当前位置: 仪器信息网 > 行业主题 > >

微纳米力学测试系统

仪器信息网微纳米力学测试系统专题为您提供2024年最新微纳米力学测试系统价格报价、厂家品牌的相关信息, 包括微纳米力学测试系统参数、型号等,不管是国产,还是进口品牌的微纳米力学测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微纳米力学测试系统相关的耗材配件、试剂标物,还有微纳米力学测试系统相关的最新资讯、资料,以及微纳米力学测试系统相关的解决方案。

微纳米力学测试系统相关的资讯

  • 清华大学《PNAS》:基于极小曲面的微纳米点阵材料的优异力学性能
    作为一种新兴的力学超材料,三维微纳米点阵材料具有低密度、高模量、高强度、高能量吸收率和良好的可恢复性等优异的力学性能,极大地拓展了已有材料的性能空间。如何通过拓扑结构设计获得具有优异力学性能的三维微纳米点阵材料是固体力学领域的研究热点之一。微纳米点阵材料通常由具有特定结构的单胞在三维空间中周期阵列形成。根据组成单胞的基本元素的种类,可以将三维微纳米点阵材料分为基于桁架(truss)、平板(plate)和曲壳(shell)三种类型。目前,基于桁架的微纳米点阵材料已经表现出良好的力学性能,但其节点处的应力集中限制了其力学性能的进一步提升。近年来的研究表明,基于平板的微纳米点阵材料可以达到各向同性多孔材料杨氏模量的理论上限,然而其闭口的结构特点为其通过增材制造的手段进行制备带来了挑战。相比之下,具有光滑、连续、开口特点的曲壳结构则在构筑具有优异力学性能的微纳米点阵材料方面具有天然的优势。近期,清华大学李晓雁教授课题组采用面投影微立体光刻设备(microArch S240,摩方精密BMF)制备了特征尺寸在几十至几百微米量级的多种桁架、平板和曲壳微米点阵材料。所研究的结构包括Octet型和Iso型两种桁架结构、cubic+octet平板结构以及Schwarz P、I-WP和Neovius三种极小曲面结构。其中,cubic+octet平板结构是早先研究报道的能够达到各向同性多孔材料杨氏模量理论上限的平板结构。该团队通过原位压缩力学测试研究并对比了多种不同结构的微米点阵材料的变形特点和力学性能。结果表明,相对密度较大时,I-WP和Neovius曲壳微米点阵材料与cubic+octet平板点阵材料类似,在压缩过程中呈现均匀的变形特点。而Octet型和Iso型两种桁架点阵则在压缩过程中形成明显的剪切带,发生变形局域化。相应地,I-WP和Neovius两种曲壳点阵和cubic+octet平板点阵具有比桁架点阵更高的杨氏模量和屈服强度,这与有限元模拟的结果一致。有限元模拟同时揭示了曲壳和平板单胞具有优异力学性能的原因在于其在压缩过程中具有更均匀的应变能分布,而桁架单胞节点处存在明显的应力集中,其节点处及竖直承重杆件的局部应变能甚至可以达到整体结构平均应变能的四倍以上。该研究表明,基于极小曲面的点阵材料能够表现出比传统的桁架点阵材料更为优异的力学性能,同时其光滑、连续、无自相交区域的特点使得其在构筑结构功能一体化的微纳米材料方面具有重要的应用前景。图1. (A-F) 多种桁架、平板及曲壳单胞结构;(G-L)采用面投影微立体光刻技术制备的多种不同结构的聚合物微米点阵材料图2. 利用面投影微立体光刻技术制备的聚合物微米点阵材料原位压缩力学测试结果。(A-F)工程应力-应变曲线;(G-L)不同结构的点阵材料在加载过程中的典型图像(标尺为2 mm) 图3. 周期边界条件下不同单胞结构单轴压缩的有限元模拟结果。(A-B)归一化杨氏模量和屈服强度随相对密度的变化;(C-H)不同单胞结构的应变能分布
  • 四川大学与英国Micro Materials公司合作成立“航空航天工程微纳米力学中英联合应用研发中心”
    近日,在四川大学滨江楼空天学院会议室,空天科学与工程学院举行中英联合应用研发中心成立暨挂牌仪式,这标志着“航空航天工程微纳米力学中英联合应用研发中心”正式成立。Micro Materials公司Adrian Harris工程师、北京正通远恒科技有限公司赵小星工程师作为嘉宾出席了此次挂牌仪式,空天科学与工程学院院长王家序教授、副院长兼直属党支部书记高志华,以及学院教职工代表、学生代表出席了仪式。仪式由周青华老师主持。首先,周青华老师代表学院致欢迎辞,并简要介绍了学院情况。他说,空天学院具有在航空航天领域研究的优良背景和坚实基础,是在充分结合国家重大需求和学科发展前沿的基础之上重建的,微纳米力学特别是纳米测试系统在航空宇航学科的研究和航空航天工程领域的发展中都起到不可替代的重要作用。此次“航空航天工程微纳米力学中英联合应用研发中心”的正式成立,是与会双方共同的心愿,希望双方通过合作与交流,在航空航天工程微纳米力学领域取得更多的成果。Micro Materials公司Adrian Harris工程师向中英联合应用研发中心的成立表示祝贺,并介绍了公司的研究领域与突出成果。Micro Materials是一家专注于纳米力学领域的优秀企业,在全球范围内已成立超过300家中心,具有在学术界和工业界的客户,包括剑桥大学、麻省理工、牛津大学、理论、通用、西门子等。此次联合应用研发中心的成立,将有力促进空天学院在微纳米力学发展中的国际合作与交流,进一步提升空天学院的国际影响力。最后,各位老师和Micro Materials公司代表、北京正通远恒科技有限公司代表一行共同为“航空航天工程微纳米力学中英联合应用研发中心”挂牌,并合影留念。
  • 微纳力学测试技术及应用培训班即将召开
    随着微纳制造技术水平的提升,微纳结构设计制造已进入纳米尺度,最大限度地利用小尺寸效应、表面效应、量子效应等“按需设计制造”多级微纳结构或材料已成为微米纳米技术创新的重要途径,也是微米纳米技术的基础前沿热点。微纳力学测试技术被广泛应用于生物与生物工程、材料科学、MEMS表征、微型机械手臂、纳米技术等领域,成为支撑国家高新技术产业发展的关键技术力量。针对微纳科技领域日益增长的材料和结构力学性质测试的需求,中国微米纳米技术学会定于2019年6月举办微纳力学测试技术及应用培训班。本次培训班旨在通过探讨微纳力学测试技术的最新前沿进展,学习常用分析技术的基础理论知识,了解其在高精尖技术中的应用实例,并结合上机实践操作,夯实微纳科技相关从业者的力学测试技能,推动我国微纳力学测试技术的持续发展和创新。欢迎广大相关企事业单位科技工作者踊跃报名参加!主办单位中国微米纳米技术学会承办单位福州大学机械工程及自动化学院协办单位颗粒在线培训时间2019年6月1-2日培训地点福州大学旗山校区培训内容本次培训内容包括前沿进展、基础理论、应用报告及上机实操四大模块,具体内容参见附件一。培训讲师部分授课讲师参见附件二。培训对象从事微纳科技相关领域科研和开发工作的高校教师及研究生、企业技术管理人员和研发工程师以及其他感兴趣的人员等。培训证书学员完成全部课程,经考核合格,将由中国微米纳米技术学会颁发《微纳力学测试技术及应用》培训合格证书。联系方式参会回执详见附件三。中国微米纳米技术学会联系人:尹老师电话:010-62772108、13717838339(同微信号)邮箱:yhh@csmnt.org.cn颗粒在线联系人:符老师、张老师电话:18501191885(同微信号)15801214828(同微信号)邮箱:fuzhuowang@kelionline.com、zhangyifei@kelionline.com中国微米纳米技术学会颗粒在线2019年5月附件一:培训日程(相关解释权归中国微米纳米技术学会所有)微纳力学测试技术及应用培训班培训日程时间主题详细内容授课讲师任职单位2019-5-31全天报到2019-6-1理论授课9:00-10:30前沿进展1.微纳米力学发展的现状陆洋香港城市大学2.原位SEM/TEM测试技术3.多物理场耦合的微纳米力学表征平台介绍10:30-12:00微纳米器件力学量测试技术理论1.接触力学简介FuqianYang美国肯塔基大学2.接触力学在力学试验中的应用a)压痕蠕变b)压痕应力松弛c)压痕疲劳d)电压痕e)表面粘附力f)软薄膜压痕3.高分子薄膜表面应力的测量a)微弯b)表面起皱4.压电材料压痕12:00-14:00午餐+午休14:00-15:30压痕法表征韧性膜/基体系的力学性能1.韧性膜/基体系复合硬度的理论分析马增胜湘潭大学2.鼓包法表征界面结合性能3.反分析法表征韧性膜/基体系的应力应变关系15:30-17:00二维纳米材料力学性能的分子动力学模拟研究1、分子动力学模拟理论基础;李明林福州大学2、二维纳米材料力学性能表征的分子动力学模拟案例解析;3、基于分子动力学模拟方法研究二维纳米材料力学性能的进展和挑战。2019-6-2理论授课+实践操作9:00-10:30利用压痕方法表征复杂材料体系的力学性能1.设计压痕数据反向分析方法采用的主要手段张纯禹中山大学2.聚合物块体材料及薄膜材料的粘弹性性能3.生物细胞的粘弹性性能及表面特异性粘附性能4.多层膜材料的每层膜的弹性性能、金属和聚合物材料的塑性性能以及金属材料的高温粘塑性性能的压痕表征方法5.压痕方法的发展及未来的发展趋势10:30-12:00纳米压痕和微米划痕的原理和应用纳米压痕技术在微机电系统、材料科学、摩擦学性能研究、生物工程和信息技术等领域中的应用,以及纳米压痕技术的理论研究进展刘明福州大学12:00-14:00午餐+午休14:00-18:00一、实践项目和内容(选修)纳米压痕实验1.介绍设备特点,实验可以获得的数据,各种加载方法,以及如何利用软件显示结果。1.每人次200元,一个小时(前半小时培训,后半小时可以亲自操作),每次培训最多两人;2.实验材料:铜。压力:50mN。线性加载,线性卸载,加载时间30s,卸载时间30s,保载时间10s。2.可自带软材料(如铜等)免费测试;3.压痕测试后,将利用显微镜进行压痕观察。3.测试软件可共享,自带笔记本可安装(100元/次)。微米划痕实验1.介绍设备特点,实验可以获得的数据,各种加载方法,以及如何利用软件显示结果。2.实验材料:铜。压力:50mN。划痕长度:1mm。划痕测试后,将利用显微镜进行形貌观察。原子力显微镜如果同时选择了纳米压痕和微米划痕实验,免费赠送。一个小时(前半小时培训,后半小时可以亲自操作),每次培训最多两人。轻敲模式和接触模式扫描标准样品。二、参观福州大学附件二:部分授课讲师介绍陆洋博士,现任香港城市大学机械工程学系副教授,香港城市大学深圳研究院纳米制造实验室主任。分别在南京大学物理/微电子专业获得学士学位、美国Rice莱斯大学获得博士学位。在2012年进入香港城市大学任教之前,陆洋副教授曾在麻省理工学院(MIT)进行了近两年的博士后研究。陆洋副教授在纳米力学和纳米制造方面拥有丰富的经验,他的团队在发现纳米级共价晶体如“硅纳米线”和“金刚石纳米针”中的“超大弹性”方面做出了重要贡献。作为第一作者或通讯作者,陆洋副教授在《Science》、《NatureNanotechnology》、《ScienceAdvances》等领先学术刊物上发表了50多篇研究论文,总引用量超过1000,H指数超过15。2014年获得香港大学教育资助委员会“杰出青年学者”奖,2017年获得香港城市大学“优秀导师奖”,2018年获得香港城市大学“校长奖”。目前还担任《MaterialsToday》副主编、《ScientificReports》以及《中国科学:技术科学》的编委。