无液氦学电学恒温器

仪器信息网无液氦学电学恒温器专题为您提供2024年最新无液氦学电学恒温器价格报价、厂家品牌的相关信息, 包括无液氦学电学恒温器参数、型号等,不管是国产,还是进口品牌的无液氦学电学恒温器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无液氦学电学恒温器相关的耗材配件、试剂标物,还有无液氦学电学恒温器相关的最新资讯、资料,以及无液氦学电学恒温器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

无液氦学电学恒温器相关的厂商

  • 400-860-5168转2626
    天津多为莱博科技有限公司是专门提供低温及超导仪器设备的的供应商和服务商,是世界多家知名品牌在华代理,如美国ARS(ADVANCED RESEARCH SYSTEMS),美国IRLABS(Infrared Laboratories, Incorporated),美国GMW,英国ICE OXFORD,美国SI(Scientific Instruments, Inc.),美国AMI(American Magnetics, Inc.),英国TEMATI等。产品主要有液氦/液氮型低温恒温器、无液氦闭循环低温恒温器、超精细超低振动型低温恒温器、液氦/液氮型低温探针台、无液氦闭循环低温探针台、超导磁体探针台、电磁铁探针台,低温超导设备,各类太赫兹红外设备,低温监视器,温度计,电磁铁,超导磁体,超导电源,碳陶瓷温度计等等。 我们拥有良好技术背景的售前售后服务团队,为客户提供专业的技术服务,如安装、培训、维修、保养及仪器应用指导。同时我司也自主研发设计多项产品。本公司拥有多年从事服务业的丰富经验,秉持着诚挚服务的经营理念,以提供高品质产品及高附加价值服务为初衷,针对客户各方需求,提供完善的问题解决方案。您的一次信任,将换来我们为您提供的诚挚服务。
    留言咨询
  • 广州科朋主要代理国内外知名品牌科学仪器,主要代理品牌有Haier海尔生物医疗:超低温冰箱、低温保存箱、药品保存箱、自动化冷库、生物安全柜、液氮罐、培养箱等;Yamato高压灭菌器、喷雾干燥机、培养箱、干燥箱等;德国heidolph旋转蒸发仪、磁力搅拌器;德国耶拿荧光定量PCR仪、高速PCR仪、多功能成像系统、德国Systec双扉灭菌器、高压灭菌器;上海知楚振荡培养箱、二氧化碳振荡培养箱;上海和泰超纯水机、中央纯水系统;杭州奥盛核酸提取仪、全自动移液工作站、超微量分光光度计、全波长酶标仪、多功能酶标仪、干式恒温器等
    留言咨询
  • 上海柯舜科技有限公司(LINKPHYSICS)于2008年成立,始于代理国外的知名品牌,是国内知名的低温设备制造商,是集研发、生产、销售于一体的高新技术企业,上海市“专精特新”企业、上海市宝山区企业技术中心、拥有ISO9001质量管理系统认证证书、2023年入选宝山区工业新升规快速成长企业,主要为高校、科研院所、制造业研发中心及系统集成企业提供先进的半导体测试系统及科研仪器设备,多年致力深耕低温磁场及探针台技术。公司主营产品有室温探针台、低温探针台、全自动探针台、半自动探针台、科研超导磁体系统、液氦&液氮低温恒温器、闭循环低温恒温器、霍尔效应测试系统、三维磁场测试平台、温控仪等产品。
    留言咨询

