当前位置: 仪器信息网 > 行业主题 > >

液化炉析晶炉梯度炉

仪器信息网液化炉析晶炉梯度炉专题为您提供2024年最新液化炉析晶炉梯度炉价格报价、厂家品牌的相关信息, 包括液化炉析晶炉梯度炉参数、型号等,不管是国产,还是进口品牌的液化炉析晶炉梯度炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液化炉析晶炉梯度炉相关的耗材配件、试剂标物,还有液化炉析晶炉梯度炉相关的最新资讯、资料,以及液化炉析晶炉梯度炉相关的解决方案。

液化炉析晶炉梯度炉相关的论坛

  • 石墨炉测镉的温度梯度试验

    石墨炉测镉的温度梯度试验

    看到本版冰山版友关于石墨炉测镉的温度梯度试验http://bbs.instrument.com.cn/shtml/20140117/5160468/,感到很有意思;于是我利用今天下午半天的时间,用石墨炉对镉的单标液(2ppb)进行了一个原子化温度梯度的试验。一方面重新演绎一遍冰山版友的试验,另一方面也想通过我的试验,能给大家提供一个有趣味的话题。仪器:ZA3000型背景扣除方式:塞曼升温程序:干燥:80°~140° 30秒;灰化:400°~400° 15秒;原子化:1100°~2400°之间改变 5秒;清除:2000°~2500°。石墨管:C型高阻石墨管样品:Cd标液,浓度2PPb,进样量 20微升,每种测量模式重复三次测量。基体改进剂:磷酸二氢铵(2%),进样量5微升。http://ng1.17img.cn/bbsfiles/images/2014/01/201401231636_488710_1602290_3.jpg分析提示:(1)采用峰高测量模式,1500°和1700°是最佳结果,相对标准偏差最小;所以这也就是文献推荐的温度的出处。(2)峰高模式下,不同的原子化温度所得到的吸光值并不是一味地下滑,而是呈现U形。(3)采用峰面积模式吸光值也不是一味地下滑,在1700度~2400度之间基本保持不变,呈现L形。讨论问题:为何采用不同的测量模式所得到的吸光值的变化趋势不一致?

  • 【讨论】看图说话,横纵向加热石墨炉,谁的温度梯度对样品影响大

    【讨论】看图说话,横纵向加热石墨炉,谁的温度梯度对样品影响大

    http://ng1.17img.cn/bbsfiles/images/2011/05/201105231514_295682_1621344_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/05/201105231515_295684_1621344_3.jpg日立横向与纵向加热石墨炉原子化瞬间的图片,看看图,单位距离上横向加热的温度梯度更大点!样品是加在石墨管正中心的,一般也就加20微升左右,样品在管子底部铺开会有一定面积,因为管子是桶形的,纵向铺开的长度会比横向大点儿,但纵向加热管在中心的温度梯度和横向管比要小,所以两种加热方式影响似乎应该差不多啊。

  • 【原创】岛津LC-solution梯度曲线问题

    大家好,我有一套岛津HPLC,工作站是LC-Solution,2个LC-10AD 泵组成高压梯度,但是是当我检查梯度准确性是,发现线性梯度的曲线是弯曲的,而我的梯度曲线值“curve” 是默认的“0”,2个泵流速是准确的,请问是不是梯度曲线的问题啊?改设置为多少呢?

  • 天然气与家用液化气、煤气的区别

    天然气:又称油田气、石油气、石油伴生气。天然气的化学组成及其物理化学特性因地而异:主要成分是甲烷,还含有少量乙烷、丁烷、戊烷、二氧化碳、一氧化碳、硫化氢等。无硫化氢时为无色无臭易燃易爆气体,密度多在0.6~0.8g/cm3,比空气轻。通常将含甲烷高于90%的称为干气,含甲烷低于90%的称为湿气。 天然气 广义指埋藏于地层中自然形成的气体的总称。但通常所称的天然气只指贮存于地层较深部的一种富含碳氢化合物的可燃气体,而与石油共生的天然气常称为油田伴生气。天然气由亿万年前的有机物质转化而来,主要成分是甲烷,此外根据不同的地质形成条件,尚含有不同数量的乙烷、丙烷、丁烷、戊烷、己烷等低碳烷烃以及二氧化碳、氮气、氢气、硫化物等非烃类物质;有的气田中还含有氦气。天然气是一种重要的能源,广泛用作城市煤气和工业燃料;在70年代世界能源消耗中,天然气约占 18%~19%。天然气也是重要的化工原料。 液化石油气是炼油厂在进行原油催化裂解与热裂解时所得到的副产品。液化石油气热值为26000大卡/立方米。 催化裂解气的主要成份如下(%):氢气5~6、甲烷10、乙烷3~5、乙烯3、丙烷16~20、丙烯6~11、丁烷42~46、丁烯5~6,含5个碳原子以上的烃类5~12。热裂解气的主要成份如下(%):氢气12、甲烷5~7、乙烷5~7、乙烯16~18、丙烷0.5、丙烯7~8、丁烷0.2、丁烯4~5,含5个碳原子以上的烃类2~3。这些碳氢化合物都容易液化,将它们压缩到只占原体积的1/250~l/33,贮存于耐高压的钢罐中,使用时拧开液化气罐的阀门,可燃性的碳氢化合物气体就会通过管道进入燃烧器。点燃后形成淡蓝色火焰,燃烧过程中产生大量热(发热值约为92100kJ/m3~121400kJ/m3))。 煤气因来源不同,有不同的名称:把煤干馏而得的气体叫焦炉煤气;把煤(或焦炭)在不完全条件下燃烧可得到发生炉煤气;若高温的炭与水蒸气作用,能得到水煤气;炼铁高炉排出的气体中还有相当多的可燃成分,叫高炉煤气。发生炉煤气和高炉煤气主要是一氧化碳;焦炉煤气则富含氢气、甲烷,还有一氧化碳;水煤气主要是一氧化碳和氢气。北京煤制管道气的热值是4000大卡/立方米。 这三种气体的热值:液化气zui高,天然气次之,城市煤气较低。所以使用这三种气体的灶具等是不一样的,不能直接互换使用。

  • 天然气与家用液化气、煤气的区别

    天然气:又称油田气、石油气、石油伴生气。天然气的化学组成及其物理化学特性因地而异:主要成分是甲烷,还含有少量乙烷、丁烷、戊烷、二氧化碳、一氧化碳、硫化氢等。无硫化氢时为无色无臭易燃易爆气体,密度多在0.6~0.8g/cm3,比空气轻。通常将含甲烷高于90%的称为干气,含甲烷低于90%的称为湿气。 天然气 广义指埋藏于地层中自然形成的气体的总称。但通常所称的天然气只指贮存于地层较深部的一种富含碳氢化合物的可燃气体,而与石油共生的天然气常称为油田伴生气。天然气由亿万年前的有机物质转化而来,主要成分是甲烷,此外根据不同的地质形成条件,尚含有不同数量的乙烷、丙烷、丁烷、戊烷、己烷等低碳烷烃以及二氧化碳、氮气、氢气、硫化物等非烃类物质;有的气田中还含有氦气。天然气是一种重要的能源,广泛用作城市煤气和工业燃料;在70年代世界能源消耗中,天然气约占 18%~19%。天然气也是重要的化工原料。 液化石油气是炼油厂在进行原油催化裂解与热裂解时所得到的副产品。液化石油气热值为26000大卡/立方米。 催化裂解气的主要成份如下(%):氢气5~6、甲烷10、乙烷3~5、乙烯3、丙烷16~20、丙烯6~11、丁烷42~46、丁烯5~6,含5个碳原子以上的烃类5~12。热裂解气的主要成份如下(%):氢气12、甲烷5~7、乙烷5~7、乙烯16~18、丙烷0.5、丙烯7~8、丁烷0.2、丁烯4~5,含5个碳原子以上的烃类2~3。这些碳氢化合物都容易液化,将它们压缩到只占原体积的1/250~l/33,贮存于耐高压的钢罐中,使用时拧开液化气罐的阀门,可燃性的碳氢化合物气体就会通过管道进入燃烧器。点燃后形成淡蓝色火焰,燃烧过程中产生大量热(发热值约为92100kJ/m3~121400kJ/m3))。 煤气因来源不同,有不同的名称:把煤干馏而得的气体叫焦炉煤气;把煤(或焦炭)在不完全条件下燃烧可得到发生炉煤气;若高温的炭与水蒸气作用,能得到水煤气;炼铁高炉排出的气体中还有相当多的可燃成分,叫高炉煤气。发生炉煤气和高炉煤气主要是一氧化碳;焦炉煤气则富含氢气、甲烷,还有一氧化碳;水煤气主要是一氧化碳和氢气。北京煤制管道气的热值是4000大卡/立方米。 这三种气体的热值:液化气zui高,天然气次之,城市煤气较低。所以使用这三种气体的灶具等是不一样的,不能直接互换使用。