杨福前教授,美国肯塔基大学化学与材料工程学院教授,1986年获清华大学工程物理专业学士学位,1995年获美国罗切斯特大学材料科学专业博士学位。JournalofManufacturingProcesses,MaterialsScience&EngineeringA,SmartGridandRenewableEnergy等杂志的编委。主要研究方向为材料的机械行为,电化学-机械耦合行为,材料制造工艺,结构材料的微观结构演化以及材料的机械和机电响应建模;能源材料,无铅焊料和电子互连的机电测试,聚合物表面的自组装行为,纳米结构材料的力学建模,以及电池的建模和分析。承担各类国家级和企业重大项目22项,发表SCI收录论文310多篇,被引用4000多次,申请美国组专利2项,受邀在国际学术会议上作学术报告100多次。马增胜教授,湘潭大学材料科学与工程学院,博导。自2005年开始,一直致力于锂电池关键材料的优化设计与力学性能表征等方面的研究,积累了一定的经验。主要从事高性能锂电池关键薄膜与涂层材料力学性能表征及其破坏机理方面的研究,包括正极材料、负极材料、电池外壳等:(1)动力电源关键电极材料的制备、微观结构及电化学性能表征,力争改善其电化学循环性能;(2)建立电池外壳材料力学性能的相关评价方法,着重解决其工程化过程中出现的划伤、剥落等表界面力学问题;(3)基于动力电源处于力、化、热、辐射等多场耦合环境,致力于解决电极材料快速充放电过程中出现的粉化、剥落等多场耦合关键科学问题。相关研究成果在国际刊物发表论文30篇,其中Int.J.Plast.2篇,ExtremeMech.Lett.1篇。申请国家发明专利13项,授权9项。获教育部霍英东教育基金会青年教师奖、湖南省优秀博士学位论文奖、湖南省自然科学奖一等奖、湖南省自然科学优秀学术论文奖一等奖等奖励。现为国家发改委“特种功能薄膜材料”国家地方联合工程实验室常务副主任、中国力学学会会员、中国机械学会材料分会理事。张纯禹教授,同济大学硕士,新加坡国立大学博士,现任中山大学中法核工程与技术学院副教授、院长助理,参与、协调研发中心的建设。研究重点和发展方向为先进数值模拟与仿真,主要包括复杂系统多物理场模拟、模型降阶理论和算法、实时数据和高保真模型驱动的数字孪生系统、智能CAD/CAE软件开发及复杂材料体系的力学性能表征与模拟,在中外期刊发表相关学术论文27篇,专著1部,专利及软件著作权8项。参与广东省产学研项目:TH-2环境下船体线型优化设计与分析软件平台研发及示范应用、广州市科技计划项目:高温辐照环境下核结构材料力学性能的原位显微压痕表征设备和方法研究以及NSFC-广东联合基金超级计算科学应用研究,严重事故下核反应堆安全壳内热流场分析及结构完整性评估等多项目国家重点研发计划项目,同时接受企事业单位委托进行研究分析,如燃料棒性能精细化分析、手机常用塑料和金属力学行为的实验和数值模拟研究、氢气安全分析软件的研发等。刘明教授,1985年6月出生,哈尔滨人,本科、硕士在哈尔滨工业大学材料科学与工程学院,博士在美国肯塔基大学化工与材料学院,在法国巴黎高科矿业工程师学校材料研究所和美国华盛顿州立大学机械与材料工程学院各有一年博士后经历。2015年4月入职福州大学机械工程及自动化学院。福州大学第一批旗山学者(海外人才计划),福建省闽江学者特聘教授,福建省高层次ABC类人才C类人次(境外引进)。福州大学教授,博士生导师。主持国家自然科学基金一项(在研):表面微观形貌和局部倾斜对纳米压印和划痕测量的影响研究(51705082)。博士以来一直从事接触力学有关的研究。李明林博士,硕士生导师,现为福州大学机械工程及自动化学院副教授,福建省力学学会常务理事兼秘书长。分别于福州大学机电一体化专业和固体力学专业获学士学位和硕士学位,于中国科学院沈阳自动化研究所机械电子工程专业获博士学位,曾赴美国莱斯大学材料科学和纳米工程系楼峻教授课题组访学一年。主持和参与国家自然科学基金、福建省科技厅对外合作项目、福建省自然科学基金项目、福建省教育厅项目、以及产学研合作项目等各类项目20多项,发表论文50多篇,其中SCI/EI收录35篇,申请国家发明专利7件,已授权3件。培养硕士毕业生13名,其中2名研究生获国家奖学金、福州大学硕士学位优秀毕业生;两篇硕士毕业论文分别获福州大学优秀硕士研究生学位论文和福建省优秀硕士研究生学位论文;学术论文曾获IEEE-Nano-2017国际会议最佳论文提名奖、福建省第十三届自然科学优秀学术论文三等奖、获评中国力学学会全国徐芝纶力学优秀教师奖。附件三:微纳力学测试技术及应用培训班回执表单位名称研究方向联系人邮编联系电话E-mail通讯地址姓名性别所在部门职务联系电话邮箱交通食宿自行安排5月20日前注册缴费5月20日后注册缴费非学会会员2400元/人□2600元/人□学会会员2000元/人□2200元/人□学生1800元/人□2000元/人□付款方式:转账□现场□发票报销发票张数:类别:□会议费□培训费□注册费单位盖章年月日发票抬头:单位税号:培训班指定汇款账号联系人:尹老师账户名称:中国微米纳米技术学会电话:010-62772018账号:11001079900053008597手机:13717838339(同微信)开户行:中国建设银行北京清华园支行邮箱:yhh@csmnt.org.cn
  • AFSEM原位微区表征系统 助力新型纳米探针构筑及纳米热学成像研究
    获取材料甚至是器件整体的热学特性,是相关研究与开发当中非常有意义的课题。随着研究对象特征尺寸的不断减小,研究者们对具有高热学分辨率和高水平方向分辨率的表面温度表征方法以及与之相应的仪器的需求也日益显著。在诸多潜在的表征技术当中,扫描热学显微镜(Scanning Thermal Microscopy)是其中颇为有力的一种,它可以满足特征线度小于100 nm的研究需求。然而,这种表征方法,对纳米探针的结构及功能特性有比较高的要求,目前商用的几种纳米探针受限于各自的结构特点,均有一定的局限性而难以满足相应要求,也就限制了相应表征方法的发展与应用。着眼于上述问题,奥地利格拉茨技术大学的H. Plank团队提出了基于纳米热敏电阻的三维纳米探针,用于实现样品表面温度信息的超高分辨表征。相关成果于2019年六月发表在美国化学协会的期刊ACS Applied Materials & Interfaces上(ACS Appl. Mater. Interfaces, 2019, 11, 2522655-22667. Three-Dimensional Nanothermistors for Thermal Probing.)。 图1 三维热学纳米针的概念、结构、研究思路示意图 H. Plank等人提出的这种三维纳米探针的核心结构是一种多腿(multilegged)纳米桥(nanobridge)结构,它是利用聚焦离子束技术直接进行3D纳米打印而获得的,因而可以直接制作在(已经附有许多复杂微纳结构与微纳电路、电的)自感应悬臂梁上(self-sensing cantilever, SCL)。由于纳米桥的每一个分支的线度均小于100 nm,因而需要相应的表征策略与技术来系统分析其纳米力学、热学特性。为此,H. Plank研究团队次采用了有限元模拟与SEM辅助原位AFM(scanning electron microscopy-assisted in situ atomic force microscopy)测试相结合的策略来开展相应的研究工作,并由此推导出具有良好机械稳定性的三维纳米桥(垂直刚度达到50 N/m?1)的设计规则。此后,H. Plank引入了一种材料调控方法,可以有效提高悬臂梁微针的机械耐磨性,从而实现高扫描速度下的高质量AFM成像。后,H. Plank等人论证了这种新式三维纳米探针的电响应与温度之间的依赖关系呈现为负温度系数(?(0.75 ± 0.2) 10?3 K?1)关系,其探测率为30 ± 1 ms K?1,噪声水平在±0.5 K,从而证明了作者团队所提出概念和技术的应用潜力。 图2 三维热学纳米针的制备及基本电学特性 文中在进行三维纳米探针的力学特性及热学响应方面所进行的AFM实验中,采用了原位AFM技术,堪称一大亮点。研究所用的设备为奥地利GETec Microscopy公司生产的AFSEMTM系统,AFSEMTM系统基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM测试。此外,通过选择悬臂梁的不同功能型针,还可以在SEM或FIB系统的腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。着眼于本文作者的研究需求来讲,比如探针纳米桥的分支在受力状态下的力学特性分析,只有利用原位的AFM表征技术,才可以同时获取定量化的力学信息以及形貌改变信息。当然,在真空环境下使用原位AFM系统表征微区的力、热、电、磁信息的意义远不止于操作方便或同时获取多种信息而已。以本文作者团队所关注的微区表面热学分析为例,当处于真空环境下时,由于没有减小热学信息成像分辨率的、基于对流的热量转移,因而可以充分发挥热学微纳针的潜能,探测到具有高水平分辨率的热学信息。 图3 利用AFSEM在SEM中原位观测nanobridge的力学特性 图4 将制备所得的新型纳米热学探针安装在AFSEM上,并在SEM中进行原位的形貌测量:a)SEM图像;b)AFM轮廓图像
  • 990万!南京大学微纳米X射线三维成像系统采购项目
    一、项目基本情况项目编号:ZH2024020078(2440SUMEC/GXGG1056)项目名称:微纳米X射线三维成像系统预算金额:990.000000 万元(人民币)最高限价(如有):990.000000 万元(人民币)采购需求:序号名称数量1微纳米X射线三维成像系统1具体详见招标文件第四章招标技术规格及要求合同履行期限:合同签订后2个月本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年05月07日 至 2024年05月11日,每天上午9:00至11:30,下午14:00至17:30。(北京时间,法定节假日除外)地点:江苏苏美达仪器设备有限公司,南京市长江路198号14楼方式:详见其它补充事宜售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南京大学     地址:南京市栖霞区仙林大道163号        联系方式:王老师 025-89688969      2.采购代理机构信息名 称:江苏苏美达仪器设备有限公司            地 址:南京市长江路198号            联系方式:文件发售:李婧怡025-84532580,技术咨询:王嘉卉 025-84532585、黄丹025-84531274            3.项目联系方式项目联系人:黄丹电 话:  025-84531274
  • “纳米尺度多场测量调控”专项启动 剑指微纳精密仪器