无液氦学电学恒温器相关的仪器

  • 4K光学低温恒温器4K光学低温恒温器标配真空样品环境,具有变温范围大、操作简单和应用范围广等特点,降温至4K时间仅需90分钟(空载),可选配铟密封腔的氦气样品环境、可定制不同尺寸的样品空间、具备低震动、多种窗材和多种样品类型如粉末、薄片、电致发光配件等。此低温恒温器还可搭配我司稳态瞬态荧光光谱仪实现程序可控的低温光谱采集。标准配置温度范围4K-300K工作环境1×10-3Pa光学真空外罩可定制顶部快拆紧凑/非紧凑防热屏蔽层安装温度计的防辐射屏光学窗口光窗数量标准4个顶部扩展1个光窗材质石英光窗直径25mm样品形式薄膜或粉末样品环境真空普通镀金样品台光学样品台完全定制(1个)电学样品台完全定制(1个)普通电学样品卡电学样品卡完全定制(5个)阀门抽口阀门1个安全阀门1个破空阀门1个6针电学真空接头用于连接控温仪3个可选电学接口1-19芯可选配置电学接口SMABNCTRB顶部扩展窗口垂直光窗其他材质窗口氟化钙蓝宝石硒化锌低漏电接口100fA配置参数低温恒温器主体低温制冷机冷头最低温度3.5K制冷量(50Hz)一级二级 50W@43K1.3W@4.2K降温时间(二级)60min(4.2K)重量冷头压缩机 20kg118kg对接压缩机KDC6000V功耗50Hz稳态降温 6.5kW7.2kW冷却方式水冷水冷却流量7~10L/min标准软管20A×20m维护周期10000h氦压缩机电源要求380,400V@50Hz 3P 480V@60Hz 3P氦气纯度>99.999%冷却方式水冷水流量7L~10L/min(25℃)冷却水温度进口出口 5~25℃44℃功耗50Hz稳态降温 6.5kW7.2kW压力范围(运行)排气回气 16.6~23bar2.8~6.9bar环境温度要求运行储存 4~40℃-20~65℃相对湿度运行储存 30%-70%10%-90%(不结露)环境压力要求运行储存 70kPa~110kP20kPa~110kPa对接标准软管20A×20m维护周期30000h重量118kg温度计测温范围1.4K-500K温控仪温度输入数量2,2通道独立输入控温通道1温度下限300mK     水冷机Integrative分体机制冷量8000W @25℃控温方式启停式冷却方式压缩机制冷控温精度±1℃控温范围5~35℃额定流量(L/min@Bar)25@3.5最大压力4.3bar水箱容积90L制冷剂R410A外形尺寸(室内机)430X635X940(宽x深x高)外形尺寸(室外机)865x310x710(宽x深x高)蒸发器类型不锈钢盘管水槽材质SUS304不锈钢水箱接口尺寸Rp1电源要求220V/380V,50Hz电功率4.3/3.3KW     分子泵接口法兰DN100 CF抽气速率L/S(对空气)110压缩比>108(N2)5×102(H2)极限压强 (Pa)6×10-7建议启动压强(Pa)<100输入电压频率(V/Hz)220±20/50前级泵型号RV4(标配)冷却方式风冷、水冷冷却水压力(MPa)0.1-0.2冷却水温度(℃)≤25冷却水流量(L/min)1安装方式垂直环境温度 (℃)5~40长×宽×高(mm)500×510×685重量(kg)52各组件示意图低温制冷机冷头氦压缩机分体式冷水机:由室内机和室外机组成分子泵粉末样品台薄膜样品台电学测试卡示意图
    留言咨询
  • 无液氦光谱学恒温器Optistat Dry 为不同光谱学实验优化,包括紫外/可见光谱,拉曼光谱,FTIR,荧光,光致发光以及太赫兹等应用。快速安装:OptistatDry的设计与商业光学平台可以完全匹配,因此可以快速安装与使用 电学连接从未如此简单,创新的电学样品托选项,最高可提供12路电学引线。 光学性能:l 大孔径的标准光学窗口,数值孔径可达f/1l 最大化透射率:每个方向只需要一块窗片l 可选楔形及抗反射镀膜窗片l 多种窗口选项覆盖从紫外到远红外的全波段l 先进的侧面换样设计,换样期间完全无需移动和再次校准光路技术参数可控温度范围从 3 K 到300 K冷却时间:120分钟内冷却到10K可选择风冷压缩机或水冷压缩机低振动:与光学平台结合时振动小于10微米大样品空间,可用于研究各种大小的样品低运行费用优化的光学通路,数值孔径可达f1,通光孔径可达28mm,大通光区域适合低光密度探测产品应用紫外/可见光谱低温下的紫外或可见光谱实验可以揭示固体中电子能级与振模的相互作用红外光谱低温红外光谱实验可测量原子间振模的变化及其他现象,例如超导体中转变温度以下的能隙拉曼光谱低温可以使拉曼激发中的谱线更细光致发光低温下光谱性质将更为清晰,因此我们可以获得更多的信息电学性质光学与电学的测量,包括I-V曲线测量
    留言咨询
  • 无液氦光谱学恒温器Optistat Dry 为不同光谱学实验优化,包括紫外/可见光谱,拉曼光谱,FTIR,荧光,光致发光以及太赫兹等应用。快速安装:OptistatDry的设计与商业光学平台可以完全匹配,因此可以快速安装与使用 电学连接从未如此简单,创新的电学样品托选项,最高可提供12路电学引线。 卓越的光学性能:l 大孔径的标准光学窗口,数值孔径可达f/1l 最大化透射率:每个方向只需要一块窗片l 可选楔形及抗反射镀膜窗片l 多种窗口选项覆盖从紫外到远红外的全波段l 先进的侧面换样设计,换样期间完全无需移动和再次校准光路技术参数可控温度范围从 3 K 到300 K冷却时间:120分钟内冷却到10K可选择风冷压缩机或水冷压缩机低振动:与光学平台结合时振动小于10微米大样品空间,可用于研究各种大小的样品低运行费用最优化的光学通路,数值孔径可达f1,通光孔径可达28mm,大通光区域适合低光密度探测产品应用紫外/可见光谱低温下的紫外或可见光谱实验可以揭示固体中电子能级与振模的相互作用红外光谱低温红外光谱实验可测量原子间振模的变化及其他现象,例如超导体中转变温度以下的能隙拉曼光谱低温可以使拉曼激发中的谱线更细光致发光低温下光谱性质将更为清晰,因此我们可以获得更多的信息电学性质光学与电学的测量,包括I-V曲线测量
    留言咨询