  • 天然气与家用液化气、煤气的区别

    天然气:又称油田气、石油气、石油伴生气。天然气的化学组成及其物理化学特性因地而异:主要成分是甲烷,还含有少量乙烷、丁烷、戊烷、二氧化碳、一氧化碳、硫化氢等。无硫化氢时为无色无臭易燃易爆气体,密度多在0.6~0.8g/cm3,比空气轻。通常将含甲烷高于90%的称为干气,含甲烷低于90%的称为湿气。 天然气 广义指埋藏于地层中自然形成的气体的总称。但通常所称的天然气只指贮存于地层较深部的一种富含碳氢化合物的可燃气体,而与石油共生的天然气常称为油田伴生气。天然气由亿万年前的有机物质转化而来,主要成分是甲烷,此外根据不同的地质形成条件,尚含有不同数量的乙烷、丙烷、丁烷、戊烷、己烷等低碳烷烃以及二氧化碳、氮气、氢气、硫化物等非烃类物质;有的气田中还含有氦气。天然气是一种重要的能源,广泛用作城市煤气和工业燃料;在70年代世界能源消耗中,天然气约占 18%~19%。天然气也是重要的化工原料。 液化石油气是炼油厂在进行原油催化裂解与热裂解时所得到的副产品。液化石油气热值为26000大卡/立方米。 催化裂解气的主要成份如下(%):氢气5~6、甲烷10、乙烷3~5、乙烯3、丙烷16~20、丙烯6~11、丁烷42~46、丁烯5~6,含5个碳原子以上的烃类5~12。热裂解气的主要成份如下(%):氢气12、甲烷5~7、乙烷5~7、乙烯16~18、丙烷0.5、丙烯7~8、丁烷0.2、丁烯4~5,含5个碳原子以上的烃类2~3。这些碳氢化合物都容易液化,将它们压缩到只占原体积的1/250~l/33,贮存于耐高压的钢罐中,使用时拧开液化气罐的阀门,可燃性的碳氢化合物气体就会通过管道进入燃烧器。点燃后形成淡蓝色火焰,燃烧过程中产生大量热(发热值约为92100kJ/m3~121400kJ/m3))。 煤气因来源不同,有不同的名称:把煤干馏而得的气体叫焦炉煤气;把煤(或焦炭)在不完全条件下燃烧可得到发生炉煤气;若高温的炭与水蒸气作用,能得到水煤气;炼铁高炉排出的气体中还有相当多的可燃成分,叫高炉煤气。发生炉煤气和高炉煤气主要是一氧化碳;焦炉煤气则富含氢气、甲烷,还有一氧化碳;水煤气主要是一氧化碳和氢气。北京煤制管道气的热值是4000大卡/立方米。 这三种气体的热值:液化气zui高,天然气次之,城市煤气较低。所以使用这三种气体的灶具等是不一样的,不能直接互换使用。

  • 石油液化气分析专用气相色谱仪使用领域你们知道哪些么

    石油液化气分析专用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中石油液化气的使用领域你们知道有哪些么  1、有色金属冶炼  有色金属冶炼中要求燃料热质稳定,无燃炉产物,无污染,而液化石油气都具备了这些条件。液化石油气被加热气化后,可以方便地引入冶炼炉燃烧。山东金升有色金属集团公司已将液化石油气成功地用于德国克虏伯熔炼炉的铜冶炼工艺,代替了原煤气燃烧工艺,减少了硫、磷等杂质的危害,提高了铜材质量。窑炉焙烧  2、相关器械  中国的各种工业窑炉和加热炉历来以烧煤为主,这不仅造成能源的浪费,排出的烟气也严重污染着环境。为此,国家有关部门提出中国能源今后发展任务是:优化能源结构,建立世级清洁、安全、的能量供应体系,建立能源技术发展促进机制等。为适应这一任务的要求,许多工业窑炉和加热炉改用液化石油气作燃料,如用液化石油气来烧瓷制瓷砖 用液化石油气烘焙轧制薄板等,既减少了对空气的污染,又大大提高了产品的烧制质量。  3、汽车燃料  据2000年中国城市环境状况公告显示,监测的338个城市中,超过国家大[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量二级标准的城市占到63。5%,其中超过三级的有112个,中国大气污染已由工业废物、煤烟气型向光化学烟雾型转变,大城市中汽车排放尾气成为大气的主要污染源之一。目前,城市空气污染源中约有70%来自汽车的废气排放。为解决这一问题,自20世纪末,中国各大中城市相继建起了汽车加气站,用液化石油气替代汽油作汽车燃料,这一燃料品种的改变,极大地净化了城市空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,也是液化石油气利用的又一大发展方向。居民生活  居民生活燃用液化石油气主要有管道输送和瓶装供给两种方式。1.通输送:管道输送方式主要集中在大中城市进行,它是由城市燃气公司把液化石油气与空气、液化石油气与煤气或液化石油气与化肥厂排放的空气等混合后,通过管理直接输送到居民家中使用,目前,许多城市都实现了这种供应形式。2.装供给:瓶装供给是通过一个密封钢瓶将液化石油气由储配站分配到各家各户,作为家  4、液化石油气  庭灶具的供气源,它起源于20世纪60年代初,早是在炼油厂和几个工业城市使用,现已发展到乡镇农村。在民用部地区就建有从事钢瓶供气的液化石油气储配站一万多个,有的个别乡镇平均建有2个以上。  由此可见,液化石油气的使用范围愈来愈广,使用量愈来愈大,发展愈来愈快。因此,加强对液化石油气知识的宣传学习,保证液化石油气的安全使用,是非常必要和迫切需要的。

  • 液相不出目标峰,梯度条件摸索

    我做的是样品中的黄酮定性定量,试了许多文献的方法,只有芦丁出峰,但按理说应该还有槲皮素、山奈酚等等,一个是因为其他品种的样品有,另一个是总黄酮含量大小和芦丁含量大小不一致。在我尝试了浓缩、纯化、酸水解都不行之后,我开始摸索液相条件我看了社区的一些精华帖,选定了0-48min,5%-95%乙腈(另一个是1%乙酸),打算先测一下进样体积和流速的影响,结果发现在这个梯度下,无论怎么换别的,只有两分钟左右的溶剂峰,其余一个峰都没有。所以,我觉得可能得用分段的梯度,但是这个分段怎么分,每一段的流动相占比我不知道该怎么设置,于是就胡乱设置了一下。比如48min平分成六段,一段8分钟,让乙腈从5%开始往上升,升到100%,再走一个初始比例。我想问的是:1. 我上面的思路是对的吗?2. 大家知道梯度怎么分段设置吗?3. 有的方法混标跑的很好,槲皮素那些都能出峰,但是样品就是不出槲皮素的峰,这是不是说明我样品里就是没有这些东西?4. 我现在尝试分析别人的梯度,比如他们的槲皮素8分钟出峰,而梯度是0-10min,30-40%乙腈,这能不能说明,(40-30)/10*8+30=38,38%的乙腈可以洗脱槲皮素,我应该用38%左右的乙腈多走一会?

  • 【求助】色谱柱换了 梯度洗脱液是否需要换 有必要吗

    [em24] 梯度洗脱液A :9%乙腈2%乙酸20ug/ml EDTA混合水溶液;B液:80%乙腈 2%乙酸20ug/ml EDTA混合水溶液。 Phenomenex Luna 5 μm Phenyl-Hexyl column of dimensions 250 mm ¥ 4,6 mm, fitted with a Phenomenex SecurityGuard 2) 4 mm ¥ 3,0 mm Phenyl-Hexyl cartridge. 苯乙基柱如果换成C18(ODS)柱 silica Zorbax Rx-C18 column with 4.6mm×250mm (i.d.×length) and 5μm nominal particle size。 梯度洗脱液是否有必要换?