    2016年12月11日,国家重点研发计划“纳米科技”重点专项项目“纳米尺度多场物性与输运性质测量及调控”启动实施工作会议在深圳召开。南京大学祝世宁院士、中国科学技术大学杜江峰院士、上海纳米技术及应用国家工程研究中心何丹农教授等10余位项目咨询专家、科技部高技术研究发展中心代表、以及项目和课题承担单位的负责人和研究骨干参加了会议。  该项目由中国科学院先进技术研究院联合华南师范大学、南京大学和清华大学共同承担。项目旨在揭示光电、热电、磁电材料和器件的微观结构、局域响应和宏观性能的关联,分析铁电极化对光电转换的调控作用,界面和缺陷对热电输运的影响,以及微纳结构和磁电耦合的相互作用,发展基于多功能扫描探针的纳米测量与调控技术,在纳米尺度综合定量测量调控材料电学、光学、磁学、力学和热学多场物理及输运性质,并以此解决先进功能材料与器件的一系列关键科学问题,进而形成一系列原创、具有自主知识产权的新思想(如宏观微观协同调控测试)、新技术(如多功能扫描探针激励和多场原子力显微样品加载)、新方法(如跨尺度实验测试、数据采集、和计算模拟)和新发现(如光电、热电、磁电多场物性和耦合新机制),推动纳米技术、高速低能耗信息处理与存储、微电子器件、高效清洁能源以及精密仪器等产业和领域的发展。  科技部高技术研究发展中心代表对项目的执行和管理提出要求,强调了纳米科技重点专项项目“重立项、重过程、重验收”的基本原则,要求项目承担单位和研究人员增强责任感和使命感,强化项目组织实施,加强课题间的交流,立足学科领域发展前沿,力争在重大科学问题与关键技术问题上取得原创性突破。  项目负责人李江宇教授介绍了项目的整体情况,各课题负责人就课题的具体研究目标、实施方案、研究难点以及如何突破、下一步工作计划等进行了详细介绍。项目咨询专家就项目的研究目标、研究内容和技术方案等给予指导,对项目的执行和管理提出了指导性意见和建议,希望通过研发具有自主知识产权的多功能扫描探针的纳米测量与调控技术,为先进功能材料与器件方面的研究提供强有力的工具。
  • 客户成就 |Nanoscribe微纳加工技术助力纳米粒药物递送研发
    在长期对药物递送的研究中,学者发现纳米颗粒已成为克服常规药物制剂及其相关药代动力学限制的合适载体。随着微流控设备的创新混合和过滤技术发展,针对药物研究新领域的探索正在得到不断拓展。特别是脂质纳米粒携带药物的新发现吸引了研究人员的浓厚兴趣。脂质体已被证明在溶解治疗药物方面具有优势,可以控制药物长期缓释,大大延长了药物的循环寿命。微流体的性能对于在极小尺寸下精确制备脂质纳米粒作为药物载体具有巨大优势。在这一领域,德国布伦瑞克工业大学(TU)的一个科研团队利用Nanoscribe的高精度3D微纳加工技术发明了一种特制的微流控芯片。该芯片包含一个创新的混合器,用于生产单分散载药纳米颗粒,并进行精确的粒径控制。这将有助于推动新的药物递送概念发展。图示同轴层压混合器可以完全消除与带通道壁有机相的接触,同时有效地混合有机相和水相。这种独特的混合器包括同轴注射喷嘴、一系列拉伸和折叠元件以及入口过滤器是无法通过传统的2.5D微纳加工实现的,但是3D双光子聚合技术则可以完美实现加工制造。图片来自于Peer Erfle, TU Braunschweig生产有效且成本效益高的定制药物在制药行业广受关注。难溶性药物的特性限制其口服和非肠道给药,为解决难溶性问题,含有难溶性药物的脂质纳米粒将成为有效候选药物,因为它们提供更快的溶解速度。然而,生产这些脂质纳米粒则非常具有挑战性。整个流程包括多个步骤,例如纳米颗粒的制备和药物载体与纳米颗粒的结合。在纳米颗粒的生产过程中,重要的是管理窄粒径分布,以达到70 nm至200 nm的要求范围。为此,与批量混合技术相比,微流控系统提供了一种更为优化的解决方案。微流体能够精确控制和调节极少量液体的混合,且在微流体中的混合可同时实现纳米颗粒的制备。而这需要使用更有效、更复杂的混合元件来调节纳米颗粒的性质并优化混合机制。如今科学家们利用Nanoscribe公司双光子聚合(2PP)技术制作自由曲面三维微流控元件,并将其集成到复杂的微流控芯片中。这种多功能3D微加工的使用旨在实现缩小粒度分布。复杂微流控芯片3D微纳加工制作布伦瑞克大学(TU Braunschweig)的科学家们通过对微流控领域的研究发明了一种开创性的解决方案,以制备单分散的药物载体纳米粒。他们利用Nanoscribe公司的双光子聚合3D打印技术制作出完整的微流控芯片。该芯片采用独特的微纳混合器件,用于同轴层压和稳定的纳米颗粒生成。整个厘米级微流控芯片由一个连接到横向通道的主通道、一个用于同轴注射喷嘴、一系列3D混合原件和用于减少污染的入口过滤器组成。这种复杂的芯片设计因其小型化特性和极高的表面质量脱颖而出(如内径达到200µm的主通道,孔径达到15µm的入口过滤器)。可以混合有机相和水相的拉伸和折叠微纳元件具有复杂的3D结构。在以往,由于底部内切结构和开放圆柱区域难以成型,传统的2.5D微纳加工和使用微纳注塑成型的大规模生产是无法制造这种微流控系统的。由Nanoscribe公司打印系统制作的3D微纳加工微流控系统可实现用于生产特定尺寸的纳米颗粒,并具有高度复制性特点。用三个单独制作的微纳系统对相同的设计做了测试,结果显示出纳米颗粒大小在几纳米范围内的分散性变化非常小。该结果证实了基于Nanoscribe 2PP技术的3D打印能够生产出具有窄粒径分布的高重复性纳米颗粒。这些发现对未来实现纳米颗粒的平行生产制造具有重要意义。位于喷嘴下游的一个拉伸和折叠混合元件的SEM图像。图片来自于Peer Erfle, TU Braunschweig科研团队:Technical University Braunschweig – Institute of Microtechnology Technical University Braunschweig – Department of Pharmaceutics Technical University Braunschweig - PVZ - Center of Pharmaceutical Engineering Nanoscribe Photonic Professional GT2使用双光子聚合(2PP)来产生几乎任何3D形状:晶格、木堆型结构、自由设计的图案、顺滑的轮廓、锐利的边缘、表面的和内置倒扣以及桥接结构。Photonic Professional GT2 结合了设计的灵活性和操控的简洁性,以及广泛的材料-基板选择。因此,它是一个理想的科学仪器和工业快速成型设备,适用于多用户共享平台和研究实验室。Nanoscribe的3D无掩模光刻机目前已经分布在30多个国家的前沿研究中,超过1,000个开创性科学研究项目是这项技术强大的设计和制造能力的证明。更多有关3D双光子无掩模光刻技术和产品咨询欢迎联系Nanoscribe上海分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D无掩模光刻系统: Photonic Professional GT2 双光子微纳3D无掩模光刻系统 Quantum X 双光子灰度光刻微纳打印设备
  • 上海微系统所等研制出微纳光纤耦合超导纳米线单光子探测器
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylestyle type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  超导纳米线单光子探测器(SNSPD:Superconducting nanowire single-photon detector)作为一种高性能的单光子探测器,已广泛应用于量子信息、激光雷达、深空通信等领域,有力推动了相关领域的科技发展。/pp  SNSPD器件主要有两种光耦合方式,一种是垂直光耦合方式,光纤端面平行于SNSPD光敏面,光子垂直入射到纳米线上,采用光学腔体或反射镜结构实现高效光耦合。利用该类耦合结构,中国科学院上海微系统与信息技术研究所已实现NbN基SNSPD系统探测效率超过90%,相关结果发表后受到国内外广泛关注。该光耦合结构的特点是,可以实现高光耦合效率,但受限于光耦合结构,工作波长范围受限。另一种光耦合方式是波导光耦合方式,将纳米线制备在光波导上,可实现高效的本征吸收。但光纤到波导的耦合效率较低,使这类器件仅能作为片上光子学的解决方案,无法作为独立单光子探测器使用。/pp  上海微系统所/中国科学院超导电子学卓越创新中心尤立星研究员团队和浙江大学教授方伟、童利民团队合作,首次提出微纳光纤耦合的SNSPD器件结构。该结构将SNSPD器件置于微纳光纤的倏逝场内,实现纳米线对微纳光纤中传输的光子吸收。光学计算显示,该类结构有望实现高吸收效率的同时,保持很好地宽谱特性。经过上海微系统所巫博士君杰和浙江大学博士徐颖鑫等近3年实验探索,科研团队研制出微纳光纤耦合SNSPD器件。在1550nm/1064nm工作波长,系统探测效率分别达到20%/50%。相关成果近日发表在emOptics Express/em上,该结果有望在新型SNSPD器件及微纳光纤领域开辟新的研究方向。/pp  研究工作得到了国家重点研发计划项目“高性能单光子探测技术”、中科院战略性先导科技专项(B)“超导电子器件应用基础研究”、自然科学基金以及上海市科委等的资助。/ppbr//pp style="text-align:center "img alt="" oldsrc="W020171213665024470514.jpg" src="http://img1.17img.cn/17img/images/201712/uepic/bc478657-1ca0-4a06-a7b0-fc3659b0aeca.jpg"//pp style="text-align: center "微纳光纤耦合超导纳米线单光子探测器原理示意图/p
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 国家纳米中心等在微纳制造方法研究种获进展
    微纳加工是纳米研究的两大基础之一,备受重视。然而,随着各种新型器件和结构的出现,常规的微纳加工方法已无法完全满足需要,激发了人们探索更高性价比、更强加工能力的非常规加工方法。中国科学院国家纳米科学中心刘前团队基于自主开发的新概念激光直写设备,开发出多种非常规加工方法。近日,该团队在物理不可复制功能(PUF)防伪标签研究中取得新进展。相关研究成果以Random fractal-enabled physical unclonable functions with dynamic AI authentication为题,在线发表在《自然-通讯》(Nature Communications)上。   当前,传统防伪标签因其确定性的构筑模式在自身安全性上面临挑战。PUF标识本征的唯一性和不可预测性可作为商品的“指纹”秘钥,从根本上遏制标签自身被伪造的可能。为此,科学家利用金属薄膜去湿原理产生的随机分形金网络结构作为PUF,开发出一种由随机分形网络标识符和深度学习识别验证模型组成的新型PUF防伪系统,并展示该PUF的多层级防克隆能力。   借助高通量的图案化光刻(镂空模板)、薄膜沉积及一步热退火技术,可实现晶圆级PUF单元制作,体现了批量化、低成本(单个标签成本不到1美分)的生产特点。为了应用到实际防伪场景,研究人员开发了一种基于深度学习算法的图像PUF识别验证系统,借助ResNet50分类神经网络模型对37000个PUF标识符(10348)实现了可溯源、快速(6.36 s)、高精度(0%假阳性)验证,并提出了动态数据库策略,赋予深度学习模型极高的数据库扩容能力,理论上打破了庞大数据库的建立与低时间成本之间难以兼容的障碍。此外,这种PUF制作与微电子工艺流程高度兼容,有望与元器件同时集成并完成元件单元的真实性验证。PUF系统可初步满足工业化需求,有望推动商业化的PUF防伪技术的发展与普及。相关技术已申请国家发明专利并已获授权。   研究工作得到国家自然科学基金,国家重点研发计划“纳米科技”专项等的支持。该工作由国家纳米中心、北京航空航天大学和德国卡尔斯鲁厄理工学院合作完成。图1. PUF的制作流程及表图2. 深度学习识别验证系统的建立与性能展示