无液氦学电学恒温器相关的资讯

  • Montana超精细多功能无液氦低温光学恒温器从“中场核心”到“球队领袖”
    杯已经进行到了如火如荼的阶段,无论是集体颜值高的德国还是有着神射手的阿根廷,本届杯的表现都让我们的心情跌宕起伏。我们不难发现阿根廷纵然拥有梅西这样的射手,一旦失去中场的强力支持,进攻就会显得很不连贯,以至于出线历程险象环生。而德国队的表现更是让球迷哭泣,感觉他们缺少一些中场的核心凝聚力和真正的人物,以至于关键时刻不能完成致命一击。“teamwork”这个词真是对足球好的诠释了。我们的科学研究情况也是这样,一个前沿的研究课题要想取得突破离不开的科研人员,同样也离不开多种先进设备的协同工作。目前量子材料、量子信息和低温光学是为活跃的研究方向。这些领域都有着自己的特色仪器,好像仪器中的“前锋”;另外还有为这些设备提供研究环境和平台使得它们能够协同工作的低温光学恒温器,这就好像仪器中的“中场核心”。前锋固不可少,而中场核心更是决定比赛走势的中流砥柱。今天我们就为大家来介绍中场队员中的佼佼者——montana超精细无液氦低温光学恒温器。 图1 montana超精细无液氦低温光学恒温器 系统特色:无液氦制冷 低温度:3k超低震动:1-5nm温度稳定性:优于10mk光学窗口:多可达8个位置稳定性:位置防温漂移技术高数值孔 na:0.95可兼容磁场:1t -9t样品腔体大可到20cm直径兼容高压腔的各种光学实验应用领域:各种光谱实验共聚焦显微nv色心单量子点发光量子通讯高压光学低温moke自旋电子学低温fmr日前亚洲套montana超精细无液氦低温光学恒温器超稳定高阻尼系统hila落户中国香港。在过去短短两个月中,montana超精细无液氦低温光学恒温器微系统所、复旦大学以及中国科学技术大学陆朝阳研究组顺利完成了安装。montana超精细无液氦低温光学恒温器作为低温光学和量子信息领域重要的设备之一,为各种测量仪器提供低温光学研究环境。目前montana超精细无液氦低温光学恒温器已经发展成为型号齐全,功能全面,应用领域为广泛的低温光学恒温器。如果将科研看成一场比赛的话,那么montana超精细无液氦低温光学恒温器长期以来扮演着低温光学与量子信息科研比赛的“中场核心”,在科研道路上披荆斩棘帮助用户“攻城略地”。 图2 quantum design工程师(右一)与微系统所用户montana instruments 始终不满足于眼前的成绩,在不断探索继续前进,在与多种三方测量设备的兼容上都取得了突破,甚至已经成为nanomoke和fmr设备进行低温测量的官方推荐方案。目前montana超精细无液氦低温光学恒温器提供的三方设备集成方案包含各种磁体、各种显微镜、多种拉曼光谱仪、moke、铁磁共振、多种波段光谱仪、各种电学测量设备、微区扫描squid、stm等几十种设备。mi工程师专业的技术支持使客户省去了繁琐的实验搭建环节,大大提高科研效率。更为可喜的是,2017年cryostation一词已经正式获批注册商标,象征着mi在全球低温光学领域的影响力和地位。如果说montana超精细无液氦低温光学恒温器以前是一名的中场核心,现在已经成长为球队的。这样的成绩源于科学家对montana instruments的肯定激励我们朝着更广的应用领域,更深的研究细节奋勇前进!附:montana超精细无液氦低温光学恒温器光谱学领域文章举例raman spectroscopy2017 - david d. awschalom (university of chicago) - nature physics - accelerated quantum control using superadiabatic dynamics in a solid-state lambda system2017 - amir safavi-naeini (stanford university) - phys. rev. applied - engineering phonon leakage in nanomechanical resonators2016 - douglas natelson (rice university) - acs nano - plasmonic heating in au nanowires at low temperatures: the role of thermal boundary resistance2016 - kenneth s. burch (boston college) - review of scientific instruments - low vibration high numerical aperture automated variable temperature raman microscopephotoluminescence, fluorescence, single molecule