当前位置: 仪器信息网 > 行业主题 > >

阴极发光辅助微区仪

仪器信息网阴极发光辅助微区仪专题为您提供2024年最新阴极发光辅助微区仪价格报价、厂家品牌的相关信息, 包括阴极发光辅助微区仪参数、型号等,不管是国产,还是进口品牌的阴极发光辅助微区仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阴极发光辅助微区仪相关的耗材配件、试剂标物,还有阴极发光辅助微区仪相关的最新资讯、资料,以及阴极发光辅助微区仪相关的解决方案。

阴极发光辅助微区仪相关的方案

  • 当3D重构遇上阴极发光, 在光伏结构设计中的优势
    斯坦福大学与荷兰AMOLF Polman教授课题组采用纳米光学技术在光伏结构设计应用, 利用阴极发光实现纳米尺度光学3D重构。文章发表在nature nanotechnology杂志。视频简要介绍其中的机理。
  • 大面积阴极发光高谱成像用于地质矿石检测
    长期以来阴极发光成像是地质研究的有力工具。最新的技术说明(technical note)为您讲解大面积高光谱阴极发光成像的采集模式。大面积(large area)光谱采集模式主要用于面积较大标本的阴极发光成像,例如锆石和其他矿物。为了达到大面积阴极发光成像,特地调整光学模组中的光学器件,故意使狭缝平面中的CL焦点散焦。通过这一技术,我们就可以均匀地收集到较大阴极发光视场(FOV),视场大约~300× 200μ m2。通过调整狭缝宽度,平衡高效率(HE)和视野大小(与正常CL采集相比)
  • 阴极发光成像系统的应用
    扫描或扫描透射式电子显微镜(SEM 或 STEM)中的阴极发光是一种独特的工具,可描绘材料的成分以及光学和电子特性,然后将其与微纳米或亚纳米级的形态、显微结构、成分和化学特性相关联。
  • 阴极发光在钙钛矿研究中的应用
    充分利用SEM的高空间分辨率, 结合阴极发光对材料的官能表征, 实现纳米级光学性能和材料结构表征。 ARC(angle resolved cathodoluminescence)由FOM Institute of AMOLF的Albert Polman group 创新研发, 获得2014年MRS创新大奖。 后由荷兰Delmic公司重新设计并商用,它是一套高性能的阴极荧光检测系统。凭借独特的高精度镜面,SPARC开辟了新的研究途径,如电子束引起的纳米光子学。灵敏度和易用性,SPARC帮助科学家推动阴极荧光到更多和更高阶应用。
  • GATAN阴极发光系统在石油地质行业中的应用
    在扫描电镜、电子探针分析领域里,利用阴极发光技术研究晶态材料和矿物中的晶体缺陷、杂质元素的存在形式,矿物成因和矿物中微量元素的地球化学作用以及矿物在不同地质环境下的某些标型特征等问题,是一种很有潜力的矿物学研究方法,已经在材料科学、矿物学、岩石学、地球化学以及矿床学等学科中取得了很大的成就。
  • 阴极发光设备(SEM-CL)在GaN功率电子方面的应用
    由于其与大批量硅晶圆厂的兼容性,GaN-on-Si技术平台可以大规模生产体积大且性能优越的硅晶圆而减小成本,使这项技术真正改变了游戏规则并用于汽车领域。阴极发光是其中半导体物理中使用的关键技术。它能够提供III-V薄膜材料的空间表征分辨率从而开辟出广阔的研究领域。
  • 微波辅助溶剂法萃取聚合物中多溴类阻燃剂
    与传统的索氏提取方法相比,微波辅助溶剂萃取方法有以下几个优点:?低溶剂消耗量传统的索氏提取需要消耗70ml的甲苯,而微波辅助溶剂萃取只需要消耗20ml的甲苯和甲醇混合溶剂。极性溶剂甲醇可以吸收微波,因此可以不使用非极性加热模块。?短萃取时间微波萃取所需要的时间一般不超过1.5 个小时,与索氏提取相比可节约接近4倍的时间。?高回收率尽管索氏提取的耗时较长,但回收率只有70%左右。与此相反,微波辅助萃取可以明显提高回收率,证明了Multiwave 3000 SOLV的出色萃取效率。
