当前位置: 仪器信息网 > 行业主题 > >

亚纳米级三维扫描台

仪器信息网亚纳米级三维扫描台专题为您提供2024年最新亚纳米级三维扫描台价格报价、厂家品牌的相关信息, 包括亚纳米级三维扫描台参数、型号等,不管是国产,还是进口品牌的亚纳米级三维扫描台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合亚纳米级三维扫描台相关的耗材配件、试剂标物,还有亚纳米级三维扫描台相关的最新资讯、资料,以及亚纳米级三维扫描台相关的解决方案。

亚纳米级三维扫描台相关的论坛

  • 【分享】科学家扫描出的纳米级图像简直就是艺术品

    【分享】科学家扫描出的纳米级图像简直就是艺术品

    1、在不久前的国际探针显微镜图像竞赛上,科学家向公众展示了一组最佳的隧道扫描显微镜图像。这些纳米级图像是科学家制作的艺术品。1、量子森林 由德国实验室的这一图像显示了一片GeSi量子点“森林”,其实,它们只有15纳米高,直径也只有70纳米。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802201437_79288_1638240_3.jpg[/img] 2、蓝宝石 此蓝宝石是通过飞秒级激光脉冲击打其表面而受热的,在此过程中,蓝宝石喷射出原子而留下一个浅浅的弹坑。此晶体经再加热和再次喷射,形成了这里所展示的内部深层结构。1飞秒是千万亿分之一秒。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802201437_79289_1638240_3.jpg[/img] 3、大肠杆菌 此大肠杆菌展示了其保存完好的仅仅30纳米长的鞭毛。科学家是用原子力显微镜来拍摄到此图像的。原子力显微镜与扫描隧道显微镜最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力作用来呈现样品的表面特性。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802201438_79290_1638240_3.jpg[/img]

  • 美首次获得纳米粒子内单原子三维图像

    科技日报 2012年03月24日 星期六 本报讯 据美国物理学家组织网3月21日报道,美国科学家在3月22日出版的《自然》杂志上表示,他们发明了一种直接测量纳米材料原子结构的新方法,让他们首次得以看见纳米粒子内部的情况,并获得其单个原子及原子排列的三维图像。最新研究有望大大改进医学和生物学等领域广泛使用的X射线断层照相术获得图像的清晰度和质量。 加州大学洛杉矶分校物理学和天文学教授兼加州纳米系统研究所研究员苗建伟(音译)领导的团队使用一个扫描透射电子显微镜,在一个直径仅为10纳米的微小金粒子上方扫射了一束狭窄的高能电子。这个金纳米粒子由成千上万个金原子组成,每个金原子的大小仅为人头发丝宽度的百万分之一,它们与通过其上的电子相互作用,产生的阴影包含有金纳米粒子内部结构的信息,这些阴影被投射到扫描镜下方的一个探测器上。 研究小组从69个不同的角度进行测量,将每个阴影产生的数据聚集在一起,形成了一个纳米粒子内部的三维结构图。使用这种名为电子断层摄影术的方法,他们能直接看到单个原子的情况以及单个原子在特定的金纳米粒子内的位置。 目前,X射线晶体照相术是让分子结构内的原子三维可视化的主要方法。然而,这一方法需要测量很多几乎完全一样的样本,然后再将得到的结果平均。苗建伟说:“一般平均需要扫描数万亿个分子,这会导致很多信息丢失。而且,自然界中的大部分物质都是结构不如晶体结构那么有序的非晶体。”他表示:“现有技术主要针对晶体结构,目前还没有直接观察非晶体结构内部原子的三维情况的技术。探索非晶体材料的内部情况非常重要,因为结构上一点小小的变化都会大大改变材料的电学属性。例如,半导体内部隐藏的瑕疵会影响其性能,而新方法会让这些瑕疵无所遁形。” 苗建伟和他的同事已经证明,他们能为一个并非完美的晶体结构(比如金纳米粒子)摄像,晶体可小至0.24纳米,一个金原子的平均大小为0.28纳米。实验中的金纳米粒子由几个不同的晶粒组成,每个晶粒形成一块拼图,其中的原子采用些许不同的模式排列。纳米结构具有隐藏的晶体断片和边界,同由单一晶体结构组成的物质不同,新方法首次在三维层面实现了纳米粒子的内部可视化。 (刘霞)