spectroscopy, super resolution microscopy2018 - hui deng (university of michigan) - nature comms - photonic-crystal exciton-polaritons in monolayer semiconductors2017 - hongkun park (harvard university) - nature nanotechnology - probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons2017 - kartik srinivasan (nist) - review of scientific instruments - cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters2016 - xiaodong xu (university of washington) - science - valley-polarized exciton dynamics in a 2d semiconductor heterostructure2014 - edo waks (university of maryland) - nature photonics - all-optical coherent control of vacuum rabi oscillationsoptical transmission, optical absorption spectroscopy, pump-probe techniques2018 - carlos silva (georgia tech) - phys. rev. materials - stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder2016 - alan bristow (west virginia university) - spie - two-dimensional coherent spectroscopy of excitons, biexcitons and exciton-polaritons2015 - mikael afzelius (university of geneva, switzerland) - phys. rev. lett - coherent spin control at the quantum level in an ensemble-based optical memoryoptical reflection, pump-probe techniques2018 - hongkun park (harvard university) - phys. rev. lett - large excitonic reflectivity of monolayer mose2 encapsulated in hexagonal boron nitride2017 - lilian childress (mcgill university) - optics express - a high-mechanical bandwidth fabry-perot fiber cavity2017 - jun ye (jila, nist) - phys. rev. lett - ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 koptical cavities2018 - jelena vuckovic (stanford university) - nano lett - strongly cavity-enhanced spontaneous emission from silicon-vacancy centers in diamond2017 - jun ye (jila, nist) - phys. rev. lett - ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 k2017 - kartik srinivasan (nist) - science - quantum correlations from a room-temperature optomechanical cavity2016 - alberto amo (cnrs, université paris-saclay) - nature comms - interaction-induced hopping phase in driven-dissipative coupled photonic microcavities2015 - paul barclay (university of calgary, canada) - phys. rev. x - single-crystal diamond nanobeam waveguide optomechanics相关产品及链接:montana超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/c122418.htm超全开放强磁场低温光学研究平台—opticool:http://www.instrument.com.cn/netshow/c283786.htm