  • 华为哈勃再出手!投资纳米压印光刻领头羊天仁微纳
    近日,华为旗下深圳哈勃科技投资合伙企业(有限合伙)新增一家对外投资企业青岛天仁微纳科技有限责任公司(以下简称“天仁微纳”),持股比例约为5%。天仁微纳成立于2015年,专注于纳米加工领域,尤其是纳米压印技术。其官方显示,公司是世界领先的微纳加工设备和解决方案提供商,核心竞争力是为客户提供纳米压印整体解决方案。产品与服务涵盖纳米压印相关的设备、模具、材料、工艺以及生产咨询服务。公司致力于拓展纳米压印技术在创新产品领域的应用,例如发光二极管、微纳机电系统、虚拟现实和增强现实光波导、3D传感、生物芯片、显示以及太阳能等。公开资料显示,天仁微纳创始人冀然博士,从事纳米压印技术研发与推广20年。冀然博士2000年赴德留学,师从欧洲纳米压印之父Kurz教授研究纳米压印设备与材料,先后获得德国亚琛工业大学硕士学位与马普所博士学位。博士毕业后加入德国半导体设备上市公司负责纳米压印设备开发与市场推广。2015年,看到纳米压印在微纳光学晶圆级加工领域的市场前景,冀然博士辞去德国上市公司纳米压印首席科学家职位归国创业,成立天仁微纳,专注于纳米压印设备与全套解决方案的研发与产业化。
  • 纳米压印设备商光舵微纳完成近亿元B+轮融资
    据致道资本官微消息,近日,致道资本已投项目——苏州光舵微纳科技股份有限公司(简称:光舵微纳)完成由国投创合投资的近亿元B+轮股权融资。 作为国内领先的纳米压印技术完整方案提供商,光舵微纳经过多年的研发及市场应用推广,制造出了多款研发型纳米压印设备及全自动量产型纳米压印设备,实现了设备、耗材及工艺的全方位突破。纳米压印技术是微纳加工领域的一项关键底层技术,在国际半导体蓝图(ITRS)中,该技术被列为下一代半导体加工技术的重要代表之一。光舵微纳在LED图形化衬底产业(LED-PSS)处于绝对的技术及市场领先地位,纳米压印设备及耗材已在客户端实现超过4000万片LED-PSS的大规模稳定量产,在此应用场景上实现了对尼康光刻机的产业化替代,并处于快速扩张阶段。同时,积极拓展纳米压印技术在高端半导体、AR衍射光波导、生物检测器件、消费电子等诸多重大领域的产业化应用,并取得了重要进展。此次融资完成后,光舵微纳将继续提升其核心研发团队的技术实力,积极研发应用于多个重要场景的高端纳米压印设备并进行广泛的市场开拓,进行产线扩充,推进纳米压印技术在更多应用领域的导入,打造从产品、系统到整体解决方案的商业模式,助力我国半导体制造产业的高速发展。
  • iCEM 2016特邀报告:聚焦离子束(FIB)技术在微纳米材料研究中的应用
    p style="TEXT-ALIGN: center"strong第二届电镜网络会议(iCEM 2016)特邀报告/strong/pp style="TEXT-ALIGN: center"strong聚焦离子束(FIB)技术在微纳米材料研究中的应用/strong/pp style="TEXT-ALIGN: center"img title="彭开武.jpg" style="HEIGHT: 278px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201610/insimg/01ec28bb-5e1a-48ea-973c-2268ccee47cb.jpg" width="200" height="278"/ /pp style="TEXT-ALIGN: center"strong彭开武 高级工程师/strong/pp style="TEXT-ALIGN: center"strong国家纳米科学中心纳米检测技术室/strong/ppstrong报告摘要:/strong/pp  聚焦离子束技术原理和功能,并围绕其在微纳米材料表征方面,介绍几个具体应用,包括:透射电镜样品制备、纳米材料的三维表征等,重点讨论用于微纳米材料电学性能测试的电极制作方法。/ppstrong报告人简介:/strong/pp  彭开武,高级工程师。1999年开始在中国科学院电工研究所微纳加工研究室从事基于电镜(含扫描电镜与透射电镜)的电子束曝光机的研制工作。2003年以访问学者身份在英国卢瑟福实验室中央微结构中心从事微纳米器件工艺研究。2007年起至今在国家纳米科学中心纳米检测技术室从事聚焦离子束加工方面的工作。/ppstrong报告时间:/strong2016年10月25日上午/ppa title="" href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_self"span style="TEXT-DECORATION: underline COLOR: rgb(255,0,0)"img src="http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width="600" height="152"//span/aspan style="TEXT-DECORATION: underline COLOR: rgb(255,0,0)"/span/p
  • 纳米压印光刻领头羊天仁微纳获数千万元战略投资,加速布局微纳光学市场
    据麦姆斯咨询报道,近日,青岛天仁微纳科技有限责任公司(以下简称“天仁微纳“)宣布完成由中芯聚源独家战略投资的数千万元A轮融资。本轮融资将用于加快公司用于微纳光学等领域纳米压印设备和解决方案的研发和布局,完善售后服务,进一步扩大市场领先优势。从2015年成立至今,天仁微纳已经成为国际领先的纳米压印设备与解决方案供应商,应用包括3D传感(DOE、Diffuser等)、增强现实与虚拟现实(AR/VR)、生物芯片、集成电路、平板显示、太阳能电池、LED等领域。依靠着全球领先的创新技术和设备性能,完善的售后服务,快速的产品迭代,凭借2018年以来微纳光学晶圆级加工生产的市场契机,天仁微纳厚积薄发,打败诸多国际竞争对手,迅速占领了国内超过90%的市场份额,成为该领域市场的领头羊。晶圆级光学加工(WLO)2017年苹果公司发布的结构光人脸识别技术第一次将微纳光学元器件引入了消费类电子领域,晶圆级光学器件加工的概念也逐渐映入人们的眼帘。随着纳米压印光刻技术被应用在结构光人脸识别的DOE元件生产,业界逐渐认识到,与传统光学透镜加工不同的是,基于纳米压印光刻技术的晶圆级光学加工(WLO工艺)更加适合移动端消费电子设备。特别是在3D视觉发射端结构复杂的情况下,光学器件采用WLO工艺,可以有效缩减体积空间,同时器件的一致性好,光束质量高,采用半导体工艺在大规模量产之后具有成本优势。2019年高端智能手机3D传感iToF(间接飞行时间)模组中的匀光片(diffuser)再次引入了纳米压印作为量产手段,2020年AR衍射光波导光栅加工将纳米压印技术的应用推向面积更大的12英寸,纳米压印终于完成了从科研到大规模量产的华丽转身。纳米压印结果厚积薄发,从跟随到超越晶圆级光学加工量产对纳米压印设备精度、稳定性与一致性要求极高,过去一直被德国、奥地利两家光刻设备公司的进口设备所垄断。天仁微纳创始人冀然博士,从事纳米压印技术研发与推广20年。冀然博士2000年赴德留学,师从欧洲纳米压印之父Kurz教授研究纳米压印设备与材料,先后获得德国亚琛工业大学硕士学位与马普所博士学位。博士毕业后加入德国半导体设备上市公司负责纳米压印设备开发与市场推广。2015年,看到纳米压印在微纳光学晶圆级加工领域的市场前景,冀然博士辞去德国上市公司纳米压印首席科学家职位归国创业,成立天仁微纳,专注于纳米压印设备与全套解决方案的研发与产业化。纳米压印应用领域经过几年的研发与积累,实现了面向微纳光学晶圆级加工的完整设备与工艺材料的解决方案。2019年,在中国高科技企业受到国外技术封锁与制裁的背景下,国产高端智能手机着眼于使用国产设备加工3D传感所需的衍射光学器件。作为国内该领域唯一一家能与欧洲设备公司"掰手腕"的天仁微纳,凭借领先的技术、完善的售后服务和快速的市场应对能力抓住了这个机会,设备打入衍射光学器件量产生产线,经过不断的打磨与迭代,占领了大部分市场份额,打败国际竞争对手,实现了国产替代。2020年初,AR衍射光栅波导市场迅速展开,天仁微纳凭借多年研发,积累了完整的AR衍射光波导生产解决方案,包括步进式压印制造12英寸大面积衍射光栅模具、高精度工作模具复制与大面积高保型性光栅压印的全套设备与工艺解决方案,通过给客户提供AR衍射光栅波导生产“设备+工艺”的一站式解决方案的模式,一举垄断了国内市场,从技术到市场全面超越进口设备。不改初心,剑指纳米压印全球第一对于公司未来的发展,冀然博士充满信心:“无论从技术领先性,还是产业化市场份额,我们在国内微纳光学市场已经具有绝对领先优势,对比国际竞争对手,我们有两大竞争优势:一是贴近市场,二是响应速度快。市场需求是驱动技术创新和发展的源头,而未来纳米压印生产最大的市场一定在中国。我们立足于中国市场,贴近客户需求,以最低的沟通成本得到市场反馈。纳米压印是一个不断发展中的、动态变换的技术和市场,基于对市场需求的理解,我们要发挥我们的快速技术迭代能力,不断推出适应客户需求的设备和工艺,来推动市场的发展。这些优势都是国外竞争对手所不具备的,我们要将这些优势发挥到极致,转换为胜势,在快速发展的同时,发挥精雕细琢的工匠精神,相信我们一定能在纳米压印这个细分领域做到全球第一!“天仁微纳将继续致力于纳米压印光刻在晶圆级光学加工领域的拓展,加快设备与工艺的研发迭代,扩大领先优势,同时还将拓展纳米压印在半导体集成电路、平板显示、生物芯片等其它领域的产业化应用,为客户提供更多、更完善的研发和生产解决方案。中芯聚源创始合伙人暨总裁孙玉望表示:“纳米压印是微纳光学器件量产的理想方式,随着3D传感、AR等应用的持续发展,纳米压印将迎来快速发展的黄金期。中芯聚源看好天仁微纳团队在纳米压印行业的多年积累,天仁微纳已推出多款适用于不同场景的纳米压印设备,形成纳米压印设备和材料的一体化平台,将助力国产纳米压印设备打破进口垄断。”冀然博士表示:”深耕纳米压印这个技术20年了,无论市场对这个技术是冷是热,一直坚持下来,就是因为坚信这个技术会有很好的应用前景。守住这份初心,不贪大而全,先做好小而美,做隐形行业冠军,认真打磨产品,真诚服务每一个客户,在一个技术领域深挖到极致,为中国的微纳加工设备产业发展踏踏实实地做出我们的贡献,未来天仁微纳才能成长为有国际竞争力的公司。”关于天仁微纳青岛天仁微纳科技有限责任公司成立于2015年,是世界领先的纳米压印设备和解决方案提供商,产品与服务涵盖纳米压印相关的设备、模具、材料、工艺以及生产咨询服务。天仁微纳致力于拓展纳米压印技术在创新产品领域的应用,例如3D传感(DOE、Diffuser等)、AR/VR、生物芯片、集成电路、显示、太阳能电池、LED等。天仁微纳的使命是成为世界领先的创新公司,并利用卓越的创新力为客户解决高附加值生产难题,帮助客户实现创新技术到产品的转化。
  • Nanoscribe出席微纳米技术与医疗健康创新大会(2021)