  • 学位论文:纳米级镀镍晶粒屏蔽织物的研究

    是从万方下载的西安工程科技学院的硕士学位论文,其研究内容应该算是本专业的前沿了,与朋友们共享。【 摘 要 】 电子产品的普及,给人类的生活带来了极大进步的同时,却使电磁辐射无处不在,危害到了人类的健康.开发电磁屏蔽织物已成为纺织业的一个研究热点,虽然已研制出了各种纳米级的兼具导电、导磁性能吸波材料,但吸波材料与织物相结合、用于个人防护的纳米级吸波纺织品仍是一个空白.该文首次将镀镍织物制成纳米级晶粒镀镍织物,由于纳米晶粒自身的特性,具有优良的吸波性能,能制得质量轻、厚度薄、吸收的频带宽、吸收能力强的织物.该文采用碱性预处理、敏化处理、活化处理,使织物表面具有催化活性.通过正交实验确定了粗化工艺的最佳温度、浓度和时间等工艺条件.分析研究了敏化液、活化液在不同浓度和时间对金属化织物增生的影响,从而确定了最佳预处理工艺.化学镀镍溶液以碱性的次亚磷酸钠为镀液,镀液在60℃的条件下者.考察了镀液pH值、施镀温度、氯化镍、次亚磷酸钠、柠檬酸钠、硼酸的用量,以及硫代硫酸钠浓度等因素对化学镀镍反应时间、镀速、增重率的影响,确定了最佳工艺.织物镀覆开始并经过一段时间后,反应会自动停止.对镀覆后镀液成分的分析表明,反应自发停止的原因是由于镀液pH值过低或镀液中次亚磷酸钠在施镀过程中被消耗,使其浓度下降到极低所致.该段时间定义为"反应时间",镀速用增重法,镀液成分用化学滴定法确定.该文首次采用在镀液化气中加入分散剂,并在搅拌的条件下进行化学镀,分别选用了扩散剂NNO、十二烷基苯磺酸钠、聚乙二醇4000作为分散剂,用扫描电子显微镜考察了分散剂对在织物上形成的金属镍晶粒的粒径尺寸的影响.上述分散剂单独使用无法得到纳米级晶粒,考虑到表面活性剂的协同作用,故对分散剂进行复配,结果表明,扩散剂NNO与聚乙二醇4000复配的镀液化学镀得到的金属镍晶粒粒径能达到纳米级.电磁波屏蔽性能测试,证明该纳米级晶粒镀镍织物比普通化学镀镍织物有更好的屏蔽效果,而且这种结构特征使该织物具有吸波频带宽、兼容性好、质量轻和厚度薄等特点.镀镍织物的抗菌效果测试证明该织物具有抗菌效果,这为已经形成的镀层具有纳米材料的特性提供了旁证.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34313]纳米级镀镍晶粒屏蔽织物的研究[/url]

  • 【分享】美研发出测量纳米级材料相互作用的探针

    美国加州大学洛杉矶分校17日表示,该校纳米系统科学主任保罗·维斯领导的研究小组开发出了研究纳米级材料相互作用的工具——双扫描隧道显微和微波频率探针,可用于测量单个分子和接触基片表面的相互作用。   过去50年中,电子工业界努力遵循着摩尔定律:每两年集成电路上晶体管的尺寸将缩小大约50%。随着电子产品尺寸的不断缩小,目前已到了需要制作纳米级晶体管才能继续保持摩尔定律正确性的地步。  由于纳米级材料和大尺寸材料所展现的特性存在差异,因此人们需要开发新的技术来探索和认识纳米级材料的新特征。然而,研究人员在研发纳米级电子元器件方面遇到的障碍是,人们没有相应的能力去观察如此小尺寸材料的特性。

  • 【资料】DelsaNano C 纳米级激光粒径仪

    我们公司新买台DelsaNano C 纳米级激光粒径仪,不知各位有没有用过引仪器,我们交流下注意、关键点:1,测粒径时,与稀释用的纯水,溶剂的粘度,屈折率有很大的关系,2,最好把稀释用的纯水,溶剂温度调整到所需的温度,如25度,更能检测出准确的结果,3,样品光强调到蓝色标,如果各位有更好的、更多的心得,希望能大家交流下,