  • 阴极发光设备(SEM-CL)在量子异质结构方面的应用
    20世纪下半叶见证了半导体量子结构的出现,这是由于半导体量子结构在发光方面的卓越性能。将维数降为点状量子点(QDs),量子点与原子表现出有趣的相似之处,人们付出了巨大的努力来评估它们的性质。考虑到光和纳米线之间的强相互作用,嵌入在被称为纳米线(NWs)的丝状晶体中的量子点的生长变得相关。NWs中的量子点尤其有望成为量子技术的关键要素,如量子通信和密码学。然而,量子点(约5-10 nm)和量子点的维数都降低了(直径约100 - 200nm)会使量子点性质的测量变得非常复杂。特别是,由于衍射的限制,很难用全光学测量来评估紧密放置点之间的绝对量子点位置和分辨率。
  • 阴极发光设备(SEM-CL)在光束敏感光电材料(杂化卤化物钙钛矿)方面的应用
    卤化物钙钛矿已成为下一代光电应用(如太阳能电池和发光二极管)的特殊候选者。钙钛矿薄膜在微观和纳米尺度上具有非均质性。对纳米尺度的理解是开发和改进这些新型材料的基础。CL允许在高空间分辨率下探测材料的特性。然而,这些软半导体对电子束损伤非常敏感,这主要阻碍了CL的使用。
  • 微波辅助萃取与醇溶剂提取藜蒿中黄酮类化合物比较研究
    本文分别采用WX—3000型微波辅助萃取和醇溶剂提取藜蒿中黄酮类化合物。固定微波照射时间12min,对溶剂浓度、微波照射功率、固液比以及温度为因素,正交实验优化微波辅助提取藜蒿茎中黄酮类化合物工艺,得到微波提取藜蒿茎的最佳条件为:70%的乙醇浓度,800W的照射能量,1:20的料液比和80℃的照射温度,藜蒿茎的黄酮得率为6.43%;固定溶液pH为10的条件下,对醇溶剂提取的提取温度、溶剂百分数,提取时间,料液比四个因素做正交实验,得到醇溶剂提取的最佳条件为:温度为90℃,乙醇浓度为70%,提取时间为100 min,料液比为1:40,藜蒿茎的黄酮得率为6.11%。微波辅助萃取与传统的醇溶剂提取比较,提取率有显著优点是方法的提取率增加0.32%,提取时间缩短为原来的1/ 8。
  • 阴极发光设备(SEM-CL)在光伏材料方面的应用
    为了使光电(PV)发电提供世界能源需求的很大一部分,必须降低每瓦特产生的面板成本。低成本、高容量光伏发电的最佳前景是薄膜无机化合物,包括CdTe和Cu (In, Ga) Se2 (CIGS)。两种材料目前占太阳能电池板销量的20%,由于与硅相比有以下优势,这一比例可能会增加:1、这些材料的直接带隙意味着与100-400 μm的Si相比,所需的材料厚度大大减少,为2-5 μm。2、这种减少的厚度导致大大降低了对太阳能吸收器晶体质量的要求,它为更广泛的可能生产路线打开了大门 降低成本,提高产量。
  • 空心阴极灯的原理、特点及维护
    空心阴极灯是一种特殊的低压放电现象,在阴阳两极之间加以300~500V的电压,这样两极之间形成一个电场,电子在电场中运动,并与周围充入的惰性气体分子发生碰撞, 使这些惰性气体电离。气体中的正离子高速移向阴极,阴极在高速离子碰撞的过程中溅射出阴极元素的基态原子,这些基态原子与周围的的离子发生碰撞被激发到激发态,这些被激发的高能态原子在返回基态的过程中会发射出该元素的特征谱线 。
  • 微波辅助有机合成-应用于药物开发