  • 气相色谱仪中石油液化气的使用领域介绍

    石油液化气分析专用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中石油液化气的使用领域你们知道有哪些么1、有色金属冶炼有色金属冶炼中要求燃料热质稳定,无燃炉产物,无污染,而液化石油气都具备了这些条件。液化石油气被加热气化后,可以方便地引入冶炼炉燃烧。山东金升有色金属集团公司已将液化石油气成功地用于德国克虏伯熔炼炉的铜冶炼工艺,代替了原煤气燃烧工艺,减少了硫、磷等杂质的危害,提高了铜材质量。窑炉焙烧2、相关器械中国的各种工业窑炉和加热炉历来以烧煤为主,这不仅造成能源的浪费,排出的烟气也严重污染着环境。为此,国家有关部门提出中国能源今后发展任务是:优化能源结构,建立世级清洁、安全、高效的能量供应体系,建立能源技术发展促进机制等。为适应这一任务的要求,许多工业窑炉和加热炉改用液化石油气作燃料,如用液化石油气来烧瓷制瓷砖 用液化石油气烘焙轧制薄板等,既减少了对空气的污染,又大大提高了产品的烧制质量。3、汽车燃料据2000年中国城市环境状况公告显示,监测的338个城市中,超过国家大[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量二级标准的城市占到63。5%,其中超过三级的有112个,中国大气污染已由工业废物、煤烟气型向光化学烟雾型转变,大城市中汽车排放尾气成为大气的主要污染源之一。目前,城市空气污染源中约有70%来自汽车的废气排放。为解决这一问题,自20世纪末,中国各大中城市相继建起了汽车加气站,用液化石油气替代汽油作汽车燃料,这一燃料品种的改变,极大地净化了城市空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,也是液化石油气利用的又一大发展方向。居民生活居民生活燃用液化石油气主要有管道输送和瓶装供给两种方式。1.通输送:管道输送方式主要集中在大中城市进行,它是由城市燃气公司把液化石油气与空气、液化石油气与煤气或液化石油气与化肥厂排放的空气等混合后,通过管理直接输送到居民家中使用,目前,许多城市都实现了这种供应形式。2.装供给:瓶装供给是通过一个密封钢瓶将液化石油气由储配站分配到各家各户,作为家4、液化石油气庭灶具的供气源,它起源于20世纪60年代初,最早是在炼油厂和几个工业城市使用,现已发展到乡镇农村。在民用部地区就建有从事钢瓶供气的液化石油气储配站一万多个,有的个别乡镇平均建有2个以上。由此可见,液化石油气的使用范围愈来愈广,使用量愈来愈大,发展愈来愈快。因此,加强对液化石油气知识的宣传学习,保证液化石油气的安全使用,是非常必要和迫切需要的。

  • 【转帖】石墨炉分析与火焰测定有哪些不同的思考方法

    石墨炉分析与火焰测定有哪些不同的思考方法:1.基体干扰: 石墨炉干扰比火焰多很多,特征辐射在火焰中观察到的是温度相对稳定而又均匀的区间,光束方向与温度梯度方向垂直。石墨炉正相反,光束方向与温度梯度的方向是一致的。再加上温度随时间的变化,分析物原子蒸汽的形成和消失过程始终不在热平衡中,其热解离过程变得不可控制。这就形成了[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]干扰。2.[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]干扰是非光谱干扰,(我在这里引用IUPAC即国际纯粹和应用化学联合会的定义*)不能用背景校正的方法解决。反之。如果发现背景吸收(在进行背景校正时),必须同时观察其对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的影响,高背景意味着高浓度的基体蒸汽,分子的光解离(分子吸收)必然影响待测物的解离平衡。在背景吸光度很高时,通常(此时)对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]信号有抑制,甚至可能出现双峰。(为什么要观察全部原子化信号就是这个道理)3.光谱干扰,石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]干扰比火焰中多共存物吸收线的重叠:(1)石墨炉原子化器的温度远远高于火焰原子化器,许多元素的非灵敏线由于处于该能级跃迁的原子个数随温度增高而大量增加.原来不易观察到的吸收谱线出现了。(2).石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的灵敏度远高于火焰,也就是说,在原子化器内共存物的浓度可以很高,其干扰在火焰中观察不到而在石墨炉中会很明显。背景衰减:同样密集而停留时间长的共存物分子蒸汽,造成高背景衰减。需要加入基体改进剂,有可能引起光谱干扰。因此,石墨炉分析需要好的背景校正。4.石墨炉中校正曲线更弯:[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]中校正曲线变弯的因素有:(1).光谱通带中的非特征辐射 (2).绕过火焰的特征辐射 (3).光源辐射线的自吸变宽 (4.)高浓度时,吸收线中心波长的位移 (5.)光谱通带中存在两条或两条以上待 测元素的特征谱线,并且它们的吸收系数不同 (6).电离干扰.在石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析中(2)不存在,但是由于原子蒸汽在石墨管截面是不均匀的,光束通过原子化器的不同部位(从截面看),如同有不同灵敏度的吸收,就是(5)变得极其普遍!另外,由于原子蒸汽是一个生成消失的过程,只要停留时间不是很长,吸光度对于原子个数不是成正比的(即:非线性的)。(人们会发现,新旧石墨关校正曲线不同,旧石墨管得到的曲线要弯些,因为,原子蒸汽从管壁逸出,改变了信号的动力学特性。你会发现,原子化停气校正曲线要弯些。以注入不同浓度相同体积进行校正比注入相同浓度不同体积来校正好。加入基体改进剂,延迟蒸发会使校正曲线变好,…等等)不要试图一定用线性校正曲线。5.墨炉分析中最不确定的因素是石墨管,有问题常找它;石墨炉分析中最头疼的问题是污染。容器,水,试剂,环境,操作都有可能;石墨炉分析最忌讳总使用仪器里面的加热参数。对不同的样品,不同批次的石墨管,都要进行试验。二1.灵敏度:GFAAS的灵敏度的重要性:一台石墨炉,如何提高其灵敏度很重要(这与火焰分析差别比较大)。GFAAS的灵敏度在商品仪器的广告中毫无意义,因为影响GFAAS的灵敏度的因素太多了,而且对于实际样品,问题要复杂得多。影响GFAAS的灵敏度的各种因素如下1. 是否完全原子化?▲ 有无灰化损失(在原子化前的丢失)▲ 有无[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]干扰(对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]信号的抑制)▲ 石墨管类型(是否会生成碳化物)▲ 石墨炉的温度(热解离的好坏)2. 动力学因素▲ 石墨管内径与吸收灵敏度(成反比)▲ 升温速率(决定原子蒸气的生成时间τ1)▲ 石墨炉的封闭性(决定原子蒸气的停留时间τ2)▲ 载气流速(决定原子蒸气的停留时间τ2)3. 基体改进剂的使用4. 其它方法:进样体积 管内浓缩 (相对灵敏度)5. 背景校正方法对灵敏度的影响▲ S-H法对灵敏度的影响高低电流下分析线自吸的程度(因元素而异)灯的工作条件空心阴极灯的性能▲ ZAAS影响灵敏度的因素塞曼分裂模型 (不同分析线的正常或反常塞曼分裂)磁感应强度塞曼调制方式(交流或直流,纵向或横向,他们灵敏度不同)以上1,2,3条对不同的元素灵敏度的影响可能是几倍甚至是几十倍。说明,对于实际样品,分析者在其中的作用比任何其它因素重要!!!(换言之,买仪器不要考虑灵敏度广告,分析时要时刻注意灵敏度。)2.信躁比:信噪比在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]中的概念经常出现,从公式看,它还直接与检出限有关。火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]中的噪声,在IUPAC和国标“分析光谱法-火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]和原子荧光法词汇”中的描述极其精确:a. 来自光源的随机波动;b. 来自原子化器的随机波动;c. 吸喷空白溶液时的随机波动;d. 吸喷试样溶液时的随机波动。L’vov在他1970年左右的“[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]学”(有英文版,俄文版,没有翻译成中文)还有Inger的“光谱化学分析”中对这些进行了详尽的讨论。这些原理同样可以运用于石墨炉分析。关于石墨炉分析中的噪声,很少有人全面分析。对于火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的噪声来源,考虑到火焰本身的透射特性,通常把元素分析波长进行分类。而在石墨炉分析中考虑石墨炉的背景发射,又把元素分为易熔和难熔。在石墨炉中,背景衰减严重,被考虑为重要噪声来源。石墨炉分析中考虑的“噪声“来源为:1.测量方式与读出系统对精密度的影响(响应速度能否跟上快速变化的原子化信号)2.石墨管背景辐射噪声的影响3.分子吸收和光散射对测定精度的影响4.样品导入精度和石墨管寿命的影响.(前者如同喷雾器精度)5.高灵敏度元素测定时环境和样品污染对精密度的影响(如同“吸喷空白溶液”)6.难熔元素测定时"残留"和"记忆效应"的影响这与火焰分析有很大不同。石墨炉分析的实验要求:(仅供参考)实验室:墙壁要涂漆 地板要铺塑料 窗户要紧闭 室内尽少多余设备.空气要过滤,最好处于200Pa正压.器皿:样品需加热,最好使用石英器皿 如不须加热,最好使用聚四氟乙烯器皿.尽量避免用洗液,而用1:2的硫酸,硝酸或盐酸溶液浸泡.主要应避免对样品中待测物的沾污和吸附.操作步骤应尽量减少,使用器皿越少越好。制备常见元素标准溶液对不同元素要专用,甚至同一元素,不同浓度范围也要固定专用。样品:一般用硝酸溶解,在标准溶液和样品溶液中酸浓度控制在0.1mol/L以下.因为硫酸会腐蚀石墨管,盐酸则经常引起分子吸收(Sr和V例外).高氯酸使石墨管寿命严重降低,并且抑制吸收信号.