  • 无液氦低温光学恒温器,又双叒发顶刊!完成悬空 Cr2Ge2Te6异质结居里温度的纳米机械探测和应力调
    具有较大磁致伸缩系数的二维材料是实现自旋电子器件和纳米磁学器件中应变调节磁性的理想体系。因此研究二维材料中应变与磁性的耦合是至关重要的。日前,代尔夫特理工大学(荷兰)、北京大学和瓦伦西亚大学(西班牙)的研究者们在这一研究领域取得了重大进步。在该项研究中,研究者们采用了悬浮的Cr2Ge2Te6(CGT)薄膜层及其异质结构和铁磁纳米机械膜谐振器。通过纳米机械共振探测手段研究了薄膜和异质结的磁性变化与薄膜应变之间的关系。此外作者还展示了通过静电力成功对异质结的居里温度进行了有效调控。该工作于2022年6月发表在nature子刊npj 2D Materials and Applications上,文章题目为《Nanomechanical probing and strain tuning of the Curie temperature in suspended Cr2Ge2Te6-based heterostructures》。该工作中的主要探测手段为在不同温度下通过激光干涉的方式探测CGT薄膜和异质结的共振频率来测量并研究样品的居里温度以及与应变的关系。该测量对于光学恒温器的温度稳定性、变温特性、振动稳定性、窗口的工作距离要求都非常高。该工作中用户使用了Montana Instruments 公司生产的低温光学恒温器完成了本文中的重要测量工作。图:用激光干涉法表征CGT膜;a)光路示意图,样品置于Montana恒温器内;b) 4K温度下样品的共振峰测量值和理论拟合值;c)不同温度下样品共振峰的变化与晶格常数的变化。除了研究CGT薄膜样品外,作者还研究了CGT/WSe2异质结。研究结果表明样品距离温度与共振测量中共振频率有很好的对应关系。这给二维材料磁性探测提供了一个有效的手段。作者制备了CGT/FePS3异质结,该样品在不同温度下具有顺磁/顺磁、反铁磁/顺磁和反铁磁/铁磁的多种磁性结构组合。通过共振测量表明,在不同磁性相变时共振频率都出现了明显的变化,再次证明了采用纳米机械共振探测手段可以准确的反映样品磁性的变化。图:半径r = 2.5 μm的CGT/FePS3(19.8±0.2 nm/18.0±0.1 nm)异质结构膜的力学性能;a) 上:悬浮异质结构膜的横截面示意图,下:CGT/FePS3异质结的光学图像;b) 共振频率与温度的关系,蓝色:实验测量结果,绿色:理论值与误差范围;c) 损耗因数Q-1与温度的关系。作者采用施加栅压,利用异质结与Si衬底之间的静电力实现了对CGT/WSe2异质结居里温度的调控。并通过共振测量的方式研究了居里温度与栅电压之间的关系。图:利用纳米机械共振测量手段对栅压调控的CGT/WSe2异质结居里温度进行了测量。该工作证明了栅静电力应变可以提高CGT薄膜的居里温度,证明了利用应变可以控制这些铁磁异质结构的磁序。该研究展示了一种新的磁性表征手段,在该领域中未来的研究将有可能开发出具有门电压磁驱动的薄膜器件,在低功率自旋电子器件方面具有广阔的应用前景。Montana超精细多功能无液氦低温光学恒温器全球知名光学恒温器制造商Montana Instruments多年来为低温光学、量子信息等领域提供性能的光学恒温器而广受好评。作为低温光学恒温器的旗舰产品,Montana Instruments近推出了全新型号CryoAdvance系列。该系列的目标是助力科技工作者在先进材料和量子信息领域研究研究方面更进一步。 CryoAdvance 50新特色▪ 自动控制:全新智能触摸屏系统,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。▪ 模块化设计:多种配置可选,快速满足各种实验需求,后续升简单。▪ 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。▪ 稳定性设计:新设计在变温和振动稳定性上进一步优化。 CryoAdvance 50主要参数▪ 低温度:3.2K▪ 震动稳定性:5 nm(峰-峰值)▪ 降温时间: 300K-4.2K ~2小时▪ 样品腔空间:Φ53 mm ×100 mm▪ 光学窗口:5个光学窗口,可选光纤引入▪ 水平光路高度:140 mm▪ 窗口材料:多种材质可选▪ 基本电学通道:20条直流通道。▪ 接口面板:双RF接口+25DC接口