    多年来,药物开发的瓶颈一直是在合成这个步骤上,其原因在于用以驱 使合成反应的方式一直是传统的热力加热。而最新技术的开发让微波成为加 热反应更有效的方法。那些原本需要几小时,甚至几天才能完成的合成反应现 在只需几分钟,因而让有机化学家们有更多的时间用以分析和优化他们的反 应,使他们更有创造性。微波合成包括很多优点,例如反应速率的提升,产 率的提高和成为“更干净”的化学。由CEM公司开发的新型微波环形单模腔把所有传统合成设备的优点以及微波瞬间加热的能力结合于一个简洁但具有强大功能 的仪器上。Abbo++实验室(芝加哥、伊利诺斯)使用此仪器进行了针对药 物开发的合成反应。化学家们发现环形单模腔辅助有机合成的好处是在传统 方法和从前的微波方法上的大量改进。
  • 微波辅助萃取-毛细管电泳法快速测定白屈菜属植物中的异喹啉类生物碱
    摘要采用简单、快速的微波辅助萃取-毛细管电泳的方法对白屈菜属植物中的8种异喹啉类生物碱进行测定,并对毛细管电泳和微波萃取关几个关键参数进行优化。采用500mM的tris-磷酸缓冲液(pH2.5)和等体积的甲醇混合后加入2mM的羟丙基-β-环糊精做为缓冲液,可在9min内完全分离8种异喹啉类生物碱。微波萃取的**条件是采用体积比为90:10:0.5甲醇-水-盐酸作溶剂在60℃下萃取5min,这种萃取方法比常规的回流萃取或者超声波萃取的萃取效率有了显著的提高。所有生物碱的工作曲线相关系数均大于0.9994,方法精密度小于4.11%,加标回收率为98%-103.9%。优化后的方法对从全国14各地区取的白屈菜属植物进行测定,都取得了良好的结果。与之前报道过的方法相比,该方法在总的分析时间和溶剂使用上都有显著地减少。
  • 发光细菌法检测饮用水综合毒性的应用研究
    目的 应用发光细菌法,选用 81.9%低毒性测试模式,分析饮用水的综合毒性。 方法 通过各种模拟实验,建立生活饮用水的模拟生物毒理性基线以及分析对发光菌试验的影响因素,说明在饮用水应急性毒性检测中的应用价值。 结果 建立某地区水质生物毒理性基线为-11.0% -18.4%, 作为水质综合毒性判断依据;发光菌发光影响因素实验表明,pH值、色度、浑浊度、余氯等因素对发光菌发光有抑制作用,需要在测试之前对水样进行预处理。 结论 通过建立生物 毒理性基线,发光细菌法可以快速地判定水样的毒性强弱,可作为监测水质突发性污染事故及水质突变的应急方法。
  • 去羟基增强玻璃的近中红外发光
    近中红外光广泛应用于光纤通信、医疗、遥感探测、说环境监控等应用领域,高效、稳定、紧凑的近中红外光光源是这些应用得以实施的基础。近中红外发光玻璃是制备近中红外光光源的核心材料,但是玻璃中含有的羟基是近中红外发光的淬灭中心与光吸收损耗的主要原因。怎样降低玻璃中的羟基含量成为提升近中红外发光玻璃的发光效率并降低光吸收损耗的重要方法。利用鼓泡法向玻璃液中通入去羟基试剂是目前降低玻璃中羟基含量的主要方法,但这种方法并不适合于所有基质玻璃材料,如掺铋发光玻璃、硫氧化物玻璃等,所以研究开发新的去羟基方法有利于开发新的近中红外发光材料,并开拓近中红外光的应用领域。
  • 【CEM】快速两步微波辅助合成乙酰氨基酚
    为了展现微波辅助合成中添加气态试剂的简便性,研究人员开发了一种以4-硝基苯酚为原料,通过两个步骤合成常见止痛药乙酰氨基酚的方法。
  • 天津兰力科:聚唾盼衍生物的合成、发光性能及结构的同步辐射研究
    近几年来,由于聚曝吩衍生物在发光器件、光伏电池及场效应份等方而潜在应用而备受关注。要使这类新型的光电聚合物材料走向实用化,还需要一步的改善和提高它们的光电特性和效率。这些性能除了与材料本身的化学构有关外,还与聚合物的物理形貌及分子形态有着密切的关系。Ll前聚合物理形貌对光电特性的影响研究主要集中在导电性能方面,而对光学方而的研较少。本论文分别用氧化聚合法和电化学聚合法合成和制备了聚{3一(2一甲软从苯唆吩』薄膜和纳米线阵列,详细分析了它们的发光特性和机理。