  • 【原创大赛】石墨炉原子吸收光谱法选用条件

    【原创大赛】石墨炉原子吸收光谱法选用条件

    http://ng1.17img.cn/bbsfiles/images/2012/11/201211211451_405962_2352694_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/11/201211211452_405963_2352694_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/11/201211211452_405964_2352694_3.jpg本文参考PE原吸总结,希望对大家使用石墨炉时,有参考价值。北京普析通用仪器公司于1998年研制出TAS-986型火焰、石墨炉两用原子吸收光谱仪,其中石墨炉为横向加热。本室使用TAS-990原子吸收,与之相同,现在对横向平台石墨炉优点介绍如下:第一, 克服了纵向加热石墨炉温度的不均匀性所造成的温度梯度,横向石墨炉通电后整个石墨管几乎同时达到所需要的温度;第二, 降低元素原子化温度,由于是整个管子同时达到所需要的原子化温度,没有温度梯度,许多元素原子化温度都有所下降;第三, 基体干扰少,由于整个管子几乎同时达到所需要的温度,减少基体所带来的分子吸收;第四, 横向加热石墨炉测定易形成碳化物的元素时,记忆效应较小;第五, 横向加热石墨炉化学干扰小。下面晒晒我们实验室用过的石墨管http://ng1.17img.cn/bbsfiles/images/2012/11/201211211501_405982_2352694_3.jpg

  • 【分享】南京科瑞星分析仪器公司谈电弧炉燃烧试样的注意事项

    电弧炉燃烧试样时的探讨 在现场分析检测钢铁材料中的碳硫含量,大多使用气体容量法定碳、碘量法定硫的碳硫高速分析仪(简称气容仪)。其试样燃烧多使用电弧炉。电弧炉用于燃烧样品。将其燃气导入气容仪等各种分析设备,定量分析样品中的碳、硫含量。电弧炉的工作原理是:在一定压力的富氧条件下,以瞬间高频高压电使试样与电极间产生电弧,以瞬间的工频大电流点燃在一定压力的富氧条件下的样品,让其高速燃烧,使样品中的碳元素氧化成CO2、硫元素氧化成SO2。用本设备燃烧钢铁样品的基本工艺是 “前大氧、后控气”。“前大氧”是指燃烧室(由炉体和坩埚组成)前供应的氧气要“大”(具体讲是氧气压力要达到40kPa)、“后控气”是指流出燃烧室的燃气流速要控制在一定范围(具体要求是控制在80-100L/h)。这样才能保证充分燃烧。电弧炉可在很多情况下(尤其是碳、硫分析方面)代替管式炉。它与管式炉比具有体积小,重量轻,不必预热,无热辐射,清洁卫生,并且有显著的节能效果。 钢的熔点约为1515℃,铁的熔点约在1535℃。这么高的熔点电弧炉是怎么将其熔化并释放出CO2和SO2呢?是添加剂起了至关重要的作用。 首先添加剂在氧气流中氧化燃烧。输出大量的热能.可以提高炉温.有显著的发热作用; 其次添加剂由于液化密度小于铁的氧化物或受热后生成气体物质,在炉体 内部向上飘浮的过程中,可加快碳、硫离子的扩散,有利于与氧气接触,使氧化反应加快起到良好的搅拌作用; 第三.氧化燃烧生成的CO2,和SO2部属于酸性氧化物,碱性介质不利于CO2和SO2的释放,而选取适量的偏酸性添加剂加入燃烧体系可使介质变成中性或弱酸性.有利于CO2和SO2的逸出; 第四,燃烧后生成的Fe2O3、SnO2,等粉尘对SO2有吸 附作用,导致测试结果偏低。加入有关的添加剂可阻止吸附消除干扰。电弧燃烧炉中常用的添加剂有纯锡粒和硅钼粉。硅主要起发热作用.燃烧产生热量,另外硅氧化后的产物是SiO2属酸性氧化物,它的密度比铁及其氧化物都小,在液体中有漂浮作用,有利于CO2和SO2的释放。MoO3是酸性氧化物,它的加入有利于SO2的释放。它在1155℃生成气体, 从液相中逸出时.起到良好的搅拌作用,有利于硫离子的扩散和SO2的生成。它能破坏Fe2O3的催化作用,防止管道吸附。锡的熔点是231℃,可以降低整个燃烧体系的熔点,主要作用是助熔并兼有发热稳燃的作用。 第五,分析检测铁或铁合金时,要加入适量纯铁(以添加后和试样合计为1克为宜),其主要作用是帮助燃烧,有利于在瞬间提高炉体内的温度,保证试样中碳硫的释放。 由于添加剂所起的重要作用,因此对添加剂的要求也很高,要求杂质成份含量少,碳、硫含量低,它的几何形状,粒度、空隙度也有一定的要求。使用这些添加剂会对测量的结果产生很大的误差而影响生产,建议用户选择正规的添加剂。 由于铁的熔点比钢高,而其称样往往只有钢的试样的一半或四分之一,因此保证铁试样在电弧炉中的燃烧是非常重要的。需要注意以下方面: 1. 正确确定称样重量和应补足的纯铁份量; 2. 做好试样的制样工作,样品颗粒小一点为宜,这样才能保证试样与氧气充分接触,有利于引弧燃烧,使碳硫充分释放; 3. 硅钼粉和锡粒等添加剂配比适当; 4. 及时清理电弧炉除尘器,防止过多的粉尘吸附SO2;5. 及时清理电极上的积炭,保证引弧燃烧效果

  • 【原创】新手入门-色谱样品的引入3:液化气体样品

    其他讲座资料看[url=http://www.instrument.com.cn/bbs/detail.asp/threadid/1679222/forumid/25/year/2009/query/search] 学习[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]跟yuen72老师入门[/url]液化气体样品是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样的一个难点。所谓液化气体,是指取样状态是液体,常温差压下是气体的样品。例如液化石油气、液体丙烯等。 在开始谈液化气体样品进样之前,让我们来谈谈液化气体的采样工作。液化气体在工艺管线中必然是高压的,温度则可能是高温,也可能是常温,或者低温。由于它是高压的,因此正确取样必然要用钢瓶等耐压容器。一些特殊情况下我们也直接在现场节流气化后用气袋或球胆取样,但这种取样办法的代表性是值得怀疑的。而且,只有以液体采样回来,才能谈得上液化气体样品进样问题。否则直接参考气体样品了。液化气体是液体,它的受热膨胀系数是比较大的,同时正因为它是液体,因此它也不具有可压缩性。如果我们在钢瓶中取了满满一钢瓶的低温液化气体样品,直接拿回实验室的时候,会发生什么问题呢?例如低温液体丙烯或者液化气。那么回到实验室的路上,样品温度会逐渐升高到室温。这个时候液体膨胀比容器(固体)膨胀要大,而液体又不可压缩,因此内部会产生极大的压强,导致容器阀门损坏,发生泄漏。或者由于阀门质量太好,导致钢瓶受压变形,甚至发生破裂,发生危险。说实话,由于这个原因造成钢瓶阀门泄露的问题很普遍,我也见过圆筒型钢瓶受压变成近似球形的情况。这样做很危险。国家压力容器标准禁止取样过满。以前的标准是最多取80%容器容积的液化气体样品,有人高速我说现在最多允许取50%,这个我确实没有确认过,希望了解最新标准的朋友们跟帖说明一下。为了定量排放取到刚瓶中的液化气体,钢瓶的一个阀门必须带有溢流管。取样后,应现场马上进行溢流,确保采取合适容积的样品。

  • 【讨论】石墨炉原子吸收分光光度法测定Cd的背景吸收问题

    【讨论】石墨炉原子吸收分光光度法测定Cd的背景吸收问题

    石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法测定Cd的吸收仪器型号:AA6300C生产厂家:岛津[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006231223_226610_1891103_3.jpg[/img]红色线:Cd的吸收值蓝色线:Cd的背景吸收值绿色线:石墨炉的升温梯度注:此图为Cd标准曲线中浓度为4.0ppb的吸收值 标准溶液中已经加入硝酸,磷酸二氢铵,硝酸镁。问:还有什么办法减少背景吸收?

