全磷、土壤有效磷、土壤全硼、土壤钙离子、土壤氯离子、土壤硝酸盐和亚硝酸盐、土壤碳酸盐。2.5 观测系统组成和技术指标AZ-B0201根际微生态观测系统由手动土壤取样套件、土壤水分温度测量单元和根系形态因子观测单元共同组成。3 数据处理3.1 根系根长密度和根系面积密度在微根管图像中测量根的长度,通过总根长除以观察的整个管面积获得根系单位面积根长密度RLD(mmcm-2或cmcm-2)。根系表面积的计算可用观察到的根长乘以根直径。同样,以单位面积图片中观察到的根系表面积可得到单位面积根面积密度(mm2cm-2或 cm2cm-2)。3.2 细根生长与死亡RLDP和RLDM分别表示细根生长量和细根死亡量。假设根系在两次相邻采样间隔期内的生长与死亡速率一致的前提下,以单位管面积上根系根长的增加与减少来表示相邻两次采样间隔期内根系的生长与死亡,然后除以间隔时间,得到细根生长RLDP和死亡RLDM。式中:RLDP ——间隔期内根系生长量,mmcm-2d-1;RLDM ——间隔期内根系死亡量,mmcm-2d-1;RLDn ——第n次观测到的根系根长密度值,mmcm-2;RLDn+1 ——第(n+1)次观测到的根系根长密度值,mmcm-2;T ——相邻两次采样间隔时间,d。3.3 根系生长死亡量、现存量和周转计算1)根系年生长量为一年内所有次采样得到的根系根长净增加值(包括所有出现的新根长与以前存在的根系长度净增加值);根系年死亡量为一年内所有次采样中根系长度的消失(包括存在根的死亡以及由于根系的脱落或昆虫的取食引起根长的减少值);根系年生长量与年死亡量的单位也以每年单位管面积内的单位根长来表示(mmcm-2a-1)。2)根系现存量以每次观测到的单位面积活根系长度来表示。3)根系周转估计采用以下3种方法进行估计。① 年根系生长量与年根系平均现存量之比。② 年根系死亡量与年根系平均现存量之比。③ 年根系生长量与年根系最大现存量之比。4 应用案例4.1 植物对营养元素的竞争性利用(Science,2010)James F.、Cahill Jr.等利用AZ-B0201根际微生态观测系统对关键营养元素不同利用策略下的植物根系生长状况进行了为期8周的观测。研究结果显示,在没有竞争植物的条件下,无论关键营养物质在植物周围分布态势如何,植物的根系分布及平均直径不受影响(A、B、C)。当有竞争植物存在时,那么植物根系的分布状况、平均直径则取决于关键营养元素与植物之间的相对距离(D、E、F)。图中红条是植物甲的平均根系直径,蓝条是植物乙的平均根系直径,阴影是关键营养元素所处位置示意(如果存在的话)。4.2 氮肥对水曲柳和落叶松细根寿命的影响(植物生态学报,2009)采用微根管技术研究氮肥对水曲柳和落叶松细根生长、衰老和死亡的影响,探讨两树种细根寿命与氮有效性之间的相关关系。结果表明,林地施氮肥后,两树种细根数量都呈减少趋势, 细根总体直径增加, 分枝程度降低; 氮肥使水曲柳细根存活率提高,细根中位值寿命延长,而落叶松细根存活率对氮肥反应不敏感; 施氮肥对细根寿命的延长效应主要体现在直径较小的一级根、表层,根系和春夏季新生的细根,表明氮肥对高生理活性的细根影响较强。
    留言咨询