  • 纳米级尺寸电子束斑测量

    纳米级尺寸电子束斑测量

    [b]1. [font=黑体]电子束尺寸测量的意义[/font][/b][font=宋体]通常电子束光刻([/font]EBL[font=宋体],[/font]Electron BeamLithography[font=宋体])的曝光工艺,需要根据电子束的辐照密度确定曝光时间,准确测量聚焦电子束的尺寸才能得到准确的电子束辐计量。[/font][font=宋体]电子束斑测量可作为扫描电子显微镜([/font]SEM[font=宋体],[/font]Scanning ElectronMicroscope[font=宋体])、透射电子显微镜([/font]TEM[font=宋体],[/font]Transmission Electron Microscope[font=宋体])电子光学参数调校依据,可作为[/font]EBL[font=宋体]关键工艺参数。[/font][img=,364,266]https://ng1.17img.cn/bbsfiles/images/2023/12/202312271753391454_3326_5849699_3.gif!w364x266.jpg[/img][font=黑体]电子束光刻[/font][b]2. [font=黑体]电子束尺寸测量的方法[/font][/b][font=宋体]([/font]1[font=宋体])成像法[/font][font=宋体]使用电子轰击荧光屏,通过观察荧光屏判断电子束尺寸,考虑到光学传递误差,通常可观察最小电子束斑约[/font]10um[font=宋体]。[/font][img=,126,191]https://ng1.17img.cn/bbsfiles/images/2023/12/202312271753446949_597_5849699_3.png!w157x239.jpg[/img][font=宋体]([/font]2[font=宋体])扫描法[/font][font=宋体]利用法拉第杯来测量电子束电流,挡板水平运动遮挡电子束流,同时监测法拉第杯中电流变化,根据电流的微分曲线可以直接定量测量电子束的宽度,对于系统的分辨率具有较高要求。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image005.jpg[/img][b]3. [font=黑体]阿米精控测量方案[/font][/b][font=宋体]阿米精控科技(山东)有限公司专注于纳米运动控制及超精密机电系统领域的创新设计及产品研发,是一家集研发设计、制造、销售于一体,拥有全自主知识产权的微纳测控及超精密自动化“系统级硬科技”公司。[/font]AttoMotion[font=宋体]纳米运动平台基于微纳柔性机构和压电执行器实现超高分辨力纳米运动,内置光栅[/font]/[font=宋体]电容微位移传感器,通过高性能纳米伺服系统实现闭环控制,具有亚纳米级运动分辨率、纳米级运动精度和高速、高动态轨迹扫描功能。[/font][img=,137,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image007.jpg[/img][img=,185,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg[/img][img=,133,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg[/img][font=宋体]技术特点:超高定位精度、多轴高动态协同联动、高刚度高负载、紧凑型结构设计、轴间运动学解耦设计、多运动模式(定位[/font]/[font=宋体]扫描)、可实现正置倒置的灵活应用、真空兼容性温度使用范围广、运动行程[/font]50~200[font='Cambria Math',serif]μ[/font]m[font=宋体]。[/font][font=宋体]应用领域:扫描电子显微镜、同步辐射光源、纳米操作、光纤定位和对准。[/font][b]3.1 [font=黑体]测量装置搭建[/font][/b][font=宋体]([/font]1[font=宋体])选用[/font]SEM[font=宋体],测试过程中拔掉偏转线圈控制线或者采用点扫模式,使得电子束位置固定。[/font][img=KYKY-EM8100场发射扫描电子显微镜,383,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg[/img] [table][tr][td=2,1] [align=center][font=宋体]扫描电镜([/font]SEM[font=宋体])详细参数[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]分辨率[/font][/align] [/td][td] [align=center]3.0nm@1KV[font=宋体]([/font]SE[font=宋体])[/font][/align] [align=center]2.5nm@30KV[font=宋体]([/font]BSE[font=宋体])[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]放大倍率[/font][/align] [/td][td] [align=center]6[font=宋体]倍[/font]-1000000[font=宋体]倍[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]电子枪[/font][/align] [/td][td] [align=center][font=宋体]肖特基场发射电子枪[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]加速电压[/font][/align] [/td][td] [align=center]0[font=宋体]~[/font]30kV[/align] [/td][/tr][/table][font=宋体]([/font]2[font=宋体])三轴并联压电扫描平台[/font][img=,202,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg[/img][img=,258,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png[/img] [img=,230,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png[/img][img=,401,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg[/img][font=宋体]([/font]3[font=宋体])弱电流放大器[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png[/img][font=黑体]可变增益弱电流放大器[/font][img=,481,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png[/img][font=宋体]([/font]4[font=宋体])位移台安装[/font][font=宋体]位移台与转台绝缘,与大地相接,法拉第杯与转台相连,接弱电流前放。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image027.jpg[/img][font=宋体]([/font]5[font=宋体])控制采集系统[/font][font=宋体]采用高动态数字微纳运动伺服器,电流和位置信息同步采集,采样率为[/font]10K/S[font=宋体],采集时间[/font]10s[font=宋体],纳米扫描台运动一个往复周期。[/font][img=,303,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image029.jpg[/img] [img=,177,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image031.jpg[/img][font=宋体]([/font]6[font=宋体])数据采集[/font][img=,512,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image033.jpg[/img][font=宋体]([/font]7[font=宋体])测试效果[/font][font=宋体]上方横线为硅片挡板边缘,中部方框为二次电子探测器信号。变亮时,电子被硅片挡住,增加了散射电子信号;变暗时,电子束落入法拉第杯,散射电子减小。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image034.gif[/img][b]3.2 [font=黑体]测量结果[/font][/b][font=宋体]平台拥有极高的运动精度,往复运动电流和位置曲线完美重合。利用电流和位移的微分曲线,进行高斯拟合可以直接得到电子束的测量宽度。如图所示:加速电压[/font]5kV[font=宋体],聚光镜值[/font]850[font=宋体],束斑半高宽[/font]32.4nm[img=,348,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image036.jpg[/img][img=,344,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image038.jpg[/img][font=宋体]此外,由于单次采集时间小于[/font]5[font=宋体]秒,还可以监控电子束的稳定性。如下图所示,来回测量过程中电子束发生漂移情况。[/font][img=,359,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image040.jpg[/img]

  • 高速实时非接触3D测量技术——0.001秒实时非接触动态测量,亚纳米精度

    高速实时非接触3D测量技术——0.001秒实时非接触动态测量,亚纳米精度

    数字全息显微镜DHM测量材料动态的3D形貌,亚纳米分辨率,基于菲涅尔衍射的数字全息重建技术 [table=100%][tr][td][img=动态3D细胞监测,690,138]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241018_01_1546_3.jpg!w690x138.jpg[/img]仅0.001秒即可测出物体三维形貌,并且是亚纳米的分辨率。不同于传统白光干涉仪、共聚焦显微镜、扫描探针轮廓仪等需要扫描的成像方式,DHM仅需0.001秒采集单张全息图即可测出物3D形貌信息,做到了快速动态监测。 和传统全息术不一样的是没有采用干板而是采用CCD记录全息图,全息图中 光强图:提供与传统显微镜一样对比度的图像 相位图:提供量化数值,得以对被测物体进行精确三维测量 该系统为预放大全息显微镜,其中的相位图解析中用到了大量的算法,实时相位解包裹技术 实时形貌测量的案例二:石墨烯薄膜受力形变实时测量[img=石墨烯薄膜受力形变,384,216]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241017_02_1546_3.gif!w384x216.jpg[/img][img=MEMS跟踪测量,690,389]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241017_03_1546_3.gif!w690x389.jpg[/img][/td][/tr][/table]