  • 【求助】石墨炉背景问题

    最近在考察基体改进剂的时候发现一个问题:我用的是瓦里安德120z石墨炉做铅测试,加磷酸二氢铵作基改,但是我试验了0.5%,1%,2% 三个浓度的,发现随着基改浓度增加背景吸收值也是增加的,同样的样品如果扣去背景的话样品值应该减小吧?可是我测的结果是测定值也是增加的,那到底该取哪个条件的测定值呢?30-60-90差不多是这个梯度增加的

  • 【求助】梯度洗脱问题请教

    用液相色谱测定TBHQ和BHT流动相: 1.5%(体积分数)乙酸-甲醇溶液(A),1.5 %(体积分数)乙酸—水溶液(B)洗脱梯度: 0min -5min ,流动相A为30%,5min-20min,流动相A从30%线性增至80%,20min -30min,流动相A为80% 梯度洗脱设置 Time Module Action Value0.01 pumps B.Conc 705.00 pumps B.Conc 7020.00 pumps B.Conc 2030.00 pumps B.Conc 2031.00 pumps B.Conc 7042.00 SCL stop 0

  • 原子吸收光谱石墨炉测铅,谱图分叉

    各位老大:小弟在使用原子吸收光谱仪,用石墨炉测试铅的过程中,遇到在高浓度铅的谱图分叉,也不知道什么原因?请各位大哥给指教一二!测试条件:105烘干---950的灰化---1800的原子化,母液的最高浓度10PPB。梯度是0--2.5--5--7.5--10。一般在5之后的谱图就出现分叉了,请各位大家指导一下!

  • 土壤怎么变脸了呢? —土壤液化与下陷的研究

    一.研究动机: 我们看到电视和报纸有关土壤下陷的各种报导,有提到中部好多地方出现了「土壤液化」的现象,我们不了解「土壤液化」到底是怎么回事?是什么原因造成的?为什么会造成灾害呢?研究目的: (一) 了解土壤液化的意义、成因和现象。 (二) 由模拟实验了解土壤液化的基本状况。 (三) 探讨不同水量对土壤液化的影响。 (四) 探讨不同大小的外力对土壤液化的影响。 (五) 探讨震动力量对土壤液化的影响。 (六) 探讨土壤液化的程度与承载力的关系。二.研究设备与器材: (一)250cc的塑料杯、700cc的塑料筒、注射针筒、量筒、量杯、砝码(500公克、100公克)、水桶、铲子、米达尺、1公升的塑料筒。(二)六种土壤―灾区现场喷砂口的2种细砂土、种花的细砂土、荒地的土、田里的土、工地的土。(三)照相机、简易摆动碰撞器、简易震动器(旧电风扇改装)。三.研究过程与方法:【研究一】了解土壤液化的意义、成因和现象。 1.(文献探讨)从各种报纸和相关研究报告加以讨论、分析,得到下面的结论: (1)土壤液化的意义和成因―它是一种自然的现象,是松软的砂土层,它受到强大的外力时,使地下水有机会进入土壤中,进而造成土壤的水分饱和,就变成像泥浆一样的液体状态,这种现象称为「土壤液化」。 (2)土壤液化造成的现象―有:喷砂或喷泥水现象、土壤承载力减弱、地层下陷或断裂、建筑物倾斜或塌陷等现象。 2.(现场勘查) 88年12月5日和12月11日两次我们在老师和家长的带领 下,前往中部作现场的勘查: (1)勘查结果与纪录 【研究二】各种土壤成分的分析和比较。1.实验材料:6种土壤—甲(大肚溪喷砂口细砂土)、乙(仑雅里水井的喷砂)、丙(种花的细砂土)、丁(荒地的土)、戊(稻田的土)、己(工地的土) 。2.实验方法: (1)将6种土壤分别晒干并捣碎,观察各种土壤的土质、粗细。 (2)6个试管各倒进10cc的水。 (3)每种土壤各拿10立方公分,分别放进试管中。 (4)封住管口然后用力上下摇晃,使土壤完全混合。 (5)静放一天,观察沉淀后的土壤分层情形。3.实验结果:4.讨论: 经过观察和沉淀分析法的比较,发现丙(种花的细砂土)的土质、粗细与成分,最接近甲和乙土壤样本的成分,因此就采用丙做为下面实验的材料。 【研究三】土壤液化的简单模拟实验。 1.实验材料:种花的细砂土、水。 2.实验方法: (1)在10个塑料杯中装入细砂土(5个150立方公分,5个200立方公分)。 (2)用针筒将水打入杯中(先打入20cc的水,每次再加10cc的水)。 (3)每次打完水观察1分钟,等整杯土壤都潮湿时再摇晃杯子。 (4)观察、比较并纪录土壤液化的情形。 3.实验结果: 4.讨论: (1)土壤中水分向上扩散的高度,随着水量的增加而升高,速度也越快。 (2)土壤也会随着水量的增加而逐渐下陷,水不再增加会停止下陷。 (3)整杯土壤都潮湿再摇晃,摇晃次数越多表土渗出的水量越多。当表土开 始渗水时有软化的情形,用手轻压表土感觉软软的,用手挤压杯子,表土 会上升,放手就恢复原状,整杯土壤就像果冻一样。这应该就是土壤液化! (4)所以足够的水和适当的外力是土壤液化的主要因素。 【研究四】不同水量对土壤液化的影响。1. 实验方法:(1) 在5个塑料杯中各装入200立方公分的细砂土。(2) 用针筒将水打入杯中(先打入30cc的水,每次再加10cc的水)。(3)注水到土壤渗水软化为止,观察、比较并纪录土壤变化的情形。2. 实验结果: 3.讨论: (1)水会造成土壤的液化,水量越多土壤越快液化,下陷也越深。 (2)当水量达到一个限度后土壤会停止下陷。 (3)实验之后的整杯土壤静放到隔天,表土的水会减少,土壤还会下陷大约0.1〜0.2公分。【研究五】不同大小的外力对土壤液化的影响。 (实验一)向下碰撞法:1. 实验方法: (1)在5个塑料杯中各装进200立方公分的细砂土。 (2)每个杯子用针筒打进60cc的水。 (3)经3分钟后,将杯子在1公升的塑料容器内5公分的高度放下,碰撞容 器底部,到土壤全面渗水液化为止。 (4)观察、比较并纪录土壤变化的情形。 (实验二)重物侧面碰撞法: 1.简易摆动碰撞器:铁杆加摆长80公分(包括长12公分的500公克砝码)2.实验方法: (1)在5个塑料筒中各装进500立方公分的细砂土。 (2)把160cc的水打进塑料筒中。(3)用简易摆动碰撞器碰撞塑料筒的侧边,到土壤完全渗水液化为止。 (4)观察并记录土壤变化的情形。3.实验结果: (每次碰撞塑料筒都变换侧边) 4.讨论:﹝实验一和实验二﹞(1)碰撞次数会影响土壤液化:次数越多土壤液化越严重,土壤下陷更深。(2)开始碰撞时土壤会裂开,有些部分会裂成大小不同的小土块,再经过碰撞后小土块会逐渐变成小圆球形,越来越小越潮湿,最后完全不见。(3)当土壤渗水时就是液化的现象,轻轻压下软软的,好像果冻一样。【研究六】震动力量对土壤液化的影响。 ﹝实验一﹞时间相同,震动力量不同:1. 实验方法:(1) 9个塑料杯各装进200立方公分的土壤,各打进50cc的水。(2) 每3杯为1组,分别放在简易震动器上,用3种不同的震动力量(电风扇转动的速度)来震动。(每次震动时间3秒钟)(3) 比较土壤液化的速度。2. 实验结果: (1速最快,2速第二,3速最慢)(液化速度¬最快第二®最慢) ﹝实验二﹞震动力量相同,时间不同:1.实验方法:(1)把200立方公分的土壤装进塑料筒中,打入50CC的水。(2)把塑料筒放在震动器上开第3速的力量,震动到土壤完全液化为止。 (3)实验5遍,计时并观察土壤的变化情形。2.实验结果: 3.讨论:﹝实验一和实验二﹞ (1)震动速度越快,土壤液化越快,越容易下陷。 (2)震动的时间越长,土壤液化的情形越严重,下陷也越深。 (3)震动的力量比碰撞的力量更容易使土壤液化和下陷。【研究七】土壤液化的程度与承载力的关系。1. 实验方法:(1)将200立方公分的土壤分别装进5个塑料杯中,都打进40CC的水。 (2)把100公克的砝码放在塑料杯内的土壤上面。 (3)再把杯子放在电风扇上,开第三速的力量来震动。(4)每3秒钟把杯子拿下来,观察并记录砝码下陷的情形。(5)最后把100公克的砝码放在【研究六】﹝实验二﹞中已液化的五杯土壤 中,观察砝码下陷情形。3. 讨论:(1)把砝码放在干燥的土壤上不会下陷,表土顶多留一点小痕迹。(2)当土壤含有水分变潮湿时,砝码会有些下陷,再加上外力砝码下陷越深。(3)震动越久土壤液化越严重,承载力量也越小,砝码陷得越深。(4)把100公克的砝码放在液化的土壤上,会慢慢下陷。如果再加上外力 (如敲打、碰撞、震动),砝码下陷的速度变快,甚至完全沉没。四. 结果与讨论: (一) 综合以上的实验结果,我们的结论是:1. 松软的砂土层含有足够的地下水再受到强大的外力,会造成土壤液化和下 陷的现象,所以「水」和「外力」是造成土壤液化和下陷的两个重要因素。 2.土壤含水量越多越容易液化,也越容易下陷。 3.土壤液化时通常会渗水,会变软,像泥浆也像果冻一样。 4.土壤含水后,加上外力(摇晃、碰撞、震动)的影响,土壤越容易液化和下 陷;外力越大或作用越久,液化和下陷的情形越严重。 5.土壤逐渐液化,承载重物的力量变小;液化越严重,承载的力量越小。 (二)在本实验后我们了解到:1. 土壤中水分越多外力越大,土壤的液化和下陷越快越严重;土壤液化时,土 质变软、出现裂痕、大量渗水,甚至喷砂,变得像果冻或流沙一样;结果承 载力量变弱,上面如果有重物,会倾斜,甚至塌陷。2. 我们再对照921地震有关的灾害报导以及几次现场的勘查,发现彰化县员林仑雅里、伸港大肚溪口等受灾地区,大多是粉砂或细砂土壤,比较疏松,含水量较多,所以