微根窗根系观测系统相关的资讯

  • 根系分析系统高质量根系图像进行分析
    对于植物来说,根扎得牢不牢靠,直接决定着今后的发育好不好。根系对植物的固着有着不可替代的重要作用,同时它还能帮助植物吸收水分、矿物质营养、储存植物通过光合作用合成的有机物,供给了植物生长。不仅如此,根系还在合成内源激素生长素、细胞分裂素以及氨基酸等有机物上能发挥积极的作用;并且根系周边所存在着大量的根际微生物,通过它们的活跃度以及根系的成长状况能够判断出土壤当下的营养是否充足,像是酸盐、硝酸盐等矿质营养以及氮钾钙、水分等营养成分是否缺乏,对于土壤检测也有不小的作用。 根系分析系统产品参数详情→https://www.instrument.com.cn/show/C551491.html  但根系深埋于土壤之中,我们仅凭植物外观是难以辨别其根系现状的。植物根系分析仪是一套应用于洗根后的根系分析系统,它可以系统的分析植物根系的长度、直径、面积、体积、根尖记数等数值,进而对根系的形态,色彩、分级进行伸展分析。  该仪器通过检测数据还可以了解到根系的整体结构分布等,便于掌握植物根的形态特征变化,从而对根系所处的土壤环境质量作出测定。对调整土壤的物理性状、增加土壤的通透性提供了参考依据,在保护土壤,实现土壤可持续利用的基础上完成二者的相互作用,也让植物生长获得了能量来源。加快了土壤生物化学的过程,让有机质得以分解,土壤的活性得以增强。  植物根系分析系统作为检测植物根系生长状态的仪器设备,在植物的整个生长过程中起着重要的调节作用。它既能获取植物内的信息,又能检测植物自身的健康状况,而且还能通过对检测数据的分析得出土壤的性质,不仅对植物的形态和生理活动起着调控作用,也对植物物候有不小的影响。  不仅如此,该仪器通过对根系的分析,能很好地认识到其根、茎、叶的形态特征,了解其与环境的相互作用等。经由其高精度的检测、分析和处理后,就可以构造出与作物生长密切相关的指标,以反映作物的生长发育状况,实现对作物长势的连续监测。可以应用于现代土壤研究、植物研究等方面,对农林业的发展与进步具有不可磨灭的积极意义。
  • PM-Tech发布RTC-200X-EFI根系显微生长监测系统(荧光成像版)新品
    一、荧光版根系显微生长监测系统应用简介:在自然状态下,获取植物根系原位的局部显微高清图片信息,紫外光源系统区分活死根,激发荧光成像(Excitation Fluorescence Imaging)系统研究土壤微生物物种多样性、种群组成及其相互作用、群落空间分布等状况,辅助以根系生态分析软件获取植物根系重要参数,提供给植物根系生态、抗逆性、胁迫等研究者地下根系生长的研究资料。 二、荧光系统的优势:高灵敏度:灵敏度远超比色法,在大部分应用中其灵敏度近乎放射性同素。多组样品一次成像:将不同样品(如:对照、处理)通过不同发射波长的荧光素标记可以同时检测多样品荧光信号。稳定性高:荧光素标记的抗体、杂交探针、PCR引物等的信号稳定性优势明显。可稳定存在数月以上,这使需要大规模标记并多阵列之间的标准化比较成为了可能。低毒性成本低:多数情况下,荧光标记和检测的全过程试验用手套即可对实验者提供足够的保护。易于运输和实验后处理,多数情况下实验成本低于放射性同位素 三、荧光系统工作原理:荧光物质被特定外界能量激发(如激光等高能射线),引起其电子轨道向高能轨道跃迁,并最终释放能量回归基态的过程中会产生可被检测的荧光信号。当然不是所有的物质都能被激发产生荧光,只有当该物质与激发光具有相同的频率并在吸收该能量后具有高的荧光效率而非将能量消耗于分子间碰撞过程中,其荧光信号才可被光学设备所检测。(如图1、图2) 图1 图2注:具体荧光系统模块配置数量以报价和参数为准,此图仅作为原理参考。四、荧光版根系显微生长监测系统的功能特性: 1. 摄像头: 200万星光级超宽动态数字彩色摄像头,超高解析度,可调节强度白光系统;2. 荧光激发光源:独立可调光源强度,波长定制,可实现GFP荧光蛋白的激发;在有无滤片加入光路中进行切换,以观察白光反射图像、紫外明场图像和滤光后荧光图像,发射峰可以定制,以实现GFP激发荧光蛋白的成像;3. 配套根系专业分析软件RootAnalysis,可进行Pregizer\Topology、宽度、颜色分级分析,有根系生物量快速测量,12种单根系参数、30种活根死根统计学参数、30种拓扑统计学参数、5种根系节点趋势,快捷键功能,可粘贴复制根系,多节点框选,整体拖拽平移,尤其适合根系时空对比分析,支持中英文界面;4. 软件程控调光:软件实现调光,无手动旋钮,精度不低于1%,自动记忆档位,确保实验重复一致性;5. 透明观察管尺寸:外径90mm,内径84mm长度可定制;6. 光源系统:在白光和荧光两大大光源之间切换,以辨别活体和死体的组成部分,以研究土壤微生物物种多样性、种群组成及其相互作用、群落空间分布等状况;7. 工作环境:0℃~60℃,相对湿度0~100%RH(没有水汽凝结);8. 充电电压:笔记本电压;9. 软件放大分辨率:19200*19200像素;10. 供电电源:笔记本USB端口供电或外接蓄电池或交流电源适配器;11. 拍照角度:360度无死角;12. 图像色彩模式:彩色;13. 数据传输:USB;14. 标定手柄:2米套筒式,带刻度,通过控制摄像头深度和转动以准确定位图片;15. 数据存储:笔记本;16. 工作方式:连接笔记本电脑(或平板电脑等)工作;17. 测量方式:可定点、定位连续监测;18. 画面尺寸:360°高分辨率图像(18*24mm),非拼接图像;19. 数据浏览载体:掌上笔记本、台式机等有USB接口的设备;创新点:高灵敏度:灵敏度远超比色法,在大部分应用中其灵敏度近乎放射性同素。多组样品一次成像:将不同样品(如:对照、处理)通过不同发射波长的荧光素标记可以同时检测多样品荧光信号。稳定性高:荧光素标记的抗体、杂交探针、PCR引物等的信号稳定性优势明显。可稳定存在数月以上,这使需要大规模标记并多阵列之间的标准化比较成为了可能。低毒性成本低:多数情况下,荧光标记和检测的全过程试验用手套即可对实验者提供足够的保护。易于运输和实验后处理,多数情况下实验成本低于放射性同位素。RTC-200X-EFI根系显微生长监测系统(荧光成像版)
  • ​SoilScope生态观测控制实验系统在都江堰灌区灌溉试验站安装完成
    2022年的又一重点项目:都江堰灌区灌溉试验站“SoilScope生态观测控制实验系统”于近日在四川省德阳市境内安装完成。SoilScope生态观测控制实验系统在都江堰灌区灌溉试验站研究背景都江堰灌区位于四川省中部,包括成都平原和邻近的广大丘陵地区,以历史悠久、规模宏大、效益显著而闻名中外。随着都江堰灌区的不断扩大,用水结构的不断调整,灌区季节性缺水日趋严重。通过“SoilScope生态观测控制实验系统”的建造,能够为都江堰灌区乃至四川省节水灌溉提供重要数据和技术支持。SoilScope生态观测控制实验系统项目展示 系统功能🔷 罐体高2.4m,面积4㎡,搭载高精度直接称重控制系统,实时测量蒸散量、降雨、渗漏、潜水蒸发量等参数。🔷 土柱内置高精度土壤传感器,全天候自动记录土壤水力学参数。🔷 数据实时传输,搭配自主研发的EcoScope蒸渗中心控制软件远程操控。🔷 UPS断电保护措施,市电断电后可以保证设备正常工作。 SoilScope生态观测控制实验系统项目展示 控制试验应用基于SoilScope控制试验平台的“LysiCosm 地上地下碳氮循环监测系统”,配套可升降呼吸室“iChamber 群落自动箱”,同步测量表面 N2O/CO2/CH4等温室气体排放;“iChamber-G土壤采气矛”测量蒸渗仪内土壤剖面N2O/CO2/CH4等浓度廓线。iChamber 群落自动箱iChamber-G土壤采气矛“RhizoScope 根系生态仓”依托SoilScope系统实现土壤水、热通量控制,采用摄像与扫描一体化“AZR-300复合根系”原位观测根系分布、细根周转,环境变化对同化物分配的影响、根际微生态过程。1END1