  • 许晓栋最新Nature正刊!低震动无液氦磁体与恒温器助力莫尔超晶格中的光诱导铁磁性研究取得重要进展
    载流子之间的多体相互作用是相关物理学的核心。调控这种相互作用的能力将有望调控复杂的电子相图。近年来,二维莫尔超晶格已经成为量子工程的一个前景研发平台。莫尔系统的功能在于通过调整层扭转角、电场、莫尔载流子浓度和层间耦合,实现其物理参数的高可调性。由半导体过渡金属双卤化合物(TMDs)形成的莫尔超晶格是一个新兴的平台,可探索高可调性相关效应。结合强库仑相互作用、三角摩尔几何、强自旋轨道耦合和孤立的平坦电子带,TMD异质分子层是测试可调多体哈密顿数的理想平台。事实上,在整数和分数莫尔微带填充下的相关缘状态已经被实验证明了。理论上,TMD莫尔平台提供了一个机会来研究具有三角形或六边形几何形状的经典模型,以探索强相关的物理。通过改变现场库仑相互作用U和近邻跳变参数t,预测了具有各种缘态、金属态和奇异磁态和拓扑态的多体相图。图1. WS2/WSe2异质结中的磁圆二色性随填充因子变化。a) 器件示意图 b) PFM图像,标尺:20 nm c) 反射谱随偏置电压变化 d-e) 磁圆二色(RMCD)随填充因子变化 近期,Xiaodong XU(美国华盛顿大学)的研究小组报道了光激发可以高度调整莫尔捕获载流子之间的自旋-自旋相互作用,从而导致WS2/WSe2莫尔超晶格中的铁磁顺序。图1显示了丰富的填充因子依赖的磁光响应,在填充因子为−1时,RMCD显示出超顺磁样响应。当空穴掺杂明显减少(见图1e)时,一个磁滞回线开始出现, 这是铁磁性的标志。在−1/3的填充因子附近(即每3个莫尔晶胞中有一个空穴)附近,随着激子共振激发功率的增加,在磁圆二色性信号中出现了一个明显的磁滞回线。图2. 在填充因子为-1/3的时候对光致铁磁性的观察。a-b)1.6K温度,不同激光功率下RMCD信号随磁场变化。c-d)磁滞回线宽度与温度的关系,激光功率103 nW。图2a显示了在1.6K温度与填充因子为-1/3的时RMCD信号与激励光功率的关系。当功率小于16 nW时,RMCD信号与磁场之间的关系消失,表现为一条无特征的直线。当功率增加到临界阈值以上时,出现一个滞回线。图2b中零磁场下RMCD信号的强度随激光功率的增加而增大,终达到饱和。在低填充因子下,由于空穴距离更大固有磁相互作用明显较弱。因此,在分数填充因子为−1/3处出现的功率依赖的RMCD响应表明,通过光学诱导的长程自旋-自旋相互作用,出现了铁磁序。磁滞回线宽度对光激发功率的依赖关系可以忽略不计,这意味着在温度远低于居里温度时,磁回线宽度主要由磁各向异性决定。如图2c-d所示,随着温度的升高磁滞回线宽度减小,有效的居里温度被确定为8K左右。图3. 利用光激发功率和填充因子调节磁态。a-d) RMCD信号强度与磁场、温度、填充因子的关系图 图a-b中填充因子为-1/7. 课题组进一步在填充因子为−1/7下进行了温度与激光功率依赖性的RMCD测量(图3)。图3a显示了在不同的激光功率下的测量结果。 作者定义了一个临界温度Tc,超过这个温度,RMCD的磁性响应(心跳线形状)就会消失。以253 nW光激发为例,心跳线形状保持强至约40K。为了进一步突出这一效应,图3b中绘制了提取的RMCD信号振幅与激发功率和温度的变化关系。这些数据表明,一旦光激发功率足够大,可以引入磁序,Tc可以从20K左右的调谐到45K。观察到的现象指出了一种机制,其中光激发激子促成了莫尔捕获空穴之间的交换耦合。这种激子促成的相互作用可能比莫尔捕获空穴之间的直接耦合范围更长程,因此即使在稀空穴体系中也会出现磁序。这一发现为莫尔量子物质的丰富的多体哈密顿量增加了一个动态调谐旋钮。 以上的结果是借助于attoDRY2100低震动无液氦磁体恒温器获得的,该低温恒温器可以与拉曼光谱、磁圆二色性、磁光克尔效应和偏振荧光测量等多种实验技术结合使用。图4:低振动无液氦磁体与恒温器—attoDRY系列,超低振动是提供高分辨率与长时间稳定光谱的关键因素。 attoDRY2100低恒温器温主要技术特点:☛ 应用范围广泛: PL/EL/ Raman/RMCD/MOKE等光谱测量☛ 变温范围:1.8K - 300K☛ 空间分辨率: 1 mm☛ 无液氦闭环恒温器☛ 工作磁场范围:0...9T (12T, 9T-3T,9T-1T-1T矢量磁体可选)☛ 低温消色差物镜NA=0.82☛ 精细定位范围: 5mm X 5mm X 5mm @ 4K☛ 精细扫描范围:30 μm X 30 μm@4K☛ 可进行电学测量,配备标准chip carrier☛ 可升到AFM/MFM、PFM、ct-AFM、KPFM、SHPM等功能 参考文献:[1]. Xiaodong XU, et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022)