  • 电除尘在焦炉烟气净化中的运用

    1 焦炉尾气处理工艺流程  某焦化厂是一个集炼焦、发电为一体的焦化企业,在运行的过程中不仅会生产出焦炭,而且还能够充分利用炼焦炉烟气的热量,通过余热回收系统进行发电。焦化炉尾气处理的工艺流程如下所示:焦化炉生产出的高温烟气在温度达到600℃的时候,高温烟气会进入到余热回收系统中,经过余热回收系统的汽水分离处理能够将高温蒸汽送入到汽轮机中,带动发单机的发电。焦化炉尾气处理工艺流程具体如图1所示。焦化炉尾气处理操作涉及到的各类参数信息如下所示:①锅炉型号为Q96/750-27-2.5型号的焦炉煤气余热回收系统;②锅炉的额定蒸发量是每小时20吨;③锅炉的烟气量是每小时310000m3;④锅炉的最高温度是300℃;⑤烟气的含尘量是1g/Nm3;⑥锅炉的运行压力是2~-6Kpa之间。59.jpg  2 电除尘器概述  2.1 内涵  电除尘是一种利用强电场使气体电离,即产生电晕放电,进而使粉尘荷电,并在电场力的作用下,将粉尘从气体中分离出来的除尘装置。  2.2 电除尘器的特点  烟气大多来自焦化炉,在焦化炉使用的过程中虽然经历了余热回收系统的热交换,进入除尘器的烟气温度达到250~260℃,最高情况下能够达到300℃,因而和一般的煤粉炉烟[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]比,电除尘器的使用效率基本上高出了一倍左右。另外,受焦化炉使用不稳定的影响,在焦炉的烟气温度不超过500℃的时候,焦炉中的烟气焦油含量也会相应增多,对电除尘器的除灰工作带来了难度。电除尘器的设计要点具体表现在以下几个方面:第一,气体流动速度不能较高,受粉尘颗粒直径较小、重量较轻的影响,在风速较高的情况下,进入到电场中粉尘往往会被气流带出电场,达不到收尘的目的,同时,在风速较大的情况下还会将收集到的粉尘重新带入到电场中,出现生产加工的二次粉尘飞扬,因此,在烟气量一定的情况下需要确保除尘器断面的强大;第二,收尘极板的合理选择,收尘极一方面要具备良好的电性能,另一个方面还需要确保振打加速度分布的均匀,从而减少粉尘的二次飞扬,从电除尘器的收尘极板应用来看,这类极板的电流密度分布比较均匀,型号是C480极板,在使用过程中板中间还会出现几个波形,由此在无形中增大了板子的刚度;第三,在出口位置上设置槽板装置,受低比电阻粉尘的跳跃影响,一些重返电磁场的粉尘会被气流带离电场,加上电场振打操作中出现的二次扬尘,如果没有对这些扬尘进行及时收集就会导致空气中的粉尘增多,降低除尘效率,为此,需要在除尘器的出口垂直位置上安排两层槽形板,在槽型板的作用下捕捉额外出现的粉尘,提升粉尘除尘效率。  2.3 电晕极和收尘极的选择  电场是静电除尘器的重要零部件,电场的运行在某种程度上决定了电除尘的除尘效果和除尘效率,正确选择收尘极和电晕极是有效利用除尘器的重要关键。在使用静电除尘器的时候,除尘器的阳极板适合应用综合性能良好的C480极板,材质为不锈钢。阴极线应用不锈钢芒刺线,受芒刺线起晕电压低特点的影响可以充分吸收尘埃。  2.4 低耗水量  除尘器在使用的过程中配套灰水处理自动循环系统,经过的喷嘴循环水流量不会随着机组的负荷变化而发生变化,电除尘器在应用的过程中用水量基本保持了一种不变的使用状态。循环水的补水量和烟气中的含尘量呈现出一种线性关系。  2.5 无运动部件  除尘器在使用的过程中大大降低了运行维护成本费用。除尘器的放电极应用了特殊形状的设计方式和安装方式,在使用过程中不会因为震动、腐蚀而出现损坏的现象。同时,在先进技术的支持下还实现了对喷淋系统喷嘴形式和尘埃汇集板型号的优化,使得除尘器的设计不具备额外的运动部件,在无形中降低了除尘器的工作量。  3 电除尘在焦化炉烟气净化运行中出现的问题及整改措施  3.1 振打制度设置不合理问题和整改措施  电除尘在焦化炉烟气净化运行中应用的时候虽然电流电压数值正常,但是烟囱的使用出现了比较明显的黑色烟气,除尘效果不理想。在经过一段时间的观察发现,烟尘的灰量在一定程度上减少,可以每间隔四到五天排放一次。60.jpg61.jpg  3.2 阴极吊挂设计  考虑到烟气温度较高且粉尘比电阻低、容易爬电的特点,在阴极吊挂设计的时候应用了一种耐高温能力强、不容易累积灰尘、爬距大的95瓷制作穿墙套管,具体如图2所示。设计好的阴极吊挂在经过一段时间的试用之后发现效果不理想,几处穿墙套管在电场内部,在受到击打会出现炸裂的现象,炸裂之后的零碎品会掉落到灰斗的内部,使得焦化炉的使用出现了不同程度的损坏。针对这个问题,在改进设计中相关人员替换掉了穿墙套管,将穿墙套管替换为一种耐高温的石英套管,并在大梁上使用的时候在外部额外添加防尘套,改进之后的阴极吊挂绝缘套管如图3所示。改进之后的阴极吊挂绝缘套管能够将粉尘到达瓷套的量有效降低,减少爬电现象的发生。  3.3 阴极大小框架热膨胀量  阴极振打轴跟着向下的位移量要比常规的大,在对阳极设计的时候由于振打轴和挡灰板之间的缝隙较小,由此导致振打轴在向下移动的时候会使挡灰板出现挤压变形问题。针对这个问题,可将挡灰板上的孔改变为椭圆形,这样便能够有效防止挡灰板出现挤压变形的问题。  4 结束语  综上所述,本文结合焦化炉尾气处理工艺流程和除尘器的工作原理、特点,分析了电除尘在焦化炉烟气净化运行中出现的问题及整改措施,在经过一段时间的應用之后发现,工厂的烟气量被有效控制在每小时289000m?,烟气的流动速度被控制在每秒11.96m,空气的过剩系数为2.3,尘埃的含湿量为253℃,出口含尘的浓度为48.5mg/Nm3,由此证明除尘器在焦化炉尾气处理中的良好应用效果具有广泛的应用前景,需引起相关人员的重视。