微根窗根系观测系统相关的方案

  • BTC微根窗根系生态监测系统应用
    全球最著名的《科学》杂志(Science),于今年6月发表了--应用植物根系监测系统BTC-2研究植物根系行为的文章“Plants Integrate Information about Nutrients and Neighbors. ” BTC-2微根窗根系监测系统及BTC-100高倍微根窗根系监测系统由美国Bartz公司研制生产,是目前世界上唯一国际通用的微根窗技术,易科泰生态技术公司为其亚洲地区总代理和技术服务中心。
  • 湿地碳通量与根系动态观测系统
    湿地碳通量与根系动态观测系统由SCG湿地剖面CO2监测单元、BTC-100微根窗(Minirhizotron)植物根系动态观测单元及便携式湿地碳通量测量系统组成,综合集成湿地CO2原位梯度监测技术、碳通量呼吸室测量技术及BTC微根窗根系动态观测技术,可对湿地甚至水体剖面不同深度CO2浓度及根系动态原位监测分析,并可利用呼吸室法测量湿地CO2和甲烷通量,还可选配O2分析仪,从而全面分析研究湿地呼吸、碳通量与根系动态关系,应用于湿地及库区碳通量观测、湿地根系动态观测、湿地及水生态修复研究等。
  • BTC 根系动态监测系统在 根窖中的应用
    BTC 根系动态观测系统采用微根管(Minirhizotron,又称微根窗)技术,这是一种非破坏性、定点直接观察和研究植物根系的方法,其最大优点是在不干扰细根生长过程的前提下,可以用来连续跟踪监测细根从出生到死亡的生长过程,也能记录下细根乃至根毛和菌根的生产和物候等特征,揭示土壤环境下的生态系统多样性。采用微根窗技术是估计生态系统地下C 分配和 N 平衡研究的有效方法,对于研究植物根系的动态生长变化,细根的周转速率,评价植物碳汇贡献有着十分重要的意义。