    科学技术的飞速发展为人类对美好生活的梦想插上了一对可实现的翅膀,公共卫生、智慧生活、健康医疗,不但是科学技术的基础研究热点,更是大众的需求。作为交叉学科的微纳米技术在生物医学领域得到了越来越广泛的应用。微纳米技术与医疗健康的结合可以解决生物、医学、公共卫生等无法解决的问题,具有很广泛的应用前景和意义。5月29-31日,微纳米技术与医疗健康创新大会(2021)暨中国微米纳米技术学会第五届微米纳米技术应用创新大会将在上海嘉定喜来登酒店召开,以“推动微纳米技术与医疗健康的融合发展”为主题。Nanoscribe中国子公司纳糯三维科技(上海)有限公司将出席参加该会议。在会议展区B13展位为您介绍基于双光子聚合技术的高精度3D微纳加工技术在微纳机器人,微流控等领域的最新应用成果,并于5月30日17:25分在分会场一(主题:微纳米机器人在医学上的应用)带来主题为《双光子无掩模光刻技术在微纳医学中的应用》的现场报告,欢迎现场莅临交流。Nanoscribe双光子聚合技术3D微纳加工系统成功项目案例:匹兹堡大学的科学家们使用Nanoscribe的3D打印设备制作了微针阵列,成功研发了新型皮肤微针疫苗接种装置。不来梅大学IMSAS研究所使用Nanoscribe公司的3D打印系统,将自由形式3D微流控混合元件集成到预制的晶圆级二维微流道中,处理高达100微升/分钟的高流速液体。斯图加特大学和阿德莱德大学联手澳大利亚医学研究中心通过使用德国Nanoscribe公司的双光子微纳3D打印设备研发了内置微光学器件宽度仅有125微米的3D打印微型内窥镜。了解更多相关应用,欢迎联系Nanoscribe中国子公司纳糯三维科技(上海)有限公司
  • 捷克 CactuX—致力于提升您微纳 CT 系统的成像质量和测试效率
    引言计算机断层扫描 (CT) 在医学领域已经普遍用于评估传统计算机轴向断层 (CAT) 扫描中的人体解剖结构。它也是评估骨小梁结构以诊断骨质疏松症等疾病的非常常用的工具。最近,高分辨率 CT (micro-CT) 在材料科学中越来越多地用于评估工业应用中各种先进材料的内部结构。了解这些材料的微结构对于更好地了解它们的性能非常重要。Micro-CT 是一种无损 3D 表征工具,它使用 X 射线通过对被扫描物体内不同密度的成像来确定物体的内部结构。基于实验室的高分辨率 micro-CT 或 nano-CT 可提供 ~50 nm 量级的图像分辨率。如此高的分辨率允许人们可视化精细特征的内部 3D 结构。来自 micro-CT 的数据可以对正在研究的对象进行虚拟渲染,这允许人们以任何方向和角度穿过物体,从而揭示对象内复杂的隐藏结构。为了获得更高的的分辨率,科研工作者做了许多的尝试,包括减小 X 射线源的焦斑,提高 X 射线探测的分辨率,开发更优的重建算法,同时纠正各种伪像等。目前实现X射线显微(微米/微米)的技术路线主要有:1. 投影几何放大技术2. 基于菲涅尔波带片的扫描透视显微技术或全场透视显微技术等全场透视显微光路扫描透视显微技术更高的测试精度在微纳 CT 的制造和使用中,对 CT 系统分辨率的测试,体素的校正及不可避免的转台摆动的校正,是获得高质量,高精度 CT 数据的必要步骤。CactuX 捷克 CactuX 公司成立于 2020 年 3 月,由 CEITEC布尔诺理工大学 X 射线微纳米 CT 实验室的研究人员组成,得益于在计算机断层扫描领域丰富的研发经验,CactuX 为广大工业和实验室 X 射线计算机断层扫描(CT)系统研发和生产 CT 附件,并提供 CT 咨询服务。CactuX 公司用极小的红宝石球制造的模体工具,可用于微纳 CT 系统的转台几何错位校正、分辨率测试表征、体素校正等以及提高 CT 数据质量。其中 Spirit 系列是用于微纳 CT 计量表征和校准的模体和 Shadow 系列是经过认证的 CT 模体,即使视野 (FOV) 低于 1 毫米,也可以进行体素尺寸校准。Spirit系列— 纳米CT体素校准模体 Voxel-Spirit Voxel-Spirit 是一种独特的,经过认证的CT模体,专为nanoCT应用而开发,甚至可以对1毫米以下的视场(FOV)进行体素大小校准。▪ 0.06 μm 校准精度▪ 缩短校准时间▪ 1 μm 体素CT应用▪ 简单快速易用主要参数视场要求0.6 mm x 0.7 mm球规格直径: 0.3 mm距离0.45 mm (认证精度: 0.06 μm)模体支架规格可选直径: 1.5 mm, 3.0 mm, 5.0 mm长度50 mm使用材料红宝石,碳,不锈钢校准流程任何用于CT数据的图像处理软件— 微纳CT分辨率测试模体 Spirit resolution Resolution-spirit 通用模体组适用于纳米CT和微米CT的空间分辨精密评估。▪ 4 种尺寸可选▪ 快捷、易用▪ 1 μm to 10 μm 体素尺寸CT应用▪ 遵从 ASTM E1695-95 标准主要参数模体IIIIIIIV球直径 * [mm]0.51.02.55.0最大市场宽度 [mm]1.02.05.010.0支架尺寸 [mm]1.51.53.05.0支架长度[mm]50.050.050.050.0使用材料红宝石,碳校准流程任何用于CT数据的图像处理软件— 微纳CT转台摆动校正样品架 R1-Shadow带有用于 nanoCT 和 microCT 测量的基准标记的样品架,可以快速直观地校正旋转台的不准确性和 CT 数据配准,适用于双能量 CT 或 4D CT 等应用。R1-Shadow 是一种多用途解决方案,适合可变视场 (FOV) 限制和高精度要求。▪ 4 种尺寸可选▪ 快速,简单,易用▪ 数据匹配精度小于1个像素▪ 数据质量和精度增强主要参数尺寸可选项IIIIIIIV基准尺寸 [μm]252550100最大像素尺寸[μm]*2.52.55.010.0支架尺寸r [mm]1.53.05.010.0支架长度 [mm]50.550.550.550.5使用材料碳, 聚酰亚胺胶带, 不锈钢包装可选项3 片, 5 片, 10 片平移台误差校正和配准流程imageJ plugin/ 任何CT数据采集软件更高的测试效率除了高精度以外,测试效率对于 X 射线显微无损检测也显得格外重要。因此 CactuX 专为微米 CT 的样品定位设计了 XY 电动平移台 SaguaroX,可快速固定样品,使得样品与 X 射线管的中心对准极其容易。SaguaroX 可以从 CT 机柜外部进行无线控制。SaguaroX S无线控制允许360°旋转最大载重7Kg8h连续稳定工作快速简单的样品固定SaguaroX M无线控制允许360°旋转最大载重15Kg16h连续稳定工作快速简单的样品固定SaguaroX M Heavy无线控制允许360°旋转最大载重30Kg16h连续稳定工作快速简单的样品固定主要参数SaguaroX SSaguaroX MSaguaroX M Heavyx,y 轴行程50 mm × 50 mm100 mm × 100 mm100 mm × 100 mm样品区域135mm × 135 mm220 mm × 220 mm220 mm × 220 mm最大载重7 kg15 kg30 kg重量4.5 kg9 kg11.5 kg尺寸140 mm × 140 mm × 58 mm(不含适配器)229 mm × 229 mm × 82 mm(不含适配器)229 mm × 229 mm × 82 mm(不含适配器)电池Li电池 (14.6 V/3.4 Ah)Li电池 (14.6 V/5.54 Ah)Li电池 (14.6 V/5.54 Ah)运行时间约8 h 连续运行(取决于电池状态)约16 h 连续运行(取决于电池状态)约16 h 连续运行(取决于电池状态)运行速度9 mm /s (快速移动)10 mm /s (快速移动)10 mm /s (快速移动)供电参数24V/2.5A with barrel connector (DC Jack) 5.5 x 2.1 mm输入功率50WIP代码IP20RF功率 4 mW北京众星联恒科技有限公司作为捷克 CactuX 公司中国区授权代理商,全面负责 CactuX 所有产品在中国市场的产品售前咨询,销售以及售后业务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。
  • 同济大学微纳米声成像实验室的最新研究成果一览 含多套仪器设备
    p  同济大学微纳米声成像实验室隶属于同济大学声学研究所和上海市特殊人工微结构材料与技术重点实验室,团队在中国工程院院士李同保研究员、钱梦騄教授、上海千人王学鼎教授的支持下,基于光与声之间的相互作用,开展了微纳米尺度光/声成像和检测新机制,以及应用于科研、工业和临床的高精度声成像和测量仪器开发研究。受国家重大科学仪器设备开发专项、国家重点研发计划、国家863和国家自然科学基金等十多项国家级项目支持,研发成像系统近十种,发表论文近百篇,国家专利公开十多项。曾获国家技术发明二等奖。/pp  strong1、光纤超声传感系统/strong/pp  受国家重大科学仪器设备开发专项资助,新研发的基于窄线宽光纤激光器的光纤超声传感系统实现了0~14 MHz的宽带非线性超声波测量,由于其在超宽的频带范围内都具有优良的灵敏度,因此在接受水声宽谱信道、兰姆波非线性、声发射信号等稳态或者瞬态的宽带信号方面具有很强的优势,目前已用于水下空化非线性测量、金属板/各向异性多层复合材料板/碳纤维板等板材的非线性兰姆波测量、风力发电机叶片在线诊断、钢轨在线诊断、气/液流量监测等领域。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/8597a518-28d8-446a-9266-b403e4b41b19.jpg" title="1.png"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/4ab7788a-19f7-4f3b-879a-ddf8abc481c3.jpg" title="2.png"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/aee4f6a1-61e4-477c-ae17-58ea26faf527.jpg" title="3.png"//pp  strong2、声光衍射声场成像系统/strong/pp  受国家自然科学基金资助,研发成功基于声光衍射效应的声场成像系统,可对液体中的稳态/瞬态、三维分布式声场进行成像,声压测量范围为1 atm ~200 atm。可应用于声超材料/声子晶体的声场操控能力的检测、超高压声谐振腔的声场检测、复杂声场成像和3D重构 还可以通过对衍射条纹的检测实现声场的声压量化成像。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0ecb542d-5e14-44d8-8090-6c0afd4e7e4c.jpg" title="4.png"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/f61d0ddc-03c2-482e-b4e8-43d1edb1cc68.jpg" title="5.png"//pp  strong3、高敏超声/光声/光声谱三模态靶向分子成像系统研发与应用/strong/pp  受国家863项目和国家自然科学基金资助,新研发的基于光声效应和光声谱的高敏超声/光声/光声谱三模态靶向分子成像系统能够实时、准确的对生物组织和特征化学组分成像,可用于血管及血氧含量的成像、组织中蛋白/胶原等成分的成像、3D骨组织的成像和重建、肿瘤恶性程度的定征、肿瘤血管渗透压的检测等。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/08cbd191-9621-4143-8edf-cafca0f920a8.jpg" title="6.png"//pp  strong4、超高分辨率原子力声显微镜/strong/pp  受多个国家自然科学基金资助,近年来基于原子力显微镜研发出超高分辨率的原子力声显微镜,材料声学特性的空间检测分辨率达到3 nm,可用于细胞及亚细胞器的物性和功能无损检测、纳米材料力学特性检测、纳米材料压电特性检测等等,为纳米分辨率下研究材料的声学功能特性奠定了良好的基础。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0094eac0-5359-445d-8fe0-4491c8eb33b5.jpg" title="7.png"//pp style="text-align: right "strong本文作者:/strong同济大学物理科学与工程学院 声学研究所 程茜副教授/p