  • 【求助】pe800石墨炉测铅问题

    测铅时,做完标准曲线,再做样品空白时发现两次平行测得的信号相差较大,第一个空白值较高,往往比第二个高一倍,第一个好像是受前面标准系列的影响,石墨炉未清洗干净,于是提高清洗温度,将原子化温度也做了提高,还是不理想。检测时用了基改,磷酸二氢铵和硝酸镁,现在的温度梯度:110,130,850(20s),1800,2500(清洗)各位有没有碰到内似问题,有好的解决方法请告知

  • 【原创】液化气站配置合适的气相色谱仪

    现在我们使用的液化气中绝大部分都掺混不同程度的二甲醚。虽经过多次曝光和查处而部分销售公司、液化气站仍乐此不疲,“利”字当头!那么问题来了,该如何辨别与分析液化气中有没有二甲醚?如果有二甲醚又有多少?对分析仪器设备有何要求?我们山东鲁创分析仪器有限公司将做以下探讨:   二甲醚又称甲醚,是一种无色无味的易燃压缩化工液体,具有轻微醚香味,在工业领域具有广泛的用途等。同时由于它具有优良的燃烧特性,也被用在一些燃料当中。由于二甲醚对铜件、密封垫、连接管具有较强的腐蚀性从而造成泄漏的危险。但由于工业二甲醚和液化气具有较大的利益上的巨大差异,在液化石油气中掺混二甲醚已经成为行业内半公开的秘密。 液化石油气是一种清洁燃料,腐蚀性小,燃烧发热量大。液化石油气主要用于工业燃料、民用燃料和化工原料,系天然石油经过催化裂化一系列作用下发生分解、异构化、氢转移等反应后即得产品液化气。只有充分掌握了液化石油气中的组分及其含量,才能更好的建立一个快速准确的分析方法,以检验液化石油气中杂质的含量。 关于液化石油气的分析测试方法,我们采用GC-9860气相色谱仪六通阀直接进样测定液化石油气及其杂质。选择TCD检测器上进行了定性和定量分析,此方法简便、快速、准确。 1、仪器设备 山东滕州市鲁创分析仪器有限公司液化气二甲醚分析仪:GC-9860气相色谱仪;LCH-300氢气发生器;N2000色谱工作站;TCD检测器做定量分析。 2、色谱分离条件 (1).色谱柱:3mmX6M不锈钢色谱柱,担体癸二氰,釉化6201(60~80目)涂1%三乙醇胺做去尾剂(简称癸柱)。 (2).分离条件:TCD热导检测器;载气为高纯氢气(鲁创LCH-300氢气发生器); 3、取样方法: 采用六通定量阀手动进样(电子自动切换),抽取进厂钢瓶液相管的气化试样,估计可能这种取样方法缺少样品的代表性。因此我们把不同批次的原料钢瓶分别取其满瓶与放完料后的空瓶试样进行测定对照。此法操作简便、快速,基本能代表原料组份的含量,但在冬季、室外温度低,给取样带来困难,同时亦有分析结果上的误差存在。

  • 【杨啸涛研究员】【众多用户关心的问题】简述石墨炉分析与火焰测定有哪些不同的思考方法

    1. 基体干扰:石墨炉干扰比火焰多很多用一张图简要说明[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503241546_2917_1868106_3.gif[/img]特征辐射在火焰中观察到的是温度相对稳定而又均匀的区间,光束方向与温度梯度方向垂直。石墨炉正相反,光束方向与温度梯度的方向是一致的。再加上温度随时间的变化,分析物原子蒸汽的形成和消失过程始终不在热平衡中,其热解离过程变得不可控制。这就形成了[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]干扰。2. [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]干扰是非光谱干扰,(我在这里引用IUPAC即国际纯粹和应用化学联合会的定义*)不能用背景校正的方法解决。反之。如果发现背景吸收(在进行背景校正时),必须同时观察其对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的影响,高背景意味着高浓度的基体蒸汽,分子的光解离(分子吸收)必然影响待测物的解离平衡。在背景吸光度很高时,通常(此时)对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]信号有抑制,甚至可能出现双峰。(为什么要观察全部原子化信号就是这个道理)3. 光谱干扰,石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]干扰比火焰中多共存物吸收线的重叠:(1)石墨炉原子化器的温度远远高于火焰原子化器,许多元素的非灵敏线由于处于该能级跃迁的原子个数随温度增高而大量增加.原来不易观察到的吸收谱线出现了。(2).石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的灵敏度远高于火焰,也就是说,在原子化器内共存物的浓度可以很高,其干扰在火焰中观察不到而在石墨炉中会很明显。背景衰减:同样密集而停留时间长的共存物分子蒸汽,造成高背景衰减。需要加入基体改进剂,有可能引起光谱干扰。因此,石墨炉分析需要好的背景校正。4. 石墨炉中校正曲线更弯:[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]中校正曲线变弯的因素有:(1).光谱通带中的非特征辐射 (2).绕过火焰的特征辐射 (3).光源辐射线的自吸变宽 (4.)高浓度时,吸收线中心波长的位移 (5.)光谱通带中存在两条或两条以上待 测元素的特征谱线,并且它们的吸收系数不同 (6).电离干扰.在石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析中(2)不存在,但是由于原子蒸汽在石墨管截面是不均匀的,光束通过原子化器的不同部位(从截面看),如同有不同灵敏度的吸收,就是(5)变得极其普遍!另外,由于原子蒸汽是一个生成消失的过程,只要停留时间不是很长,吸光度对于原子个数不是成正比的(即:非线性的)。(人们会发现,新旧石墨关校正曲线不同,旧石墨管得到的曲线要弯些,因为,原子蒸汽从管壁逸出,改变了信号的动力学特性。你会发现,原子化停气校正曲线要弯些。以注入不同浓度相同体积进行校正比注入相同浓度不同体积来校正好。加入基体改进剂,延迟蒸发会使校正曲线变好,…等等)不要试图一定用线性校正曲线。5. 石墨炉分析中最不确定的因素是石墨管,有问题常找它;石墨炉分析中最头疼的问题是污染。容器,水,试剂,环境,操作都有可能;石墨炉分析最忌讳总使用仪器里面的加热参数。对不同的样品,不同批次的石墨管,都要进行试验。以上是最简要的说明,供参考。