无液氦学电学恒温器相关的方案

无液氦学电学恒温器相关的资料

无液氦学电学恒温器相关的试剂

无液氦学电学恒温器相关的论坛

  • 半导体恒温器中配件有哪些?

    半导体恒温器中配件比较多,除了压缩机、换热器、蒸发器、膨胀阀等主要配件之外,储液器、油气分离器、干燥过滤器等也是比较重要的,那么,这三种配件在半导体恒温器众的作用有哪些呢?  油气分离器安装在压缩机和冷凝器之间,压缩机的排气是制冷剂和润滑油的混合气体,通过油分离器的较大的腔体减速,雾状的油就会聚集在冲击的表面上,当聚集成较大的油滴后,流向油分离器的底部,并通过回油装置返回压缩机。  半导体恒温器的过滤器的作用是为了防止制冷剂里含有水分或由于不可减少的元素等原因使系统里进入水分,当从冷凝器出来的高温液体进入膨胀阀后,液体的温度会大幅度的下降,一般都在零度以下,这时如果系统里含有水分的话,由于膨胀阀通过的截面很小,就会易出现冰堵的现象,影响系统的正常的运行。  制冷系统中的高压储液器(也称储液筒)是装在冷凝器和膨胀阀之间的,它的功能可归纳为以几个方面,储存冷凝器的凝液,避免凝液在冷凝器中积存过多而使传热面积变小,影响冷凝器的传热效果,在蒸发负荷增大时,供应量也增大,由储液器的存液补给;负荷变小时,需要液量也变小,多余的液体储存在储液罐里。因为出液管是插在液面下,故可防止高压侧的蒸汽和不凝性的气体进入低压侧。同时,储液器也起到过滤和消音的作用,储液器的形式有多种,有单向和双向之分;有一出口和两出口之分;有立式和卧式之分。  半导体恒温器是目前半导体行业制冷加热控温要求中使用比较多的设备,性能的要求不言而喻,所以,建议向专业厂家购买。

  • 干式恒温器选购,你需要知道三点

    干式恒温器由模块和主机构成,一般来说各个厂家同一型号的模块差别不大,主要区别就在干式恒温器主机了。首先要确定干式恒温器是那种的?干式恒温器按主机一般分为加热型,加热制冷型和加热制冷振荡型,可以根据实验的用途来选择;加热型的较为便宜,加热制冷贵一些,加热制冷振荡性,功能较全所以也是最贵的。其次是根据干式恒温器主机的控温范围,控温范围通常有0-100℃和0-150℃两种,前种比较常见,而后种少见,选购时可以根据具体的应用情况选择,0-150℃控温范围大价格贵一些,像一般的实验用不了这么高,就没必要选择这种。最后就要选择模块的规格了,最常见的就是0.5ml,1.5ml,0.2ml,要根据试验的内容和要求来选择处理量,另外要看看温度稳定性是模块在加热时各个部分温度的均匀性,就是各个部分最大温差多少,一般在0.1-0.5℃之间,越低越好。如果实验堆温度要求不是太严格的情况下选0.5就可以了,精度越低价格越高。最高温度是仪器所能达到的最高温度,和控温范围事相关的,一般比控温范围高5到10℃。