利用同步辐射射线近边吸收技术(NEXAFS),分析了不同电负性的取代基对聚咪吩电J气结和分子取向的影响。取得的结果包括以下几个方面:(1)通过格氏反应合成了3一(2甲氧基苯)唆吩,再用FeCI3作催化剂氧化合了聚〔3一(2一甲氧基苯)唾吩』(PMP-Th)。热重分析表明聚合物在400℃刁‘现失重现象,具有较高热稳定性。聚合物的最大发光波长为687nln,带较窄,是较好的近红外发光材料。X射线衍射技术证明聚合物内有微区,这可能是由分子的局域有序排列造成的。(2)以高纯铝为原料,分别在草酸溶液和硫酸溶液中,采用二次阳极钱化法制备了孔洞高度有序的阳极氧化铝(AAO)模板。通过改变制各条件,获了孔径在30tun一80nm,孔密度为一10’。孔/cm,的一系列氧化铝模板。用上自制的不同孔径的多孔氧化铝为模板,采用循环伏安法,制备PMP-Th的纳米线阵列,纳米线的直径与模板的孔径大小相当,纳米线长度可通过控制电量来调控。结果证明循环伏安法电化学技术与模板相结合是制备一维聚合物纳米阵列的有效方法,易于调控纳米线的长和维度。(3)分析研究了各种直径的PMP一Th纳米线阵列在由草酸溶液中制得的AA模板中的发光特性,与PMP一Th薄膜的发光光谱相比,纳米线阵列的发波长都有较大蓝移,强度显著增强。纳米线阵列的发光显示显著的尺依赖性,随着AAO孔径由80lun减小到60nm,发光波长逐渐从58On蓝移至560lun,当孔径从60nln减至40tun时,发光峰从56Onm红移580tun。经过红外光谱分析和对分子环境的比较探讨发现发光潜的蓝移摘要由模板的孔洞限制效应引起的,小孔径中发光的红移是聚合物分子有序取向使有效共辘程度增加带隙能降低导致的。结合聚合物薄膜和从O的吸收光谱和光致发光激发谱,对光强增强的机理进行了探讨,认为光强增强是由AAO与聚合物分子间的能量转移造成的,光强随孔径减小而降低是给体的发光谱与受体的吸收谱搜盖度降低以及分子有序堆积使荧光效率降低的结果。(4)分别比较了PMP一Th纳米线阵列和聚(3一澳代唾吩)(PBr一Th)纳米线阵列在硫酸溶液中制得的AAO(S-AAO)和草酸溶液中制得的从O(C一AAO)中的发光特性,发现PMP一Th纳米线阵列在S一AAO中的发光峰位和强度的尺寸依赖性与C-AAO一致,说明PMP-Th线阵列在从O的发光特性与AAO孔壁的化学环境无关,也进一步说明了PMP一Th纳米与AAO之间没有化学反应。与PMP一Th在C.AAO和S一AAO中的发光特性显著不同的是,PB卜Th纳米线在C.AAO和S一AAO中的发光强度相比于薄膜PB卜Th的光强大大降低,这可能是PB卜Th分子在模板中的取向度较高或者是PB卜Th与AAO有较复杂的相互作用造成的。与PMP一Th纳米线相同的是PB卜Th在两种模板里的发光波长的尺寸依赖性是一致的。因此对这一体系的研究还需要进一步的深入和扩展。(5)利用同步辐射NEXAFS技术,分析了PMP一Th和PB卜Th的电子结构,通过分析角分辨NEXAFS谱,确定了PMP一Th分子和PB卜Th分子在R片电极上的分子取向:PB卜Th分子链“倾斜”于金属表面,而PMP-Th由于甲氧基苯的位阻和电子效应的双重影响表现为无序。
  • 空心阴极灯在材料科学和工业分析中的应用
    原子吸收光谱分析(AAS):空心阴极灯在原子吸收光谱分析中扮演着核心角色。每个元素都有其特定的谱线,当样品中的元素被原子化后,通过空心阴极灯发射的光谱线与样品中元素发射的谱线相互作用。如果两者谱线匹配,就会发生光吸收。通过测量吸收的光强度,可以确定样品中元素的浓度。
  • 深圳职业技术大学胡汉林教授多酚阴极界面层技术