  • 【转帖】开发出纳米级超小型天线

    日本广岛大学的研究小组日前开发出纳米级超小型天线,它能够收发某个特定波段的电磁波。这种天线是广岛大学博士生小迫照和与教授鱼屋丰等共同开发的。天线宽75至125纳米、长500纳米,相当于把普通电视天线缩小到百万分之一。构成天线的5根“枝杈”是用金制作的,固定在透明的氧化硅板中。这种纳米级天线与普通天线工作原理相同。目前制成的这种天线能够收发波长400至800纳米的电磁波。如果改变天线“枝杈”的长度和配置,就可以收发不同波段的信号。鱼屋教授希望这项发明能够帮助开发新一代数据存取设备。此项成果已刊登在近日出版的《自然—光子学》杂志上。资料来源:[url]http://paper.sciencenet.cn//htmlpaper/20104261028215628913.shtm[/url]

  • Nature Communications:纳米级光学显微镜问世

    英国和新加坡研究人员1日报告说,他们制造出能够观测50纳米大小物体的光学显微镜,这是迄今观测能力最强的光学显微镜,也是世界上第一个能在普通白光照明下直接观测纳米级物体的光学显微镜。http://www.bioon.com/tech/UploadFiles_3081/201103/2011030214521841.jpg英国曼彻斯特大学研究人员和新加坡同行当天在新一期《自然·通信》杂志上报告了这项成果。由于光的衍射特性的限制,光学显微镜的观测极限通常约为1微米。研究人员通过为光学显微镜添加一种特殊的“透明微米球透镜”,克服了上述障碍,使这一极限达到50纳米,观测能力提高了20倍。论文第一作者王增波博士告诉新华社记者:“这是目前世界上唯一能在普通白光照明下直接观测纳米级物体的光学显微镜,是一个新的世界纪录。”

  • 扫描美国纳米生物专利技术

    扫描美国纳米生物专利技术  纳米生物技术是纳米技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。纳米生物技术所要研究的对象是生物分子、细胞、组织在纳米层次的结构变化,其主要的研究方向包括:生物材料(材料——组织介面、生物相容性材料),仪器(生物传感器、研究工具),治疗(药物和基因载体)等。  美国是世界上申请有关纳米技术专利最多的国家,搜索“纳米”可找到近8000个专利,日本排在其后,我国名列第三。相对而言,我国在纳米生物技术的理论研究和应用研究方面相比其他学科远远地走在了前面。为了更多地探知美国在纳米生物技术领域的研究现况,指导我国的研究策略,我们从公开申请的专利中去探知美国的研究状况,特别介绍一些国内研究人员比较感兴趣的技术和方法:

  • 【讨论】纳米级催化剂的过滤

    最近在做饮用水处理,选用的催化剂为纳米级的TiO2,文献中有选用Millipore或Whatman的过滤器来去除颗粒,求助各位大侠是否可行,或有其他什么方法?还有就是过滤器的价格如何,谢!!![em09505]

  • 【分享】三维显微激光拉曼光谱仪

    【分享】三维显微激光拉曼光谱仪

    三维显微激光拉曼光谱仪三维显微激光拉曼光谱仪装置Nanofinder30  Nanofinder30 三维显微激光拉曼光谱仪装置是日本首创,世界最初的分析装置。它能在亚微米到纳米范围内,测定物质化学状态的三维图像。它由共焦激光显微镜,压电陶瓷平台(或电动扫描器)和光谱仪组成。并能自选追加原子力显微镜和近场表面增强拉曼测定的功能。 最新测量数据[ 变形Si的应力测定]PDF刊登 用二维的平面分析来评价变形Si。空间分辨率130nm, 变形率0.01%(0.1cm偏移)。 半导体/电子材料(异状物,应力,化学组成,物理结构)薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造结晶体(单壁碳纳米管,纳米晶体)光波导回路,玻璃,光学结晶等的折射率变化生物学(DNA, 蛋白质, 细胞 组织等) 以亚微米级分辨率和三维图像,能分析物质的化学结合状态空间分辨率200nm(三维共焦点模式),50nm(二维TERS模式)能同时测定光谱图像(拉曼/萤光/光致荧光PL),共焦显微镜图像,扫描探针显微镜图像(AFM/STM)和近场表面增强拉曼图像(SERS)能高速度,高灵敏度地测定样品(灵敏度:与原来之比10倍以上)不需要测定前样品处理,在空气中能进行非破坏测定全自动马达传动系统的作用,测定简单 共焦显微镜模式不能识别结晶缺陷,然而光致荧光(PL)模式却能清楚地测到结晶缺陷 共焦激光显微镜模式的形状测定 光谱窗 560 nm 用光致荧光(PL)模式测到的结晶缺陷的光谱图像(560nm的三维映像) 用AFM和共焦显微拉曼法同时测定CNT,能判定它的特性 (金属,半导体)和纯度。 同时测定单壁碳纳米管(CNT)的原子力显微镜(AFM) 形貌图像和拉曼光谱图像的例子 :拉曼光谱: 激光488nm,功率1.5mW,曝光时间2 sec,物镜100×Oil, NA=1.35, 积分时间100 sec (AFM和拉曼图像测定时) AFM形貌图像(右上)表示了单壁碳纳米管混合物的各种形状结构。图像中用数字1到8来表示其不同形状。数字1-6测得了拉曼光谱(上图所示),判定为半导体CNT。但7-8测不到拉曼光谱,所以不是半导体CNT,而可能是金属CNT(可用He-Ne激光633nm验证)。最上面表示了RBM(173cm-1), G-band(1593cm-1)及D-band(1351cm-1)的拉曼光谱图像 综合激光器和光谱分析系统的长处,坚固耐用的复合设计,卓越的仪器安定性,是纳米技术测定装置中的杰出产品。 ※日本纳米技术2004大奖“评价和测量部门”得奖. ※日本第16届中小企业优秀技术和新产品奖 “优良奖”得奖. 光学器件配置图Nanofinder30 [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122565_1634361_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122566_1634361_3.jpg[/img][~122567~][~122568~]