  • 济南微纳创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”完成验收
    2013年12月11日,山东省济南市科技局邀请有关专家组成验收组,对济南微纳颗粒仪器股份有限公司承担的科技型中小企业技术创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”进行了验收。验收期间,专家组听取了有关报告,审查了相关资料,对项目开发的Winner801光子相关纳米粒度仪进行了现场考察,经山东省计量科学研究院测试,该项目主要性能指标优于粒度分析国家标准要求,用户使用效果良好。最终经质询、评议,鉴定委员会认为该项目成果整体达到国际先进水平。此次项目验收评定,是对微纳仪器综合性能的肯定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。微纳销售热线0531-88873312
  • 中科院发明砷的微纳米电化学检测新方法
    近期,中科院合肥研究院智能所仿生功能材料与传感器件研究中心&ldquo 百人计划&rdquo 黄行九研究员和973首席科学家刘锦淮研究员领导的课题组研究人员在砷的微纳米电化学检测中取得新进展。  长期以来,地下水砷污染问题已成为世界性的环境问题,已被世界卫生组织称为&ldquo 人类史上最大的危害&rdquo 。实现地下水环境中砷的痕量、高准确性、高选择性检测,是正确评估环境污染的关键所在,可为环境管理和规划、污染防治提供科学依据。近几年来,该课题组研究人员一直致力于探索纳米材料应用于电分析行为实现环境中无机砷的可行性检测。通过对相关文献的调研、总结归纳,提出了自身对电分析技术检测无机砷的认识与理解。该研究成果也以综述形式发表在顶级分析化学杂志&mdash 《分析化学发展趋势》上。  近期,智能所科研人员从实际应用的角度出发,依托内蒙古托克托县兴旺庄村地下水为背景,通过简易方式构建了金丝微纳米结构电化学电极,从多方面系统研究了其应用于地下水砷的电化学检测问题,并讨论地下水无机离子及有机质分子对砷检测的影响规律,实现了复杂地下水环境中砷的高效准确灵敏检测,可针对大量监测点砷污染情况进行实时分析。同时也提供了一种可实现高效稳定在线检测砷的方法。研究论文发表在环境类知名期刊《危险材料杂志》上。  以上研究工作得到了国家重大科学研究计划项目、中科院&ldquo 引进海外杰出人才&rdquo 百人计划项目以及合肥物质科学技术中心方向项目等的支持。金丝微纳结构电极实现复杂环境中As(III)的电化学检测
  • 布鲁克推出原位纳米力学测试仪PI 89,用于分析电镜下材料变形
    p style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/202010/uepic/292673aa-e45e-4b57-a7c3-93a83223508b.jpg" title="1.jpg.png" alt="1.jpg.png" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em " Hysitron PI 89 SEM PicoIndenter:提供卓越的范围和灵活性/span/pp style="text-indent: 2em "strong仪器信息网讯 /strong美国时间2020年10月14日,布鲁克纳米机械测试业务(Bruker Nanomechanical Testing business)宣布发布Hysitron PI 89 SEM PicoIndenter™ ,可在扫描电子显微镜(SEM)内提供比以往更大的负载和更极端环境提供纳米机械测试功能。将有助于研究人员进一步理解高强度材料的变形机理。新产品系统结合了布鲁克的高性能控制器、专有的电容式传感器和固有位移技术,以实现卓越的力和位移范围。/pp style="text-indent: 2em "PI 89 SEM PicoIndenter是第一台具有两种旋转和倾斜台配置的原位仪器。这使得样品可以灵活地朝向电子柱进行自顶向下的成像、向FIB柱倾斜进行铣削、主轴旋转进行晶体对准,并与多种检测器兼容以实现复杂材料的结构-性能相关性。/pp style="text-indent: 2em "“阿拉巴马大学很高兴成为布鲁克公司Hysitron PI 89 SEM PicoIndenter原位纳米机械测试装置的第一批用户,”span style="color: rgb(0, 112, 192) "阿拉巴马州分析研究中心主任Gregory Thompson博士/span表示。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "机械工程学教授Keivan Davami博士/span补充说:“该平台的先进功能,可以在达到极限温度的同时,同时施加负载,将提供前所未有的结构表征捕获,包括透射菊池衍射和电子背散射衍射,以支持多个研究项目。”/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "布鲁克纳米机械测试业务总经理Oden Warren博士/span表示:“ Hysitron PI 89是我们用于电子显微镜原位纳米机械测试的PicoIndenter系列的有力补充。” “新平台具有出色的多功能性,易用性和刚度,可支持更高的负载,并拥有多项专利功能,可为客户在SEM中提供更广泛的测试灵活性和行业领先的性能。我们很高兴看到这个新一代仪器使新的研究成为可能。”span style="text-indent: 2em " /span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong关于Hysitron PI 89 SEM PicoIndenter/strong/span/pp style="text-indent: 2em "Hysitron PI 89系统是布鲁克知名的Hysitron PicoIndenter用于SEM的测试仪器系列。 PI 89以布鲁克最先进的电容换能器技术为基础,为研究人员提供了一种功能强大的先进仪器,具有卓越的性能和多功能性。它的功能包括自动纳米压痕、加速机械性能映射(XPM)、疲劳测试、纳米摩擦学、薄膜和纳米线的推拉(PTP)张力(已获得专利)、直接拉力、SPM成像、电特性模块、高温测试(已获得专利)、旋转和倾斜台(已获得专利),并与使用EBSD,EDS,CBD,TKD和STEM检测器的分析成像兼容。/pp style="text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "关于Hysitron/span/strong/pp style="text-indent: 2em "2017年2月,布鲁克宣布收购纳米力学仪器制造商Hysitron(海思创)。该收购将Hysitron的创新纳米机械测试仪器添加到布鲁克已有的原子力显微镜(AFM),表面轮廓仪,摩擦学和机械测试系统的产品组合中,大大提高了布鲁克在纳米材料研究市场的领先地位。/pp style="text-indent: 2em "Hysitron总部位于明尼苏达州的伊登普雷利,公司自1992年成立以来率先开发了用于测量纳米级材料的机械性能的解决方案。其领先的纳米压痕产品被学术界和工业研究人员用于材料科学、生命科学和半导体领域的应用。除纳米压痕和微压痕外,Hysitron的仪器产品还包括摩擦学、模量映射、动态机械分析、原位SEM(扫描电子)和TEM(透射电子)纳米机械测试。/ppbr//p
  • 540万!中国科学院水生生物研究所高分辨三维纳米显微成像系统采购项目
    项目编号:OITC-G220321073项目名称:中国科学院水生生物研究所高分辨三维纳米显微成像系统采购项目预算金额:540.0000000 万元(人民币)最高限价(如有):540.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1高分辨三维纳米显微成像系统1是540投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 祝贺诺泽流体科技微纳米技术卓越中心正式成立
    诺泽流体科技微纳米技术卓越中心(以下简称技术中心)于2020年5月31日在上海正式成立,并邀请复旦药学院副院长王建新老师,中科院药物所课题组组长甘勇老师、张馨欣老师、苏州大学纳米学院执行院长刘庄老师及天津中医药大学博导刘志东老师出席揭幕仪式。 (诺泽总经理张锋和嘉宾一起揭幕)诺泽流体科技总经理张锋为嘉宾们先介绍公司两大核心产品,微射流均质机和超微粉气流粉碎机应用成果,后陪同嘉宾一起参观技术中心。(总经理张锋介绍产品的应用案例)技术中心建有符合GMP要求的C级净化间、分析室、小试粉碎间、规模生产区域;配备超微粉气流粉碎机(实验型、小试型 、中试型、生产型)、微射流均质机(实验型、中试型、生产型),高剪切、粉体特性测试仪、粒径检测设备等仪器,可满足工艺验证,实验用途代加工,放大生产,配置OEB5的粉碎隔离器,还可实现高活性原料药的微粉化。为众多企业解决从研发阶段、中试放大阶段以及大生产阶段的问题。 (参观技术中心)诺泽流体科技(上海)有限公司自2012年成立以来,一直秉承着安全、可靠、创新的理念,赢得全球众多高科技公司与知名药企的认可及一致性好评。此次,企业成立的技术中心,将为业界提供更专业、优质的技术解决方案服务。(诺泽员工与嘉宾合照留念)
  • 国家纳米科学中心“微纳技术检测及应用”系列标准宣贯会通知