微根窗根系观测系统相关的资料

微根窗根系观测系统相关的论坛

  • 植物根系分析仪连接电脑,如何打开软件系统

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  植物根系分析仪连接电脑,如何打开软件系统?  要连接植物根系分析仪到电脑并打开软件系统,通常可以按照以下步骤进行:  连接设备:  打开植物根系分析仪的开关,并摘除扫描仪的黑色盖板。  使用适当的数据线(如USB线)将植物根系分析仪与电脑连接。确保数据线的一端插入分析仪的数据接口,另一端连接到电脑的USB接口。  安装驱动程序:  如果电脑尚未安装植物根系分析仪的驱动程序,则需要从仪器制造商的官方网站下载并安装。驱动程序是使电脑能够识别并与分析仪通信的关键软件。  插入加密狗:  将加密狗(如果分析仪需要的话)插入到电脑的USB接口中。加密狗可能用于验证软件的授权或提供额外的功能。  打开软件:  打开与植物根系分析仪配套的软件。这通常是一个专门用于分析根系图像和数据的应用程序。  设置连接:  在软件中,选择正确的连接选项以识别并连接到植物根系分析仪。这可能涉及选择正确的通信端口或设备标识符。  启动软件:  根据软件的提示或要求,完成必要的设置或初始化步骤。  点击确认键或等待一段时间,让软件自动启动并连接到分析仪。  开始使用:  一旦软件成功启动并与分析仪连接,你就可以开始使用它来扫描和分析植物根系了。  请注意,具体的步骤可能会因不同的植物根系分析仪型号和软件版本而有所差异。因此,在实际操作之前,建议参考仪器制造商提供的用户手册或联系技术支持以获取更详细的指导。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405231015371346_9106_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 免维护气象观测系统规格型号

    免维护气象观测系统规格型号

    免维护气象观测系统规格型号气象观测系统可以实时探测气温、湿度、气压、风速、风向、降雨量、紫外线、辐射等气象信息,可以通过网络实时观测气象数据。以下是气象观测系统的工作原理、硬件基本配置、观测的主要地面气象要素和技术特点。[img=气象观测系统,500,500]https://ng1.17img.cn/bbsfiles/images/2022/03/202203310906248443_5631_4136176_3.jpg!w690x690.jpg[/img]随着气象监测技术的不断进步,气象观测系统已广泛应用到各类型气象台站和各种气象科研场景。气象观测系统通过气象观测,为天气预报、气象观测、气候分析和科学研究提供重要依据。根据气象观测项目的不同,气象观测可分为地面气象观测、高空探测和专业气象观测三类。气象观测系统对地面气象的观测比人工观测所获取的气象数据更加便捷,气象要素观测的代表性、准确性和及时性都有所提高,减轻了气象测报的工作量,更好得反映出大气近地面层的真实状况。[img=气象观测系统,500,500]https://ng1.17img.cn/bbsfiles/images/2022/03/202203310905204949_2091_4136176_3.jpg!w690x690.jpg[/img]气象观测系统的各项仪器在使用过程中容易受空气中的灰尘覆盖,从面影响观测数据的准确性,因此气象观测系统室内外各项仪器必须定期清洁。如清除温湿度表的外表灰尘,清洁温湿度感应器的头部保护滤膜,防比灰尘堵塞金属网孔,清除蒸发传感器金属网上的水垢和赃物,用湿布擦洗百叶箱,一星期更换一次湿球纱布,擦拭室内外计算机、户外显示器、自动采集器等设备以确保气象观测系统观测的准确度。气象观测系统的各项感应器,各种电缆设于观测场的室内外,观测场的环境变化会自接影响仪器的灵敏性,所以要注意维护自动观测站场地的环境。

微根窗根系观测系统相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制