  • 扫盲系列之九:石墨炉加热方式

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]的石墨炉加热方式是[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]的关键技术,直接关系到原子化效率的优劣,影响分析的灵敏度。石墨炉的加热方式目前主要分为纵向加热和横向加热两种,分法与加热电流的方向及光线通过石墨炉的方向有关。 1、纵向加热:加热方向(电流方向)沿光轴方向进行,即是电流方向与光轴方向平行。目前,绝大多数石墨炉原子化器都是采用纵向加热。纵向加热石墨炉的原子化温度可达到近3000摄氏度,结构比横向加热石墨炉简单。但是纵向加热石墨管内的温度不均匀。如:如果说石墨管的中心温度达到3000摄氏度,则长度为28MM的纵向石墨管两端的温度只有2500摄氏度,其中心与两端的温度差达到500摄氏度,且基本上呈正态分布。因此,纵向加热石墨炉的原子化效率也不均匀,基本上呈正态分布,从而导致原子蒸气的浓度不均匀:石墨管中心的原子蒸气的浓度高,两端的原子蒸气的浓度低,影响分析的灵敏度。再者,由于石墨管内的温度梯度大,原子化效率不均匀,纵向加热石墨炉不适用于对难熔、难测的高温元素和复杂体系样品的分析。如:钼、钡等高温元素。由于纵向加热石墨炉历史悠久、制造技术难度比横向加热小,成本低,所以大多数[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]仍是纵向加热。 鉴于纵向加热的缺点,仪器研发商提出了纵向加热石墨炉平台技术,在一定程度上减少了原子化效率的不均匀。其原理如下:在加热石黑管时,平台中的被测试样由石墨管内壁辐射加热,置于平台中的被测物,由于其加热是滞后的,因此试样在平台上的蒸发和原子化也会滞后于管壁上的原子化过程。这个设计更有利于平台上的试样蒸气完全原子化和被测试样与基体的分离,减轻或消除了干扰,使分析灵敏度有所改善。 2、横向加热:加热方向(电流方向)与光轴垂直。横向加热石墨炉的两端不与冷却水接触,因此石墨管中心和两端的温度差比较小,石墨管里的原子化温度均匀。这是横向加热石墨炉最突出的优点。横向加热石黑管的加热电流通过的方向与石墨管里光线通过的方向垂直,这种加热方式可以避免用水冷却电极的时候带走石墨管两端的热量,保证石墨管里光线通过的方向上只存在很小的温度梯度。但是,横向加热石墨炉的原子化温度要比纵向加热石墨炉低300摄氏度左右。然而,横向加热石墨炉的原子化时间小于纵向加热石墨炉,且横向加热石墨炉测得的特征质量普遍比纵向加热石墨炉好。由此可以看出,横向加热石墨炉在原子化过程中提供了良好的时间和空间恒温环境,提高了分析的可靠性,同时延长了石墨管的使用寿命。PE石墨炉为横向加热。 不足与错漏难免,欢迎版友们指正。谢谢!

  • 洗脱梯度是什么

    看到文献中这样的一个表达 : 流 动 相 为 石 油 醚-乙 酸 乙 酯 (100∶1~1∶10),收集洗脱液并合并,减压蒸干溶剂,得到 Frac.A1~A10馏分。想请问这里的100∶1~1∶10包括哪10个梯度啊?初出茅庐,还望大佬解惑!

  • 【转帖】湖南株洲立案调查液化气掺混二甲醚事件

    工商抽检  罐装气含二甲醚  2006年,株洲市政府为规范液化气市场,对该市瓶装液化气充气站实行特许经营,由株洲市建设局负责实施。株洲铁达燃气公司最终取得特许经营权,独家经营株洲城区瓶装液化气充气业务。这在全国是一个特例。  今年8月,株洲市工商部门陆续接到市民反映,称铁达燃气公司生产的瓶装液化气存在不经烧、火力不大、燃烧时火焰颜色不正常等问题,可能有掺假行为。根据市民投诉,9月1日,株洲市工商局消保科对城区及附近的液化气公司罐装民用液化气进行了随机抽样。株洲市工商局消保科11月25日出示的检验报告写明,检验结论为“经检测,该样品中二甲醚含量为14.1%(W/W)”。  二甲醚是一种新型燃料,与液化石油气混合后会产生有毒物质,过度吸入会使人头昏、恶心、胸闷。但由于二甲醚成本低,一些燃气企业或在液化石油气中掺入二甲醚,或购买销售掺混二甲醚的液化石油气。

  • 焦炉煤气组分气相色谱法分析实验研究

    摘 要:为了找到焦炉煤气组分气相色谱法分析最优的分析条件,使用自装柱,通过正交实验设计,研究了分析  条件对分析结果的影响。结果表明:最优分析条件为:载气流速:43ML/min;柱箱温度:室温;检测器桥电流:  120mA;检测器温度:100℃。通过分析可得出如下结论:柱箱温度是影响分析的主要条件,而载气的流速、检  测器温度和检测器桥电流的影响并不显著。  关键词:组分分析;焦炉煤气;气相色谱法;装柱; 正交实验  0 引 言  焦炉煤气中含有多种组分,如甲烷、氢气、一氧化碳、氧气和氮气等。焦炉煤气中各组分含量关系到燃气的热量、华白数等一系列重要参数。因此,焦炉煤气中各组分含量的精确检测对于燃气生产和输配企业来说非常重要。气相色谱法作为一种高选择性、高效能和高灵敏度的分析手段,被广泛应用于各种气体的分析检测中。国家早在1989 年就制定了GB10410.1-89《人工煤气组分气相色谱分析法》国家标准。在几十年的应用中发现了不少问题,有很多作者对其进行了分析和改进,并与传统的化学分析法作了比较。但是,其中仍缺乏对分析条件系统研究,缺乏详细、系统的实验数据。国家在2009年又出台了新的国家标准GB/T 10410-2008《人工煤气和液化石油气常量组分气相色谱分析法》,并对相关内容进行了修改。在新出台的标准中柱箱温度的适用范围缩小了。这说明在旧标准所规定的温度条件值得商榷。在新标准出台之前,实验室的分析测试中也发现了同样的问题。另外,由于分析过程中,  焦炉煤气中CO2 在分子筛上存在不可逆吸附,分子筛遇水也会老化,因此,在实际测试过程中需要经常更换色谱柱。如果操作者在实验室能够自行填充色谱柱,则更为方便。针对以上问题,作者对色谱柱的填充过程进行了研究,自行填装了色谱柱。并使用自填柱,通过正交设计方法,讨论了分析条件对分析结果的影响,确定了最佳测试条件。  1 实验  1.1 实验仪器及试剂  气相色谱仪(;热导检测器(TCD)取样袋(光明化工研究设计院);标准气(北京兆格气体科技有限公司);氮气(鞍山鸿泰低温设备厂);氢气发生器(天津市分析仪器厂);样品取自鞍山市管道焦炉煤气。  色谱填料:13X 分子筛、GDX-104 填料(天津化学试剂二厂);空色谱柱(内径3 mm,长3 m 的色谱柱一根,装填13X 分子筛;内径2 mm,长2 m色谱柱一根,装填GDX-104 填料)(大连伟达分析仪器厂)。  标准气(? (CO2)=2.03%;? (CO)=7.12%;? (CH4)=30.4%;? (O2)=0.508%;? (N2)=9.19%;H2 为平衡气)(光明化工研究设计院)。  1.2 气相色谱柱的装填  首先用碱溶液将空柱管清洗干净,然后用清水将柱管中的碱液冲洗干净,放置到烘箱中烘干,待用。按一定的填充密度/ML), 根据柱体积计算所需的填料质量,并用电子天平称取,待用。  在柱的一端用玻璃丝绵堵住,用自制的装柱配件将柱连接到真空泵上,另一端通过装柱配件连接到柱头。将填料少量、多次地填到装柱漏斗中,并用真空抽吸,并不断震荡柱,使填料填充均匀。待柱装满后,将柱的另一端也用玻璃丝绵堵住,并标注填充方向。  在通氮气的条件下,将柱在200 ℃下,老化4 h,然后测试柱效和分离效果。  1.3 气相色谱法分析焦炉煤气成分条件的选择  由于焦炉煤气中含氢气、甲烷、氧气、氮气、 一氧化碳、乙稀和乙烷等多种气体,不能在一个分析条件下进行全分析。因此,需要在不同条件下对不同组分进行分析。本论文采用表1 所示的条件对焦炉煤气进行分析,其它分析条件则通过实验作进

  • 【网络会议】:液化气及其他纯气体样品中水分检测方案

    【网络会议】:液化气及其他纯气体样品中水分检测方案

    【网络会议】:液化气及其他纯气体样品中水分检测方案【讲座时间】:2015年07月29日 14:00【主讲人】:龚雁北京化工大学分析化学专业 硕士毕业;清华大学分析测试中心, 国家纳米技术与工程研究院清华平台色谱组,开展硕士研究生课题的研究工作;职务:全国产品经理----主要负责行业分析,针对每个行业做行业应用报告;一线销售人员的培训,参加瑞士的产品经理会议,向一线销售人员传达国外的经验和产品卖点;一线技术工程师的培训及考核。有丰富的理论和客户实操经验。【会议介绍】您在做气体水分实验的时候是否有过这样的担忧:气路漏气?质量计算?系统安全?水的冷凝?复杂的操作?Now!!‐‐‐‐ 瑞士万通875 KF 气体水分测定仪帮您解决。主要应用于石油化工,还有第三方检测的做气体及生产气体的公司,各类液化气体中的水分测量。 -------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年07月29日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/14715、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_312_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制