    有机太阳能电池(OSCs)近年来在光伏领域备受关注,其低成本、轻薄柔性和可大面积制备的优势,使其在建筑一体化、柔性电子等领域具有巨大的应用潜力。然而,有机太阳能电池的效率和稳定性仍然面临挑战,其中一个关键问题是阴极界面层(CIL)的性能限制。在最近发表在《先进能源材料》期刊上的重要研究中,由深圳职业技术大学胡汉林教授、香港理工大学李刚教授以及河南科技学院张万庆教授等共同领导的团队,揭示了一种利用多酚化合物改善有机太阳能电池阴极界面层的突破性策略,成功提升了有机太阳能电池的效率和稳定性,为推动有机太阳能电池的应用发展迈出了重要一步。
  • 微波辅助开环共聚和聚碳酸酯的特性
    ?NO.101前言近来,在有机和高分子合成化学领域,微波辅助加热方法已成为一种常用的环境友好型加热技术。一系列的聚(5,5-二甲基三甲基碳酸酯-co-2-phenyl-5,5-bis[oxymethyl] trimethylenecarbonate)(P[DTC-co-PTC])是通过微波辅助开环合成的。微波辅助开环聚合5,5-二甲基碳酸三甲酯(DTC)和2-苯基-5,5-双(氧甲基)碳酸三甲酯(PTC),使用2-乙基己酸锡(II)和异丙氧基铝的催化剂。这些共混碳酸盐在钯碳催化剂(Pd/C催化剂。10%)来制造部分脱保护的聚碳酸酯(HPDPC)。这两种共混碳酸盐通过凝胶渗透色谱法、1HNMR,傅里叶变换红外光谱、紫外线、差示扫描量热法和自动接触角测量。微波辐照的影响微波照射时间、微波功率、单体进料摩尔比、不同的催化剂以及单体/催化剂进料摩尔比对共聚碳酸酯分子量的影响也被研究。体外吸水、降解和药物释放试验表明,部分脱保护的共聚碳酸酯HPDPC具有更大的亲水性、更快的降解率和更快的药物释放率,而不是相应的P(DTC-co-PTC)。因此,微波辅助聚合是一种清洁和廉价的的加热方法,可用于碳酸盐的开环共聚。它能提高脂肪族聚碳酸酯的亲水性和生物降解率。
  • 微波辅助提取黄芪黄酮的研究
    摘要:微波辅助萃取技术首次被用于黄芪黄酮的提取。研究考察了微波功率、提取次数、乙醇浓度、提取温度、提取时间以及固液比几个影响微波提取得率的参数。得出在乙醇浓度为90%、提取温度110 oC、提取时间25 min以及固液比25 ml/g时取得**提取率。在优化提取条件下没有观察到黄酮的降解。最有提取得率为1.190 ± 0.042 mg/g,与甲醇索氏提取30 min两次得率相近,较传统90%乙醇回流提取2h两次得率高。
  • 利用SWIR成像对光伏的光致发光检测
    使用短波红外(SWIR)相机的光致发光(PL)成像进行非接触式机器视觉检测可以帮助太阳能电池生产商提高其光伏产品的效率和质量。通过SWIR成像,可以对硅大块铸锭、切片晶圆、加工层和完整的光伏电池进行检查。PL发射发生在与半导体带隙相关的波长处,即使在以视频帧速率成像的情况下,半导体带隙对于高灵敏度、未冷却的砷化铟镓(InGaAs)相机也是可见的。这种检测技术以一个波长的高光功率照射感兴趣的物体,光子被吸收在大块材料中。在与分子结构的相互作用中,一些能量由于热量而损失,剩余的能量导致光子以更长的波长重新发射。所产生的辉光的均匀性和强度对材料的许多参数以及随后的处理步骤是敏感的。在许多情况下,材料的特性,如少数载流子寿命,可以从PL图像中映射出来,这些映射将直接关系到最终产品作为太阳能电池的性能。
  • 响应面优化微波辅助提取黄芪黄酮的工艺研究
    摘要:采用响应面(RSM)法对黄芪黄酮微波辅助提取工艺进行了优化。采用中心组合实验设计对提取时间、乙醇浓度、提取温度以及固液比几个影响微波提取得率的参数进行优化。建立的模型相关系数R2达094。优化的工艺参数为乙醇浓度为86.2%、提取温度108.2 oC、提取时间26.7 min以及固液比23.1 ml/g时取得**提取率。**黄酮得率为1.234 mg/g,与甲醇索氏提取30 min两次得率相近,较超声提取30 min两次及传统90%乙醇回流提取2h两次得率高。