    标准是经济活动和社会发展的技术支撑,是国家基础性制度的重要方面。新时代推动新质生产力的高质量发展、全面建设社会主义现代化国家,迫切需要进一步加强标准化工作。国家纳米科学中心是全国纳米技术标准化技术委员会(SAC/TC279)、全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会(SAC/TC168SC1)和全国微细气泡技术标准化技术委员会(SAC/TC584)秘书处所在单位,同时,也是国际标准化组织纳米技术委员会(ISO/TC229)和国际电工委员会纳米电工产品与系统技术委员会(IEC/TC113)、国际标准化组织微细气泡技术委员会(ISO/TC584)对口单位。为深入贯彻实施《国家标准化发展纲要》以及《2024年全国标准化工作要点》相关要求,国家纳米科学中心拟于5月30日~31日在北京举办“微纳技术检测及应用”标准宣贯会,旨在为纳米技术、颗粒技术和微细气泡技术标准化工作搭建沟通平台,深化标准化交流合作,加强标准化宣传,同时也为从事检测工作的科研和技术人员增进对标准制定、检测标准方法、标准应用等工作的了解提供广阔的平台,促进检测标准化的发展,提升业界标准化技术支撑水平。会议组织单位主办单位:国家纳米科学中心协办单位:上海中晨数字技术设备有限公司会议时间及地点会议时间:2024年5月30日~31日(会议30日09:00开始)注册时间:2024年5月29日15:00-17:00 2024年5月30日08:00-09:00会议地点:北京 国家纳米科学中心(北京市海淀区中关村北二条)会议日程*日程尚在更新中,以现场最终日程为准扫码报名主讲老师▣ 国家市场监督管理总局国家标准技术审评中心▣ 全国纳米技术标准化技术委员会(SAC/TC279)专家▣ 全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会(SAC/TC168SC1)专家▣ 全国微细气泡技术标准化技术委员会(SAC/TC584)专家▣ 纳米技术、颗粒表征、微细气泡等相关技术标准首席起草人参会对象▣ 各省市、各行业和地方从事纳米技术、颗粒表征、微细气泡标准化研究和管理人员▣ 2024年有新标准制修订项目立项的起草团队人员▣ 2024年拟申请新标准制修订项目的起草团队成员▣ 国际标准拟注册及在册专家及项目团队成员注册费及缴费方式▣ 请参加会议人员在线填写以下参会回执▣ 会议费用为1200元/人(主要用于邀请讲课教师及相关标准资料购买)▣ 本次会议食宿费用自理▣ 请于开会前将会议费汇到国家纳米科学中心,备注“标准宣贯会议费+参训人姓名”,并邮件zhoul2024@nanoctr.cn告知汇款结果▣ 会议费为电子发票,邮件到参会代表报名时提供的邮箱账户名称: 国家纳米科学中心开 户 行: 建设银行北京中关村分行账 号:1100 1007 3000 5926 1021展位招商▣ 会议诚招展商,面向本次参会代表和国家纳米科学中心全体师生,提供三天的展示▣ 展商费用为10000元/席(设6席)会议联系人国家纳米科学中心周老师 18311283997 zhoul2024@nanoctr.cn 高老师 010-82545672 13811507217 gaoj@nanoctr.cn
  • 全国纳标委低维纳米结构与性能工作组邀您参与3项国标制定
    p style="text-indent: 28px line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "2005/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "年span4/span月span1/span日,全国纳米技术标准化委员会(spanSAC/TC279/span)由国标委发文批准成立,主要负责纳米技术领域的基础性国家标准制修订工作。span2016/span年span11/span月span20/span日,经国家标准化管理委员会和中国科学院批准,全国纳米技术标准化技术委员会低维纳米结构与性能工作组(以下简称“工作组”)正式成立,编号为spanSAC/TC279/WG9/span,负责组织协调全国低维纳米技术领域标准化工作。/span/pp style="text-indent: 28px margin-top: 15px line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "近年来,越来越多的低维纳米材料,如石墨烯、二硫化钼、氮化硼、二维黑磷单晶等被相继发现,以这些材料为基础的各种复杂结构,如异质结、堆垛结构等也不断产生;这些低维纳米材料与结构的新奇性质以及在光电、催化、传感等领域的应用前景引起了学术界和产业界的高度关注,也逐步进入了从实验室研发到产业化应用的阶段。统一的命名方式、测试方法、技术规范、性能评价等标准的建立,可为产业界和学术界交流提供统一的技术语言,促进低维纳米材料产业的健康、有序发展。/span/pp style="text-indent: 28px margin-top: 15px line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "2020/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "年,工作组有span3/span项纳米技术国家标准项目计划通过审批/span。为确保标准编制工作顺利开展,特成立各项目的标准制定工作组,在标准制修订过程中牵头组织必要的技术研讨、关键技术研究及对比实验验证等工作,现公开广泛征集标准制定工作组成员,欢迎有关单位及专家共同参与。/pp style="margin-top: 15px line-height: 1.5em "span style="color: rgb(0, 112, 192) "strongspan style="font-family: 微软雅黑, sans-serif "一、《纳米技术 小尺寸纳米结构薄膜拉伸性能测定方法》/span/strong/span/pp style="line-height: 1.5em margin-top: 15px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "计划号:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span20202906-T-491/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "下达日期:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span2020-08-07/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "主要起草单位:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "清华大学/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "报名加入标准制定工作组:/span/strongspan style="font-family: 微软雅黑, sans-serif color: rgb(0, 112, 192) "a href="http://tc279wg9-ldmas.mikecrm.com/6ZS0z85"http://tc279wg9-ldmas.mikecrm.com/6ZS0z85/a/span/pp style="text-align: center line-height: 1.5em margin-top: 15px "span style="font-family:' 微软雅黑' ,' sans-serif' "img style="max-width: 100% max-height: 100% width: 186px height: 181px " src="https://img1.17img.cn/17img/images/202012/uepic/4129d6cf-f195-4cdb-8bf0-92eac6533200.jpg" title="1.jpg" alt="1.jpg" width="186" height="181"//span/pp style="line-height: 1.5em margin-top: 20px "span style="color: rgb(0, 112, 192) "strongspan style="font-family: 微软雅黑, sans-serif "二、《纳米技术 亚纳米厚度石墨烯薄膜载流子迁移率及方块电阻测量方法》/span/strong/span/pp style="line-height: 1.5em margin-top: 15px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "计划号:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span20202801-T-491/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "下达日期:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span2020-08-07/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "主要起草单位:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "泰州巨纳新能源有限公司、中国科学院上海微系统与信息技术研究所、泰州石墨烯研究检测平台有限公司、东南大学、南京大学/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "报名加入标准制定工作组:/span/strongspan style="font-family: 微软雅黑, sans-serif color: rgb(0, 112, 192) "a href="http://tc279wg9-ldmas.mikecrm.com/4HXF5FP"http://tc279wg9-ldmas.mikecrm.com/4HXF5FP/a/span/pp style="text-align: center line-height: 1.5em margin-top: 15px "span style="font-family:' 微软雅黑' ,' sans-serif' "img style="max-width: 100% max-height: 100% width: 190px height: 190px " src="https://img1.17img.cn/17img/images/202012/uepic/6fb0de26-ab1e-4ba8-85b1-08074a90df90.jpg" title="2.jpg" alt="2.jpg" width="190" height="190"//span/pp style="line-height: 1.5em margin-top: 20px "span style="color: rgb(0, 112, 192) "strongspan style="font-family: 微软雅黑, sans-serif "三、《纳米技术 拉曼法测定石墨烯中缺陷含量》/span/strong/span/pp style="line-height: 1.5em margin-top: 15px "strongspan style="font-family: 微软雅黑, sans-serif "计划号/spanspan style="font-family: 微软雅黑, sans-serif ":/span/strongspan style="font-family: 微软雅黑, sans-serif "20204113-T-491/spanbr//pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "下达日期:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "span2020-11-23/span/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "主要起草单位:/span/strongspan style="font-family:' 微软雅黑' ,' sans-serif' "泰州石墨烯研究检测平台有限公司、东南大学、中国科学院大连化学物理研究所、泰州巨纳新能源有限公司、内蒙古石墨烯材料研究院、绍兴文理学院/span/pp style="line-height: 1.5em margin-top: 10px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "报名加入标准制定工作组:/span/strongspan style="font-family: 微软雅黑, sans-serif color: rgb(0, 112, 192) "a href="http://tc279wg9-ldmas.mikecrm.com/dADKmru"http://tc279wg9-ldmas.mikecrm.com/dADKmru/a/span/pp style="text-align: center line-height: 1.5em margin-top: 15px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' " img style="max-width: 100% max-height: 100% width: 194px height: 194px " src="https://img1.17img.cn/17img/images/202012/uepic/1065d376-8e24-463d-97d4-c7fcf47fe6dc.jpg" title="3.jpg" alt="3.jpg" width="194" height="194"//span/strong/pp style="line-height: 1.5em margin-top: 20px "strongspan style="font-family:' 微软雅黑' ,' sans-serif' "更多咨询请联系工作组秘书处:/span/strong/pp style="line-height: 1.5em margin-top: 15px "span style="font-family:' 微软雅黑' ,' sans-serif' "全国纳标委低维纳米结构与性能工作组秘书处联系方式/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "联系人:邵悦span 13914543362 /span/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "固定电话:span0523-82836717/span/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "Email: standard@graphene-center.org, shaoyue@graphene-center.org/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "通信地址:江苏省泰州市凤凰西路span168/span号span5/span号楼/span/pp style="line-height: 1.5em "span style="font-family:' 微软雅黑' ,' sans-serif' "邮编:span225300/span/span/p
  • Hysitron(海思创)微纳尺度力学测试与表征技术交流会
    德祥科技联手美国Hysitron将于2011年3月5日在西安南洋大酒店举办微纳尺度力学测试与表征技术交流会,届时将由Hysitron中国区应用科学家宋博士担任主讲人。 更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822邮箱:info@tegent.com.cn
  • 跨尺度微纳米测量仪的开发和应用重大仪器专项启动
    3月20日,国家重大科学仪器设备开发专项&ldquo 跨尺度微纳米测量仪的开发和应用&rdquo 项目首次工作会议在市计测院举行。国家质检总局科技司副处长谢正文主持会议,清华大学院士金国藩、同济大学院士李同保、上海理工大学院士庄松林,国家质检总局科技司副司长王越薇、市质监局总工程师陆敏、市科委处长过浩敏等专家和领导出席会议。  会上,项目总体组、技术专家组、项目监理组、用户委员会和项目管理办公室宣布成立。会议报告了项目及任务实施方案,介绍了项目管理办法,并由专家现场进行了技术点评和项目管理点评。  王越薇对项目推进提出了具体工作要求。她要求项目所有单位本着为国家产业发展负责的精神,对项目予以高度重视。牵头单位要围绕总体目标,做细做实项目推进计划,项目各参与单位必须按时保质完成分目标,确保项目顺利推进。她要求加强项目的过程管理,制定并落实各项管理制度,对项目推进中出现的问题,要协调解决,必要时召开专题会议,并且做好包括基础数据、过程记录在内的档案管理。她还要求加强项目的财务管理,牵头单位和各参与单位都要重视财务管理,尤其要提高国家级重大项目的财务管理水平,确保项目经费的使用符合财务管理要求。最后,王越薇长还代表国家质检总局科技司表示,将尽全力做好项目实施单位与国家科技部的桥梁工作。  会上,陆敏要求市计测院勇于创新,集中力量确保项目顺利实施,并通过科研项目促进科研管理水平和能力的提高。  过浩敏感谢国家质检总局对项目的支持,肯定了重大专项对上海市创建具有国际影响力的科创中心的重要意义,并表示市科委将尽全力做好项目实施的地方配套服务工作。  &ldquo 跨尺度微纳米测量仪的开发与应用&rdquo 项目以我国近年来多项创新技术及市计测院科研成果为基础,突破我国在微纳米检测技术领域检测方法集成开发的诸多技术瓶颈,旨在攻克宏微联动多轴驱动和多测头集成、基于原子沉积光栅的纳米量值溯源等关键技术,研制用于计量、工业生产、产品检测中微形貌和几何尺寸测量的微纳米测量仪,并构建跨尺度、高精度微纳米测量与研发平台,为我国国防、航空航天、半导体制造业、微机电产业、大气污染物防治等领域提供有效的纳米计量技术支持和保障,提升我国高新技术产业中微纳米尺寸定量化测量的技术水平。  在国家质检总局的组织和指导下,项目经过近两年半时间的筹备和酝酿,于2014年10月获得国家科技部批准立项。项目牵头单位为上海计测工程设备监理有限公司,第一技术支撑单位为市计测院,16家参加单位涉及清华大学、上海交通大学、复旦大学、同济大学等国内顶级高校,以及中国工程物理研究院、国家纳米中心、中国科学院等国内顶尖研究机构。  项目研究过程中,将以产业需求为牵引,以实际应用为导向,注重基于国际先进技术基础上的集成创新和工程化、产业化开发,着力挖掘科研成果转化的潜力,提高我国微纳米测量科学仪器设备的自主创新能力和自我装备水平,并促进产、学、研、用的结合。项目完成后,将形成具有完全自主知识产权的仪器产品、附件、服务、标准等成果,能够填补国内空白,挑战国外仪器在相关领域的权威地位,促进纳米科技与经济紧密结合、科技创新与产业发展紧密融合,更树立国家在纳米制造、微电子、新型材料、超精密加工制造等领域的国际权威地位与话语权。
  • ISO 发布纳米制品的毒理学测试报告
    国际标准化组织(ISO)最近发布了一份技术报告,它可以帮助专业人士对纳米制品进行毒理学测试。纳米技术被认为是在21 世纪促进经济增长的关键驱动力。它在多个领域的应用前景都很广阔,包括医学上的诊断和治疗,高效能源的开发,更轻便、更强有力又便宜的材料的制造,速度更快、功能更强大电子产品的生产以及更清洁、廉价的水的获取。该报告同时还特别提到了特殊纳米材料的作用,尤其是纳米粒子对人体健康和环境的影响以及ISO 在这些领域标准制定的进展情况。  ISO 发布技术报告ISO/TR 13014:2012,纳米技术—工程纳米材料理化特性毒理学评估指南,目的是在对纳米制品进行毒理学检测前,为健康专家及其他专业人士理解、计划、确定和处理纳米制品的相关理化特性提供协助。  制定ISO/TC 13014 标准的ISO 工作小组负责人Richard Pleus 博士认为,通过对纳米制品化学和物理特性的不断了解,有利于减少纳米材料的毒性和开发更为安全的替代产品。这份报告中涉及的已经完成的工作中在毒理学方面非常重要的一点是,它会告诉科学家正在被检测的物质该是什么样子,成分是什么,它与周围环境又是怎样相互影响的。
  • 喜讯!微纳公司通过纳米颗粒粒度测试能力的认证!
    根据行业需求,我司参与了“中国合格评定国家认可委员会(CNAS)”与北京粉体技术协会联合组织开展的“纳米颗粒的粒度分析”能力认证项目,我司在全国及国外各大实验室中脱颖而出,在颗粒的粒度分析检测项目中获得中国合格评定国家认可委员会(CNAS)的能力认证。 这次能力认证的成功,证明了我司在纳米颗粒粒度检测方面达到国际先进水平。
  • 布鲁克发布Bruker多量程X射线三维纳米显微成像系统(Nano-CT)新品
    SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。■多用途系统,样品尺寸可达300mm,分辨率(像素尺寸)可达 60 纳米■金刚石窗口x射线源,焦斑尺寸500nm■创新的探测器模块化设计,可支持 4 个探测器、可现场升级。■全球速度很快的 3D 重建软件(InstaRecon)。■支持精确的螺旋扫描重建算法。■近似免维护的系统,缩短停机时间并降低拥有成本。地质、石油和天然气勘探■常规和非常规储层全尺寸岩心或感兴趣区的高分辨率成像■测量孔隙尺寸和渗透率,颗粒尺寸和形状■测量矿物相在3D空间的分布■原位动态过程分析聚合物和复合材料■以500 nm 的真正的 3D 空间分辨率解析精细结构■评估微观结构和孔隙度■量化缺陷、局部纤维取向和厚度电池和储能■电池和燃料电池的无损 3D 成像■缺陷量化■正负极极片微观结构分析■电池结构随时间变化的动态扫描生命科学■以真正的亚微米分辨率解析结构,如软组织、骨细胞和牙本质小管等■对骨整合生物材料和高密植体的无伪影成像■对生物样品的高分辨率表征,如植物和昆虫创新点:SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。Bruker多量程X射线三维纳米显微成像系统(Nano-CT)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制