无液氦学电学恒温器相关的耗材

  • 金属浴 如海光电 干式恒温器
    YH03 金属浴 1 产品简介YH03金属浴是采用微电脑控制的一款经济型干式恒温器,利用高纯度铝材料做为导热介质以替代传统的水浴装置,外观精美,使用方便,精度高,体积小等特点。可广泛应用于样品的保存和反应等。 2 产品特点2 即时温度显示;2 内置超温保护装置;2 外观精美,一体化设计,便于清洁消毒;2 记忆功能,开机自动运行,提高工作效率;2 多重安全保护,保证长期运行稳定性和无人值守情况下的安全性; 3 规格参数 型号YH03 Metal bath工作温度0℃~30℃制冷稳定时间环境温度10℃-25℃时,15 min内恒温仓能达到4℃ 环境温度25℃-30℃时,45 min内恒温仓能达到4℃温控精度0.1℃输入电压220V/AC尺寸370mm×340mm×210mm重量11Kg
  • APIEZON® N低温导热高真空脂
    APIEZON N脂是当今使用最广泛的低温导热真空脂之一,在低温下能明显提高热传导且不会出现裂纹。低温真空密封 Apiezon N脂室温下饱和蒸汽压极低,且温度越低,饱和蒸汽压越低。 该脂低温下不会开裂,即使经受反复热冲击仍能保持长期有效的密封,广泛应用于真空密封领域:如真空管线、冷阱、电子显微镜的光学接口、活塞、毛玻璃接头、低温阀门、Schlenk管线和液氦柔性管线的密封,将其涂在O圈表面可改善O圈低温下的密封效果。无蔓延硅类脂会在样品表面发生蔓延,造成样品污染或光学表面失去光泽;而Apiezon N脂是烃类脂不存在上述问题。低温热传导 Apiezon N低温导热脂能显著提高制冷系统的热传导能力,可将制冷系统的冷量快速传递给超导磁体、低温恒温器、温度传感器或其它需要快速获得低温的系统。Apiezon N低温导热脂脂可填充相邻表面的微孔,且低温下不会开裂或出现细纹,增大了总接触面积,提高了热传导能力。尽管Apiezon N低温导热脂的绝对热导率比铟低,但是经过NASA Ames研究中心证实,同铟相比,Apiezon N脂连接的金属接触面压紧后导热能力更强,且无蔓延等现象。该脂能经受-273°C到30°C范围内的反复热冲击,是低温变温实验的理想选择。该脂磁化率极低,非常适合超导磁体制造领域。Apiezon N脂使用简单、性价比高,液氦温度下可显著提高热传导,广泛应用于磁共振成像的超导磁体、低温恒温器等制造领域。固定传感器Apiezon N脂用来固定传感器非常理想,尤其适合于将传感器固定在洞里。而且在室温下操作简单,在低温下凝固,从而保证传感器容易去除而不会被损坏。固定样品Apiezon N 脂在半导体芯片、激光二极管和晶体等低温测试中非常重要,Apiezon N脂可显著提高样品和样品舟之间或样品舟与低温恒温器冷指间的热传导能力,使样品达到尽可能低的温度,提高了样品测试灵敏度。该脂紫外照射下会发射荧光,光学测试时可用样品盖住该脂或采用校准等办法来消除荧光的影响。
  • 台式恒温振荡器配件弹簧
    台式恒温振荡器适用范围:该产品适用于环境保护、医疗、卫生防疫、药检、动植物学、食品工程等科研、生产部门。是水体分析的BOD测定,微生物的培养保存、植物栽培,育种试验的带振荡器的专用恒温设备。结构特点:采用微电脑技术控温,精确可靠,叁组LED分别显示温度及转速。轻触式调节开关,轻便灵活,并设有超温报警及限速装置。工作室内装有回转式振荡器,可无级调速。箱盖采用全玻璃框架结构,可直接观察工作室内的培养物情况,并配有汽弹簧,使开盖更方便。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制