  • 三维扫描工程逆向技术应用的行业范围

    三维扫描工程逆向技术应用的行业范围模具样品开发:汽机车类、家电制品、运动器材、制鞋、玩具、陶瓷等。快速原型制作:古董、人像、艺术品、卡通人物、玩具等。人体形状测量:人体外形测量、医疗器材制作等。造型设计:立体动画、多媒体虚拟实景、广告动画等。1 三维扫描工程逆向技术对国内的汽车制造业具有重要意义目前,我国成为汽车消费大国,但汽车设计与制造与国外还有相当差距,为了提高产品档次,国内企业大量进口了国外的配件或成品车,然而单纯引进成品而不注意引进技术,对我国汽车行业的技术提升是相当不利的,且会减少企业的利润空间。因此,企业在进口的同时,还要能够善于对引进的技术进行深人研究,探索引进产品中的关键技术并进行消化吸收和改进创新,对于车型的更新,最主要的工作就是获得原有车型的几何模型(其中大型覆盖件的设计是整个新车型开发的关键),基于逆向技术(三维扫描工程技术)、CAD/CAM技术(曲面构建、模型重建)是目前获取几何模型应用最广的方法。长沙多维测量设备有限公司生产的三维动态、高速扫描系统是理想的选择。运用三维扫描工程可以获得原有零件的三维数据,建构出三维模型,如果把此图形编译成刀路加工代码,就可以复制生产出和原零件一样的产品了;再根据国情或者实际需求,在此三维模型上进行修改创新,可以设计成更符合国内习惯或者具有其它功能的新产品。可见,逆向工程技术对于加速我国汽车制造业的发展具有非常重要的现实意义,是提高我国汽车制造技术水平、缩短与发达国家差距的一个捷径。2 基于三维扫描工程逆向技术的玩具设计与生产目前,我国中、小玩具加工企业大多是根据客户提供的图形设计生产玩具,客户提供的图片多属二维平面图,且造型各不相同,设计人员看图裁剪制作,并配色加工样品,样品制成后再与图片对照作修改,因而,主要依赖设计人员的空间想象力和设计经验,一个样品须经多次修改才能定型,设计手段原始,导致产品开发周期长,成本高,缺乏市场竞争优势。借助于三维扫描逆向工程技术,依据二维图片,利用油泥等材料进行三维实体模型制作,通过三维数据测量技术将实物(油泥等)模型表面数字化,再利用反求软件进行曲面重构,生成三维CAD模型。这样可以从根本上更新玩具的设计手段,缩短产品开发周期,提高设计质量。长沙多维测量设备有限公司生产的转台式的激光扫描仪就是针对这样的客户而设计的,操作简单,价格实惠。3 基于三维扫描工程的鞋楦逆向设计,以实现量脚订制鞋楦是制鞋的基础和重要模具,鞋楦作为鞋子的母体,不仅决定了鞋子的长短肥瘦和造型,还决定了鞋子穿着舒适性,因此,鞋楦的形状至关重要。每个人的脚的形状各不一样,要想最大程度的实现量脚订制,每人制作一个鞋楦,是不切实际的。而借助于逆向工程却可以实现。将已有的标准鞋楦进行三维测量,将模型数据化,再用相关软件对鞋楦曲面进行三维实体造型,得到标准鞋楦的三维图形。利用造型设计工具,根据顾客的脚型数据改动鞋楦的轮廓和截面特征,并据此对脚型的实测数据进行修改,就可以得到新的鞋楦造型数据,然后生成加工代码就可以制造鞋楦了。这样人们就可以量脚订制出完全符合自己脚形的鞋子了(鞋楦的三维数字化测量系统)。长沙多维测量设备有限公司生产的台式抄数机维您提供最优质、简便的方案,低廉的投入,超值的回报。4 三维扫描工程逆向技术在现代服装生产行业大有用途服装合体性是服装生产的一大关键,也是消费者最为关心的一项指标。而目前,服装的合体性还不能很好的满足消费者的需求,量身定做还主要依靠传统的人工测量方法,实现速度比较慢。如果应用三维扫描工程逆向技术,采用三维扫描仪进行人体尺寸的测量,扫描输出的数据可直接用于服装设计软件,为实现量身定制、实现服装电子商务提供了可能。同时,利用这种方法,还可以建立人体数据库,以便对人体的尺寸、体形特征进行分析,从而为更好的制定服装号型提供依据;也可以建立个性化虚拟平台,在虚拟平台上进行交互式立体设计,同时配合相应软件可生成二维的服装样板片,为原型板的建立和服装样板的系列化设计提供快捷、便利的研究方案。