  • 微波辅助萃取(MAE)聚合物中的溴化阻燃剂
    测试样品:• 粒径2-3mm的PE与PS,大约含有浓度为2%的溴化阻燃剂DecaBDE• 与上面相同的样品材料,但含有5%的DecaBDE• 两种材料的小球颗粒,不做其它前处理,用于后续实验。微波辅助氧燃烧处理后,后续IC分析DecaBDE的准确浓度。
  • 空心阴极灯亮度测评解决方案
    空心阴极灯是一种特殊形式的低压气体放电光源,放电集中于阴极空腔内。当在两极之间施加200V-500V电压时,便产生辉光放电。在电场作用下,电子在飞向阳极的途中,与载气原子碰撞并使之电离,放出二次电子,使电子与正离子数目增加,以维持放电。
  • 机器学习辅助优化铟锡氧化物衬底P1激光划线工艺
    目前的研究使用皮秒激光器(532 nm),用于在铟锡氧化物(ITO)层上选择性地进行P1激光划线以及随后利用机器学习(ML)技术对P1划线条件进行微调。最初,通过改变不同的激光参数来进行划线,并通过光学显微镜和两个探针电阻率测量来进一步评估这些参数。相应的划线宽度和薄层电阻数据被用作ML分析的输入数据库。基于分类和回归树(CART)的ML分析显示,中值脉冲能量5.7 μJ,APL   35%,也是   46%,处理速度≥1250mm s−1给出≥16 μm的划线宽度。此外,决策树(DT)分析表明,脉冲能量≥8.1 μJ和LSO ≥ 电气隔离线路需要37%。特征重要性得分表明,激光注量和脉冲能量决定了划线宽度,而电隔离在很大程度上取决于LSO和加工速度。最后,ML实现了通过扫描电子显微镜进行实验验证和重新评估的条件,原子力显微镜与光学显微镜测量结果很好地一致。
  • 空心阴极灯的维护与维修
    空心阴极灯如长期搁置不用,将会因漏气、气体吸附等原因而不能正常使用,甚至不能点燃。所以,每隔3—4个月,应将不常用的灯通电点燃2—3小时,以保持灯的性能并延长其使用寿命。
  • 耦合电致发光附件测试III-ⅤLED的应用
    大多数典型的LED由III-V族化合物半导体构成。III-V半导体是指包含元素周期表中第III族(B, Al, Ga, In)和第V族 (N, P, As, Sb)元素的合金材料。对于蓝色和绿色的LED,通常为In、Ga和N元素。InGaN基LED中的p型和n型区域由GaN形成,其带隙较大,为3.4 eV (360 nm)。可以通过调节Ga与N比值使其成为p型或n型。InGaN基LED的有源区由InxGa1-xN形成,加入In元素会降低半导体的带隙。通过改变In与Ga的摩尔比,可以调谐LED的发射波长和发光颜色。但随着In含量的增加,InGaN发光二极管的效率也会随之降低。因此,通过增加In的含量使其发射波长大于550 nm是没有实用意义的。光谱覆盖范围超过550 nm最为常用的LED为(AlxGa1-x)0.5In0.5P。可通过增加Al和Ga的摩尔比,使其带隙增大, 发射波长蓝移。采用电致发光技术能够测试InGaN和AlGaInP LED的发射波长,并确定LED的有源区带隙及组成。本篇应用,通过使用耦合电致发光附件的FS5荧光光谱仪测试了四种III-V族化合物发光二极管的发光特性并确定它们的带隙和色度坐标。
  • 阴极溶出伏安法检测二次盐水中碘离子
    对二次盐水中碘离子的测定方法进行了深一步的研究,详细地介绍了利用阴极溶出伏安和标准加入法测定二次盐水中的碘离子测定,并首次提出了利用在检测样品溶液中通高纯氮气消除了溶解氧对阴极溶出氧化还原电位的影响,并对标准加入法和标准曲线法在阴极溶出伏安法测定二次盐水中碘离子进行了比较。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制