三维扫描工程逆向技术的运用使服装生产和设计更具个性化和人性化,提高了服装的适体性,是实现现代化、数字化服装批量生产,个性化生产及服装电子商务的有效手段,是服装工业迅速发展建立快速反应模式的必要技术支撑。5 需要模压成型的纺织品的成型模具的制造有些纺织品需要根据最终产品的形状进行加工,以形成整体的无缝立体形态,此时就需要采用模压成型(CompressionMolding)的方法。而用于模压成型的成型模具对于产品成型至关重要,要求它与制成品具有良好的形状适应性和尺寸精度,而此类制成品的形状往往比较特殊,由不规则曲面构成,用传统的测量方法很难实现良好的形状再现,此时,借助于三维扫描工程逆向技术进行设计制造便可事半功倍。目前模压纺织制品主要见于妇女内衣、泳衣、运动装,以及一些医用、军用、航空航天用、汽车用、建筑用产品及运动器材,如罩杯、垫肩、头盔、潜水镜、航空服装、座椅垫、医用矫形器件、建筑构件等。6 三维扫描工程逆向技术对人体还原起重大作用口腔组织的数据采集是计算机辅助设计与计算机辅助制造(CAD/CAM)系统的重要组成部分三维扫描技术具有使用方便、抗干扰能力强、自动立体重构、可重复性强等优点.国内外学者应用三维扫描仪构建了数字化的牙颌模型、眼、耳、鼻等颌面赝复体,应用三维扫描仪重建牙预备体并分析其获取数据的可靠性。目前,只有我国能够真正实现了把三维颅骨扫描三维颅面复原和三维颅面鉴定技术集于一身,并应用于刑侦实案检验中,为侦破重大涉命案件提供身源线索和证据。与世界同类研究相比,该项技术处于国际领先水平。7 三维扫描工程逆向技术对文物考古方面有意义博物馆是一个地区甚至国家文明发展程度的重要标志,当代世界博物馆的发展趋势表明,现代博物馆不再是简单的文物标本的收藏、展示、研究机构,而是应该成为面向社会、服务于公众的文化教育机构和信息资料咨询机构。目前我国的博物馆往往在这一方面比较忽视,要改变这种现象,必然涉及到博物馆展览模式的改变。以往的博物馆展览模式由于受到开放时间的规定和展览场地的限制,它运作的舞台已经越来越显得狭小、它发展的空间也越来越显得局限而且没有余地。比如,目前博物馆的陈列多是以展品配说明牌、图片的形式面向观众,但是随着社会的发展和人们知识水平的提高,观众已不再满足于只欣赏美妙的展品,而更多的是想探求藏品背后所蕴藏的文化积淀,甚至渴望将某一部分特别喜爱的文化层面移出博物馆,溶入到自己的生活中去。为了适应世界文化潮流,满足社会的文化需要,计算机技术的应用,是最有效的手段之一,因此博物馆的数字化代表着世界博物馆社会化发展的方向。随着三维扫描技术的发展,三维数字模型对文物考古的修复、复制、测绘

  • 【2014诺奖回顾】光学显微纳米新时代

    【2014诺奖回顾】光学显微纳米新时代

    http://ng1.17img.cn/bbsfiles/images/2014/12/201412191620_527962_2972800_3.jpg 1873年,显微学家厄恩斯特•阿贝提出“传统光学显微镜分辨率为不会超过0.2微米”的物理限制。大约一个半世纪之后,来自美国的埃里克•白兹格(Eric Betzig)和威廉姆•莫尔纳尔(William Moerner)以及德国的斯特凡•赫尔(Stefan Hell)成功突破了这一限制,他们利用荧光分子,发明了一种超级分辨率荧光显微镜,从此开启了光学显微镜的纳米时代,正因如此,三人荣获2014年诺贝尔化学奖。 该显微镜融合了另外两种显微镜的成像原理,其一是2000年斯特凡•赫尔发明的受激发射损耗(STED)显微镜,其原理是利用两条激光束,一条激发荧光分子使其发出荧光,另一条抵消除纳米级荧光外的所有荧光;这样一纳米一纳米地扫描样品,所得图像的分辨率突破了阿贝的物理限制。其二是2006年埃里克•白兹格和威廉姆•莫尔纳尔发明的单分子显微镜,其工作原理是开关单分子荧光,科学家们反复多次对扫描同一样品,每次只让几个分子发出荧光,叠加所有图像后得到的致密图像就有纳米级分辨率。如今,纳米显微学已经广泛用于全世界,深入人们生活的各个方面,科学家们从此能了解更多活细胞中分子的细节,从而为改善人类生存环境做出更大贡献。

  • 【分享】世界首个三维等离子标尺制成 在纳米尺度测结构

    最近,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。研究论文发表在最新一期《科学》杂志上。  随着电子设备和生物学研究对象越来越小,人们需要一种能测量微小距离和结构变化的精确工具。此前有一种等离子标尺,是基于电子表面波(也叫“等离子体”)开发出的一种线性标尺。当光通过贵金属,如金或银纳米粒子的限定维度或结构时,就会产生这种等离子体或表面波。但目前的等离子标尺只能测量一维距离长度,在测量三维生物分子、软物质作用过程方面还有很大局限,其中等离子共振由于辐射衰减而变弱,多粒子间的简单耦合产生的光谱很模糊,很难转换为距离。  而新型三维等离子标尺克服了上述困难。该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。   研究人员还用高精度电子束光刻和叠层纳米技术制作了一系列样品,将三维等离子标尺放在玻璃的绝缘介质中,嵌入样品进行测量,实验结果与计算出来的数据高度一致。与其他分子标尺相比,这种三维等离子标尺建立在化学染料和荧光共振能量转移的基础上,不会闪烁也不会产生光致褪色,在光稳定性和亮度上都很高。  谈到应用前景,该研究领导者、伯克利实验室负责人鲍尔·埃利维塞特说,这种三维等离子标尺是一种转换器,可将其附着在DNA或RNA链多个位点,或放在蛋白质、多肽的不同位置,再现复杂大分子的完整结构和生物过程,追踪这些过程的动态演变。(科技日报)

  • 【讨论】水体中纳米级催化剂颗粒的去除

    最近在做饮用水处理,选用的催化剂为纳米级的TiO2,文献中有选用Millipore或Whatman的过滤器来去除颗粒,求助各位大侠是否可行,或有其他什么方法?还有就是过滤器的价格如何,谢!!![em09505]

  • 浮子流量计与纳米级碳酸钙应用概述

    国内外微细碳酸钙浮子流量计(PCC)与纳米级碳酸钙应用概述     在美国、日本、西欧等发达国家中,造纸消费 PCC 占各行业首位,而中国目前处于第三四位。   在造纸工业中,随着造纸工艺过程中的施胶技术由酸性施胶向中-碱性施胶转变,为碳酸钙的应用提供了一个巨大的潜在市场。碳酸钙用做造纸填料白度高,光散射性好,添加后的纸张有较高的松密度,良好的可塑性和柔软性,纸张表面细腻,可大大改善纸张性能,使纸厂获得明显的经济效益。所以,欧美和日本的造纸厂大多从酸性施胶改为中-碱性施胶工艺。近年来,中国造纸行业在造纸技术上也开始由酸性施胶向中性施胶技术转变,原轻工部已将中-浮子流量计碱性施胶技术列入国家“八五”重点推广项目之一,这就要求我们只有不断开发碳酸钙新产品,才能适应造纸 行业的需求。     轻质碳酸钙在碱性造纸中主要用做填料,也有少部分用做颜料。广泛用于不含磨木浆的纸浆市场,比高岭土、重钙具有极佳物理性能,如高透明、高密度、高膨胀能力、粒度均匀、颜料牢固等。以目前世界最大的造纸生产国和纸品消费国美国为例,2005 年造纸填料选用轻质碳酸钙的 比例达到 65%,增长率为4%。美国超细碳酸钙主要应用于造纸和涂料,其中包括多种晶型的纳 米碳酸钙产品。日本 1952 年研制出了平均粒活为 0.04um的超细碳酸钙,1983 年又研制出了平均 粒活为 0.005um 的超细碳酸钙。     造纸工艺是 PCC 最大用户,占世界 PCC 使用量的 73%, PCC 在造纸上的两个不同工艺用途是纸张填料和纸张涂料。其主要用在填充无磨木浆涂敷纸(WFO),最高填充量可达到 25%, 且用量有望增加。     纳米级碳酸钙作为造纸填料具有高蔽光性、高亮度,提高纸制品的白度和蔽光性;还具有高膨胀性,能使造纸厂使用更多的填料量,而少用纸浆,大幅度降低原料成本;粒度细小、均匀,对纸机的磨损小,并使生产的纸制品更加均匀、平整;吸油值高,能提高彩色纸张的颜料牢固性等优点。玻璃管浮子流量计目前纳米级碳酸钙在造纸工业上的应用主要在高档卫生巾、纸尿布及家庭用护理成人失 禁垫片、卷烟纸及造纸涂料等。

  • 【原创大赛】扫描探针显微镜在纳米力学测试中的应用

    【原创大赛】扫描探针显微镜在纳米力学测试中的应用

    [b] [/b][color=windowtext][b] 扫描探针显微镜在纳米力学测试中的应用[/b][/color][b] [/b][color=windowtext][b] [/b][/color][b] [/b][color=windowtext][b]一、什么是扫描探针显微镜[/b][/color][b] [color=windowtext] 扫描探针显微镜([/color][color=windowtext]Scanning Probe Microscope, SPM[/color][color=windowtext])是在扫描隧道显微镜基础上发展起来的各种新型探针显微镜的统称。是国际上近年发展起来的表面分析仪器,其分辨率高、实时、实空间、原为成像,对样品无特殊要求,可在大气、常温环境甚至溶液中成像,同时具备纳米操纵及加工功能等。广泛应用于纳米科技、材料科学、物理、化学和生命科学等领域,并取得许多重要成果。[/color][color=windowtext] [/color][color=windowtext]二、扫描探针显微镜特点[/color]1、 [color=windowtext]SPM[/color][color=windowtext]具有极高的分辨率[/color]2、 [color=windowtext]SPM[/color][color=windowtext]得到的是实时的、真实的样品表面的高分辨三维图像。[/color]3、 [color=windowtext]SPM[/color][color=windowtext]可以观察单个原子层的局部表面结构。而不是体相或整个表面的平均性质。[/color]4、 [color=windowtext]SPM[/color][color=windowtext]使用环境宽松,可在大气、低温、常温、高温下工作。[/color] [/b][color=windowtext][b]三、扫描探针显微镜在纳米力学测试中原位成像的应用[/b][/color][b] [/b][color=windowtext][b]下面以某系非晶材料为例,说一说扫描探针显微镜的具体应用[/b][/color][b] 1、 [color=windowtext]采用某公司超纳米压痕仪对非晶样品表面纳米压入[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b]压入参数:[/b][/color][b] [/b][table][tr][td][b] [/b][color=windowtext][b] [/b][/color][b] [/b][/td][td][b] [color=windowtext]加载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]保载时间[/color][color=windowtext](S)[/color] [/b][/td][td][b] [color=windowtext]卸载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]最大载荷([/color][color=windowtext]mN)[/color] [/b][/td][/tr][tr][td][b] [color=windowtext]点[/color][color=windowtext]1[/color] [/b][/td][td][b] [/b][color=windowtext][b]60[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]10[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]60[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]30[/b][/color][b] [/b][/td][/tr][/table][b] [color=windowtext]加卸载曲线[/color][color=windowtext]图[/color][color=windowtext]([/color][color=windowtext]一[/color][color=windowtext])[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][img=,690,563]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300951_01_2224533_3.jpg[/img][/b][/color][b][color=windowtext]通过[/color][color=windowtext]SPM[/color][color=windowtext]原位成像[/color][color=windowtext]图(二、三)[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][color=windowtext][b][img=,401,470]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300951_02_2224533_3.jpg[/img][img=,690,442]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300951_03_2224533_3.jpg[/img][/b][/color][b] [/b][color=windowtext][b] [/b][/color][b] [color=windowtext] SPM[/color][color=windowtext]原位成像压痕图明显看到三角形边出现似有规律性台阶堆积现象,然而加载曲线比较光滑,丝毫没有异像。于是通过改变在加载速率[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b]压入参数:[/b][/color][b] [/b][table][tr][td][b] [/b][color=windowtext][b] [/b][/color][b] [/b][/td][td][b] [color=windowtext]加载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]保载时间[/color][color=windowtext](S)[/color] [/b][/td][td][b] [color=windowtext]卸载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]最大载荷([/color][color=windowtext]mN)[/color] [/b][/td][/tr][tr][td][b] [color=windowtext]点[/color][color=windowtext]2[/color] [/b][/td][td][b] [/b][color=windowtext][b]3[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]10[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]60[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]30[/b][/color][b] [/b][/td][/tr][/table][b] [color=windowtext]加载曲线[/color][color=windowtext]图(四)[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][color=windowtext][b][img=,690,567]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300952_01_2224533_3.jpg[/img][/b][/color][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][b] [color=windowtext]SPM[/color][color=windowtext]原位成像[/color][color=windowtext]图(五、六)[/color][img=,401,469]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300953_01_2224533_3.jpg[/img][img=,690,437]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300953_02_2224533_3.jpg[/img][/b][color=windowtext][b] [/b][/color][b] [color=windowtext]四、结论[/color][color=windowtext] 图(五、六)图(二、三)现象基本一致,然而采用低速率的加载曲线,出现了明显小平台,在排除外界震动等因素的情况下,我认为在采用仪器压入法研究材料的纳米力学性能时,常规加载速率很可能由于仪器的灵敏度导致无法捕捉到更多的微观信息,如果没有借助[/color][color=windowtext]SPM[/color][color=windowtext]成像(为什么没有推荐扫描电镜的原因,因为扫描电镜属于二次电子成像,无法得到样品表面凹凸高度信息)很可能就发现不了非晶材料的这种滑移等微观信息,不能更深入的研究材料的纳米力学性能。这就是为什么在仪器压入法进行纳米力学性能测试的时候引入[/color][color=windowtext]SPM[/color][color=windowtext]原位成像技术。[/color] [color=windowtext]SPM[/color][color=windowtext]在纳米尺度上是人类观察、改造世界的一种新工具,目前被广发应用于教学、科研及工业领域,特别是半导体集成电路、光盘工业、胶体化学、医疗检测、存储磁盘、电池工业、光学晶体等领域;随着[/color][color=windowtext]SPM[/color][color=windowtext]的不断发展,它正在进入食品、石油、地质、矿产及计量领域。[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][color=windowtext][/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制